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Abstract. A word is called a palindrome if it is equal to its reversal.
In the paper we consider a k-abelian modification of this notion. Two
words are called k-abelian equivalent if they contain the same number
of occurrences of each factor of length at most k. We say that a word
is a k-abelian palindrome if it is k-abelian equivalent to its reversal. A
question we deal with is the following: how many distinct palindromes
can a word contain? It is well known that a word of length n can contain
at most n+ 1 distinct palindromes as its factors; such words are called
rich. On the other hand, there exist infinite words containing only finitely
many distinct palindromes as their factors; such words are called poor.
It is easy to see that there are no abelian poor words, and there exist
words containing Θ(n2) distinct abelian palindromes. We analyze these
notions with respect to k-abelian equivalence. We show that in the k-
abelian case there exist poor words containing finitely many distinct k-
abelian palindromic factors, and there exist rich words containing Θ(n2)
distinct k-abelian palindromes as their factors. Therefore, for poor words
the situation resembles normal words, while for rich words it is similar
to the abelian case.

1 Introduction

The palindromicity of words is a widely studied area in formal languages. When
a model of a computation is introduced, among the first questions is to ask
whether the set of palindromes (or its infinite subset) can be recognized by the
model. In other words, can the model identify whether it is irrelevant if words
are read from left to right or from right to left? It is folklore that deterministic
finite automata cannot do that. On the other hand it is among the simplest
tasks for push-down automata, or on-line log-space Turing machines. A slightly
different approach is to look at palindromic factors of words. They can be viewed
as measuring how much the word is locally independent of the reading direction
of a factor. The notion of palindromic complexity was formalized for infinite
words in [6], and has been studied extensively ever since.

A problem related to our question of counting palindromes in a word is the
problem of counting maximal repetitions in a word of length n, that is, runs in a
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word. It was shown in [18] that the maximal number of runs in a word is linear
in n. Subsequently, there was much research performed to find the bound [8],
which led to a conjecture that the bound should be n. Very close lower and upper
bounds have been proved; however, the conjecture still remains open. Not only
runs, but also various other questions concerning counting squares in a word
have been considered, see, e.g., [13,14,19].

We recall that a word is a palindrome, if it is equal to its reversal. It is well
known that the maximal number of palindromes a word of length n can contain
is equal to n + 1, and such words are called rich in palindromes [10]. In some
papers the same class of words was called full words (see, e.g., [2,6]). Lately,
there is an extensive number of papers devoted to the study of rich words and
their generalizations (see, e.g., [7,12]). This notion can be extended to infinite
words: an infinite word is rich if each of its factors is rich. For example, Sturmian
words are known to be rich. Note also that Sturmian words can be characterized
via palindromic closures [9].

Recently the notion of palindromic poorness has been considered in [5,11].
Namely, an infinite word is called poor in palindromes if it contains only finitely
many distinct palindromes. In particular, it has been shown that there exist
poor words with the set of factors closed under reversal. Besides that, in [11] the
authors found the minimal number of palindromes an infinite word satisfying
different conditions (uniform recurrence, closed under reversal, etc.) can contain.
In a related paper [23] words avoiding reversed subwords were studied.

In this paper the k-abelian version of the notion of a palindrome is studied.
Two words are called abelian equivalent if they contain the same number of
occurrences of each letter, or, equivalently, if they are permutations of each other.
In the recent years there is a growing interest in abelian properties of words, as
well as modifications of the notion of abelian equivalence [1,4,17,21,23]. One
such modification is the notion of k-abelian equivalence: two words are called k-
abelian equivalent if they contain the same number of occurrences of each factor
of length at most k. For k = 1, the notion of k-abelian equivalence coincides
with the notion of abelian equivalence, and when k is greater than half of the
length of the words, k-abelian equivalence means equality. Therefore, the notion
of k-abelian equivalence is an intermediate notion between abelian equivalence
and equality of words. For more on k-abelian equivalence we refer to [15,16].

In analogy with normal palindromes, we say that a word v is a k-abelian
palindrome if its reversal is k-abelian equivalent to v. For example, the word
aabaaabbaa is a 3-abelian palindrome. We are interested in the maximal and
minimal numbers of k-abelian palindromes a word can contain.

For k = 1, clearly, each word is an abelian palindrome, since it is abelian
equivalent to its reversal. Therefore, there are no infinite 1-abelian poor words.
But for k > 1 this no longer holds. We build infinite k-abelian poor words for k >
1 and sufficiently large alphabets. In fact, we provide a complete characterization
of pairs (k,Σ) for which k-abelian poor words over the alphabet Σ exist.

Since a word of length n contains Θ(n2) factors in total, a k-abelian rich word
cannot contain more than Θ(n2) abelian palindromes. However, it can indeed
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contain Θ(n2) inequivalent abelian palindromes. We show that this extends to
k-abelian palindromes when k is small compared to n.

The maximal and minimal numbers of inequivalent palindromes in the case of
the equality, the k-abelian equality and the abelian equality are summarized in
Table 1 (here C is a constant). We remark that in the minimal case, that is for
poor words, infinite words are considered, while in the maximal case, that is in
rich words, only finite words are considered. The message of the table is that in
the big picture k-abelian equivalence behaves like equality for poor words, while
it behaves like abelian equivalence for rich words.

Table 1. Maximal and minimal numbers of palindromes in the case of equality, abelian
and k-abelian equivalence

equality k-abelian abelian

poor C C ∞
rich n+ 1 Θ(n2) Θ(n2)

2 Definitions and Notation

Given a finite non-empty set Σ (called the alphabet), we let Σ∗ and Σω, respec-
tively, denote the set of finite words and the set of (right) infinite words over
the alphabet Σ. We will always assume |Σ| ≥ 2. A word v is a factor (resp., a
prefix, resp., a suffix ) of a word w, if there exist words x, y such that w = xvy
(resp., w = vy, resp., w = xv). The set of factors of a finite or infinite word w is
denoted by F (w). The prefix and suffix of length k of w are denoted by prefk(w)
and suffk(w), respectively. Given a finite word u = u1u2 . . . un with n ≥ 1 and
ui ∈ Σ, we let |u| = n denote the length of u. The empty word is denoted by
ε and we set |ε| = 0. An infinite word is called recurrent if each of its factors
occurs infinitely often in it. An infinite word w is called uniformly recurrent if for
each v ∈ F (w) there exists N such that v ∈ F (wi · · ·wi+N ) for every i. In other
words, in a uniformly recurrent word each factor occurs with bounded gaps.

For each v ∈ Σ∗, we let |u|v denote the number of occurrences of the factor v
in u. Two words u and v in Σ∗ are said to be abelian equivalent, denoted u ∼ab v,
if and only if |u|a = |v|a for all a ∈ Σ. For example, the words aba and aab are
abelian equivalent. Clearly, abelian equivalence is an equivalence relation on Σ∗.

Let k be a positive integer. Two words u and v are k-abelian equivalent,
denoted by u ∼k v, if |u|t = |v|t for every word t of length at most k. This is
equivalent to the following conditions:

– |u|t = |v|t for every word t of length k,
– prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v) (or u = v, if |u| < k− 1

or |v| < k − 1).
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For instance, aabab ∼2 abaab, but aabab �2 aaabb. It is easy to see that k-
abelian equivalence implies k′-abelian equivalence for every k′ < k. In particular,
it implies abelian equivalence, that is, 1-abelian equivalence.

For a finite word v = v1 · · · vn we let vR = vn · · · v1 denote its reversal. A
word v is a palindrome if v = vR. A word is a k-abelian palindrome (or briefly
k-palindrome) if v ∼k vR. The empty word ε is considered as a palindrome and
k-palindrome.

An infinite word is k-abelian palindromic poor (briefly k-poor) if there exists
a constant C such that the word contains at most C inequivalent (in the sense of
k-abelian equivalence) k-abelian palindromes. Clearly, it makes sense to consider
only words having the set of factors closed under reversal, otherwise the example
can be built in the obvious way, e.g., one can take (abc)ω containing only 4 k-
palindromes.

A word of length n is called k-abelian palindromic rich (briefly k-rich), if it
contains at least n2/4k inequivalent k-abelian palindromes. Notice that the total

number of factors contained in a word of length n is equal to 1+ n(n+1)
2 . There-

fore, for a fixed k a k-abelian rich word contains the number of k-palindromes
of the same order as the total number of factors when k is small relatively to n.

We emphasize that for poor words we consider infinite words, and for rich
words we consider finite ones, and this is caused by the nature of the prob-
lem. Indeed, for poor words, since there exist infinite words containing only
finitely many palindromes, all their factors have a uniformly bounded number
of palindromes. On the other hand, the closed under reversal condition is not
applicable to finite poor words, since it would imply a growing number of palin-
dromes. Concerning rich words, an infinite word could easily contain infinitely
many palindromes, so we are interested in maximal number of palindromes in
finite ones. However, we propose an open problem concerning a modification of
k-palindromic richness for infinite words (see Problem 3 in Section 5). In the
next two sections we consider k-abelian poor and rich words, respectively.

3 k-Abelian Poor Words

In this section we show that there exist k-abelian palindromic poor words. This
holds for almost all values of k and |Σ|, and we characterize those.

Theorem 3.1. Let S = {(1, l)|l ∈ N} ∪ {(2, 2), (2, 3), (4, 2), (3, 2)}.
I. For (k, |Σ|) /∈ S there exist k-abelian palindromic poor words over Σ having a
set of factors that is closed under reversal.
II. For (k, |Σ|) ∈ S there are no k-abelian palindromic poor words over Σ having
a set of factors that is closed under reversal.

The results can be summarized in Table 2. Here + means that there exist
k-abelian poor words having a set of factors that is closed under reversal over
an alphabet Σ, and − indicates that there are no such words. In what follows,
we will write (k, l)-poor words for k-abelian poor words over an alphabet of
cardinality l for brevity.
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Table 2. The classification of (k, |Σ|) for the existence of k-poor words

k\|Σ| 2 3 4 . . .

1 − − − −
2 − − +

3 − + +

4 − + + . . .

5 + + +

. . . . . . +

Proof. First we prove Part I of the theorem by providing constructions of poor
words, and then prove the non-existence for Part II of the theorem.

I. We remark that the existence of a (k, l)-poor word implies the existence of a
(k′, l′)-poor word for each k′ ≥ k and l′ ≥ l. Indeed, for l′ > l to build a (k, l′)-
poor word from a (k, l)-poor word one could split any letter into several letters
in any way (i.e., for a chosen letter a, some of occurrences of a are substituted
by one of the l′ − l new letters). The word remains k-poor, and closed under
reversal condition can be preserved. For k′ > k, the statement follows from the
fact that every k′-abelian palindrome is also a k-abelian palindrome for any
k ≤ k′. Therefore, it is enough to build (5, 2)-, (3, 3)- and (2, 4)-poor words. We
will provide the construction and a proof for the (2, 4) case. The other cases are
similar, so we just outline the constructions.

We construct an infinite recurrent (2, 4)-poor word as follows:

U0 = abca abda acda,

Un = Un−1(abca)
22

n

(abda)2
2n

(acda)2
2n

UR
n−1.

(1)

The required word is obtained as the limit u = limn→∞ Un:

u = abca abda acda(abca)4(abda)4(acda)4adca adba acba(abca)16(abda)16 . . .

The set of factors of this word is closed under reversal since for each prefix the
word contains its reversal as a factor by the construction.

To prove that it contains only finitely many 2-abelian palindromes, we will
show that each factor of length greater than 12 contains either a unequal number
of occurrences of factors bc and cb, or a unequal number of occurrences of factors
bd and db, or a unequal number of occurrences of factors cd and dc.

A factor of the form (abca)t(abda)t(acda)t or (adca)t(adba)t(acba)t for t = 22
i

or t = 1 is called a block. In fact, the word u is a concatenation of blocks. A
subblock is a factor of the form (axya)t for t = 22

i

or t = 1 and for (x, y) ∈
{(b, c), (c, b), (b, d), (d, b), (c, d), (d, c)}. Notice that each factor xy appears only in
the corresponding subblock, and its reversal yx appears only only in the reversal
of the corresponding subblock. Therefore, we have three pairs of subblocks, where
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a pair consists of a block and its reversal. We will say that subblocks (axya)2
2i

and (ayxa)2
2i

are of type (x, y).
Basically, the idea of the construction is based on the fact that we have three

types of subblocks, each of them containing a specific factor, such that this factor
and its reversal are contained only in subblocks of this type. Each long enough
factor will contain a unequal number of occurrences of one of these specific
factors and its reversals. Notice that it is important to have three pairs of such
factors; two is not enough to guarantee absence of long k-abelian palindromes.

Take a factor v of length |v| ≥ 13. The following cases are possible. The first
case is the principal case when v intersects subblocks of all the three types. The
second case is a special case when v intersects at most two different blocks.

Case 1: v intersects subblocks of all the three types. In this case the ends of v
can cut at most two subblocks, and hence v contains only full subblocks of at
least one type. We let (x, y) denote this type (or one of the types, if there are
several of those). The sequence of numbers of occurrences of xy and its reversal
yx in full subblocks of v is given by

z = 1, 4,−1, 16, 1,−4,−1, 256, 1, 4,−1,−16, 1,−4,−1 . . .

Here positive numbers indicate occurrences of xy, and negative numbers mean
the occurrences of yx. In fact, this sequence corresponds to the sequence of
exponents of the corresponding block. For a subsequence v = z(i), . . . , z(j) of z
we let −v denote the sequence obtained by changing the sign of all numbers in
it: −v = −z(i), . . . ,−z(j). More formally, z is defined recursively as the infinite
sequence starting with Zn for all n:

Z0 = 1,

Zn = Zn−1, 2
2n , (−Zn−1)

R.
(2)

If a factor v of u containing only full subblocks of type (x, y) is a palindrome,
then the sum of consecutive elements corresponding to the subsequence v in the
sequence z is equal to 0. We will prove the following auxiliary claim:

Claim. The sum of consecutive elements in the sequence z is never equal to 0.

Consider any subsequence of consecutive elements z(i), . . . , z(i+ k) of z, and
take the element z(j) in it with the largest absolute value, i ≤ j ≤ i+k. We will
prove that

|z(j)| >
l=i+k∑

l=i

|z(l)| − |z(j)|.

In other words, |z(j)| is greater than the sum of absolute values of all other
elements of the subsequence, and hence the sum of all elements in z(i), . . . , z(i+k)
cannot be 0.

Let |z(j)| = 22
m

for some integer m. Clearly, either z(i), . . . , z(i + k) or
(−z(i), . . . ,−z(i + k))R is a factor of the prefix Zm of z, including the middle
element 22

m

of Zm. It is enough to prove that
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22
m

> 2
∑

z(l)∈Zm−1

|z(l)|. (3)

By the construction,

∑

z(l)∈Zi

|z(l)| = 22
i

+ 2
∑

z(l)∈Zi−1

|z(l)|. (4)

We prove (3) by induction. Straightforward computation shows that it holds
for m = 1 and 2. Assume it holds for m = i. Then, using the induction hypoth-
esis, we obtain

22
i+1

= 22
i · 22i > 22

i · 2
∑

z(l)∈Zi−1

|z(l)| = 22
i ·

∑

z(l)∈Zi−1

|z(l)|+22
i ·

∑

z(l)∈Zi−1

|z(l)|.

For i ≥ 2 one has
∑

z(l)∈Zi−1
|z(l)| ≥ 2, and 22

i ≥ 4. Applying these two inequal-
ities to the first and the second summands, correspondingly, and then applying
(4), we get

22
i ·

∑

z(l)∈Zi−1

|z(l)|+22
i ·

∑

z(l)∈Zi−1

|z(l)| ≥ 22
i ·2+4·

∑

z(l)∈Zi−1

|z(l)| = 2
∑

z(l)∈Zi

|z(l)|.

Combining the above inequalities, we obtain

22
i+1

> 2
∑

z(l)∈Zi

|z(l)|,

i.e., we get that (3) holds for m = i + 1, and hence we have the induction step.
The claim is proved.

Therefore, the factor v contains different numbers of occurrences of xy and
yx, and hence is not a 2-palindrome.

Case 2: The factor v intersects subblocks of at most two types.

Case 2.1: The factor v is contained entirely in a block, i.e., we have v ∈
F ((abca)2

2i

(abda)2
2i

(acda)2
2i

) or v ∈ F ((adca)2
2i

(adba)2
2i

(acba)2
2i

). In this
case since |v| ≥ 13, the word contains at least one of the factors xy for
(x, y) ∈ {(b, c), (c, b), (b, d), (d, b), (c, d), (d, c)} and does not contain its reversal,
so v is not a 2-palindrome.

Case 2.2: The factor v intersects two blocks and subblocks of at most two types.
By construction, every other block in u is of exponent 1; therefore, one of the two

blocks is of exponent 1. So, in this case v is a factor of (axya)2
2m

(ax′y′a) (or that
of its reversal) or a factor of (ax′y′a)2

2m

(axya)2
2m

(ayxa)(ay′x′a), m ≥ 1, x �= x′,
y �= y′ (or that of its reversal). In the first case since |v| ≥ 13, the word contains at
least one occurrence of the factor xy and does not contains its reversal, so v is not
a 2-palindrome. In the second case the same argument works if v contains at least
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two copies of xy. Otherwise v is a factor of yaaxyaayxaay′x′a. Straightforward
checking shows that this word does not contain 2-abelian palindromes of length
greater or equal to 13.

So, the case (k, |Σ|) = (2, 4) is proved.

The proofs in the cases (k, |Σ|) = (3, 3) and (5, 2) are similar, so we only
provide the constructions.

An infinite recurrent (3, 3)-poor word can be constructed as follows:

V0 = bbacc aabcc bbcaa,

Vn = Vn−1(bbacc)
22

n

(aabcc)2
2n

(bbcaa)2
2n

V R
n−1.

The word is given by the limit v = limn→∞ Vn:

v = bbacc aabcc bbcaa(bbacc)4(aabcc)4(bbcaa)4aacbb ccbaa ccabb(bbacc)16 . . .

The proof is based on the fact that each sufficiently long factor contains either
unequal numbers of occurrences of factors bac and cab, or unequal numbers of
occurrences of factors abc and cba, or unequal numbers of occurrences of factors
bca and acb, and hence is not a 3-palindrome. In other words, two letter factors
of the case (2, 4) are now replaced by suitable three-letter factors over ternary
alphabet.

An infinite recurrent (5, 2)-poor word can be constructed as follows:

W0 = bbbabaaabbb bbbabbaabbb bbbabaabbbb,

Wn = Wn−1(bbbabaaabbb)
22

n

(bbbabbaabbb)2
2n

(bbbabaabbbb)2
2n

WR
n−1.

The word is given by the limit w = limn→∞ Wn. The proof is based on the fact
that each sufficiently long factor contains either unequal numbers of occurrences
of factors abaaa and aaaba, or unequal numbers of occurrences of factors abbaa
and aabba, or unequal numbers of occurrences of factors abaab and baaba, and
hence is not a 5-palindrome. Now the specific factors of two previous cases are
five-letter binary words.

II. For the proof we split the set S of pairs into two parts with different types
of proofs.

Case 1: (k, |Σ|) ∈ {(1, l)|l ∈ N} ∪ {(2, 2), (3, 2)}. For k = 1 (i.e., the abelian
equivalence) each word is an abelian palindrome, since every word is abelian
equivalent to its reversal. Therefore, all factors of any infinite word are abelian
palindromes, and hence there are no abelian palindromic poor words.

In the 2-abelian case, each word starting and ending in the same letter is a
2-abelian palindrome. Indeed, without loss of generality let a word v start and
end with a, and let it contains m blocks of b’s. Then v contains m occurrences of
the factor ab and m occurrences of the factor ba. Factors aa and bb do not affect
2-abelian palindromicity; hence v is a 2-palindrome. Since any infinite binary
word contains infinitely many factors starting and ending with the same letter,
there are no 2-abelian poor binary infinite words.
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In the 3-abelian binary case the proof is similar, just a bit more technical. We
omit the details of the proof.

Case 2: (k, |Σ|) ∈ {(2, 3), (4, 2)}. We provide a detailed sketch of the proof for
the (2, 3) case. The idea of the proof in the case (4, 2) is similar, although it
requires more thorough analysis.

First we introduce rewriting rules which do not affect the 2-palindromicity:

(1) for x ∈ Σ, substitute xx → x
(2) for x, y ∈ Σ, substitute xyx → x

Claim (i). Let v be ternary word, and let v′ be obtained from v by applying
a rewriting rule (1) or (2). Then v is a 2-palindrome if and only if v′ is a 2-
palindrome.

Indeed, after applying the rewriting rule (1), the multiset (the set with mul-
tiplicities) of factors of length 2 of v′ is obtained from the multiset of factors of
length 2 of v by removing one factor xx. Clearly, the resulting set coincides with
its reversal if and only if the original set does. After applying the rewriting rule
(2), the multiset of factors of length 2 of v′ is obtained from the multiset of fac-
tors of length 2 of v by removing two factors xy and yx. Again, the resulting set
coincides with its reversal if and only if the original set does. The claim follows.

Now take a ternary word v and apply rewriting rules until the word does not
contain factors of the form xx and xyx. We call the resulting word the reduced
form of v. We note that the reduced form of v is unique.

The following claim is straightforward:

Claim (ii). 1. The reduced form of any ternary word v is a factor of (abc)∞ or
(cba)∞. 2. A ternary word v is a 2-palindrome if and only if its reduced form is
a letter.

Now assume that an infinite ternary word w with its set of factors closed under
reversal does not contain 2-palindromes of length greater than N for some inte-
ger N . Take a factor v = wi · · ·wi+N of length N+1. Since the set of factors of w
is closed under reversal, there exists an occurrence of vR = wj · · ·wj+N . Without
loss of generality we can assume that j > i + N and that the reduced form of
v is a word u of the form (abc)m(pref(abc)) for some m ≥ 0. Then the reduced
form of vR equals uR. Now consider the factor wi+N+1 · · ·wj−1; again with-
out loss of generality its reduced form is of the form (suff(cba))(cba)r(pref(cba))
for some r ≥ 0. Consider the factor wi+N+1 · · ·wj+N+1, which was rewritten
to (suff(cba))(cba)r(pref(cba))(suff(cba))(cba)m. So, there exists s, i + N + 1 ≤
s ≤ j + N + 1, such that the reduced form of wi+N+1 · · ·ws is equal to
uR = (suff(cba))(cba)m. It is straightforward that wi · · ·ws is reduced to a, and
hence is a 2-palindrome. The length of this 2-palindrome is greater than N , a
contradiction. 	

Remark 1. Notice that the examples of k-abelian poor words we build are
recurrent, but not uniformly recurrent.

Remark 2. In the construction (1) in fact the powers can be made smaller
(although growing), it is convenient for us to use 22

n

in the proofs.
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Remark 3. Our constructions are modifications of the so-called sesquipowers,
see, e.g., [20, Chapter 4].

4 k-Abelian Rich Words

In this section we show that there exist words of length n which have the num-
ber of inequivalent k-abelian palindromic factors of the same order as the total
number of their factors Θ(n2). In this sense these words contain “many” k-
palindromes and hence are considered as rich.

Theorem 4.1. Let k be a natural number. There exists a positive constant C
such that for each n ≥ k there exists a word of length n containing at least Cn2

k-abelian palindromes. Actually, we can choose C = 1/4k.

Proof. The word is defined by

v = al(bak−1)m,

where l andm are chosen to give maximal number of k-palindromes among words
of this type. We let �r� denote the closest integer to r, we can take m = �n−k+1

2k �.
Let us count the number of inequivalent k-palindromes in the word v = v1 · · · vn,
n = km+ l. The k-palindromes are the following:

– Starting from position 1, we get the following k-palindromes
• ε (empty word)
• v1, v1v2, . . . , v1 · · · vl (l k-palindromes consisting of only a’s)
• v1 . . . vl+k, v1 . . . vl+2k, . . . , v1 . . . vl+mk (m k-palindromes starting with
ak−1, of length l + ik and containing i letters b, i = 1, . . . ,m)

– Starting from each position j, j = 2, . . . , l − k + 1, we get the following
new k-palindromes: vj . . . vl+k, vj . . . vl+2k, . . . vj . . . vl+mk (m k-palindromes
starting with ak−1, of length l−j+ik and containing i letters b, i = 1, . . . ,m)

– Starting from each position j, j = l − k + 2, . . . , l + 1, we get the following
new k-palindromes: vj . . . v2l−j+2, vj . . . v2l−j+2+k, . . . , vj . . . v2l−j+2+(m−1)k

(m k-palindromes starting with al+1−j , of length 2l− 2j + 3+ (i− 1)k and
containing i letters b, i = 1, . . . ,m)

It is not hard to see that all the above k-palindromes are distinct up to k-
abelian equivalence; in fact, they are abelian inequivalent. So, in total we have
(l + 1)(m + 1) = (n − mk + 1)(m + 1) distinct k-palindromes. Considering
this as a function of m, we get that this function takes a maximal value when
m = n−k+1

2k . Since all numbers are integer there, the actual maximal number of
k-palindromes given by this construction is given by taking the closest integer
value, i.e., m = �n−k+1

2k � (since the function is quadratic in m). Taking these
values and taking into account the condition n ≥ k, we derive that the number
of k-palindromes is (l + 1)(m+ 1) ≥ n2/4k. 	


We remark that in the Θ(n2) number of k-palindromic factors the constant
actually depends on k, so it makes sense when k is small relatively to n.
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5 Conclusions and Open Problems

We have considered the numbers of k-abelian palindromes in finite and infinite
words. These numbers are always between a constant and a quadratic bound,
corresponding to so-called poor and rich words. In the case of poor words to
avoid trivialities we always assumed that the words are closed under reversal.
Our main result was a construction of infinite words containing only finitely
many k-abelian palindromes. This construction could be modified for different
pairs (k, l), where k was a constant in k-abelian equivalence and l was the size
of the alphabet. For the remaining pairs to show that such an infinite poor word
does not exist, we used a different approach, based on rewriting rules preserving
k-abelian palindromicity. We also gave an example showing the existence of
rich finite words, that is words containing the maximal number of k-abelian
palindromes up to a constant multiplicative factor. The bound we found is n2/4k,
that is of order Cn2, where C is a constant independent of n.

A few natural open problems remain. We built recurrent, but not uniformly
recurrent k-abelian poor words. The problem is the following:

Problem 1. Does there exist an infinite uniformly recurrent word having the
set of factors that is closed under reversal and containing only finitely many
k-abelian palindromes?

The second problem asks for optimal constants for rich and poor words.

Problem 2. What is the exact minimal number of k-abelian palindromes an
infinite word having a set of factors closed under reversal can contain? What is
the exact maximal number of distinct k-abelian palindromes a word of length n
can contain?

Some bounds for the constants can be found in this paper, although we did
not try to find the best constants.

In the case of equality and classical palindromes the notion of a rich word
can be extended to infinite word. The question is whether this is possible for
k-abelian palindromes:

Problem 3. Does there exist an infinite k-abelian rich word? More precisely,
does there exist an infinite word w, such that for some constant C each of its
factors of length n contains at least Cn2 distinct k-abelian palindromes?
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