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Abstract. In this paper we investigate local-to-global phenomena for
a new family of complexity functions of infinite words indexed by k ∈
N1∪{+∞} where N1 denotes the set of positive integers. Two finite words
u and v in A∗ are said to be k-abelian equivalent if for all x ∈ A∗ of length
less than or equal to k, the number of occurrences of x in u is equal to
the number of occurrences of x in v. This defines a family of equivalence
relations ∼k on A∗, bridging the gap between the usual notion of abelian
equivalence (when k = 1) and equality (when k = +∞). Given an infinite

word w ∈ Aω, we consider the associated complexity function P(k)
w :

N1 → N1 which counts the number of k-abelian equivalence classes of
factors of w of length n. As a whole, these complexity functions have a
number of common features: Each gives a characterization of periodicity
in the context of bi-infinite words, and each can be used to characterize
Sturmian words in the framework of aperiodic one-sided infinite words.
Nevertheless, they also exhibit a number of striking differences, the study
of which is one of the main topics of our paper.

1 Introduction

A fundamental problem in both mathematics and computer science is to describe
local constraints which imply global regularities. A splendid example of this
phenomena may be found in the framework of combinatorics on words. In their
seminal papers [17, 18], G. A. Hedlund and M. Morse proved that a bi-infinite
word w is periodic if and only if for some positive integer n, the word w contains
at most n distinct factors of length n. In other words, it describes the exact
borderline between periodicity and aperiodicity of words in terms of the factor
complexity function which counts the number of distinct factors of each length
n. An analogous result was established some thirty years later by E. Coven and
G. A. Hedlund in the framework of abelian equivalence. They show that a bi-
infinite word is periodic if and only if for some positive integer n all factors of
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w are abelian equivalent. Thus once again it is possible to distinguish between
periodic and aperiodic words on a local level by counting the number of abelian
equivalence classes of factors of length n.

In this paper we study the local-to-global behavior for a new family of com-

plexity functions P(k)
w of infinite words indexed by k ∈ N1 ∪ {+∞} where

N1 = {1, 2, 3, . . .} denotes the set of positive integers. Let k ∈ N1 ∪ {+∞} and
A be a finite non-empty set. Two finite words u, v ∈ A∗ are said to be k-abelian
equivalent if for all x ∈ A∗ of length at most k, the number of occurrences of x in
u is equal to the number of occurrences of x in v. This defines a family of equiv-
alence relations ∼k on A∗, bridging the gap between the usual notion of abelian
equivalence (when k = 1) and equality (when k = +∞). Abelian equivalence of
words has long been a subject of great interest (see, for instance, Erdős’s prob-
lem, [4–6, 8, 15, 20–23]). Although the notion of k-abelian equivalence is quite
new, there are already a number of papers on the topic [10–14, 16].

Given an infinite word w ∈ Aω, we consider the associated complexity func-

tion P(k)
w : N1 → N1 which counts the number of k-abelian equivalence classes of

factors of w of length n. Thus P(∞)
w corresponds to the usual factor complexity

(sometimes called subword complexity in the literature) while P(1)
w corresponds

to abelian complexity. As it turns out, each intermediate complexity function

P(k)
w can be used to detect periodicity of words. As a starting point of our re-

search, we list two classical results on factor and abelian complexity in connection
with periodicity, and their k-abelian counterparts proved by the authors in [14].
We note that in each case, the first two items are included in the third.

Theorem 1. Let w be a bi-infinite word over a finite alphabet. Then the follow-
ing properties hold:

– (M. Morse, G. A. Hedlund, [17]) The word w is periodic if and only if

P(∞)
w (n) < n+ 1 for some n ≥ 1.

– (E. M. Coven, G. A. Hedlund, [5]) The word w is periodic if and only if

P(1)
w (n) < 2 for some n ≥ 1.

– The word w is periodic if and only if P(k)
w (n) < min{n + 1, 2k} for some

k ∈ N1 ∪ {+∞} and n ≥ 1.

Also, each complexity provides a characterization for an important class of binary
words, the so-called Sturmian words:

Theorem 2. Let w be an aperiodic one-sided infinite word. Then the following
properties hold:

– (M. Morse, G. A. Hedlund, [18]). The word w is Sturmian if and only if

P(∞)
w (n) = n+ 1 for all n ≥ 1.

– (E. M. Coven, G. A. Hedlund, [5]). The word w is Sturmian if and only if

P(1)
w (n) = 2 for all n ≥ 1.

– The word w is Sturmian if and only if P(k)
w (n) = min{n + 1, 2k} for all

k ∈ N1 ∪ {+∞} and n ≥ 1.
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However, in other respects, these various complexities exhibit radically dif-
ferent behaviors. For instance, in the context of one-sided infinite words, the
first item in Theorem 1 gives rise to a characterization of ultimately peri-
odic words, while for the other two, the result holds in only one direction: If

P(k)
w (n) < min{n + 1, 2k} for some k ∈ N1 and n ≥ 1 then w is ultimately

periodic, but not conversely (see [14]). For instance in the simplest case when
k = 1, it is easy to see that if w is the ultimately periodic word 01ω, then for
each positive integer n there are precisely two abelian classes of factors of w of
length n. However, the same is true of the (aperiodic) infinite Fibonacci word
w = 0100101001001 · · · defined as the fixed point of the morphism 0 �→ 01,
1 �→ 0. Analogously, in Theorem 2 the first item holds without the added as-
sumption that w be aperiodic, while the other two items do not. Another striking
difference between them is in their rate of growth. Consider for instance the bi-
nary Champernowne word C = 011011100101110111 · · · obtained by concatenat-
ing the binary representation of the consecutive natural numbers. Let w denote
the morphic image of C under the Thue-Morse morphism 0 �→ 01, 1 �→ 10. Then

while P(∞)
w (n) has exponential growth, it can be shown that P(1)

w (n) ≤ 3 for all n.

Yet another fundamental disparity concerns the difference P(k)
w (n+1)−P(k)

w (n).

For factor complexity, one always has P(∞)
w (n + 1) − P(∞)

w (n) ≥ 0, while for
general k this inequality is far from being true.

A primary objective in this paper is to study the asymptotic lower and upper
complexities defined by

L(k)
w (n) = min

m≥n
P(k)
w (m) and U (k)

w (n) = max
m≤n

P(k)
w (m).

Surprisingly these quantities can deviate from one another quite drastically. In-
deed, one of our main results is to compute these values for the famous Thue-
Morse word. We show that the upper limit is logarithmic, while the lower limit
is just constant, in fact at most 8 in the case k = 2. This is quite unexpected
considering the Thue-Morse word is both pure morphic and abelian periodic (of
period 2). If we however allow more general words, then we obtain much stronger
evidence of the non-existence of gaps in low k-abelian complexity classes. We con-
struct uniformly recurrent infinite words having arbitrarily low upper limit and
just constant lower limit. The concept of k-abelian complexity also leads to many
interesting open questions. We conclude the paper in Section 6 by mentioning
some of these problems.

2 Preliminaries

Let Σ be a finite non-empty set called the alphabet. The set of all finite words
over Σ is denoted by Σ∗ and the set of all (right) infinite words is denoted by
Σω. The set of positive integers is denoted by N1. A function f : N1 → R is
increasing if f(m) ≤ f(n) for all m < n, and strictly increasing if f(m) < f(n)
for all m < n.
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Let w ∈ Σω. The word w is periodic if there is u ∈ Σ∗ such that w = uω, and
ultimately periodic if there are u, v ∈ Σ∗ such that w = vuω. If w is not ultimately
periodic, then it is aperiodic. Let u = a0 · · ·am−1 and a0, . . . , am−1 ∈ Σ. The
prefix of length n of u is prefn(u) = a0 · · ·an−1 and the suffix of length n of
u is suffn(u) = am−n · · · am−1. If 0 ≤ i ≤ m, then the notation rfactin(u) =
ai · · · ai+n−1 is used. The length of a word u is denoted by |u| and the number
of occurrences of another word x as a factor of u by |u|x. As a trivial boundary
case, |u|ε = |u|+1. Two words u, v ∈ Σ∗ are abelian equivalent if |u|a = |v|a for
all a ∈ Σ.

Let k ∈ N1. Two words u, v ∈ Σ∗ are k-abelian equivalent if |u|x = |v|x for
all words x of length at most k. k-abelian equivalence is denoted by ∼k. If the
length of u and v is at least k − 1, then u ∼k v if and only if |u|x = |v|x for all
words x of length k and prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v).
This gives an alternative definition for k-abelian equivalence. A proof can be
found in [14].

Let w ∈ Σω. The set of factors of w of length n is denoted by Fw(n). The

factor complexity of w is the function P(∞)
w : N1 → N1 defined by

P(∞)
w (n) = #Fw(n),

where # is used to denote the cardinality of a set. Let k ∈ N1. The k-abelian

complexity of w is the function P(k)
w : N1 → N1 defined by

P(k)
w (n) = #(Fw(n)/ ∼k).

Factor complexity functions are always increasing, and even strictly increasing
for aperiodic words. For k-abelian complexity this is not true. This is why we

define upper k-abelian complexity U (k)
w and lower k-abelian complexity L(k)

w :

U (k)
w (n) = max

m≤n
P(k)
w (m) and L(k)

w (n) = min
m≥n

P(k)
w (m).

These two functions can be significantly different. For example, if w is the Thue-

Morse word and k ≥ 2, then U (k)
w (n) = Θ(log n) and L(k)

w (n) = Θ(1). This will
be proved in Section 4.

The abelian complexity of a binary word w ∈ {0, 1}ω can be determined by
using the formula (see [22])

P(1)
w (n) = max {|u|1 | u ∈ Fn(w)} −min {|u|1 | u ∈ Fn(w)} + 1. (1)

For k ∈ N1 ∪ {∞}, we define q(k) : N1 → N1, q
(k)(n) = min{n + 1, 2k}. The

significance of this function is that if w is Sturmian, then P(k)
w = q(k). This is

further discussed in Section 3.
There are large classes of words for which the k-abelian complexities are of

the same order for many values of k. This is shown in the next two lemmas.
Thus when analyzing the growth rate of the k-abelian complexity of a word, it
may be sufficient to analyze the abelian or 2-abelian complexity.
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Lemma 3. Let w ∈ {0, 1}ω be such that every factor of w of length k contains

at most one occurrence of 1. Then P(k)
w (n) = Θ(P(1)

w (n)).

Proof. Two factors of w are k-abelian equivalent if and only if they are abelian
equivalent and have the same prefixes and suffixes of length k − 1. 
�
Lemma 4. Let k,m ≥ 2 and let w be a fixed point of an m-uniform morphism

h. Let i be such that mi ≥ k − 1. Then P(k)
w (mi(n+ 1)) = O(P(2)

w (n)).

Proof. Every factor of w of length mi(n + 1) can be written as phi(u)q, where
u is a factor of w of length n and |pq| = mi. The k-abelian equivalence class of
phi(u)q is determined by p, q and the 2-abelian equivalence class of u. 
�

In particular, Lemma 4 can be applied to the Thue-Morse word to analyze its
k-abelian complexity once the behavior of its 2-abelian complexity is known.

It has been shown that there are many words for which the k-abelian and
(k+1)-abelian complexities are similar, but there are also many words for which
they are very different. For example, there are words having bounded k-abelian
complexity but linear (k + 1)-abelian complexity. These words can even be as-
sumed to be k-abelian periodic, meaning that they are of the form u1u2 · · · ,
where u1, u2, . . . are k-abelian equivalent. This is shown in the next lemma.

Lemma 5. For every k ≥ 1 there is a k-abelian periodic word w such that

P(k+1)
w (n) = Θ(n).

Proof. Let w ∈ {0, 1}ω be a word with linear abelian complexity (e.g., the Cham-
pernowne word) and let h be the morphism defined by h(0) = 0k+110k−11,

h(1) = 0k10k1. Then the word h(w) is k-abelian periodic and P(k+1)
h(w) ((2k+2)n) =

Θ(P(1)
w (n)) = Θ(n). If m is the size of the alphabet, then P(k+1)

h(w) (n + 1) ≤
mP(k+1)

h(w) (n) for all n, so the claim follows. 
�

3 Minimal k-Abelian Complexities

In this section classes of words with small k-abelian complexity are studied. Some
well-known results about factor complexity are compared to results on k-abelian
complexity proved in [14]. It should be expected that ultimately periodic words
have low complexity, and this is indeed true for k-abelian complexity, although
the k-abelian complexity of some ultimately periodic words is higher that the
k-abelian complexity of some aperiodic words. For many complexity measures,
Sturmian words have the lowest complexity among aperiodic words. This is also
true for k-abelian complexity.

We recall the famous theorem of Morse and Hedlund [17] characterizing ul-
timately periodic words in terms of factor complexity. This theorem can be

generalized for k-abelian complexity: If P(k)
w (n) < q(k)(n) for some n, then w is

ultimately periodic, and if w is ultimately periodic, then P(∞)
w (n) is bounded.

This was proved in [14].
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If k is finite, then this generalization does not give a characterization of ul-
timately periodic words, because the function q(k) is bounded. In fact, it is
impossible to characterize ultimately periodic words in terms of k-abelian com-
plexity. For example, the word 02k−11ω has the same k-abelian complexity as
every Sturmian word. On the other hand, for every ultimately periodic word w

there is a finite k such that P(k)
w (n) < q(k)(n) for all sufficiently large n.

The theorem of Morse and Hedlund has a couple of immediate consequences.

The words w with P(∞)
w (n) = n+1 for all n are, by definition, Sturmian words.

Thus the following classification is obtained:

– w is ultimately periodic ⇔ P(∞)
w is bounded.

– w is Sturmian ⇔ P(∞)
w (n) = n+ 1 for all n.

– w is aperiodic and not Sturmian ⇔ P(∞)
w (n) ≥ n+1 for all n and P(∞)

w (n) >
n+ 1 for some n.

This can be generalized for k-abelian complexity if the equivalences are replaced
with implications:

– w is ultimately periodic ⇒ P(k)
w is bounded.

– w is Sturmian ⇒ P(k)
w = q(k).

– w is aperiodic and not Sturmian ⇒ P(k)
w (n) ≥ q(k)(n) for all n and P(k)

w (n) >
q(k)(n) for some n.

For k = 1 this follows from the theorem of Coven and Hedlund [5]. For k ≥ 2 it
follows from a theorem in [14].

The above result means that one similarity between factor complexity and
k-abelian complexity is that Sturmian words have the lowest complexity among
aperiodic words. Another similarity between them is that ultimately periodic
words have bounded complexity, and the largest values can be arbitrarily high:
For every n, there is a finite word u having every possible factor of length n.

Then P(k)
uω (n) is as high as it can be for any word, i.e., the number of k-abelian

equivalence classes of words of length n.
Another direct consequence of the theorem of Morse and Hedlund is that there

is a gap between constant complexity and the complexity of Sturmian words. For
k-abelian complexity there cannot be a gap between bounded complexities and
q(k), because the function q(k) itself is bounded. However, the question whether
there is a gap above bounded complexity is more difficult. The answer is that
there is no such gap, even if only uniformly recurrent words are considered. This
is proved in Section 5.

4 k-Abelian Complexity of the Thue-Morse Word

In this section the k-abelian complexity of the Thue-Morse word is analyzed.
Before that, the abelian complexity of a closely related word is determined.

Let σ be the morphism defined by σ(0) = 01, σ(1) = 00. Let S = 01000101 · · ·
be the period-doubling word, which is the fixed point of σ; see, e.g., [7].
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The abelian complexity of S is completely determined by the recurrence rela-

tions in the next lemma and by the first value P(1)
S (1) = 2. These relations were

proved independently in [3]. It is an easy consequence that the abelian com-
plexity of S is 2-regular (2-regular sequences were defined in [2]). The 2-abelian
complexity of the Thue-Morse word has been conjectured to be 2-regular [19],
and this is proved in [9].

Lemma 6. For n ≥ 1,

P(1)
S (2n) = P(1)

S (n) and P(1)
S (4n± 1) = P(1)

S (n) + 1.

Proof. Let pn = min {|u|1 | u ∈ Fn(S)} and qn = max {|u|1 | u ∈ Fn(S)} . Let
0 = 1 and 1 = 0. For a ∈ {0, 1}, σ(a) = 0a and σ2(a) = 010a. Because

F2n(S) = {σ(u) | u ∈ Fn(S)} ∪ {aσ(u)0 | au ∈ Fn(S)} ,
F4n−1(S) =

{
σ2(u)010 | u ∈ Fn−1(S)

} ∪ {
10aσ2(u) | au ∈ Fn(S)

}∪
{
0aσ2(u)0 | au ∈ Fn(S)

} ∪ {
aσ2(u)01 | au ∈ Fn(S)

}
,

F4n+1(S) =
{
σ2(u)0 | u ∈ Fn(S)

} ∪ {
10aσ2(u)01 | au ∈ Fn(S)

}∪
{
0aσ2(u)010 | au ∈ Fn(S)

} ∪ {
aσ2(u) | au ∈ Fn+1(S)

}

(here a always represents a letter), it can be seen that

p2n = n− qn, p4n−1 = pn + n− 1, p4n+1 = pn + n,

q2n = n− pn, q4n−1 = qn + n, q4n+1 = qn + n+ 1.

The claim follows because P(1)
S (n) = qn − pn + 1 for all n. 
�

Theorem 7. For n ≥ 1 and m ≥ 0,

P(1)
S (n) = O(log n), P(1)

S ((2 · 4m + 1)/3) = m+ 2, P(1)
S (2m) = 2.

Proof. Follows from Lemma 6 by induction. 
�
The abelian complexity of S has a logarithmic upper bound and a constant

lower bound. These bounds are the best possible increasing bounds.

Corollary 8. U (1)
S (n) = Θ(log n) and L(1)

S (n) = 2.

Let τ be the Thue-Morse morphism defined by τ(0) = 01, τ(1) = 10. Let
T = 0110100110010110 · · · be the Thue-Morse word, which is a fixed point of τ .

The first values of P(2)
T are 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10.

The 2-abelian equivalence of factors of T can be determined with the help of
the following lemma.

Lemma 9. Words u, v ∈ {0, 1}∗ are 2-abelian equivalent if and only if

|u| = |v|, |u|00 = |v|00, |u|11 = |v|11 and pref1(u) = pref1(v).
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Proof. The “only if” direction follows immediately from the alternative defini-
tion of 2-abelian equivalence. For the other direction, it follows from the assump-
tions that |u|01+ |u|10 = |v|01+ |v|10. In any word w ∈ {0, 1}∗, the numbers |w|01
and |w|10 can differ by at most one. If |w|01+ |w|10 is even, then |w|01 = |w|10. If
it is odd and pref1(w) = 0, then |w|01 = |w|10 +1. If it is odd and pref1(w) = 1,
then |w|01+1 = |w|10. This means that |u|01 = |v|01 and |u|10 = |v|10 and u and
v are 2-abelian equivalent. 
�

The following lemma states that if u is a factor of T , then the numbers |u|00
and |u|11 can differ by at most one.

Lemma 10. In the image of any word under τ , between any two occurrences of
00 there is an occurrence of 11 and vice versa.

Proof. 00 can only occur in the middle of τ(10) and 11 can only occur in the
middle of τ(01). The claim follows because 10’s and 01’s alternate in all binary
words. 
�

Let u be a factor of T . If |u| and |u|00 + |u|11 are given, then there are at
most 4 possibilities for the 2-abelian equivalence class of u. This is stated in a
different way in the next lemma. First we define a function φ as follows. If w =
a1 · · · an, then φ(w) = b1 · · · bn−1, where bi = 0 if aiai+1 ∈ {01, 10} and bi = 1
if aiai+1 ∈ {00, 11}. If w = a1a2 · · · is an infinite word, then φ(w) = b1b2 · · · is
defined in an analogous way.

Lemma 11. Let u1, . . . , un be factors of T . If φ(u1), . . . , φ(un) are abelian equiv-
alent, then u1, . . . , un are in at most 4 different 2-abelian equivalence classes.

Proof. The numbers |ui|00 + |ui|11 = |φ(ui)|1 are equal for all i; let this number
be m. By Lemma 10, {|ui|00, |ui|11} = {�m/2�, �m/2�}. There are at most four
different possible values for the triples (|ui|00, |ui|11, pref1(ui)). The claim follows
from Lemma 9. 
�

Now it can be proved that the 2-abelian complexity of T is of the same order
as the abelian complexity of φ(T ). It is known that φ(T ) is actually the period-
doubling word S [1].

Lemma 12. For n ≥ 2, P(1)
S (n− 1) ≤ P(2)

T (n) ≤ 4P(1)
S (n− 1).

Proof. If the factors of T of length n are u1, . . . , um, then the factors of φ(T )
of length n− 1 are φ(u1), . . . , φ(um). If ui and uj are 2-abelian equivalent, then
φ(ui) and φ(uj) are abelian equivalent, so the first inequality follows. The second
inequality follows from Lemma 11 
�
Theorem 13. For n ≥ 1 and m ≥ 0,

P(2)
T (n) = O(log n), P(2)

T ((2 · 4m + 4)/3) = Θ(m), P(2)
T (2m + 1) ≤ 8.

Proof. Follows from Lemma 12 and Theorem 7. 
�
With the help of Lemma 4, we see that the k-abelian complexity of T behaves

in a similar way as the abelian complexity of S.

Corollary 14. Let k ≥ 2. Then U (k)
T (n) = Θ(log n) and L(k)

T (n) = Θ(1).
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5 Arbitrarily Slowly Growing k-Abelian Complexities

In this section we study whether there is a gap above bounded k-abelian com-
plexity. This question can be formalized in two ways:

– Does there exist an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P(k)
w is bounded or P(k)

w = Ω(f)?
– Does there exist an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P(k)
w is bounded or P(k)

w �= O(f)?

The first question has already been answered negatively in Section 4. The answer
to the second question is also negative, even if only uniformly recurrent words
are considered. A construction proving this is given below.

Let n1, n2, . . . be a sequence of integers greater than 1. Let mj =
∏j

i=1 ni

for j = 0, 1, 2, . . . . Let ai = 0 if the greatest j such that mj |i is even and
ai = 1 otherwise. Let U = a1a2a3 · · · . The word U could also be described by
a Toeplitz-type construction: Start with the word (0n1−1�)ω, then replace the
�’s by the letters of (1n2−1�)ω, then replace the remaining �’s by the letters of
(0n3−1�)ω, and keep repeating this procedure so that U is obtained as a limit.
It follows from the construction that U ∈ (prefmj−1(U){0, 1})ω for all j.

Lemma 15. The word U is uniformly recurrent.

Proof. For every factor u of U , there is a j such that u is a factor of prefmj−1(U).
Because U ∈ {prefmj−1(U)0, prefmj−1(U)1}ω, every factor of U of length mj +
|u| − 1 contains u. 
�
Lemma 16. For every n ≥ 2, let n′ be such that mn′−1 < n ≤ mn′ . Then

P(1)
U (n) ≤ n′ + 1.

For all J ≥ 1, if n = 2
∑J

j=1(m2j −m2j−1), then

P(1)
U (n) ≥ (n′ + 1)/2.

For all j ≥ 1,

P(1)
U (mj) = 2.

Proof. Formula (1) will be used repeatedly in this proof. Another important
simple fact is that if a, b, c are integers and c divides a, then �(a+ b)/c� =
a/c+ �b/c� .

For all n ≥ 1,

|prefn(U)|1 =
∞∑

i=1

(−1)i+1

⌊
n

mi

⌋
,

and for all n ≥ 1 and l ≥ 0,

|rfactln(U)|1 = |prefn+l(U)|1 − |prefl(U)|1 =

∞∑

i=1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊

l

mi

⌋)
.
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For all i,

�(n+ l)/mi� − �l/mi� ∈ {�n/mi� , �n/mi�} .

Moreover, for every n and l there is an i′ such that, for i ≥ n′,

⌊
n+ l

mi

⌋
−
⌊

l

mi

⌋
=

{
1 if n′ ≤ i < i′

0 if i ≥ i′
,

so
∞∑

i=n′
(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊

l

mi

⌋)
∈
{
0, (−1)n

′+1
}
.

Thus there are at most n′+1 possible values for |rfactln(U)|1 and P(1)
U (n) ≤ n′+1.

Consider the second claim. Let n = 2
∑J

j=1(m2j−m2j−1). The sequence (mj)
is increasing and, moreover, mj+1 ≥ 2mj for all j, so by standard estimates for
alternating sums,

m2J ≤ 2(m2J −m2J−1) < n < 2m2J ≤ m2J+1.

Thus n′ = 2J + 1. Let l = m2J+1 − n/2. Then

|rfactln(U)|1 − |prefn(U)|1 =

∞∑

i=1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊

l

mi

⌋
−

⌊
n

mi

⌋)

and for i ≤ 2J (recall that mi|mj when j ≥ i)

�(n+ l)/mi� − �l/mi� − �n/mi�

=
m2J+1 +

∑
(i+1)/2≤j≤J (m2j −m2j−1)

mi
+

⌊∑
1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

− m2J+1 −
∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
−
⌊

−
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

− 2
∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
−
⌊
2
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

= �s/mi� − �−s/mi� − �2s/mi� ,

where s =
∑

1≤j<(i+1)/2(m2j −m2j−1). If i is even, then mi/2 ≤ s < mi, and if

i is odd and i > 1, then mi−1/2 ≤ s < mi−1. Thus

⌊
s

mi

⌋
−
⌊
− s

mi

⌋
−
⌊
2s

mi

⌋
=

{
0 if i is even or i = 1

1 if i is odd and i > 1
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and

P(1)
U (n) ≥ |rfactln(U)|1 − |prefn(U)|1 + 1

=
J∑

i′=2

(−1)(2i
′−1)+1 +

∞∑

i=2J+1

(−1)i+1

(⌊
n+ l

mi

⌋
−
⌊

l

mi

⌋
−
⌊
n

mi

⌋)
+ 1

= J + 1 =
n′ + 1

2
.

Consider the third claim. Because U ∈ {prefmj−1(U)0, prefmj−1(U)1}ω, ev-
ery factor of U of length mj is abelian equivalent to either prefmj−1(U)0 or

prefmj−1(U)1. Thus P(1)
U (mj) ≤ 2. Both prefmj−1(U)0 and prefmj−1(U)1 are

factors of U , so P(1)
U (mj) = 2. 
�

If ni = 2 for all i, then the word U is the period-doubling word S. Thus
Lemma 16 gives an alternative proof for Corollary 8.

Theorem 17. For every increasing unbounded function f : N1 → N1 there is a

uniformly recurrent word w ∈ {0, 1}ω such that P(k)
w (n) = O(f(n)) but P(k)

w (n)
is not bounded.

Proof. Follows from Lemmas 3, 15 and 16. 
�

6 Conclusion

In this paper we have investigated some generalizations of the results of Morse
and Hedlund and those of Coven and Hedlund for k-abelian complexity. We have
pointed out many similarities but also many differences. We have studied the k-
abelian complexity of the Thue-Morse word and proved that there are uniformly
recurrent words with arbitrarily slowly growing k-abelian complexities.

There are many open questions and possible directions for future work. One
open problem related to Lemma 5 is to determine the maximal (k + 1)-abelian
complexity of a k-abelian periodic word. Another interesting topic would be the
k-abelian complexities of morphic words. For example, for a morphic (or pure

morphic) word w, how slowly can U (k)
w (n) grow without being bounded? Can

it grow slower than logarithmically? More generally, can the possible k-abelian
complexities of some subclass of morphic words be classified?
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12. Huova, M., Karhumäki, J., Saarela, A., Saari, K.: Local squares, periodicity and
finite automata. In: Calude, C.S., Rozenberg, G., Salomaa, A. (eds.) Rainbow of
Computer Science. LNCS, vol. 6570, pp. 90–101. Springer, Heidelberg (2011)
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