
Visibly Pushdown Transducers

with Well-Nested Outputs

Pierre-Alain Reynier� and Jean-Marc Talbot�

Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France

Abstract. Visibly pushdown transducers (VPTs) are visibly pushdown
automata extended with outputs. They have been introduced to model
transformations of nested words, i.e. words with a call/return structure.
When outputs are also structured and well nested words, VPTs are a
natural formalism to express tree transformations evaluated in stream-
ing. We prove the class of VPTs with well-nested outputs to be decidable
in Ptime. Moreover, we show that this class is closed under composi-
tion and that its type-checking against visibly pushdown languages is
decidable.

1 Introduction

Visibly pushdown automata (VPA) [1], first introduced as input-driven pushdown
automata [3], are pushdown machines whose stack behavior is synchronized with
the structure of the input word. More precisely, the input alphabet is partitioned
into call and return symbols; when reading a call symbol the machine must push
a symbol onto the stack, when reading a return symbol it must pop a symbol from
the stack and when reading an internal symbol the stack remains unchanged.
Such words over a structure alphabet are called nested words.

Visibly pushdown transducers (VPTs) [6,7,9,10] extend visibly pushdown au-
tomata with outputs. Each transition is equipped with an output word; a VPT
thus transforms an input word into an output word obtained as the concatena-
tion of all the output words produced along a successful run (i.e. a sequence of
transitions) on this input. VPTs are a strict subclass of pushdown transducers
(PTs) and strictly extend finite state transducers. Several problems that are un-
decidable for PTs are decidable for VPTs similarly to finite state transducers:
functionality (in Ptime), k-valuedness (in co-NPtime) and functional equiva-
lence (EXPtime-complete) [6]. However, some decidability results or valuable
properties of finite-state transducers do not hold for VPTs [7]: VPTs are not
closed under composition and type-checking against VPA is undecidable (decid-
ing whether the range of a transducer is included into the language of a given
VPA).

Unranked trees and more generally hedges can be linearized into nested words
over a structured alphabet (such as XML documents). These words for which the

� Partly supported by the PEPS project ”Synthesis of Stream Processors” funded by
CNRS.

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 129–141, 2014.
c© Springer International Publishing Switzerland 2014

130 P.-A. Reynier and J.-M. Talbot

matching between call and return symbols is perfect are called well-nested words.
So, VPTs are a suitable formalism to express hedge transformations. Moreover,
as they process the linearization from left to right, they are also an adequate
formalism to model and analyze transformations in streaming, as shown in [5].
VPTs output strings; operating on well-nested inputs, they define hedge-to-string
transformations. If the output strings are well-nested too, they define hedge-to-
hedge transformations [4].

In [6], by means of a syntactical restriction on transition rules, a class of
VPTs whose range contains only well-nested words is presented. This class enjoys
good properties: it is closed under composition and type-checking against visibly
pushdown languages is decidable. One may then wonder whether these properties
come from this particular subclass or from the fact that the range of these VPTs
contains only well-nested words.

In this paper, we consider two classes of transductions (that is, of relations)
over nested words definable by VPTs. First, the class of globally well-nested trans-
ductions, denoted Gwn, is the class of VPT transductions whose range contains
only well-nested words. The second class, named almost well-nested and denoted
Awn, slightly generalizes the first one as follows: there must exist k ∈ N such that
every output word contains at most k unmatched returns and at most k un-
matched calls. These two classes of transductions naturally define two classes of
transducers gwnVPT and awnVPT: a VPT is in gwnVPT (resp. in awnVPT) if the
transduction it represents is in Gwn (resp. in Awn). While defined in a semantical
way, we provide criteria on successful computations of VPTs characterizing pre-
cisely the classes gwnVPT and awnVPT. Then, based on these criteria, we prove
the class awnVPT to be decidable in Pspace. Regarding the class gwnVPT, using
a recent result of [2], we prove it is decidable in Ptime. Finally, we prove that the
two classes gwnVPT and awnVPT enjoy good properties: they are closed under
composition and type-checking is decidable against visibly pushdown languages.

The paper is organized as follows: definitions and recalls of some basic prop-
erties on VPTs are presented in Section 2. We introduce in Section 3 the two
classes of transductions we define in this paper as well as the corresponding
classes of transducers. Considering additionally the (restricted) class introduced
in [6], we prove also that they form a strict hierarchy. Then, we give in Section 4
a precise characterization of the classes gwnVPT and awnVPT by means of some
criteria on VPTs. Section 5 describes decision procedure of the considered classes
of transducers. Finally, the closure of the considered classes under composition
and the decidability of type-checking are addressed in Section 6. Omitted details
can be found in a technical report [8].

2 Preliminaries

(Well) Nested Words. The set of all finite words (resp. of all words of length at
most n) over a finite alphabet Σ is denoted by Σ∗ (resp. Σ≤n); the empty word
is denoted by ε. A structured alphabet is a triple Σ = (Σc, Σi, Σr) of disjoint
alphabets, of call, internal and return symbols respectively. Given a structured

Visibly Pushdown Transducers with Well-Nested Outputs 131

alphabet Σ, we always denote by Σc, Σi and Σr its implicit structure, and
identify Σ with Σc ∪ Σi ∪ Σr. A nested word is a finite word over a structured
alphabet.

The set of well-nested words over a structured alphabet Σ is the least set,
denoted by Σ∗

wn, that satisfies (i) ε ∈ Σ∗
wn, (ii) for all i ∈ Σi, w ∈ Σ∗

wn, iw ∈
Σ∗

wn, and (iii) for all w,w′ ∈ Σ∗
wn, c ∈ Σc, r ∈ Σr, cwrw

′ ∈ Σ∗
wn. E.g. on

Σ = ({c1, c2}, ∅, {r}), the nested word c1rc2r is well-nested while rc1 is not.
For a word w from Σ∗, we define its balance B as the difference between the

number of symbols from Σc and of symbols from Σr occurring in w. Note that
if w ∈ Σ∗

wn, then B(w) = 0; but the converse is false as exemplified by rc1.

Lemma 1. Let u, v ∈ Σ∗. We have B(uv) = B(u) + B(v) = B(vu).

For any word w from Σ∗, we denote by Oc(w) (resp. Or(w)) the number of
open calls (resp. open returns) in w. Formally,

Or(w) = −min{B(w′) | w′w′′ = w} Oc(w) = B(w) + Or(w)

We define, for any word w, O(w) as the pair (Or(w),Oc(w)) ∈ N
2. Given

(n1, n2) ∈ N
2, we define ||(n1, n2)|| = max(n1, n2). Note that, for a word w,

we obtain ||O(w)|| = max{Or(w),Oc(w)} and w ∈ Σ∗
wn iff ||O(w)|| = 0, that is

O(w) = (0, 0).
Given a word w ∈ Σ∗, we let height(w) = max{||O(w1)|| | w = w1w2} be the

height of w. We denote by |w| the length of w, defined as usual.

Definition 1. For any two pairs (n1, n2) and (n′
1, n

′
2) of naturals from N

2, we
define (n1, n2)⊕ (n′

1, n
′
2) as the pair

{
(n1, n2 − n′

1 + n′
2) if n2 ≥ n′

1

(n1 + n′
1 − n2, n

′
2) if n′

1 > n2

Proposition 1. (N2,⊕, (0, 0)) is a monoid, and the mapping O is a morphism
from (Σ∗, ., ε) to (N2,⊕, (0, 0)); in particular, for any two words u1, u2 from Σ∗,
O(u1u2) = O(u1)⊕O(u2).

Transductions – Transducers. Let Σ be a structured (input) alphabet, and Δ be
a structured (output) alphabet. A relation over Σ∗ ×Δ∗ is a transduction. We
denote by T (Σ,Δ) the set of these transductions. For a transduction T , the set
of words u (resp. v) such that (u, v) ∈ T is called the domain (resp. the range)
of T .

A visibly pushdown transducer from Σ to Δ (the class is denoted VPT(Σ,Δ))
is a tuple A = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q the set
of initial states, F ⊆ Q the set of final states, Γ a (finite) stack alphabet, and
δ = δc � δr � δi is the transition relation where:

– δc ⊆ Q ×Σc × Γ ×Δ∗ ×Q are the call transitions,
– δr ⊆ Q×Σr × Γ ×Δ∗ ×Q are the return transitions.
– δi ⊆ Q×Σi ×Δ∗ ×Q are the internal transitions.

132 P.-A. Reynier and J.-M. Talbot

A stack (content) is a word over Γ . Hence, Γ ∗ is a monoid for the concate-
nation with ⊥ (the empty stack) as neutral element. A configuration of A is a
pair (q, σ) where q ∈ Q and σ ∈ Γ ∗ is a stack content. Let u = a1 . . . al be a
(nested) word on Σ, and (q, σ), (q′, σ′) be two configurations of A. A run of the
VPT A over u from (q, σ) to (q′, σ′) is a (possibly empty) sequence of transitions
ρ = t1t2 . . . tl ∈ δ∗ such that there exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ Γ ∗ with
(q0, σ0) = (q, σ), (ql, σl) = (q′, σ′), and for each 0 < k ≤ l, we have either (i)
tk = (qk−1, ak, γ, wk, qk) ∈ δc and σk = σk−1γ, or (ii) tk = (qk−1, ak, γ, wk, qk) ∈
δr, and σk−1 = σkγ, or (iii) tk = (qk−1, ak, wk, qk) ∈ δi, and σk−1 = σk. When
the sequence of transitions is empty, (q, σ) = (q′, σ′).

The length (resp. height) of a run ρ over some word u ∈ Σ∗, denoted |ρ| (resp.
height(ρ)) is defined as the length of u (resp. as the height of u).

The output of ρ (denoted output(ρ)) is the word v ∈ Δ∗ defined as the con-
catenation w = w1 . . . wl when the sequence of transitions is not empty and

ε otherwise. We write (q, σ)
u|w−−→ (q′, σ′) when there exists a run on u from

(q, σ) to (q′, σ′) producing w as output. Initial (resp. final) configurations are
pairs (q,⊥) with q ∈ I (resp. with q ∈ F). A configuration (q, σ) is reachable
(resp. co-reachable) if there exists some initial configuration (i,⊥) (resp. some
final configuration (f,⊥)) and a run from (i,⊥) to (q, σ) (resp. from (q, σ) to
(f,⊥)). A run is accepting if it starts in an initial configuration and ends in a
final configuration.

A transducer A defines relation/transduction from nested words to nested
words, denoted by [[A]], and defined as the set of pairs (u, v) ∈ Σ∗ × Δ∗ such
that there exists an accepting run on u producing v as output. Note that since
both initial and final configurations have empty stack, A accepts only well-nested
words, i.e. [[A]] ⊆ Σ∗

wn ×Δ∗.
We denote VP(Σ,Δ) the class of transductions defined by VPTs over the

structured alphabets Σ (as input alphabet) and Δ (as output alphabet).
Given a VPT A = (Q, I, F, Γ, δ), we let OA

max be the maximal number of open
calls and of open returns in a word produced as output of a call or of a return
transition in A. Formally, we have:

OA
max = max{||O(w)|| | (p, α, w, γ, q) ∈ δc ∪ δr}

Visibly Pushdown Automata. We define visibly pushdown automata (VPA) sim-
ply as a particular case of VPT; we may think of them as transducers with no
output. Hence, only the domain of the transduction matters and is called the
language defined by the visibly pushdown automaton. For an automaton A, this
language will be denoted L(A).

Properties of Computations in VPA/VPT. We recall two standard results on
runs of visibly pushdown machines.

Lemma 2. Let A be a VPA with set of states Q and ρ : (p,⊥)
u−→ (q,⊥) be a

run of A over some word u ∈ Σ∗
wn. Let h ∈ N>0. We have:

Visibly Pushdown Transducers with Well-Nested Outputs 133

(i) if height(u) < h and |u| ≥ |Q|h, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σ)
u3−→ (q,⊥)

with u1u3 and u2 well-nested words and u2 �= ε.
(ii) if height(u) ≥ |Q|2, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σσ
′) u3−→ (p2, σσ

′) u4−→ (p2, σ)
u5−→ (q,⊥)

with u1u5, u2u4 and u3 well-nested words, and σ′ �= ⊥.

3 Classes of VPT Producing (almost) Well-Nested
Outputs

In this section, after recalling the definition of (locally) well-nested VPT, we
introduce the new classes of globally and almost well-nested VPT. Then, we
prove relationships between these classes.

3.1 Definitions

Locally Well-nested VPTs (lwnVPT). In [6], the class of (locally) well-nested
VPT has been introduced. For this class, the enforcement of the well-nestedness
of the output is done locally and syntactically at the level of transition rules.

Definition 2 (Locally Well-nested). Let A = (Q, I, F, Γ, δ) be a VPT. A is
a locally well-nested VPT (lwnVPT) if:

– for any pair of transitions (q, a, v, γ, q′) ∈ δc, (p, b, w, γ, p
′) ∈ δr, the word

vw is well nested, and
– for any transition (q, a, v, q′) ∈ δi, the word v is well-nested.

A VPT transduction T is locally well-nested if there exists a lwnVPT A that
realizes T ([[A]] = T). The class of locally well-nested VPT transductions is
denoted Lwn.

It is straightforward to prove that

Proposition 2. Let A be a locally well-nested VPT and (p, σ), (q, σ) two con-

figurations of A. For all well-nested word u, if (p, σ)
u/v−−→ (q, σ) then v ∈ Σ∗

wn.

Thus any locally well-nested VPT transduction T is included into Σ∗
wn×Δ∗

wn.

Globally Well-nested VPT Transduction – Almost Well-nested VPT Transduc-
tion. In this section, we introduce the class of globally well-nested transductions
and its weaker variant of ”almost” well-nested transductions. Unlike the defini-
tion of Lwn which is done at the level of transducers, these definitions are done
at the level of transductions and thus, as a semantical property.

134 P.-A. Reynier and J.-M. Talbot

Definition 3 (Globally Well-nested). A VPT transduction T is globally
well-nested if T (Σ∗

wn) ⊆ Δ∗
wn. The class of globally well-nested VPT transductions

is denoted Gwn.
A VPT A is globally well-nested if its transduction [[A]] is. The class of globally

well-nested VPT is denoted gwnVPT.

Definition 4 (Almost Well-nested). A VPT transduction T is almost well-
nested if there is k ∈ N such that every pair of words (u, v) ∈ T satisfies
||O(v)|| ≤ k. The class of almost well-nested VPT transductions is denoted Awn.

A VPT A is almost well-nested if its transduction [[A]] is. The class of almost
well-nested VPT is denoted awnVPT.

i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

i p1 p2 f
c|cc, γ i|c r|rrr, γ

c|cr, γ′ r|rc, γ′

The VPT A1. The VPT A2.

Fig. 1. Two VPTs in VP(Σ,Σ) with Σc = {c}, Σr = {r} and Σi = {i}

3.2 Comparison of the Different Classes

Classes of transductions Gwn and Awn are defined by semantical conditions on
the defined relations. This yields a clear correspondence between the classes Gwn

and gwnVPT on one side and Awn and awnVPT on the other side. This is not
the case for Lwn: two examples of VPTs are given in Figure 1. It is easy to
verify that A1, A2 ∈ gwnVPT. Moreover, none of these transducers belongs to
lwnVPT. However, one can easily build a transducer A′

2 such that [[A2]] = [[A′
2]]

and A′
2 ∈ lwnVPT. Indeed one can perform the following modifications:

– the transition (p1, i, c, p2) becomes (p1, i, ε, p2)
– the transition (p2, r, rc, γ

′, p2) becomes (p2, r, cr, γ
′, p2)

– the transition (p2, r, rrr, γ, f) becomes (p2, r, crrr, γ, f)

On the contrary, as we prove below, the transduction [[A1]] does not belong to
Lwn: there exists no transducer A′

1 ∈ lwnVPT such that [[A′
1]] = [[A1]].

To summarize, we prove the following proposition.

Proposition 3. The following inclusion results hold:

– For transducers: lwnVPT � gwnVPT � awnVPT
– For transductions: Lwn � Gwn � Awn

Proof (Sketch). The non-strict inclusions are straightforward. The two strict
inclusions gwnVPT � awnVPT and Gwn � Awn follow from the constraint on the
range. The strict inclusion lwnVPT � gwnVPT is witnessed by A2 from Figure
1, as explained above.

Visibly Pushdown Transducers with Well-Nested Outputs 135

To sketch the proof of the strict inclusion Lwn � Gwn, we consider the trans-
ducer A1 on Figure 1. Observe that [[A1]] ∈ Gwn, we show that [[A1]] �∈ Lwn. First
note that [[A1]] = {(cckirkr, ccc(cr)krr(cr)kr) | k ∈ N} and that

– (Fact 1) The transduction defined by A1 is injective
– (Fact 2) Any word of the output can be decomposed as w1rrw2 where w1 =

ccc(cr)k and w2 = (cr)kr for some natural k and for each w1 with fixed
k there exists a unique w2 such that w1rrw2 is in the range of A1 (and
conversely).

By contradiction, suppose that there exists A′
1 ∈ lwnVPT such that [[A′

1]] = [[A1]].
Now, for k sufficiently large and depending only on the fixed size of A′

1, A
′
1 has

an accepting run for the input cckirkr of the form given in Lemma 2(ii). Let us
denote by ui (resp. vi), i ∈ {1, . . . , 5} the corresponding decomposition of the
input (resp. output) word. Due to Proposition 2, words v1v5, v2v4 and v3 are
well-nested.

Now assume v2 = v4 = ε. Then, using a simple pumping argument over the
pair (u2, u4), one would obtain a different input producing the same output,
contradicting the injectivity of A′

1 (due to (Fact 1)). So, v2 �= ε or v4 �= ε.
Using a case analysis on the presence of the previously mentioned pattern

rr in the outputs of A′
1, using the fact that v2v4 �= ε, (Fact 2) and a pumping

argument over the pair of words (u2, u4), one obtains a contradiction. �

4 Characterizations

In this section we give criteria on VPTs that aim to characterize the classes
gwnVPT and awnVPT.

Definition 5. Let A be a VPT. Let us consider the following criteria:

(C1) For all states p, i, f such that i is initial and f is final, for any stack σ,
then any accepting run

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σ)
u3/v3−−−−→ (f,⊥)

with u1u3, u2 ∈ Σ∗
wn satisfies B(v2) = 0.

(C2) For all states p, q, i, f such that i is initial and f is final, for any stack
σ, σ′, then any accepting run

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σσ′)
u3/v3−−−−→ (q, σσ′)

u4/v4−−−−→ (q, σ)
u5/v5−−−−→ (f,⊥)

with u2u4, u3 ∈ Σ∗
wn and σ′ �= ⊥ satisfies B(v2)+B(v4) = 0 and B(v2) ≥ 0.

The following result follows from Propositions 4 and 5 that we prove below.

Theorem 1. A VPT A is almost well-nested iff it verifies (C1) and (C2).

Lemma 3. Let X ⊆ Σ∗ such that the set B(X) = {B(u) | u ∈ X} is infinite.
Then the set {O(u) | u ∈ X} is infinite as well.

136 P.-A. Reynier and J.-M. Talbot

Lemma 4. Let u ∈ Σ∗ and k be a strictly positive integer. Then O(uk) is equal
to (Or(u), (Oc(u)− Or(u)) ∗ (k − 1) + Oc(u)) if Oc(u) ≥ Or(u) and to (Or(u) +
(Or(u)− Oc(u)) ∗ (k − 1),Oc(u)) otherwise.

Proof. By definition of ⊕ and by induction on k. �

Proposition 4. Let A be a VPT. If A does not satisfy (C1) or (C2), then
A �∈ awnVPT.

Proof. Let us assume that A does not satisfy (C1). Hence there exists an ac-
cepting run as described in criterion (C1) such that B(v2) �= 0. We then build
by iterating the loop on word u2 accepting runs for words of the form u1(u2)

ku3

for any natural k, producing output words v1(v2)
kv3. Let us denote this set by

X . As B(v2) �= 0 and by Lemma 1, the set B(X) is infinite. Lemma 3 entails
that A is not almost well-nested.

Assume now that A does not satisfy (C2). Hence, there exists an accepting
run as described in the statement of the proposition such that either (i) B(v2)+
B(v4) = b �= 0 or (ii) B(v2) < 0. In the case of (i), from this run, one can build by
pumping accepting runs for words of the form u1(u2)

ku3(u4)
ku5 for any natural

k, producing output words v1(v2)
kv3(u4)

kv5. As before, Lemmas 1 and 3 imply
that A is not almost well-nested.

Now, for (ii) assuming that B(v2) + B(v4) = 0. As B(v2) < 0, it holds that
B(v4) > 0 and thus, Or(v2) > Oc(v2), Or(v4) < Oc(v4). From the run of the
statement, one can build by pumping accepting runs for words of the form
u1(u2)

ku3(u4)
ku5 for any natural k, producing output words v1(v2)

kv3(v4)
kv5.

Now, we consider O(v1(v2)
kv3(v4)

kv5) which, by associativity of ⊕, is equal to
O(v1)⊕O((v2)

k)⊕O(v3)⊕O((u4)
k)⊕O(v5)). Now, by Lemma 4, it is equal to

O(v1)⊕ (Or(v2) + (Or(v2)− Oc(v2)) ∗ (k − 1),Oc(v2))⊕ O(v3)⊕
(Or(v4), (Oc(v4)− Or(v4)) ∗ (k − 1) + Oc(v4))⊕ O(v5)

It is easy to see that for k varying, the described pairs are unbounded. �

Given a VPT A = (Q, I, F, Γ, δ), we define the integer NA = 2|Q|2|Q|2 .

Lemma 5. Let A be a VPT. If A satisfies the criteria (C1) and (C2), then for
any accepting run ρ such that |ρ| ≥ NA, there exists an accepting run ρ′ such
that |ρ′| < |ρ| and ||O(output(ρ′))|| ≥ ||O(output(ρ))||.

Proof (Sketch). Let A = (Q, I, F, Γ, δ) and ρ be an accepting run such that
|ρ| ≥ NA. We distinguish two cases, depending on height(ρ):

– when height(ρ) < 2|Q|2 : by definition of NA, we can apply Lemma 2.(i)
twice and prove that ρ is of the following form:

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σ)
u3/v3−−−−→ (q, σ′)

u4/v4−−−−→ (q, σ′)
u5/v5−−−−→ (f,⊥)

with u2, u4 ∈ Σ∗
wn \{ε}. Then, by criterion (C1), we have B(v2) = B(v4) = 0.

Visibly Pushdown Transducers with Well-Nested Outputs 137

One can prove that at least one of u2 and u4 can be removed from u while
preserving the value Or(u). Let us denote by v′ the resulting output word.
Observe also that removing this part of the run does not modify the balance
B(.) of the run, as B(v2) = B(v4) = 0. As Oc(v) = B(v) + Or(v), we obtain
O(v) = O(v′), yielding the result.

– when height(ρ) ≥ 2|Q|2 : in this case, we can apply Lemma 2.(ii) twice and
prove that ρ is of the following form:

(i,⊥)
u1/v1−−−−→ (p1, σ)

u2/v2−−−−→ (p1, σσ1)
u3/v3−−−−→ (q1, σσ1σ2)

u4/v4−−−−→ (q1, σσ1σ2σ3)
u5/v5−−−−→ (q2, σσ1σ2σ3)

u6/v6−−−−→ (q2, σσ1σ2)
u7/v8−−−−→ (p2, σσ1)

u8/v8−−−−→ (p2, σ)
u9/v9−−−−→

(f,⊥), with u1u9, u2u8, u3u7, u4u6, u5 ∈ Σ∗
wn and σ1, σ3 �= ⊥.

Then the two following runs can be built: the one obtained by removing the
parts of ρ on u2 and u8, and the one obtained by removing the parts of ρ
on u4 and u6, yielding runs whose length is strictly smaller than |ρ|. Let us
denote these two runs by ρ′ and ρ′′ respectively, and their outputs by v′ and
v′′. As A verifies the criterion (C2), we have that B(v) = B(v′) = B(v′′), as
B(v2)+B(v8) = B(v4)+B(v6) = 0 and B is commutative. In order to obtain
the result, we study Or(v). Considering different cases, we manage to prove
that either Or(v′) ≥ Or(v) or Or(v′′) ≥ Or(v). The result follows as for any
word w we have Oc(w) = B(w) + Or(w). �

Proposition 5. Let A be a VPT. If A satisfies (C1) and (C2), then every ac-

cepting run ρ : (i,⊥)
u|v−−→ (f,⊥) of A verifies ||O(v)|| ≤ NA.O

A
max.

Proof. If |ρ| ≤ NA the result is trivial; otherwise, assuming the existence
of a minimal counterexample of this statement, a contradiction follows from
Lemma 5. �

Now we can show a precise characterization of transducers from gwnVPT
amongst those in awnVPT.

Definition 6. Let A be a VPT. We consider the following criterion:

(D) For all (u, v) ∈ [[T]] , if |u| ≤ NA then v ∈ Σ∗
wn.

Theorem 2. A VPT A is globally well-nested iff it verifies criteria (C1), (C2)
and (D).

Proof. The direct implication is trivial, the other one follows from Lemma 5. �

5 Deciding the Classes of Almost and Globally
Well-Nested VPT

In this section, we prove that given a VPT A, it is decidable to know whether
[[A]] ∈ Awn and whether [[A]] ∈ Gwn. It is known that

Proposition 6. Given a VPT A = (Q, I, F, Γ, δ) and states p, q of A, deciding
whether there exists some stack σ such that (p, σ) is reachable and (q, σ) is co-
reachable can be done in Ptime.

138 P.-A. Reynier and J.-M. Talbot

Theorem 3. Let A be a VPT. Whether [[A]] ∈ Awn can be decided in Pspace.

Proof (Sketch). By Theorem 1, deciding the class awnVPT amounts to decide
criteria (C1) and (C2). Therefore we propose a non-deterministic algorithm run-
ning in polynomial space, yielding the result thanks to Savitch theorem.

We claim that A verifies (C1) and (C2) if and only if it verifies these criteria
on ”small instances”, defined as follows:

– Criterion (C1): consider only words u2 such that height(u2) ≤ |Q|2 and

|u2| ≤ 2.|Q||Q|2.
– Criterion (C2): consider only stacks σ′ such that |σ′| ≤ |Q|2 and words u2, u4

of height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a
witness of the fact that A �∈ awnVPT, the algorithm guesses whether (C1) or
(C2) is violated; then, the claim implies the existence of a witness of at most
exponential size. This witness can be guessed on-the-fly in polynomial space.
Proposition 6 is then used to check that the witness can be completed into an
accepted run.

To prove this claim, we show, by induction on u ∈ Σ∗
wn, that for every run

(p,⊥)
u|v−−→ (q,⊥) that can be completed into an accepting run, and for every

decomposition of this run according to criterion (C1) or (C2), the property stated
by the corresponding criterion is fulfilled. �

The previous algorithm could be extended to handle in addition criterion (D),
yielding a Pspace algorithm to decide whether a VPT A is globally well-nested.
However, we can use a recent result to prove that this problem can be solved in
Ptime.

Theorem 4. Let A be a VPT. Whether [[A]] ∈ Gwn can be decided in Ptime.

Proof. This proof relies on results from [2] showing that deciding whether a
context-free language is included into a Dyck language can be solved in Ptime.

We first erase the precise symbols of the produced outputs keeping track only
of the type of the symbols: we build from A a VPT A′ defined on the structured
output alphabet Σ′ with Σ′

c = {(}, Σ′
r = {)} and Σ′

i = ∅. A transition of A′ is
obtained from a transition of A by replacing in output words of the transition
of A call symbols by (and return symbols by) and removing internal symbols.
It is then easy to see that A is in gwnVPT iff A′ is in gwnVPT (actually, for
each run in A producing v, its corresponding run in A′ produces some v′ such
that O(v) = O(v′)). Then, as shown in [9], one can build in polynomial time a
context-free grammar GA′ generating the range of A′. Finally, we appeal to [2]
to conclude. �

6 Closure under Composition and Type-Checking

6.1 Definitions and Existing Results

We consider two natural problems for transducers : the first one is related to
composition of transductions. The second problem is the type-checking problem

Visibly Pushdown Transducers with Well-Nested Outputs 139

that aims to verify that any output of a transformation belongs to some given
type/language. For VPT, the obvious class of ”types” to consider is the class of
languages defined by VPA.

Definition 7 (Closure under composition). A class T of transductions in-
cluded in Σ∗ × Σ∗ is closed under composition if for all T, T ′ in T , the trans-
duction T ◦ T ′ is also in T . It is effectively closed under composition if for any
transducers A, A′ such that [[A]], [[A′]] ∈ T , A ◦A′ is computable and [[A ◦A′]] is
in T .

A class of transducers T is effectively closed under composition if for any two
transducers A,A′ in T, A ◦A′ is computable and A ◦A′ is in T.

Definition 8 (Type-checking (against VPA)). Given a VPT A and two VPA
B,C, decide whether [[A]](L(B)) ⊆ L(C).

The following results give the status of these properties for arbitrary VPTs
and for lwnVPT:

Theorem 5 ([6, 7]). Regarding closure under composition, we have:

– The class VP(Σ,Σ) is not closed under composition.
– The class lwnVPT is effectively closed under composition.

In addition, the problem of type checking against VPA is undecidable for (arbi-
trary) VPT and decidable for lwnVPT.

6.2 New Results

Actually, regarding the closure under composition of the class lwnVPT, though
not explicitly stated, the result proved in [6] is slightly stronger. It is indeed
shown that for any VPT A,B such that A ∈ lwnVPT, there exists an (effectively
computable) VPT C satisfying [[C]] = [[A]] ◦ [[B]]. In addition, if B ∈ lwnVPT,
then C ∈ lwnVPT.

We extend this positive result to any almost well-nested transducer.
One of the main ingredients of the proof of this result is the set UPSA defined

for any VPT transducer A = (QA, IA, FA, ΓA, δ
A) as

{
(p, p′, n1, n2)

∃σ ∈ Γ ∗, (p, σ) is reachable and (p′, σ) is co-reachable and

∃u ∈ Σ∗
wn, (p,⊥)

u|v−−→ (p′,⊥) and O(v) = (n1, n2)

}

Proposition 7. Let A in awnVPT. Then the set UPSA is finite and computable
in exponential time in the size of A.

Theorem 6. Let A,B be two VPTs. If A is almost-well nested, then one can
compute in exponential time in the size of A and B a VPT C such that [[C]] =
[[A]] ◦ [[B]]. Moreover, if B is also almost well-nested, then so is C, and if A and
B are globally well-nested, then so is C.

140 P.-A. Reynier and J.-M. Talbot

Proof (Sketch). We present the construction of C. By Proposition 7, UPSA

is finite and we denote by K the computable integer value max{||(n1, n2)|| |
(p, p′, n1, n2) ∈ UPSA}.

Given B = (QB, IB, FB , ΓB, δ
B), we define C = (QC , IC , FC , ΓC , δ

C) as

QC = QA ×QB × Γ≤K
B IC = IA × IB × {⊥}

ΓC = ΓA × Γ
≤OA

max+K
B FC = FA × FB × {⊥}

Now for the transition rules δC :

– ((p, q, σ), i, w, (p′, q′, σ′)) ∈ δCi if there exist a word v ∈ Δ∗ and a stack σ0 ∈
Γ ∗
B such that σ = σ0σ1, σ

′ = σ0σ
′
1, O(v) = (|σ1|, |σ′

1|), and (p, i, v, p′) ∈ δAi

and there exists a run (q, σ1)
v|w−−→ (q′, σ′

1) in B,

– ((p, q, σ), c, w, (γ, σ3), (p
′, q′, σ4)) ∈ δCc if there exist a word v ∈ Δ∗, two

stacks σ0, σ2 ∈ Γ ∗
B and a stack symbol γ ∈ ΓA such that σ = σ0σ1, O(v) =

(|σ1|, |σ2|), σ0σ2 = σ3σ4, (p, c, v, γ, p
′) ∈ δAc and there exists a run (q, σ1)

v|w−−→
(q′, σ2) in B such a transition exists provided the bounds on the sizes of the
different stacks are fulfilled, i.e. |σ| ≤ K, |σ4| ≤ K, and |σ3| ≤ OA

max +K,

– ((p, q, σ), r, w, (γ, σ3), (p
′, q′, σ′)) ∈ δCr if there exist a word v ∈ Δ∗, a stack

σ0 ∈ Γ ∗
B such that σ0σ1 = σ3σ, σ0σ2 = σ′, O(v) = (|σ1|, |σ2|), (p, r, v, γ, p′) ∈

δAr and there exists a run (q, σ1)
v|w−−→ (q′, σ2) in B such a transition exists

provided the bounds on the sizes of the different stacks are fulfilled, i.e.
|σ| ≤ K, |σ′| ≤ K, and |σ3| ≤ OA

max +K.

In a state of C, we store the current states of A and B. In addition, a part of
the top of the stack of B is also stored in the state of C to allow the simulation
of B. The (finite) amount that needs to be stored in the state is identified using
the set UPSA. �

Corollary 1. The classes Gwn and Awn are (effectively) closed under composi-
tion.

Theorem 7 (Type-checking against VPA). Given an almost well-nested
VPT A and two visibly pushdown automata B,C, whether [[A]](L(B)) ⊆ L(C) is
decidable in 2− EXPtime.

Proof. Restricting the domain of A to L(B) is easy: it suffices to compute the
product VPA of A and B. Then, VPA being closed under complementation, we
compute C, the complement of C. Note that the size of C is at most exponential
in the size of C. We then turn C into a transducer C′ defining the identity
relation over L(C) (this is obvious by simply transforming rules of C into rules
of transducers outputting their input). Now, by Theorem 6, one can build a
transducer defining the composition of [[A]] ◦ [[C′]]. This can be done in doubly
exponential time in the size of A and C. Now, it is sufficient to test whether the
VPA underlying this transducer is empty or not. �

Visibly Pushdown Transducers with Well-Nested Outputs 141

7 Conclusion

In this paper, we have considered and precisely characterized the class of VPT
with well-nested outputs. We have shown that this class is closed under compo-
sition and that its type-checking against VPA is decidable. We have restricted
ourselves in this paper to transducers with well-nested domains. We conjecture
that this restriction can be easily relaxed and thus, one could consider transduc-
ers based on nested word automata [1]. We left open the problem of deciding the
class Lwn. As we have described on some examples, this problem is far from being
trivial. In [4], a clear relationship between the class lwnVPT and hedge-to-hedge
transducers is described; investigating such a relationship for gwnVPT is also an
interesting problem.

References

1. Alur, R., Madhusudan, P.: Adding Nesting Structure to Words. Journal of the
ACM 56(3), 1–43 (2009)

2. Bertoni, A., Choffrut, C., Radicioni, R.: The inclusion problem of context-free
languages: Some tractable cases. International Journal of Foundations of Computer
Science 22(2), 289–299 (2011)

3. von Braunmühl, B., Verbeek, R.: Input-driven Languages are Recognized in log
n Space. In: Karpinski, M. (ed.) FCT 1983. LNCS, vol. 158, pp. 40–51. Springer,
Heidelberg (1983)

4. Caralp, M., Filiot, E., Reynier, P.A., Servais, F., Talbot, J.M.: Expressiveness of
visibly pushdown transducers. In: Second International Workshop on Trends in
Tree Automata and Tree Transducers. EPTCS, vol. 134, pp. 17–26 (2013)

5. Filiot, E., Gauwin, O., Reynier, P.A., Servais, F.: Streamability of Nested Word
Transductions. In: IARCS Annual Conference on Foundations of Software Tech-
nology and Theoretical Computer Science. LIPIcs, vol. 13, pp. 312–324 (2011)

6. Filiot, E., Raskin, J.-F., Reynier, P.-A., Servais, F., Talbot, J.-M.: Properties of
Visibly Pushdown Transducers. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010.
LNCS, vol. 6281, pp. 355–367. Springer, Heidelberg (2010)

7. Raskin, J.-F., Servais, F.: Visibly pushdown transducers. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part II. LNCS, vol. 5126, pp. 386–397. Springer, Heidelberg (2008)

8. Reynier, P.A., Talbot, J.M.: Visibly Pushdown Transducers with Well-nested Out-
puts. Tech. rep. (2014),
http://hal.archives-ouvertes.fr/hal-00988129/PDF/wnVPT.pdf

9. Servais, F.: Visibly Pushdown Transducers. Ph.D. thesis. Université Libre de Brux-
elles (2011), http://theses.ulb.ac.be/ETD-db/collection/
available/ULBetd-09292011-142239/

10. Staworko, S., Laurence, G., Lemay, A., Niehren, J.: Equivalence of deterministic
nested word to word transducers. In: Kuty�lowski, M., Charatonik, W., G ↪ebala, M.
(eds.) FCT 2009. LNCS, vol. 5699, pp. 310–322. Springer, Heidelberg (2009)

http://hal.archives-ouvertes.fr/hal-00988129/PDF/wnVPT.pdf
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09292011-142239/

	Visibly Pushdown Transducers with Well-Nested Outputs
	1Introduction
	2Preliminaries
	3Classes of VPT Producing (almost) Well-Nested Outputs
	3.1Definitions
	3.2Comparison of the Different Classes

	4Characterizations
	5Deciding the Classes of Almost and Globally Well-Nested VPT
	6Closure under Composition and Type-Checking
	6.1Definitions and Existing Results
	6.2New Results

	7�Conclusion
	References

