
Characterising REGEX Languages

by Regular Languages Equipped
with Factor-Referencing

Markus L. Schmid

Universität Trier, FB IV–Abteilung Informatikwissenschaften,
D-54286 Trier, Germany
MSchmid@uni-trier.de

Abstract. A (factor-)reference in a word is a special symbol that refers
to another factor in the same word; a reference is dereferenced by sub-
stituting it with the referenced factor. We introduce and investigate the
class ref-REG of all languages that can be obtained by taking a regular
language R and then dereferencing all possible references in the words of
R. We show that ref-REG coincides with the class of languages defined
by regular expressions as they exist in modern programming languages
like Perl, Python, Java, etc. (often called REGEX languages).

Keywords: REGEX languages, regular languages, memory automata.

1 Introduction

It is well known that most natural languages contain at least some structure that
cannot be described by context-free grammars and also with respect to artificial
languages, e. g., programming languages, it is often necessary to deal with struc-
tural properties that are inherently non-context-free (Floyd’s proof (see [10]) that
Algol 60 is not context-free is an early example). Hence, as Dassow and Păun [8]
put it, “the world seems to be non-context-free.” On the other hand, the full
class of context-sensitive languages, while powerful enough to model the struc-
tures appearing in natural languages and most formal languages, is often, in
many regards, simply too much. Therefore, investigating those properties of lan-
guages that are inherently non-context-free is a classical research topic, which,
in formal language theory is usually pursuit in terms of restricted or regulated
rewriting (see Dassow and Păun [8]), and in computational linguistics mildly
context-sensitive languages are investigated (see, e. g., Kallmeyer [13]).

In [9], Dassow et al. summarise the three most commonly encountered non-
context-free features in formal languages as reduplication, leading to languages
of the form {ww | w ∈ Σ∗}, multiple agreements, modelled by languages of the
form {anbncn | n ≥ 1} and crossed agreements, as modeled by {anbmcndm |
n,m ≥ 1}. In this work, we solely focus on the first such feature: reduplication.

The concept of reduplication has been mainly investigated by designing lan-
guage generators that are tailored to reduplications (e. g., L systems (see Kari et
al. [14] for a survey), Angluin’s pattern languages [2] or H-systems by Albert and

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 142–153, 2014.
© Springer International Publishing Switzerland 2014

Characterising REGEX by Regular Ref-Languages 143

Wegner [1]) or by extending known generators accordingly (e. g., Wijngaarden
grammars, macro grammars, Indian parallel grammars or deterministic iteration
grammars (cf. Albert and Wegner [1] and Bordihn et al. [3] and the references
therein)). A more recent approach is to extend regular expressions with some kind
of copy operation (e. g., pattern expressions byCâmpeanu andYu [6], synchronized
regular expressions byDella Penna et al. [15], EH-expressions byBordihn et al. [3]).
An interesting such variant are regular expressions with backreferences (REGEX
for short), which play a central role in this work. REGEX are regular expressions
that contain special symbols that refer to the word that has been matched to a
specific subexpression. Unlike the other mentioned language descriptors, REGEX
seem to have been invented entirely on the level of software implementation, with-
out prior theoretical formalisation (see Friedl [12] for their practical relevance). An
attempt to formalise and investigate REGEX and the class of languages they de-
scribe from a theoretical point of view has been started recently (see [4, 6, 16, 11]).
This origin of REGEX from application render their theoretical investigation diffi-
cult. As pointed out byCâmpeanu and Santean in [5], “we observe implementation
inconsistencies, ambiguities and a lack of standard semantics.” Unfortunately, to
at least some extend, these conceptional problems inevitably creep into the theo-
retical literature as well.

Regular expressions often serve as an user interface for specifying regular lan-
guages, since finite automata are not easily defined by human users. On the
other hand, due to their capability of representing regular languages in a concise
way, regular expressions are deemed inappropriate for implementations and for
proving theoretical results about regular languages (e. g., closure properties or
decision problems). We encounter a similar situation with respect to REGEX
(which, basically, are a variant of regular expressions), i. e., their widespread im-
plementations suggest that they are considered practically useful for specifying
languages, but the theoretical investigation of the language class they describe
proves to be complicated. Hence, we consider it worthwhile to develop a charac-
terisation of this language class, which is independent from actual REGEX.

To this end, we introduce the concept of unresolved reduplications on the
word level. In a fixed word, such a reduplication is represented by a pointer or
reference to a factor of the word and resolving or dereferencing such a reference
is done by replacing the pointer by the value it refers to, e. g.,

w = a b a c b c x c b z y a ,
x

y z

where the symbols x, y and z are pointers to the factors marked by the brackets
labelled with x, y and z, respectively. Resolving the references x and y yields
abacbcbaccbzcba and resolving reference z leads to abacbcbaccbbaccbcba.
Such words are called ref-words and sets of ref-words are ref-languages. For
a ref-word w, D(w) denotes the word w with all references resolved and for a
ref-language L, D(L) := {D(w) | w ∈ L}. We shall investigate the class of ref-
regular languages, i. e., the class of languages D(L), where L is both regular and
a ref-language, and, as our main result, we show that it coincides with the class
of REGEX languages. Furthermore, by a natural extension of classical finite

144 M.L. Schmid

automata, we obtain a very simple automaton model, which precisely describes
the class of ref-regular languages (= REGEX languages). This automaton model
is used in order to introduce a subclass of REGEX languages, that, in contrast
to other recently investigated such subclasses, has a polynomial time member-
ship problem and we investigate the closure properties of this subclass. As a side
product, we obtain a very simple alternative proof for the closure of REGEX lan-
guages under intersection with regular languages; a known result, which has first
been shown by Câmpeanu and Santean [5] by much more elaborate techniques.

Due to space restrictions, all formal proofs are omitted, but we give brief proof
sketches for some of our results.

2 Definitions

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0}. For an alphabet B, the symbol B+

denotes the set of all non-empty words over B and B∗ := B+ ∪ {ε}, where ε is
the empty word. For the concatenation of two words w1, w2 we write w1 · w2 or
simply w1w2. We say that a word v ∈ B∗ is a factor of a word w ∈ B∗ if there
are u1, u2 ∈ B∗ such that w = u1vu2. For any word w over B, |w| denotes the
length of w, for any b ∈ B, by |w|b we denote the number of occurrences of b in
w and for any A ⊆ B, we define |w|A :=

∑
b∈A |w|b.

We use regular expressions as they are commonly defined (see, e. g., Yu [17]).
By DFA and NFA, we refer to the set of deterministic and nondeterministic
finite automata. Depending on the context, by DFA and NFA we also refer to
an individual deterministic or nondeterministic automaton, respectively.

For any language descriptor D, by L(D) we denote the language described by
D and for any class D of language descriptors, let L(D) := {L(D) | D ∈ D}. In
the whole paper, let Σ be an arbitrary finite alphabet with {a, b, c, d} ⊆ Σ.

2.1 References in Words, Languages and Expressions

References in Words. Let Γ := {[xi ,]xi , xi | i ∈ N}, where, for every i ∈ N,
the pairs of symbols [xi and]xi are parentheses and the symbols xi are variables.
For the sake of convenience, we shall also use the symbols x, y and z to denote
arbitrary variables. A reference-word over Σ (or ref-word, for short) is a word
over the alphabet (Σ ∪Γ). For every i ∈ N, let hi : (Σ ∪ Γ)∗ → (Σ ∪ Γ)∗ be the
morphism with hi(z) := z, z ∈ {[xi ,]xi , xi}, and hi(z) := ε, z /∈ {[xi ,]xi , xi}. A
reference word is valid if, for every i ∈ N,

hi(w) = x�1i [xi]xi x
�2
i [xi]xi x

�3
i . . . x

�ki−1

i [xi]xi x
�ki
i , (1)

for some ki ∈ N and �j ∈ N0, 1 ≤ j ≤ ki. Intuitively, a reference-word w is valid
if, for every i ∈ N, there is a number of matching pairs of parentheses [xi and]xi

that are not nested and, furthermore, no occurrence of xi is enclosed by such a
matching pair of parentheses. However, it is not required that w is a well-formed
parenthesised expression with respect to all occurring parentheses.

The set of valid reference-words is denoted by Σ[∗]. A factor [x u]x of a
w ∈ Σ[∗] where the occurrences of [x and]x are matching parentheses is called

Characterising REGEX by Regular Ref-Languages 145

a reference for variable x, and u is the value of this reference. A reference is
a first order reference, if its value does not contain another reference and it is
called pure, if it is a first order reference and its value does not contain vari-
ables. Two references of some ref-word w are overlapping if one reference con-
tains exactly one of the delimiting parentheses of the other reference, e. g., in
w1[xw2[yw3]xw4]yw5 the references [xw2[yw3]x and [yw3]xw4]y are overlapping.
Let w ∈ Σ[∗] and let x be a variable that occurs in w. An occurrence of a variable
x in w that is not preceded by a reference for x is called undefined. Every occur-
rence of a variable x in w that is not undefined refers to the reference for x, which
precedes this occurrence. This definition is illustrated by Equation 1, where all
ki − 1 references for variable xi are shown and, for every j, 1 ≤ j ≤ ki − 1, the
�j+1 occurrences of xi between the jth and (j + 1)th reference for xi are exactly
the occurrences of xi that refer to the jth reference for variable xi.

We consider the following examples:

w1 := [xab]x[ycxb]y[xbby]xcyby[yx]ycc, w2 := [xbax]xax[xbc]x[xba[xa]xa]xx ,

w3 := [x[yb]xcx[xb]yxzyb[ycz]yz[zcc]x]z , w4 := [xa[yb[zbba]zc]ybyb]xxy .

The words w1, w3 and w4 are valid ref-words, whereas w2 is not valid. Moreover,
all references of w1 are first order references, the reference for variable x in w4

is not a first order reference and the first reference in w3 is pure. The word w3

contains an undefined occurrence of a variable and overlapping references. For
the sake of convenience, from now on, we call valid ref-words simply ref-words.
If a word over (Σ ∪ Γ) is not a ref-word, then we always explicitly state this.

Next, we define how a ref-word over Σ can be dereferenced, i. e., how it can
be transformed into a (normal) word over Σ. To this end, let w ∈ Σ[∗]. The
dereference of w, denoted by D(w), is constructed by first deleting all undefined
occurrences of variables in w and then substituting all pure references and their
variables by its value (ignoring possible parentheses in the value), until there is
no pure reference left. A formal proof that D(w) is well-defined and in fact a
word over Σ is straightforward and left to the reader. Next, we illustrate this
definition with an example:

D(za[zx[xyb[yc]xbx[xc]yb]xyc]zxcz) = D(a[z[xb[yc]xbx[xc]yb]xyc]zxcz) =

D(a[zb[yc
x

b bc
x
[xc]yb]xyc]zxcz) = D(a[zb cbbc[xc

y

b]x cbbcc
y

c]zxcz) =

D(a[zbcbbc cb
x
cbbccc]z cb

x
cz) = a bcbbccbcbbccc

z
cbc bcbbccbcbbccc

z
.

We point out that ref-words are similar to Lempel-Ziv compression. However,
here we are exclusively concerned with language theoretic aspects of ref-words.

References in Languages. For every i ∈ N, let Γi := {[xj ,]xj , xj | j ≤ i}. A
set of ref-words L is a ref-language if L ⊆ (Σ∪Γi)

∗, for some i ∈ N. For the sake
of convenience, we simply write L ⊆ Σ[∗] to denote that L is a ref-language. For
every ref-language L, we define the dereference of L by D(L) := {D(w) | w ∈ L}
and, for any class L of ref-languages, D(L) := {D(L) | L ∈ L}.

146 M.L. Schmid

An L ⊆ Σ[∗] is a regular ref-language if L is regular. A language L is called ref-
regular if it is the dereference of a regular ref-language, i. e., L = D(L′) for some
regular ref-language L′. For example, the copy language Lc := {ww | w ∈ Σ∗}
is ref-regular, since Lc = D(L′

c), where L
′
c is the regular ref-language {[xw]x x |

w ∈ Σ∗}. The class of ref-regular languages is denoted by ref-REG.
By definition, REG ⊆ ref-REG and it can be easily shown that ref-REG is

contained in the class of context-sensitive language. On the other hand, the class
of context-free languages is not included in ref-REG, e. g., {anbn | n ∈ N} /∈
ref-REG (see Câmpeanu et al. [4]). Other interesting examples of ref-regular
languages are the set of imprimitive words: D({[x w]x x

n | w ∈ Σ∗, n ≥ 1}), the
set of words an, where n is not prime: D({[x am]x x

n | m,n ≥ 2}) and the set of
bordered words: D({[x u]x v x | u, v ∈ Σ∗, |u| ≥ 1}).

References in Expressions. If we use the concept of references directly in
regular expressions, i. e., we use variables x in the expression and enclose subex-
pressions by parentheses [x and]x, then we obtain extended regular expressions
with backreferences (or REGEX for short). For more detailed definitions and
further information on REGEX, we refer to [4, 16, 11, 5].

A convenient definition of the semantics of a REGEX can also be given in
terms of classical regular expressions and ref-words. We can interpret a REGEX
r as a classical regular expression r′ over the alphabet (Σ ∪ Γk), where k is
the number of backreferences in r. Now L(r′) is a ref-language and D(L(r′)) is
the REGEX language described by the REGEX r. This observation yields the
following result.

Proposition 1. L(REGEX) ⊆ ref-REG.

On the other hand, a regular expression s with L(s) ⊆ Σ[∗] does not translate
into a REGEX in an obvious way, which is due to the fact that in s it is not
necessarily the case that every occurrence of [x matches with an occurrence of]x
and, furthermore, even matching pairs of parentheses do not necessarily enclose
subexpressions. For example, the regular expression

s := [x1(([x2b
∗]x1a

∗x1[x1)+ ([x2a
∗c∗)) ba]x2(x2 + d)∗]x1ax1

describes a ref-language, but it cannot be interpreted as a REGEX.
In the following, we say that a regular expression r over the alphabet (Σ∪Γk)

has the REGEX property if it is also a valid REGEX.

3 Memories in Automata

By a natural extension of classical finite automata, we now define memory au-
tomata, which are the main technical tool for proving the results of this paper.

A memory automaton is a classical NFA that is equipped with a finite number
of k memory cells, each capable of storing a word. Each memory is either closed,
which means that it is not affected in a transition, or open, which means that

Characterising REGEX by Regular Ref-Languages 147

it records the currently scanned input symbol. In a transition it is possible to
consult a closed memory, which means that its content, if it is a prefix of the
remaining input, is consumed in one step from the input and, furthermore, also
stored in all the open memories. A closed memory can be opened again, but then
it completely loses its previous content; thus, memories always store factors of
the input. We shall now formally define the model of memory automata.

Definition 1. For every k ∈ N, a k-memory automaton, denoted by MFA(k),
is a tuple M := (Q,Σ, δ, q0, F), where Q is a finite set of states, Σ is a finite
alphabet, q0 is the initial state, F is the set of final states and

δ : Q× (Σ ∪ {ε} ∪ {1, 2, . . . , k}) → P(Q× {o, c, �}k)

is the transition function (where P(A) denotes the power set of a set A). The
elements o, c and � are called memory instructions.

A configuration of M is a tuple (q, w, (u1, r1), . . . , (uk, rk)), where q ∈ Q is the
current state, w is the remaining input, for every i, 1 ≤ i ≤ k, ui ∈ Σ∗ is the
content of memory i and ri ∈ {O, C} is the status of memory i. For a memory
status r ∈ {O, C} and a memory instruction s ∈ {o, c, �}, we define r ⊕ s = O

if s = o, r ⊕ s = C if s = c and r ⊕ s = r if s = �. Furthermore, for a tuple
(r1, . . . , rk) ∈ {O, C}k of memory statuses and a tuple (s1, . . . , sk) ∈ {o, c, �}k of
memory instructions, we define (s1, . . . , sk)⊕(r1, . . . , rk) = (s1⊕r1, . . . , sk⊕rk).
M can change from a configuration c := (q, w, (u1, r1), . . . , (uk, rk)) to a con-

figuration c′ := (p, w′, (u′1, r
′
1), . . . , (u

′
k, r

′
k)), denoted by c
M c′, if there ex-

ists a transition δ(q, b) � (p, s1, . . . , sk) such that w = v w′, where v = b
if b ∈ (Σ ∪ {ε}) and v = ub and rb = C if b ∈ {1, 2, . . . , k}. Furthermore,
(r′1, . . . , r

′
k) = (r1, . . . , rk) ⊕ (s1, . . . , sk) and, for every i, 1 ≤ i ≤ k, u′i = uiv if

r′i = ri = O, u′i = v if r′i = O and ri = C, u′i = ui if r
′
i = C. The symbol
∗

M de-
notes the reflexive and transitive closure of
M . For any w ∈ Σ∗, a configuration
(p, v, (u1, r1), . . . , (uk, rk)) is reachable (on input w), if

(q0, w, (ε, C), . . . , (ε, C))
∗
M (p, v, (u1, r1), . . . , (uk, rk)) .

A w ∈ Σ∗ is accepted by M if a configuration (qf , ε, (u1, r1), . . . , (uk, rk)) with
qf ∈ F is reachable on input w and L(M) is the set of words accepted by M .

For any k ∈ N, MFA(k) is the class of k-memory automata and MFA :=⋃
k≥0 MFA(k). We also use MFA(k) and MFA in order to denote an instance of

a k-memory automaton or a memory automaton with some number of memories.
The set L(MFA) := {L(M) |M ∈ MFA} is the class of MFA languages.

As an example, we observe that an MFA(3) can accept L := {v1v2v3v1v2v2v3 |
v1, v2, v3 ∈ {a, b}∗} by reading a prefix u = v1v2v3 of the input and storing v1, v2
and v3 in the memories 1, 2 and 3. The length of u as well as the factorisation u =
v1v2v3 is nondeterministically guessed. Now we can check whether the remaining
input equals v1v2v2v3 by consulting the memories. Alternatively, while reading
the prefix u = v1v2v3, we can also store v1v2 and v2v3 in only two memories,
which is sufficient to check whether the remaining input equals v1v2v2v3. We

148 M.L. Schmid

point out that this alternative, which needs one memory less, requires the factor
v2 of the input to be simultaneously recorded by both memories or, in other
words, the factors recorded by the memories overlap in the input word.

Determinism in Memory Automata. Let M := (Q,Σ, δ, q0, F) be a k-
memory automaton. M is pseudo deterministic if, for every q ∈ Q and b ∈
(Σ ∪ {ε} ∪ {1, 2, . . . , k}), |δ(q, b)| ≤ 1. We call a memory automaton with this
property pseudo deterministic, since it is still possible that for a q ∈ Q and
b ∈ (Σ ∪ {ε}), |⋃k

i=1 δ(q, i)|+ |δ(q, b)| ≥ 1.
Any MFA can be transformed into an equivalent pseudo-deterministic one by

applying a variant of the subset construction that also takes the memories into
account, i. e., instead of P(Q) as the set of new states, we use P(Q)× {O, C}k.
Lemma 1. Let k ∈ N. For every M ∈ MFA(k), there exists a pseudo determin-
istic M ′ ∈ MFA(k) with L(M) = L(M ′).

Analogously to the definition of determinism for classical finite automata, we
can define determinism for memory automata as the situation that in every state
there is at most one applicable transition. More precisely, a k-memory automaton
M := (Q,Σ, δ, q0, F) is deterministic if it is ε-free and, for every q ∈ Q and b ∈ Σ,

|⋃k
i=1 δ(q, i)| + |δ(q, b)| ≤ 1. We denote the class of deterministic k-memory

automata by DMFA(k) and DMFA :=
⋃

k∈N
MFA(k). The class L(DMFA) shall

be investigated in more detail in Section 5.

Normal Forms of Memory Automata. Intuitively speaking, a memory au-
tomaton is in normal form if every transition can either read a part of the input
without changing the status of any memory or it changes the status of exactly
one memory, but then it does not touch the input. Furthermore, in every accept-
ing configuration, the automaton does not try to open or close memories that
are already opened or closed, respectively.

Definition 2. Let M = (Q,Σ, δ, q0, F) be an MFA(k), k ∈ N. We say that
M is in normal form if the following conditions are satisfied. For every tran-
sition δ(q, b) � (p, s1, . . . , sk), if si �= � for some i, 1 ≤ i ≤ k, then b =
ε and sj = �, for all j with 1 ≤ j ≤ k and i �= j. If M reaches config-
uration (q, w, (u1, r1), . . . , (uk, rk)) in a computation and transition δ(q, b) �
(p, s1, . . . , sk) is applied next, then, for every i, 1 ≤ i ≤ k, if ri = O, then
si �= o and if ri = C, then si �= c.

MFA can be transformed into normal form, by replacing transitions that
change the status of more than one memory by several transitions that satisfy
the conditions of the normal form. Furthermore, in the states we can store which
memories are currently open and use this information to remove transitions that
open or close memories that are already open or closed, respectively.

Lemma 2. Let k ∈ N. For every M ∈ MFA(k) there exists an M ′ ∈ MFA(k)
with L(M) = L(M ′) and M ′ is in normal form.

Characterising REGEX by Regular Ref-Languages 149

Above, after Definition 1, we consider an example of an MFA that uses its
memories in an overlapping way. We shall now formally define this situation. Let
M be a k-memory automaton, let C be a computation of M with n steps and
let 1 ≤ i, j ≤ k with i �= j. We say that there is an i-j-overlap in C if there are
p, q, r, s, 1 ≤ p < q < r < s < n, such that memory i is opened in step p and
closed again in step r of C and memory j is opened in step q and closed again in
step s of C. A computation C is said to be nested if, for every i, j, 1 ≤ i ≤ j ≤ k,
i �= j, there is no i-j-overlap in C and an MFA M is nested if every possible
computation of M is nested.

For transforming MFA into REGEX, it is crucial to get rid of these overlaps,
which is generally possible. A formal definition of the construction is omitted;
here, we only give the general idea. We first modify M in such a way that in
the finite state control, for every currently open memory i, we store the set Ai

of currently open memories that have been opened after memory i. If memory
i is closed, then, for every j ∈ Ai, an i-j-overlap occurs. Thus, we close all
memories j ∈ Ai together with memory i and then, for every j ∈ Ai, we open a
new auxiliary memory instead. By doing this every time a memory is closed, we
make sure that no more overlaps occur. Whenever the original MFA consults a
memory, then we have to consult the right auxiliary memories in the right order
instead. This strategy is only applicable because, for every original memory i,
at most k − 1 auxiliary memories are needed.

Lemma 3. Let k ∈ N. For every M ∈ MFA(k) there exists a nested M ′ ∈
MFA(k2) with L(M) = L(M ′).

We conclude this section by pointing out that every MFA can be transformed
into an equivalent one that is pseudo-deterministic, in normal form and nested.

4 Equivalence of ref-REG, L(MFA) and L(REGEX)

In this section, we show that the ref-regular languages, the MFA languages and
the REGEX languages are identical. To this end, we shall first prove the equality
L(MFA) = ref-REG and then the inclusion L(MFA) ⊆ L(REGEX), which,
together with Proposition 1, implies our main result:

Theorem 1. ref-REG = L(MFA) = L(REGEX).

Intuitively speaking, L(MFA) = ref-REG follows from the fact that an NFA
that accepts a regular ref-language can be translated into an MFA that accepts
its dereference and any MFA in normal form can be translated into an NFA that
accepts a regular ref-language, the dereference of which equals the language
accepted by the MFA.

We recall that every transition δ(q, b) � (p, s1, s2, . . . , sk) of an MFA(k) in
normal form is of one of the following four types:

Σ-transition: b ∈ Σ and si = �, 1 ≤ i ≤ k.
oi-transition: b = ε, si = o and, for every j, 1 ≤ j ≤ k, i �= j, sj = �.

150 M.L. Schmid

ci-transition: b = ε, si = c and, for every j, 1 ≤ j ≤ k, i �= j, sj = �.
mi-transition: b ∈ {1, 2, . . . , k} and si = �, 1 ≤ i ≤ k.

Let NFAref := {M | M ∈ NFA, L(M) ⊆ Σ[∗]} and MFAnf := {M | M ∈
MFA,M is in normal form}. We define a mapping ψD : NFAref → MFAnf. To
this end, let M := (Q,Σ ∪ Γk, δ, q0, F) ∈ NFAref. We define a k-memory au-
tomaton ψD(M) := (Q,Σ, δ′, q0, F), where δ′ is defined as follows. For every
transition δ(q, b) � p of M , we add a transition δ′(q, b) � (p, s1, s2, . . . , sk) to
ψD(M), where this transition is an Σ-transition if b ∈ Σ, an oi-transition if
b = [xi , a ci-transition if b =]xi and an mi-transition if b = xi. This concludes
the definition of ψD(M) and it can be easily seen that ψD(M) ∈ MFAnf. With-
out loss of generality, we can assume that all elements of NFAref are such that
the input alphabet does not contain symbols that do not occur in the accepted
language. This implies that, for any two M1,M2 ∈ NFAref with M1 �= M2,
ψD(M1) �= ψD(M2) is implied, which means that ψD is injective. Furthermore,
since every transition of some MFA(k) in normal form is of one of the four types
described above, we can conclude that the reverse of ψD is an injective mapping
ψ−1
D : MFAnf → NFAref, which implies that ψD is a bijection. The following

lemma directly implies ref-REG = L(MFA).

Lemma 4. Let M ∈ NFA with L(M) ⊆ Σ[∗] and let N ∈ MFA be in normal
form. Then D(L(M)) = L(ψD(M)) and L(N) = D(L(ψ−1

D (N))).

In order to conclude the proof of Theorem 1, it only remains to show that
every MFA language can be expressed as a REGEX language. To do this, we
use the fact that every MFA language can be described by a nested MFA (see
Lemma 3). Next, we observe an obvious, but important property of nested MFA:

Proposition 2. Let M be a nested MFA(k) in normal form. There is no word
w ∈ L(ψ−1

D (M)) with overlapping references.

Let M be a fixed nested MFA(k) in normal form and let N := ψ−1
D (M)

with transition function δ. Without loss of generality, we can assume that every
transition of the form δ(p, b) � q with b ∈ {[xi,]xi | 1 ≤ i ≤ k} is such that at
least one accepting state is reachable from q and, furthermore, that every state
of N is reachable from the initial state. For every i, 1 ≤ i ≤ k, let ni,mi ∈ N

be such that δ(pi,j , [xi) � qi,j , 1 ≤ j ≤ ni, are exactly the transitions of N
labeled with [xi and δ(ri,�,]xi) � si,�, 1 ≤ � ≤ mi, are exactly the transitions
of N labeled with]xi . For every i, j, �, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, 1 ≤ � ≤ mi, let
Ri,j,� be the set of words that can take N from qi,j to ri,� without reading any
occurrence of]xi . If some Ri,j,� contains a word that is not a ref-word, then,
since an accepting state can be reached from si,�, N accepts a word that is not
a ref-word or a ref-word with overlapping references, which is a contradiction:

Lemma 5. For every i, j, �, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, 1 ≤ � ≤ mi, Ri,j,� ⊆ Σ[∗].

In the following, we transform N into a regular expression r and, since we
want r to have the REGEX property, this has to be done in such a way that in r

Characterising REGEX by Regular Ref-Languages 151

every [xi matches a]xi and such matching parentheses enclose a subexpression.
The idea to achieve this is that, for each pair of transitions δ(pi,j , [xi) � qi,j and
δ(ri,�,]xi) � si,�, we transform the set of words that take N from qi,j to ri,�, i. e.,
the set Ri,j,�, into a regular expression individually. For the correctness of this
construction, it is crucial that M is nested and that we transform the Ri,j,� into
regular expressions in a specific order, which is defined next.

Let the binary relation ≺ over the set Φ := {(i, j, �) | 1 ≤ i ≤ k, 1 ≤ j ≤
ni, 1 ≤ � ≤ mi} be defined as follows. For every (i1, j1, �1), (i2, j2, �2) ∈ Φ, we
define (i1, j1, �1) ≺ (i2, j2, �2) if and only if there is a computation ofN that starts
in pi2,j2 and reaches si2,�2 and takes the transitions (1) δ(pi2,j2 , [xi2

) � qi2,j2 , (2)
δ(pi1,j1 , [xi1

) � qi1,j1 , (3) δ(ri1,�1 ,]xi1
) � si1,�1 and (4) δ(ri2,�2 ,]xi2

) � si2,�2 in
exactly this order and no]xi2

is read between performing transitions 1 and 4
and no]xi1

is read between performing transitions 2 and 3.

Lemma 6. If (i1, j1, �1) ≺ (i2, j2, �2), then i1 �= i2. The relation ≺ is irreflexive,
transitive and antisymmetric.

Next, we define a procedure that turns N into a regular expression that is
based on the well-known state elimination technique (see Yu [17] for details). To
this end, we need the concept of an extended finite automaton, which is an NFA
whose transitions can be labeled by regular expressions over the input alphabet.

For every (i, j, �) ∈ Φ, we define Δ(i, j, l) := {(i′, j′, �′) | (i′, j′, �′) ≺ (i, j, �)}
and Φ′ := Φ. We iterate the following steps as long as Φ′ is non-empty.

Step 1 For some (i, j, �) ∈ Φ′ with |Δ(i, j, l)| = 0, we obtain an automatonKi,j,�

from (the current version of) N by deleting all transitions δ(ri,�′ ,]xi) � si,�′ ,
1 ≤ �′ ≤ mi, and by defining qi,j to be the initial state and ri,� the only
accepting state. Then, we transform Ki,j,� into a regular expression ti,j,� by
applying the state elimination technique.

Step 2 For every (i′, j′, �′) ∈ Φ, we delete (i, j, �) from Δ(i′, j′, �′).
Step 3 We add the transition δ(pi,j , [xiti,j,�]xi) � si,� to N .
Step 4 We delete (i, j, l) from Φ′.
Step 5 If, for every �′, 1 ≤ �′ ≤ mi, (i, j, �

′) /∈ Φ′, then we delete the transition
δ(pi,j , [xi) � qi,j from N .

Step 6 If, for every j′, 1 ≤ j′ ≤ ni, (i, j
′, �) /∈ Φ′, then we delete the transition

δ(ri,j ,]xi) � si,� from N .

In order to see that this procedure is well-defined, we observe that as long
as Φ′ �= ∅, there is at least one element (i, j, �) ∈ Φ′ with |Δ(i, j, l)| = 0, which
follows directly from the transitivity and antisymmetry of ≺ (see Lemma 6).
Furthermore, from the definition of the automata Ki,j,� constructed in Step 1,
it can be easily verified that L(ti,j,�) = Ri,j,� holds.

The automaton obtained by this procedure, denoted by N ′, does not contain
any transitions labeled with symbols from {[xi,]xi | 1 ≤ i ≤ k}. We can now
transform N ′ into a regular expression r by the state elimination technique. The
next lemma concludes the proof of Theorem 1.

Lemma 7. The regular expression r has the REGEX-property and L(r) = L(N).

152 M.L. Schmid

5 DMFA Languages

We now take a closer look at the class of languages accepted by DMFA. As
an example, we consider {wcw | w ∈ {a, b}∗}, which can be accepted by a
DMFA(1). However, Lcopy := {ww | w ∈ {a, b}∗} /∈ L(DMFA), for which we
give a proof sketch. Let M ∈ DMFA with L(M) = Lcopy. Since Lcopy �∈ REG
there is a w ∈ Lcopy, such that M first reads a prefix v of w and then consults
a memory i that stores a non-empty word u. However, since M is deterministic,
this means that it cannot accept any word with prefix vb, where b does not equal
the first symbol of u, which is a contradiction.

Theorem 2. L(DMFA) ⊂ L(MFA).

Next, we note that the membership problem of this language class can be
solved in linear time by simply running the DMFA.

Theorem 3. For a given DMFA M and a word w ∈ Σ∗, we can decide in time
O(|w|) whether or not w ∈ L(M).

This contrasts the situation that for other prominent subclasses of REGEX
languages (e. g., the ones investigated in [16, 1, 3, 6]) the membership problem
is usually NP-complete.1

REGEX languages are closed under union, but not under intersection or com-
plementation [4, 7]. For the subclass L(DMFA), we observe a different situation:

Theorem 4. L(DMFA) is closed under complementation, but it is not closed
under union or intersection.

For the non-closure under intersection, we can apply the example used by
Carle and Narendran [7] to prove the non-closure of REGEX languages under
intersection. The closure under complementation follows from the fact that in-
terchanging the accepting and non-accepting states of a DMFA yields a DMFA
that accepts its complement. Finally, the non-closure under union follows from
{anban | n ∈ N} ∪ {ambanbak | m,n, k ∈ N0} /∈ L(DMFA), which can be shown
by a similar argument used to prove that Lcopy is not a DMFA language.2

In [4], which marks the beginning of the formal investigation of REGEX,
Câmpeanu et al. ask whether REGEX languages are closed under intersection
with regular languages, which has been answered in the positive by Câmpeanu
and Santean in [5]. We can give an analogue with respect to DMFA languages:

Theorem 5. L(DMFA) is closed under intersection with regular languages.

Theorem 5 follows from the fact that we can simulate a DMFA(k) M and a
DFA N in parallel by a DMFA M ′. The difficulty that we encounter is that if N
is currently in a state q and M consumes the content ui of a memory i from the
input, then we do not know in which state N needs to change. However, earlier

1 Other exceptions are REGEX with a bounded number of backreferences (see [16]).
2 This also proves non-closure of DMFA languages under union with regular languages.

Characterising REGEX by Regular Ref-Languages 153

in this computation, memory i is filled with content ui and at the same time we
can determine and store the state in which N needs to change if ui is consumed
from the input. Since at this time we do not yet know that q will be the current
state of N when memory i is consulted, for every state of N , we have to store
which state is reached by reading ui. In order to update these informations we
use the transition function of N (when single symbols are read) and these stored
informations (when memories are consulted).

This also constitutes a much simpler alternative proof for the closure of
REGEX languages under intersection with regular languages, which demon-
strates that MFA are a convenient tool to handle REGEX languages.

References

1. Albert, J., Wegner, L.: Languages with homomorphic replacements. Theoretical
Computer Science 16, 291–305 (1981)

2. Angluin, D.: Finding patterns common to a set of strings. In: Proc. 11th Annual
ACM Symposium on Theory of Computing, pp. 130–141 (1979)

3. Bordihn, H., Dassow, J., Holzer, M.: Extending regular expressions with homomor-
phic replacement. RAIRO Theoretical Informatics and Applications 44, 229–255
(2010)

4. Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions.
Int. Journal of Foundations of Computer Science 14, 1007–1018 (2003)

5. Câmpeanu, C., Santean, N.: On the intersection of regex languages with regular
languages. Theoretical Computer Science 410, 2336–2344 (2009)

6. Câmpeanu, C., Yu, S.: Pattern expressions and pattern automata. Information
Processing Letters 92, 267–274 (2004)

7. Carle, B., Narendran, P.: On extended regular expressions. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 279–289.
Springer, Heidelberg (2009)

8. Dassow, J., Păun, G.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

9. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp.
101–154. Springer (1997)

10. Floyd, R.W.: On the nonexistence of a phrase structure grammar for algol 60.
Communications of the ACM 5, 483–484 (1962)

11. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems 53, 159–193 (2013)

12. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)
13. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer (2010)
14. Kari, L., Rozenberg, G., Salomaa, A.: L systems. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, vol. 1, ch. 5, pp. 253–328. Springer (1997)
15. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Synchronized regular expressions.

Acta Informatica 39, 31–70 (2003)
16. Schmid, M.L.: Inside the class of regex languages. International Journal of Foun-

dations of Computer Science 24, 1117–1134 (2013)
17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. 1, ch. 2, pp. 41–110. Springer (1997)

	Characterising REGEX Languages by Regular Languages Equipped with Factor-Referencing
	1
Introduction
	2
Definitions
	2.1
References in Words, Languages and Expressions

	3
Memories in Automata
	4 Equivalence of ref-REG, L(MFA) and L(REGEX)
	5 DMFA Languages
	References

