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Preface

The 18th International Conference on Developments in Language Theory (DLT
2014) was held during August 26–29, 2014 in Ekaterinburg, Russia, hosted by
Institute of Mathematics and Computer Science of the Ural Federal University.

The DLT conference series is one of the major international conference series
in language theory and related areas. It started in Turku, Finland, in 1993. It
was held initially once every two years. Since 2001, it has been held every year,
odd years in Europe and even years on other continents. DLT 2014 continued
this tradition: Ekaterinburg is situated in Asia, just a few kilometers away from
the watershed of Ural mountains which serves as the border between Europe
and Asia.

The scope of the conference includes, among others, the following topics and
areas: grammars, acceptors, and transducers for words, trees, and graphs; al-
gebraic theories of automata; algorithmic, combinatorial, and algebraic proper-
ties of words and languages; variable length codes; symbolic dynamics; cellular
automata; polyominoes and multidimensional patterns; decidability questions;
image manipulation and compression; efficient text algorithms; relationships to
cryptography, concurrency, complexity theory, and logic; bio-inspired comput-
ing; quantum computing.

The papers submitted to DLT 2014 were from 17 countries including Brazil,
Canada, Finland, France, Germany, India, Italy, Japan, Korea, The Netherlands,
New Zealand, Poland, Portugal, Russia, Turkey, UK, and USA.

There were 38 qualified submissions. Each submission was reviewed by at
least three referees and discussed by the Program Committee for presentation
at the conference. The Committee decided to accept 22 regular and 5 short
papers. There were 4 invited talks given by Kai Salomaa (Queen’s University,
Kingston, Ontario), Martin Kutrib (Universität Giessen), Pascal Weil (CNRS
and Université de Bordeaux), and Yuri Gurevich (Microsoft Research). This
volume of Lecture Notes in Computer Science contains the papers that were
presented at DLT 2014 including the full versions of three invited lectures.

The reviewing process was organized using the EasyChair conference system
created by Andrei Voronkov. We would like to acknowledge that this system
helped greatly to improve the efficiency of the committee work.

Arto Salomaa, the co-founder of the DLT series and one of the major con-
tributors to the area as a whole, celebrated his 80th birthday in June 2014. DLT
2014 included a special session in Arto’s honor. The opening lecture of the session
surveying Arto’s achievements was delivered by Juhani Karhumäki (University
of Turku, Finland).

The 7th School for students and young researchers “Computer Science Days
in Ekaterinburg” (CSEdays 2014) was co-located with DLT 2014.
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We are grateful to our sponsors:

– Russian Foundation for Basic Research
– SKB Kontur
– JetBrains

We greatly appreciate the assistance of the many departments of the Ural
Federal University. Our special thanks to Vladimir Kruzhaev, the vice rector
for science, and to Magaz Asanov, the director of the Institute of Mathematics
and Computer Science. We also thank the local organizers: Alexandr Galperin,
Alena Nevolina, Ekaterina Neznakhina, Elena Pribavkina, and Alexei Zverev.
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Privacy and Inverse Privacy

Yuri Gurevich

Microsoft Research, Redmond, WA, USA

“Civilization is the progress toward a society of privacy.”

Ayn Rand

Abstract. Privacy is notoriously difficult to define. It is not even clear
what language should be used to define it. Is privacy, quoting Helen
Nissenbaum, “a claim, a right, an interest, a value, a preference, or merely
a state of existence?”

The first part of the lecture is a quick sketch of the current privacy-
research picture, admittedly and necessarily limited and imperfect.

In the second part of the lecture, we introduce inverse privacy. (It
is not that what you might have thought, smile.) Roughly speaking, an
item of your personal information is private if you have it but nobody else
does. It is inversely private if somebody has it but you don’t. The problem
with inverse privacy is its mere existence. We analyze the provenance of
inverse privacy and, limiting our attention to private sector, argue that
the problem is solvable by and large.

The inverse-privacy part of the lecture is based on joint work with our
Microsoft colleagues Efim Hudis and Jeannette Wing.



Measuring Communication

in Automata Systems

Martin Kutrib and Andreas Malcher

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

kutrib@informatik.uni-giessen.de

Abstract. We consider systems of interacting finite automata. On the
one hand, we look at automata systems consisting of a small constant
number of synchronous and autonomous finite automata that share a
common input and communicate with each other as weakly parallel
models. On the other hand, we consider cellular automata consisting
of a huge number of interacting automata as massively parallel systems.
The communication in both types of automata systems is quantitatively
measured by the number of messages sent by the components. In cellular
automata it is also qualitatively measured by the bandwidth of the com-
munication links. We address several aspects concerning the complexity
of such systems. In particular, fundamental types of communication are
considered and the questions of how much communication is necessary
to accept a certain language and whether there are communication hier-
archies are investigated. Since even for systems with few communication
many properties are undecidable, another question is to what extent the
communication has to be limited in order to obtain systems with decid-
able properties again. We present some selected results on these topics
and want to draw attention to the overall picture and to some of the
main ideas involved.



Input-Driven Pushdown Automata

with Limited Nondeterminism

Alexander Okhotin1,� and Kai Salomaa2,��

1 Department of Mathematics and Statistics,
University of Turku, FI-20014 Turku, Finland

alexander.okhotin@utu.fi
2 School of Computing, Queen’s University

Kingston, Ontario K7L 3N6, Canada

ksalomaa@cs.queensu.ca

Abstract. It is known that determinizing a nondeterministic input-
driven pushdown automaton (NIDPDA) of size n results in the worst

case in a machine of size 2Θ(n2) (R. Alur, P. Madhusudan, “Adding nest-
ing structure to words”, J.ACM 56(3), 2009). This paper considers the
special case of k-path NIDPDAs, which have at most k computations on
any input. It is shown that the smallest deterministic IDPDA equivalent
to a k-path NIDPDA of size n is of size Θ(nk). The paper also gives an
algorithm for deciding whether or not a given NIDPDA has the k-path
property, for a given k; if k is fixed, the problem is P-complete.

* Supported by the Academy of Finland under grant 257857.
** Supported by NSERC under grant OGP0147224.



From Algebra to Logic: There and Back Again

The Story of A Hierarchy�

Pascal Weil1,2

1 CNRS, LaBRI, UMR 5800, F-33400 Talence, France

pascal.weil@labri.fr
2 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

Abstract. This is a survey about a collection of results about a (dou-
ble) hierarchy of classes of regular languages, which occurs in a natural
fashion in a number of contexts. One of these occurrences is given by an
alternated sequence of deterministic and co-deterministic closure opera-
tions, starting with the piecewise testable languages. Since these closure
operations preserve varieties of languages, this defines a hierarchy of va-
rieties, and through Eilenberg’s variety theorem, a hierarchy of pseudo-
varieties (classes of finite monoids that are defined by pesudo-identities).
The point of this excursion through algebra is that it provides reason-
ably simple decision algorithms for the membership problem in the cor-
responding varieties of languages. Another interesting point is that the
hierarchy of pseudo-varieties bears a formal resemblance with another
hierarchy, the hierarchy of varieties of idempotent monoids, which was
much studied in the 1970s and 1980s and is by now well understood. This
resemblance provides keys to a combinatorial characterization of the dif-
ferent levels of our hierarchies, which turn out to be closely related with
the so-called rankers, a specification mechanism which was introduced
to investigate the two-variable fragment of the first-order theory of the
linear order. And indeed the union of the varieties of languages which
we consider coincides with the languages that can be defined in that
fragment. Moreover, the quantifier alternation hierarchy within that log-
ical fragment is exactly captured by our hierarchy of languages, thus
establishing the decidability of the alternation hierarchy.

There are other combinatorial and algebraic approaches of the same
logical hierarchy, and one recently introduced by Krebs and Straubing
also establishes decidability. Yet the algebraic operations involved are
seemingly very different, an intriguing problem. . .

* This work was partially supported by the ANR through ANR-2010-BLAN-0204
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On Automatic Transitive Graphs

Dmitry Berdinsky and Bakhadyr Khoussainov

Department of Computer Science, The University of Auckland,
Princes St., 38, 1010 Auckland, New Zealand

berdinsky@gmail.com, bmk@cs.auckland.ac.nz

http://www.cs.auckland.ac.nz

Abstract. We study infinite automatic transitive graphs. In particular
we investigate automaticity of certain Cayley graphs. We provide exam-
ples of infinite automatic transitive graphs that are not Cayley graphs.
We prove that Cayley graphs of Baumslag–Solitar groups and the re-
stricted wreath products of automatic transitive graphs with Z are au-
tomatic.

Keywords: finite automata, automatic graphs, transitive graphs.

1 Introduction

This paper contributes to the field of automatic structures [11] with a particular
emphasis on infinite automatic transitive graphs. Recall that a graph G = (V,E)
is transitive if for all vertices u, v ∈ V there exists an automorphism of the graph
that maps u into v. We postulate that the edges of our graphs are unordered
pairs, and hence no loop exists from any vertex of the graph to itself.

Examples of transitive graphs are plentiful. The Rado graph, obtained as the
Fräıssé limit of the class of all finite graphs, is transitive. So are Cayley graphs
of finitely generated groups. Here we recall the definition of a Cayley graph. Let
H be a finitely generated group with a finite set of generators X such that X
does not contain the identity of the group. Define the Cayley graph of H with
respect to X as follows: (a) the set of vertices of the Cayley graph is the set H ,
and (b) there is an edge between the vertices u and v if there exists an x ∈ X
such that ux = v or ux−1 = v. Often Cayley graphs are directed and labeled
graphs with labels from X , but for simplicity we omit the labels and directions
on the edges.

We assume that the reader is familiar with the notion of finite automata and
synchronous multi–head finite automata. Finite automata can be used to define
the concept of an automatic graph. Call a graph G = (V,E) automatic if it has
an automatic presentation (FA–presentable), i.e., if both the set of vertices V
and the set of edges E are recognized by finite automata. The automaton that
recognizes the set of edges is a synchronous 2–head finite automaton. We recall
that for two strings u1 . . . uk and v1 . . . vm representing two vertices of V , the
shorter one is padded with a padding symbol �. Then such an automaton reads

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 1–12, 2014.
c© Springer International Publishing Switzerland 2014

http://www.cs.auckland.ac.nz


2 D. Berdinsky and B. Khoussainov

the string of paired symbols (u1, v1) . . . (un, vn) for n = max{k,m}. Here we give
two sets of general examples of automatic transitive graphs.

Example 1. Let H be a group generated by a finite set X . Consider its labeled
and directed Cayley graph Γ (H,X). Call the group H automatic if there exists
a regular subset L ⊆ (X ∪ X−1)∗ such that the natural mapping from L into
G is bijective, and for any x ∈ X the set of directed edges of Γ (H,X) labeled
by x is recognized by a synchronous 2–head finite automaton. For the theory of
automatic groups the reader is referred to [5]. It is proved that FA–presentable
finitely generated groups are virtually Abelian [14]. This implies that the class
of automatic groups properly contains FA–presentable finitely generated groups.

Example 2. As above, let H be a group generated by a finite set X . Consider
its labeled and directed Cayley graph Γ (H,X). We call the group H Cayley
automatic [10] if there a regular subset L ⊂ Σ∗ for some finite alphabet Σ that
uniquely represents elements of H , and for any x ∈ X the set of directed edges of
Γ (H,X) labeled by x is recognized by a synchronous 2–head finite automaton,
i.e., Γ (H,X) is FA–presentable. The class of Cayley automatic groups properly
contains automatic groups and retains many of their properties. Clearly a Cayley
graph of a Cayley automatic group is automatic.

It is known that the Rado graph is not an automatic graph [12,4], while the
examples above show the abundance of transitive automatic graphs. Taking into
account that the Rado graph is not automatic and the two examples above, we
postulate the following conditions on transitive graphs G that will be assumed
for the rest of the paper: (1) the graph G is infinite and connected, and (2)
the degree of every vertex v in G is bounded. Since the graph is transitive, the
second condition implies that all vertices of the graph have the same degree.

2 Contributions of the Paper

– We give an example of a sequence of automatic infinite transitive graphs
that are not Cayley graphs. We also show that the limit of this sequence is
an automatic transitive graph such that no Cayley graph is quasi–isometric
to it. These examples show that the class of automatic transitive graphs
properly contains the class of Cayley graphs of all Cayley automatic groups.

– In [10] it is proved that Baumslag–Solitar groups B(1, n) are Cayley auto-
matic. We extend this result, and prove that all Baumslag–Solitar groups
B(m,n) are Cayley automatic. The proof is based on finding proper normal
forms of group elements through HNN–extensions.

– In [10] it is proved that the wreath product of any finite group with the
group Z of integers is Cayley automatic. These groups are examples of groups
that are not automatic. We extend the result from [10] and prove that the
wreath product of any Cayley automatic group with the group Z preserves
Cayley automaticity. We also generalize this result to the class of locally
finite automatic graphs. In addition, we make some relevant remarks on the
Cayley automaticity of wreath products of finitely generated groups and
infinite non–cyclic groups.
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3 Examples of Infinite Transitive Automatic Graphs

We start this section with a simple example of an automatic infinite transitive
graph which is not a Cayley graph. This example showcases that the class of
transitive infinite automatic graphs properly contains the class of Cayley graphs
of all Cayley automatic groups.

The example is presented in [15] but our description follows the beginning
of § 2 in [3]. Consider the infinite 5–regular tree T5 and the bipartite graph
K2,3. Define the graph H2,3 as follows. First, replace vertices of T5 by disjoint
copies of K2,3. Second, for each edge {u, v} of T5, identify a vertex of the K2,3

corresponding to u with a vertex of the K2,3 corresponding to v. No point in
any K2,3 is identified more than once, and a vertex in a class of size 2 is always
identified with a vertex in a class of size 3 and vice versa. See Fig. 1.
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Fig. 1. Constructing the non–Cayley graph H2,3 from T5

Proposition 1. The graph H2,3 is a transitive infinite automatic graph that is
not a Cayley graph for any finitely generated group.

Proof. It is clear that H2,3 is transitive. We prove that H2,3 is not a Cayley
graph for any finitely generated group. Recall that a graph H is a Cayley graph
of some group if and only if there exists a subgroup S of automorphisms of H
that acts freely and transitively on H . Here S acts transitively on H if for every
pair u, v of vertices of H there exists an action of S that maps u to v; also, S
acts freely on H if every nontrivial action of S moves every vertex of H .

Suppose that there exists a subgroup S of automorphisms of H2,3 that acts
freely and transitively on H2,3. Let K be one of the K2,3 making up H2,3, and
let {a, b} and {c, d, e} be the vertices in a class of size 2 and 3, respectively. It is
not hard to see that any automorphism that sends an element of {c, d, e} back
into {c, d, e} must fix K. Now let θ ∈ S be such that θ(c) = d; therefore, it must
swap a and b. Let θ′ ∈ S be such that θ′(c) = e; again, it must swap a and b.
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Then θ′θ−1 ∈ S sends d to e and fixes a and b. This gives us a contradiction.
Hence H2,3 is not a Cayley graph for any finitely generated group.

To prove automaticity of H2,3, we note that T5 is an automatic graph. The
definition of H2,3 shows that we can identify the elements of H2,3 and a quotient
set T5 × K2,3/ ≡, where ≡ is recognizable by a finite automaton equivalence
relation on T5 × K2,3. An easy analysis can then show that H2,3 under the
representation induced by T5 ×K2,3/ ≡ is automatic. �	

The construction above can easily be generalized to build automatic transitive
graphs Hn,m from the regular tree Tn+m and the bipartite graph Kn,m, where
n 
= m and n � 2 and m � 3:

Corollary 1. The graphs Hn,m are transitive infinite automatic graphs that are
not Cayley graphs. �	

We now construct another transitive automatic graph G�. Our description
follows [3]. The graph is obtained as a limit of automatic graphs G0, G1, G2, . . .
such that each Gi is quasi–isometric1 to T5. The conjecture that G� is not quasi–
isometric to any Cayley graph was stated in [3]. The conjecture was confirmed
in [7].

First we recall the definition of the line graph of a digraph D. The line
graph of a digraph D = (V,E) is the digraph D′ = (V ′, E′) with V ′ = E and
E′ = {((u, v), (u′, v′)) | (u, v), (u′, v′) ∈ V ′ ∧ v = u′}. Now define the sequence
D0, D1, . . . of graphs: D0 is the 5–regular tree such that every node of the tree
has exactly two ingoing edges and exactly three outgoing edges, and set Di+1

be the line graph of Di for i ≥ 0.

Proposition 2. [3, Proposition 3] The digraph Dn is isomorphic to the di-
graph whose vertices are the directed paths of length n in D0, with an edge from
x1x2 . . . xn+1 to y1y2 . . . yn+1 if yi = xi+1 for all 1 � i � n. �	

Since D0 is automatic, Proposition 2 implies that each digraph Dn is automatic.
Let Gn be the graph obtained from Dn by removing the directions from the

edges of Dn. For instance, G1 is isomorphic to H2,3. Since each Dn is automatic,
the graph Gn is also automatic. All the graphs G1, G2, . . . are transitive and are
not Cayley graphs. Moreover, each Gi is quasi–isometric to T5. In [3] it is proved
that the sequence G0, G1, . . . converges to G∗, and that the graph G� can be
described as follows.

Let X be a 3–regular tree where each node has in–degree 2 and out–degree 1.
Let Y be a 4–regular tree in which each node has in–degree 1 and out–degree 3.
Fix a vertex O1 ∈ V (X) and a vertex O2 ∈ V (Y ). For each x ∈ X , set r(x) to be

1 We recall that two graphs G1 and G2 are quasi–isometric if there exist a map θ :
V (G1) → V (G2) and some λ � 1 such that 1

λ
dG1(x, y) − λ � dG2(θ(x), θ(y)) �

λdG1(x, y) + λ for all x, y ∈ V (G1), and for any point y ∈ V (G2) there is some
x ∈ V (G1) such that dG2(θ(x), y) � λ; where dG1(x, y) and dG2(θ(x), θ(y)) are the
graph distances between x, y and θ(x), θ(y) in G1 and G2, respectively. For more on
quasi-isometries we refer to [8].
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the signed distance from O1 to x, i.e., if the unique undirected path from O1 to
x in X has s forward edges and t backward edges then r(x) = s− t. Define r(y)
similarly for each y ∈ Y . The set of vertices of G∗ is the set {(x, y) ∈ X × Y :
r(x) = r(y)}, and G∗ has an arc from (x, y) to (x′, y′) if (x, x′) ∈ E(X) and
(y, y′) ∈ E(Y ). Thus, the results in [3] and [7] imply:

Theorem 1. The structure G� is a transitive automatic graph such that no
Cayley graph is quasi–isometric to it. �	

4 Baumslag–Solitar Groups

The Baumslag–Solitar groups are defined as a particular class of two-generator
one-relator groups [1]. They play an important role in combinatorial and geo-
metric group theory.

Definition 1. For given non-negative integers m,n, the Baumslag–Solitar group
BS(m,n) is a finitely generated one–relator group defined as follows:

BS(m,n) = 〈a, t | t−1amt = an〉.

We will further suppose that m,n 
= 0; if m = 0 or n = 0 then BS(m,n) is
isomorphic to a free product of a cyclic group and Z. The groups BS(m,n)
are automatic if and only if m = n [5]. It is also known that BS(m,n) are all
asynchronously automatic [5]. In this section we prove that the Baumslag–Solitar
groups BS(m,n) are Cayley automatic groups for all n,m ∈ N.

In [10] it is proved that some special cases of Baumslag–Solitar group, namely
BS(1, n), n ∈ N, are Cayley automatic. The proof is based on representation of
groups elements as special type of linear functions acting on the real line. We
extend this theorem to the class of all Baumslag–Solitar groups. Our proof is
based on a normal form for elements of BS(m,n) that comes from representing
BS(m,n) as Higman–Neumann–Neumann (HNN) extension.

We now recall the general construction for HNN extension and the normal
form theorem for HNN extension; we will follow [13, Chapter IV, § 2].

The HNN extension of G relative to the subgroups A,B � G and an isomor-
phism φ : A → B is the group

G∗ = 〈G, t; t−1at = φ(a), a ∈ A〉,

where t is usually called a stable letter. The normal form theorem for HNN
extension, as presented in [13], is the following. For the proof see statement (II)
of Theorem 2.1 in [13]:

Theorem 2. Suppose we have fixed all the representatives for right cosets of
subgroups A and B in G, where the identity 1 ∈ G represents the subgroups A and
B. Then every element w of G∗ has a unique representation as w = g0t

ε1 · · · tε�g�
where
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– g0 is an arbitrary element of G,
– if εi = −1, then gi is a representative of a right coset of A in G,
– if εi = +1, then gi is a representative of a right coset of B in G, and
– there is no consecutive subsequence tε, 1, t−ε. �	

By replacing the representatives to left cosets of subgroups A and B, with 1
representing both A and B, one obtains the following corollary of Theorem 2.

Corollary 2. Suppose that we have fixed all the representatives for left cosets
of A and B in G with the identity 1 ∈ G representing A and B. Then every
element w of G∗ has a unique representation as w = g�t

ε� · · · g1tε1g0, where

– g0 is an arbitrary element of G,
– if εi = −1, then gi is a representative of a left coset of B in G,
– if εi = +1, then gi is a representative of a left coset of A in G,
– there is no consecutive subsequence tε, 1, t−ε. �	

Note that the Baumslag- Z = 〈a〉 relative to subgroups mZ and nZ, and the
isomorphism φ : mZ → nZ that maps am to an. By using Corollary 2, our goal
is to show that BS(m,n) is a Cayley automatic group.

Theorem 3. The group BS(m,n) is a Cayley automatic group.

Proof: We put 1, . . . , am−1 and 1, . . . , an−1 to be the representatives for left
cosets of subgroups mZ and nZ in Z respectively. By Corollary 2, every element
w ∈ BS(m,n) has a unique representation as

w = g�t
ε� · · · g1tε1g0, (1)

where g0 = ak for some k ∈ Z, and if εi = −1 then gi ∈ {1, a, . . . , an−1}, if
εi = +1 then gi ∈ {1, a, . . . , am−1}, and there is no consecutive subsequence
tε, 1, t−ε.

The right–multiplication by the generator a transforms the normal form of w
as follows:

g�t
ε� · · · g1tε1ak ×a−−→ g�t

ε� · · · g1tε1ak+1. (2)

Let k = mp + r where p ∈ Z and r ∈ {0, . . . ,m − 1}. The right–multiplication
by the generator t transforms a normal form of w as follows

– if r 
= 0 then

g�t
ε� · · · g1tε1ak ×t−−→ g�t

ε� · · · g1tε1artanp, (3)

– if r = 0, and � � 1, ε1 = −1 then

g�t
ε� · · · g2tε2g1t−1ak

×t−−→ g�t
ε� · · · g2tε2(g1a

np), (4)
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– if r = 0 and � � 1, ε1 = 1 then

g�t
ε� · · · g1tak ×t−−→ g�t

ε� · · · g1t 1 tanp, (5)

– if r = 0 and � = 0 then
ak

×t−−→ artanp. (6)

Combining (1) with (2)–(6), we see that BS(m,n) is Cayley automatic. We note
that in order to construct relevant finite automata, the m–ary representation of
k ∈ Z (for which the map k = mp+r → np is recognizable by a finite automaton)
should be used. �	

Remark 1. We note that the map k = mp + r → mp is recognizable by a finite
automaton for a unary representation of k. It follows from the proof of Theorem
3 that if m = n then BS(m,n) is automatic.

Remark 2. We mentioned that BS(m,n) is not automatic if m 
= n. Indeed, a
group that is automatic satisfies a quadratic isoperimetric inequality (for the
proof see, e.g., [5, Theorem 2.3.12]). However, by choosing a proper family of
cycles in the Cayley graph, it can be shown that BS(m,n) does not satisfy a
polynomial isoperimetric inequality (see the explanation in [5, § 7.4]).

The next remark concerns asynchronously automatic groups (see [5, § 7]).
This class of groups extends the class of groups that are automatic.

Remark 3. It is known that BS(m,n) is an asynchronously automatic group
(see the explanation in [5, § 7.4]). This fact can be alternatively derived from
Theorem 3. To show it, we observe that the map k = mp+r → np is recognizable
by an asynchronous automaton for the unary representation of k.

5 Wreath Products

We start by recalling the definition of the restricted wreath products of two
groups A and B; we will follow [9, § 6.2].

Let A and B be groups. We denote by A(B) the group of all functions B → A
having finite supports and the usual multiplication rule; recall that a function
f : B → A has finite support if f(x) 
= e for only finite number of x ∈ B, where
e is the identity of A. Let us define the homomorphism τ : B → Aut(A(B)) as
follows: for a given f ∈ A(B), the automorphism τ(b) maps f to f b ∈ A(B),
where f b(x) = f(bx) for all x ∈ B. For given groups A and B, the restricted
wreath product A � B is defined to be the semidirect product A(B) �τ B. Thus,
A � B is the set product B ×A(B) with multiplication given by

(b, f) · (b′, f ′) = (bb′, f b′f ′), (7)

where f b′(x) = f(b′x).
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For our purposes we will use the converse order for representing elements of a
wreath product. Namely, we will represent an element of A � B as a pair (f, b),
where f ∈ A(B) and b ∈ B. For such a representation, the group multiplication
is given by

(f, b) · (f ′, b′) = (ff ′ b−1

, bb′), (8)

where f ′ b−1

(x) = f ′(b−1x). There exist natural embeddings B → A � B and
A(B) → A � B mapping b to (e, b) and f to (f, e) respectively, where e is the
identity of A(B) and e is the identity of B. For the sake of simplicity, we will
identify B and A(B) with the corresponding subgroups of A � B.

5.1 Wreath Products of Finitely Generated Groups and Z

For a given finitely generated group G, let us consider the wreath product G � Z.
We represent an element of G � Z as a pair (f, z), where f ∈ G(Z) and z ∈ Z. By
(8), the multiplication in G � Z on pairs (f, z) and (f ′, z′) is given by:

(f, z)(f ′, z′) = (ff ′ −z, z + z′),

where f ′ −z(x) = f ′(x− z).

Let g1, . . . , gn be generators of G and Z = 〈t〉; let us identify t with 1 ∈ Z.
We denote by f1, . . . , fn the functions from G(Z) such that fi(0) = gi and
fi(x) = e for all x 
= 0 ∈ Z, i = 1 . . . n, where e is the identity of G. The pairs
(f1, 0), . . . , (fn, 0) and (e, t) are the generators of G � Z. The right–multiplications
of a pair (f, z) by these generators are given by:

(f, z)(e, t) = (f, z + 1), (9)

(f, z)(fi, 0) = (ff−z
i , z), i = 1, . . . , n, (10)

where f−z
i (z) = gi, f

−z
i (x) = e for all x 
= z and e is the identity of G(Z); one

can obtain ff−z
i from f by changing the value of the function f at the point z

to the one equal to f(z)gi.

It is useful to imagine an element (f, z) ∈ G � Z as a bi–infinite string of
elements of G, such that only a finite number of elements are not equal to
e ∈ G, with the tape head in position z pointing at an element of this string.
Then the identity (e, 0) of G � Z corresponds to the string where all elements
are equal to e ∈ G with the tape head in the origin 0 ∈ Z.

For the sake of convenience, let t and fi denote the corresponding elements
(e, t) and (fi, e) in G � Z. Then, in the wreath product G � Z, the right–
multiplication by t shifts the tape head to the right by one whilst that of by t−1

shifts the tape head to the left by one; the right–multiplication by fi changes
the value of the element that the tape head is pointed to multiplying it by gi.
Therefore, a word tkfi1 · · · fi�t−k can be interpreted as follows: the tape head
makes k steps from the origin either to the right or left (for k > 0 or k < 0
respectively) then the kth element is changed from e to gi1 · · · gi� , and then the
tape head returns back to the origin.
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Suppose that we chose minimal length representatives (in terms of generators
g1, . . . , gn) for all elements of G, i.e., for each u ∈ G we have its minimal length
representative v = g±1

i1
· · · g±1

i�
∈ ({g1, . . . , gn}∪{g−1

1 , . . . , g−1
n })∗. There exist two

natural ways to represent uniquely elements of G � Z [2]. For a given w ∈ G � Z
let the right–first normal form rf(w) be the following:

rf(w) = (ti1vi1t
−i1) · · · (tikvik t−ik)(t−j1vj1 t

j1) · · · (t−j�vj� t
j�)tm, (11)

where ik > . . . i1 � 0, jl > . . . j1 > 0, m ∈ Z, and vi1 , . . . , vik , vj1 , . . . , vj� are the
corresponding minimal representatives in G. The left–first normal form lf(w) is
given by:

lf(w) = (t−j1vj1t
j1) · · · (t−j�vj�t

j�)(ti1vi1 t
−i1) · · · (tikvik t−ik)tm. (12)

In the right–first normal form the tape head first moves to the right from the
origin whilst in the left–first form the tape head first moves to left from the
origin. By [2], either rf(w) or lf(w) (taken in the reduced form) provide the
minimal length representative of w.

The normal forms (11) and (12) give an immediate prompt about how to
show that the wreath product G � Z is Cayley automatic if G itself is Cayley
automatic.

Theorem 4. For a given Cayley automatic finitely generated group G the wreath
product G � Z is Cayley automatic.

Proof. Let G be a Cayley automatic group with a finite set of generators S =
{g1, . . . , gn}. Let P be a regular language that gives a graph automatic rep-
resentation of the labeled and directed Cayley graph Γ (G,S). Without loss of
generality we will suppose that each element w ∈ G has a unique word v ∈ P as
a representative. In order to prove that G � Z is Cayley automatic, we need to
construct a regular language Q representing elements of G � Z and describe the
automata recognizing right–multiplications by the generators (e, t) and (fi, 0)
(see (9) and (10) respectively).

To obtain the alphabet of Q, let us add to the alphabet of P four additional
symbols: A, B, C and #. For a given element of G � Z we use the symbol A to
specify the position of the origin 0 ∈ Z, the symbol C to specify the position
of the tape head m ∈ Z, and the symbol B will be used instead of A and C in
case the positions of the origin and the tape head coincide: m = 0. The symbol
# is used to separate subwords representing elements of G; at the positions
corresponding to the origin and the tape head, the symbols A, C or B should be
used instead of #. Given an element of G � Z , we represent it as a finite string
of the following form:

v−j# . . .#v−1Av0#v1# . . .#vm−1Cvm#vm+1 . . .#vi, (13)

where v−j , . . . , vi are the words of P and v−j and vi are the representatives for
the leftmost and rightmost nontrivial elements of G. The language of such finite
strings form the regular language Q.
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The right–multiplication by (e, t) corresponds to the following relation:(
. . . # vm−1 C vm # vm+1 # . . .
. . . # vm−1 # vm C vm+1 # . . .

)
,

which is clearly recognizable by a finite automaton.

The right–multiplication by (fi, 0) corresponds to the following relation:(
. . . # vm−1 C vm # vm+1 # . . .
. . . # vm−1 C um # vm+1 # . . .

)
. (14)

The relation

(
vm
um

)
is recognizable by a finite automaton by the initial as-

sumption that G is Cayley automatic. The difference between the lengths of the
words vm and um is bounded by some constant C for all generators gi ∈ S.
Thus, the relation (14) is recognizable by a finite automaton. �	

The next remark concerns asynchronously automatic groups.

Remark 4. The wreath product G � Z is not an asynchronously automatic group
for any nontrivial group G. Indeed, if a group is asynchronous automatic then
it is finitely presented (see [5, Theorem 7.3.4]). But, the wreath product G � Z
is finitely presented only if G is trivial.

5.2 Generalization

The wreath product on groups can naturally be defined for graphs. Indeed, let
B be a graph and A be a graph with a distinguished vertex a0 ∈ V (A). For a
function f : V (B) → V (A), the support of f is the set {b ∈ V (B) : f(b) 
= a0}.

Definition 2. ([6, Definition 2.1]) The wreath product A � B of graphs A and
B is the graph the vertices of which are pairs (f, b), where b ∈ V (B) and f :
V (B) → V (A) is a function with a finite support. Two vertices (f1, b1) and
(f2, b2) are joined by an edge if either

– b1 = b2 and f1(x) = f2(x) for all x 
= b1 and there is an edge in A between
f1(b1) and f2(b2), or

– f1(x) = f2(x) for all x ∈ V (B) and there is an edge in B between b1 and b2.

Note that in this definition, we do not require that the graphs A and B are
transitive. However, it is not hard to see that if A and B are transitive then so
is their wreath product A � B.

Let G1 and G2 be Cayley graphs of two finitely generated groups H1 and H2,
and the distinguished vertex of G1 is the identity of H1. Then it is easy to see
that the wreath product of graphs G1 � G2 is the Cayley graph of the wreath
product of groups H1 � H2.

We denote by Γ (Z) the Cayley graph of Z with respect to the standard gen-
erator t = 1 ∈ Z. Recall that a graph is locally finite if the degree of every vertex
of the graph is finite. Theorem 4 can be straightforwardly generalized as follows.
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Theorem 5. For any given locally finite automatic graph Γ the wreath product
Γ � Γ (Z) is automatic. �	

5.3 Is the Wreath Product Z2 � Z2 Cayley Automatic?

The analysis of Cayley automaticity of a wreath product G � H becomes more
complex if H is an not a cyclic group. For example, we do not know whether
the groups Z2 � F2 and Z2 � Z2 are Cayley automatic or not. In this subsection
we show that if Z2 � Z2 is Cayley automatic then its automatic presentation is
unnatural in the sense described below.

Consider the wreath product G � H , where G is a Cayley automatic group
and H is an infinite Cayley automatic non–cyclic group, say H = Z2. It per-
fectly seems reasonable, at first, to construct a Cayley automatic representation
following the approach used for G � Z. Indeed, for any bijective map τ : Z → H ,
a regular language representing the elements of G � H can be constructed com-
posing the representation of G � Z given in the proof of Theorem 4 and the
one–to–one correspondence between H and Z. Moreover, if G is a finite group,
then such a representation gives the regular representation for the subgroup G(H)

for which the group operation is recognizable by a finite automaton. Assume that
τ(0) is the identity of H . Then the regular language representing G(H) � G � H
consists of all words of Q having the symbol B as a subword that corresponds to
the configurations when the tape head is pointing to the identity of H . It is then
not surprising, as implied by Proposition 3 below, that such representations fail
to be Cayley automatic.

Assume that P is a regular language that gives a Cayley automatic repre-
sentation of Z2 � Z2. We suppose that each element of Z2 � Z2 has a unique

representative in P . Let f0 ∈ Z(Z2)
2 be the function such that f0(0, 0) = 1 and

f0(z1, z2) = 0 if (z1, z2) 
= (0, 0); let r = (1, 0) ∈ Z2 and u = (0, 1) ∈ Z2. These
are the generators of Z2 � Z2. Cayley automaticity of Z2 � Z2 implies that the
right–multiplications by f0, r and u are recognizable by finite automata.

Proposition 3. Assume that Z2 � Z2 is Cayley automatic with respect to P

such that the subset P ′ ⊂ P of representatives of the subgroup Z(Z2)
2 is a regu-

lar language. Then the group operation in Z(Z2)
2 is not recognizable by a finite

automaton.

Proof. We will prove the proposition by contradiction. Suppose that the group

operation in Z
(Z2)
2 is recognizable by a finite automaton.

For a given n ∈ N, we denote by Hn � Z(Z2)
2 the subgroup of functions

f ∈ Z(Z2)
2 having supp f ⊂ {(i, j) | −n � i, j � n}. Since the group operation in

Z(Z2)
2 and right multiplications by u, r and f0 are recognizable by finite automata,

it directly follows from the Constant Growth lemma (see, e.g., [10, Lemma 14.1])
that there exists a constant C such that |f |P ′ � Cn for all f ∈ Hn, where |f |P ′
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denotes the length of the representative of f in P ′. On the other hand, the
number of elements in Hn is equal to 2(2n+1)2 . Thus, we get a contradiction and,

therefore, the group operation in Z(Z2)
2 is not recognizable by a finite automaton.

�	
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Abstract. We solve two open problems concerning syntactic complex-
ity. We prove that the cardinality of the syntactic semigroup of a left
ideal or a suffix-closed language with n left quotients (that is, with state
complexity n) is at most nn−1 + n− 1, and that of a two-sided ideal or
a factor-closed language is at most nn−2 + (n− 2)2n−2 + 1. Since these
bounds are known to be reachable, this settles the problems.
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1 Introduction

The syntactic complexity [4] of a regular language is the size of its syntactic
semigroup [5]. The transition semigroup T of a deterministic finite automaton
(DFA) D is the semigroup of transformations of the state set of D generated by
the transformations induced by the input letters of D. The transition semigroup
of a minimal DFA of a language L is isomorphic to the syntactic semigroup of
L [5]; hence syntactic complexity is equal to the cardinality of T .

The number n of states of D is known as the state complexity of the lan-
guage [1,6], and it is the same as the number of left quotients of the language.
The syntactic complexity of a class of regular languages is the maximal syntactic
complexity of languages in that class expressed as a function of n.

A right ideal (respectively, left ideal, two-sided ideal) is a non-empty language
L over an alphabet Σ such that L = LΣ∗ (respectively, L = Σ∗L, L = Σ∗LΣ∗).
We are interested only in regular ideals; for reasons why they deserve to be
studied see [2, Section 1]. Ideals appear in pattern matching. For example, if a
text is a word w over some alphabet Σ, and a pattern is an arbitrary language
L over Σ, then an occurrence of a pattern represented by L in text w is a triple
(u, x, v) such that w = uxv and x is in L. Searching text w for words in L is
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equivalent to looking for prefixes of w that belong to the language Σ∗L, which
is the left ideal generated by L.

The syntactic complexity of right ideals was proved to be nn−1 in [4]. The
syntactic complexities of left and two-sided ideals were also examined in [4],
where it was shown that nn−1 + n− 1 and nn−2 + (n− 2)2n−2, respectively, are
lower bounds on these complexities, and it was conjectured that they are also
upper bounds. In this paper we prove these conjectures.

If w = uxv for some u, v, x ∈ Σ∗, then v is a suffix of w and x is a factor of
w. A suffix of w is also a factor of w. A language L is suffix-closed (respectively,
factor-closed) if w ∈ L implies that every suffix (respectively, factor) of w is also
in L. We are interested only in regular suffix- and factor-closed languages. Since
every left (respectively, two-sided) ideal is the complement of a suffix-closed
(respectively, factor-closed) language, and syntactic complexity is preserved by
complementation, our theorems also apply to suffix- and factor-closed languages,
but our proofs are given for left and two-sided ideals only.

2 Preliminaries

The left quotient or simply quotient of a regular language L by a word w is
denoted by Lw and defined by Lw = {x | wx ∈ L}. A language is regular if and
only if it has a finite number of quotients. The number of quotients of L is called
its quotient complexity. We denote the set of quotients by K = {K0, . . . ,Kn−1},
where K0 = L = Lε by convention. Each quotient Ki can be represented also as
Lwi, where wi ∈ Σ∗ is such that Lwi = Ki.

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ),
where Q is a finite non-empty set of states, Σ is a finite non-empty alphabet
δ : Q×Σ → Q is the transition function, q0 ∈ Q is the initial state, and F ⊆ Q
is the set of final states.

The quotient DFA of a regular language L with n quotients is defined by D =
(K,Σ, δ,K0, F ), where δ(Ki, w) = Kj if and only if Kiw = Kj, and F = {Ki |
ε ∈ Ki}. To simplify the notation, we use the set Q = {0, . . . , n−1} of subscripts
of quotients to denote the states of D; then D is denoted by D = (Q,Σ, δ, 0, F ).
The quotient corresponding to q ∈ Q is then Kq = {w | δ(q, w) ∈ F}. The
quotient K0 = L is the initial quotient. A quotient is final if it contains ε. A
state q is empty if its quotient Kq is empty.

The quotient DFA of L is isomorphic to each complete minimal DFA of L.
The number of states in the quotient DFA of L (the quotient complexity of L)
is therefore equal to the state complexity of L.

In any DFA, each letter a ∈ Σ defines a transformation of the set Q of n
states. Let TQ be the set of all nn transformations of Q; then TQ is a monoid
under composition. The identity transformation 1 maps each element to itself.
For k ≥ 2, a transformation (permutation) t of a set P = {q0, q1, . . . , qk−1} ⊆ Q
is a k-cycle if q0t = q1, q1t = q2, . . . , qk−2t = qk−1, qk−1t = q0. A k-cycle is
denoted by (q0, q1, . . . , qk−1). If a transformation t of Q acts like a k-cycle on
some P ⊆ Q, we say that t has a k-cycle. A transformation has a cycle if it
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has a k-cycle for some k ≥ 2. A 2-cycle (q0, q1) is called a transposition. A
transformation is constant if it maps all states to a single state q; it is denoted
by (Q → q). If w is a word of Σ∗, the fact that w induces transformation t
is denoted by w : t. A transformation mapping i to qi for i = 0, . . . , n − 1 is
sometimes denoted by [q0, . . . , qn−1].

3 Left Ideals

3.1 Basic Properties

Let Q = {0, . . . , n − 1}, let Dn = (Q,ΣD, δD, 0, F ) be a minimal DFA, and let
Tn be its transition semigroup. Consider the sequence (0, 0t, 0t2, . . . ) of states
obtained by applying transformation t ∈ Tn repeatedly, starting with the initial
state. Since Q is finite, there must eventually be a repeated state, that is, there
must exist i and j such that 0, 0t, . . . , 0ti, 0ti+1, . . . , 0tj−1 are distinct, but 0tj =
0ti; the integer j − i is the period of t. If the period is 1, t is said to be initially
aperiodic; then the sequence is 0, 0t, . . . , 0tj−1 = 0tj .

Lemma 1 ([4]). If Dn is a DFA of a left ideal, all the transformations in Tn

are initially aperiodic, and no state of Dn is empty.

Remark 1 ([2]). A language L ⊆ Σ∗ is a left ideal if and only if for all x, y ∈ Σ∗,
Ly ⊆ Lxy. Hence, if Lx 
= L, then L ⊂ Lx for any x ∈ Σ+.

It is useful to restate this observation it terms of the states of Dn. For DFA
Dn and states p, q ∈ Q, we write p ≺ q if Kp ⊂ Kq.

Remark 2. A DFA Dn is a minimal DFA of a left ideal if and only if for all
s, t ∈ Tn ∪ {1}, 0t � 0st. If 0t 
= 0, then 0 ≺ 0t for any t ∈ Tn. Also, if r ∈ Q
has a t-predecessor, that is, if there exists q ∈ Q such that qt = r, then 0t � r.
(This follows because q = 0s for some transformation s since q is reachable from
0; hence 0 � q and 0t � qt = r.) In particular, if r appears in a cycle of t or is a
fixed point of t, then 0t � r.

We consider chains of the form Ki1 ⊂ Ki2 ⊂ · · · ⊂ Kih , where the Kij are
quotients of L. If L is a left ideal, the smallest element of any maximal-length
chain is always L. Alternatively, we consider chains of states starting from 0 and
strictly ordered by ≺.

Proposition 1. For t ∈ Tn and p, q ∈ Q, p ≺ q implies pt � qt. If p ≺ pt, then
p ≺ pt ≺ · · · ≺ ptk = ptk+1 for some k ≥ 1. Similarly, p � q implies pt � qt,
and p � pt implies p � pt � · · · � ptk = ptk+1 for some k ≥ 1.

It was proved in [4, Theorem 4, p. 124] that the transition semigroup of the
following DFA of a left ideal meets the bound nn−1 + n− 1.

Definition 1 (Witness: Left Ideals). For n ≥ 3, we define the DFA Wn =
(Q,ΣW , δW , 0, {n− 1}), where Q = {0, . . . , n− 1}, ΣW = {a, b, c, d, e}, and δW
is defined by a : (1, . . . , n − 1), b : (1, 2), c : (n − 1 → 1), d : (n − 1 → 0), and
e : (Q → 1). For n = 3, a and b coincide, and we can use Σ = {b, c, d, e}.
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Remark 3. In Wn, the transformations induced by a, b, and c restricted to Q\{0}
generate all the transformations of the last n − 1 states. Together with the
transformation of d, they generate all transformations of Q that fix 0. To see
this, consider any transformation t that fixes 0. If some states from {1, . . . , n−1}
are mapped to 0 by t, we can map them first to n − 1 and n − 1 to one of
them by the transformations of a, b, and c, and then map n − 1 to 0 by the
transformation of d. Also the words of the form eai for i ∈ {0, . . . , n− 2} induce
constant transformations (Q → i + 1). Hence the transition semigroup of Wn

contains all the constant transformations.

Example 1. One verifies that the maximal-length chains of quotients in Wn have
length 2. On the other hand, for n ≥ 2, let Σ = {a, b} and let L = Σ∗an−1.
Then L has n quotients and the maximal-length chains are of length n.

3.2 Upper Bound

Our main result of this section shows that the lower bound nn−1 + n − 1 is
also an upper bound. Our approach is as follows: We consider a minimal DFA
Dn = (Q,ΣD, δD, 0, F ), where Q = {0, . . . , n− 1}, of an arbitrary left ideal with
n quotients and let Tn be the transition semigroup of Dn. We also deal with the
witness DFA Wn = (Q,ΣW , δW , 0, {n − 1}) of Definition 1 that has the same
state set as Dn and whose transition semigroup is Sn. We shall show that there
is an injective mapping f : Tn → Sn, and this will prove that |Tn| ≤ |Sn|.

Remark 4. If n = 1, the only left ideal is Σ∗ and the transition semigroup of its
minimal DFA satisfies the bound 10 + 1 − 1 = 1. If n = 2, there are only three
allowed transformations, since the transposition (0, 1) is not initially aperiodic
and so is ruled out by Lemma 1. Thus the bound 21 + 2 − 1 = 3 holds.

Lemma 2. If n ≥ 3 and a maximal-length chain in Dn strictly ordered by ≺
has length 2, then |Tn| ≤ nn−1 + n− 1 and Tn is a subsemigroup of Sn.

Proof. Consider an arbitrary transformation t ∈ Tn and let p = 0t. If p = 0, then
any state other than 0 can possibly be mapped by t to any one of the n states;
hence there are at most nn−1 such transformations. All of these transformations
are in Sn by Remark 3.

If p 
= 0, then 0 ≺ p. Consider any state q 
∈ {0, p}; by Remark 2, p � qt.
If p 
= qt, then p ≺ qt. But then we have the chain 0 ≺ p ≺ qt of length
3, contradicting our assumption. Hence we must have p = qt, and so t is the
constant transformation t = (Q → p). Since p can be any one of the n− 1 states
other than 0, we have at most n − 1 such transformations. Since all of these
transformations are in Sn by Remark 3, Tn is a subsemigroup of Sn. �	

Theorem 1 (Left Ideals, Suffix-Closed Languages). If n ≥ 3 and L is a
left ideal or a suffix-closed language with n quotients, then its syntactic complex-
ity is less than or equal to nn−1 + n− 1.

Proof. It suffices to prove the result for left ideals. For a transformation t ∈ Tn,
consider the following cases:
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Case 1: t ∈ Sn.
Let f(t) = t; obviously f(t) is injective.

Case 2: t 
∈ Sn and 0t2 
= 0t.
Note that t 
∈ Sn implies 0t 
= 0 by Remark 3. Let 0t = p. We have p = 0t ≺
0tt = pt by Remark 2. Let p ≺ · · · ≺ ptk = ptk+1 be the chain defined from p;
this chain is of length at least 2. Let f(t) = s, where s is the transformation
defined by

0s = 0, ptks = p, qs = qt for the other states q ∈ Q.

Transformation s is shown in Figure 1, where the dashed transitions show how
s differs from t.

t :

0 p pt . . . ptk
t t t t

t

s :

0 p pt . . . ptk

s

s s s

s

Fig. 1. Case 2 in the proof of Theorem 1

By Remark 3, s ∈ Sn. However, s 
∈ Tn, as it contains the cycle (p, . . . , ptk)
with states strictly ordered by ≺ in DFA Dn, which contradicts Proposition 1.
Since s 
∈ Tn, it is distinct from the transformations defined in Case 1.

In going from t to s, we have added one transition (0s = 0) that is a fixed
point, and one (ptks = p) that is not. Since only one non-fixed-point transition
has been added, there can be only one cycle in s with states strictly ordered by
≺. Since 0 can’t appear in this cycle, p is its smallest element with respect to ≺.

Suppose now that t′ 
= t is another transformation that satisfies Case 2, that
is, 0t′ = p′ 
= 0 and p′t′ 
= p′; we shall show that f(t) 
= f(t′). Define s′ for t′ as
s was defined for t. For a contradiction, assume s = f(t) = f(t′) = s′.

Like s, s′ contains only one cycle strictly ordered by ≺, and p′ is its smallest
element. Since we have assumed that s = s′, we must have p = 0t = 0t′ = p′ and
the cycles in s and s′ must be identical. In particular, ptkt = ptk = p(t′)kt′ =
p(t′)k. For q of Q \ {0, ptk}, we have qt = qs = qs′ = qt′. Hence t = t′—a
contradiction. Therefore t 
= t′ implies f(t) 
= f(t′).

Case 3: t 
∈ Sn and 0t2 = 0t.
As before, let 0t = p. Consider any state q 
∈ {0, p}; then 0 ≺ q by Remark 2
and 0t � qt by Proposition 1. Thus either p ≺ qt, or p = qt. We consider the
following sub-cases:
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• (a): t has a cycle.
Since t has a cycle, take a state r from the cycle; then r and rt are not comparable
under � by Proposition 1, and p ≺ r by Remark 2. Let f(t) = s, where s is the
transformation shown in Figure 2 and defined by

0s = 0, ps = r, qs = qt for the other states q ∈ Q.

t :

0 p r

rt

. . .
t

t

t t

t

s :

0 p r

rt

. . .

s

s

s s

s

Fig. 2. Case 3(a) in the proof of Theorem 1

By Remark 3, s ∈ Sn. Suppose that s ∈ Tn; since p ≺ r, we have r = ps �
rs = rt by the definition of s and Proposition 1; this contradicts that r and rt
are not comparable. Hence s 
∈ Tn, and so s is distinct from the transformations
of Case 1.

We claim that p is not in a cycle of s; this cycle would have to be

p
s→ r

s→ rt
s→ · · · s→ rtk−1 s→ p, that is, p

s→ r
t→ rt

t→ · · · t→ rtk−1 t→ p,

for some k ≥ 2 because r 
= p = pt and rt 
= p. Since p ≺ r we have p ≺ rt; but
then we have a chain p ≺ rt ≺ · · · ≺ rtk = p, contradicting Proposition 1.

Since p is not in a cycle of s, it follows that s does not contain a cycle with
states strictly ordered by ≺, as such a cycle would also be in t. So s is distinct
from the transformations of Case 2.

We claim there is a unique state q such that (a) 0 ≺ q ≺ qs, (b) qs 
� qs2.
First we show that p satisfies these conditions: (a) holds because ps = r and
p ≺ r; (b) holds because ps = r, ps2 = rt and r and rt are not comparable. Now
suppose that q satisfies the two conditions, but q 
= p. Note that qs 
= p, because
qs = p implies qs = p ≺ r = qs2, contradicting (b). Since q, qs 
∈ {0, p}, we have
qt = qs 
� qs2 = qt2. But Proposition 1 for q ≺ qt implies that qt � qt2—a
contradiction. Thus p is the only state satisfying these conditions.

If t′ 
= t is another transformation satisfying the conditions of this case, we
define s′ like s. Suppose that s = f(t) = f(t′) = s′. Since both s and s′ contain
a unique state p satisfying the two conditions above, we have 0t = 0t′ = p and
pt = pt′ = p. Since the other states are mapped by s exactly as by t and t′, we
have t = t′.
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• (b): t has no cycles and has a fixed point r 
= p.
Because 0 ≺ r by Remark 2, 0t � rt by Proposition 1. If r is a fixed point of t,
then p = 0t � rt = r. Since r 
= p, we have p ≺ r. Let f(t) = s, where s is the
transformation shown in Figure 3 and defined by

0s = 0, qs = 0 for each fixed point q 
= p,

qs = qt for the other states q ∈ Q.

t :

0 p r . . .
t

t t t

s :

0 p r . . .

s s

s
s

Fig. 3. Case 3(b) in the proof of Theorem 1

By Remark 3, s ∈ Sn. Suppose that s ∈ Tn; because p ≺ r, ps = p, rs = 0,
and ps � rs by Proposition 1, we have p ≺ 0, which is a contradiction. Hence s
is not in Tn and so is distinct from the transformations of Case 1. Also, s maps
at least one state other than 0 to 0, and so is distinct from the transformations
of Case 2 and also from the transformations of Case 3(a).

If t′ 
= t is another transformation satisfying the conditions of this case, we
define s′ like s. Now suppose that s = f(t) = f(t′) = s′. There is only one
fixed point of s other than 0 (ps = p), and only one fixed point of s′ other than
0 (p′s′ = p′); hence 0t = p = p′ = 0t′. By the definition of s, for each state
q 
= 0 such that qs = 0, we have qt = q. Similarly, for each state q 
= 0 such
that qs′ = 0, we have qt′ = q. Hence t and t′ agree on these states. Since the
remaining states are mapped by s exactly as they are mapped by t and t′, we
have t = t′. Thus we have proved that t 
= t′ implies f(t) 
= f(t′).

• (c): t has no cycles, has no fixed point r 
= p and there is a state r such
that p ≺ r with rt = p.
Let f(t) = s, where s is the transformation shown in Figure 4 and defined by

0s = 0, ps = r, qs = 0 for each q � p such that qt = p,

qs = qt for the other states q ∈ Q.

By Remark 3, s ∈ Sn. Suppose that s ∈ Tn; because p ≺ r, ps = r, rs = 0,
and r = ps � rs = 0 by Proposition 1, we have r ≺ 0—a contradiction. Hence
s 
∈ Tn and s is distinct from the transformations of Case 1.
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t :

0 p r . . .
t

t

t

t

s :

0 p r . . .

s

s

s
s

Fig. 4. Case 3(c) in the proof of Theorem 1

Because s maps at least one state other than 0 to 0 (rs = 0), it is distinct
from the transformations of Case 2 and 3(a). Also s does not have a fixed point
other than 0, while the transformations of Case 3(b) have such a fixed point.

We claim that there is a unique state q such that (a) 0 ≺ q ≺ qs and (b)
qs2 = 0. First we show that p satisfies these conditions. By assumption 0 ≺ p ≺ r
and rt = p; also rs = 0 by the definition of s. Condition (a) holds because
0 ≺ p ≺ r = ps, and (b) holds because 0 = rs = ps2.

Now suppose that 0 ≺ q ≺ qs, qs2 = 0 and q 
= p. Since qs 
= 0, we have qs = qt
by the definition of s. Because qt has a t-predecessor, p � qt by Remark 2. Also
qt = qs 
= p, for qs = p implies 0 = qs2 = ps = r—a contradiction. Hence p ≺ qt.
From qt = qs and q ≺ qs, we have q ≺ qt. Since qs2 = 0 we have (qt)s = 0
and so (qt)t = p, by the definition of s. By Proposition 1, from q ≺ qt we have
qt � (qt)t = p, contradicting p ≺ qt. So q = p.

If t′ 
= t is another transformation satisfying the conditions of this case, we
define s′ like s. Suppose that s = f(t) = t(t′) = s′. Since s and s′ contain a
unique state p satisfying the two conditions above, we have 0t = 0t′ = p and
pt = pt′ = p. Then r and the states q � p with qt = p are determined by p,
since they are precisely the states q � p with qs = 0. Since the other states are
mapped by s exactly as by t and t′, we have t = t′, and f is again injective.

• All Cases Are Covered
Now we need to ensure that any transformation t fits in at least one case. It is
clear that t fits in Case 1 or 2 or 3. For Case 3, it is sufficient to show that if
(i) t 
∈ Sn does not contain a fixed point r 
= p, and (ii) there is no state r with
p ≺ r and rt = p, then t contains a cycle.

First, if there is no r such that p ≺ r, we claim that t is the constant trans-
formation (Q → p). Consider any state q ∈ Q such that qt 
= p. Then p ≺ qt by
Remark 2, contradicting that there is no state r such that p ≺ r.

So let r be some state such that p ≺ r. Consider the sequence r, rt, rt2, . . .. By
Remark 2, p � rti for all i ≥ 0. If rtk = p for some k ≥ 1, let i be the smallest
such k; we have (rti−1)t = p, contradicting (ii). Since p is the only fixed point
by (i), we have rti 
= rti−1. Since there are finitely many states, rti = rtj for
some i and j such that 0 ≤ i < j − 1, and so the states rti, rti+1, . . . , rtj = rti

form a cycle.
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We have shown that for every transformation t in Tn there is a corresponding
transformation f(t) in Sn, and f is injective. So |Tn| ≤ |Sn| = nn−1 +n− 1. �	

Next we prove that Sn is the only transition semigroup meeting the bound. It
follows that minimal DFAs of left ideals with the maximal syntactic complexity
have maximal-length chains of length 2.

Theorem 2. If Tn has size nn−1 + n− 1, then Tn = Sn.

Proof. Consider a maximal-length chain of states strictly ordered by ≺ in Dn. If
its length is 2, then by Lemma 2, Tn is a subsemigroup of Sn. Thus only Tn = Sn

reaches the bound in this case.
Assume now that the length of a maximal-length chain is at least 3. Then

there are states p and r such that 0 ≺ p ≺ r. Let R = {q | p ≺ q}, and
let X = Q \ (R ∪ {0, p}). We shall show that there exists a transformation s
that is in Sn but not in f(Tn). To define s we use the constant transformation
u = (Q → p) as an auxiliary transformation. Let 0s = 0, ps = r, rs = 0 for all
r ∈ R, and qs = qu = p for q ∈ X ; these are precisely the rules we used in Case
3(c) in the proof of Theorem 1. By Remark 3, s ∈ Sn.

It remains to be shown that there is no transformation t ∈ Tn such that
s = f(t). The proof that s is different from the transformations f(t) of Cases 1,
2, 3(a) and 3(b) is exactly the same as the corresponding proof in Case 3(c)
following the definition of s.

It remains to verify that there is no u′ ∈ Tn in Case 3(c) such that f(u′) = s.
Suppose there is such a u′. Recall that states p and r satisfying 0 ≺ p ≺ r have
been fixed by assumption. By the definition of s, state p satisfies the conditions
(a) 0 ≺ p ≺ ps and (b) ps2 = 0. We claim that p is the only state satisfying these
conditions. Indeed, if q 
= p then either qs = 0, q 
≺ qs = 0 and (a) is violated,
or qs = p, qs2 = ps = r 
= 0 and (b) is violated. This observation is used in the
proof of Case 3(c) to prove the claim below.

Both u and u′ satisfy the conditions of Case 3(c), except that u fails the
condition u 
∈ Sn. However, that latter condition is not used in the proof that
if u 
= u′ and u′ satisfy the other conditions of Case 3(c), then s′ 
= s, where s′

is the transformation obtained from u′ by the rules of s. Thus s is also different
from the transformations in f(Tn) from Case 3(c).

Because s 
∈ f(Tn), s ∈ Sn and f(Tn) ⊆ Sn, the bound nn−1 + n− 1 cannot
be reached if the length of the maximal-length chains is not 2. �	

4 Two-Sided Ideals

If a language L is a right ideal, then L = LΣ∗ and L has exactly one final
quotient, namely Σ∗; hence this also holds for two-sided ideals. For n ≥ 3, in
a two-sided ideal every maximal chain is of length at least 3: it starts with L,
every quotient contains L and is contained in Σ∗.

It was proved in [4, Theorem 6, p. 125] that the transition semigroup of the
following DFA of a two-sided ideal meets the bound nn−2 + (n− 2)2n−2 + 1.
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Definition 2 (Witness: Two-Sided Ideals). For n ≥ 4, define the DFA
Wn = (Q,ΣW , δW , 0, {n−1}), where a : (1, 2, . . . , n−2), b : (1, 2), c : (n−2 → 1),
d : (n − 2 → 0), for q = 0, . . . , n − 2, δ(q, e) = 1 and δ(n − 1, e) = n − 1, and
f : (1 → n− 1). For n = 4, inputs a and b coincide.

Remark 5. If n = 1, the only two-sided ideal is Σ∗, its syntactic complexity is
1, and the bound above is not tight. If n = 2, each two-sided ideal is of the form
L = Σ∗ΓΣ∗, where ∅ � Γ ⊆ Σ, its syntactic complexity is 2, and the bound is
tight. If n = 3, there are eight transformations that are initially aperiodic and
such that (n − 1)t = t (the property of a right-ideal transformation). We have
verified that the DFA having all eight or any seven of the eight transformations
is not a two-sided ideal. Hence 6 is an upper bound, and we know from [4] that
the transformations [1, 2, 2], [0, 0, 2], and [0, 1, 2] generate a 6-element semigroup.
From now on we may assume that n ≥ 4.

We consider a minimal DFA Dn = (Q,ΣD, δD, 0, {n − 1}), where Q =
{0, . . . , n − 1}, of an arbitrary two-sided ideal with n quotients, and let Tn be
the transition semigroup of Dn. We also deal with the witness DFA Wn =
(Q,ΣW , δW , 0, {n− 1}) of Definition 2 with transition semigroup Sn.

Remark 6. In Wn, the transformations induced by a, b, and c restricted to Q \
{0, n − 1} generate all the transformations of the states 1, . . . , n − 2. Together
with the transformations of d and f , they generate all transformations of Q that
fix 0 and n − 1. For any subset S ⊆ {1, . . . , n− 2}, there is a transformation—
induced by a word wS , say—that maps S to n − 1 and fixes Q \ S. Then the
words of the form wSea

i, for i ∈ {0, . . . , n− 3}, induce all transformations that
maps S ∪ {n− 1} to n− 1 and Q \ (S ∪ {n− 1}) to i + 1. In Wn, there is also
the constant transformation ef : (Q → n− 1).

Lemma 3. If n ≥ 4 and a maximal-length chain in Dn strictly ordered by ≺
has length 3, then |Tn| ≤ nn−2 + (n− 2)2n−2 + 1, and Tn is a subsemigroup of
Sn.

Proof. Consider an arbitrary transformation t ∈ Tn; then (n − 1)t = n − 1. If
0t = 0, then any state not in {0, n− 1} can possibly be mapped by t to any one
of the n states; hence there are at most nn−2 such transformations.

If 0t 
= 0, then 0 ≺ 0t. Consider any state q 
∈ {0, 0t}; since Dn is minimal,
q must be reachable from 0 by some transformation s, that is, q = 0s. If 0st 
∈
{0t, n− 1}, then 0t ≺ 0st by Remark 2. But then we have the chain 0 ≺ 0t ≺
0st ≺ n−1 of length 4, contradicting our assumption. Hence we must have either
0st = 0t, or 0st = n− 1. For a fixed 0t, a subset of the states in Q \ {0, n− 1}
can be mapped to 0t and the remaining states in Q \ {0, n − 1} to n − 1, thus
giving 2n−2 transformations. Since there are n− 2 possibilities for 0t, we obtain
the second part of the bound. Finally, all states can be mapped to n− 1.

By Remark 6 all of the above-mentioned transformations are in Sn. �	
Theorem 3 (Two-Sided Ideals, Factor-Closed Languages). If L is a two-
sided ideal or a factor-closed language with n ≥ 4 quotients, then its syntactic
complexity is less than or equal to nn−2 + (n− 2)2n−2 + 1.



Upper Bounds on Syntactic Complexity of Left and Two-Sided Ideals 23

Proof. It suffices to prove the result for two-sided ideals. As we did for left ideals,
we show that |Tn| ≤ |Sn|, by constructing an injective function f : Tn → Sn.

We have q � n − 1 for any q ∈ Q, and n − 1 is a fixed point of every
transformation in Tn and Sn.

We omit here the detailed proof of injectivity of f . The complete proof can
be found in [3].

For a transformation t ∈ Tn, consider the following cases:

Case 1: t ∈ Sn.
The proof is the same as that of Case 1 of Theorem 1.

Case 2: t 
∈ Sn, and 0t2 
= 0t.
Let 0t = p ≺ · · · ≺ ptk = ptk+1 be the chain defined from p.

• (a): ptk 
= n− 1.
The proof is the same as that of Case 2 of Theorem 1.

• (b): ptk = n− 1 and k ≥ 2.
Let f(t) = s, where s is the following transformation:

0s = 0, ptis = pti−1 for 1 ≤ i ≤ k − 1, ps = n− 1,
qs = qt for the other states q ∈ Q.

• (c): pt = n− 1.
Let P = {0, p, n− 1}. Since n ≥ 4, there must be a state r 
∈ P . If p ≺ r for all
r 
∈ P , then n− 1 = pt � rt; hence rt = n− 1 for all such r, and qt ∈ {p, n− 1}
for all q ∈ Q. By Remark 6, there is a transformation in Sn that maps S∪{n−1}
to n− 1, and Q \ (S ∪ {n− 1}) to p for any S ⊆ {1, . . . , n− 2}. Thus t ∈ Sn—a
contradiction.

In view of the above, there must exist a state r 
∈ P such that p 
� r. By
Remark 2, we have p � rt and of course rt � n − 1. If rt is p or n − 1 for all
r 
∈ P , we again have the situation described above, showing that t ∈ Sn. Hence
there must exist an r 
∈ P such that p 
� r and p ≺ rt ≺ n− 1.

Let f(t) = s, where s is the following transformation:

0s = 0, ps = rt, (rt)s = p, rs = 0,
qs = qt for the other states q ∈ Q.

Case 3: t 
∈ Sn, 0t = p 
= 0 and pt = p.
• (a): t has a cycle.

The proof is analogous to that of Case 3(a) in Theorem 1, but we need to ensure
that s is different from the s of Cases 2(b) and 2(c).

• (b): t has no cycles and has a fixed point r 
∈ {p, n− 1}.
The proof is analogous to that of Case 3(b) in Theorem 1, but we need to ensure
that s is different from the s of Cases 2(b) and 2(c).

• (c): t has no cycles and no fixed point r 
∈ {p, n− 1}, but has a state r � p
mapped to p.
The proof is analogous to that of Case 3(c) in Theorem 1, but we need to ensure
that s is different from the s of Cases 2(b) and 2(c).



24 J. Brzozowski and M. Szyku�la

• (d): t has no cycles, no fixed point r 
∈ {p, n − 1}, and no state r � p
mapped to p, but has a state r such that p ≺ r ≺ n− 1, mapped to n− 1.
Let f(t) = s, where s is the following transformation:

0s = 0, qs = q for states q such that qt = n− 1, ps = n− 1
qs = qt for the other states q ∈ Q.

• All Cases Are Covered
We need to ensure that any transformation t fits in at least one case. It is clear
that t fits in Case 1 or 2 or 3. Any transformation from Case 2 fits in Case 2(a)
or 2(b) or 2(c). For Case 3, it is sufficient to show that if (i) t 
∈ Sn does not
contain a fixed point r 
∈ {p, n− 1}, and (ii) there is no state r, p ≺ r ≺ n− 1,
mapped to p or n− 1, then t has a cycle.

If there is no state r such that p ≺ r ≺ n − 1, then qt ∈ {p, n − 1} for any
q ∈ Q, since qt � p; by Remark 6, t ∈ Sn—a contradiction.

So let r be some state such that p ≺ r ≺ n − 1. Consider the sequence
r, rt, rt2, . . .. By Remark 2, p � rti for all i ≥ 0. If rtk ∈ {p, n − 1} for some
k ≥ 1, then let i be the smallest such k. Then we have (rti−1)t ∈ p, contradicting
(ii). Since p and n− 1 are the only fixed points by (i), we have rti 
= rti−1. Since
there are finitely many states, rti = rtj for some i and j such that 0 ≤ i < j− 1,
and so the states rti, rti+1 . . . , rtj = rti form a cycle. �	

Theorem 4. If Tn has size nn−2 + (n− 2)2n−2 + 1, then Tn = Sn.

Proof. The proof is very similar to that of Theorem 2. It can be found in [3]. �	
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Abstract. We analyze the average complexity of Brzozowski’s mini-
mization algorithm for distributions of deterministic automata with a
small number of final states. We show that, as in the case of the uni-
form distribution, the average complexity is super-polynomial even if we
consider random deterministic automata with only one final state. We
therefore go beyond the previous study where the number of final states
was linear in the number of states. Our result holds for alphabets with
at least 3 letters.

1 Introduction

In this article we continue our investigation of the average complexity of Brzo-
zowski’s algorithm [4] that was started in [10]. Recall that Brzozowski’s method
is based on the fact that determinizing a trim co-deterministic automaton that
recognizes a language L yields the minimal automaton for L. Hence, starting
from an automaton A that recognizes the language L, one can compute its min-
imal automaton by first determinizing its reversal, then by determinizing the
reversal of the resulting automaton.

This elegant method is not efficient in the worst case, since the first deter-
minization can produce an automaton that has exponentially many states, even
if one starts with a deterministic automaton (see [10] for a classical example). We
are therefore far from the efficient solutions available to minimize deterministic
automata, such as Hopcroft’s algorithm [13], which runs in O(n logn) time.

In [10] we proved that for the uniform distribution on deterministic and com-
plete automata with n states, or for distributions where each state is final with
(fixed) probability b ∈ (0, 1), the running time of Brzozowski’s algorithm is super-
polynomial1 with high probability. One limitation of this result is that under such
a distribution, an automaton with n states has around bn final states, for fixed
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1 Grows quicker than nd for any positive d.
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b, which therefore grows linearly with the number of states. However, in many
situations the automata that are built do not have that many final states (see,
for instance, Aho-Corasick automaton [1], which is used for pattern matching).
A natural question is whether this result still holds for automata with, for in-
stance, a fixed number of final states. This is the question we investigate in this
article.

The precise definition of a distribution of automata with a small number of
final states is given in Section 4, but it covers the cases of random size-n automata
with just one final state, with log n final states, or where each state is final with
probability 3

n or 2√
n

, and so on. It therefore differs significantly from the cases

studied in [10].
Notice that analyzing distributions of automata with a small number of final

states is an up-to-date question in the statistical study of automata. The main
results in this field, the average complexity of Moore’s algorithm and the asymp-
totic number of minimal automata, only hold for distributions of automata with
“sufficiently many” final states [2,7,3]. Some effort have been undertaken to ex-
tend them to, say, automata with only one final state, but with no success so
far. To our knowledge, we present in this article the first result of this kind.

We will see that the proof of our main result is not just simply an adaptation
of the proof proposed in [10] and we will need some deeper understanding of the
typical properties of a random automaton. In return, we will establish some new
facts that are interesting on their own, and that may be reused for further work
on statistical properties of random automata.

The paper is organized as follows. After recalling some basic definitions in
Section 2, we briefly revisit the article [10] in Section 3 to point out the difficulties
encountered when trying to reduce the number of final states. In Section 4 we
state our main result and prove it for automata with only one final state in
Section 5. In Section 6, we explain how to extend it to get the full proof.

2 Definitions

Let [n] denote the set of integers between 1 and n. If x, y are two real numbers,
let [[x, y]] denote the set of integers i such that x ≤ i ≤ y. For any positive integer
n, let Sn denote the set of all permutations on [n].

Automata. Let A be a finite alphabet, an automaton A is a tuple (Q, δ, I, F ),
where Q is its finite set of states, I ⊆ Q is its set of initial states and F ⊆ Q is
its set of final states. Its transition function δ is a (partial) map from Q ×A to

2Q. A transition of A is a tuple (p, a, q) ∈ Q×A×Q, which we write p
a−→ q, such

that q ∈ δ(p, a). The map δ is classically extended by morphism to Q×A∗. We
denote by L(A) the set of words recognized by A. A deterministic and complete
automaton is an automaton such that |I| = 1 and for every p ∈ Q and a ∈ A,
|δ(p, a)| = 1; for such an automaton we consider that δ is a (total) map from
Q×A∗ to Q to simplify the notations. A state q is accessible when there exists a
path from an initial state to q. It is co-accessible when there exists a path from
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q to a final state. If A is an automaton, we let Trim(A) denote the automaton
obtained after removing states that are not accessible or not co-accessible.

For any automaton A = (Q, δ, I, F ), we denote by Ã the reverse of A, which

is the automaton Ã = (Q, δ̃, F, I), where p
a−→ q is a transition of Ã if and only

if q
a−→ p is a transition of A. The automaton Ã recognizes the reverse2 of L(A).

An automaton is co-deterministic when its reverse is deterministic.
Recall that the minimal automaton of a rational language L is the smallest

deterministic and complete automaton3 that recognizes L. To each rational lan-
guage L corresponds a minimal automaton, which is unique up to isomorphism.

Subset Construction and Brzozowski’s Algorithm. If A = (Q, δ, I, F ) is
a non-deterministic automaton, it is classical that the subset automaton of A
defined by

B =
(
2Q, γ, {I}, {X ∈ 2Q | F ∩X 
= ∅}

)
is a deterministic automaton that recognizes the same language, where for every
X ∈ 2Q and every a ∈ A, γ(X, a) = ∪p∈Xδ(p, a). This is of course still true if we
only take the accessible part of B, and this is not a difficulty when implementing
it, since the accessible part of B can be built on the fly, using the rule for γ in a
depth-first traversal of B starting from I. We denote by Subset(A) the accessible
part of the subset automaton of A.

In [4], Brzozowski established the following result:

Theorem 1 (Brzozowski). If A is a trim co-deterministic automaton then
Subset(A) is the minimal automaton of L(A).

This theorem readily yields an algorithm to compute the minimal automaton of
the language recognized by an automaton A, based on the subset construction:
since B = Subset(Trim(Ã)) is a deterministic automaton recognizing the reverse
of L(A), then Subset(Trim(B̃)) is the minimal automaton of L(A).

Mappings. A mapping of size n is a total function from [n] to [n]. A mapping
f can be seen as a directed graph with an edge i → j whenever f(i) = j.
Such a graph is a union of cycles of Cayley trees (i.e., rooted labelled trees), as
depicted in Fig. 1 (see [11] for more information on this graph description). Let
f be a size-n mapping. An element x ∈ [n] is a cyclic point of f when there
exists an integer i > 0 such that f i(x) = x. The cyclic part of a mapping f
is the permutation obtained when restricting f to its set of cyclic points. The
normalized cyclic part of f is obtained by relabelling the c cyclic points of f
with the elements of [c], while keeping their relative order4.

Automata as Combinatorial Structures. In the sequel, A is always a fixed
alphabet with k ≥ 2 letters. Let An (or An(A) when we want to specify the
alphabet) denote the set of all deterministic and complete automata with input

2 If u = u0 · · ·un−1 is a word of length n, the reverse of u is the word ũ = un−1 · · ·u0.
3 Minimal automata are not always required to be complete in the literature.
4 The notion of normalization will be used for other substructures, always for rela-
belling the atoms with an initial segment of the positive integers, while keeping their
relative order.
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Fig. 1. A mapping of size 17, on the left. On the upper right we have its normalized
cyclic part, and on the lower right its Cayley trees (not normalized).

alphabet A whose set of states is [n] and whose initial state is 1. Such an au-
tomaton A is characterized by the tuple (n, δ, F ). A transition structure is an
automaton without final states, and we denote by Tn the set of n-state transition
structures with the same label restrictions as for An. If A ∈ An, an a-cycle of A
is a cycle of the mapping induced by a, i.e., p �→ δ(p, a). A state of an a-cycle is
called an a-cyclic state.

Distributions of Combinatorial Structures. Let E be a set of combinatorial
objects with a notion of size such that the set En of elements of size n of E is
finite for every n ≥ 0. The uniform distribution (which is a slight abuse of
notation since there is one distribution for each n) on the set E is defined for
any e ∈ En by Pn({e}) = 1

|En| . The reader is referred to [12] for more information

on combinatorial probabilistic models.

Probabilities on Automata. Let A be an alphabet. We consider two kinds
of distribution on size-n deterministic and complete automata. The first one is
the fixed-size distribution on An of parameter m. It is the uniform distribution
on size-n automata with exactly m states. The parameter m may depend5 on
n; one can for instance consider the fixed-size distribution of parameter �

√
n�.

The second one is the p-distribution on An, where the transition structure of
the automaton is chosen uniformly at random and where each state is final with
probability p independently; in this model also, p may depend on n, for instance
p = 2

n yields automata with two final states on average.
Note that the Bernoulli model of parameter b of [10] is the same as the p-

distribution for p = b: it is the case where p does not depend on n.

Some Terminology. We consider a (sequence of) distributions on E =
⋃

n En.
Let P be a property defined on E. We say that P holds generically (or with
high probability) when the probability it holds tends to 1 as n tends to infinity.
We say that P is visible (or holds with visible probability) when there exists a

5 The term “fixed” stands for: for any given n, the number of final states is fixed.
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positive constant C and an integer n0 such that for every n ≥ n0 the probability
that P holds on size-n elements is at least C.

In the sequel we will implicitly use that if P and Q are generic then P ∧ Q
is generic; if P is generic and Q is visible, then P ∧Q is visible; if P and Q are
visible and independent, then P ∧Q is visible, and so on.

3 Result for a Large Number of Final States

In [10] we proved that the complexity of Brzozowski’s algorithm is generically
super-polynomial for the uniform distribution on deterministic complete au-
tomata with n states. For this distribution, every state is final with probability
1
2 . Thus if one take such an automaton uniformly at random, with high proba-
bility it has around n

2 final states. The article also considers the case where the
probability of being final is some fixed b ∈ (0, 1).

In this paper we consider distributions on An where the typical number of
final states can be small, for instance in o(n), and we will try to reuse some ideas
from [10] to do the analysis. We therefore recall in this section, very briefly, the
proof of the following result:

Theorem 2 (De Felice, Nicaud [10]). Let A be an alphabet with at least
2 letters. If L is the language recognized by a deterministic and complete n-
state automaton over A taken uniformly at random, then generically the minimal
automaton of the reverse of L has a super-polynomial number of states.

The first observation is the following lemma, which will be used in a slightly
modified version in this paper. It is the only result needed from automata theory;
the remainder of the proof consists in analyzing the combinatorial structure of
the underlying graph of a random automaton. A cycle is primitive when the
sequence of types of states (final and non-final) in the cycle forms a primitive
word.

Lemma 1 ([10]). Let A ∈ An be a deterministic automaton that contains m
primitive a-cycles C1, . . . , Cm of lengths at least two that are all accessible. The
minimal automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|) states.

The proof of Theorem 2 is organized as follows:

1. If we look just at the action of a in a random automaton, it is a random
mapping from the set of states to itself. Using the classical properties of
random mappings [14] we get that, with high probability, there are at least
n1/3 a-cyclic states.

2. The cyclic part of a uniform random mapping behaves likes a uniform ran-
dom permutation. We therefore want to use a celebrated result of Erdős and
Turán [9] which states that the lcm of the lengths of the cycles of a random
permutation6 is super-polynomial with high probability.

6 It is exactly the order of the permutation.
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3. We prove that the a-cycles of lengths at least logn are generically primitive
and accessible in a random automaton, using properties of random automata
established in [5].

4. We conclude by proving that even if we remove the cycles of lengths smaller
than logn in Erdős and Turán’s result, we still have a super-polynomial lcm
with high probability.

Now assume that we are considering the uniform distribution on automata with
just one final state. It is no longer true that the large cycles are generically prim-
itive: with high probability the final state is not in any a-cycle, which is therefore
not primitive. In the sequel we will show how to get around this problem, which
has consequences at every step of the proof (in particular we can no longer use
the result of Erdős and Turán).

4 Main Result

A distribution on automata is said to have a small number of final states when
it is either a fixed size distribution or a p-distribution on size-n automata such
that the number of final states is in [[1, n2 ]] with visible probability. Our main
result is the following:

Theorem 3. Let A be an alphabet with at least 3 letters. If L is the language
recognized by a random n-state deterministic and complete automaton following a
distribution with a small number of final states, then for any d > 0, the minimal
automaton of the reverse of L(A) has, with visible probability, more than nd

states.

Compared to the main result of [10] we capture many more distributions
on automata, by weakening the statement a bit: it holds for an alphabet of 3
or more letters and it does not hold generically but with positive probability.
The latter is unavoidable: as proved in [5] there is a linear number of states
that are not accessible in a typical random automaton. Thus for the fixed size
distribution with one final state, the final state has a positive probability of not
being accessible.

The average complexity of Brzozowski’s algorithm is a direct consequence of
Theorem 3.

Corollary 1. Let A be an alphabet with at least 3 letters. The average complex-
ity of Brzozowski’s algorithm is super-polynomial for distributions with a small
number of final states.

Proof. For any d > 0, the expected number of states after the first determiniza-
tion is at least nd times the probability that an automaton has at least nd states
after the first determinization. This probability is greater than some positive
constant C for n sufficiently large by Theorem 3, concluding the proof. �	

Our results hold, for instance, for the p-distributions with p = α
n for some

positive real α: there are α final states on average, and it is straightforward to
check that it has a small number of final states. They also hold for the fixed-size
distribution with �

√
n� final states, since 1 ≤ �

√
n� ≤ n

2 for n sufficiently large.
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5 Proof of Theorem 3 for Automata with One Final State

In this section we prove our main theorem for the fixed-size distribution of pa-
rameter 1, that is, for the uniform distribution on the sets A1

n of automata
with exactly one final state. From now on we are working over the alphabet
A = {a, b, c}, as adding more letters just makes the problem easier.

We start with a generalization of Lemma 1 from [10]. Let A be an automaton
with transition function δ and set of final states F , let C be an a-cycle of A of
length � and let u ∈ A∗. The u-word of C is the word v = v0 . . . v�−1 of length �
on {0, 1} defined as follows: let x be the smallest element of C, we set vi = 1 if
and only if δ(x, aiu) ∈ F , for i ∈ {0, . . . , � − 1}. This is a generalization of [10]
where the word associated with C is exactly the ε-word of C. The cycle C is
u-primitive when its u-word is a primitive word.

Lemma 2. Let u be a word of A∗ and let A ∈ An be a deterministic automaton
that contains m u-primitive a-cycles C1, . . . , Cm of lengths at least two that are
all accessible. The minimal automaton of L(Ã) has at least lcm(|C1|, . . . , |Cm|)
states.

Proof. (sketch) This is the same proof as in [10], except that we are considering
the sets δ−1(F, u) ∩ C instead of F ∩ C, where C = ∪m

i=1Ci. �	

In the sequel we first find a suitable word u, then a collection of a-cycles with
good properties, in order to apply Lemma 2.

5.1 Finding u ∈ {b, c}∗ Such That δ−1
A (f, u) Is Sufficiently Large

For the first step, we consider letters b and c only and try to build a sufficiently
large set of states in the determinization of the reverse of an automaton with
one final state. In this section we prove the following result.

Proposition 1. There exists a constant w > 0 such that if we draw an element
A of A1

n({b, c}) uniformly at random, there exists a word u ∈ {b, c}∗ such that
δ−1
A (f, u) has size between w

√
n and w

√
n logn with visible probability, where f

denotes the final state of A.

Of course, in Proposition 1 the word u depends on A. We need some preliminary
results on random mappings to establish the proposition.

Lemma 3. Generically, a random mapping of [n] has no element with more
than logn preimages.

Lemma 3 is used the following way. If we find a word v such that δ−1
A (f, v)

has size greater than w
√
n logn, then there exists a prefix u of v such that

w
√
n ≤ δ−1

A (f, u) ≤ w
√
n logn since the image of a set of states X by a letter

in Ã generically has size at most |X | logn. Hence, we just have to find a word v
such that δ−1

A (f, v) ≥ w
√
n to conclude the proof.

A set of vertices X of a digraph is stable when there is no edge x → y for
x ∈ X and y /∈ X .
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Lemma 4. Let A be an element of A1
n taken uniformly at random, and let G

be the digraph induced on [n] by the actions of b and c (there is an edge x → y
if and only if δA(x, b) = y or δA(x, c) = y). Generically, G has a unique stable
strongly connected component, which has size greater than 1

2n.

Proof. (sketch) We first prove that generically there is no stable set of states of
size smaller than 1

4n: we overcount the number of transition structures having a
stable subset X of size � by choosing the � states, their images by both letters in
X and the images of the other states. This yields an upper bound of

(
n
�

)
�2�n2n−2�

for the number of such transition structures. Summing for � from 1 to n/4 this
upper bound is sufficient to prove that it generically does not happen.

It is proven in [5] that in a random transition structure with n states on a
two-letter alphabet, the accessible part is generically of size greater than 1

2n.
If we have a transition structure with a stable strongly connected component
C of size between 1

4n and 1
2n, then by symmetry, the initial state is in C with

probability at least 1
4 . But in such a case, the accessible part has size at most

1
2n, which generically cannot happen according to [5]. This concludes the proof,
as there can be at most one component of size greater 1

2n. �	

Remark 1. If an automaton has a unique stable strongly connected component
C, then for every state q there exists a path from q to any state of C, as one can
see on the acyclic graph of the strongly connected components. In particular, C
is necessarily accessible.

Recall that a mapping f on [n] can be seen as a union of cycles of Cayley trees.
Define the largest tree of f as its largest Cayley tree, taking the tree with the
smallest root label if there are several trees with the maximum number of nodes.
In a transition structure or in an automaton, the largest b-tree is the largest tree
for the mapping associated with the action of b. Our next lemma states that the
largest b-tree of a random structure behaves like a uniform random tree (when
there is only one tree of maximum size). Thus we can use classical results on
random mappings and Cayley trees to estimate the typical width of such a tree.

Lemma 5. Let t and n be two integers such that 1 ≤ n
2 < t ≤ n and let M

(t)
n

denote the set of mapping on [n] whose largest tree has t nodes. The normalized

largest tree of a uniform element of M
(t)
n is distributed as a uniform random

Cayley tree with t nodes.

The following result is the mix between a classical result on the largest tree
in a random mapping [14] and the analysis of the width of a random Cayley tree
done in [6].

Theorem 4 (Kolčin, Chassaing and Marckert). There exist two positive
constants w and C such that the probability that the largest tree of a random
mapping on [n] has width at least w

√
n is greater than C, for n sufficiently

large.

We can now give the proof of Proposition 1.
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Proof. (of Proposition 1) By Theorem 4, there is a b-tree T of width at least
w
√
n in a random size-n transition structure with input alphabet A′ = {b, c}

with positive probability. Moreover, by Lemma 4 such a transition structure
generically has only one stable strongly connected component C, which contains
more than 1

2n states. Hence if we add a final state uniformly at random, it is
in C with probability at least 1

2 . As stated in Remark 1, if the final state is in
the unique stable strongly connected component, then there exists a word v that
labels a path from the root of T to f . Consider the word v′ = ṽbi, where i is the
layer of T with the maximal number of nodes (the level that gives its width).
Then δ−1(f, v′) contains all the states of the ith layer of T , and it therefore
contains at least w

√
n elements.

By Lemma 3, every state has generically less than logn preimages. Thus if
|δ−1(f, v′)| ≥ w

√
n, then there exists a prefix u of v′ such that δ−1(f, u) contains

between w
√
n and w

√
n logn elements, concluding the proof. �	

5.2 Finding a Good Collection of a-cycles

We now switch to a-cycles and consider only the action of the letter a (the
actions of the three letters are independent). Recall that conditioned by its
number of cyclic points m, the cyclic permutation of a uniform random mapping
is a uniform permutation of Sm. We first establish some properties of random
permutations.

If σ is a permutation of [n], its sequence of cycles is the ordered sequence of its
cycles (C1, C2, . . . , Cm), where the cycles are ordered by their smallest element. If
(C1, C2, . . . , Cm) is the sequence of cycles of σ and d ≤ m, the d first cycles of σ
are the cycles C1, C2, . . . , Cd. Let Ld(σ) = (|C1|, . . . , |Cd|) denote the d first cycles
of σ, when σ has at least d cycles and let Ld(σ) = ⊥ otherwise.

Lemma 6. Let d be a positive integer. For any (�1, . . . , �d) ∈ [[ n
3d ,

n
2d ]]d, the

following lower bound holds for n sufficiently large:

P
(
Ld = (�1, . . . , �d)

)
≥ 1

nd
.

We now turn our attention to the lcm of the first d cycles of a random per-
mutation, and establish the following proposition.

Proposition 2. Let (x1, . . . , xd) be a uniform element of [[ n
3d ,

n
2d ]]d. There exists

a constant λ > 0 such that lcm(x1, . . . , xd) ≥ λnd with visible probability.

Let Cycled(n) be the set of permutations σ of [n] such that Ld(σ) ∈ [[ n
3d ,

n
2d ]]d and

lcm(�1, . . . , �d) ≥ λnd, with Ld(σ) = (�1, . . . , �d). We use the λ of Proposition 2.
If we take a permutation σ uniformly at random, conditioned by Ld(σ) ∈

[[ n
3d ,

n
2d ]]d, the vector Ld(σ) is not uniformly distributed in [[ n

3d ,
n
2d ]]d. However,

we can control the lack of uniformity and use Proposition 2 to obtain sufficiently
many permutations such that the lcm of their d first cycles is large enough.

Lemma 7. For any positive integer d, a uniform random permutation of [n] is
in Cycled(n) with visible probability.
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In [10], having generically more than n1/3 a-cyclic states was enough to implies
the desired result for the uniform distribution. Here we need something more
precise. In the next lemma we show that with positive probability, the number
of a-cyclic states is in Θ(

√
n).

Lemma 8. The cyclic part of a uniform random mapping of size n has size in
[[
√
n, 2

√
n]] with visible probability.

Proof. (sketch) We rely on tools from analytic combinatorics [12] applied to the
decomposition of a mapping into a union of cycles of Cayley trees, as in [11]. We
obtain that the expected number of cyclic points is asymptotically equivalent to√

πn
2 , which is already in [11], and that the standard deviation is asymptotically

equivalent to
√

(4−π)n
2 . The result follows by Chebyshev’s inequality. �	

At this point, we know that with visible probability, the cyclic permutation
of the action of a is in Cycled(x) for x ∈ [[

√
n, 2

√
n]]. To complete the proof,

we need to verify that they are accessible (which is easy since large a-cycles are
generically accessible) and that they are sufficiently often u-primitive for the u
of Proposition 1.

5.3 Completing the Proof

We will use the following lemma to establish the primitivity of the first d a-cycles:

Lemma 9. Let n ≥ 2 be an integer and let i ∈ [[1, n − 1]]. For the uniform
distribution on binary words of length n having i occurrences of the letter 0, the
probability that a word is not primitive is smaller than 2

n .

We therefore have two independent random sets, δ−1(f, u) and the union of
the first d a-cycles, and are interested in their intersection. The two following
lemmas establish that this intersection is not trivial with visible probability.
Together with Lemma 9, this will ensure that these a-cycles are u-primitive with
positive probability.

Lemma 10. Let α and β be two positive real numbers. Let X be a subset of [n]
of size �α

√
n� and let Y be a uniform random subset of [n] of size �β

√
n�. For

every integer j ≥ 0, there exists a positive constant Mj such that |X ∩ Y | = j
with probability at least Mj, for n sufficiently large.

Lemma 11. Let α be a positive real number. Let X be a subset of [n] of size
m = �α

√
n� and let Y be a uniform random subset of [n] of size m′ with 1 ≤

m′ < n
2 . The probability that X ⊆ Y is smaller than B

√
n2−α

√
n for some

positive constant B and for n sufficiently large.

We can now establish the proof of Theorem 3 for automata with one final state
as follows. For every x ∈ [[

√
n, 2

√
n]], let E(x) denote the set of mappings of size

n whose cyclic part σ has size x and belongs to Cycled(x). By Lemma 8 and
Lemma 7, a random mapping is in ∪x∈[[

√
n,2

√
n]]E(x) with visible probability.
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Let us fix some mapping fa of E(x) for the action of a, and let σa be its cyclic

part. Let S1, S2, . . . , Sd be arbitrary subsets of size m = �
√
n

3d � of the first d
cycles of σa, and let S = ∪d

i=1Si. Since the actions of b and c are independent of
the action of a, by Proposition 2 there exists a word u such that Y = δ−1(f, u)
has size in [[w

√
n,w

√
n logn]] with positive probability. Let Y ′ be a uniform

subset of Y of size y = �w
√
n�. By symmetry, the set Y ′ is a uniform random

subset of size y of [n]. Therefore by Lemma 10, with positive probability we
have |S ∩ Y ′| = d, and a direct computation shows that this implies that, with
positive probability, |Si ∩ Y ′| = 1 for every i ∈ [d]. Moreover, since |Y | ≤ n

2 ,
by Lemma 11, the probability that at least one Si is a subset of Y is smaller
than dB

√
n2−

√
n. Hence, with visible probability, the intersection of Y and Si

is non-trivial for every i ∈ [d], and so is the intersection of Y and the first d
cycles of σa (since they contain Si). Hence, by Lemma 9, there exists a constant
M > 0 such that the first d cycles are u-primitive with probability at least M
for n sufficiently large; and importantly, the value of M is the same for any
x ∈ [[

√
n, 2

√
n]]. Therefore, if we sum the contributions for all x in [[

√
n, 2

√
n]],

we get that with visible probability the first d a-cycles are u-primitive (for some
word u) and therefore that the lcm of their lengths is at least λnd/2.

But the first d a-cycle have lengths greater than
√
n

2d and are therefore gener-
ically accessible (this is Proposition 1 of [10]). This concludes the proof by
Lemma 2: by choosing d = 2d′ + 1 there are more than nd′

states in the first
determinization step of Brzozowski’s algorithm with visible probability. �	

6 General Case

The proof for a general distribution with a small number of final states is not dif-
ficult once we have establish the result for the uniform distribution on automata
with one final state. We consider two cases depending on whether the automaton
has between 1 and w

√
n final states or between w

√
n and n

2 final states.
For the first case, we select one of the final states f and apply the same

construction as in Section 5. With visible probability, we therefore obtain a
word u such that δ−1(f, u) has size at least w

√
n, and therefore δ−1(f, u) also

has size at least w
√
n. Hence, by Lemma 3, there generically exists a prefix u′

of u such that δ−1(f, u) ∈ [[w
√
n,w

√
n logn]], and we can continue the proof as

in Section 5.
The second case is easier. We do not need to build the word u since F is already

large enough to apply Lemma 10 and still small enough to apply Lemma 11. The
general statement of Theorem 3 follows. �	

A natural question is whether the average super-polynomial complexity of
Brzozowski’s algorithm still holds for alphabets with two letters. The proof of this
paper relies on the fact that we built u ∈ {b, c}∗ and the a-cycles independently,
so that we can apply Lemma 9, Lemma 10 and Lemma 11. If u uses the letter
a, we need a more complicated proof that takes the dependency into account,
which is usually difficult. Therefore, the best way to obtain the result is probably
to find a completely different approach.
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Abstract. It is well known that the language obtained by deleting an
arbitrary language from a regular language is regular. We give an upper
bound for the state complexity of deleting an arbitrary language from a
regular language and a matching lower bound. We show that the state
complexity of deletion is n · 2n−1 (respectively, (n + 1

2
) · 2n − 2) when

using complete (respectively, incomplete) deterministic finite automata.

1 Introduction

The descriptional complexity of finite automata has been studied for over half
a century [21–24] and there has been much renewed interest since the early
90’s [11, 13, 20, 29]. Operational state complexity investigates the size of a DFA
(deterministic finite automaton) needed to recognize the language obtained by
applying a regularity preserving operation to given DFAs. The precise worst
case state complexity of many basic language operations has been established;
see [1, 4, 5, 7, 12, 14, 22, 25, 30] where further references can be found. Also there
has been much work on the state complexity of combinations of basic language
operations [2, 6, 8, 9, 15, 26].

Deletion is one of the basic operations in formal language theory [17, 18]. The
deletion of a string v from a string u consists of erasing a contiguous substring
v from u. We denote the result of deleting a language L2 from a language L1 by
L1 � L2.1

Deletion is the simplest and most natural generalization of the left/right quo-
tient [18]. It is known that for L1 recognized by a DFA with n states and an
arbitrary language L2, the worst case state complexity of the left-quotient L2\L1

is 2n−1 and the state complexity of the right-quotient L1/L2 is n [29]. Recently,
the state complexity of insertion which, using the terminology of [16], is the left
inverse of deletion, was investigated in [10].
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It is well known that L1 � L2 is always regular for a regular language L1 and
an arbitrary language L2 [18]. However, in spite of deletion being a fundamental
language operation its precise state complexity has not been studied in the lit-
erature. When L1 is recognized by a DFA with n states, the proof of Theorem 1
of [18] yields an upper bound 22n for the size of the DFA needed to recognize
L1 � L2. The proof works for an arbitrary language L2 and is not, in general,
effective.

More general types of deletion operations, called deletion along trajectories
have been considered by Domaratzki [3] and Kari and Sosik [19]. In this context
a set of trajectories is a set T ⊆ {i, d}∗ where i stands for “insert” and d stands
for “delete”. The result of deleting a language L2 from a language L1 along
a set of trajectories T is denoted L1 �T L2. Deletion along a regular set of
trajectories preserves regularity [3], that is, for regular languages L1, L2 and T ,
also L1 �T L2 is regular. The ordinary deletion operation we consider here is
defined by the set of trajectories i∗d∗i∗, and the construction used in the proof
of Lemma 3.1 of [3] would yield an upper bound 23mn for the state complexity
of L1 �i∗d∗i∗ L2 when L1 (respectively, L2) is recognized by a DFA of size m
(respectively, n). Naturally, Lemma 3.1 of [3] deals with deletion along arbitrary
regular sets of trajectories and the result cannot be expected to yield a good
bound in the very special case we are considering here.

Most of the literature uses complete DFAs to measure the state complexity of
a regular language, but state complexity based on incomplete DFAs also has been
considered. Câmpeanu et al. [1] give the state complexity of shuffle in terms of in-
complete DFAs while the precise state complexity of shuffle in terms of complete
DFAs remains still open. For a given regular language the sizes of the minimal
complete and the minimal incomplete DFA differ by at most one state, however,
there can be a more significant difference in the state complexity functions when
the measure is based on complete and incomplete DFAs, respectively.

In this paper we give a tight state complexity bound for the language obtained
from a regular language by deleting an arbitrary language. We show that if L1

is recognized by a complete DFA with n states and L2 is an arbitrary language,
the complete DFA for the language L1 � L2 needs n · 2n−1 states in the worst
case. The corresponding state complexity function based on incomplete DFAs is
shown to be (n+ 1

2 ) ·2n−2. While the upper bounds hold for arbitrary languages
L2 (that need not be even recursively enumerable) we show that matching lower
bound constructions can be found where L2 consists of a single string of length
one. We give conditions based on L2 and the DFA for L1 that are necessary for
the state complexity of deletion to reach the worst case bound.

2 Preliminaries

We assume that the reader is familiar with the basics of finite automata and
formal languages and recall here just some definitions and notation. For more
information on the topic the reader may consult the monographs [27, 28] or the
survey [29].
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In the following Σ always stands for a finite alphabet and the set of strings
over Σ is Σ∗. A language is a subset of Σ∗. The cardinality of a finite set S is
denoted |S|.

The set of strings obtained from u ∈ Σ∗ by deleting a string v ∈ Σ∗ is

u � v = {w ∈ Σ∗ | (∃u1, u2 ∈ Σ∗) w = u1u2 and u = u1vu2}.

For example, bababa � aba = {bba, bab}. The deletion operation is extended in
the natural way for languages L1, L2 ⊆ Σ∗ by setting

L1 � L2 =
⋃

u∈L1,v∈L2

u � v.

An incomplete deterministic finite automaton (incomplete DFA) is a five-tuple
A = (Q,Σ, δ, q0, F ) where Q is a finite set of states, Σ is an alphabet, δ is a
partial function Q × Σ → Q, q0 ∈ Q is the initial state and F ⊆ Q is a set of
final (or accepting) states.

The transition function δ is in the usual way extended as a partial function
Q×Σ∗ → Q and the language recognized by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈
F}. A language is regular if it is recognized by some DFA.

For q ∈ Q, P ⊆ Q, b ∈ Σ and L ⊆ Σ∗ we also denote

δ(P, b) = {δ(p, b) | p ∈ P} and δ(q, L) = {δ(q, w) | w ∈ L}.

A DFA A = (Q,Σ, δ, q0, F ) is said to be complete if δ is a total function
Q × Σ → Q. We will use both complete and incomplete DFAs and, when not
separately mentioned, by a DFA we mean an incomplete DFA.2

A DFA A = (Q,Σ, δ, q0, F ) is minimal if each state q ∈ Q is reachable from
the initial state q0 (that is, δ(q0, w) = q for some string w) and no two states
q1, q2 ∈ Q, q1 
= q2, are equivalent. States q1, q2 ∈ Q are said to be equivalent if

(∀w ∈ Σ∗) δ(q1, w) ∈ F iff δ(q2, w) ∈ F.

The minimal (complete or incomplete) DFA for a given regular language L is
unique and the sizes of the minimal complete and incomplete DFAs for L differ
by at most one state. The minimal complete DFA may have a dead state (or sink
state). In the minimal incomplete DFA the dead state can always be omitted.

The state complexity of L, sc(L), is the size of the minimal complete DFA
recognizing L. Similarly, the incomplete state complexity of L, isc(L), is the size
of the minimal incomplete DFA recognizing L. For each regular language L either
sc(L) = isc(L) + 1 or sc(L) = isc(L).

3 Upper Bound for Deletion

It is known that the result of deleting an arbitrary language from a regular
language is regular [18]. Hence in the lemmas establishing the upper bound for

2 Naturally, a complete DFA is just a special case of an incomplete DFA.



40 Y.-S. Han, S.-K. Ko, and K. Salomaa

deletion (for complete or incomplete DFAs) we do not need to assume that the
deleted language L2 is regular. However, in the case of an arbitrary L2 finding
a DFA for the language L1 � L2 is not, in general, effective.

First we give an upper bound construction for complete DFAs.

Lemma 1. Consider L1, L2 ⊆ Σ∗ where L1 is recognized by a complete DFA
with n states. Then

sc(L1 � L2) ≤ n · 2n−1.

Proof. Let A = (Q,Σ, δ, q0, FA) be a complete DFA for L1 where |Q| = n. To
recognize the language L1 � L2 we define a DFA

B = (P,Σ, γ, p0, FB),

where P = {(r, R) | r ∈ Q,R ⊆ Q, δ(r, L2) ⊆ R}, p0 = (q0, δ(q0, L2)) and

FB = {(r, R) | r ∈ Q,R ⊆ Q, δ(r, L2) ⊆ R and R ∩ FA 
= ∅}.

It remains to define the transitions of γ. For (r, R) ∈ P and b ∈ Σ we set

γ((r, R), b) = (δ(r, b), δ(R, b) ∪ δ(δ(r, b), L2)). (1)

The transition relation always adds the elements of δ(δ(r, b), L2) to the second
component and, consequently, the state γ((r, R), b), as defined above, is an ele-
ment of P .

The intuitive idea of the construction is as follows. In order to recognize the
language L1 � L2, the DFA B must check that the input string w can be
completed to a string of L1 by inserting a string u ∈ L2 in some position, that
is, for some decomposition w = w1w2 we have w1uw2 ∈ L1. Since we do not
know at which position the string u ∈ L2 is to be inserted and B has to be
deterministic, roughly speaking, B has to keep track of all computations of A
on strings where a string of L2 was deleted from some earlier position.

The first component of the states of B simply simulates the computation of
A, i.e., it keeps track of the state of A, assuming that up to the current position
in the input a string of L2 was not yet deleted. The second component of the
states of B keeps track of all states that A could be in assuming that at some
point in the preceding computation a string of L2 was deleted from the input.

We need to verify that the transitions of B (as defined in (1)) preserve these
properties. For the first component it is clear that the simulation works as
claimed. To verify the claim for the second component, assume that the in-
put is ubv, u, v ∈ Σ∗, b ∈ Σ and after reading the prefix u the DFA B has
reached a state (r, R). In the following discussion b refers to the particular sym-
bol occurrence just after the prefix u. After reading the symbol b, the second
component of the state of B will be δ(R, b) ∪ δ(δ(r, b), L2)), where R consists of
states that A could be in, assuming a string of L2 was deleted somewhere before
the symbol b and the states of δ(R, b) are then the states A could be in after
reading b assuming a string of L2 was deleted before symbol occurrence b. On
the other hand, r = δ(q0, u), i.e., r is the state A reaches after reading the prefix
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u where no deletion has occurred, and hence δ(δ(r, b), L2) consists of exactly
all states A can be in the simulated computation, assuming a string of L2 was
deleted directly after the symbol occurrence b. This means that the transition
relation γ correctly preserves the property that the second component of the
state of B consists of all states that A could be in assuming a string of L2 was
deleted some time previously.

The choice of final states guarantees that B accepts exactly the strings ob-
tained from strings of L(A) by deleting a string of L2 at some position.

We still need to verify that the number of states of B is as claimed. If L2 = ∅,
then L1 � L2 = ∅ and L1 � L2 has a DFA of size one. Hence in what follows
we can assume that L2 
= ∅.

Since A is a complete DFA and L2 
= ∅, for each r ∈ Q we have |δ(r, L2)| ≥ 1.
This means that for a given r ∈ Q, there exist at most 2|Q|−1 sets R such that
(r, R) is a state of B. Thus, the number of states of B is at most |Q| · 2|Q|−1. �	

Next we consider the case of incomplete DFAs. The upper bound construction
uses similar ideas as the above proof of Lemma 1, and we just need to modify
the construction to allow the possibility of undefined transitions.

Lemma 2. Let L1, L2 ⊆ Σ∗ where L1 is recognized by an incomplete DFA A
with n states. Then

isc(L1 � L2) ≤ (n + 1) · 2n − (2n−1 + 2).

Proof. Let A = (Q,Σ, δ, q0, FA) be an incomplete DFA for L1, |Q| = n. We
define the completion of δ as a function δ′ : (Q∪ {dead})×Σ → Q∪ {dead} by
setting for r ∈ Q ∪ {dead} and b ∈ Σ,

δ′(r, b) =

{
δ(r, b), if r ∈ Q and δ(r, b) is defined;
dead, otherwise.

To recognize the language L1 � L2 we define a DFA

B = (P,Σ, γ, p0, FB),

where P = (Q ∪ {dead}) × 2Q − {(dead, ∅), (dead, Q)}, p0 = (q0, δ(q0, L2)) and

FB = {(r, R) | r ∈ Q ∪ {dead}, R ⊆ Q and R ∩ FA 
= ∅}.

(Note that |P | = (n + 1) · 2n − 2. However, as will be seen below at least 2n−1

elements of P will be unreachable as states of B.)
The transitions of γ are defined by setting, for (r, R) ∈ P and b ∈ Σ,

γ((r, R), b) =

⎧⎪⎪⎨⎪⎪⎩
(δ′(r, b), δ(R, b) ∪ δ(δ(r, b), L2)), if r ∈ Q and [δ′(r, b) 
= dead

or δ(R, b) ∪ δ(δ(r, b), L2) 
= ∅];
(dead, δ(R, b)), if r = dead and δ(R, b) 
= ∅;
undefined, otherwise.

As in the proof of the previous lemma, the idea is that the first component
simulates the computation of the original DFA A, assuming a string of L2 has
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so far not been deleted (and using the new state “dead” to indicate that the
simulated computation of A has failed), and the second component keeps track of
the set of all possible states that A can be in, assuming a string of L2 was deleted
somewhere previously (this set can now be empty because A is incomplete). We
leave the details of verifying that B recognizes L(A) � L2 to the reader.

Below we explain why the states (dead, ∅) and (dead, Q) can be omitted from
the state set of B, and that, furthermore at least 2n−1 elements of P must be
unreachable as states of B.

The state (dead, ∅) would be a sink state of the DFA B and, according to the
definition of γ, it is never entered. Also, we note that when the computation,
for the first time, reaches a state where the first component is “dead” this has
to occur on an alphabet symbol that has at least one undefined transition in
A. This means that when the computation initially reaches a state with first
component “dead”, the cardinality of the second component is at most |Q| − 1,
and after that point the transitions of γ do not add new states to the second
component because if the deletion of the string of L2 did not occur previously, the
computation has already failed. Thus, the state (dead, Q) is always unreachable.

To verify the unreachability of 2n−1 further states, without loss of generality,
we can assume that for some q1 ∈ Q and w1 ∈ L2, δ(q1, w1) is defined. Note
that in the opposite case, no string of L2 can occur as a substring of a string of
L(A) = L1 and, hence, L1 � L2 = ∅. Now all transitions of B that enter a state
with the first component q1 add the element δ(q1, w1) to the second components.
This means that all elements (q1, R), δ(q1, w1) 
∈ R, are unreachable. �	

In the above proof we noted that 2n−1 states of the constructed DFA B are
unreachable for each state q of A such that δ(q, w) is defined for some w ∈ L2.
Thus, the worst case state complexity blow-up can occur only when transitions
spelling out a string in L2 originate only from one state of A and, slightly more
precisely, we get the following necessary condition for languages that can reach
the worst case state complexity of the deletion operation.

Corollary 1. Let A = (Q,Σ, δ, q0, F ) be an incomplete DFA with n states, L1 =
L(A) and L2 is an arbitrary language. Then a necessary condition for isc(L1 �

L2) to reach the upper bound (n + 1) · 2n − (2n−1 + 2) given by Lemma 2 is that

(∃q ∈ Q) [ |δ(q, L2)| = 1 and (∀p ∈ Q, p 
= q) δ(p, L2) = ∅ ].

4 Lower Bound Constructions

As our main result we show here that the bounds given in the previous section
are optimal. We begin with the case of complete DFAs where the construction
is somewhat simpler.

4.1 Lower Bound for Complete DFAs

From the construction of the complete DFA B for L1 � L2 in Lemma 1 we
know that the possible states of B are pairs (r, R) where r (respectively, R) is a
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state (respectively, a set of states) of the DFA A recognizing L1 and R has the
property that it contains all states that are reachable from r on a string of L2

(and possibly other states). Hence a possible worst case construction should use
a singleton language L2 or a language L2 such that for any given state r of A,
all strings of L2 take r to the same state. In the proof of Lemma 3 we choose L2

to be a singleton language consisting of a string of length one.

Lemma 3. Let Σ = {a, b, c, d, e}. For every n ≥ 3 there exists a complete DFA
A over Σ with n states such that

sc(L(A) � {c}) = n · 2n−1.

Proof. Choose A = (Q,Σ, δ, 0, {0}) where Q = {0, 1, . . . , n− 1} and the transi-
tions of δ are defined by setting

– δ(i, a) = i + 1 for 0 ≤ i ≤ n− 2, δ(n− 1, a) = 0;
– δ(0, b) = 0, δ(i, b) = i + 1 for 1 ≤ i ≤ n− 2, δ(n− 1, b) = 0;
– δ(0, c) = 1, δ(i, c) = i for 1 ≤ i ≤ n− 1;
– δ(0, d) = 0, δ(1, d) = 1, δ(i, d) = i + 1 for 2 ≤ i ≤ n− 2, δ(n− 1, d) = 0;
– δ(0, e) = δ(1, e) = 1, δ(i, e) = i + 1 for 2 ≤ i ≤ n− 2, δ(n− 1, e) = 0.

The DFA A is depicted in Figure 1.

0 1 2 n−2 n−1

c ccc, d, eb, d

a, c, e a, b a, b, d, e a, b, d, e a, b, d, e

a, b, d, e

Fig. 1. The complete DFA A used in the proof of Lemma 3

Let B = (P,Σ, γ, p0, FB) be the complete DFA recognizing the language
L(A) � {c} that is constructed as in the proof of Lemma 1. Since the deleted
language {c} consists of only one string, B has n · 2n−1 states and in order to
prove the lemma it is sufficient to show that all states of B are reachable from
the initial state p0 = (0, {1}) and all states of B are pairwise inequivalent.
Claim 1. All states (0, R) ∈ P where R ⊇ δ(0, {c}) = {1} are reachable from
(0, {1}).

We prove the claim by induction on the cardinality of R. In the base case
|R| = 1 there is nothing to prove because R = {1} is the only set satisfying the
required condition on R.

Inductively, now assume that the claim holds for all sets R of cardinality
1 ≤ k < n, that is, all states (0, R) where 1 ∈ R and |R| ≤ k are reachable. Now
consider a state of P ,

u = (0, {1, i1, . . . ik}), 1 < i1 < i2 < · · · < ik−1 and (ik−1 < ik or ik = 0).
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Above the elements i1, . . . , ik are listed in increasing order, except that 0 is
considered the largest element. By the inductive assumption the state

u′ = (0, {1, i2 − i1 + 1, i3 − i1 + 1, . . . , ik − i1 + 1})

is reachable. Here the arithmetic operations are done modulo n. If ik = 0, above
ik − i1 + 1 stands for n− i1 + 1. Now

γ(u′, b) = (0, {1, 2, i2 − i1 + 2, i3 − i1 + 2, . . . , ik − i1 + 2}),

because the transition where the first component enters 0 adds 1 to the second
component and otherwise the transition on b cycles “upwards” the states of
{1, i2− i1 +1, i3− i1 +1, . . . , ik− i1 +1}. (Note that this set does not contain the
element 0.) Next applying to the state γ(u′, b) i1 − 2 times a transition on d we
reach u. Note that transitions on d “cycle upwards” the states in {2, 3, . . . , n−1},
and keep the states 0 and 1 stationary, and do not add (in the transition relation
of B), new elements to the second component of the state.

Next we show that all states (r, R), R ⊇ δ(r, {c}), are reachable. We need to
consider only cases where r 
= 0 (because the case r = 0 was handled in Claim 1
above) and, hence, δ(r, {c}) = {r}. Consider an arbitrary state

v = (ij , {i1, i2, . . . , ij−1, ij , ij+1, . . . , ik}), 0 ≤ i1 < i2 < · · · < ik ≤ n− 1.

For technical reasons we need to use a slightly different argument depending on
whether the difference between ij+1 and ij , as well as, between ij and ij−1 is
exactly one. We divide the following argument into three cases.

(i) Case where ij 
= ij−1 + 1: This is the case where the set in the second com-
ponent of v does not contain the element preceding ij . By Claim 1 the state

v′ = (0, {1, i1−ij +1, i2−ij +1, . . . , ij−1−ij +1, ij+1−ij +1, . . . , ik−ij +1})

is reachable. In the preceding line all quantities are computed modulo n.
Now

γ(v′, c) = (1, {1, i1−ij+1, i2−ij+1, . . . , ij−1−ij+1, ij+1−ij+1, . . . , ik−ij+1}).

Note that, because ij 
= ij−1 + 1, the sequence ix − ij + 1, x = 1, . . . , j −
1, j + 1, . . . , k, does not contain the element 0, and hence a transition on c
is the identity on these elements. In the DFA A the a-transitions just cycle
through the states and hence applying ij − 1 times the a-transition to state
γ(v′, c) we get the state v.

(ii) Case where ij = ij−1 + 1 and ij+1 = ij + 1: This is the case where the set
in the second component of v contains both the element preceding ij and
the element following ij . By Claim 1 the state

v1 = (0, {i1 − ij , i2 − ij , . . . , ik − ij})

is reachable. Note that the second component contains the element 1 and
hence v1 is a legal state of B. Now γ(v1, a

ij ) = v.
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(iii) Case where ij = ij−1 + 1 and ij+1 
= ij + 1: This corresponds to the situa-
tion where the second component of v contains the element preceding ij but
does not contain the element following ij. Here we cannot use a-transitions
alone, because a state where the first component is 0 must contain 1 in the
the second component. By Claim 1 the state

v2 = (0, {1, i1 − ij, i2 − ij, . . . , ij−1 − ij, ij+1 − ij , . . . , ik − ij})

is reachable and

γ(v2, e) = (1, {1, i1 − ij + 1, i2 − ij + 1, . . . , ik − ij + 1}).

Here we need the fact that ij+1 
= ij + 1 and hence an e-transition adds one
to the state ij+1 − ij. (Note also that ij−1 − ij = n − 1 and, consequently,
beginning with a c-transition as in case (i) above would not work, because
the second component at the end would not contain ij−1.)
Applying ij − 1 a-transitions to the state γ(v2, e) we get v.

We have shown that all states of B are reachable and it remains to show that
they are all pairwise inequivalent.

First consider two states (r1, R1), (r2, R2) ∈ P where R1 
= R2. Without loss
of generality we can find s ∈ R1 − R2 since the other possibility is completely
symmetric. If s = 0 then (r1, R1) is a final state and (r2, R2) is a nonfinal
state of B. Thus it is sufficient to consider cases s ∈ {1, 2, . . . , n − 1}. Now
γ((r1, R1), an−s) ∈ FB because the string an−s takes the state s ∈ R1 to the
element 0. We show that γ((r2, R2), an−s) 
∈ FB. Since s 
∈ R2, the string an−s

does not take any element of R2 to the element 0 (which is the only final state of
A). We note that r2 
= s because from the definition of legal states of B we know
that δ(r2, c) must be an element of R2 (and δ(s, c) = s when 1 ≤ s ≤ n − 1).
Also, if during the computation on an−s starting from (r2, R2), the transitions of
γ add the element 1 to the second component when the first component becomes
0, then the added element 1 cannot cycle through all states to reach the final
state 0 because after adding the element 1 there remains at most n− s− 1 input
symbols and s ≥ 1.

Second, consider two states (r1, R1), (r2, R2) ∈ P , where r1 
= r2. Due to
symmetry between r1 and r2 we can assume that r2 
= 0.

(i) Case where r1 = 0 and r2 
= n− 1: Since r2 
= r1, we have r2 
= 0 and we
note that γ((0, R1), b) = (0, R′

1) where 1 ∈ R′
1 (because the self-loop on

state 0 adds the element 1 to the second component) and γ((r2, R2), b) =
(r2 + 1, R′

2). Here 1 
∈ R′
2 because no transition of A labeled by b reaches the

state 1 and also since r2 + 1 
= 0 the transition cannot add the element 1
to the second component. Since the second components are distinct sets we
know that the states (0, R′

1) and (r2 + 1, R′
2) are distinguishable.

(ii) Case where r1 = 0 and r2 = n− 1: We note that γ((0, R1), a) = (1, R′
1) and

γ((n − 1, R2), a) = (0, R′
2). The states (1, R′

1) and (0, R′
2) are inequivalent

by case (i) above.
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(iii) Case where r1 
= 0 and r2 
= 0: By cycling with n− r1 a-transitions we get
states (0, R′

1) and (n − r1 + r2, R
′
2). If r1 − r2 
= 1, this case was covered in

(i) above and, if r1 − r2 = 1, this case was covered in (ii) above.

Above (i)–(iii) cover all cases where r1 
= r2 and r2 
= 0. This concludes the proof
of the lemma. �	

Now by combining Lemmas 1 and 3 we get a tight state complexity bound
for deletion.

Theorem 1. For languages L1, L2 ⊆ Σ∗ where L1 is regular,

sc(L1 � L2) ≤ sc(L1) · 2sc(L1)−1.

For every n ≥ 3 there exists a regular language L1 over a five-letter alphabet
with sc(L1) = n and a singleton language L2 such that in the above inequality
we have equality.

4.2 Lower Bound for Incomplete DFAs

We show that the state complexity upper bound for incomplete DFAs from
Lemma 2 can be reached by DFAs defined over a five-letter alphabet. Based
on the observations made in Corollary 1, as the language of deleted strings, we
use a singleton set {c} where, furthermore, a c-transition is defined only for one
state of the DFA recognizing L1. The conditions of Corollary 1 do not force L2

to be a singleton set, however, the conditions indicate that a construction may
be simpler to achieve using a singleton set. (The proof of Lemma 4 is omitted
due to the limitation on the number of pages.)

Lemma 4. Let Σ = {a, b, c, d, e}. For every n ≥ 4 there exists a regular lan-
guage L1 ⊆ Σ∗ recognized by an incomplete DFA with n states such that

isc(L1 � {c}) = (n + 1) · 2n − (2n−1 + 2).

As a result of Lemma 4 we conclude that also the upper bound for the size of
an incomplete DFA for the language L1 � L2 given in Lemma 2 is tight.

Theorem 2. For languages L1, L2 ⊆ Σ∗ where L1 is regular,

isc(L1 � L2) ≤ (isc(L1) + 1) · 2isc(L1) − (2isc(L1)−1 + 2).

For every n ≥ 4 there exists a language L1 over a five-letter alphabet recognized
by an incomplete DFA with n states and a singleton language L2 such that in
the above inequality we have an equality.
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5 Conclusion and Further Work

We have established tight state complexity bounds for the deletion of an arbi-
trary language L2 from a regular language L1 both in the case where L1 and
L1 � L2 are represented by complete DFAs and when they are represented
by incomplete DFAs. Furthermore, in the lower bound construction the deleted
language can be chosen to be a singleton set consisting of a string of length one.
This result is in some sense the strongest possible because deleting the empty
string from L1 yields just L1.

Roughly speaking, in the upper bound constructions given in Section 3, the
DFA B for L1 � L2 is based only on the DFA A for L1 and B depends on
L2 only by way of the transitions the strings of L2 define on A. This causes
that the transitions in parts of B that, respectively, simulate the original DFA
A and the computation of A after a string was deleted are closely related and,
perhaps partly because of this reason, the lower bound constructions that match
the upper bound (respectively, for complete and for incomplete DFAs) are fairly
involved. For the constructions we used a five-letter alphabet. The alphabet size
could likely be reduced, but this would lead to considerably more complicated
proofs of correctness. Furthermore, it does not seem clear whether the general
upper bound can be reached using a binary alphabet. Note that for a unary al-
phabet, deletion coincides with right-quotient and the state complexity is known
to be n [29].

More general types of deletion operations have been considered within the
context of deletion along trajectories [3, 19]. Our “ordinary” deletion operation
is defined by the set of trajectories i∗d∗i∗ and the left-quotient and right-quotient
operations are defined, respectively, by the sets of trajectories d∗i∗ and i∗d∗. The
set of trajectories d∗i∗d∗ defines the bipolar deletion operation [3, 16, 18]. The
language L1 �d∗i∗d∗ L2 consists of all strings v such that for some string u =
u1u2 ∈ L2, the string u1vu2 is in L1. From [3, 18] it is known that bipolar deletion
preserves regularity but the state complexity bound given by these results is not
optimal. Differing from deletion, the state complexity of bipolar deletion would
need to depend on the size of DFAs for both of the argument languages.
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Abstract. We approach Černý’s conjecture using the Wedderburn-
Artin theory. We first introduce the radical ideal of a synchronizing
automaton, and then the natural notion of semisimple synchronizing
automata. This is a rather broad class since it contains simple synchro-
nizing automata like those in Černý’s series. Furthermore, semisimplicity
gives the advantage of “factorizing” the problem of finding a synchro-
nizing word into the sub-problems of finding words that are zeros in the
projections into the simple components in the Wedderburn-Artin decom-
position. This situation is applied to prove that Černý’s conjecture holds
for the class of strongly semisimple synchronizing automata. These are
automata whose sets of synchronizing words are cyclic ideals, or equiva-
lently are ideal regular languages which are closed by takings roots.

1 Introduction

A deterministic finite automaton (DFA) A = 〈Q,Σ, δ〉 is called synchronizing
if there exists a word w ∈ Σ∗ “sending” all the states into a single state, i.e.
δ(q, w) = δ(q′, w) for all q, q′ ∈ Q. Any such word is said to be synchronizing
(or reset) for the DFA A . These automata have been widely studied since the
work of Černý in 1964 [8] and his well known conjecture regarding an upper
bound for the length of the shortest reset word. This conjecture states that any
synchronizing automaton A with n states admits at least a reset word w with
|w| ≤ (n−1)2. In [8] it is shown that this bound is tight by exhibiting an infinite
series of synchronizing automata Cn having a shortest synchronizing word of
length (n − 1)2. For more information on synchronizing automata we refer the
reader to Volkov’s survey [20]. In this paper we follow a representation theoretic
approach to the Černý conjecture and synchronizing automata initially pursued
in [1,2,4,18]. Our approach has a more ring theoretic flavor making use of the
well-known Wedderburn-Artin theory of semisimple rings.

The paper is organized as follows. In Section 2 we introduce the notion of
radical of a synchronizing automaton. In Section 3 we characterize this ideal
and we introduce the natural notion of semisimple synchronizing automaton.
We show that synchronizing automata which are simple, or equivalently they do
not have non-trivial congruences, are also semisimple. Finally we exhibit some
classes of semisimple and simple synchronizing automata. Section 4 shows how
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the Wedderburn-Artin Theory can be used to factorize the problem of finding
a synchronizing words into the sub-problem of finding words which are zero in
the projections into the simple components. This approach works in case the
0-minimal ideals in the factor monoids do not contain 0-H-classes. In Section 5
we introduce cyclic ideal languages and characterize them. These are in partic-
ular cyclic languages as introduced in [6]. Finally, using the results of Section
4, we show that Černý’s conjecture holds for a particular class of semisimple
synchronizing automata: the strongly semisimple automata. This is the class of
synchronizing automata whose set of reset words is a cyclic ideal language.

2 The Radical of a Synchronizing Automaton

In this section we fix some notations used throughout the paper, and we in-
troduce the central notion of radical of a synchronizing automaton. Hence-
forth, we consider a synchronizing automaton A = 〈Q,Σ, δ〉 with set of states
Q = {q1, . . . , qn}, and by S we denote the set of the synchronizing (reset) words
of A . It is an easy exercise to check that the set S is a regular language which is a
two-sided ideal of Σ∗, i.e. Σ∗SΣ∗ ⊆ S. Let M(A ) be the transition monoid of A
and let π : Σ∗ → M(A ) be the natural epimorphism and put A ∗ = M(A )/π(S).
There is a natural action of M(A ) on the set Q given by q · π(u) = δ(q, u); we
often omit the map π and we use the simpler notation q · u. This action is ex-
tended to subsets of Q in the obvious way. It is a well known fact that M(A )
embeds into the ring Mn(C) of n×n matrices with entries in C and with a slight
abuse of notation we still denote by π : Σ∗ →Mn(C) the representation induced
by this embedding. This representation induces an action of Σ∗ on the vector
space CQ defined by v ·u = vπ(u). Consider the vector Q = q1 + . . .+ qn formed
by summing all the elements of the canonical basis. Using the fact that the π(a),
a ∈ Σ, are functions it is not difficult to see that Σ∗ acts on the orthogonal
space Q⊥ = {u ∈ CQ : 〈u|Q〉 = 0} where 〈·|·〉 is the usual scalar product (see for
instance [4]). This fact can be easily verified on the base of Q⊥ formed by the
vectors q1 − qi for i = 2, . . . , n. Furthermore, it is an easy exercise to check that
u ∈ S if and only if for every v ∈ Q⊥ we get v ·u = 0. This induces a representa-
tion ϕ : Σ∗/S → End(Q⊥) � Mn−1(C) with ϕ(Σ∗/S) � A ∗. Therefore, we see
A ∗ as a finite multiplicative submonoid of Mn−1(C). Let R be the C-subalgebra
of Mn−1(C) generated by A ∗. Clearly R is a finitely generated C-algebra called
the synchronized C-algebra associated to the synchronizing DFA A where A ∗

embeds into R, and with a slight abuse of notation we identify A ∗ with the
image of this embedding A ∗ ↪→ R. Therefore, we define the radical Rad(A ∗) of
A ∗ as the restriction of the radical Rad(R) (see [10]) of the C-subalgebra R to
A ∗, i.e. Rad(A ∗) = Rad(R) ∩A ∗.

Let θ : Σ∗ → Σ∗/S be the Rees morphism. Throughout the paper we consider
the morphism ρ : Σ∗ → A ∗ defined by ρ = ϕ ◦ θ. Since Rad(R) is an ideal of R
[10, Corollary 4.2] we have that Rad(A ∗) is also an ideal of the (finite) monoid
A ∗. We have the following definition of radical of a synchronizing automaton.
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Definition 1. The set Rad(A ) = ρ−1(Rad(A ∗)) ⊆ Σ∗ is a two-sided ideal
which is clearly a regular language called the radical of the synchronizing au-
tomaton A .

Note that S ⊆ Rad(A ). The elements of Rad(A ) are called the radical words
of A .

3 Semisimple Synchronizing Automata

With the definition of radical of Section 2 it is natural to call a synchronizing
DFA A semisimple whenever Rad(A ∗) = {0}. Note that A is semisimple if
and only if Rad(A ) = S. This last fact shows that the search for synchronizing
words in a semisimple synchronizing automaton is reduced to the search of words
u ∈ Σ∗ for which ψ(ρ(u)) = 0, where ψ : R → R := R/Rad(R) is the canonical
epimorphism. Besides the semisimple case, in general radical words can still give
some information on synchronizing words. We now make some general consider-
ations on Rad(A ). We recall that an ideal I in a monoid with zero (or in a ring)
is nilpotent whenever there is an integer m such that Im = 0. The following
proposition characterizes the radical words of a synchronizing automaton.

Proposition 1. Rad(A ) is an ideal containing S, moreover Rad(A )/S is the
largest nilpotent left (right) ideal of Σ∗/S.

Proof. Since R is both noetherian and artinian, by [10, Theorem 4.12] Rad(R) is
the largest nilpotent left (right) ideal ofR. We claim that Rad(A ∗) is the largest
nilpotent left (right) ideal of A ∗. Indeed, assume that H is a nilpotent left ideal
of A ∗, and let H be the C-algebra generated by H . Since R is generated by
A ∗, then H is also a left (right) ideal of R. Moreover it is nilpotent: if Hm =
0, then it is straightforward to check that also Hm = 0. Thus, H ⊆ Rad(R)
and so in particular we have H ⊆ H ∩ A ∗ ⊆ Rad(R) ∩ A ∗ = Rad(A ∗). If
ϕ : Σ∗/S → A ∗ is the representation map, then it is routine to check that
Rad(A )/S = ϕ−1(Rad(A ∗)) is also the largest nilpotent left (right) ideal of
Σ∗/S. ��

From this proposition it is evident that if one is able to find a radical word u,
then a synchronizing word can be obtained by considering a suitable power of
u. Therefore, for u ∈ Rad(A ) it is important defining the index Depth(u) as the
smallest positive integer n ≥ 1 such that un ∈ S. We can extend this parameter
to the whole automaton by putting Depth(A ) = min{m : Rad(A )m = S}.
It is obvious that Depth(u) ≤ Depth(A ) and the study of bounds for such
quantities can be interesting in finding bounds for short synchronizing word
assuming that finding a short radical word can be easier. In this way we can split
the task of finding bounds for the shortest synchronizing words into the problem
of bounding the shortest radical word u and to bound one of the quantities
Depth(A ), Depth(u). Note that Depth(A ) = 1 iff A is semisimple.

We now frame the combinatorial class of simple synchronizing automata into the
class of semisimple synchronizing automata. Given an automaton A = 〈Q,Σ, δ〉,
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we recall that an equivalence relation σ on the set of states Q is an (automaton)
congruence if xσy implies (x ·u)σ(y ·u) for any u ∈ Σ∗. We denote the lattice of
congruences of A by Cong(A ) with maximum given by the universal relation
ωA and minimum the identity relation 1A . For a given equivalence relation σ
we denote by Congσ(A ) the sub-lattice of the congruences of A contained in σ.
We have the following lemma.

Lemma 1. Let A = 〈Q,Σ, δ〉 be a synchronizing automaton which is not semi-
simple. Let g ∈ Rad(A ) \ S and let Ker(g) be the kernel of the transformation
induced by the word g. Then

CongKer(g)(A ) �= {1A }

Proof. We have to show that CongKer(g)(A ) is non-trivial. Since g ∈ Rad(A )\S,
by Proposition 1 there is a minimum integer m > 1 such that:

gΣ∗gΣ∗g . . .Σ∗g︸ ︷︷ ︸
m−times

= 0 in Σ∗/S (1)

By the minimality of m there are words u1, . . . um−2 ∈ Σ∗ such that

gu1gu2 . . . um−2g

is not synchronizing. Using the usual characterization of synchronizing automata
this is equivalent to saying that there are two different states q1, q2 ∈ Q such
that

q1 = q1 · (gu1gu2 . . . um−2g) �= q2 · (gu1gu2 . . . um−2g) = q2

Define the relation σ by putting xσy if there is a u ∈ Σ∗ such that {q1, q2} ·u =
{x, y}. It is evident that σ is symmetric. Let σt be the reflexive and transitive
closure of σ. This is an equivalence relation which is also a congruence, in fact
it is the smallest congruence generated by identifying q1 with q2. We claim that
σt ⊆ Ker(g) or equivalently |[q]σt · g| = 1 for any q ∈ Q, where [q]σt is the
equivalence class of σt containing q. Indeed, assume, contrary to our claim, that
there is some non-trivial class [q]σt such that |[q]σt · g| > 1. Thus, there are two
distinct states h, h′ ∈ [q]σt · g and a sequence x1, . . . , xn of states of [q]σt such
that xiσxi+1 for i = 1, . . . , n− 1 and x1 · g = h, xn · g = h′. It is straightforward
to check that this implies the existence of an index i ∈ {1, . . . , n− 1} such that
xi·g �= xi+1 ·g. Hence there is some word u ∈ Σ∗ such that {q1, q2}·u = {xi, xi+1}
which implies

q1 · (gu1gu2 . . . um−2gug) �= q2 · (gu1gu2 . . . um−2gug)

which contradicts (1). Hence |[q]σt · g| = 1 for every q ∈ Q, and σt ⊆ Ker(g). ��

As an immediate consequence we have the following corollary.

Corollary 1. Let A be a synchronizing automaton which is not semisimple,
then Cong(A ) �= {ωA , 1A }.
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Proof. Since A is not semisimple, we take any g ∈ Rad(A )\S. Then by Lemma
1 there is a congruence σ ∈ CongKer(g)(A ) with σ �= 1A . Moreover, since g is
not synchronizing Ker(g) �= ωA , whence σ �= ωA as well. ��

We recall that an automaton A is called simple whenever Cong(A ) = {ωA , 1A }
(see [5,19]). Therefore, by the previous lemma we have the following immediate
theorem:

Theorem 1. A synchronizing simple automaton is also semisimple.

Using Corollary 1 we can find another class of semisimple automata as the
following proposition shows.

Proposition 2. Let A = 〈Q,Σ, δ〉 be a synchronizing automaton with |Q|
prime and having a subset P ⊆ Σ such that P ∗ acts transitively on Q like a
permutation group. Then A = 〈Q,Σ, δ〉 is semisimple.

Proof. If A is not semisimple, then by Proposition 1 there is a congruence
σ ∈ Cong(A ) with σ �= 1A , ωA . Thus there is a class [q]σ of Q/σ with 1 <
|[q]σ| < |Q|. Since σ is a congruence, and P ∗ acts like a permutation group
transitively on Q, then |[q′]σ · u| = |[q′]σ| for any q′ ∈ Q and u ∈ P ∗. Thus
by the transitivity we can factorize |Q| = |Q/σ| |[q]σ| with 1 < |[q]σ| < |Q|, a
contradiction. Hence A is semisimple. ��

The previous proposition holds in the more general context of groups acting on
a set that are primitive. We recall that a group G acting on a set Q is called
primitive whenever there are no non-trivial equivalence relations on Q preserved
by G. Thus, any automaton having a subset P ⊆ Σ acting primitively on Q is
simple and so semisimple.

Another example of simple, and therefore semisimple, automaton is given
by the well known series of Černý. We recall that this series is formed by the
automatata (see Fig. 1) Cn = 〈{0, . . . , n − 1}, {a, b}, δ〉 where δ(i, a) = i + 1
mod n, δ(i, b) = i for all 0 ≤ i ≤ n−2 and δ(n−1, b) = 0. We have the following
proposition.

Proposition 3. For all n ≥ 1 the automata Cn are simple.

Proof. Any non-trivial congruence ρ on the set of states Zn = {0, . . . , n − 1}
is a non-trivial congruence for the (regular) action of the group Zn on itself.
Hence, the congruence classes are the cosets of a non-trivial subgroup H of Zn.
We claim that H = Zn. Indeed, assume, contrary to the claim, that H is a
proper subgroup of Zn. It is not difficult to check that n− 1 /∈ H , and so n− 1
and 0 belong to different classes. Since H is proper, the class [n − 1]ρ contains
also an element i �= 0, n − 1. Since 0 · b = (n − 1) · b = 0 and i · b = i we get
[0]ρ = [n − 1]ρ · b = [i]ρ · b = [n − 1]ρ, a contradiction. Whence, H = Zn and
ρ = ωA . ��
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Fig. 1. Černý’s series Cn

4 Factoring the Problem via the Wedderburn-Artin
Theorem

Since R = R/Rad(R) is left artinian and Rad(R) = {0}, by [10, Theorem
4.14] R is actually semisimple. Therefore, the Wedderburn-Artin Theorem [10,
Theorem 3.5] gives us the advantage of having the following nice decomposition
of R:

R �Mn1(D1)× . . .×Mnk
(Dk)

for some (uniquely determined) positive integers n1, . . . , nk, and D1, . . . , Dk (fi-
nite dimensional) C-division algebras. Since C is algebraically closed field we
have that actually

D1 = . . . = Dk = C

for, if d ∈ Di, then C[d] is a finite field extension of C, whence d ∈ C. Let
ϕi : R → Mni(C) for i = 1, . . . , k be the projection map onto the i-th simple
component. We recall that ψ : R → R is the canonical epimorphism, and ρ
is composition of the Rees morphism θ : Σ∗ → Σ∗/S with the representation
ϕ. Henceforth, we consider the morphism ϕi : Σ∗ → Mni(C) for i = 1, . . . , k
defined by:

ϕi = ϕi ◦ ψ ◦ ρ
and let Mi = ϕi(Σ

∗) be the subsemigroup of Mni(C) generated by Σ∗, for
i = 1, . . . , k. We call Mi the i-th factor monoid. Thus, in case A is semisim-
ple we factorize the problem of finding a synchronizing word into the problems of
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finding words ui, i = 1, . . . , k with ϕi(ui) = 0. Indeed, a synchronizing word can
be obtained by the concatenation of these words ui, i = 1, . . . , k. We have the
following lemma.

Lemma 2. The i-th factor monoid Mi has a unique 0-minimal ideal Ii which
is a 0-simple semigroup. Furthermore, Mi acts faithfully on the right and left of
Ii.

Proof. Note that Mi being the image of a finite semigroup is a finite semigroup
with 0. Therefore there is a 0-minimal ideal Ii. By [9, Proposition 3.1.3] either
I2i = 0 or Ii is a 0-simple semigroup. Since Mni(C) is a simple ring, for any
r ∈ Ii we have:

Mni(C)rMni (C) = Mni(C)

Therefore, if 1i is the unit of Mni(C), since Ii is an ideal we have
∑

j λjrj = 1i for

some rj ∈ Ii, λi ∈ C. Suppose that I2i = 0 and take any non-zero element s ∈ Ii.
Hence

∑
j λjrjs = s and since rjs ∈ I2i = 0, we have s = 0, a contradiction.

Therefore Ii is a 0-simple semigroup. Since
∑

j λjrj = 1i it is also immediate to
see that Mi acts faithfully on both the right and left of Ii.

The proof of the uniqueness follows the same argument. Indeed, assume, con-
trary to our statement, that I ′i is another 0-minimal ideal, then for all b ∈ I ′i
we have

∑
j λjrjb = b. Since rjb ∈ I ′i ∩ Ii = {0}, then b = 0 for all b ∈ I ′i, a

contradiction. ��

We recall that given u ∈ Σ∗, the rank of u is the cardinality of the rank of
the function associated to u, equivalently rk(u) = |Q · u|. By the usual laws of
composition of functions, it is straightforward to check that the following holds:

rk(uv) ≤ min{rk(u), rk(v)}, ∀u, v ∈ Σ∗ (2)

The following definition extends this index to elements of Ii \ {0}.

Definition 2. For any g ∈ Ii \ {0} the i-th rank of g is given by:

Rki(g) = min{rk(u) : ϕi(u) = g}

The rank of Ii is defined as:

Rki(Ii) = min{Rki(g) : g ∈ Ii \ {0}}

Note that for a non-zero element g, we have Rki(g) > 1. Indeed if for some
u ∈ Σ∗ with ϕi(u) = g, we have δ(Q, u) = 1, then u ∈ S, whence ϕi(u) = 0.
Consequently we have Rki(Ii) > 1. The following lemma shows that this index
is equal for any element of Ii \ {0}.

Lemma 3. For any g ∈ Ii \ {0} we have Rki(g) = Rki(Ii).

Proof. Let g ∈ Ii \ {0}, by the definition we have Rki(g) ≥ Rki(Ii). On the
other hand, let s ∈ Ii \ {0} with Rki(s) = Rki(Ii), and let u ∈ Σ∗ such that
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ϕi(u) = s, Rki(s) = rk(u). Since by Lemma 2 Ii is 0-simple, Ii \{0} is a J -class.
Thus, there are x, y ∈ Σ∗ such that g = ϕi(xuy). Hence, by (2) we get

Rki(g) ≤ rk(xuy) ≤ rk(u) = Rki(s) = Rki(Ii)

from which it follows the statement Rki(g) = Rki(Ii). ��

We recall that the deficiency of a word w ∈ Σ∗ with respect to A is the (positive)
integer df(w) = |Q| − |Q · w|. We make use of the following result which is a
consequence of [11, Corollary 3.4].

Proposition 4. Given a synchronizing automaton A = 〈Q,Σ, δ〉 and the words
v′, v ∈ Σ+ such that df(v′) = df(v) = k > 1, there exists a word u ∈ Σ∗, with
|u| ≤ k + 1, such that df(v′uv) > k.

An interesting situation, similarly to the case explored in [1,2], occurs when
Ii \ {0} is a semigroup.

Lemma 4. If Ii \ {0} is a semigroup, then for any g ∈ Ii \ {0} there is a word
u ∈ Σ∗ with |u| ≤ n− Rki(Ii) + 1 such that gϕi(u) = 0.

We have the following proposition.

Proposition 5. If Ii \ {0} is a semigroup, then there is a word u ∈ Σ∗ with
|u| ≤ ni(n− 1) with ϕi(u) = 0.

We have the following theorem.

Theorem 2. With the above notation, consider an ideal I of R of the form

I = Mni1
(C)× . . .×Mnim

(C)

for some choices i1, . . . , im of {1, . . . , k}, such that the associated 0-minimal
ideals Iij \ {0}, j = 1, . . . ,m, are all semigroups. Let J = ψ−1(I), then there is
a word u ∈ Σ∗ with |u| ≤ (n− 1)2 such that

ρ(u)J = 0

5 Černý’s Conjecture for Strongly Semisimple
Synchronizing Automata

In this section we use Theorem 2 to prove that Černý’s conjecture holds for a par-
ticular class of semisimple synchronizing automata. Note that if S is closed under
taking roots, then from Section 3 and Proposition 1 we have that Rad(A ) = S.
This condition can be expressed using the root operator on a regular language.
For any regular language L on an alphabet Σ, this operator is defined by:

root(L) = {u ∈ Σ∗ : ∃m ≥ 1 such that um ∈ L}

This is an operator that returns a regular language (see for instance [17]). Hence-
forth, we call an ideal language any regular language I ⊆ Σ∗ which is also a
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two-sided ideal of Σ∗. We say that a synchronizing automaton A with the ideal
language of the reset words S is strongly semisimple if root(S) = S. The ap-
proach of studying Černý’s conjecture from the language theoretic point of view
of the ideal language of the synchronizing words is relatively recent and can be
drawn back to [13]. In general, given an ideal language I it is easy to see that
the minimal DFA recognizing I is actually a synchronizing automaton whose
language of reset words is exactly I. However, this automaton has a sink state,
and Černý’s conjecture has been verified for such automata [16]. On the other
hand, it is well known that if the Černý conjecture is solved for the class of
strongly connected synchronizing automaton, then this conjecture holds in gen-
eral. Thus, the approach of studying synchronizing automata via their languages
of synchronizing words is supported by the following result presented in a first
version in [14] and then improved in [15] which we partially report here in the
following theorem.

Theorem 3. Let I be an ideal language on a non-unary alphabet, then there is a
strongly connected synchronizing automaton having I as the set of synchronizing
words.

We now characterize the ideal languages I satisfying root(I) = I but first we
need some definitions. We recall that for a regular language L ⊆ Σ∗, the language√
L = {u ∈ Σ∗ : u2 ∈ L} is also regular. Given two words x, y ∈ Σ∗ with x = vx′

and y = y′v, where v ∈ Σ∗ is the maximal prefix of x which is also a suffix of
y, we define the concatenation with overlap as y ◦ x = y′vx′. An ideal language
I ⊆ Σ∗ is called a cyclic ideal language whenever root(I) = I. We have the
following characterization.

Proposition 6. Given an ideal language I, the following are equivalent.

i)
√
I ⊆ I;

ii) for any u ∈ I and any factorization u = xy, for some x, y ∈ Σ∗, then
y ◦ x ∈ I;

iii) root(I) = I;
iv) I = η−1(0) where η : Σ∗ → S is a morphism onto a finite monoid with 0

satisfying the condition x2 = 0 ⇒ x = 0.

Proof. i) ⇒ ii). Assume
√
I ⊆ I and let u ∈ I with u = xy. Suppose that

x = vx′ and y = y′v for some v ∈ Σ∗ which is the maximal prefix of x which
is also a suffix of y. Let h = y ◦ x = y′vx′. Since I is an ideal we have h2 =
y′vx′y′vx′ = y′ux′ ∈ I. Hence, since

√
I ⊆ I, we deduce h ∈ I.

ii) ⇒ iii). Assume I closed by concatenation with overlap. Since I ⊆ root(I),
we have to prove the other inclusion. Let u ∈ root(I) and let n > 1 be the
integer such that un ∈ I. Since un = uun−1 and I is closed by concatenation
with overlap, then we have un−1 = un−1 ◦ u ∈ I. Thus using induction we get
u ∈ I.

iii) ⇒ iv). Since I is regular there is a morphism χ : Σ∗ → T , for some
finite monoid with I = χ−1(χ(I)). Since J = χ(I) is a two-sided ideal of T ,
we can consider the Rees quotient semigroup S = T/J . Thus, the morphism
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η : Σ∗ → S, which is the composition of χ with the Rees morphism T → T/J ,
satisfies η−1(0) = I. Furthermore, if x2 = 0 in T/J , then x2 ∈ J in T . Hence, if
u ∈ Σ∗ such that χ(u) = x, then u ∈ root(I) = I, and so χ(u) ∈ J , i.e. x = 0 in
T/J .

iv) ⇒ i). If u2 ∈ I, then η(u)2 = 0, whence η(u) = 0, i.e. u ∈ I. ��

This proposition also justifies the name cyclic since these are ideal languages
that are also cyclic languages in the sense of [6]. Indeed the first condition: u ∈ I
iff un ∈ I is satisfied since I is an ideal and root(I) = I. The second condition
uv ∈ I iff vu ∈ I is also satisfied. Consider the direct implication and let uv ∈ I.
Since I is an ideal, then v(uv)u ∈ I. Hence vu ∈ I since root(I) = I. It is worth
noting that the syntactic algebras of cyclic languages are semisimple [7], and
in general languages whose syntactic algebras of their characteristic series are
semisimple have been studied recently in [12].

By Proposition 1 and the definition it is clear that a strongly semisimple
synchronizing automaton is semisimple, whence R � R. We have the following
main theorem.

Theorem 4. A strongly semisimple synchronizing automaton A satisfies the
Černý conjecture.

Proof. Keeping the notation of Section 4, let Mi for i = 1, . . . , k be the factor
monoids. We say that T ⊆ {1, . . . , k} is a core whenever ϕi(u) = 0 for all i ∈ T ,
implies ϕi(u) = 0 for all i ∈ {1, . . . , k}. Let C ⊆ {1, . . . , k} be a minimal core
with respect to inclusion and let

I =
∏
j∈C

Mnj (C)

be the corresponding ideal in R � R. For a fixed j ∈ C, we claim that the
associated 0-minimal ideal Ij \ {0} is a semigroup. Since C is a minimal core,
there is a word w ∈ Σ∗ such that ϕj(w) �= 0 and ϕr(w) = 0 for all r ∈ C \ {j}.
By Lemma 2 Mj acts faithfully on the right of Ij , whence there is an element
t ∈ Ij \ {0} such that:

tϕj(w) �= 0. (3)

We have two possibilities: either ϕj(vwvw) = 0 or ϕj(vwvw) �= 0. In the former
case vwvw ∈ S (being A semisimple). Since A is also strongly semisimple we
get vw ∈ root(S) = S, which implies ϕj(vw) = 0. However, this contradicts
(3). Hence, we must have ϕj(vwvw) �= 0 which implies by [9, Lemma 3.2.7] that
ϕj(vw) belong to some H-class containing an idempotent e. In particular, since
Mj is finite, we can assume ϕj((vw)m) = e for some integer m ≥ 0. Assume,
contrary to our claim, that Ij \ {0} is not a semigroup. Hence by [9, Lemma
3.2.7], there is a 0-H-class H of Ij \ {0}. Let h ∈ H . Suppose that h ∈ Re and
let s ∈ Σ∗ such that ϕj(s) = h. Consider the word (vw)ms. Since e is a left
identity we have ϕj((vw)ms) = h �= 0. However, ϕj(((vw)ms)2) = h2 = 0, which
with ϕr(w) = 0 for all r ∈ C \ {j}, implies (vw)ms ∈ root(S) = S, and so
h = 0, a contradiction. On the other hand, we can assume that Re ∩ Lh is an
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H-class containing an idempotent g (otherwise I could have chosen as 0-H-class
H = Re ∩ Lh). Let u ∈ Σ∗ such that ϕj(u) = g. Using the fact that e is a
left identity for g and g is a right identity for h we get ϕj(s(vw)mu) = h �= 0.
However, ϕj((s(vw)mu)2) = h2 = 0 which implies s(vw)mu ∈ root(S) = S,
and so h = 0, a contradiction. Therefore Ij \ {0} is a semigroup. Applying
Theorem 2 to I we deduce that there is a word u with |u| ≤ (n− 1)2 such that
ϕi(u) = 0 for all i ∈ C. Hence, since C is a core, ϕi(u) = 0 for all i = 1, . . . k,
i.e. u ∈ Rad(A ) = S since A is semisimple. ��

6 Open Problems

We list some directions of research originated from this paper.

1) The main open problem is certainly to find quadratic upper bounds for the
length of the shortest radical word. Having Lemma 4 without the condition
that Ii \{0} does not contain 0-H-classes would be a major breakthrough to
a solution of the previous point. Actually, without this condition we obtain
the following weaker version:

Lemma 5. For any g ∈ Ii \ {0} there is a word u ∈ Σ∗ with |u| ≤ n −
Rki(Ii) + 1 such that either gϕi(u) = 0, or gϕi(u) is contained in some
0-H-class.

which may be useful in dealing with the general case.
2) If point 1) is solved, then the next step to find a quadratic upper bound for

the length of the shortest synchronizing words in the general case could be to
reduce this problem to the case of simple automata, and then use Theorem 1.
Another reduction from the semisimple case to the general one could be the
study of upper bounds of the two indices Depth(u),Depth(A ) introduced in
Section 1.

3) Proposition 3 shows that Černý’s automata are simple. This is probably not a
coincidence, and, in general, synchronizing automata which are “difficult” to
synchronize (with “long” shortest reset words) may be simple or semisimple.
In particular, is it always the case that a circular synchronizing automaton
on n states with letters having rank at least n − 1 is simple (semisimple)?
What about when it is considered one-cluster automata? Some interesting
cases in which one can prove (or disprove) simplicity (semisimplicity) could
be the series of slowly synchronizing automata found in [3].
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5. Babcsànyi, I.: Automata with Finite Congruence Lattices. Acta Cybernetica 18(1),
155–165 (2007)
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Abstract. Under the assumption P �=NP, we prove that two natural
problems from the theory of synchronizing automata cannot be solved in
polynomial time. The first problem is to decide whether a given reachable
partial automaton is synchronizing. The second one is, given an n-state
binary complete synchronizing automaton, to compute its reset threshold
within performance ratio less than d ln (n) for a specific constant d > 0.

1 Testing for Synchronization

A deterministic finite automaton (DFA) A is a triple 〈Q,Σ, δ〉 where Q is the
state set, Σ is the input alphabet and δ : Q×Σ → Q is the transition function.
If δ is totally defined on Q×Σ then A is called complete, otherwise A is called
partial. The transition function can be naturally extended to Σ∗ as follows. For
every state q ∈ Q we let δ(q, λ) = q where λ is the empty word, and for every
u ∈ Σ∗ we inductively define δ(q, ua) = δ(δ(q, u), a) for each a ∈ Σ whenever
both δ(q, u) and δ(δ(q, u), a) are defined. Sometimes we simplify the notation by
writing S.w instead of {δ(q, w) | q ∈ S} for a subset S ⊆ Q and a word w ∈ Σ∗.

A DFA A = 〈Q,Σ, δ〉 is called synchronizing if there exists a word w ∈ Σ∗

such that |Q.w| = 1. Notice that here, in contrast to some other versions of
synchronizability studied in the realm of partial automata (see e.g. [7]), w is not
assumed to be defined at every state. Each word w with this property is said to
be a reset word for A . The minimum length of reset words is called the reset
threshold of A and denoted by rt(A ). Analogously, a word w synchronizes a
subset S ⊆ Q if |S.w| = 1.

Recall that a DFA A = 〈Q,Σ, δ〉 is called reachable if one can choose an
initial state q0 ∈ Q and a set of final states F ⊆ Q such that each state q ∈ Q is
accessible from q0 and co-accessible from F , i.e., there are words u, v ∈ Σ∗ such
that q0.u = q and q.v ∈ F . This case is of certain interest due to its applications
in DNA-computing, namely, reset words for partial reachable DFAs serve as con-
stants for the corresponding splicing systems (see e.g. [3]). It is known that the
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problem of testing whether or not a given strongly connected partial DFA is syn-
chronizing can be solved in polynomial time (see [11, Algorithm 3]). In contrast,
we show here that the problem becomes PSPACE-complete for reachable DFAs.

We use the following results from [12] about subset synchronization in com-
plete strongly connected DFAs.

Theorem 1 ([12, Theorem 7]). There exists a series An of complete strongly
connected 2-letter DFAs such that the minimum length of synchronizing words
for a certain set of states in An is of magnitude 2Ω(n).

Theorem 2 ([12, Theorem 10]). The following problem is PSPACE-complete:
given a complete strongly connected 2-letter DFA A and a set S of states in A ,
to decide whether or not S can be synchronized in A .

Now we reduce subset synchronization in complete strongly connected DFAs
to synchronization of partial reachable DFAs.

Lemma 1. For each complete strongly connected 2-letter DFA A =
〈Q, {a, b}, δ〉 and each subset S ⊆ Q one can construct in O(|Q|) time a reach-
able partial 3-letter DFA B = 〈Q′, {a, b, c}, δ′〉 with at most 2|Q| states with the
following properties.

1. If u ∈ {a, b}∗ synchronizes S in A , then the word cu synchronizes B.
2. If w ∈ {a, b, c}∗ synchronizes B then w has a suffix u ∈ {a, b}∗ that syn-

chronizes S in A .
3. S can be synchronized in A if and only if B is synchronizing.
4. If S cannot be synchronized in A by words of length less than R, then the

reset threshold of B is at least R.

Proof. Denote |S| by k and let S = {s0, s1, . . . , sk−1}. Take a k-element set
Z = {z0, z1, . . . , zk−1} and let Q′ = Q ∪ Z. Now define δ′ as follows:

δ′(q, x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(q, x) if q ∈ Q, x ∈ {a, b};
si if q = zi, x = c;

zi+1 (modk) if q = zi, x ∈ {a, b},
undefined if q ∈ Q, x = c.

Since the automaton A is strongly connected and the letter a acts as a cyclic
permutation on Z, the automaton B = 〈Q′, {a, b, c}, δ′〉 is reachable: one can
choose z0 as its initial state and Q as its set of final states.

Since Q′.c = S ⊆ Q, Claim 1 follows from the fact that c is undefined on Q
and the letters a, b act on Q in A and B in the same way. For Claim 2, let w
synchronize B. Since Z.a = Z.b = Z and c is undefined on Q, we conclude that
w should be of the form vcu where u, v ∈ {a, b}∗. Since Q′.vc = S, the word u
should synchronize S and Claim 2 follows. Claims 3 and 4 immediately follow
from Claims 1 and 2.

Theorem 3. Testing a given reachable partial 3-letter DFA for synchronization
is PSPACE-complete. There is a series of reachable partial 3-letter n-state DFAs
with reset threshold of magnitude 2Ω(n).
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Proof. The existence of a series of reachable partial 3-letter n-state DFAs with
reset threshold of magnitude 2Ω(n) follows from Theorem 1 and Claim 4 of
Lemma 1.

The problem of testing synchronization for reachable partial 3-letter DFAs is
PSPACE-hard by Theorem 2 and Claim 3 of Lemma 1. It remains to prove that
the problem is in PSPACE. Given a DFA 〈Q,Σ, δ〉, we can check whether it is
synchronizing storing only a current subset P initialized by Q. For this, in an
endless loop, we nondeterministically choose a letter a ∈ Σ and let P := P.a. If at
some step we have |P | = 1, we return “yes”, otherwise we continue the iteration.
Since this algorithm uses only O(|Q|) memory, the problem is in NPSPACE, but
NPSPACE = PSPACE by Savitch’s theorem [9].

The following lemma relies on the usual technique of encoding letters in states
(see e.g. [2]).

Lemma 2. For each reachable d-letter partial DFA A = 〈Q,Σ, δ〉, one can
construct in polynomial time a 2-letter reachable partial DFA B = 〈Q′, {a, b}, δ′〉
such that A is synchronizing if and only if B is synchronizing, |Q′| = d|Q| and
rt(A ) ≤ rt(B) ≤ d ∗ rt(A ) + 1 if A is synchronizing.

Proof. Let Σ = {a1, a2, . . . , ad}. We construct B by letting Q′ = Q × Σ and
defining δ′ : Q′ × {a, b} → Q′ as follows:

δ′((q, ai), x) =

⎧⎪⎨⎪⎩
(q, amin(i+1,d)) if x = a,

(δ(q, ai), a1) if x = b and ai is defined on q,

undefined if x = b and ai is undefined on q.

Thus, the action of a on a state q′ ∈ Q′ substitutes an appropriate letter
from the alphabet Σ of A for the second component of q′ while the action of
b imitates the action of the second component of q′ on its first component and
resets the second component to a1.

Given a word w = ai1bai2b . . . aikb ∈ {a, b}∗, let

r(w) = amin(i1,d)bamin(i2,d)b . . . amin(ik,d)b.

Define the map f : {a, b}∗ �→ Σ∗ by f(w) = amin(i1,d)amin(i2,d) . . . amin(ik,d).
Given w ∈ {a, b}∗, by the definition of f we get that if f(w) resets A then bw
resets B, and if w resets B then f−1(r(w)) resets A . The lemma follows.

As a straightforward corollary of Theorem 3 and Lemma 2 (for d = 3) we get
the main result of this section.

Corollary 1. Testing a given reachable partial 2-letter DFA for synchronization
is PSPACE-complete. There is a series of reachable partial 2-letter n-state DFAs
with reset threshold of magnitude 2Ω(n).
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2 Approximation of Reset Thresholds

In this section we restrict ourself to the case of complete DFAs. For this case,
testing for synchronization is polynomial. When a DFA is synchronizing, the
next natural problem is to calculate its reset threshold. It is known that a pre-
cise calculation of the reset threshold is computationally hard (see, e.g., [4,8]).
There are polynomial time algorithms that, given a synchronizing DFA, find a
reset word for it, see, e.g., [4]. These algorithms can be used as approximation
algorithms for calculating the reset threshold, and it is quite natural to ask how
good such a polynomial approximation can be. The quality of an approximation
algorithm is measured by its performance ratio, which for our problem can be
defined as follows. Let K be a class of synchronizing DFAs. We say that an
algorithm M approximates the reset threshold in K if, for an arbitrary DFA
A ∈ K, the algorithm calculates an integer M(A ) such that M(A ) ≥ rt(A ).

The performance ratio of M at A is RM (A ) =
M(A )

rt(A )
. The author [2] proved

that, unless P = NP, for no constant r, a polynomial time algorithm can approx-
imate the reset threshold in the class of all 2-letter synchronizing DFAs with
performance ratio less than r.

When no polynomial time approximation within a constant factor is possible,
the next natural question is whether or not one can approximate within a loga-
rithmic factor. Gerbush and Heeringa [5] conjectured that if P �= NP, then there
exists α > 0 such that no polynomial time algorithm approximating the reset
threshold in the class of all synchronizing DFAs with a fixed number k > 1 of
input letters achieves the performance ratio α logn at all n-state DFAs. Using a
reduction from the problem Set-Cover and a powerful non-approximation result
from [1], Gerbush and Heeringa proved a weaker form of this conjecture when
the number of input letters is allowed to grow with the state number.

Here we prove the conjecture from [5] in its full generality, for each fixed size
k > 1 of the input alphabet. Though we depart from the same reduction from
Set-Cover as in [5], we use not only the result from [1], but also some ingredients
from its proof, along with an appropriate encoding of letters in states.

Given a universe U = {u1, . . . , un} and a family of its subsets S =
{S1, . . . , Sm} ⊆ 2U such that

⋃
Sj∈S Sj = U , Set-Cover is the problem of finding

there a minimal sub-family C ⊆ S that covers the whole universe in the sense that⋃
Sj∈C Sj = U . Denote the size of the minimal sub-family by OPT (U ,S). Set-

Cover is a classic NP-hard combinatorial optimization problem, and it is known
that it can be approximated in polynomial time to within ln (n)−ln (ln (n))+Θ(1)
(see [6,10]).

The following transparent reduction from Set-Cover is presented in [5]. Given
a Set-Cover instance (U ,S), define the automaton

A (U ,S) = 〈U ∪ {q̂}, Σ = {a1, . . . am}, δ〉
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where the transition function is defined as follows:

δ(u, ai) =

{
q̂, u ∈ Si

u, u /∈ Si.

Remark 1. Let A = 〈Q,Σ, δ〉 be the automaton defined by (U ,S) as above.
Then rt(A ) = OPT (U ,S), |Q| = |U|+ 1, |Σ| = |S|.

The following powerful result has been obtained in [1].

Theorem 4 ([1, Theorem 7]). Unless P = NP, no polynomial time algorithm
can approximate Set-Cover within performance ratio less than csc lnn, where n
is the size of the universe and csc > 0.2267 is a constant.

Here we prove the aforementioned conjecture from [5] by encoding a binary
representation of letters in states and using some properties from the proof of
Theorem 4.

Lemma 3. For every m-letter synchronizing DFA A = 〈Q,Σ, δ〉, there is a
2-letter synchronizing DFA B = B(A ) = 〈Q′, {0, 1}, δ′〉 such that

rt(A )�log2 m + 1� ≤ rt(B) ≤ �log2 m + 1�(1 + rt(A )).

B has at most 4m|Q| states and can be constructed in time polynomial of m and
|Q|.

Proof. Let Σ = {a1, . . . , am} and for simplicity assume that m is a power of
2, i.e., m = 2k (otherwise we can add at most m − 1 letters with trivial action
without impact on the bounds). Let � : {0, 1}k �→ Σ be a bijective function.
Set Q′ = Q × {0, 1}≤k and define the transition function δ′ : Q′ × {0, 1} → Q′

as follows. For each q ∈ Q, each binary sequence w ∈ {0, 1}≤k and each bit
x ∈ {0, 1}, we let

δ′((q, w), x) =

⎧⎪⎨⎪⎩
(q, wx) if |w| < k;

(q.�(w), λ) if |w| = k, x = 1;

(q, w) if |w| = k, x = 0.

(1)

Let u = aj1aj2 . . . ajt be a reset word for A . Then the word

1k+1�−1(aj1)1 . . . �−1(ajt)1

is reset for B and its length equals (k + 1)(t + 1). The upper bound follows.
In order to prove the lower bound it is enough to consider the shortest binary

word u which synchronizes the subset (Q, λ) in B. Since u is chosen shortest,
u = w11w21 . . . wr1 where |wj | = k for each j ∈ {1, . . . r}. Indeed, after applying
a word w ∈ {0, 1}k to the state of the form (q, λ) it make no sense to apply 0
in view of the third choice of definition 1. Then the word �(w1)�(w2) . . . �(wr)
resets A and the lower bound follows. ��
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Now, suppose that for some constant d > 0, there is a polynomial time algo-
rithm f2 such that

rt(B) ≤ f2(B) ≤ d ln (n)rt(B)

for every 2-letter n-state synchronizing DFA B. Then Lemma 3 implies that for
each m ≥ 2 there is also a polynomial time algorithm fm such that

rt(A ) ≤ fm(A ) ≤ d ln (4nm)(1 + rt(A ))

for every m-letter n-state synchronizing DFA A . Indeed, such algorithm first
constructs B(A ) with at most 4nm states as in Lemma 3, and then runs f2 on
B(A ):

rt(A ) ≤ fm(A ) =
f2(B(A ))

�log2 m + 1� ≤ d ln (4nm)(rt(A ) + 1).

Combining this with Theorem 4 and Remark 1 we immediately get the following
corollary.

Corollary 2. Let g(n) be an upper bound on the cardinality of the family S as
a function of the size of the universe U in the instances of Set-Cover witnessing
Theorem 4. Then, unless P = NP, no polynomial time algorithm approximates
reset threshold with performance ratio d

logn g(n)+1 ln (n) for any d < csc in the

class of all 2-letter synchronizing automata.

Thus it suffices to find a lower bound on the size of the universe U and an
upper bound on the size of the family of subsets S in the instances of Set-Cover
that witness Theorem 4. Namely, we need to find a polynomial upper bound for
g(n).

Due to the space constraints, we use some notions from [1] without going into
details. Recall that a PCP instance is a triple (X,F, Φ) where X = {x1, . . . , xn}
is a set of formal variables that range over a domain F and Φ = {φ1, . . . , φm}
is a so-called uniform collection of local tests, m = poly(n). Essentially in the
proof of non-approximability of Set-Cover in [1], a PCP instance (X,F, Φ) is

duplicated D = Θ( |Φ|
|X|) times and then polynomially reduced to Set-Cover. The

universe of Set-Cover instance U is defined as {1, . . . , D} × Φ × B where B is
a so-called universal set and does not matter for us. It follows that the rough
lower bound for the size of the universe U is |Φ|.

The size of the family of subsets S is equal to D|X ||F |+ |Φ||F |d where F is
a field of cardinality at most |X | and d ≥ 2 is a positive integer which can be
taken equal 3. Hence the upper bound for |S| is Θ(1)|Φ||X |d. Thus we get that

log|U| |S| ≤
d + log|X| |Φ|

log|X| |Φ|
.

Notice that |Φ| is only restricted to be some polynomial of |X |, i.e., it can be
chosen to be |X |r for an arbitrary large constant r. As a conclusion, we get the
following lemma, which gives a nice property of Set-Cover itself.
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Lemma 4. Given any γ > 0, unless P = NP, no polynomial time algorithm
approximates the Set-Cover with performance ratio d lnn for any d < csc in the
class of all Set-Cover instances (U ,S) satisfying log|U| |S| ≤ 1 + γ.

Combining this with Corollary 2 gives us the second main result.

Theorem 5. Unless P = NP, no polynomial time algorithm approximates the
reset threshold with performance ratio less than 0.5csc lnn in the class of all
n-state synchronizing DFAs with 2 input letters.

Of course, the same bound holds for any fixed non-singleton alphabet.
It is known (see, e.g., [6,10]) that the greedy algorithm for Set-Cover has a

logarithmic performance ratio so the bound of Theorem 4 is tight. A natural
question is whether or not the bound in Theorem 5 is tight. In this connection
we mention that Ananichev (unpublished) has recently constructed a series of
synchronizing DFAs for which the greedy algorithm from [4] cannot approximate
reset threshold with a logarithmic performance ratio.

Acknowledgement. The author thanks the anonymous referees for their useful
remarks and suggestions.
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Abstract. We study the problem of synchronization of automata with
random inputs. We present a series of automata such that the expected
number of steps until synchronization is exponential in the number of
states. At the same time, we show that the expected number of letters
to synchronize any pair of the famous Černý automata is at most cubic
in the number of states.

1 Introduction

A complete deterministic finite automaton A , or simply automaton, is a triple
〈Q,Σ, δ〉, where Q is a finite set of states, Σ is a finite input alphabet, and
δ : Q × Σ �→ Q is a totally defined transition function. Following standard
notation, by Σ∗ we mean the set of all finite words over the alphabet Σ, including
the empty word ε. The function δ naturally extends to the free monoid Σ∗; this
extension is still denoted by δ. Thus, via δ, every word w ∈ Σ∗ acts on the set Q.

An automaton A is called synchronizing, if there is a word w ∈ Σ∗ which
brings all states of the automaton A to a particular one, i.e. there exists a state
t ∈ Q such that δ(s, w) = t for every s ∈ Q. Any such word w is said to be
a reset (or synchronizing) word for the automaton A . The minimum length of
reset words for A is called the reset threshold of A . Note, that the language L of
synchronizing words of the automaton A is a two-sided ideal, i.e. Σ∗LΣ∗ = L .
We say that that the word w synchronizes a pair {s, t} if δ(s, w) = δ(t, w).

Synchronizing automata serve as transparent and natural models of error-
resistant systems in many applied areas such as robotics, coding theory, and
bioinformatics. At the same time, synchronizing automata surprisingly arise in
some parts of pure mathematics: algebra, symbolic dynamics, and combinatorics
on words. See recent surveys by Sandberg [9] and Volkov [12] for a general
introduction to the theory of synchronizing automata.

The interest to the field is heated also by the famous Černý conjecture. In
1964 Černý exhibited a series Cn of automata with n states whose reset threshold
equals (n−1)2 [3]. Soon after he conjectured, that this series represents the worst
possible case, i.e. the reset threshold of every n-state synchronizing automaton
is at most (n− 1)2. In spite of its simple formulation and intensive researchers’
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efforts, the Černý conjecture remains unresolved for fifty years. The best known
upper bound on the reset threshold of a synchronizing n-state automaton is
n3−n

6 by Pin [7].
The focus of this paper is on probabilistic aspects of synchronization. One

general question that was actively studied in the literature is the following:
what are synchronizing properties of a random automaton? Skvortsov and Zaks
have shown that a random automaton with sufficiently large number of letters
is synchronizing with high probability [10]. Later on, they proved that a random
4-letter automaton is synchronizing with a positive probability that is indepen-
dent of the number of states [14]. The last step in this direction seems to be
done by Berlinkov [2]. He has shown that a random automaton over a binary
alphabet is synchronizing with high probability. Another direction within this
setting is devoted to reset thresholds of random synchronizing automata. It was
shown in [10] that a random automaton with large number of letters satisfies
the Černý conjecture with high probability. Furthermore, computational exper-
iments performed in [11,6] suggest that expected reset threshold of a random
synchronizing automaton is sub-linear.

In [5] probability distributions over states of an automaton A were used to
define the synchronizing probability function of A . This function encompasses
various synchronizing properties of A .

The setting of the present paper is different. In our considerations we investi-
gate how random input acts on a fixed automaton. Assume that several copies
of a synchronizing automaton A simultaneously read a common input from
a fixed source of random letters. Initially these automata may be in different
states. What is the expected number of steps E until all copies will be in the
same state? We can give the following illustration of this approach. Let D be a
decoder of a code. Due to data transmission errors the decoder D may be in a
different state compared to a correct decoder Dc. Then the number E computed
for decoders D and Dc represents an average number of steps before recovery of
the decoder D after an error.

Our setting heavily depends on a model of a random input. In the present
paper we restrict ourselves to a binary alphabet Σ = {a, b} and the Bernoulli
model, i.e. every succeeding letter is drawn independently with probability p for
the letter a and probability q = 1 − p for the letter b. In section 2 we present a
series of n-state automata Un over Σ and a pair S such that the expected number
of steps to synchronize S is exponential in n. At the same time, in section 3 we
show that the expected number of steps to synchronize any pair of the famous
example Cn by Černý is at most cubic in n. These results reveal that despite the
fact that synchronization of Cn is hard in the deterministic case, it is relatively
easy in the random setting.

2 Automata Un with the Sink State

Let Σ be a binary alphabet {a, b}. Let Un be the minimal automaton recogniz-

ing the language Ln, where Ln is equal to Σ∗a
n+1
2 b

n−1
2 Σ∗ if n is odd, and to
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Σ∗a
n
2 b

n
2 Σ∗ if n is even. Note, that the automaton Un is synchronizing, and its

language of synchronizing words coincides with Ln.
First, we will consider the case when n is odd. Let us define Un more formally,

see fig. 1. The set of states of Un is equal to {1, 2, . . . n + 1}. The transition
function δ of Un is defined as follows:

δ(i, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i + 1, if i < n+3

2

i, if i = n+3
2

2, if n+3
2 < i < n + 1

n + 1, if i = n + 1;

δ(i, b) =

⎧⎪⎨⎪⎩
1, if i < n+3

2

i + 1, if n+3
2 ≤ i < n + 1

n + 1, if i = n + 1.

1 2 3 4 5 6 7 8b

a

a, b
a a a a b b b

b
b

b

a

a

Fig. 1. Automaton U7

Let B(p, q) be the source of random letters such that each letter is drawn
independently with probability p for the letter a and probability q = 1 − p for
the letter b. Let A = 〈Q,Σ, δ〉 be a synchronizing automaton. We consider the
following random process:

1. S := Q
2. Until |S| = 1 do

3. x← B(p, q)
4. S := δ(S, x)

We start with the set S equal to the state set Q. On each step we draw a random
letter x from the source B(p, q) and apply it to S. We stop when S is a singleton.

In general, we are interested in the average number of steps that this process
takes for a given automaton A . In particular, we have the following theorem.

Theorem 1. The expected number of letters, that are drawn from B(p, q), until
Un is synchronized, is equal to 1

p
n+1
2 q

n−1
2

if n is odd, and is equal to 1

p
n
2 q

n
2

if n

is even.

Proof. We will only prove the theorem for the case when n is odd. Proof of the
other case is similar. It is rather easy to see that the word w synchronizes the
automaton Un if and only if δ(1, w) = n + 1. Thus, the average number of steps
in our random process equals the average length of a random walk that brings
the state 1 to the state n + 1, where the probability of the transition labeled by
a is p, and the probability of the transition labeled by b is q. It is well-known
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how to compute the latter quantity1 [8, section 6.2]. For 1 ≤ i ≤ n + 1 let μi be
the expected length of a random walk that brings the state i to the state n + 1.
These quantities necessarily satisfy the following system of equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1 = pμ2 + qμ1 + 1 (1)

μi = pμi+1 + qμ1 + 1, if 1 ≤ i ≤ n+1
2 (2)

μn+3
2

= pμn+3
2

+ qμn+5
2

+ 1 (3)

μi = pμ2 + qμi+1 + 1, if n+5
2 ≤ i ≤ n− 1 (4)

μn = pμ2 + qμn+1 + 1 (5)

μn+1 = 0 (6)

We will solve this system in several steps:

1. Let us show that μi = μ1 − pi−1−1
pi−pi−1 for 2 ≤ i ≤ n+3

2 . Equation (1) implies
that this statement is true for i = 2. Suppose now that the statement is true for

μi. Let us show that it is true for μi+1. From equation (2) we get μ1− pi−1−1
pi−pi−1 =

pμi+1 + qμ1 + 1. Therefore, μ1 − pi−1
pi+1−pi = μi+1.

We will denote p
n+1
2 −1

p
n+3
2 −p

n+1
2

as C in order to simplify notation. Therefore, μn+3
2

=

μ1 − C.
2. Equation (3) immediately implies μn+5

2
= μn+3

2
− 1

q . Therefore, we have μn+5
2

=

μ1 − C − 1
q .

3. Now we will show that μi = μ1 − C

qi−
n+5
2

− 1

qi−
n+3
2

for n+5
2 ≤ i ≤ n. This

statement is true for i = n+5
2 . Let us show that it is true for every succeeding

i ≤ n. Since μ2
(1)
= μ1 − 1

p we can rewrite equation (4) in the following way:

μi = pμ1 + qμi+1. Our assumption states that μi = μ1 − C

qi−
n+5
2

− 1

qi−
n+3
2

.

Therefore, qμ1− C

qi−
n+5
2

− 1

qi−
n+3
2

= qμi+1. Finally, μi+1 = μ1− C

qi−
n+3
2

− 1

qi−
n+1
2

.

Note, we have μn = μ1 − C

q
n−5
2

− 1

q
n−3
2

.

4. Equation (5) and (6) imply μn = pμ1.
Therefore, μ1 = C

q
n−3
2

+ 1

q
n−1
2

= qC+1

q
n−1
2

= 1

p
n+1
2 q

n−1
2

.

We also want to mention the following simple fact. If an automaton A has a
synchronizing word w of length � then the expected number of letters, that are
drawn from B(p, q), until A is synchronized, is at most �

p�aq�−�a
, where �a is the

number of letters a in the word w.

3 The Černý Automata Cn

Now we study a classical example introduced by Černý in 1964 [3]. Recall the
definition of the Černý automaton Cn. The state set of Cn is Q = {0, 1, . . . , n−1},
and the letters a and b act on Q as follows.

1 It is also called the mean absorption time of a Markov chain.
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δ(i, a) =

{
1 if i = 0,

i if i > 0;
δ(i, b) =

{
i + 1 if i < n− 1,

0 if i = n− 1.

The reset threshold of Cn is equal to (n− 1)2, see [1,4,3].
The goal of the present section is to find the expected number of letters, that

are drawn from B(p, q), until the pair of states {1, n+1
2 }, when n is odd, and the

pair {1, n+2
2 }, when n is even, is synchronized. At the same time, we will see

that the expectation for these pairs is the largest among other pairs.
Let A = 〈Q,Σ, δ〉 be an automaton. The pair automaton P(A ) is defined as

follows. The set of states of P(A ) is equal to {{s, t} | s �= t}∪{z}. The transition
function δP of P(A ) for each x ∈ Σ, s, t ∈ Q is defined by the following rules:

δP({s, t}, x) =

{
{δ(s, x), δ(t, x)}, if δ(s, x) �= δ(t, x)

z, if δ(s, x) = δ(t, x);
δP(z, x) = z.

Note, that a word w that synchronize a pair {s, t} labels a path in P(A ) from
{s, t} to z. Furthermore, a word w is synchronizing for A if and only if w is
synchronizing for P(A ). The proof of this easy fact can be found for instance
in [12].

First, let n be a positive odd integer. In order to prove the main result of this
section we will require another representation of the pair automaton of Cn. We
will denote it by Pn. The state set of Pn is the set of ordered pairs

{(i, �) | 0 ≤ i ≤ n− 1, 1 ≤ � ≤ n− 1

2
} ∪ {z}.

The transition function δ is defined as follows.

δ(z, x) = z for every x ∈ Σ,
δ((i, �), b) = ((i + 1) mod n, �) for every admissible i and �.
δ((i, �), a) = (i, �) for every admissible i and � with the exception of the following
cases:
δ((0, 1), a) = z,
δ((0, �), a) = (1, �− 1) if 2 ≤ � ≤ n−1

2 ,
δ((n− �, �), a) = (n− �, � + 1) if 1 ≤ � ≤ n−3

2 ,
δ((n+1

2 , n−1
2 ), a) = (1, n−1

2 ).

Lemma 1. Let n be a positive odd integer. The automaton Pn is isomorphic
to the pair automaton of Cn.

Proof. We will construct the desired isomorphism. The sink state z of the pair
automaton is mapped to the sink state z of Pn. Let {s, t} be an arbitrary pair
of states. Let δC be the transition function of the automaton Cn. There is a
positive integer m that satisfies equations δC (s, bm) = t and δC (t, bn−m) = s.
Let � be the minimum of m and n−m. Since n is odd m �= n−m. Let

i =

{
s, if δC (s, b�) = t

t, if δC (t, b�) = s.
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Then the pair {s, t} of the pair automaton is mapped to the state (i, �) of the
automaton Pn. It is easy to check that the presented mapping is an isomorphism.

Now we are ready to formulate the main result of this section.

Theorem 2. Let n be a positive odd integer. The expected number of letters,
that are drawn from B(p, q), until the pair {1, n+1

2 } of Cn is synchronized, is

equal to (n−1)((n−1)2+q(3n−5)+4q2)
8pq2 .

Proof. It is not hard to see that a word w labels a path from (i, �) to z in
the automaton Pn if and only if the word w synchronizes the pair {i, (i + �)
mod n} of the automaton Cn. Thus, the expected number of letters until the
pair {1, n+1

2 } is synchronized is equal to the expected length of a random walk
in automaton Pn from the state (1, n−1

2 ) to the state z, where the probability
of the transition labeled by a is p, and the probability of the transition labeled
by b is q. For 0 ≤ i ≤ n− 1 and 1 ≤ � ≤ n−1

2 let μi,� be the expected length of a
random walk that brings the state (i, �) of Pn to the state z. As in the proof of
the theorem 1 these values have to satisfy a particular system of linear equations,
see [8, section 6.2]. For convenience, we will split this system into three parts.
The first part:⎧⎪⎪⎨⎪⎪⎩

μ0,1 = qμ1,1 + 1 (1)
μi,1 = pμi,1 + qμi+1,1 + 1, if 1 ≤ i ≤ n− 2 (2)
μn−1,1 = pμn−1,2 + qμ0,1 + 1 (3)
μz = 0

The second part, 2 ≤ � ≤ n−3
2 :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ0,� = pμ1,�−1 + qμ1,� + 1 (4)
μi,� = pμi,� + qμi+1,� + 1, if 1 ≤ i ≤ n− �− 1 (5)
μn−�,� = pμn−�,�+1 + qμn−�+1,� + 1, (6)
μi,� = pμi,� + qμi+1,� + 1, if n− � + 1 ≤ i ≤ n− 2 (7)
μn−1,� = pμn−1,� + qμ0,� + 1, (8)

And the third part:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ0,n−1
2

= pμ1,n−3
2

+ qμ1,n−1
2

+ 1 (9)

μi, n−1
2

= pμi,n−1
2

+ qμi+1,n−1
2

+ 1, if 1 ≤ i ≤ n−1
2 (10)

μn+1
2 ,n−1

2
= pμ1,n−1

2
+ qμn+3

2 ,n−1
2

+ 1, (11)

μi, n−1
2

= pμi,n−1
2

+ qμi+1,n−1
2

+ 1, if n+3
2 ≤ i ≤ n− 2 (12)

μn−1,n−1
2

= pμn−1,n−1
2

+ qμ0,n−1
2

+ 1, (13)

Let us resolve the first part. Applying equations (2) in successive order we get

μ1,1
(2)
= μn−1,1 + n−2

q

(3)
= pμn−1,2 + qμ0,1 + 1 + n−2

q . Since μn−1,2
(8)
= μ0,2 + 1

q

(4)
=

pμ1,1 + qμ1,2 + 1 + 1
q and μ0,1

(1)
= qμ1,1 + 1 we have μ1,1 = p(pμ1,1 + qμ1,2 +
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1 + 1
q ) + q(qμ1,1 + 1) + 1 + n−2

q . After trivial simplification, using the fact that

1− p2 − q2 = 2pq, we obtain

2μ1,1 = μ1,2 +
n− p

pq2
(14)

Let us focus on the second part. Let 2 ≤ � ≤ n−3
2 . Applying equations (5)

several times in successive order we get μ1,�
(5)
= μn−�,� + n−�−1

q

(6)
= pμn−�,�+1 +

qμn−�+1,� + 1 + n−�−1
q . Since μn−�,�+1

(7 or 12)
= μn−1,�+1 + �−1

q

(8or 13)
= μ0,�+1 +

�
q

(4or 9)
= pμ1,� + qμ1,�+1 + 1 + �

q and μn−�+1,�
(7)
= μn−1,� + �−2

q

(8)
= μ0,� + �−1

q

(4)
=

pμ1,�−1 + qμ1,� + 1 + �−1
q we have μ1,� = p(pμ1,� + qμ1,�+1 + 1 + �

q ) + q(pμ1,�−1 +

qμ1,�+1+ �−1
q )+1+ n−�−1

q . After simplification we obtain the following equation:

2μ1,� = μ1,�+1 + μ1,�−1 +
n− p

pq2
(15)

Let us resolve the third part. Applying equations (10) in successive order

we get μ1,n−1
2

(10)
= μn+1

2 ,n−1
2

+ n−1
2q

(11)
= pμ1,n−1

2
+ qμn+3

2 ,n−1
2

+ 1 + n−1
2q . Since

μn+3
2 ,n−1

2

(12)
= μn−1,n−1

2
+ n−5

2q

(13)
= μ0,n−1

2
+ n−3

2q

(9)
= pμ1,n−3

2
+ qμ1,n−1

2
+ 1 + n−3

2q

we have μ1,n−1
2

= pμ1,n−1
2

+ q(pμ1,n−3
2

+ qμ1,n−1
2

+ 1 + n−3
2q ) + 1 + n−1

2q . After an

easy simplification we obtain the following equation:

μ1,n−1
2

= μ1,n−3
2

+
q2 + n−1

2 q + n−1
2

pq2
(16)

Summing up equations (14),(15) for 2 ≤ � ≤ n−3
2 , and (16) we obtain the

following equation:

μ1,1 =
n− 3

2
· n− p

pq2
+

q2 + n−1
2 q + n−1

2

pq2
(17)

Now we can show that

μ1,� = �μ1,1 −
�(�− 1)

2
· n− p

pq2
(18)

Equation (14) serves as the induction base. Using equation (15) we make the
induction step.

From equation (18) for � = n−1
2 we get μ1,n−1

2
= n−1

2 μ1,1 − (n−1)(n−3)
8 · n−p

pq2 .

Using (17) after tedious simplification we get the final result:

μ1,n−1
2

=
(n− 1)((n− 1)2 + q(3n− 5) + 4q2)

8pq2
(19)
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Note, that the leading term of μ1,n−1
2

is equal to n3

8pq2 . It is easy to see, that

the minimum of 1
8pq2 is reached at p = 1

3 . Therefore, the expected number of

letters until the pair {1, n+1
2 } of Cn is synchronized is close to the minimum for

the source of random letters B(13 ,
2
3 ). In this case we have

μ1,n−1
2

=
27n3

32
− 27n2

32
− 15n

32
+

15

32

In a similar way one can also prove the following theorem.

Theorem 3. Let n be a positive even integer. The expected number of letters,
that are drawn from B(p, q), until the pair {1, n+2

2 } of Cn is synchronized, is

equal to n((n−1)(n−2)+q(3n−6)+4q2)
8pq2 .
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Abstract. We prove that a minimal automaton has the minimal ad-
jacency matrix rank and the minimal adjacency matrix nullity among
all equivalent deterministic automata. Our proof uses equitable parti-
tion (from graph spectra theory) and Nerode partition (from automata
theory). This result leads to the notion of rank of a regular language L,
which is the minimal adjacency matrix rank of a deterministic automaton
that recognises L. We then define and focus on rank-one languages. We
also define the expanded canonical automaton of a rank-one language.

1 Introduction

The counting function1 CL : N → N of a language L over a finite alphabet
maps a natural number n into the number of words in L of length n defined as
CL(n) := |{w ∈ L | |w| = n}|.

The counting function is a fundamental object in formal language theory
and has been studied extensively (cf. [8,9]). If L is a regular language, we can
represent its counting function CL(n) using the n-th power of an adjacency
matrix of a deterministic automaton that recognises L as: CL(n) = IMnF ,
where M is an adjacency matrix, I is an initial vector and F is a final vector of
any deterministic automaton which recognises L (cf. Lemma 1 in [11]).

Our interest is in an “easily countable” class of languages, in the intuitive
sense of the word.

Ranking and Its Applications. Ranking is one of the variants of counting. The
ranking function of L over a finite alphabet A is a bijective function RL : L→ N
that maps a word w in L to its index in the lexicographic ordering ≺ over A∗

defined as RL(w) := |{v ∈ L | v ≺ w}|.
In 1985, Goldberg and Sipser introduced a ranking-based string compression

in [3]. Recently, the author studied a ranking-based compression on a regular
language to analyse its compression ratio and improve a ranking algorithm in
[11]. We show an example of a ranking-based compression on a regular language.

� The full paper of this work with more detailed description and many useful examples
is avalable at [12].

1 Also called growth function or combinatorial complexity.

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 76–83, 2014.
c© Springer International Publishing Switzerland 2014
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Example 1. The formal grammar of Uniform Resource Identifier (URI) is de-
fined in RFC 39862, and is known to be regular (cf. [10]). Because the
language of all URIs U is regular, we can apply a ranking-based com-
pression on a regular language. For example, the index of the URI w1 =
http://dlt2014.sciencesconf.org/ is:

RU (w1) = 728552296504796066382113700758455910393907656035063493.

The word w1 is 32 bytes long (|w1| = 32), whereas its index RU (w1) is 23 bytes
long (�log256 RU (w1)� = 23). w1 is compressed up to 72% and, clearly, we can
decompress it by the inverse of RU since ranking is bijective. �

In the case of a ranking on a regular language, the ranking function and
its inverse (unranking) of L can be calculated using the adjacency matrix of
the deterministic automaton L (cf. [2,11])3. The computational complexity of
an unranking function is higher than a ranking function because the former
requires matrix multiplication but the latter does not (cf. Table 1 in [11]). In
Example 1, the calculation of ranking (compression) was performed in less than
one second; however, the calculation of unranking (decompression) took about
two minutes due to the cost of matrix multiplication (the naive algorithm for
it has cubic complexity). The minimal automaton of U has 180 states, and its
multiplication cost is high in practice.

Rank-one Languages and Our Results. There are several classes of matrices
that have a matrix power that can be computed efficiently (e.g. diagonalisable
matrices and low-rank matrices). We focus on rank-one matrices from these
classes. As we describe in Section 4, the power of a rank-one matrix has con-
stant time complexity with linear-time preprocessing. We investigate rank-one
languages : the class of languages for which the rank of minimal automaton is
one. We define an automaton as rank-n if its adjacency matrix is rank-n. Next,
we introduce the definition of the rank of a language.

Definition 1. A regular language L is rank-n if there exists a rank-n determinis-
tic automaton that recognises L, and there does not exist a rank-m deterministic
automaton that recognises L for any m less than n. �

However, Definition 1 raises the question of how to find a minimal rank. It is a
classical theorem in automata theory that for any regular language L, there is
a unique automaton A that recognises L that has a minimal number of states,
and A is called the minimal automaton of L. We intend to refine Definition 1 as
the following definition.

Definition 1 (refined). A regular language L is rank-n if its minimal automa-
ton is rank-n. �
2 http://www.ietf.org/rfc/rfc3986.txt
3 Example 1 uses RANS [10], which is open source software implemented by the author
based on the algorithms in [11].

http://dlt2014.sciencesconf.org/
http://www. ietf.org/rfc/rfc3986.txt
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Nevertheless, to achieve this we have to show that a minimal automaton has the
minimal rank for consistency of the above two definitions. Hence in Section 3,
we prove the following theorem, which has a more general statement.

Theorem 1. An automaton A is minimal if and only if both the rank and the
nullity of its adjacency matrix are minimal. �

Theorem 1 provides a necessary and sufficient condition for the minimality of an
automaton and is a purely algebraic characterisation of minimal automata. This
theorem is not obvious because, in general, for an automaton A, the number
of states of A and the rank (nullity) of A are not related. This is illustrated in
Figure 1, where the deterministic automaton B1 has three states and its rank is
two, whereas C1 has four states and its rank is one, which equals the rank of the
minimal automaton A1. Therefore, we cannot argue naively that “any minimal
automaton has the minimal rank (nullity)” by its minimality of states.

q0 q1

c, d

c, d

a, b a, b

A1

q0

q1

q2

b c, d

c, d

c, d
a

a, b

a, b

B1

q0

q1

q2

q3

b b

c

c

d

a

a

a

a

C1

M(A1) =

[
2 2
2 2

]
M(B1) =

⎡
⎣1 1 2
0 2 2
2 0 2

⎤
⎦ M(C1) =

⎡
⎢⎢⎣
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

⎤
⎥⎥⎦

Fig. 1. Three equivalent deterministic trim automata and their adjacency matrices

The proof consists of the use of two fundamental tools: equitable partition
from graph spectra theory and Nerode partition from automata theory.

2 Nerode Partition and Equitable Partition

We assume that the reader has a basic knowledge of automata, graphs and linear
algebra. All results in this section are well known, and for more details, we refer
the reader to [7] for automata theory and [4] for graph spectra theory.
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2.1 Automata and Languages

A deterministic finite automaton A is a quintuple A = 〈Q,A, δ, q0, F 〉; the finite
set of states Q, the finite set A called alphabet, the transition function δ : Q×A→
Q, the initial state q0, and the set of final states F ⊆ Q. If δ(q, w) = p is a
transition of automaton A, w is said to be the label of the transition. We call
a transition δ(p, w) = q successful if its destination is in the final states F of
A. A word w in A∗ is accepted by A if it is the label of a successful transition
from the initial state of A: δ(q0, w) ∈ F . The symbol |A| denotes the number of
states of an automaton A. The set of all accepted words of A, or the language
of A, is denoted by L(A). We call two automata equivalent if their languages
are identical. A deterministic automaton A = 〈Q,A, δ, q0, F 〉 is trim if, for each
state q ∈ Q, there exist two words v and w such that δ(q0, v) = q (accessible)
and δ(q, w) ∈ F (co-accessible).

2.2 Graphs and Adjacency Matrices

A multidigraph G is a pair G = 〈N,E〉; the set of nodes N , the multiset of edges
E. The adjacency matrix M(G) of G is an N ×N matrix defined by M(G)ij :=
the number of edges from node i to node j. The spectrum of a matrix M is the
multiset of the eigenvalues of M and is denoted by λ(M). The kernel of a matrix
M is the subspace defined by ker(M) = {v |Mv = 0}. We denote the dimension,
rank and nullity (the dimension of the kernel) of M by dim(M), rank(M) and
null(M) respectively. The following dimension formula is known as the rank-
nullity theorem:

dim(M) = rank(M) + null(M).

A partition π of a multidigraph G = 〈N,E〉 is a set of nodal sets π =
{C1, C2, . . . , Ck} that satisfies the following three conditions:

∅ /∈ π and
⋃
C∈π

C = N and ∀i, j ∈ [1, k], i �= j ⇒ Ci ∩ Cj = ∅.

Let Mi,j be the submatrix of M formed by the rows in Ci and the columns in
Cj . We call the matrix

πM =

⎡⎢⎣M1,1 · · · M1,k

...
...

Mk,1 · · · Mk,k

⎤⎥⎦ (2.1)

the partitioned matrix induced on M by π. The characteristic matrix S of π is
the |N |×k matrix defined Sij = 1 if i ∈ Cj and 0 otherwise. In general, S is a full
rank matrix (rank(S) = min(|N |, k) = k) and STS = diag(|C1|, |C2|, . . . , |Ck|)
where ST is the transpose of S. The quotient matrix Mπ of M by π is defined
as the k × k matrix:

Mπ = (STS)−1STMS (2.2)

where (STS)−1 = diag( 1
|C1| ,

1
|C2| , . . . ,

1
|Ck| ). That is, (Mπ)ij denotes the average

row sum of the block matrix (πM)i,j , in the intuitive sense of the word.
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2.3 Nerode Partition

Let q be a state of A. We denote by F (q) the set of words w that are labels
of a successful transition starting from q. It is called the future of the state q.
Two states p and q are said to be Nerode equivalent if and only if F (p) = F (q).
Nerode partition is the partition induced by Nerode equivalence.

Nerode’s theorem states that states of minimal automaton are blocks of
Nerode partition, edges and terminal states are defined accordingly (cf. [5,1]).
That is, note that the adjacency matrix of a minimal automaton equals the quo-
tient matrix of the adjacency matrix of an equivalent automaton by its Nerode
partition.

2.4 Equitable Partition

If the row sum of each block matrix Mi,j in Equation (2.1) induced by π is
constant, then the partition π is called equitable. In this case the characteristic
matrix S of π satisfies the following equation (cf. Article 15 in [4]):

MS = SMπ (2.3)

If v is an eigenvector of Mπ belonging to the eigenvalue λ, then Sv is an eigen-
vector of M belonging to the same eigenvalue λ. Indeed, left-multiplication of
the eigenvalue equation Mπv = λv by S yields:

λSv = (SMπ)v = (MS)v = M(Sv).

We conclude the the following lemma.

Lemma 1. Let π be an equitable partition of a matrix M and Mπ be its induced
quotient matrix, then λ(Mπ) ⊆ λ(M) holds. ��

3 Minimality Properties of Minimal Automata

The “if” direction of the Theorem 1 is obvious from the rank-nullity theorem.
The proof of the “only if” direction is based on the following two propositions.

Proposition 3.1. Let π be an equitable partition of a matrix M and Mπ be its
induced quotient matrix, then the following inequalities hold.

dim(Mπ) ≤ dim(M), rank(Mπ) ≤ rank(M), null(Mπ) ≤ null(M).

Proof. Since dim(Mπ) ≤ dim(M) is obvious, we prove only the rest two inequal-
ities.

Let v be a vector in the kernel of Mπ and w be a vector not in the kernel of
Mπ, then the following equations hold.

MSv = S(Mπv) = 0, (3.1)

MSw = S(Mπw) �= 0. (3.2)
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Equation (3.2) is induced by Mπw �= 0 and Su �= 0 for any u �= 0 since S has
full rank. Equation (3.1) and (3.2) imply

v ∈ ker(Mπ) ⇒ Sv ∈ ker(M) and w �∈ ker(Mπ) ⇒ Sw �∈ ker(M).

For any linearly independent vectors u and u′, the vectors Su and Su′ are also
linearly independent since S has full rank. This gives the rest two inequalities.

��
Proposition 3.2. Nerode partition is equitable.

Proof. Let A = 〈Q,A, δ, q0, F 〉 be a deterministic automaton and π =
(C1, C2, . . . , Ck) be its Nerode partition. The proof is by contradiction.

Assume π is not equitable, then there exist Ci and Cj in π and p and q
in Ci such that p and q have different number of transition rules into Cj . We
assume without loss of generality that the number of transition rules into Cj

of p is larger than q’s. Then there exists at least one letter a in A such that
δ(p, a) ∈ Cj and δ(q, a) /∈ Cj . Let pa = δ(p, a) and qa = δ(q, a), then pa and qa
are not Nerode equivalent since pa belongs to another partition of qa’s. Hence
F (pa) �= F (qa) holds and either F (pa) or F (qa) is not empty. We assume without
loss of generality that F (pa) is not empty. Because F (pa) �= F (qa) and F (pa) �= ∅,
there exists w in F (pa) such that w /∈ F (qa) and then w satisfies:

δ(p, aw) = δ(pa, w) ∈ F and δ(q, aw) = δ(qa, w) /∈ F.

This leads that p and q are not Nerode equivalent even though p and q belong
to the same Nerode equivalent class Ci. This is a contradiction. ��

4 Rank-one Languages and Expanded Canonical
Automata

In this section, we focus on rank-one languages and introduce expanded canonical
automata. Firstly, we introduce the well-known general properties of rank-one
matrices (cf. Proposition 1 in [6]).

Property 1 (characterization of a rank one matrix). Let M , n ≥ 2, be a n-
dimensional real matrix of rank one. Then

1. There exist vectors x,y ∈ Cn \ {0} such that M = xyT ;
2. M has at most one non-zero eigenvalue with algebraic multiplicity 1;
3. This eigenvalue is yTx. �

Property 1 shows that, for any rank-one language L, its counting function can
be represented as a monomial: CL(n) = αλn for n > 0 and natural numbers α
and λ. In addition, rank-one matrices have beneficial property that their power
can be computable in constant time with linear-time preprocessing. Indeed, for
any m-dimensional rank-one matrix M , there exists x, y such that xyT = M
hence, the following equation holds for λ = yTx:

Mn = (xyT )n = x(yTx)n−1yT = λn−1xyT = λn−1M.

This shows that (Mn)ij equals λn−1(xyT )ij , and the inner product of x and y
has linear-time complexity with respect to its dimension m.
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4.1 In-vector and Out-vector

For any rank-one matrix M , we can construct x and y such that M = xyT from
the ratio of the number of incoming edges and outgoing edges, respectively.

Definition 2. Let M be an n-dimensional rank-one matrix. The in-vector of M
is a non-zero row vector having minimum length in M and denoted by in(M).
Because M is rank-one, each row vector vi in M can be represented as vi = αi ·
in(M) for some natural number αi ≥ 1. The out-vector of M is the n-dimensional
column vector that has an i-th element defined as the above coefficient αi and
denoted by out(M).

By this construction, it is clear that an in-vector and out-vector satisfy
out(M) · in(M) = M .

�

4.2 Expanded Canonical Automata

First, we define a normal form of a rank-one automaton.

Definition 3. A rank-one automaton A is expanded normal if for its adjacency
matrix M , each element of the in-vector of M equals to zero or one. �

Secondly, we propose the operation expansion that expands the given matrix
(graph or automaton) algebraically.

Definition 4. Let πM and M be two matrices of dimension m and n, re-
spectively. We define πM as an expansion of M if there exists a partition
π = {C1, C2, . . . , Cn} of πM such that the characteristic matrix S of π satisfies:

πM = SM(STS)−1ST . �

Expansion is an algebraic transformation that increases the dimension of the
given matrix. Intuitively, expansion can be regarded as an inverse operation of
quotient. Indeed, for any expanded matrix πM of some n-dimensional M by π
and its characteristic matrix S, we have the following equation:

(πM)π = (STS)−1ST (πM)S = (STS)−1ST
(
SM(STS)−1ST

)
S = M

which holds by Equation (2.2) and Definition 4. If M is rank-one, then for any
expanded matrix πM of M , the out-vector of πM consists of same elements
as the out-vector of M . This reflects the invariance of the number of outgoing
transition rules of the Nerode equivalent states.

Finally, we define a canonical automaton of a rank-one language: expanded
canonical automaton. The minimal automaton of a regular language K is
uniquely determined by K, whereas the expanded canonical automaton of a rank-
one language L is not uniquely determined, but its graph structure is uniquely
determined by L.
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Definition 5. Let L be a rank-one language, then we define its expanded canon-
ical automaton πAL as the expanded automaton of the minimal automatonAL of
L by a partition π = {C1, C2, . . . C|AL|} such that, for all Ci ∈ π, |Ci| = in(AL)i
if in(AL)i �= 0 and 1 otherwise. �

By the definition, it is clear that for any rank-one language L, its expanded
canonical automaton is expanded normal (cf. A1 and its expanded canonical
automaton C1 in Example 1). We have introduced expanded canonical automata
for analysis and evaluation of the closure properties of rank-one languages. Be-
cause of the limitations of space, a detailed discussion of expanded canonical
automata is not possible here.
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Abstract. It is known that determinizing a nondeterministic input-
driven pushdown automaton (NIDPDA) of size n results in the worst

case in a machine of size 2Θ(n2) (R. Alur, P. Madhusudan, “Adding nest-
ing structure to words”, J.ACM 56(3), 2009). This paper considers the
special case of k-path NIDPDAs, which have at most k computations on
any input. It is shown that the smallest deterministic IDPDA equivalent
to a k-path NIDPDA of size n is of size Θ(nk). The paper also gives an
algorithm for deciding whether or not a given NIDPDA has the k-path
property, for a given k; if k is fixed, the problem is P-complete.

1 Introduction

In computations of an input-driven pushdown automaton (IDPDA), the current in-
put symbol determines whether the automaton pushes to the stack, pops from the
stack, or does not touch the stack. These automata were originally introduced by
Mehlhorn [18], and the early research on the model, carried out in the 1980s, was
mostly concerned with the computational complexity of the languages they rec-
ognize [4,9]. Alur and Madhusudan [1] reintroduced the model in 2004 under the
name of visibly pushdown automata, and considerably more work has been done
on the model since then [2,5,7]. Further equivalent automaton models studied in
recent literature include nested word automata [2,6,8,26] and pushdown forest au-
tomata [10]. Nested words provide a natural model for applications such as XML
document processing, where data has a dual linear-hierarchical structure.

In the 1980s, von Braunmühl and Verbeek [4] established that for input-
driven automata, nondeterminism is equivalent to determinism: this was done
by presenting a simulation of an n-state nondetermistic input-driven automa-
ton (NIDPDA) by a deterministic input-driven automaton (DIDPDA) with 2n2

states. Later, Alur and Madhusudan [1,2] proved that 2Ω(n2) states are necessary
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in the worst case. Thus, determinization of general NIDPDAs incurs a 2Θ(n2)

size blow-up. These and other complexity issues of input-driven automata are
reported in the authors’ [22] recent survey paper.

This paper investigates succinctness questions for a subclass of input-driven
automata, in which nondeterminism is regarded as a limited resource. In gen-
eral, various ways of quantifying the nondeterminism of automaton models have
been considered in the literature [11,12,14]. Possibly the most widely studied ap-
proach is to measure the number of accepting computations on each input string.
Unambiguous automata have a unique accepting computation on every accepted
input, whereas the number of rejecting computations is irrelevant. Similarly, in
finitely ambiguous automata, the number of accepting computations on each in-
put is bounded by a constant. When the number of accepting computations is
unbounded, one can consider its dependence on the length of the input string,
and accordingly distinguish between polynomially ambiguous and exponentially
ambiguous automata, etc. [16].

In the case of finite automata, it is well known that simulating an n-state un-
ambiguous finite automaton (UFA) by a deterministic finite automaton (DFA)
requires in the worst case 2n states, and converting a general nondeterministic
finite automaton (NFA) to a UFA requires 2n−1 states [17]. The authors [21] in-
troduced and studied unambiguous input-driven pushdown automata (UIDPDA)
and established analogous descriptional complexity trade-offs: determinizing an
n-state UIDPDA requires 2Θ(n2) states and the succinctness trade-off between
NIDPDA and UIDPDA is more or less the same.

Another approach to quantifying the nondeterminism is to limit the total
number of computations, whether accepting or rejecting. The simplest example
of this approach is a deterministic automaton with k initial states (a k-entry
automaton) where all allowed nondeterminism is in the choice of the initial state.
More generally, a nondeterministic automaton is said to be k-path, with k � 1,
if, for every input, there are at most k nondeterministic computations on that
input. An automaton that is k-path for some k is called finite-path. In the case of
finite automata, this measure has been studied under the name ‘leaf size’ [3,14]
or ‘tree width’ [23,24]. Multiple-entry DFAs also received some attention [13].

This paper defines finite-path input-driven automata, along with a more re-
stricted multiple-entry variant, and considers the descriptional complexity of
determinizing these models. A simulation of multiple-entry input-driven au-
tomata (MDIDPDA) by equivalent deterministic automata (DIDPDA) is de-
scribed in Section 3, where it is also proved to be optimal with respect to the
number of states. This result is fairly similar to the case of finite automata. On
the other hand, as shown in Section 4, transforming a finite-path NIDPDA to
a DIDPDA recognizing the same language incurs some complications specific
for input-driven automata. Nevertheless, the resulting complexity trade-off is
asymptotically comparable to the one in the case of finite automata.

A related question considered in this paper is the descriptional complexity
of converting a general NIDPDA to a finite-path automaton. In Section 5, it is
proved that in the worst case, a finite-path NIDPDA equivalent to an NIDPDA
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of the general form is not more succinct than a DIDPDA. The proof adapts the
ideas of Goldstine et al. [12], who investigated the succinctness of NFAs with
limited nondeterminism.

The last subject, investigated in Section 6, is the computational complexity
of deciding whether a given NIDPDA has the k-path property. If the number of
paths k � 1 is given, this problem is shown to be decidable. Furthermore, if k is
treated as a constant, then the problem is P-complete. However, the decidability
of testing whether a given NIDPDA has the finite path property (that is, is
k-path for some unknown k) remains open.

2 Definitions

This section recalls the basic definitions and notation of input-driven pushdown
automata. For more details on the applications of this model, the reader is re-
ferred to the seminal paper by Alur and Madhusudan [2], whereas its complexity
is surveyed in the authors’ [22] recent paper. General references on automata the-
ory and on descriptional complexity include a book by Shallit [27], a handbook
chapter by Yu [28] and a survey by Goldstine et al. [11].

In the following, Σ denotes a finite alphabet and Σ∗ is the set of strings over
Σ, the length of a string w ∈ Σ∗ is |w|, the reversal of w is wR, and the empty
string (of length 0) is ε. The cardinality of a finite set S is |S|.

In an input-driven pushdown automaton, the input alphabet Σ is split into
three disjoint parts as Σ = Σ+1 ∪ Σ−1 ∪ Σ0, where the symbols in Σ+1 and in
Σ−1 are called left brackets and right brackets, respectively, and the elements of
Σ0 are known as neutral symbols. The type of the current input symbol deter-
mines whether the automaton pushes onto the stack (Σ+1), pops from the stack
(Σ−1), or does not touch the stack (Σ0). Throughout this paper, this partition
is assumed whenever Σ is an input alphabet of an input-driven automaton.

Input-driven automata normally operate over well-nested strings, in which
every left bracket has a matching right bracket and vice versa. Well-nested strings
over Σ are formally defined by induction: the empty string is well-nested; every
symbol from Σ0 is a well-nested string; a concatenation of well-nested strings is
well-nested; for every well-nested string u and for every left bracket < ∈ Σ+1

and right bracket > ∈ Σ−1, the string <u> is also well-nested.
The definitions of input-driven automata given below assume that the input

string is always well-nested. For extended definitions of automata that can handle
ill-nested inputs, the reader is referred to Alur and Madhusudan [1], as well as
to the authors’ survey [22]. All results in this paper can be reformulated for
not necessarily well-nested strings without any difficulties. However, the well-
nestedness assumption leads to a clearer presentation.

2.1 Deterministic Automata

Definition 1. A deterministic input-driven pushdown automaton (DIDPDA) is
a 6-tuple A = (Σ,Q, Γ, q0, [δa]a∈Σ, F ), where
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– Σ = Σ+1 ∪Σ−1 ∪Σ0 is an input alphabet split into three disjoint parts;
– Q is a finite set of (internal) states of the automaton, with an initial state

q0 ∈ Q and with a subset of accepting states F ⊆ Q;
– Γ is a finite pushdown alphabet;
– the transition function by each left bracket symbol < ∈ Σ+1 is a partial

function δ< : Q→ Q×Γ , which, for a given current state, provides the next
state and the symbol to be pushed onto the stack;

– for every right bracket symbol > ∈ Σ−1, there is a partial function δ> : Q×
Γ → Q specifying the next state, assuming that the given stack symbol is
popped from the stack;

– for a neutral symbol c ∈ Σ0, the state change is described by a partial function
δc : Q→ Q.

A configuration of A is a triple (q, w, x), where q ∈ Q is the state, w ∈ Σ∗ is
the remaining input and x ∈ Γ ∗ is the stack contents. For a well-nested input
string w0 ∈ Σ∗, the computation of A on w0 is a uniquely determined sequence of
configurations, which begins with the initial configuration (q0, w0, ε), and proceeds
as follows. For each configuration with at least one remaining input symbol, the
next configuration is given by a single step transition function:

– for each left bracket < ∈ Σ+1, let (q,<w, x) �A (q′, w, γx), where δ<(q) =
(q′, γ);

– for every right bracket > ∈ Σ−1, let (q,>w, γx) �A (δ>(q, γ), w, x);
– for a neutral symbol c ∈ Σ0, define (q, cw, x) �A (δc(q), w, x).

Normally, the computation continues until the input string is exhausted, at which
point the stack shall always be empty; then the last configuration (q, ε, ε) is ac-
cepting if q ∈ F . If q is not in F , or if the computation ends prematurely by an
undefined transition, this is a rejecting computation. The language L(A) recog-
nized by the automaton is the set of all strings w ∈ Σ∗, on which the computation
from (q0, w, ε) is accepting.

Note that the next computation step depends on the top-of-stack symbol only
when the input symbol is a right bracket and the automaton accordingly pops
from the stack. When reading a left bracket or a neutral symbol, the computation
does not depend on the stack contents.

If the alphabet contains only neutral symbols, that is, if Σ+1 = Σ−1 = ∅,
then a DIDPDA becomes a deterministic finite automaton (DFA).

2.2 Nondeterministic Automata

In nondeterministic automata, the transition function is multi-valued, and ac-
cordingly, there may be multiple computations on the same input. A string is
considered accepted, if at least one of these computations is accepting.

Definition 2. A nondeterministic input-driven pushdown automaton
(NIDPDA) is defined as a 6-tuple B = (Σ,Q, Γ,Q0, [δa]a∈Σ, F ), in which
the input alphabet Σ = Σ+1 ∪ Σ−1 ∪ Σ0, the set of states Q, the pushdown
alphabet Γ , and the set of accepting states F ⊆ Q are as in Definition 1, and
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– there is a set of initial states Q0 ∈ Q, and a computation may begin from
any of them;

– for each left bracket symbol < ∈ Σ+1, the transition function δ< : Q→ 2Q×Γ

provides, for a given current state, a set of possible outcomes, which are pairs
of the next state and the stack symbol to be pushed;

– for every right bracket symbol > ∈ Σ−1, there is a function δ> : Q×Γ → 2Q

that lists all possible next states, if the given stack symbol is popped from the
stack;

– for a neutral symbol c ∈ Σ0, there is a function δc : Q→ 2Q.

A configuration of B is again a triple (q, w, x), with q ∈ Q, w ∈ Σ∗ and
x ∈ Γ ∗. On an input string w0 ∈ Σ∗, each configuration (q0, w0, ε), with q0 ∈
Q0, is called an initial configuration. For every configuration, all possible next
configurations are defined by a transition relation as follows:

– for each left bracket < ∈ Σ+1, and for all pairs (q′, γ) in δ<(q), let
(q,<w, x) �B (q′, w, γx);

– for every right bracket > ∈ Σ−1, and for all q′ ∈ δ>(q, γ), let (q,>w, γx) �B
(q′, w, x);

– for a neutral symbol c ∈ Σ0, for every q′ ∈ δc(q), let (q, cw, x) �B (q′, w, x).

Now, a computation of B on an input w0 is a sequence of configurations C0, C1,
. . . , Cm, with m � 0, where C0 is an initial configuration on w0, Ci �B Ci+1

for each i ∈ {0, . . . ,m−1}, and Cm has no next configuration. A computation is
accepting if it ends with a configuration (q, ε, ε), with q ∈ F . The language L(A)
recognized by the automaton is the set of all strings w ∈ Σ∗, on which there is
at least one accepting computation.

An NIDPDA B becomes a DIDPDA, if |Q0| = 1 and its transition functions
give at most one possible action for each input symbol, state and top stack
symbol. If there are only neutral symbols in the alphabet (Σ+1 = Σ−1 = ∅),
then an NIDPDA is a nondeterministic finite automaton (NFA).

2.3 Limited Nondeterminism

This paper considers nondeterministic input-driven automata in which the num-
ber of computations on every input string is bounded by a constant. The simplest
way of how this can happen is if the nondeterminism occurs only in the begin-
ning of the computation (that is, in the choice of the initial states) whereas the
transition function is deterministic. This leads to the notion of multiple-entry
DIDPDAs.

Definition 3. A multiple-entry DIDPDA (MDIDPDA) is a 6-tuple
(Σ,Q, Γ,Q0, [δa]a∈Σ , F ), which contains a set of initial states Q0 ⊆ Q in-
stead of a single initial state, with the rest of the components as in Definition 1.
If |Q0| = k, then such an automaton is called a k-entry DIDPDA.
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An MDIDPDA with no stack operations (with Σ+1 = Σ−1 = ∅) is a multiple-
entry DFA (MDFA), as studied by Holzer, Salomaa and Yu [13].

On each input string, a k-entry DIDPDA has exactly k computations. For gen-
eral NIDPDAs that may make nondeterministic choices anywhere in a computa-
tion, one can consider limitations on the amount of nondeterminism, measured
as the maximum number of computations on an input string.

Definition 4. An NIDPDA A = (Σ,Q, Γ,Q0, [δa]a∈Σ, F ) is called k-path if, for
every input string w ∈ Σ∗, A has at most k computations on w. An NIDPDA
that is k-path for some k is called a finite-path NIDPDA.

2.4 Lower Bound Methods

The study of descriptional complexity typically involves proving that every au-
tomaton of a certain kind recognizing a certain language must have at least
a certain number of states. Such statements are proved by specific proof tech-
niques known as lower bound methods. The lower bound method presented in
this section applies to DIDPDAs and employs a well-known idea commonly used
for DFAs.

For every string w over an alphabet Σ+1 ∪ Σ−1 ∪Σ0, the difference between
the number of left brackets and the number of right brackets in w is called the
depth of w. Let d be the depth of w; then, after processing w, any input-driven
automaton will have exactly d symbols in the stack.

Definition 5. Let Σ = Σ+1 ∪ Σ−1 ∪ Σ0 be an alphabet and let L ⊆ Σ∗. Let
S = {x1, . . . , xm} be a set of strings over Σ, and let d � 1 be an integer.

The set S is said to be a d-separator set for L if

(i) each string xi, with i ∈ {1, . . . ,m}, is of depth d and is a prefix of some
string in L;

(ii) for every two strings xi and xj, with 1 � i < j � m, there exists a string
wi,j , such that exactly one of the strings xiwi,j and xjwi,j is in L.

The notion of a d-separator set was used by Okhotin, Piao and Salomaa [20]
to obtain certain lower bounds for IDPDAs. The following new lower bound
condition involving this notion is adapted for the particular type of separator
sets used in this paper.

Lemma 1. Let L be a language over an alphabet Σ = Σ+1 ∪Σ−1 ∪Σ0, and let
S be a 1-separator set for L of the form S = {<x1, . . . , <xm}, for a fixed left
bracket < ∈ Σ+1 and for x1, . . . , xm ∈ Σ∗

0 . Then, every DIDPDA for L must
have at least m states.

Proof. Let A be an arbitrary DIDPDA for L. Each string <xi in S is a prefix
of a string in L, and hence the automaton A must reach the end of <xi in some
state qi. Since all these strings begin with the same left bracket < and continue
with only neutral symbols, the stack contents of A after reading each <xi is
independent of i.
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It is claimed that all states q1, . . . , qm are pairwise distinct. Indeed, if qi = qj ,
for some i �= j, then the configurations of A after reading <xi and <xj are
identical, and therefore, for any continuation w ∈ Σ∗, the string <xiw is accepted
if and only if <xjw is accepted. This means that for any string w, <xiw ∈ L if
and only if <xjw ∈ L, which contradicts the assumption that S is a separator
set for L. ��

3 From Multiple-entry DIDPDA to Ordinary DIDPDA

The precise succinctness trade-off between k-entry DIDPDAs and ordinary
DIDPDAs is determined in two steps. First, there is a transformation of an
arbitrary k-entry DIDPDA to an ordinary DIDPDA that recognizes the same
language. Later it will be proved that this transformation is optimal with respect
to the number of states.

3.1 Construction

On a given input, a k-entry DIDPDA A carries out k different computations
corresponding to the choice of the initial state. An ordinary DIDPDA B sim-
ulating A carries out a single computation, in which, at every point, it keeps
track of all k ongoing computations of A, remembering their states. On a left
bracket, each of the k instances of A has its own stack symbol to push, and thus
B pushes a k-tuple of stack symbols. Later, when a matching right bracket is
read, B pops this k-tuple, and each of the simulated instances of A receives its
own stack symbol. In order to match the stack symbols to the current states,
both the states and the stack symbols of B are ordered k-tuples, rather than just
sets of k elements.

A further detail of the construction is that any of A’s computations may
prematurely end by reaching an undefined transition. In this case, B puts a
special symbol for “failed” (−) in the corresponding component of its state.

Lemma 2. For every k-entry DIDPDA A, with a set of states Q and a stack
alphabet Γ , there exists and can be effectively constructed a standard DIDPDA
B with the set of states (Q ∪ {−})k \ {−}k and the stack alphabet Γ k, which
recognizes the same language.

Proof. Let A = (Σ,Q, Γ, {q10, . . . , qk0}, [δa]a∈Σ , F ) be the given k-entry DIDPDA,
where q10 , . . . , q

k
0 is any enumeration of its initial states.

Construct a standard DIDPDA B = (Σ, (Q∪ {−})k \ {−}k, Γ k, (q10 , . . . , q
k
0 ),

[δ′a]a∈Σ , F ′), where the transitions are defined as follows. A transition on each
neutral symbol c ∈ Σ0 simply applies the transition function of A to each com-
ponent of the state.

δ′c(q1, . . . , qk) =
(
δc(q1), . . . , δc(qk)

)
If qi = −, or if qi ∈ Q and δc(qi) is undefined, then the corresponding component
of the result is set to “failed” (−).
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For each left bracket < ∈ Σ+1, if the state of the simulating automaton B
is a k-tuple (q1, . . . , qk) ∈ (Q ∪ {−})k, let δ<(qi) = (q′i, γi) be A’s transition for
each component. Then define

δ′<(q1, . . . , qk) =
(
(q′1, . . . , q

′
k), (γ1, . . . , γk)

)
As in the previous case, if qi = −, or if δc(qi) is undefined, then the corresponding
component of the result is set to “failed” (−), whereas the stack symbol γi is
defined arbitrarily.

The transition for each right-bracket> ∈ Σ−1 is again defined componentwise.

δ′>
(
(q1, . . . , qk), (γ1, . . . , γk)

)
=
(
δ>(q1, γ1), . . . , δ>(qk, γk)

)
Finally, a k-tuple of states is an accepting state of B if one of its components

is an accepting state of A.

F ′ =
{

(q1, . . . , qk)
∣∣ ∃i : qi ∈ F

}
Note that the k-tuple (−, . . . ,−) is excluded from B’s set of states, because if

all simulated computations have failed, then B may reject straight away by an
undefined transition. ��

3.2 Lower Bound

The construction in Lemma 2 transforms an n-state k-entry DIDPDA to an
ordinary DIDPDA with (n + 1)k − 1 states.

The first lower bound argument proves that the construction in Lemma 2 is
optimal with respect to the number of states, that is, that (n+1)k−1 states are
necessary in the worst case, using an alphabet growing exponentially with n.

Lemma 3. For every k � 1 and n � k, there exists an alphabet Σk,n and a
language Lk,n over Σk,n recognized by a k-entry DIDPDA with n states and k
stack symbols, such that any DIDPDA for Lk,n needs (n + 1)k − 1 states.

Proof. The alphabet consists of one left bracket (Σk,n
+1 = {<}), one right bracket

(Σk,n
−1 = {>}), and a large number of neutral symbols indexed by partial func-

tions mapping numbers to numbers: Σk,n
0 = Xfunc ∪ Yfunc, where

Xfunc =
{
af
∣∣ f : {1, . . . , k} → {1, . . . , n, undefined}

}
,

Yfunc =
{
bg
∣∣ g : {1, . . . , n} → {1, . . . , k, undefined}

}
.

Consider the following language, in which every string consists of two such func-
tions, that their composition has a fixed point.

L̂k,n = {<afbg> | af , bg ∈ Σk,n
0 , ∃s ∈ {1, . . . , k} : g(f(s)) = s }.

A k-entry DIDPDA recognizing precisely the language L̂k,n would need to use
more than n states, because, besides verifying the fixed point of the composition,
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it would have to ensure that the given string is exactly of the form <afbg>. This
proof uses a slightly different language, which is defined by a k-entry DIDPDA
A with n states and k stack symbols recognizing it. This automaton shall accept
all well-formed strings from L̂k,n, and possibly some strings not of the form
<afbg>:

L(A) ∩ {<afbg> | af ∈ Xfunc, bg ∈ Yfunc } = L̂k,n.

Define the desired k-entry automaton A = (Σ,Γ,Q,Q0, [δa]a∈Σ , F ), with the set
of states Q = {q1, . . . , qn} and the stack alphabet Γ = {t1, . . . , tk}. The first k
of its states are initial (Q0 = {q1, . . . , qk}), and q1 is the only accepting state
(F = {q1}). The transitions of A are defined as follows.

δ<(qi) = (qi, ti), for all i ∈ {1, . . . , k}
δaf

(qi) = qf(i), for af ∈ Xfunc, i ∈ {1, . . . , k}
δbg (qj) = qg(j), for bg ∈ Yfunc, j ∈ {1, . . . , n}

δ>(qj , ti) =

{
q1, if i = j,
undefined, otherwise,

for all i, j ∈ {1, . . . , k}

All transitions not listed above are undefined. In particular, whenever f is un-
defined on i or g is undefined on j, the above transitions by af and bg are not
defined.

When A begins its computation in any initial state qi, with 1 � i � k, it
guesses a fixed point of g◦f . At the first left bracket <, the automaton remembers
the guess in the stack, as a symbol ti, and stays in state qi. After reading the
two neutral symbols af and bg, the state qi is transformed into qg(f(i)), and the
transition at the last right bracket > pops ti from the stack and checks that
g(f(i)) = i. Thus, A accepts an input of the form w = <afbg> if and only if
w ∈ L′

k,n.
The lower bound argument uses the following 1-separator set.

S = {<af | af ∈ Xfunc, ∃i ∈ {1, . . . , k} : f(i) is defined }

To see that S is a 1-separator set for L(A), consider any two distinct strings
<af1 , <af2 ∈ S, with f1 �= f2. Then there exists an argument i ∈ {1, . . . , k},
on which f1(i) is defined, and f2(i) is either undefined or defined differently
from f1(i). Let g be a partial function from {1, . . . , n} to {1, . . . , k}, defined, for
1 � j � n, as

g(j) =

{
i, if j = f1(i),
undefined, otherwise.

Then g(f1(i)) = i and hence <af1bg> ∈ L(A). On the other hand, for any �, if
g(f2(�)) is defined, then its value can only be i, whereas its argument � cannot
be i because g is not defined on f2(i). Therefore, g(f2(�)) �= � for all arguments
� ∈ {1, . . . , k}, which means that the string <af2bg> is not in L(A).

By Lemma 1, it follows that any DIDPDA for L(A) needs at least |S| =
(n + 1)k − 1 states. ��
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The above lemma shows that the construction in Lemma 2 cannot be im-
proved, at least not for unbounded alphabets. The next lower bound construc-
tion uses multiple-entry DIDPDAs over a small fixed alphabet. The construction,
generally speaking, encodes the language in Lemma 3 over a fixed alphabet, so
that the functions f and g are implemented by listing their values in unary no-
tation. Unfortunately, a multiple-entry DIDPDA for this language needs to use
more states than in Lemma 3, leading to a weaker lower bound.

Lemma 4. For every k � 1 and n � k, there exists a language Lk,n over an
alphabet Σ of size 6, which is recognized by a k-entry DIDPDA A with 2n + 2k
states and k stack symbols, whereas every DIDPDA recognizing Lk,n needs at
least nk states.

Proof. The alphabet Σ consists of a single pair of brackets and four neutral
symbols: Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b, c, d}. Before defining the
promised witness language Lk,n, consider the following base language.

L̂k,n = { <ai1b · · ·airbcj1d · · · cjsd> | r, s � 0, (∃z � k) jiz = z and iz � n }

All strings in L̂k,n belong to the set M0 = <(a∗b)∗(c∗d)∗> of well-formed strings.
The k-entry DIDPDA An,k constructed in this proof shall accept all strings from

L̂k,n and possibly some strings from outside of M0, so that

L(An,k) ∩ M0 = L̂k,n. (1)

(Note that a k-entry DIDPDA recognizing exactly L̂k,n would need more than
2n + 2k states.)

For an input string <ai1b · · ·airbcj1d · · · cjsd>, its substring aiz is referred to
as the zth a-component. Similarly, the substring cjz is called the zth c-component.

The set of states of An,k is chosen to be

Q = {p1, . . . , pk} ∪ {p′1, . . . , p′k} ∪ {q1, . . . , qn} ∪ {q′1, . . . , q′n},

of which the initial states are {p1, . . . , pk} and q1 is the only accepting state. The
set of stack symbols is {1, . . . , k}. At the beginning of the computation, Ak,n non-
deterministically choses an initial state pz, and this is the only nondeterminism
in the computation. When reading the first left bracket <, the automaton pushes
z to the stack. Then, using the states pz, pz−1, . . . p1 as a counter, Ak,n finds the
zth a-component aiz , and then uses the states q1, . . . , qn to count its length iz.

On the next symbol b, the automaton enters the state q′iz . If iz > n, the
computation fails. Otherwise, the computation proceeds through the remaining
symbols a and b without changing its state. Note that at this stage of the compu-
tation, the length of the a-component is stored in a “primed” state q′iz , because
the computation needs to remember that it has finished counting the length of
the a-component.

Eventually, the automaton reaches the first c-component in the state q′iz . This
second part of the input is formed of the symbols c, d rather than a, b, and hence
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the automaton can now reuse its states for a different purpose. First, it uses the
states q′iz , q′iz−1, . . . , q′1 as a counter to locate the izth c-component cjiz . Next,
using the states p1, . . . , pk, it measures the length of cjiz and stores it in a state
p′jiz . If jiz > k, the computation fails. Finally, the computation by-passes the

remaining c-components in the state p′jiz , and the pop-transition at the right
bracket > matches the state to the stack symbol to verify that jiz = z. If the
verification is successful, the automaton enters the accepting state q1.

The lower bound on the size of a DIDPDA equivalent to Ak,n is established
using the following 1-separator set for L(Ak,n).

S =
{
<ai1b · · · aikb

∣∣ i1, . . . , ik ∈ {1, . . . , n} }
Consider any two distinct strings u = <ai1b · · ·aikb and u′ = <ai

′
1b · · ·ai′kb

in S, and let them be different in some �-th component, that is, i� �= i′� for
� ∈ {1, . . . , k}. Define another string w = (cn+1d)i�−1c�d>. Then both concate-

nations uw and u′w are well-formed strings in M0, and uw is in L̂k,n, whereas
u′w is not. This, by (1), means that uw ∈ L(Ak,n) and u′w /∈ L(Ak,n). Since
such a separator string w exists for any two distinct elements of S, it follows
that S is a 1-separator set for L(Ak,n). Then, by Lemma 1, every DIDPDA for
L(Ak,n) needs at least |S| = nk states. ��

The lower bound construction in Lemma 4 uses an alphabet with 4 neutral
symbols, as well as one left bracket and one right bracket. By doubling the
number of states of the original k-entry DIDPDA, the number of neutral symbols
could be reduced to two.

The results of Lemmata 2, 3 and 4 are summarized in the following theorem.

Theorem 1. A k-entry DIDPDA with n states and m stack symbols can be
simulated by a DIDPDA with (n + 1)k − 1 states and mk stack symbols.

For every n � k, there exists a k-entry DIDPDA with n states and k stack
symbols, defined over an alphabet depending on n and k, such that any equivalent
DIDPDA needs at least (n + 1)k − 1 states.

For every n � k, there exists a k-entry DIDPDA over a 6-symbol alphabet,
with n states and k stack symbols, such that any equivalent DIDPDA needs at
least (n4 )k states.

When k is viewed as a constant, the descriptional complexity of converting
k-entry DIDPDAs to DIDPDAs coincides asymtotically with the corresponding
bound for finite automata [13,23,24].

Corollary 1. Let k � 1 be a constant. The worst case size of a DIDPDA equiv-
alent to a k-entry DIDPDA of size n is Θ(nk).

4 Converting a k-path NIDPDA to a DIDPDA

The transformation of a k-entry DIDPDA A to an ordinary DIDPDA B involves
simulating k instances of A. The states of B are k-tuples of states of A. On a
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left bracket, each of the k instances of A has its own stack symbol to push, and
thus B pushes a k-tuple of stack symbols. Later, when a matching right bracket
is read, B pops this k-tuple, and each of the simulated instances of A receives
its own stack symbol.

When simulating a k-path NIDPDA A by a DIDPDA B, in the beginning,
B has a k0-tuple of instances of A to simulate, where k0 is the number of its
initial states, and later on, as A has to make nondeterministic decisions, B
extends this tuple by spawning additional computations off the existing ones.
This entails the following complication with simulating the stack operations in
each of these instances. Consider B encountering a left bracket with k1 ongoing
computations. Then, each of the k1 instances of A pushes its own symbol, and B
simulates that by pushing a k1-tuple. Later on, inside the brackets, some of the
simulated instances of A may have to make nondeterministic decisions, so that
B arrives to the matching right bracket with a k2-tuple of states, where k2 � k1.
At this point, B pops a k1-tuple of stack symbols from the stack, and if k2 > k1,
then the question is, how those k1 symbols are to be matched to the k2 states?

Consider that each of these k2 states occurs in one of the computations of A,
and the stack symbol pushed in that computation is among the k1 symbols now
popped from the stack. In order to match states to stack symbols, it is sufficient
to maintain an additional data structure that records, for each currently traced
computation, from which computation it has spawned off. This data structure is
implemented in the set of states of the automaton constructed in the following
lemma.

Lemma 5. For every k-path NIDPDA A, with a set of states Q and a stack
alphabet Γ , there exists and can be effectively constructed a DIDPDA B with the

set of states Q′ ⊆
⋃k

�=1

(
(Q ∪ {−}) × {1, . . . , �}

)�
and with the stack alphabet

Γ ′ = Γ�k, which recognizes the same language.

Proof. Let A = (Σ,Q,Q0, Γ, [δa]a∈Σ, F ) be the given k-path NIDPDA, and
let Q0 = {q10 , . . . , q�00 } be its set of initial states. Each state of the simulating
DIDPDA B = (Σ,Q′, q′0, Γ

′, [δ′a]a∈Σ, F
′) contains between �0 and k numbered

components, each corresponding to one of the currently simulated computations
of A. Every component is comprised of a state and of a pointer to another
computation, from which this computation has stemmed off. The state may be
replaced by a failure marker (−) indicating that this branch of computation has
already rejected. A computation is referenced by the number of the component.
Accordingly, the set of states of B is defined as follows.

Q′ =
{ (

q1 . . . q�
p1 . . . p�

) ∣∣∣ �0 � � � k, qi ∈ Q ∪ {−}, pi ∈ {1, . . . , i}
}

To be more precise, for every i-th component, if i � �0, then pi always points
to itself, being fixed as pi = i, and if i > �0, then pi points to some earlier
component, that is, pi ∈ {1, . . . , i− 1}.

The pushdown alphabet Γ ′ = Γ�k of the simulating automaton allows com-
municating any �-tuples of stack symbols, for � � k.
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The initial state of B initializes �0 simulated computations, and marks each
of them as stemming off itself.

Q0 =
(
q10 q20 . . . q�00
1 2 . . . �0

)
For every neutral symbol c ∈ Σ0, the transition from a state

(
q1 . . . q�
p1 . . . p�

)
by c is defined as follows. For each i-th component, let the nondeterministic
transitions of A be δc(qi) = {q′i,1, . . . , q′i,mi

}. The automaton B keeps the first
target state q′i,1 in the same i-th component; the remaining target states q′i,2, . . . ,
q′i,mi

are put into newly created components, provided with pointers to the i-th
component from which they are stemmed off. Thus, the transition of B leads to
a state with

∑�
i=1 mi components.

δ′c
( q1 . . . q�
p1 . . . p�

)
=
( q′1,1 . . . q′�,1 q′1,2 . . . q′1,m1

. . . q′�,2 . . . q′�,m�

p1 . . . p� 1 . . . 1 . . . � . . . �

)
(vertical lines separate the new components added in this transition)

The transition of B from a state
( q1 . . . q�
p1 . . . p�

)
by a left bracket < ∈

Σ+1 is defined very similarly. For each i-th component, let δ<(qi) =
{(q′i,1, γi,1), . . . , (q′i,mi

, γi,mi)}. Then the transition of B leads to a state with∑�
i=1 mi components and pushes a stack symbol with

∑�
i=1 mi components,

where the first � components contain all first nondeterministic choices, and the
new computations occupy the rest of the components.

δ′<
( q1 . . . q�
p1 . . . p�

)
=

(( q′1,1 . . . q′�,1 q′1,2 . . . q′1,m1
. . . q′�,2 . . . q′�,m�

p1 . . . p� 1 . . . 1 . . . � . . . �

)
,

(
γ1,1, . . . , γ�,1, γ1,2, . . . , γ1,m1 , . . . , γ�,2, . . . , γ�,m�

))
For every right bracket > ∈ Σ−1, let (γ1, . . . , γn) be the stack symbol pushed

at the matching left bracket, and let
(
q1 . . . q�
p1 . . . p�

)
be the current state, which

must satisfy �0 � n � � � k. Define a function f : {1, . . . , �} → {1, . . . , n} that
matches the components of the current state to the components of the stack
symbol by first setting f(i) = i for all i � n (these are the components that
already existed at the time the stack symbol was pushed), and then inductively
defining f(pi) = f(i) whenever f(i) is already defined. Then, for every i-th
component of the current state, A’s transition should use the matching stack
symbol γf(i); let δ>(qi, γf(i)) = {q′i,1, . . . , q′i,mi

}. Then B’s transition from this
state upon popping this stack symbol leads to the following state, in which all
nondeterministic choices are listed in the same order as in the previous two cases.

δ′<

(( q1 . . . q�
p1 . . . p�

)
, (γ1, . . . , γn)

)
=
( q′1,1 . . . q′�,1 q′1,2 . . . q′1,m1

. . . q′�,2 . . . q′�,m�

p1 . . . p� 1 . . . 1 . . . � . . . �

)
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Finally, a state ((q1, p1), . . . , (q�, p�)) is marked as accepting, if qi ∈ F for
some i. ��

At the moment, there is no lower bound on the complexity of determinizing
k-path NIDPDAs that would precisely match the upper bound in Lemma 5.
However, the lower bound for multiple-entry automata, given earlier in Lemma 3,
also applies in this case. The resulting bounds, presented in the next theorem,
are fairly close to each other.

Theorem 2. A k-path NIDPDA with n states and m stack symbols can be sim-
ulated by a DIDPDA with

k∑
i=1

(n + 1)i · ii states and

k∑
i=1

mi stack symbols.

For every n � k, there exists a k-path NIDPDA A with n states and k stack
symbols, such that any equivalent DIDPDA needs at least (n + 1)k − 1 states.

It remains open whether k-path NIDPDAs can be used to establish a bet-
ter lower bound than MDIDPDAs from Lemma 3. It is also possible that the
construction in Lemma 5 may be unoptimal.

5 From NIDPDA to k-path NIDPDA

The next result is that converting a general NIDPDA to a k-path automaton
entails, for any k � 1, the same 2Ω(n2) size blow-up as determinizing an arbitrary
NIDPDA. This result is established by a modified argument of Goldstine et
al. [12], who used it to obtain an exponential size blow-up of converting a general
NFA to an NFA with limited nondeterminism. The main idea of the argument
is that for languages of a certain form presented below, k-path automata are no
more succinct than deterministic automata.

Lemma 6. Let A be an NIDPDA over an alphabet Σ, such that L(A) consists
only of well nested strings, and let $ be a new neutral symbol not in Σ.

Assume that the language ($L(A)$)∗ is recognized by a k-path NIDPDA with
n states and m stack symbols. Then ($L(A)$)∗ can be recognized by a DIDPDA
with n states and m stack symbols.

Proof. The proof by Goldstine et al. [12, Lemma 4.1] demonstrates, for every
regular language L, that if ($L$)∗ has a k-path NFA C with n states, then ($L$)∗

has a DFA D with n states.1 The proof is constructive and D is obtained simply
by taking the “deterministic restriction” of the transition function of C (i.e., by
eliminating from C all transitions with more than one outcome) and choosing
the initial state appropriately. The same argument, word for word, works for
input-driven automata, because A accepts only well nested strings, and hence
the stack of A is always empty at the end of an accepted string. ��
1 More precisely, the proof by Goldstine et al. [12] considers a so-called NFA with
finite branching: a finite-path NFA is guaranteed to have finite branching, however,
the reverse implication does not hold.



98 A. Okhotin and K. Salomaa

The proof of the following result is inspired by another argument by Goldstine
et al. [12, Thm 4.2].

Theorem 3. For any k � 1, the worst-case number of states in a k-path
NIDPDA equivalent to an NIDPDA with n states is 2Θ(n2).

Proof. The upper bound follows from the upper bound for determinizing an
NIDPDA [2]. So, it is sufficient to show that there exists an NIDPDA with O(n)

states, such that an equivalent k-path NIDPDA needs at least 2n
2

states. This
is done, roughly speaking, by applying the result of Lemma 6 to a language
exhibiting the worst-case size blow-up of determinization.

Choose Σ+1 = {<}, Σ−1 = {>} and Σ0 = {a, b,#, $}. Consider the following
language, due to Alur and Madhusudan [2, Thm. 3.4].

L′
n = {<ai1bj1 · · ·aimbjm#bs>ar | ix, jx � 1, r, s ∈ {1, . . . , n}, and,

∃z ∈ {1, . . . ,m} : bjz = s, aiz = r}

The language L′
n is recognized by an NIDPDA A with O(n) states and n stack

symbols [2]. Let Ln = ($L′
n$)∗. Since L′

n consists of only well-nested strings, an
NIDPDA for Ln can be obtained from A by adding one new state.

For any binary relation R on the set {1, . . . , n}, denote

wR = ai1bj1ai2bj2 · · · ai|R|bj|R| ,

where (i1, j1), . . . , (i|R|, j|R|) is a listing of the elements of R in an arbitrary
order. Choose

S =
{

$<wR

∣∣ R ⊆ {1, . . . , n} × {1, . . . , n} }.
Every string in S is a prefix of a string in Ln. Note that w∅ = ε and $< is
a prefix of Ln. Consider any two distinct strings $<wR1 , $<wR2 ∈ S, and let
(i, j) ∈ R1 \R2 be an element on which the relations differ. These two strings are
distinguished by continuing them with #bj>ai$: indeed, $<wR1#bj>ai$ ∈ Ln,
but $<wR2#bj>ai$ /∈ Ln. Hence, S is a 1-separator set for Ln and, by Lemma 1,

any DIDPDA for Ln needs at least |S| = 2n
2

states. By Lemma 6, any k-path
NIDPDA for Ln also needs the same number of states. ��

6 Decision Problems

The k-path property of an NIDPDA refers to its computations on all possible
inputs, and hence, based on the syntactic specification of an NIDPDA, it is not
at all clear whether or not it has this property. The following lemma describes
an algorithm for testing a given NIDPDA for being k-path.

Lemma 7. Given an NIDPDA A with n states and a number k � 1, one can
decide in time poly(kk · nk) whether or not A has the k-path property.
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Proof. Let A = (Σ,Γ,Q,Q0, [δa]a∈Σ , F ) be an NIDPDA, and let Q0 =
{qI1 , . . . , qIm} be its set of initial states. If |Q0| > k, then A does not have the
k-path property. Assume that m � k.

The proposed algorithm works by constructing a new deterministic IDPDA B,
which will accept an input string if and only if A has more than k computations
on this string. Then A has the k-path property if and only if B generates the
empty language, and the known polynomial-time algorithm for the DIDPDA
emptiness problem [2] computes the desired answer.

The DIDPDA B is constructed generally according to Lemma 5, so that on
an input w, it simulates up to k computation paths of A on w. The important
difference is that in Lemma 5, the simulated automaton A is assumed to have the
k-path property, whereas in this case it is not guaranteed to have it. If there are
at most k computations on the given input w, the simulation proceeds exactly as
defined in Lemma 5, but then, in the end of the computation, B always rejects. If
A has more than k computations on w, then the simulation eventually requests
to spawn more computations than B can handle; at this point, B enters a special
state, in which it ignores the rest of the input and accepts in the end.

The number of states of B is less than kk ·(n+2)k+1, and hence is polynomial
in kk · nk. As the running time of the emptiness test for B is polynomial in the
size of B, this proves the time bound. ��

Theorem 4. For a fixed k � 1, checking whether or not a given NIDPDA has
the k-path property is P-complete.

Proof. If k is treated as a constant, then the algorithm in Lemma 7 runs in
time polynomial in n. The P-hardness is proved by reduction (in logspace) from
the DIDPDA emptiness problem, which is known to be P-complete [15]. The
reduction begins with modifying a given DIDPDA, so that from any accepting
state it makes a nondeterministic transition on a new neutral symbol, with k+1
choices. The resulting NIDPDA is k-path if and only if the original DIDPDA
does not accept any strings. ��

The algorithm in Lemma 7 allows testing an automaton for the k-path prop-
erty only for a given value of k. Another decision problem is whether a given
NIDPDA is finite-path, that is, k-path for some unknown value of k. The decid-
ability status of this problem remains unknown.

Problem 1. Is it decidable whether or not a given NIDPDA has the finite path
property?

To compare with the case of finite automata, the finite path property for
a given NFA can be checked by analyzing its state transition graph [23,24].
However, this approach does not seem to work in the presence of stack operations.

Another point of comparison is the case of nondeterministic pushdown au-
tomata of the general form (NPDA), to which the definition of the k-path prop-
erty is directly extended. Here the k-path property becomes undecidable already
for k = 3.
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Theorem 5. It is undecidable to determine whether a given NPDA is 3-path.

Proof. The proof is by reduction from the Post Correspondence Problem
(PCP) [27, Sect. 6.5]. Consider a PCP instance (u1, v1), . . . , (um, vm), where
m � 1, all ui, vi are strings over an alphabet {a, b}, and the question is, whether
there is such a sequence i1, . . . , i� ∈ {1, . . . ,m}, that ui1ui2 · · ·ui� = vi1vi2 · · · vi� .

Construct an NPDA A with an input alphabet {#, a, b, 1, . . . ,m}, that pro-
cesses inputs of the following general form.

i1ui1i2ui2 · · · i�ui�#jjv
R
jhjh−1v

R
jh−1

· · · j1vR1 #, i1, . . . , i�, j1, . . . , jh ∈ {1, . . . ,m}

Given such an input, in the beginning of the computation, A nondeterministically
chooses to check either whether ui1ui2 · · ·ui� = vi1vi2 · · · vih , or whether � =
h and i1i2 · · · i� = j1j2 · · · jh. In each of the two nondeterministic branches,
assuming that the verification was successful, A makes a nondeterministic step
with two choices on the last symbol #. If the check fails, then A rejects without
making any further nondeterministic choices. If the PCP instance has a solution,
then on the encoding of that solution, A has 4 paths. Therefore, A has the 3-path
property if and only if the given PCP instance does not have a solution. ��

Besides testing a given NIDPDA for the k-path property, one can also consider
the standard decision problems for k-path NIDPDAs, such as emptiness, equiv-
alence and inclusion. All these problems can be solved is polynomial time by
first determinizing the given automata with a polynomial blow-up (Theorem 2),
and then applying an algorithm by Alur and Madhusudan [2]. Furthermore,
these problems are P-complete, which can be proved by a reduction from the
emptiness problem for DIDPDAs [15].

7 Conclusion

Though the trade-off between k-entry input-driven automata and deterministic
input-driven automata in terms of the number of states has been determined ex-
actly (Theorem 1), many other contributions of this paper call for more precise
arguments. Already for this trade-off, one could consider how this transformation
affects the number of stack symbols; for the NIDPDA determinization, results of
this kind were obtained by Okhotin, Piao and Salomaa [20]. For another trans-
formation studied in the paper—the determininization of k-path NIDPDAs—the
given lower and upper bounds on the number of states do not precisely match
(Theorem 2). In order to improve the estimation, it is suggested to give a new
lower bound construction using k-path NIDPDAs, rather than simply multiple-
entry automata. Another open question is whether the finite path property for
NIDPDAs (that is, with the number of paths not specified) can be effectively
decided.

A natural extension of this work is to limit the amount of nondeterminism as
a function of input length, analogously to the existing work on finite automata
employing limited nondeterminism [16,19,25].
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Abstract. For a top-down tree transducer with regular look-ahead we
introduce the notion of difference bound, which is a number bounding
the difference in output height for any two look-ahead states of the trans-
ducer. We present an algorithm that, for a given transducer with a known
difference bound, decides whether it is equivalent to a transducer with-
out regular look-ahead, and constructs such a transducer if the answer
is positive. All transducers are total and deterministic.

1 Introduction

Many simple tree transformations can be modeled by top-down tree transducers,
as recently used in XML database theory (e.g., [6,11,13,15]), in computational
linguistics (e.g., [12,14]) and in picture generation [4]. A top-down tree transducer
is a finite-state device that scans the input tree in a (parallel) top-down fashion,
simultaneously producing the output tree. The more expressive (but also more
complex) top-down tree transducer with regular look-ahead [5] consists of a top-
down tree transducer and a finite-state bottom-up tree automaton, called the
look-ahead automaton. At each input node, the transducer can inspect the look-
ahead state (i.e., the state of the automaton) of each child of that node. Consider,
e.g., a transducer Mex of which the look-ahead automaton checks whether the
input tree has a leaf labeled a; if so, Mex outputs a, otherwise it outputs a copy
of the input tree. Clearly, there is no transducer without look-ahead that realizes
the same translation as Mex. In general, is there a method to determine for a
given top-down tree transducer with look-ahead (dtla), whether or not there is
an equivalent top-down tree transducer without look-ahead (dtop)?

In this paper we provide a general method as discussed above, for total de-
terministic transducers. However, part of the method is not automatic: it de-
pends on additional knowledge about the given transducer with look-ahead. For
transducers with some restrictions concerning the power to copy and erase, that
knowledge can also be obtained automatically.

The main notion on which our method is based, is that of a difference tree of
a dtla M . Consider two trees obtained from one input tree by replacing one leaf
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by two different look-ahead states of M . Compare now the two output trees of
M on these input trees, where M treats the look-ahead state as representing an
input subtree for which the look-ahead automaton arrives in that state at the
root of the subtree.1 Removing the largest common prefix of these two output
trees (i.e., every node of which every ancestor has the same label in each of
the two trees), we obtain a number of output subtrees that we call difference
trees of M . Intuitively, the largest common prefix is the part of the output that
does not depend on the two possible look-ahead states of the subtree, whereas
a difference tree is a part of the output that can be produced because M knows
that look-ahead state. Thus, the set diff(M) of all difference trees of M can be
viewed as a measure of the impact of the look-ahead on the behaviour of M . E.g.,
diff(Mex) is infinite: it consists of the one-node tree a and all trees of which no
leaf is labeled a (with one leaf representing a subtree without a-labeled leaves).

The idea of our method is as follows. For any dtop an equivalent canonical
dtop can be constructed [6]. Canonical means that each output node is produced
as early as possible, and that different states of the transducer are inequivalent.
We can generalize that result to dtlas. Thus, if there is a (canonical) dtop N
equivalent to the (canonical) dtla M , then M is at least as early as N : at each
moment of the translation, the output of N is a prefix of that of M . The output
of N is the part of M ’s output that does not depend on the look-ahead state.
Thus, when removing the output of N from that of M , the remaining trees
are difference trees of M . Since N is able to simulate M , it has to store these
difference trees in its states. Hence, diff(M) is finite. In fact, it turns out that
the above description of N ’s behaviour completely determines N , and so N can
be constructed from M and diff(M), and then tested for equivalence with M [9].

A natural number h is a difference bound for a dtla M if the following holds: if
M has finitely many difference trees, then h is an upper bound on their height.
Our first main result is that it is decidable for a given dtla M for which a
difference bound is also given, whether M is equivalent to a dtop N , and if so,
such a dtop N can be constructed. We do not know whether a difference bound
can be computed for every dtla M , but the designer of M will usually be able
to determine diff(M) and hence a difference bound for M . Our second main
result is that a difference bound can be computed for dtlas that are linear and
nonerasing (or even ultralinear and bounded erasing); the proof is too involved
to be presented here. The full version of this paper can be found in [7].

Related Work. For deterministic string transducers it is decidable whether a
given transducer with look-ahead is equivalent to a transducer without look-
ahead, and if so, such a transducer can be constructed. This was proved in [3]
(see also [2, Theorem IV.6.1]), for so-called subsequential functions. For macro
tree transducers [8] and streaming tree transducers [1], regular look-ahead can
always be removed. The same is true for nondeterministic visibly pushdown
transducers [10]; for deterministic visibly pushdown transducers the addition
of regular look-ahead increases their power, but the decidability of look-ahead
removal for these transducers is not studied in [10].

1 SinceM is total and deterministic, the output trees exist and are unique, respectively.
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2 Top-Down Tree Transducers and Difference Trees

We assume the reader to be familiar with top-down tree transducers working on
ranked trees: the number of children of a tree node is determined by its label.

A deterministic top-down tree transducer with regular look-ahead (dtla for
short) is a tuple M = (Q,Σ,Δ,R,A, P, δ) where Q is a finite set of states
of rank 1, Σ and Δ are the ranked input and output alphabets, and P is a
finite nonempty set of look-ahead states. For every p ∈ P , A(p) is a tree in
TΔ(Q({x0})) called the p-axiom of M .2 For every q ∈ Q, a ∈ Σ of rank k ≥ 0,
and p1, . . . , pk ∈ P , the set R contains at most one rule q(a(x1 : p1, . . . , xk :
pk)) → ζ where ζ is a tree in TΔ(Q(Xk)) denoted by rhs(q, a, p1, . . . , pk). Finally,
δ is the transition function of the (total deterministic bottom-up) look-ahead
automaton (P, δ), i.e., δ(a, p1, . . . , pk) ∈ P for every a ∈ Σ of rank k ≥ 0 and
p1, . . . , pk ∈ P . The extension of δ to a mapping from TΣ to P , also denoted by
δ, is defined by δ(a(s1, . . . , sk)) = δ(a, δ(s1), . . . , δ(sk)) for a ∈ Σ of rank k ≥ 0
and s1, . . . , sk ∈ TΣ . For p ∈ P we define [[p]]M = {s ∈ TΣ | δ(s) = p}. The dtla
M realizes the partial function [[M ]] : TΣ → TΔ, called its translation, defined
for s ∈ TΣ by [[M ]](s) = A(δ(s))[q(x0) ← [[q]]M (s) | q ∈ Q].3 For q ∈ Q the
partial function [[q]]M : TΣ → TΔ is defined for s ∈ TΣ of the form a(s1, . . . , sk)
by [[q]]M (s) = rhs(q, a, δ(s1), . . . , δ(sk))[q′(xi) ← [[q′]]M (si) | q′ ∈ Q, 1 ≤ i ≤ k].
We write M(s) for [[M ]](s), and qM (s) for [[q]]M (s). Two dtlas M1 and M2 are
equivalent if they realize the same translation, i.e., ΣM1 = ΣM2 , ΔM1 = ΔM2

and [[M1]] = [[M2]].

Convention. We (can) assume that all states and look-ahead states of M are
reachable: p ∈ P is reachable if [[p]]M �= ∅; q ∈ Q is reachable if q occurs in an
axiom, or in the right-hand side of a rule of which the left-hand side starts with
a reachable state.

A dtla M is total if its translation [[M ]] is a total function, i.e., its domain is
TΣ . From now on we only consider total dtlas.

A deterministic top-down tree transducer (dtop for short) is a dtla M such
that P is a singleton, i.e., P = {p}. For convenience, we drop (P, δ) from the tuple
defining M , write a rule as q(a(x1, . . . , xk)) → ζ rather than q(a(x1 : p, . . . , xk :
p)) → ζ, identify A with the unique axiom A(p), and denote ζ by rhs(q, a).

A dtla M is proper (a dtpla for short) if it is not a dtop, i.e., if |P | ≥ 2.

2 We use variables xi with i ∈ N, of rank 0. The set {x0, x1, x2, . . . } is denoted X;
for k ∈ N, Xk := {x1, . . . , xk}. For a set of trees T , Q(T ) is the set of trees q(t)
with q ∈ Q and t ∈ T , and TΔ(T ) is the smallest set of trees T ′ containing T such
that d(t1, . . . , tk) ∈ T ′ if d ∈ Δ and t1, . . . , tk ∈ T ′ (where d has rank k). We denote
TΔ(∅) by TΔ. For a tree t ∈ TΔ, we denote by V (t) the set of nodes of t, which are
strings of positive natural numbers, i.e., V (t) ⊆ N∗

+ with N+ = N− {0}. The empty
string ε is the root node and, for i ∈ N+, vi is the ith child of the node v. Every node
v ∈ V (t) has a label in Δ, denoted lab(t, v); the subtree of t rooted at v is denoted
by t/v. For d ∈ Δ, we define Vd(t) = {v ∈ V (t) | lab(t, v) = d}.

3 For sets of trees S ,T , a tree t ∈ T and a partial function ψ : S → T , we define
t[s ← ψ(s) | s ∈ S ] to be the result of replacing every subtree s of t by ψ(s), for
every s ∈ S (assuming that no tree in S has a proper subtree in S).
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Look-Ahead States in Input Trees. Let M = (Q,Σ,Δ,R,A, P, δ) be a (total)
dtla. To analyze the behaviour of M for different look-ahead states, we consider
input trees s̄ with occurrences of p ∈ P , viewed as input symbol of rank zero,
representing an absent subtree s with δ(s) = p. Intuitively, when M arrives in
state q at a p-labeled leaf of s̄, we let M output the new symbol 〈q, p〉 of rank
zero, representing the absent output tree qM (s); thus, input trees s̄ ∈ TΣ(P )
are translated to output trees in TΔ(Q × P ). Formally, we extend M to a dtla
M◦ = (Q,Σ◦, Δ◦, R◦, A, P, δ◦) where Σ◦ = Σ ∪ P , every element of P has rank
zero, Δ◦ = Δ∪(Q×P ), every element of Q×P has rank zero, R◦ = R∪{q(p) →
〈q, p〉 | q ∈ Q, p ∈ P, ∃s ∈ [[p]]M : qM (s) is defined}, and δ◦ is the extension of δ
with δ◦(p) = p for every p ∈ P . For notational simplicity, we will denote δ◦(s̄),
M◦(s̄) and qM◦(s̄) by δ(s̄), M(s̄) and qM (s̄), respectively, for every s̄ ∈ TΣ(P ).
But note that [[p]]M , [[M ]] and [[q]]M keep their meaning.

A Σ-context is a tree in TΣ({⊥}) that contains exactly one occurrence of ⊥
(which is a new symbol of rank 0). The set of all Σ-contexts is denoted CΣ . For
C ∈ CΣ and a tree s, the tree C[s] is obtained from the context C by replacing
the unique occurrence of ⊥ in C by s. We consider in particular trees C[p] where
C ∈ CΣ and p ∈ P . Note that the tree M(C[p]) is in TΔ(Q× {p}).

Lemma 1. Let M be a dtla. Let C ∈ CΣ, s ∈ TΣ(P ) and p ∈ P such that δ(s) =
p. Then δ(C[s]) = δ(C[p]) and M(C[s]) = M(C[p])

[
〈q, p〉 ← qM (s) | q ∈ Q

]
.

Difference Trees and Difference Bounds. For a ranked alphabet Ω, an Ω-pattern
(or just pattern) is a tree in TΩ({⊥}), where ⊥ /∈ Ω has rank 0. Intuitively, an Ω-
pattern is a prefix of a tree in TΩ. If t0 ∈ TΩ({⊥}) contains exactly k occurrences
of ⊥, and t1, . . . , tk ∈ TΩ({⊥}), then the pattern t = t0[t1, . . . , tk] is obtained
from t0 by replacing the ith occurrence of ⊥ (in left-to-right order) by ti. On
the set TΩ({⊥}) we define a partial order: for patterns t and t′, t′ is a prefix of
t, denoted t′  t, if t = t′[t1, . . . , tk] for some patterns t1, . . . , tk; equivalently,
Vb(t

′) ⊆ Vb(t) for every b ∈ Ω. In [6] the inverse of  is used. Note that ⊥  t
for every pattern t. Every nonempty set Π of Ω-patterns has a greatest lower
bound �Π in TΩ({⊥}), called the largest common prefix of the patterns in Π ;
it is the unique pattern t′ such that for every v ∈ N∗

+ and b ∈ Ω, v ∈ Vb(t
′) if

and only if (1) v ∈ Vb(t) for every t ∈ Π and (2) every proper ancestor of v is in
V (t′). For instance, �{σ(τ(a), b), σ(b, b)} = σ(τ(a), b) � σ(b, b) = σ(⊥, b).

We wish to decide whether the dtla M is equivalent to a dtop. Let C be a
Σ-context and let p, p′ ∈ P . As explained in the Introduction, we are interested
in the difference between M(C[p]) and M(C[p′]), cf. Lemma 1. Intuitively, a
dtop N that is equivalent to M does not know whether the subtree s of an input
tree C[s] has look-ahead state p or p′, and hence, when reading the context
C, it can output at most the largest common prefix M(C[p]) �M(C[p′]) of the
output trees M(C[p]) and M(C[p′]). Let v be a node of M(C[p])�M(C[p′]) with
label ⊥. Then we say that M(C[p])/v is a difference tree of M (and hence, by
symmetry, so is M(C[p′])/v). Thus, a difference tree is a part of the output that
can be produced by M because it knows that s has look-ahead state p (or p′).
Intuitively, to simulate M , the dtop N must store the difference trees in its state.
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Hence, for N to exist, there should be finitely many difference trees (Corollary 1).
We denote the set of all difference trees of M by diff(M), for varying C, p, p′

and v. Thus we define diff(M) = {M(C[p])/v | C ∈ CΣ , p ∈ P, ∃p′ ∈ P : v ∈
V⊥(M(C[p])�M(C[p′]))} which is a subset of TΔ(Q×P ). We define the number
maxdiff(M) ∈ N∪{∞} to be the maximal height of all difference trees of M , i.e.,
maxdiff(M) = sup{ht(t) | t ∈ diff(M)}. Intuitively, maxdiff(M) gives a measure
of how much M makes use of its look-ahead information. Obviously, maxdiff(M)
is finite if and only if diff(M) is finite. A number h(M) ∈ N is a difference bound
for M if either diff(M) is infinite or maxdiff(M) ≤ h(M). Our first main result
is that if a difference bound for M is known, then we can decide whether M is
equivalent to a dtop, and if so, construct such a dtop from M (Theorem 2).

Example 1. Let Σ = Δ = {σ(1), a(0), b(0)}, the ranked alphabet {σ, a, b} such
that σ has rank 1 and a, b have rank 0. For n ∈ N, the tree σ(σ(· · · σ(a) · · · )) with
n occurrences of σ is denoted by σna. Consider a dtla M = (Q,Σ,Δ,R,A, P, δ)
such that M(σna) = a and M(σnb) = σnb for every n ∈ N. It is, in fact, the dtla
Mex of the Introduction, for this particular input alphabet. Its set of look-ahead
states is P = {pa, pb} with transition function δ defined by δ(a) = pa, δ(b) = pb,
δ(σ, pa) = pa and δ(σ, pb) = pb. Its set of states is Q = {q}, its axioms are
A(pa) = a and A(pb) = q(x0), and R contains the rules q(σ(x1 :pb)) → σ(q(x1))
and q(b) → b.

For C = σn⊥, M(C[pa]) = a and M(C[pb]) = σn〈q, pb〉. Since M(C[pa]) �
M(C[pb]) = ⊥, the only node of M(C[p]) �M(C[p′]) with label ⊥ is ε. Hence,
diff(M) = {a} ∪ {σn〈q, pb〉 | n ∈ N} and maxdiff(M) = ∞. Since diff(M) is
infinite, M is not equivalent to a dtop, as will be shown in Corollary 1. ��

Example 2. Let Σ = {σ(2), aa(0), ab(0), ba(0), bb(0)} where we view aa, ab, ba
and bb as symbols, and let Δ = Σ ∪ {#(2), a(0), b(0)} with σ(3) instead of
σ(2). We consider a dtla M such that M(yz) = yz for y, z ∈ {a, b}; moreover,
M(σ(s1, s2)) = σ(M(s1),M(s2),#(y, z)) where y ∈ {a, b} is the first letter of
the label of the left-most leaf of σ(s1, s2) and z ∈ {a, b} is the second letter of the
label of its right-most leaf. It has four look-ahead states pyz with y, z ∈ {a, b},
such that δ(yz) = pyz and δ(σ, pwx, pyz) = pwz for all w, x, y, z ∈ {a, b}. It has
one state q, its axioms are A(pyz) = q(x0), and its rules are q(yz) → yz and
q(σ(x1 :pwx, x2 :pyz)) → σ(q(x1), q(x2),#(w, z)) for all w, x, y, z ∈ {a, b}.

Consider a Σ-context C and the trees M(C[paa]) and M(C[pba]). Let u be
the node of C with lab(C, u) = ⊥. It is easy to see that the nodes of M(C[p]) �
M(C[p′]) with label ⊥ are the node u and all nodes v · (3, 1) such that v �= u is
a node of C and u is the left-most leaf of C/v. That gives the difference trees
M(C[paa])/u = 〈q, paa〉, M(C[pba])/u = 〈q, pba〉, M(C[paa])/v · (3, 1) = a and
M(C[pba])/v · (3, 1) = b. Thus, diff(M) = {a, b} ∪ {〈q, pyz〉 | y, z ∈ {a, b}} and
maxdiff(M) = 0.

A dtop N equivalent to M has states q0, q1, q2, axiom q0(x0), and rules
q0(yz) → yz, q1(yz) → y, q2(yz) → z for y, z ∈ {a, b}, q2(σ(x1, x2)) → q2(x2),
q1(σ(x1, x2)) → q1(x1), and q0(σ(x1, x2)) → σ(q0(x1), q0(x2),#(q1(x1), q2(x2))).

��
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3 Normal Form

In this section we state a normal form for (total) dtlas M , together with its
effect on maxdiff(M). We start by requiring a simple and technically convenient
property so that every state of M only translates input trees that have the same
look-ahead state; moreover, the rules satisfy a completeness condition.

A dtla M is look-ahead uniform (for short, la-uniform) if there is a mapping
ρ : Q → P (called la-map) satisfying the following conditions, for p ∈ P and
q, q̄ ∈ Q:

(1) If q(x0) occurs in A(p), then ρ(q) = p.
(2) For every rule q(a(x1 : p1, . . . , xk : pk)) → ζ in R: ρ(q) = δ(a, p1, . . . , pk),

and if q̄(xi) occurs in ζ then ρ(q̄) = pi.
(3) For every q ∈ Q, a ∈ Σ of rank k ≥ 0, and p1, . . . , pk ∈ P such that

δ(a, p1, . . . , pk) = ρ(q), there is a rule q(a(x1 :p1, . . . , xk :pk)) → ζ in R.
If M is la-uniform, then the domain of [[q]]M is [[ρ(q)]]M for every q ∈ Q. This

implies that M◦ is la-uniform with the same la-map ρ as M .
Clearly, the dtla M of Example 1 is la-uniform with ρ(q) = pb, but the dtla

M of Example 2 is not la-uniform.

Example 3. We change the dtla M of Example 2 into an la-uniform dtla (still
calling it M), with the same look-ahead automaton as M , by adding look-ahead
information to its states. Thus, it has set of states Q = {qyz | y, z ∈ {a, b}} with
ρ(qyz) = pyz, axioms A(pyz) = qyz(x0), and rules qyz(yz) → yz and qwz(σ(x1 :
pwx, x2 :pyz)) → σ(qwx(x1), qyz(x2),#(w, z)) for all w, x, y, z ∈ {a, b}. ��

A dtla M is earliest if it is la-uniform and, for every state q of M , rlabsM (q) :=
{lab(qM (s), ε) | s ∈ [[ρ(q)]]M} ⊆ Δ is not a singleton. Thus, M is not earliest if
it has a state q for which the roots of all output trees qM (s), s ∈ TΣ , have the
same label; intuitively, the node with that label could be produced earlier by M .
A dtla M is canonical if it is earliest and [[q]]M �= [[q′]]M for all distinct states
q, q′ of M .

It is easy to see that the dtla M of Example 3 is canonical: for all y, z ∈ {a, b},
rlabsM (qyz) = {yz, σ} and [[qyz]]M is the restriction of [[M ]] to [[pyz]]M .

We now present (without proof) the fact that canonicalness is a normal form
for dtlas, generalizing the normal form for dtops in [6] for the total case.

Theorem 1. For every total dtla M , one can construct an equivalent canonical
dtla can(M), with the same look-ahead automaton as M , such that maxdiff(M)−
8|M|3 ≤ maxdiff(can(M)) ≤ maxdiff(M) + 8|M|3 , where |M | is the size of M .

4 Difference Tuples

Let M be a dtpla and let P = {p̂1, . . . , p̂n}, where the order of the look-ahead
states is fixed as indicated. Recall that a dtpla is a dtla that is not a dtop,
hence n ≥ 2. For a given context C consider the trees M(C[p̂1]), . . . ,M(C[p̂n]).
Intuitively, the largest common prefix of these trees does not depend on the
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look-ahead. In contrast, the subtrees that are not part of the largest common
prefix, do depend on the look-ahead information.

For trees t1, . . . , tn ∈ TΔ(Q×P ) we define a subset of TΔ(Q×P )n as follows:
diftup(t1, . . . , tn) := {(t1/v, . . . , tn/v) | v ∈ V⊥(�{t1, . . . , tn})}. We define the set
of difference tuples of M as diftup(M) :=

⋃
C∈CΣ

diftup(M(C[p̂1]), . . . ,M(C[p̂n])).
For a Σ-context C we define the Δ-pattern pref(M,C) := �{M(C[p]) | p ∈ P}.

We wish to decide whether M is equivalent to a dtop. If there exists such
a dtop N , then we may expect intuitively for any s ∈ TΣ , that N(C[s]) =
t[(q1)N (s), . . . , (qr)N (s)] where t = pref(M,C) = �{M(C[p̂1]), . . . ,M(C[p̂n])}
and r = |V⊥(t)|; in other words, since N does not know the look-ahead state
δM (s) of s, it translates C into the largest common prefix of the output trees
M(C[p̂1]), . . . ,M(C[p̂n]). Moreover, if the ith occurrence of ⊥ is at node vi of t,
1 ≤ i ≤ r, then we expect the difference tuple (M(C[p̂1])/vi, . . . ,M(C[p̂n])/vi)
to be stored in the state qi of N ; in this way N is prepared to continue its
simulation of M on the subtree s. This is shown in Lemma 4, for canonical M
and earliest N . If N is canonical, then its states are in one-to-one correspondence
with the difference tuples of M , as shown in Lemma 5.

It is easy to show that every component of a difference tuple is a difference
tree, and every difference tree is a subtree of a component of a difference tuple.
Consequently, the maximal height of the components of the difference tuples of
M is maxdiff(M), see [7, Lemma 17]. This implies that diftup(M) is finite if and
only if diff(M) is finite.

Example 4. For the dtla M of Example 1, with the order P = {pa, pb}, we obtain
that diftup(M) = {(a, σn〈q, pb〉) | n ∈ N}.

For the dtla M of Example 3 (which is the la-uniform version of the dtla of Ex-
ample 2) it is not difficult to see that diff(M) = {a, b}∪{〈qyz, pyz〉 | y, z ∈ {a, b}},
and that the set diftup(M) consists of the three 4-tuples (a, a, b, b), (a, b, a, b)
and (〈qaa, paa〉, 〈qab, pab〉, 〈qba, pba〉, 〈qbb, pbb〉), with P = {paa, pab, pba, pbb}. ��

In the next lemmas, M is a canonical dtpla (with la-map ρM ) and N a
canonical dtop equivalent to M , i.e., [[M ]] = [[N ]]. We assume that the unique
look-ahead state of N is ⊥; for a Σ-context C we of course write C instead of
C[⊥].

We first formalize the fact that the translation of an input tree by M is always
ahead of its translation by N , in a uniform way. An aheadness mapping from N
to M is a function ϕ : QN × PM → TΔ(QM × PM ) such that for every C ∈ CΣ
and p ∈ PM ,

M(C[p]) = N(C)[〈q,⊥〉 ← ϕ(q, p) | q ∈ QN ]. (1)

Note that ϕ(q, p) is in TΔ({〈q̄, p〉 | q̄ ∈ QM , ρM (q̄) = p}). Intuitively, ϕ defines
the exact amount in which M is ahead of N , which is independent of C.

For the next lemma it is essential that M is canonical.

Lemma 2. There is a unique aheadness mapping ϕ from N to M .



110 J. Engelfriet, S. Maneth, and H. Seidl

Proof. We first show that M is ahead of N , i.e., that all output symbols produced
by N on a given input context are also produced by M . Let p ∈ PM and C ∈ CΣ .

Claim 1. Vd(N(C)) ⊆ Vd(M(C[p])) for every d ∈ Δ.
Equivalently, N(C)[〈q,⊥〉 ← ⊥ | q ∈ QN ]  M(C[p]).

Proof: By induction on the length of the nodes of N(C). Let v ∈ Vd(N(C))
with d ∈ Δ. Since the labels of v’s proper ancestors are in Δ, v ∈ V (M(C[p]))
by induction. Consider an arbitrary s ∈ [[p]]M . By Lemma 1, v ∈ Vd(N(C[s])).
Since [[M ]] = [[N ]], M(C[s]) = N(C[s]) and so v ∈ Vd(M(C[s])). Suppose that
v /∈ Vd(M(C[p])). Then, again by Lemma 1, v has some label 〈q, p〉 in M(C[p])
such that qM (s) has root label d. Since this holds for every s ∈ [[p]]M , we obtain
that rlabsM (q) = {d} contradicting the fact that M is earliest. Note that, since
M is la-uniform, ρM (q) = p.

Next we show that the amount in which M is ahead of N , is independent of
C. Let p ∈ PM , C1, C2 ∈ CΣ , v1, v2 ∈ N∗

+ and q ∈ QN .

Claim 2. If N(C1)/v1 = N(C2)/v2 = 〈q,⊥〉, then M(C1[p])/v1 = M(C2[p])/v2.

Proof: By Claim 1, vi is a node of M(Ci[p]). Let ti ∈ TΔ(QM × {p}) denote
the tree M(Ci[p])/vi. For every s ∈ [[p]]M , N(C1[s])/v1 = N(C2[s])/v2 = qN (s)
by Lemma 1, and so M(C1[s])/v1 = M(C2[s])/v2. Hence, again by Lemma 1,
t1Ψs = t2Ψs for all s ∈ [[p]]M , where Ψs = [〈q, p〉 ← qM (s) | q ∈ QM ]. Suppose
that t1 �= t2. Then there is a leaf v of, e.g., t1 with label 〈q1, p〉 such that v is a
node of t2 with t2/v �= 〈q1, p〉. If the root label of t2/v is d ∈ Δ, then (q1)M (s)
has root label d for all s ∈ [[p]]M , contradicting the fact that M is earliest. If t2/v
equals 〈q2, p〉 with q1 �= q2, then (q1)M (s) = (q2)M (s) for all s ∈ [[p]]M . Since
[[p]]M is the domain of both [[q1]]M and [[q2]]M , we obtain that [[q1]]M = [[q2]]M ,
contradicting the fact that M is canonical.

An aheadness mapping from N to M can now be defined as follows. Let
q ∈ QN and p ∈ PM . Since, by convention, q is reachable, there is a Σ-context C
such that N(C) has a node v labeled 〈q,⊥〉. By Claim 1, v is a node of M(C[p])
and we define ϕ(q, p) = M(C[p])/v. By Claim 2, the definition of ϕ does not
depend on C and v. It is easy to see that ϕ is an aheadness mapping, and that
it is unique. ��
Lemma 3. For every s ∈ TΣ and q ∈ QN ,
if δM (s) = p, then qN (s) = ϕ(q, p)[〈q̄, p〉 ← q̄M (s) | q̄ ∈ QM ].

Proof. Since q is reachable, there exist C, v such that N(C)/v = 〈q,⊥〉. By (1),
M(C[p])/v = ϕ(q, p). Since M and N are equivalent, N(C[s]) = M(C[s]). Ap-
plying Lemma 1 twice, we obtain that qN (s) = N(C[s])/v = M(C[s])/v =
(M(C[p])/v)[〈q̄, p〉 ← q̄M (s) | q̄ ∈ QM ], which proves the equation. ��

The next lemma expresses our intuition that the output of N on input C
is the largest common prefix of the outputs of M on all inputs C[p], p ∈ P ,
such that the difference tuples of M are stored in the states of N . Its proof
uses that N is earliest. For a tree t ∈ TΔ(QN × {⊥}) we define the Δ-pattern
tΦ := t[〈q,⊥〉 ← ⊥ | q ∈ QN ]; similarly, for t ∈ TΔ(QN (X)), we define tΦ :=
t[q(xi) ← ⊥ | q ∈ QN , i ∈ N].
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Lemma 4. For every C ∈ CΣ, N(C)Φ = pref(M,C); moreover, for every v ∈
N∗

+, q ∈ QN and p ∈ PM , if N(C)/v = 〈q,⊥〉 then ϕ(q, p) = M(C[p])/v.

Proof. By Equation (1), N(C)Φ  M(C[p]) for every p ∈ PM (cf. Claim 1 in
the proof of Lemma 2), and so N(C)Φ  pref(M,C). To show equality, we prove
for every v ∈ V⊥(N(C)Φ) that v ∈ V⊥(pref(M,C)). Let N(C)/v = 〈q,⊥〉 for
q ∈ QN . Then, by Equation (1), M(C[p])/v = ϕ(q, p) for every p ∈ PM (which
proves the second part of this lemma). Suppose that v ∈ Vd(pref(M,C)) with
d ∈ Δ. Then v ∈ Vd(M(C[p])) and so lab(ϕ(q, p), ε) = d for every p ∈ PM . Then,
by Lemma 3, lab(qN (s), ε) = d for every s ∈ TΣ , contradicting the fact that N
is earliest. ��

If M is equivalent to a dtop, then it is equivalent to a canonical dtop by
Theorem 1. By [6, Theorem 15], equivalent canonical dtops are the same (modulo
a renaming of states). Thus, if M is equivalent to a dtop, then it is equivalent to
a unique canonical dtop td(M). In the next three lemmas we give another proof
of this, and we show that td(M) can be constructed from M and diftup(M). We
start by showing that Qtd(M) can be identified with diftup(M). The proof uses
that N is canonical.

Lemma 5. For a state q ∈ QN , let ψ(q) = (ϕ(q, p̂1), . . . , ϕ(q, p̂n)), where PM =
{p̂1, . . . , p̂n}. Then ψ is a bijection between QN and diftup(M).

Proof. (i) ψ(q) ∈ diftup(M). Proof: There are C, v such that N(C)/v = 〈q,⊥〉.
By Lemma 4, v ∈ V⊥(pref(M,C)) and M(C[p̂i])/v = ϕ(q, p̂i) for every i. Thus
ψ(q) ∈ diftup(M). (ii) ψ is surjective. Proof: If (t1, . . . , tn) ∈ diftup(M) then
there are C, v such that pref(M,C)/v = ⊥ and M(C[p̂i])/v = ti for every i.
By Lemma 4, N(C)/v = 〈q,⊥〉 for some q ∈ QN , and M(C[p̂i])/v = ϕ(q, p̂i).
Thus, ti = ϕ(q, p̂i) for every i. (iii) ψ is injective. Proof: Let ψ(q1) = ψ(q2). By
Lemma 3, (q1)N (s) = (q2)N (s) for all s ∈ TΣ , i.e., [[q1]]N = [[q2]]N , so q1 = q2
because N is canonical. ��

Corollary 1. Let M be a total dtla. If M is equivalent to a dtop, then diff(M)
is finite.

Proof. If M is a dtop, then diff(M) = ∅. Now let M be a dtpla, equivalent to a
dtop. By Theorem 1, the canonical dtla can(M) is equivalent to a canonical dtop.
By Lemmas 2 and 5, diftup(can(M)) is finite, and so diff(can(M)) is finite. Hence

diff(M) is finite because maxdiff(M) ≤ maxdiff(can(M)) + 8|M|3 , cf. Theorem 1.
��

Next we show how to compute the axiom of td(M), representing the states
of td(M) by difference tuples. For a tree t ∈ TΔ(QM (X)) we define tΩ ∈
TΔ(QM × PM ) by tΩ := t[q(xi) ← 〈q, ρM (q)〉 | q ∈ QM , i ∈ N]; similarly,
for t ∈ TΔ(QN (X)), we define tΩ := t[q(xi) ← 〈q,⊥〉 | q ∈ QN , i ∈ N].

Lemma 6. ANΦ = �{AM (p)Ω | p ∈ PM}; moreover, for every v ∈ N∗
+, q ∈ QN

and p ∈ PM , if AN/v = q(x0) then ϕ(q, p) = AM (p)Ω/v.
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Proof. Clearly, N(⊥) = ANΩ and M(p) = AM (p)Ω for every p ∈ PM . Hence
by Lemma 4, with C = ⊥, ANΦ = ANΩΦ = N(⊥)Φ = pref(M,⊥) = �{M(p) |
p ∈ PM} = �{AM (p)Ω | p ∈ PM}. If AN/v = q(x0) then N(⊥)/v = ANΩ/v =
〈q,⊥〉; so by Lemma 4, with C = ⊥, ϕ(q, p) = M(p)/v = AM (p)Ω/v for every
p ∈ PM . ��

Finally we show, without proof, how to compute the rules of td(M). Let M be
an la-uniform dtla, QN a finite set and ϕ : QN×PM → TΔ(QM×PM ) a mapping
such that ϕ(q, p) ∈ TΔ({〈q̄, p〉 | q̄ ∈ QM , ρM (q̄) = p}) for every q ∈ QN and
p ∈ PM . Then we define for every q ∈ QN , a ∈ Σ of rank k ≥ 0, and p1, . . . , pk ∈
PM , the tree rhsM,ϕ(q, a, p1, . . . , pk) := ϕ(q, p)[〈q̄, p〉 ← rhsM (q̄, a, p1, . . . , pk) |
q̄ ∈ QM ] where p = δM (a, p1, . . . , pk). For k ∈ N, let [k] = {1, . . . , k}.

Lemma 7. (1) For every q ∈ QN and a ∈ Σ of rank k ≥ 0,
rhsN (q, a)Φ = �{rhsM,ϕ(q, a, p1, . . . , pk)Ω | p1, . . . , pk ∈ PM}.

(2) Let q ∈ QN , a ∈ Σ of rank k ≥ 0, and i ∈ [k]. For j ∈ [k], j �= i, let sj ∈ TΣ
and pj = δM (sj). Let ΨiM = [q̄(xj) ← q̄M (sj) | q̄ ∈ QM , j ∈ [k], j �= i]Ω.
For every v ∈ V⊥(rhsN (q, a)Φ),
(a) rhsN (q, a)/v ∈ QN({xi}) if and only if

v ∈ V⊥(�{rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM | p ∈ PM}), and
(b) for every q̄ ∈ QN and p ∈ PM , if rhsN(q, a)/v = q̄(xi) then

ϕ(q̄, p) = rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM/v.

By the last three lemmas, every dtpla M that is equivalent to a dtop, is
equivalent to a unique canonical dtop td(M), modulo a renaming of states. Based
on these same lemmas, we can now construct td(M) from any given canonical
dtpla M for which diftup(M) is a given finite set. The construction returns
the answer ‘no’ if M is not equivalent to any dtop. We construct the dtop N =
td(M), if it exists, by taking QN = diftup(M), defining ϕ : QN×PM → TΔ(QM×
PM ) as ϕ((t1, . . . , tn), p̂i) = ti for i ∈ [n] (in accordance with Lemma 5), and
constructing the axiom and rules of N according to Lemmas 6 and 7, respectively
(i.e., by viewing the statements of these lemmas as definitions). In Lemma 7(2)
we choose sj arbitrarily but fixed. If the construction of an axiom or a rule fails
because a possible state occurring in it (which is a tuple in TΔ(QM × PM )n) is
not a difference tuple of M , then the answer is ‘no’. The construction of a rule
can also fail (and produce the answer ‘no’) when a node v ∈ V⊥(rhsN (q, a)Φ) is
not an element of V⊥(�{rhsM,ϕ(q, a, p1, . . . , pi−1, p, pi+1, . . . , pk)ΨiM | p ∈ PM})
for any i, see Lemma 7(2)(a). If the construction of the dtop N succeeds, then it
remains to test whether M and N are equivalent (because, by Lemmas 5, 6 and 7,
if M is equivalent to a dtop then it is equivalent to N). If they are equivalent
then the construction returns the dtop N = td(M), otherwise the answer is ‘no’.
Equivalence of dtlas is decidable by [9] (see also [6, Corollary 19]). It is shown
in [7, Section 6.1] that there is a simple direct test for equivalence of M and N .

Unfortunately, we do not know whether it is decidable if diftup(M) is finite,
and whether it can be computed if it is finite. We now show that, to determine
whether a dtla M is equivalent to a dtop, it suffices to have an upper bound for
maxdiff(M).
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Theorem 2. It is decidable for a given total dtla M and a given difference bound
for M whether there exists a dtop N such that [[M ]] = [[N ]], and if so, such a
dtop N can be constructed.

Proof. Let M be a (total) dtla and let h(M) be a difference bound for M . We
may, of course, assume that M is a dtpla. By Theorem 1 we may assume that
M is canonical, because h(M) + 8|M|3 is a (computable) difference bound for
can(M).

So, let M be a canonical dtpla and let h(M) be a difference bound for M .
This means that if diftup(M) is finite, then the height of the components of the
difference tuples of M is at most h(M). We now decide whether M is equivalent
to a dtop by constructing td(M) as described before this theorem. However, since
diftup(M) is not given, we construct N = td(M) incrementally, using a variable
QN to accumulate its states (which are all assumed to be reachable). In accor-
dance with Lemma 5 we take QN ⊆ TΔ(QM × PM )n and ϕ((t1, . . . , tn), p̂i) = ti
for i ∈ [n]. We first construct the axiom AN according to Lemma 6 and initialize
the set QN with the states, i.e., the tuples in TΔ(QM ×PM )n, that occur in that
axiom. If the height of one of the components of one of those tuples is larger
than h(M), then either diftup(M) is infinite or that tuple is not a difference
tuple of M , and we stop the construction with answer ‘no’, indicating that M
is not equivalent to any dtop. Then, repeatedly, for every q ∈ QN and a ∈ Σ
we construct rhsN (q, a) according to Lemma 7, and we add to QN the states
that occur in that right-hand side. If the construction of rhsN (q, a) fails or if
the height of one of the components of its states is larger than h(M), then the
answer is ‘no’. If the construction of the dtop N succeeds, then it remains to
test whether M and N are equivalent. ��

In the next example we show that without the tests on height, the construc-
tion may not halt; in such a case it can be viewed as computing an infinite
dtop equivalent to M . In Example 6 the construction of N succeeds and N is
equivalent to M .

Example 5. Consider the dtla M of Example 1. It is easy to see that M is
canonical. In Example 4 we have seen that diftup(M) = {(a, σn〈q, pb〉) | n ∈ N}.

We now apply to M the construction of N in the proof of Theorem 2,
without the tests on height. By Lemma 6, ANΦ = a � 〈q, pb〉 = ⊥ and so
AN = q0(x0) with ϕ(q0, pa) = a and ϕ(q0, pb) = 〈q, pb〉, i.e., q0 = (a, 〈q, pb〉).
Assume now that the algorithm has constructed the state qn with ϕ(qn, pa) = a
and ϕ(qn, pb) = σn〈q, pb〉, i.e., qn is the difference tuple (a, σn〈q, pb〉) of M . By
Lemma 7(1), rhsN (qn, b) = rhsM,ϕ(qn, b) = ϕ(qn, pb)[〈q̄, pb〉 ← rhsM (q̄, b) | q̄ ∈
QM ] = ϕ(qn, pb)[〈q, pb〉 ← b] = σnb. Thus, N has the rule qn(b) → σnb. Similarly,
rhsN (qn, a) = rhsM,ϕ(qn, a) = ϕ(qn, pa) = a and so N has the rule qn(a) → a.
Next, we compute rhsN (qn, σ). To do so we need rhsM,ϕ(qn, σ, p) for every p ∈
PM . For p = pb we have rhsM,ϕ(qn, σ, pb) = ϕ(qn, pb)[〈q, pb〉 ← rhsM (q, σ, pb)] =
σnσq(x1) = σn+1q(x1), and for p = pa we have rhsM,ϕ(qn, σ, pa) = ϕ(qn, pa) = a.
Thus, by Lemma 7(1), rhsN (qn, σ)Φ = a�σn+1〈q, pb〉 = ⊥. Hence, rhsN (qn, σ) =
q(x1) for some q ∈ QN . By Lemma 7(2)(b), ϕ(q, py) = rhsM,ϕ(qn, σ, py)Ω for
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y ∈ {a, b} and so ϕ(q, pa) = a and ϕ(q, pb) = σn+1〈q, pb〉. Thus, q = qn+1 and
N has the rule qn(σ(x1)) → qn+1(x1). This shows that the construction does
not halt. It can be viewed as constructing the infinite dtop N with QN = {qn |
n ∈ N} = diftup(M), AN = q0(x0) and rules qn(a) → a, qn(b) → σnb and
qn(σ(x1)) → qn+1(x1) for every n ∈ N. Clearly, N is equivalent to M . With a
given difference bound h, the construction halts when constructing qh+1. ��
Example 6. Consider the dtla M of Example 3. As observed after Example 3,
M is canonical. We have seen in Example 4 that diftup(M) consists of the three
4-tuples (a, a, b, b), (a, b, a, b) and (〈qaa, paa〉, 〈qab, pab〉, 〈qba, pba〉, 〈qbb, pbb〉).

We construct N as in the proof of Theorem 2; since maxdiff(M) = 0, the con-
struction is the same for every difference bound h(M). By Lemma 6, AN = q0(x0)
with ϕ(q0, pyz) = 〈qyz, pyz〉 for y, z ∈ {a, b}. Hence, q0 = (〈qaa, paa〉, 〈qab, pab〉,
〈qba, pba〉, 〈qbb, pbb〉). Then Lemma 7(1) implies the equalities rhsN (q0, yz)Φ =
rhsM,ϕ(q0, yz) = ϕ(q0, pyz)[〈qyz , pyz〉 ← rhsM (qyz , yz)] = rhsM (qyz , yz) = yz, so
N has the rules q0(yz)→ yz for all y, z ∈ {a, b}. To compute rhsN (q0, σ), observe
that for every w, x, y, z ∈ {a, b}, rhsM,ϕ(q0, σ, pwx, pyz) = ϕ(q0, pwz)[〈qwz, pwz〉 ←
rhsM (qwz, σ, pwx, pyz)] = rhsM (qwz, σ, pwx, pyz) = σ(qwx(x1), qyz(x2),#(w, z)).
By Lemma 7(1), rhsN (q0, σ)Φ = σ(⊥,⊥,#(⊥,⊥)). Thus, N may have a rule of
the form

q0(σ(x1, x2)) → σ(q3(xi3 ), q4(xi4 ),#(q1(xi1 ), q2(xi2 ))).

Let s1 = s2 = aa. From Lemma 7(2)(a) we obtain for v = (3, 1) that

i1 = 1 ⇐⇒ v ∈ V⊥(�{rhsM,ϕ(q0, σ, pwx, paa)Ψ1M | w, x ∈ {a, b}})
⇐⇒ v ∈ V⊥(�{σ(〈qwx, pwx〉, aa,#(w, a)) | w, x ∈ {a, b}})

if and only if v ∈ V⊥(σ(⊥, aa,#(⊥, a))), which is true. So i1 = 1 and ϕ(q1, pwx) =
w for all w, x ∈ {a, b} by Lemma 7(2)(b). Thus, q1 = (a, a, b, b). Similarly we
obtain for v = (3, 2) that i2 = 2 and ϕ(q2, pyz) = z, for v = 1 that i3 = 1 and
ϕ(q3, pwx) = 〈qwx, pwx〉, and for v = 2 that i4 = 2 and ϕ(q4, pyz) = 〈qyz , pyz〉.
Hence q2 = (a, b, a, b), q3 = q4 = q0 and N has the rule

q0(σ(x1, x2)) → σ(q0(x1), q0(x2),#(q1(x1), q2(x2))).

Next we consider q2. Clearly, both rhsM,ϕ(q2, yz) and rhsM,ϕ(q2, σ, pwx, pyz) equal
z. Thus, N has the rules q2(yz) → z and it may have a rule of the form
q2(σ(x1, x2)) → q(xi). Taking again s1 = s2 = aa, we get that i = 2 if and
only if ε has label ⊥ in �{rhsM,ϕ(q2, σ, paa, pyz) | y, z ∈ {a, b}} if and only if
ε ∈ V⊥(a � b), which is true. So i = 2 and ϕ(q, pyz) = z, which means that
q = q2. Hence, N has the rule q2(σ(x1, x2)) → q2(x2). Similarly it has the rules
q1(yz) → y and q1(σ(x1, x2)) → q1(x1). So, the construction ends with the dtop
N given at the end of Example 2. ��

5 Conclusion

A dtla M is linear if no right-hand side of a rule contains the same variable twice,
and nonerasing if no right-hand side of a rule is in Q(X). Our two example dtlas
are both.
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Theorem 3. It is decidable for a total linear nonerasing dtla M whether there
exists a dtop N such that [[M ]] = [[N ]], and if so, such a dtop N can be con-
structed.

The proof uses (involved) pumping arguments to show that 37 · |M |5 is a
difference bound for such a dtla M . The same proof holds for dtlas with less
stringent restrictions on copying and erasing: total dtlas that are ultralinear and
bounded erasing, see [7].

We would like to extend the above result to the nontotal case where a dtla
realizes a partial function, to the case where the dtla and the dtop are restricted
to a given regular tree language, and to more general dtlas (preferably to all
dtlas, of course). Even more generally, we would like to have an algorithm that
for a given dtla constructs an equivalent dtla with a minimal number of look-
ahead states.
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Abstract. We study the formal language theory of multistack push-
down automata (Mpa) restricted to computations where a symbol can
be popped from a stack S only if it was pushed within a bounded num-
ber of contexts of S (scoped Mpa). We contribute to show that scoped
Mpa are indeed a robust model of computation, by focusing on the cor-
responding theory of visibly Mpa (Mvpa). We prove the equivalence of
the deterministic and nondeterministic versions and show that scope-
bounded computations of an n-stack Mvpa can be simulated, rearrang-
ing the input word, by using only one stack. These results have several
interesting consequences, such as, the closure under complement, the de-
cidability of universality, inclusion and equality, and a Parikh theorem.
We also give a logical characterization and compare the expressiveness
of the scope-bounded restriction with Mvpa classes from the literature.

1 Introduction

Pushdown automata working with multiple stacks (multistack pushdown au-
tomata, Mpa for short) are the automata-theoretic model of concurrent programs
with recursion and shared memory. Within the domain of formal verification of
programs, program executions are analyzed against correctness properties, that
may refer to the stack operations in the model such as for stack inspection prop-
erties and Hoare-like pre/post conditions. Such visibility of stack operations is
captured in the formal languages by the notion of visibly pushdown language [1].

The class of multistack visibly pushdown languages (Mvpl) is defined via
the model of multistack visibly pushdown automaton (Mvpa), that is a Mpa
where the push and pop operations on each stack are made visible in the input
symbols, by a partition of the input alphabet into calls, returns and internals.
Though visibility allows to synchronize the stack usage in the constructions, thus
gaining interesting properties such as the closure under intersection, in general,
it does not limit the expressiveness up to gaining decidability: the language of
the executions (i.e., the sequence of transitions) of a Mpa is a Mvpl, and Mpas
are equivalent to Turing machines already with two stacks.

In this paper, we study the formal language theory of Mvpa restricted to
scoped computations [13]: for a positive integer, a computation is k-scoped if
for each stack i, each popped symbol was pushed within the last k contexts of
i (a context is a continuous portion of the computation where only one stack
is used). The notion of scope-bounded computations was introduced in [12] to
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extend the analysis of Mpa to unboundedly many context switches. The original
notion of scope-bounded is significantly less expressive than the one used in this
paper. The notion of scoped computations naturally extends to infinite words
and temporal logic model checking [13,3]. Also, global reachability was solved for
concurrent collapsible pushdown automata restricted to scoped computations [8].

Our first main contribution is to prove that deterministic and nondetermin-
istic scoped Mvpa are language equivalent. The main notion used in our con-
struction is the switching mask. A switching mask summarizes the states of a
Mvpa at context-switches. We show that for scope-bounded computations also
the switching masks are bounded. The resulting deterministic Mvpa has size
doubly exponential in both the number of stacks and the bound k. By this
construction we gain the closure under complement, and by the effectiveness
of closure under intersection and the decidability of emptiness, we also get the
decidability of universality, inclusion, and equality. In general, Mvpa and most
of the already studied classes of Mvpa are not determinizable [9].

As a second main contribution, we show a sequentialization construction for
scoped Mvpa. Namely, we give a mapping π that rearranges the contexts in
a scoped word w s.t. it can be read by using only one stack (all the calls and
returns of the starting alphabet are interpreted as calls and returns of the only
available stack). We show a construction that starting from a Mvpa A builds a
visibly pushdown automaton Aseq that accepts all the scoped words in π(L(A)).
Sequentialization of concurrent programs is nowadays one of the emerging tech-
niques for building model-checkers for concurrent programs. As a corollary of
this result, we can show a Parikh theorem for scoped Mvpl.

Closure under union and intersection can be shown via standard constructions,
and since the reachability problem is Pspace-complete [13], we also get that
emptiness is Pspace-complete. Decidability of membership is straightforward:
guess and check a run over the input word. We also give an MSO characterization
of scoped Mvpl. To the best of our knowledge this class is the largest subclass
of Mvpl with all the above properties.

As a further result we compare scoped Mvpl with the main Mvpl classes
from the literature and show that it is incomparable with the most expressive
ones, and strictly subsumes the others.

Related Work: In the literature several classes of Mvpl have been studied:
phase [10,11], ordered [6,7], and path-tree [14] are not determinizable and in-
comparable with scoped Mvpl. The class of round Mvpl [9], which is based on
the notion of bounded-context switching [19], has the same properties as scoped
Mvpl (checking emptiness is NP-complete) but it is strictly included in it.

Parikh theorem was originally given for context-free languages in [18]. Vis-
ibility of stack operations was first introduced for input-driven pushdown au-
tomata [22] (see also [17] and references therein). A fixed-point algorithm for
the reachability problem and a sequentialization are given in [15] for Mpa under
the restriction from [12]. The bounded context-switching restriction was pro-
posed in [19] for under-approximate analysis of multi-threaded programs. More
work on decision problems is done in [20,5] for phase Mpa and ordered Mpa [4].
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2 Preliminaries

For i, j ∈ N, we denote with [i, j] = {d ∈ N | i ≤ d ≤ j}, and with [j] = [1, j].

Words over Call-Return Alphabets. Given an integer n > 0, an n-stack
call-return alphabet Σ̃n is (Σint , 〈Σc

h, Σ
r
h〉h∈[n]), where Σint , Σc

1, Σ
r
1 , . . . , Σ

c
n, Σ

r
n

are pairwise disjoint finite alphabets; Σint is the set of internals, and for h ∈ [n],
Σr

h is the set of stack-h returns and Σc
h is the set of stack-h calls.

In the following, for an n-stack call-return alphabet Σ̃n, we let Σh = Σc
h ∪

Σr
h ∪Σint , Σc =

⋃
h∈[n]Σ

c
h, Σr =

⋃
h∈[n]Σ

r
h and with Σ = Σint ∪Σr ∪Σc.

For a word w = a1 . . . am over Σ̃n, denoting Ch = {i ∈ [m] | ai ∈ Σc
h} and

Rh = {i ∈ [m] | ai ∈ Σr
h}, the matching relation ∼h defined by w is such that

(1) ∼h⊆ Ch × Rh, (2) if i ∼h j then i < j, (3) for each i ∈ Ch and j ∈ Rh s.t.
i < j, there is an i′ ∈ [i, j] s.t. either i′ ∼h j or i ∼h i′, and (4) for each i ∈ Ch

(resp. i ∈ Rh) there is at most one j ∈ [m] s.t. i ∼h j (resp. j ∼h i). When
i ∼h j, we say that positions i and j match in w (they are matching call and
return in w). If i ∈ Ch and i �∼h j for any j ∈ Rh, then i is an unmatched call.
Analogously, if i ∈ Rh and j �∼h i for any j ∈ Ch, then i is an unmatched return.

Multi-stack Visibly Pushdown Languages. A multi-stack visibly pushdown
automaton pushes a symbol on stack h when it reads a stack-h call, and pops a
symbol from stack h when it reads a stack-h return. Moreover, it just changes its
state, without reading or modifying any stack, when reading an internal symbol.
A special bottom-of-stack symbol ⊥ is used: it is never pushed or popped, and
is in the stack when computation starts. Fix a call-return alphabet Σ̃n.

Definition 1. (Multi-stack visibly pushdown automaton) A multi-stack

visibly pushdown automaton (Mvpa) over Σ̃n, is a tuple A = (Q,QI , Γ, δ,QF )
where Q is a finite set of states, QI ⊆ Q is the set of initial states, Γ is a finite
stack alphabet containing the symbol ⊥, δ ⊆ (Q × Σc × Q × (Γ\ {⊥})) ∪ (Q ×
Σr × Γ × Q) ∪ (Q × Σint × Q) is the transition function, and QF ⊆ Q is the
set of final states. Moreover, A is deterministic if |QI | = 1, and |{(q, a, q′) ∈
δ}∪{(q, a, q′, γ′) ∈ δ}∪{(q, a, γ, q′) ∈ δ}| ≤ 1, for each q ∈ Q, a ∈ Σ and γ ∈ Γ .

A configuration of an Mvpa A over Σ̃n is a tuple α = 〈q, σ1, . . . , σn〉, where
q ∈ Q and each σh ∈ (Γ \ {⊥})∗.{⊥} is a stack content. Moreover, α is initial
if q ∈ QI and σh =⊥ for every h ∈ [n], and accepting if q ∈ QF . A transition

〈q, σ1, . . . , σn〉 a−→A 〈q′, σ′
1, . . . , σ

′
n〉 is such that one of the following holds:

[Push] a ∈ Σc
h, ∃γ ∈ Γ \ {⊥} such that (q, a, q′, γ) ∈ δ, σ′

h = γ ·σh, and σ′
i = σi

for every i ∈ ([n] \ {h}).
[Pop] a ∈ Σr

h, ∃γ ∈ Γ such that (q, a, γ, q′) ∈ δ, σ′
i = σi for every i ∈ ([n]\{h}),

and either γ �=⊥ and σh = γ · σ′
h, or γ = σh = σ′

h =⊥.
[Internal] a ∈ Σint , (q, a, q′) ∈ δ, and σ′

h = σh for every h ∈ [n].

For a word w = a1 . . . am in Σ∗, a run of A on w from α0 to αm, denoted
α0

w−→A αm, is a sequence of transitions αi−1
ai−→A αi for i ∈ [m]. Word w is

accepted by A if there is an initial configuration α and an accepting configuration
α′ such that α

w−→A α′. The language accepted by A is denoted with L(A).
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A language L is a multi-stack visibly pushdown language (Mvpl) if it is ac-

cepted by an Mvpa over a call-return alphabet Σ̃n.
A visibly pushdown automaton (Vpa) [1] is an Mvpa with just one stack,

and a visibly pushdown language (Vpl) is an Mvpl accepted by a Vpa.

Scope-Bounded Matching Relations [12,13]. A stack-h context is a word
in Σ+

h . We say that w has at most k maximal contexts of stack h if w ∈
Σ∗

h (Σ∗

=h Σ

∗
h)k−1 where Σ 
=h =

⋃
h′ 
=h Σh′ .

For a word w = a1 . . . am ∈ Σ∗ we denote with w[i, j] the subword ai . . . aj .

A word w is k-scoped (according to Σ̃n) if for each h ∈ [n] and i, j ∈ [m] s.t.
i ∼h j, w[i, j] has at most k maximal contexts of stack h, i.e., each matching
call and return of stack h occur within at most k stack-h maximal contexts.

astack 1: aa

bstack 2: dd

c ca

b b b

c c

Fig. 1. A 3-scoped word

In all the examples, we assume Σc
1 ={a}, Σc

2 ={b},
Σr

1 = {c}, and Σr
2 = {d}. Consider a sample word

ν1 = a3 bd2 c2a b3 c2. Fig. 1 illustrates its splitting
into contexts and the matching relations with edges.
Note that the only pair of matching b’s and d’s is
in the same stack-2 context. Moreover, the first a
occurs in the first stack-1 context and is matched
by the last c which occurs in the third stack-1 context. Any other matching pair
of a’s and c’s occur within two stack-1 contexts. Therefore, ν1 is k-scoped for
any k ≥ 3 but it is not 2-scoped.

With Scoped(Σ̃n, k), we denote the set of all the k-scoped words over Σ̃n. A

language L⊆Σ∗ is a scoped Mvpl (Smvpl) if L=Scoped(Σ̃n, k)∩L(A) for some

Mvpa A over the call-return alphabet Σ̃n.

3 Properties of Mvpa Runs over Scoped Words

Fix an integer k > 0 and an Mvpa A = (Q,Q0, Γ, δ, F ) over Σ̃n.

k-scoped Splitting. For a word w over Σ̃n and h ∈ [n], a cut of w is w1 : w2

s.t. w = w1w2. Such a cut is consistent with the matching relation ∼h (∼h-
consistent, for short) if in w no call of stack h occurring in the prefix w1 is
matched with a return occurring in the suffix w2.

A (∼h-consistent) splitting of w is defined by a set of (∼h-consistent) cuts of
w, that is, it is an ordered tuple 〈wi〉i∈[d] s.t. w = w1 . . . wd, wi is non-empty for
i ∈ [d] and w1 . . . wi:wi+1 . . . wd is a (∼h-consistent) cut for i ∈ [d− 1].

A context-splitting of w is a splitting 〈wi〉i∈[d] where wi is a stack-hi context
for i ∈ [d]. The canonical context-splitting of w is the only context-splitting
〈wi〉i∈[d] s.t., for each i ∈ [2, d], stack-hi context wi starts with a call or a return,
and hi−1 �= hi. For example, Fig. 1 gives the canonical context-splitting η of ν1
that splits ν1 into: aaa, bdd, cca, bbb, and cc.

The h-projection of a context-splitting χ = 〈wi〉i∈[d] is obtained from χ by
deleting all the wi that are not stack-h contexts. For example, the 2-projection
of η is: bdd, bbb. Note that a h-projection is trivially a context-splitting.

An ordered tuple χ = 〈wi〉i∈[d] of stack-h contexts is k-bounded if there is a
∼h-consistent splitting ξ = 〈vi〉i∈[m] of w1 . . . wd s.t. each vi is the concatenation
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of at most k consecutive contexts of χ. In the following, we refer to such a ξ as
a k-bounding splitting for χ and will denote with χvi the ordered tuple of the
contexts from χ that form vi, for i ∈ [m].

A k-scoped splitting χ of w is the canonical context-splitting of w refined with
additional cuts s.t. for h ∈ [n], the h-projection of χ is k-bounded.

aa

bdd

c c aa

b b b

c c a

ddb

c c

Fig. 2. k-scoped splitting

Consider a sample word ν2 = a2bd2c2a2b3c2ad2bc2.
Fig. 2 illustrates a 2-scoped splitting χ that refines
the canonical context-splitting of ν2 by further cut-
ting it at the dashed vertical lines. Thus, χ splits ν2
into: aa,bdd,cc,aa,bbb,cc,a,ddb,cc. We observe that
the dashed lines define a ∼1-consistent splitting of
word a2 c2 a2 c2 a c2 where each portion is the con-
catenation of two contexts of the 1-projection of χ. Moreover, by cutting the
word bd2 b3 d2b at the first dashed line, we get a ∼2-consistent splitting where
each portion has at most two contexts of the 2-projection of χ.

Lemma 1. A word w is k-scoped iff there is a k-scoped splitting of w.

Scope-Bounded Switching-Vector Vpa. Fix h ∈ [n]. We start by recalling
the definition of switching vector [9]. Intuitively, a switching vector summarizes
the computations of an Mvpa across several consecutive stack-h contexts.

Let Ah be the Vpa over Σh obtained by restricting A to use only stack h. For
d > 0, a tuple I = 〈ini, out i〉i∈[d] is a stack-hd-switching vector (d-sv, for short, d is
omitted when we do not need to refer to its size) if there is an ordered tuple 〈wi〉i∈[d]

of stack-h contexts such that, for i ∈ [d], 〈in i, σi−1〉
wi−→Ah 〈out i, σi〉where σ0 =⊥.

We also define st(I) = in1 and cur(I) = outd, and say that 〈wi〉i∈[d] witnesses I.
A stack-h k-scoped switching vector is a sv I that can be witnessed by a

k-bounded ordered tuple of stack-h contexts.
Let χ be a k-bounded ordered tuple of stack-h contexts and ξ = 〈vi〉i∈[m] be

a k-bounding splitting for χ. Denote with I a stack-h k-scoped sv witnessed by
χ. From the definition, I is given by the concatenation I1 . . . Im where each Ii is
a stack-h di-sv witnessed by χvi and di ∈ [k] is the number of contexts of χvi .
Note that not all the concatenations of sv’s with at most k pairs form a k-scoped
sv. In fact, by concatenating two witnesses a call from one could match a return
from the other, thus the resulting tuple could not be k-bounded.

We now define a Vpa Ah
k that if the input is an encoding of a k-bounded

tuple χ of stack-h contexts then it computes all the stack-h k-scoped sv’s of
A witnessed by χ. Essentially, Ah

k nondeterministically guesses any k-bounding
splitting for χ and for each resulting portion, say formed by d ≤ k contexts, it
computes a corresponding d-sv while mimicking the behavior of Ah.

We encode a tuple of stack-h contexts by marking the first symbol of each
context. Namely, for each a ∈ Σ, we add a fresh symbol ā that is a call (resp.
return, internal) if a is a call (resp. return, internal). Let Σ̄h denote the set of
all such new symbols. For a word u = a1a2 . . . ad, we denote with ū the word
ā1a2 . . . ad. We encode a tuple of stack-h contexts u1, . . . , um as ū1ū2 . . . ūm. The
new symbols ā are interpreted as a when mimicking the moves of Ah.
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By assuming the input ū1ū2 . . . ūm, in a typical run, Ah
k starts from any (p, p) ∈

Q2 and on reading the first symbol of ū1, it updates the second component in this
pair according to an Ah move. Now, assume a stored pair (p, p′). On any other
symbol of ū1, for any move of Ah from p′ to p′′ there are two nondeterministic
moves of Ah

k : one updating p′ to p′′ in the stored pair (as before), the other
starting a new sv by storing (p′, p′′) and thus guessing a cut. On the first symbol
of ū2, for any q ∈ Q and for any move of Ah from q to q′, again there are two
nondeterministic moves as before: one updating the stored pair to (p, p′)(q, q′),
the other starting a new sv by replacing the stored pair with (q, q′). Then, the
run continues similarly on the rest of the input.

There are two more aspects that Ah
k needs to take care of.

First, we only store d-sv’s for d ≤ k: when context-switching (i.e., reading a
symbol ā ∈ Σ̄h), appending a new pair to the stored sv I must not be allowed
if I already contains k pairs. By Lemma 1, this is sufficient for our purposes.

Second, we need to ensure that Ah
k uses only the portion of the stack that

has been pushed since the computation of the current sv started; moreover, if
it attempts to pop a symbol that was pushed when computing the previous sv,
then the guessed splitting is clearly wrong (a guessed cut is not consistent with
∼h) and the computation should halt. To ensure this, we store a bit es in the
states of Ah

k and maintain the invariant: es = 1 iff the stack does not contain
symbols pushed after the last guessed cut. Also, since pop transitions on an
empty stack are allowed in Vpas, even if the portion of the stack currently in
use is empty, we should allow them only if the whole stack is also empty. Thus,
we store another bit eg and maintain the invariant: eg = 1 iff the stack is empty.

A state of Ah
k is thus (eg, es, I) where eg, es ∈ {0, 1} and I ∈ (Q × Q)m,

m ∈ [k]. All the states are final and all the states of the form (1, 1, (q, q)) for
q ∈ Q are initial. We leave to the reader the formal definition of the transitions.

Let w be a word over the alphabet Σh ∪ Σ̄h. With Ihk (w), we denote the set
of the sv’s I ∈

⋃
d>0(Q ×Q)d s.t. there exists a run ρ of Ah

k on w and I is the
concatenation of I1, . . . , Ij , Ij+1 where: Ij+1 is the sv stored in the state of the
last configuration of ρ and I1, . . . , Ij is the sequence of the sv’s of all the states
occurring at the configurations of ρ from which a transition that starts a new
sv is taken (in the order they appear in ρ).

Lemma 2. I is a stack-h k-scoped switching vector of A iff I ∈ Ihk (w) for some
w ∈ (Σh ∪ Σ̄h)∗.

S1

S2

S3

(q0,q1)

(q1,q2)

(q2,q3)

(q3,q4)

(q4,q5) ( q5,q6)

(q6,q7)

(q7,q8)

(q8,q9)

(q9,q10)

(q10,q11)

S4

Fig. 3. Sample switching vectors and 3-scoped
switching mask

Let ρ be a run of an Mvpa
A over a 3-stack call-return al-
phabet given as 〈qi−1, σ̄i−1〉

ui−→
〈qi, σ̄i〉 with i∈ [11] and contexts
ui. Let v1 = ū1ū7ū9 be accepted
by A1

3, v2 = ū2ū4ū10 by A2
3 and

v3 = ū3ū5ū6ū8ū11 by A3
3. Ac-

cording to ρ, A3
3 computes on v3 the concatenation of the 2-sv S3 over ū3ū5

and the 3-sv S4 over ū6ū8ū11. The 3-sv’s computed on v1 and v2 are respec-
tively S1 and S2 (Fig. 3).
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Switching Masks. We use the sv’s to summarize the runs of an Mvpa over
scoped words. For a k-scoped splitting χ of a word w over Σ̃n and h ∈ [n],
denote with dh the number of contexts in the h-projection χh of χ. Moreover,
for h, h′ ∈ [n], j ∈ [dh] and j′ ∈ [dh′ ], we define nextχ(h, j) = (h′, j′) s.t. the

j′-th context of χh′
is the context following in w the j-th context of χh.

For a word w over Σ̃n, a tuple M = (I1, . . . , In) is a k-scoped switching
mask for w if there is a k-scoped splitting χ of w s.t. for h ∈ [n]: (1) Ih =

〈inh
y , outhy〉y∈[xh] is a stack-h k-scoped sv of A and (2) outhy = inh′

y′ for each
h, y, h′, y′ for which nextχ(h, y)=(h′, y′). Moreover, we let st(M) = st(Ih1 ) and
cur(M) = cur(Ihd

), where each wi in χ is a stack-hi context.
In Fig. 3, we give the 3-scoped switching mask according to the sample run ρ

given above. The edges denote the mapping nextχ.
Thus, by the given definitions and Lemmas 1 and 2, the following holds:

Lemma 3. Suppose that A = (Q,Q0, Γ, δ, F ) is an Mvpa over Σ̃n and w ∈
Scoped(Σ̃n, k). Then w ∈ L(A) if and only if there exists a k-scoped switching
mask M for w such that st(M) ∈ Q0 and cur(M) ∈ F .

4 Determinization, Sequentialization and Parikh
Theorem

Determinization. We show that, when restricting to k-scoped words, deter-
ministic and nondeterministic Mvpas are equivalent.

For an Mvpa A, we define a deterministic MVPA AD that, for a k-scoped
input word w, constructs the set of all switching masks according to any k-
scoped splitting of w. Thus, AD accepts w iff it constructs a switching mask as
in Lemma 3, and by supposing w∈Scoped (Σ̃n, k), iff w∈L(A).

For h ∈ [n], let Dh
k = (SD, SD,0, Γ

h
D, δhD, FD) be the deterministic Vpa equiva-

lent to Ah
k = (S, S0, Γ, δ

h, S) and obtained through the construction given in [1].
We recall that, according to that construction, the set of states SD is 2S×S× 2S,
and the second component of a state is updated in a run as in the standard
subset construction for finite automata. For q̂ ∈ SD, denote with R(q̂) the set of
sv’s contained in the Ah

k states stored as the second component of q̂.
We construct AD = (QD, QD

0 , ΓD, δD, FD) building on the cross product of
D1

k, . . . , D
n
k ; a state of AD is (h, q̂1, . . . , q̂n,M), where h > 0 denotes the stack

that is active in the current context, h = 0 denotes the initial state, q̂h is a
state of Dh

k , and M is a set of tuples (I1, . . . In) where for h ∈ [n], Ih is from
R(q̂h). The idea is to accumulate in the M component the tuples corresponding
to the current sv’s that are tracked in the states of A1

k, . . . , A
n
k while mimicking

a run of A on the input word. Therefore, in each tuple (I1, . . . In) in the M
component, on reading input a, we update Ih according to any transition of Ah

k

on a if this is not the first symbol of the context, and on ā, otherwise (when
context-switching into a stack-h context). The components q̂1, . . . , q̂n are up-
dated essentially by mimicking each deterministic automaton Dh

k on the stack-h
contexts of the input word by dealing with the first symbol of each context
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as before. The accepting states are of the form (h, q̂1, . . . , q̂n,M) s.t. there is
(I1, . . . In) ∈M with cur(Ih) ∈ F .

The tuples in the component M of AD states of a run can be composed by
concatenating the component switching vectors Ih as done for the single Ah

k to
define Ihk (z). Thus, for each run ρ of AD, we define a set Lρ of tuples obtained
in this way. We can show that Lρ is exactly the set of all the k-scoped switching
masks for the input word. Also, from the above description, we get that for each
switching mask M ∈ Lρ, st(M) ∈ Q0 holds, and if ρ is accepting, then there is at
least a switching mask M ∈ Lρ such that cur(M) ∈ F . Therefore, by Lemma 3:

Theorem 1. For any n-stack call-return alphabet Σ̃n and any Mvpa A over
Σ̃n, there exists a deterministic Mvpa AD over Σ̃n such that Scoped(Σ̃n, k) ∩
L(AD) = Scoped(Σ̃n, k) ∩ L(A). Moreover, the size of AD is exponential in the
number of the states of A and doubly exponential in k and n.

Sequentialization. We show that when restricting to k-scoped words, we can
mimic the computations of an n-stack Mvpa A using only one stack (sequen-
tialization). We start by describing how the input word is rearranged.

Fix a k-scoped word w over Σ̃n, and let χ = 〈wi〉i∈[d] be a k-scoped splitting

of w. For h ∈ [n], denote with χh = 〈wh
i 〉i∈[xh] the h-projection of χ. Since χ is

k-scoped, χh is k-bounded and let ξh = 〈vhi 〉yh
be a k-bounding splitting for χh.

We define a total order $w over all the vhj according to the position of their

first symbol in w, that is, vhj $w vh
′

j′ iff r ≤ s where r is the position in w of the

first symbol of vhj and s is that of the first symbol of vh
′

j′ .

We denote with πχ(w) the concatenation of all the vhj in the ordering given
by $w. For example, consider the word u and the k-scoped splitting ξ resulting
from the example of Fig. 3. The word πξ(u) is u1u7u9.u2u4u10.u3u5.u6u8u11.

We define π(w) as the set of all words πχ(w) for any possible k-scoped splitting
χ of w. We extend π to languages in the usual way.

We show that L is a k-scoped Mvpl iff π(L) is Vpl (all calls and returns
are interpreted as calls and returns of the unique stack). In fact, since ξh is k-
bounding for χh, we get to process consecutively each set of (at most k) contexts
that share the same stack content. Thus, when entering the next portion, we can
start as the stack were empty (all that is left in the stack is not needed any more).
Moreover, all the stack-h contexts, for a given h, occur in the same order as in
w. Thus, we can process them by using Ah

k , and construct the Vpa Aseq starting
from the cross product of Ah

k for h ∈ [n].
A second main feature of π is that when reading an input word v ∈ π(w),

we can reconstruct w by using only bounded memory: at any time, we keep a
summary of each already processed portion of w (i.e., starting and ending states
of corresponding portions of an A run) and a partial order of all such portions.

Observe that while parsing v, we know neither w nor a run on it. We re-
construct them on-the-fly by making nondeterministic guesses and ruling out
the wrong guesses as soon as we realize it. For simplicity, we illustrate our idea
on our running example by assuming that we know instead the run and the word
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u. We refer to in Fig. 4 and for i ∈ [4], Si is as in Fig. 3. The input word to Aseq

is u1u7u9.u2u4u10.u3u5.u6u8u11 ∈ π(u). After parsing u1u7u9, we compute S1

according to the considered run, and store the partial order shown on the edge
from S1 to S2. Now after parsing v2 = u2u4u10, we compute S2. Since u2 follows
u1 and u10 follows u9, by the ordering in v2 and the fact that u7 and u4 are not
consecutive, we get the partial order labeling the edge from S2 to S3, and so on.

S1

in

(q0, q1)

(q6, q7)

(q8, q9)

S2

(q0, q2)

(q6, q7)

(q8, q10)

(q3, q4)

S3

(q0, q5)

(q6, q7)

(q8, q10)

S4

(q0, q11)

Fig. 4. Aseq run for the running example

We succeed in reconstructing w
iff in the end the maintained
partial order collapses to just
one summary (i.e., all the por-
tions get connected). To keep
the size of the stored partial or-
der small, when the computa-
tion of a stack-h d-sv I starts,
we ensure that all the previously computed stack-h sv’s are entirely hidden in
the summaries (i.e., each pair of such sv’s has been glued on both sides to other
pairs) except for at most the second component of the last pair. In this case, we
impose that the first pair of I starts with such a second component (as for S3

and S4 in the running example).
This is indeed sufficient to accept all the words in π(w) for a k-scoped word w.

In fact, assume as input πχ(w) for a k-scoped splitting χ, and also the notation
given in the beginning of this subsection. By definition of πχ, the vhi ’s forming
the k-bounding splittings ξh, for h ∈ [n] and i ∈ [yh], are ordered according to
their first contexts. Thus, when processing a vhi all the vh

′
i′ $w vhi have been

already read by Aseq and hence, the first contexts of all such vh
′

i′ belong to a
prefix of w that has been already processed. Therefore, the computed partial
orders can be restricted to those that have a unique pair that precedes all the
others. Moreover, for each vhi′ $w vhi , since ξh is a splitting of the concatenation
of the stack-h contexts of w (in the order they appear in w), also all the contexts
of vhi′ must be in the already processed prefix of w. Hence, the number of pairs
in the considered class of partial orders is bounded by (n− 1)(k − 1) + 1.

Intuitively, Aseq mimics the cross product of A1
k, . . . , A

n
k and maintains the

partial orders of the summaries (pairs of control states) of the starting Mvpa
A as observed above. The partial orders are updated at any context switch by
using nondeterminism to guess how the next context is related to the summaries
in the partial order. The nondeterminism of each Ah

k is reduced by ruling out all
the moves that are not consistent with the stored partial order. The accepting
states of Aseq are those with a partial order that is a single pair.

We omit the formal definition of Aseq . We only observe further that since
the input of each Ah

k is over Σh ∪ Σ̄h, we first need to transform them into
corresponding Vpas Bh

k over Σh. This is done by modifying Ah
k such that the

starting symbol of each context is now guessed nondeterministically (which is
quite standard). Thus, denoting as Bh

k the resulting Vpas, we get that w̄1 . . . w̄d ∈
L(Ah

k) iff w1 . . . wd ∈ L(Bh
k ). Also, the call-return alphabet of Aseq is Σ̃seq where
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Σc
seq =

⋃
h∈[n]Σ

c
h, Σr

seq =
⋃

h∈[n] Σ
r
h and Σint

seq = Σint (recall that the alphabets

from Σ̃n are pairwise disjoint). The following lemma holds:

Lemma 4. For an Mvpa A and a k-scope word w over Σ̃n, π(L(A)) = L(Aseq).
The size of Aseq is exponential in k and n, and polynomial in the size of A.

Parikh’s Theorem. The Parikh mapping associates a word with the vector of
the numbers of the occurrences of each symbol in the word. Formally, the Parikh
image of a word w, over the alphabet {a1, . . . , a�}, is Φ(w) = (#a1, . . . ,#a�)
where #ai is the number of occurrences of ai in w. This mapping extends to
languages in the natural way: Φ(L) = {Φ(w)|w ∈ L}.

Parikh’s theorem [18] states that for each context-free language L a regular
language L′ can be effectively found such that Φ(L) = Φ(L′). Lemma 4 gives an
effective way to translate a k-scoped Mvpl to a Vpl, and thus we get:

Theorem 2. For every k-scoped Mvpl L over Σ̃n, there is a regular language
L′ over Σ such that Φ(L′) = Φ(L). Moreover, L′ can be effectively computed.

5 Closure Properties, Decision Problems and
Expressiveness

Closure Properties and Decision Problems. Language union and inter-
section are defined for languages over a same call-return alphabet. The closure
under these set operations can be shown with standard constructions and by
exploiting that the stacks are synchronized over the input symbols. Complemen-
tation is defined w.r.t. the set Scoped(Σ̃n, k) for a call-return alphabet Σ̃n, that

is the complement of L is Scoped(Σ̃n, k)\L. The closure under complementation
follows from determinizability (Theorem 1).

The membership problem can be solved in nondeterministic polynomial time
by simply guessing the transitions on each symbol and then checking that they
form an accepting run. A matching lower bound can be given by a reduction
from the satisfiability of 3-CNF Boolean formulas: for a formula with k variables,
we construct a k-stack Mvpa that nondeterministically guesses a valuation by
storing the value of each variable in a separate stack, then starts evaluating the
clauses (when evaluating a literal the guessed value is popped and then pushed
into the stack to be used for next evaluations); partial evaluations are kept in
the finite control (each clause has just three literals and we evaluate one at each
time; for the whole formula we only need to store if we have already witnessed
that it is false or that all the clauses evaluated so far are all true); thus each stack
is only used to store the variable evaluation, and since for each stack h, each
pushed symbol is either popped in the next stack-h context or is not popped at
all, the input word is 2-scoped.

Checking emptiness is known to be Pspace-complete for Smvpl [12,13].
Note that Lemma 4 reduces this problem to checking the emptiness for Vpas,
and thus provides an alternative decision algorithm. Decidability of universal-
ity, inclusion and equivalence follows from the effectiveness of the closure under
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Table 1. Summary of the main results on Mvpls (new results are in bold). In the
table, NP-c stands for NP-complete, and so on.

Closure properties Decision Problems
∪ ∩ Compl. Determin. Membership Emptiness Univ./ Equiv./Incl.

Vpl [1] Yes Yes Yes Yes Ptime-c Ptime-c Exptime-c
CFL Yes No No No Ptime-c Ptime-c Undecidable

Rmvpl [9] Yes Yes Yes Yes NP NP-c 2Exptime
Smvpl Yes Yes Yes Yes NP-c Pspace-c 2Exptime

Tmvpl [14] Yes Yes Yes No NP-c Etime-c 2Exptime
Pmvpl [10,14] Yes Yes Yes No NP-c 2Etime-c 3Exptime
Omvpl [2,14] Yes Yes Yes No NP-c 2Etime-c 3Exptime

CSL Yes Yes Yes Unknown NLinspace Undecidable Undecidable

complementation and intersection, and the decidability of emptiness. This yields
a double exponential upper bound. The best known lower bound is single expo-
nential and comes from Vpls.

Comparisons with Known Mvpl Classes. The class of Smvpl is incompa-
rable with the main classes of Mvpls from the literature. In particular, we have
compared it to Rmvpl [19,9] (restricted to words with a bounded number of
contexts), Pmvpl [10] (restricted to words with a bounded number of phases
where in each phase only the returns from one stack can occur), Omvpl [6,7,14]
(restricted to words where a matched return of a stack i cannot occur between
matching calls and returns of any stack j, for j < i), and Pmvpl [14] (restricted
to words with a bounded tree decomposition of the form of a stack tree).

Theorem 3. 1) Rmvpl ⊂ Smvpl∩Pmvpl. 2) Tmvpl ⊃ Pmvpl∪Omvpl. 3)
Rmvpl and Omvpl are incomparable. 4) Smvpl and Tmvpl are incomparable.
5) Smvpl, Omvpl, Pmvpl are pairwise incomparable.

A Logical Characterization. We show that monadic second order logic
(MSOμ) on scoped words has the same expressiveness of scoped Mvpas. Here a
word w ∈ Σ∗ is a structure over the universe {1, . . . , |w|}. The logic has in its
signature a predicate Pa for each a ∈ Σ where Pa(i) is true if the i-th symbol of
w is a, and n predicates μh with h ∈ [n], such that μh(i, j) holds true iff i ∼h j.

We convert MSO sentences to automata using standard techniques that rely
on the closure under Boolean operations and projection (see [21]). We get:

Theorem 4. Let k, n be two positive integers, Σ̃n be a call-return alphabet, and
L ⊆ Scoped(Σ̃n, k). L is k-scoped Mvpl iff there is an MSOμ sentence ϕ over

Σ̃n with Lk(ϕ) = L.

6 Conclusions

We have shown that the class of Smvpl is closed under all the Boolean opera-
tions, it has a logical characterization, the Parikh theorem holds and the main
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decision problems are decidable (see Table 1 for a summary of the results on
closure properties and decision problems). Moreover, the class of scoped Mvpas
is determinizable and sequentializable (sequentialization is an effective technique
for model-checking concurrent programs, see tools as CSeq, Microsoft Corral).
We extend the results from [15,16] to a larger class of languages: there, only
computations under a bounded number of round-robin scheduling are allowed
and thus only scoped words with a bounded number of contexts between any
two consecutive contexts of a same stack can be captured. Our sequentialization
construction also suggests a tree-decomposition of the multiply nested words
corresponding to scoped words with bags of O(nk) size. Thus, also for the more
expressive definition considered here, we get that the class of graphs defined by
scoped words (and thus computations of scoped Mpa) has bounded tree-width.
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In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol. 7907, pp. 58–69. Springer,
Heidelberg (2013)

5. Bollig, B., Kuske, D., Mennicke, R.: The complexity of model checking multi-stack
systems. In: LICS, pp. 163–172. IEEE Computer Society (2013)

6. Breveglieri, L., Cherubini, A., Citrini, C., Crespi-Reghizzi, S.: Multi-push-down
languages and grammars. Int. J. Found. Comput. Sci. 7(3), 253–292 (1996)

7. Carotenuto, D., Murano, A., Peron, A.: 2-visibly pushdown automata. In: Harju,
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Abstract. Visibly pushdown transducers (VPTs) are visibly pushdown
automata extended with outputs. They have been introduced to model
transformations of nested words, i.e. words with a call/return structure.
When outputs are also structured and well nested words, VPTs are a
natural formalism to express tree transformations evaluated in stream-
ing. We prove the class of VPTs with well-nested outputs to be decidable
in Ptime. Moreover, we show that this class is closed under composi-
tion and that its type-checking against visibly pushdown languages is
decidable.

1 Introduction

Visibly pushdown automata (VPA) [1], first introduced as input-driven pushdown
automata [3], are pushdown machines whose stack behavior is synchronized with
the structure of the input word. More precisely, the input alphabet is partitioned
into call and return symbols; when reading a call symbol the machine must push
a symbol onto the stack, when reading a return symbol it must pop a symbol from
the stack and when reading an internal symbol the stack remains unchanged.
Such words over a structure alphabet are called nested words.

Visibly pushdown transducers (VPTs) [6,7,9,10] extend visibly pushdown au-
tomata with outputs. Each transition is equipped with an output word; a VPT
thus transforms an input word into an output word obtained as the concatena-
tion of all the output words produced along a successful run (i.e. a sequence of
transitions) on this input. VPTs are a strict subclass of pushdown transducers
(PTs) and strictly extend finite state transducers. Several problems that are un-
decidable for PTs are decidable for VPTs similarly to finite state transducers:
functionality (in Ptime), k-valuedness (in co-NPtime) and functional equiva-
lence (EXPtime-complete) [6]. However, some decidability results or valuable
properties of finite-state transducers do not hold for VPTs [7]: VPTs are not
closed under composition and type-checking against VPA is undecidable (decid-
ing whether the range of a transducer is included into the language of a given
VPA).

Unranked trees and more generally hedges can be linearized into nested words
over a structured alphabet (such as XML documents). These words for which the
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matching between call and return symbols is perfect are called well-nested words.
So, VPTs are a suitable formalism to express hedge transformations. Moreover,
as they process the linearization from left to right, they are also an adequate
formalism to model and analyze transformations in streaming, as shown in [5].
VPTs output strings; operating on well-nested inputs, they define hedge-to-string
transformations. If the output strings are well-nested too, they define hedge-to-
hedge transformations [4].

In [6], by means of a syntactical restriction on transition rules, a class of
VPTs whose range contains only well-nested words is presented. This class enjoys
good properties: it is closed under composition and type-checking against visibly
pushdown languages is decidable. One may then wonder whether these properties
come from this particular subclass or from the fact that the range of these VPTs
contains only well-nested words.

In this paper, we consider two classes of transductions (that is, of relations)
over nested words definable by VPTs. First, the class of globally well-nested trans-
ductions, denoted Gwn, is the class of VPT transductions whose range contains
only well-nested words. The second class, named almost well-nested and denoted
Awn, slightly generalizes the first one as follows: there must exist k ∈ N such that
every output word contains at most k unmatched returns and at most k un-
matched calls. These two classes of transductions naturally define two classes of
transducers gwnVPT and awnVPT: a VPT is in gwnVPT (resp. in awnVPT) if the
transduction it represents is in Gwn (resp. in Awn). While defined in a semantical
way, we provide criteria on successful computations of VPTs characterizing pre-
cisely the classes gwnVPT and awnVPT. Then, based on these criteria, we prove
the class awnVPT to be decidable in Pspace. Regarding the class gwnVPT, using
a recent result of [2], we prove it is decidable in Ptime. Finally, we prove that the
two classes gwnVPT and awnVPT enjoy good properties: they are closed under
composition and type-checking is decidable against visibly pushdown languages.

The paper is organized as follows: definitions and recalls of some basic prop-
erties on VPTs are presented in Section 2. We introduce in Section 3 the two
classes of transductions we define in this paper as well as the corresponding
classes of transducers. Considering additionally the (restricted) class introduced
in [6], we prove also that they form a strict hierarchy. Then, we give in Section 4
a precise characterization of the classes gwnVPT and awnVPT by means of some
criteria on VPTs. Section 5 describes decision procedure of the considered classes
of transducers. Finally, the closure of the considered classes under composition
and the decidability of type-checking are addressed in Section 6. Omitted details
can be found in a technical report [8].

2 Preliminaries

(Well) Nested Words. The set of all finite words (resp. of all words of length at
most n) over a finite alphabet Σ is denoted by Σ∗ (resp. Σ≤n); the empty word
is denoted by ε. A structured alphabet is a triple Σ = (Σc, Σi, Σr) of disjoint
alphabets, of call, internal and return symbols respectively. Given a structured
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alphabet Σ, we always denote by Σc, Σi and Σr its implicit structure, and
identify Σ with Σc ∪ Σi ∪ Σr. A nested word is a finite word over a structured
alphabet.

The set of well-nested words over a structured alphabet Σ is the least set,
denoted by Σ∗

wn, that satisfies (i) ε ∈ Σ∗
wn, (ii) for all i ∈ Σi, w ∈ Σ∗

wn, iw ∈
Σ∗

wn, and (iii) for all w,w′ ∈ Σ∗
wn, c ∈ Σc, r ∈ Σr, cwrw′ ∈ Σ∗

wn. E.g. on
Σ = ({c1, c2}, ∅, {r}), the nested word c1rc2r is well-nested while rc1 is not.

For a word w from Σ∗, we define its balance B as the difference between the
number of symbols from Σc and of symbols from Σr occurring in w. Note that
if w ∈ Σ∗

wn, then B(w) = 0; but the converse is false as exemplified by rc1.

Lemma 1. Let u, v ∈ Σ∗. We have B(uv) = B(u) + B(v) = B(vu).

For any word w from Σ∗, we denote by Oc(w) (resp. Or(w)) the number of
open calls (resp. open returns) in w. Formally,

Or(w) = −min{B(w′) | w′w′′ = w} Oc(w) = B(w) + Or(w)

We define, for any word w, O(w) as the pair (Or(w),Oc(w)) ∈ N2. Given
(n1, n2) ∈ N2, we define ||(n1, n2)|| = max(n1, n2). Note that, for a word w,
we obtain ||O(w)|| = max{Or(w),Oc(w)} and w ∈ Σ∗

wn iff ||O(w)|| = 0, that is
O(w) = (0, 0).

Given a word w ∈ Σ∗, we let height(w) = max{||O(w1)|| | w = w1w2} be the
height of w. We denote by |w| the length of w, defined as usual.

Definition 1. For any two pairs (n1, n2) and (n′
1, n

′
2) of naturals from N2, we

define (n1, n2)⊕ (n′
1, n

′
2) as the pair{

(n1, n2 − n′
1 + n′

2) if n2 ≥ n′
1

(n1 + n′
1 − n2, n

′
2) if n′

1 > n2

Proposition 1. (N2,⊕, (0, 0)) is a monoid, and the mapping O is a morphism
from (Σ∗, ., ε) to (N2,⊕, (0, 0)); in particular, for any two words u1, u2 from Σ∗,
O(u1u2) = O(u1)⊕O(u2).

Transductions – Transducers. Let Σ be a structured (input) alphabet, and Δ be
a structured (output) alphabet. A relation over Σ∗ ×Δ∗ is a transduction. We
denote by T (Σ,Δ) the set of these transductions. For a transduction T , the set
of words u (resp. v) such that (u, v) ∈ T is called the domain (resp. the range)
of T .

A visibly pushdown transducer from Σ to Δ (the class is denoted VPT(Σ,Δ))
is a tuple A = (Q, I, F, Γ, δ) where Q is a finite set of states, I ⊆ Q the set
of initial states, F ⊆ Q the set of final states, Γ a (finite) stack alphabet, and
δ = δc ( δr ( δi is the transition relation where:

– δc ⊆ Q ×Σc × Γ ×Δ∗ ×Q are the call transitions,
– δr ⊆ Q×Σr × Γ ×Δ∗ ×Q are the return transitions.
– δi ⊆ Q×Σi ×Δ∗ ×Q are the internal transitions.
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A stack (content) is a word over Γ . Hence, Γ ∗ is a monoid for the concate-
nation with ⊥ (the empty stack) as neutral element. A configuration of A is a
pair (q, σ) where q ∈ Q and σ ∈ Γ ∗ is a stack content. Let u = a1 . . . al be a
(nested) word on Σ, and (q, σ), (q′, σ′) be two configurations of A. A run of the
VPT A over u from (q, σ) to (q′, σ′) is a (possibly empty) sequence of transitions
ρ = t1t2 . . . tl ∈ δ∗ such that there exist q0, q1, . . . ql ∈ Q and σ0, . . . σl ∈ Γ ∗ with
(q0, σ0) = (q, σ), (ql, σl) = (q′, σ′), and for each 0 < k ≤ l, we have either (i)
tk = (qk−1, ak, γ, wk, qk) ∈ δc and σk = σk−1γ, or (ii) tk = (qk−1, ak, γ, wk, qk) ∈
δr, and σk−1 = σkγ, or (iii) tk = (qk−1, ak, wk, qk) ∈ δi, and σk−1 = σk. When
the sequence of transitions is empty, (q, σ) = (q′, σ′).

The length (resp. height) of a run ρ over some word u ∈ Σ∗, denoted |ρ| (resp.
height(ρ)) is defined as the length of u (resp. as the height of u).

The output of ρ (denoted output(ρ)) is the word v ∈ Δ∗ defined as the con-
catenation w = w1 . . . wl when the sequence of transitions is not empty and

ε otherwise. We write (q, σ)
u|w−−→ (q′, σ′) when there exists a run on u from

(q, σ) to (q′, σ′) producing w as output. Initial (resp. final) configurations are
pairs (q,⊥) with q ∈ I (resp. with q ∈ F ). A configuration (q, σ) is reachable
(resp. co-reachable) if there exists some initial configuration (i,⊥) (resp. some
final configuration (f,⊥)) and a run from (i,⊥) to (q, σ) (resp. from (q, σ) to
(f,⊥)). A run is accepting if it starts in an initial configuration and ends in a
final configuration.

A transducer A defines relation/transduction from nested words to nested
words, denoted by [[A]], and defined as the set of pairs (u, v) ∈ Σ∗ × Δ∗ such
that there exists an accepting run on u producing v as output. Note that since
both initial and final configurations have empty stack, A accepts only well-nested
words, i.e. [[A]] ⊆ Σ∗

wn ×Δ∗.
We denote VP(Σ,Δ) the class of transductions defined by VPTs over the

structured alphabets Σ (as input alphabet) and Δ (as output alphabet).
Given a VPT A = (Q, I, F, Γ, δ), we let OA

max be the maximal number of open
calls and of open returns in a word produced as output of a call or of a return
transition in A. Formally, we have:

OA
max = max{||O(w)|| | (p, α, w, γ, q) ∈ δc ∪ δr}

Visibly Pushdown Automata. We define visibly pushdown automata (VPA) sim-
ply as a particular case of VPT; we may think of them as transducers with no
output. Hence, only the domain of the transduction matters and is called the
language defined by the visibly pushdown automaton. For an automaton A, this
language will be denoted L(A).

Properties of Computations in VPA/VPT. We recall two standard results on
runs of visibly pushdown machines.

Lemma 2. Let A be a VPA with set of states Q and ρ : (p,⊥)
u−→ (q,⊥) be a

run of A over some word u ∈ Σ∗
wn. Let h ∈ N>0. We have:
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(i) if height(u) < h and |u| ≥ |Q|h, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σ)
u3−→ (q,⊥)

with u1u3 and u2 well-nested words and u2 �= ε.
(ii) if height(u) ≥ |Q|2, then ρ can be decomposed as follows:

ρ : (p,⊥)
u1−→ (p1, σ)

u2−→ (p1, σσ
′) u3−→ (p2, σσ

′) u4−→ (p2, σ)
u5−→ (q,⊥)

with u1u5, u2u4 and u3 well-nested words, and σ′ �= ⊥.

3 Classes of VPT Producing (almost) Well-Nested
Outputs

In this section, after recalling the definition of (locally) well-nested VPT, we
introduce the new classes of globally and almost well-nested VPT. Then, we
prove relationships between these classes.

3.1 Definitions

Locally Well-nested VPTs (lwnVPT). In [6], the class of (locally) well-nested
VPT has been introduced. For this class, the enforcement of the well-nestedness
of the output is done locally and syntactically at the level of transition rules.

Definition 2 (Locally Well-nested). Let A = (Q, I, F, Γ, δ) be a VPT. A is
a locally well-nested VPT (lwnVPT) if:

– for any pair of transitions (q, a, v, γ, q′) ∈ δc, (p, b, w, γ, p′) ∈ δr, the word
vw is well nested, and

– for any transition (q, a, v, q′) ∈ δi, the word v is well-nested.

A VPT transduction T is locally well-nested if there exists a lwnVPT A that
realizes T ([[A]] = T ). The class of locally well-nested VPT transductions is
denoted Lwn.

It is straightforward to prove that

Proposition 2. Let A be a locally well-nested VPT and (p, σ), (q, σ) two con-

figurations of A. For all well-nested word u, if (p, σ)
u/v−−→ (q, σ) then v ∈ Σ∗

wn.

Thus any locally well-nested VPT transduction T is included into Σ∗
wn×Δ∗

wn.

Globally Well-nested VPT Transduction – Almost Well-nested VPT Transduc-
tion. In this section, we introduce the class of globally well-nested transductions
and its weaker variant of ”almost” well-nested transductions. Unlike the defini-
tion of Lwn which is done at the level of transducers, these definitions are done
at the level of transductions and thus, as a semantical property.
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Definition 3 (Globally Well-nested). A VPT transduction T is globally
well-nested if T (Σ∗

wn) ⊆ Δ∗
wn. The class of globally well-nested VPT transductions

is denoted Gwn.
A VPT A is globally well-nested if its transduction [[A]] is. The class of globally

well-nested VPT is denoted gwnVPT.

Definition 4 (Almost Well-nested). A VPT transduction T is almost well-
nested if there is k ∈ N such that every pair of words (u, v) ∈ T satisfies
||O(v)|| ≤ k. The class of almost well-nested VPT transductions is denoted Awn.

A VPT A is almost well-nested if its transduction [[A]] is. The class of almost
well-nested VPT is denoted awnVPT.

i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

i p1 p2 f
c|cc, γ i|c r|rrr, γ

c|cr, γ′ r|rc, γ′

The VPT A1. The VPT A2.

Fig. 1. Two VPTs in VP(Σ,Σ) with Σc = {c}, Σr = {r} and Σi = {i}

3.2 Comparison of the Different Classes

Classes of transductions Gwn and Awn are defined by semantical conditions on
the defined relations. This yields a clear correspondence between the classes Gwn
and gwnVPT on one side and Awn and awnVPT on the other side. This is not
the case for Lwn: two examples of VPTs are given in Figure 1. It is easy to
verify that A1, A2 ∈ gwnVPT. Moreover, none of these transducers belongs to
lwnVPT. However, one can easily build a transducer A′

2 such that [[A2]] = [[A′
2]]

and A′
2 ∈ lwnVPT. Indeed one can perform the following modifications:

– the transition (p1, i, c, p2) becomes (p1, i, ε, p2)
– the transition (p2, r, rc, γ

′, p2) becomes (p2, r, cr, γ
′, p2)

– the transition (p2, r, rrr, γ, f) becomes (p2, r, crrr, γ, f)

On the contrary, as we prove below, the transduction [[A1]] does not belong to
Lwn: there exists no transducer A′

1 ∈ lwnVPT such that [[A′
1]] = [[A1]].

To summarize, we prove the following proposition.

Proposition 3. The following inclusion results hold:

– For transducers: lwnVPT � gwnVPT � awnVPT
– For transductions: Lwn � Gwn � Awn

Proof (Sketch). The non-strict inclusions are straightforward. The two strict
inclusions gwnVPT � awnVPT and Gwn � Awn follow from the constraint on the
range. The strict inclusion lwnVPT � gwnVPT is witnessed by A2 from Figure
1, as explained above.
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To sketch the proof of the strict inclusion Lwn � Gwn, we consider the trans-
ducer A1 on Figure 1. Observe that [[A1]] ∈ Gwn, we show that [[A1]] �∈ Lwn. First
note that [[A1]] = {(cckirkr, ccc(cr)krr(cr)kr) | k ∈ N} and that

– (Fact 1) The transduction defined by A1 is injective
– (Fact 2) Any word of the output can be decomposed as w1rrw2 where w1 =

ccc(cr)k and w2 = (cr)kr for some natural k and for each w1 with fixed
k there exists a unique w2 such that w1rrw2 is in the range of A1 (and
conversely).

By contradiction, suppose that there exists A′
1 ∈ lwnVPT such that [[A′

1]] = [[A1]].
Now, for k sufficiently large and depending only on the fixed size of A′

1, A′
1 has

an accepting run for the input cckirkr of the form given in Lemma 2(ii). Let us
denote by ui (resp. vi), i ∈ {1, . . . , 5} the corresponding decomposition of the
input (resp. output) word. Due to Proposition 2, words v1v5, v2v4 and v3 are
well-nested.

Now assume v2 = v4 = ε. Then, using a simple pumping argument over the
pair (u2, u4), one would obtain a different input producing the same output,
contradicting the injectivity of A′

1 (due to (Fact 1)). So, v2 �= ε or v4 �= ε.
Using a case analysis on the presence of the previously mentioned pattern

rr in the outputs of A′
1, using the fact that v2v4 �= ε, (Fact 2) and a pumping

argument over the pair of words (u2, u4), one obtains a contradiction. ��

4 Characterizations

In this section we give criteria on VPTs that aim to characterize the classes
gwnVPT and awnVPT.

Definition 5. Let A be a VPT. Let us consider the following criteria:

(C1) For all states p, i, f such that i is initial and f is final, for any stack σ,
then any accepting run

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σ)
u3/v3−−−−→ (f,⊥)

with u1u3, u2 ∈ Σ∗
wn satisfies B(v2) = 0.

(C2) For all states p, q, i, f such that i is initial and f is final, for any stack
σ, σ′, then any accepting run

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σσ′)
u3/v3−−−−→ (q, σσ′)

u4/v4−−−−→ (q, σ)
u5/v5−−−−→ (f,⊥)

with u2u4, u3 ∈ Σ∗
wn and σ′ �= ⊥ satisfies B(v2) +B(v4) = 0 and B(v2) ≥ 0.

The following result follows from Propositions 4 and 5 that we prove below.

Theorem 1. A VPT A is almost well-nested iff it verifies (C1) and (C2).

Lemma 3. Let X ⊆ Σ∗ such that the set B(X) = {B(u) | u ∈ X} is infinite.
Then the set {O(u) | u ∈ X} is infinite as well.
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Lemma 4. Let u ∈ Σ∗ and k be a strictly positive integer. Then O(uk) is equal
to (Or(u), (Oc(u)− Or(u)) ∗ (k − 1) + Oc(u)) if Oc(u) ≥ Or(u) and to (Or(u) +
(Or(u)− Oc(u)) ∗ (k − 1),Oc(u)) otherwise.

Proof. By definition of ⊕ and by induction on k. ��

Proposition 4. Let A be a VPT. If A does not satisfy (C1) or (C2), then
A �∈ awnVPT.

Proof. Let us assume that A does not satisfy (C1). Hence there exists an ac-
cepting run as described in criterion (C1) such that B(v2) �= 0. We then build
by iterating the loop on word u2 accepting runs for words of the form u1(u2)ku3

for any natural k, producing output words v1(v2)kv3. Let us denote this set by
X . As B(v2) �= 0 and by Lemma 1, the set B(X) is infinite. Lemma 3 entails
that A is not almost well-nested.

Assume now that A does not satisfy (C2). Hence, there exists an accepting
run as described in the statement of the proposition such that either (i) B(v2) +
B(v4) = b �= 0 or (ii) B(v2) < 0. In the case of (i), from this run, one can build by
pumping accepting runs for words of the form u1(u2)ku3(u4)ku5 for any natural
k, producing output words v1(v2)kv3(u4)kv5. As before, Lemmas 1 and 3 imply
that A is not almost well-nested.

Now, for (ii) assuming that B(v2) + B(v4) = 0. As B(v2) < 0, it holds that
B(v4) > 0 and thus, Or(v2) > Oc(v2), Or(v4) < Oc(v4). From the run of the
statement, one can build by pumping accepting runs for words of the form
u1(u2)ku3(u4)ku5 for any natural k, producing output words v1(v2)kv3(v4)kv5.
Now, we consider O(v1(v2)kv3(v4)kv5) which, by associativity of ⊕, is equal to
O(v1)⊕O((v2)k)⊕O(v3)⊕O((u4)k)⊕O(v5)). Now, by Lemma 4, it is equal to

O(v1)⊕ (Or(v2) + (Or(v2)− Oc(v2)) ∗ (k − 1),Oc(v2))⊕ O(v3)⊕
(Or(v4), (Oc(v4)− Or(v4)) ∗ (k − 1) + Oc(v4))⊕ O(v5)

It is easy to see that for k varying, the described pairs are unbounded. ��

Given a VPT A = (Q, I, F, Γ, δ), we define the integer NA = 2|Q|2|Q|2 .

Lemma 5. Let A be a VPT. If A satisfies the criteria (C1) and (C2), then for
any accepting run ρ such that |ρ| ≥ NA, there exists an accepting run ρ′ such
that |ρ′| < |ρ| and ||O(output(ρ′))|| ≥ ||O(output(ρ))||.

Proof (Sketch). Let A = (Q, I, F, Γ, δ) and ρ be an accepting run such that
|ρ| ≥ NA. We distinguish two cases, depending on height(ρ):

– when height(ρ) < 2|Q|2 : by definition of NA, we can apply Lemma 2.(i)
twice and prove that ρ is of the following form:

(i,⊥)
u1/v1−−−−→ (p, σ)

u2/v2−−−−→ (p, σ)
u3/v3−−−−→ (q, σ′)

u4/v4−−−−→ (q, σ′)
u5/v5−−−−→ (f,⊥)

with u2, u4 ∈ Σ∗
wn \{ε}. Then, by criterion (C1), we have B(v2) = B(v4) = 0.
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One can prove that at least one of u2 and u4 can be removed from u while
preserving the value Or(u). Let us denote by v′ the resulting output word.
Observe also that removing this part of the run does not modify the balance
B(.) of the run, as B(v2) = B(v4) = 0. As Oc(v) = B(v) + Or(v), we obtain
O(v) = O(v′), yielding the result.

– when height(ρ) ≥ 2|Q|2 : in this case, we can apply Lemma 2.(ii) twice and
prove that ρ is of the following form:

(i,⊥)
u1/v1−−−−→ (p1, σ)

u2/v2−−−−→ (p1, σσ1)
u3/v3−−−−→ (q1, σσ1σ2)

u4/v4−−−−→ (q1, σσ1σ2σ3)
u5/v5−−−−→ (q2, σσ1σ2σ3)

u6/v6−−−−→ (q2, σσ1σ2)
u7/v8−−−−→ (p2, σσ1)

u8/v8−−−−→ (p2, σ)
u9/v9−−−−→

(f,⊥), with u1u9, u2u8, u3u7, u4u6, u5 ∈ Σ∗
wn and σ1, σ3 �= ⊥.

Then the two following runs can be built: the one obtained by removing the
parts of ρ on u2 and u8, and the one obtained by removing the parts of ρ
on u4 and u6, yielding runs whose length is strictly smaller than |ρ|. Let us
denote these two runs by ρ′ and ρ′′ respectively, and their outputs by v′ and
v′′. As A verifies the criterion (C2), we have that B(v) = B(v′) = B(v′′), as
B(v2) +B(v8) = B(v4) +B(v6) = 0 and B is commutative. In order to obtain
the result, we study Or(v). Considering different cases, we manage to prove
that either Or(v′) ≥ Or(v) or Or(v′′) ≥ Or(v). The result follows as for any
word w we have Oc(w) = B(w) + Or(w). ��

Proposition 5. Let A be a VPT. If A satisfies (C1) and (C2), then every ac-

cepting run ρ : (i,⊥)
u|v−−→ (f,⊥) of A verifies ||O(v)|| ≤ NA.O

A
max.

Proof. If |ρ| ≤ NA the result is trivial; otherwise, assuming the existence
of a minimal counterexample of this statement, a contradiction follows from
Lemma 5. ��

Now we can show a precise characterization of transducers from gwnVPT
amongst those in awnVPT.

Definition 6. Let A be a VPT. We consider the following criterion:

(D) For all (u, v) ∈ [[T ]] , if |u| ≤ NA then v ∈ Σ∗
wn.

Theorem 2. A VPT A is globally well-nested iff it verifies criteria (C1), (C2)
and (D).

Proof. The direct implication is trivial, the other one follows from Lemma 5. ��

5 Deciding the Classes of Almost and Globally
Well-Nested VPT

In this section, we prove that given a VPT A, it is decidable to know whether
[[A]] ∈ Awn and whether [[A]] ∈ Gwn. It is known that

Proposition 6. Given a VPT A = (Q, I, F, Γ, δ) and states p, q of A, deciding
whether there exists some stack σ such that (p, σ) is reachable and (q, σ) is co-
reachable can be done in Ptime.



138 P.-A. Reynier and J.-M. Talbot

Theorem 3. Let A be a VPT. Whether [[A]] ∈ Awn can be decided in Pspace.

Proof (Sketch). By Theorem 1, deciding the class awnVPT amounts to decide
criteria (C1) and (C2). Therefore we propose a non-deterministic algorithm run-
ning in polynomial space, yielding the result thanks to Savitch theorem.

We claim that A verifies (C1) and (C2) if and only if it verifies these criteria
on ”small instances”, defined as follows:

– Criterion (C1): consider only words u2 such that height(u2) ≤ |Q|2 and

|u2| ≤ 2.|Q||Q|2.
– Criterion (C2): consider only stacks σ′ such that |σ′| ≤ |Q|2 and words u2, u4

of height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a
witness of the fact that A �∈ awnVPT, the algorithm guesses whether (C1) or
(C2) is violated; then, the claim implies the existence of a witness of at most
exponential size. This witness can be guessed on-the-fly in polynomial space.
Proposition 6 is then used to check that the witness can be completed into an
accepted run.

To prove this claim, we show, by induction on u ∈ Σ∗
wn, that for every run

(p,⊥)
u|v−−→ (q,⊥) that can be completed into an accepting run, and for every

decomposition of this run according to criterion (C1) or (C2), the property stated
by the corresponding criterion is fulfilled. ��

The previous algorithm could be extended to handle in addition criterion (D),
yielding a Pspace algorithm to decide whether a VPT A is globally well-nested.
However, we can use a recent result to prove that this problem can be solved in
Ptime.

Theorem 4. Let A be a VPT. Whether [[A]] ∈ Gwn can be decided in Ptime.

Proof. This proof relies on results from [2] showing that deciding whether a
context-free language is included into a Dyck language can be solved in Ptime.

We first erase the precise symbols of the produced outputs keeping track only
of the type of the symbols: we build from A a VPT A′ defined on the structured
output alphabet Σ′ with Σ′

c = {(}, Σ′
r = {)} and Σ′

i = ∅. A transition of A′ is
obtained from a transition of A by replacing in output words of the transition
of A call symbols by ( and return symbols by ) and removing internal symbols.
It is then easy to see that A is in gwnVPT iff A′ is in gwnVPT (actually, for
each run in A producing v, its corresponding run in A′ produces some v′ such
that O(v) = O(v′)). Then, as shown in [9], one can build in polynomial time a
context-free grammar GA′ generating the range of A′. Finally, we appeal to [2]
to conclude. ��

6 Closure under Composition and Type-Checking

6.1 Definitions and Existing Results

We consider two natural problems for transducers : the first one is related to
composition of transductions. The second problem is the type-checking problem



Visibly Pushdown Transducers with Well-Nested Outputs 139

that aims to verify that any output of a transformation belongs to some given
type/language. For VPT, the obvious class of ”types” to consider is the class of
languages defined by VPA.

Definition 7 (Closure under composition). A class T of transductions in-
cluded in Σ∗ × Σ∗ is closed under composition if for all T, T ′ in T , the trans-
duction T ◦ T ′ is also in T . It is effectively closed under composition if for any
transducers A, A′ such that [[A]], [[A′]] ∈ T , A ◦A′ is computable and [[A ◦A′]] is
in T .

A class of transducers T is effectively closed under composition if for any two
transducers A,A′ in T, A ◦A′ is computable and A ◦A′ is in T.

Definition 8 (Type-checking (against VPA)). Given a VPT A and two VPA
B,C, decide whether [[A]](L(B)) ⊆ L(C).

The following results give the status of these properties for arbitrary VPTs
and for lwnVPT:

Theorem 5 ([6, 7]). Regarding closure under composition, we have:

– The class VP(Σ,Σ) is not closed under composition.
– The class lwnVPT is effectively closed under composition.

In addition, the problem of type checking against VPA is undecidable for (arbi-
trary) VPT and decidable for lwnVPT.

6.2 New Results

Actually, regarding the closure under composition of the class lwnVPT, though
not explicitly stated, the result proved in [6] is slightly stronger. It is indeed
shown that for any VPT A,B such that A ∈ lwnVPT, there exists an (effectively
computable) VPT C satisfying [[C]] = [[A]] ◦ [[B]]. In addition, if B ∈ lwnVPT,
then C ∈ lwnVPT.

We extend this positive result to any almost well-nested transducer.
One of the main ingredients of the proof of this result is the set UPSA defined

for any VPT transducer A = (QA, IA, FA, ΓA, δ
A) as{

(p, p′, n1, n2)
∃σ ∈ Γ ∗, (p, σ) is reachable and (p′, σ) is co-reachable and

∃u ∈ Σ∗
wn, (p,⊥)

u|v−−→ (p′,⊥) and O(v) = (n1, n2)

}

Proposition 7. Let A in awnVPT. Then the set UPSA is finite and computable
in exponential time in the size of A.

Theorem 6. Let A,B be two VPTs. If A is almost-well nested, then one can
compute in exponential time in the size of A and B a VPT C such that [[C]] =
[[A]] ◦ [[B]]. Moreover, if B is also almost well-nested, then so is C, and if A and
B are globally well-nested, then so is C.
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Proof (Sketch). We present the construction of C. By Proposition 7, UPSA

is finite and we denote by K the computable integer value max{||(n1, n2)|| |
(p, p′, n1, n2) ∈ UPSA}.

Given B = (QB, IB, FB , ΓB, δ
B), we define C = (QC , IC , FC , ΓC , δ

C) as

QC = QA ×QB × Γ≤K
B IC = IA × IB × {⊥}

ΓC = ΓA × Γ
≤OA

max+K
B FC = FA × FB × {⊥}

Now for the transition rules δC :

– ((p, q, σ), i, w, (p′, q′, σ′)) ∈ δCi if there exist a word v ∈ Δ∗ and a stack σ0 ∈
Γ ∗
B such that σ = σ0σ1, σ′ = σ0σ

′
1, O(v) = (|σ1|, |σ′

1|), and (p, i, v, p′) ∈ δAi

and there exists a run (q, σ1)
v|w−−→ (q′, σ′

1) in B,

– ((p, q, σ), c, w, (γ, σ3), (p′, q′, σ4)) ∈ δCc if there exist a word v ∈ Δ∗, two
stacks σ0, σ2 ∈ Γ ∗

B and a stack symbol γ ∈ ΓA such that σ = σ0σ1, O(v) =

(|σ1|, |σ2|), σ0σ2 = σ3σ4, (p, c, v, γ, p′) ∈ δAc and there exists a run (q, σ1)
v|w−−→

(q′, σ2) in B such a transition exists provided the bounds on the sizes of the
different stacks are fulfilled, i.e. |σ| ≤ K, |σ4| ≤ K, and |σ3| ≤ OA

max + K,

– ((p, q, σ), r, w, (γ, σ3), (p′, q′, σ′)) ∈ δCr if there exist a word v ∈ Δ∗, a stack
σ0 ∈ Γ ∗

B such that σ0σ1 = σ3σ, σ0σ2 = σ′, O(v) = (|σ1|, |σ2|), (p, r, v, γ, p′) ∈
δAr and there exists a run (q, σ1)

v|w−−→ (q′, σ2) in B such a transition exists
provided the bounds on the sizes of the different stacks are fulfilled, i.e.
|σ| ≤ K, |σ′| ≤ K, and |σ3| ≤ OA

max + K.

In a state of C, we store the current states of A and B. In addition, a part of
the top of the stack of B is also stored in the state of C to allow the simulation
of B. The (finite) amount that needs to be stored in the state is identified using
the set UPSA. ��

Corollary 1. The classes Gwn and Awn are (effectively) closed under composi-
tion.

Theorem 7 (Type-checking against VPA). Given an almost well-nested
VPT A and two visibly pushdown automata B,C, whether [[A]](L(B)) ⊆ L(C) is
decidable in 2− EXPtime.

Proof. Restricting the domain of A to L(B) is easy: it suffices to compute the
product VPA of A and B. Then, VPA being closed under complementation, we
compute C, the complement of C. Note that the size of C is at most exponential
in the size of C. We then turn C into a transducer C′ defining the identity
relation over L(C) (this is obvious by simply transforming rules of C into rules
of transducers outputting their input). Now, by Theorem 6, one can build a
transducer defining the composition of [[A]] ◦ [[C′]]. This can be done in doubly
exponential time in the size of A and C. Now, it is sufficient to test whether the
VPA underlying this transducer is empty or not. ��
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7 Conclusion

In this paper, we have considered and precisely characterized the class of VPT
with well-nested outputs. We have shown that this class is closed under compo-
sition and that its type-checking against VPA is decidable. We have restricted
ourselves in this paper to transducers with well-nested domains. We conjecture
that this restriction can be easily relaxed and thus, one could consider transduc-
ers based on nested word automata [1]. We left open the problem of deciding the
class Lwn. As we have described on some examples, this problem is far from being
trivial. In [4], a clear relationship between the class lwnVPT and hedge-to-hedge
transducers is described; investigating such a relationship for gwnVPT is also an
interesting problem.
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Abstract. A (factor-)reference in a word is a special symbol that refers
to another factor in the same word; a reference is dereferenced by sub-
stituting it with the referenced factor. We introduce and investigate the
class ref-REG of all languages that can be obtained by taking a regular
language R and then dereferencing all possible references in the words of
R. We show that ref-REG coincides with the class of languages defined
by regular expressions as they exist in modern programming languages
like Perl, Python, Java, etc. (often called REGEX languages).
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1 Introduction

It is well known that most natural languages contain at least some structure that
cannot be described by context-free grammars and also with respect to artificial
languages, e. g., programming languages, it is often necessary to deal with struc-
tural properties that are inherently non-context-free (Floyd’s proof (see [10]) that
Algol 60 is not context-free is an early example). Hence, as Dassow and Păun [8]
put it, “the world seems to be non-context-free.” On the other hand, the full
class of context-sensitive languages, while powerful enough to model the struc-
tures appearing in natural languages and most formal languages, is often, in
many regards, simply too much. Therefore, investigating those properties of lan-
guages that are inherently non-context-free is a classical research topic, which,
in formal language theory is usually pursuit in terms of restricted or regulated
rewriting (see Dassow and Păun [8]), and in computational linguistics mildly
context-sensitive languages are investigated (see, e. g., Kallmeyer [13]).

In [9], Dassow et al. summarise the three most commonly encountered non-
context-free features in formal languages as reduplication, leading to languages
of the form {ww | w ∈ Σ∗}, multiple agreements, modelled by languages of the
form {anbncn | n ≥ 1} and crossed agreements, as modeled by {anbmcndm |
n,m ≥ 1}. In this work, we solely focus on the first such feature: reduplication.

The concept of reduplication has been mainly investigated by designing lan-
guage generators that are tailored to reduplications (e. g., L systems (see Kari et
al. [14] for a survey), Angluin’s pattern languages [2] or H-systems by Albert and
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Wegner [1]) or by extending known generators accordingly (e. g., Wijngaarden
grammars, macro grammars, Indian parallel grammars or deterministic iteration
grammars (cf. Albert and Wegner [1] and Bordihn et al. [3] and the references
therein)). A more recent approach is to extend regular expressions with some kind
of copy operation (e. g., pattern expressions by Câmpeanu and Yu [6], synchronized
regular expressions by Della Penna et al. [15], EH-expressions by Bordihn et al. [3]).
An interesting such variant are regular expressions with backreferences (REGEX
for short), which play a central role in this work. REGEX are regular expressions
that contain special symbols that refer to the word that has been matched to a
specific subexpression. Unlike the other mentioned language descriptors, REGEX
seem to have been invented entirely on the level of software implementation, with-
out prior theoretical formalisation (see Friedl [12] for their practical relevance). An
attempt to formalise and investigate REGEX and the class of languages they de-
scribe from a theoretical point of view has been started recently (see [4, 6, 16, 11]).
This origin of REGEX from application render their theoretical investigation diffi-
cult. As pointed out by Câmpeanu and Santean in [5], “we observe implementation
inconsistencies, ambiguities and a lack of standard semantics.” Unfortunately, to
at least some extend, these conceptional problems inevitably creep into the theo-
retical literature as well.

Regular expressions often serve as an user interface for specifying regular lan-
guages, since finite automata are not easily defined by human users. On the
other hand, due to their capability of representing regular languages in a concise
way, regular expressions are deemed inappropriate for implementations and for
proving theoretical results about regular languages (e. g., closure properties or
decision problems). We encounter a similar situation with respect to REGEX
(which, basically, are a variant of regular expressions), i. e., their widespread im-
plementations suggest that they are considered practically useful for specifying
languages, but the theoretical investigation of the language class they describe
proves to be complicated. Hence, we consider it worthwhile to develop a charac-
terisation of this language class, which is independent from actual REGEX.

To this end, we introduce the concept of unresolved reduplications on the
word level. In a fixed word, such a reduplication is represented by a pointer or
reference to a factor of the word and resolving or dereferencing such a reference
is done by replacing the pointer by the value it refers to, e. g.,

w = a b a c b c x c b z y a ,
x

y z

where the symbols x, y and z are pointers to the factors marked by the brackets
labelled with x, y and z, respectively. Resolving the references x and y yields
abacbcbaccbzcba and resolving reference z leads to abacbcbaccbbaccbcba.
Such words are called ref-words and sets of ref-words are ref-languages. For
a ref-word w, D(w) denotes the word w with all references resolved and for a
ref-language L, D(L) := {D(w) | w ∈ L}. We shall investigate the class of ref-
regular languages, i. e., the class of languages D(L), where L is both regular and
a ref-language, and, as our main result, we show that it coincides with the class
of REGEX languages. Furthermore, by a natural extension of classical finite
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automata, we obtain a very simple automaton model, which precisely describes
the class of ref-regular languages (= REGEX languages). This automaton model
is used in order to introduce a subclass of REGEX languages, that, in contrast
to other recently investigated such subclasses, has a polynomial time member-
ship problem and we investigate the closure properties of this subclass. As a side
product, we obtain a very simple alternative proof for the closure of REGEX lan-
guages under intersection with regular languages; a known result, which has first
been shown by Câmpeanu and Santean [5] by much more elaborate techniques.

Due to space restrictions, all formal proofs are omitted, but we give brief proof
sketches for some of our results.

2 Definitions

Let N := {1, 2, 3, . . .} and N0 := N ∪ {0}. For an alphabet B, the symbol B+

denotes the set of all non-empty words over B and B∗ := B+ ∪ {ε}, where ε is
the empty word. For the concatenation of two words w1, w2 we write w1 · w2 or
simply w1w2. We say that a word v ∈ B∗ is a factor of a word w ∈ B∗ if there
are u1, u2 ∈ B∗ such that w = u1vu2. For any word w over B, |w| denotes the
length of w, for any b ∈ B, by |w|b we denote the number of occurrences of b in
w and for any A ⊆ B, we define |w|A :=

∑
b∈A |w|b.

We use regular expressions as they are commonly defined (see, e. g., Yu [17]).
By DFA and NFA, we refer to the set of deterministic and nondeterministic
finite automata. Depending on the context, by DFA and NFA we also refer to
an individual deterministic or nondeterministic automaton, respectively.

For any language descriptor D, by L(D) we denote the language described by
D and for any class D of language descriptors, let L(D) := {L(D) | D ∈ D}. In
the whole paper, let Σ be an arbitrary finite alphabet with {a, b, c, d} ⊆ Σ.

2.1 References in Words, Languages and Expressions

References in Words. Let Γ := {[xi , ]xi , xi | i ∈ N}, where, for every i ∈ N,
the pairs of symbols [xi and ]xi are parentheses and the symbols xi are variables.
For the sake of convenience, we shall also use the symbols x, y and z to denote
arbitrary variables. A reference-word over Σ (or ref-word, for short) is a word
over the alphabet (Σ ∪Γ ). For every i ∈ N, let hi : (Σ ∪ Γ )∗ → (Σ ∪ Γ )∗ be the
morphism with hi(z) := z, z ∈ {[xi , ]xi , xi}, and hi(z) := ε, z /∈ {[xi , ]xi , xi}. A
reference word is valid if, for every i ∈ N,

hi(w) = x�1
i [xi ]xi x

�2
i [xi ]xi x

�3
i . . . x

�ki−1

i [xi ]xi x
�ki
i , (1)

for some ki ∈ N and �j ∈ N0, 1 ≤ j ≤ ki. Intuitively, a reference-word w is valid
if, for every i ∈ N, there is a number of matching pairs of parentheses [xi and ]xi

that are not nested and, furthermore, no occurrence of xi is enclosed by such a
matching pair of parentheses. However, it is not required that w is a well-formed
parenthesised expression with respect to all occurring parentheses.

The set of valid reference-words is denoted by Σ[∗]. A factor [x u ]x of a
w ∈ Σ[∗] where the occurrences of [x and ]x are matching parentheses is called
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a reference for variable x, and u is the value of this reference. A reference is
a first order reference, if its value does not contain another reference and it is
called pure, if it is a first order reference and its value does not contain vari-
ables. Two references of some ref-word w are overlapping if one reference con-
tains exactly one of the delimiting parentheses of the other reference, e. g., in
w1[xw2[yw3]xw4]yw5 the references [xw2[yw3]x and [yw3]xw4]y are overlapping.
Let w ∈ Σ[∗] and let x be a variable that occurs in w. An occurrence of a variable
x in w that is not preceded by a reference for x is called undefined. Every occur-
rence of a variable x in w that is not undefined refers to the reference for x, which
precedes this occurrence. This definition is illustrated by Equation 1, where all
ki − 1 references for variable xi are shown and, for every j, 1 ≤ j ≤ ki − 1, the
�j+1 occurrences of xi between the jth and (j + 1)th reference for xi are exactly
the occurrences of xi that refer to the jth reference for variable xi.

We consider the following examples:

w1 := [xab]x[ycxb]y[xbby]xcyby[yx]ycc, w2 := [xbax]xax[xbc]x[xba[xa]xa]xx ,

w3 := [x[yb]xcx[xb]yxzyb[ycz]yz[zcc]x]z , w4 := [xa[yb[zbba]zc]ybyb]xxy .

The words w1, w3 and w4 are valid ref-words, whereas w2 is not valid. Moreover,
all references of w1 are first order references, the reference for variable x in w4

is not a first order reference and the first reference in w3 is pure. The word w3

contains an undefined occurrence of a variable and overlapping references. For
the sake of convenience, from now on, we call valid ref-words simply ref-words.
If a word over (Σ ∪ Γ ) is not a ref-word, then we always explicitly state this.

Next, we define how a ref-word over Σ can be dereferenced, i. e., how it can
be transformed into a (normal) word over Σ. To this end, let w ∈ Σ[∗]. The
dereference of w, denoted by D(w), is constructed by first deleting all undefined
occurrences of variables in w and then substituting all pure references and their
variables by its value (ignoring possible parentheses in the value), until there is
no pure reference left. A formal proof that D(w) is well-defined and in fact a
word over Σ is straightforward and left to the reader. Next, we illustrate this
definition with an example:

D(za[zx[xyb[yc]xbx[xc]yb]xyc]zxcz) = D(a[z[xb[yc]xbx[xc]yb]xyc]zxcz) =

D(a[zb[yc
x

b bc
x

[xc]yb]xyc]zxcz) = D(a[zb cbbc[xc
y

b]x cbbcc
y

c]zxcz) =

D(a[zbcbbc cb
x
cbbccc]z cb

x
cz) = a bcbbccbcbbccc

z
cbc bcbbccbcbbccc

z
.

We point out that ref-words are similar to Lempel-Ziv compression. However,
here we are exclusively concerned with language theoretic aspects of ref-words.

References in Languages. For every i ∈ N, let Γi := {[xj , ]xj , xj | j ≤ i}. A
set of ref-words L is a ref-language if L ⊆ (Σ∪Γi)

∗, for some i ∈ N. For the sake
of convenience, we simply write L ⊆ Σ[∗] to denote that L is a ref-language. For
every ref-language L, we define the dereference of L by D(L) := {D(w) | w ∈ L}
and, for any class L of ref-languages, D(L) := {D(L) | L ∈ L}.
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An L ⊆ Σ[∗] is a regular ref-language if L is regular. A language L is called ref-
regular if it is the dereference of a regular ref-language, i. e., L = D(L′) for some
regular ref-language L′. For example, the copy language Lc := {ww | w ∈ Σ∗}
is ref-regular, since Lc = D(L′

c), where L′
c is the regular ref-language {[xw ]x x |

w ∈ Σ∗}. The class of ref-regular languages is denoted by ref-REG.
By definition, REG ⊆ ref-REG and it can be easily shown that ref-REG is

contained in the class of context-sensitive language. On the other hand, the class
of context-free languages is not included in ref-REG, e. g., {anbn | n ∈ N} /∈
ref-REG (see Câmpeanu et al. [4]). Other interesting examples of ref-regular
languages are the set of imprimitive words: D({[x w ]x x

n | w ∈ Σ∗, n ≥ 1}), the
set of words an, where n is not prime: D({[x am ]x x

n | m,n ≥ 2}) and the set of
bordered words: D({[x u ]x v x | u, v ∈ Σ∗, |u| ≥ 1}).

References in Expressions. If we use the concept of references directly in
regular expressions, i. e., we use variables x in the expression and enclose subex-
pressions by parentheses [x and ]x, then we obtain extended regular expressions
with backreferences (or REGEX for short). For more detailed definitions and
further information on REGEX, we refer to [4, 16, 11, 5].

A convenient definition of the semantics of a REGEX can also be given in
terms of classical regular expressions and ref-words. We can interpret a REGEX
r as a classical regular expression r′ over the alphabet (Σ ∪ Γk), where k is
the number of backreferences in r. Now L(r′) is a ref-language and D(L(r′)) is
the REGEX language described by the REGEX r. This observation yields the
following result.

Proposition 1. L(REGEX) ⊆ ref-REG.

On the other hand, a regular expression s with L(s) ⊆ Σ[∗] does not translate
into a REGEX in an obvious way, which is due to the fact that in s it is not
necessarily the case that every occurrence of [x matches with an occurrence of ]x
and, furthermore, even matching pairs of parentheses do not necessarily enclose
subexpressions. For example, the regular expression

s := [x1(([x2b
∗]x1a

∗x1[x1)+ ([x2a
∗c∗)) ba]x2(x2 + d)∗]x1ax1

describes a ref-language, but it cannot be interpreted as a REGEX.
In the following, we say that a regular expression r over the alphabet (Σ∪Γk)

has the REGEX property if it is also a valid REGEX.

3 Memories in Automata

By a natural extension of classical finite automata, we now define memory au-
tomata, which are the main technical tool for proving the results of this paper.

A memory automaton is a classical NFA that is equipped with a finite number
of k memory cells, each capable of storing a word. Each memory is either closed,
which means that it is not affected in a transition, or open, which means that
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it records the currently scanned input symbol. In a transition it is possible to
consult a closed memory, which means that its content, if it is a prefix of the
remaining input, is consumed in one step from the input and, furthermore, also
stored in all the open memories. A closed memory can be opened again, but then
it completely loses its previous content; thus, memories always store factors of
the input. We shall now formally define the model of memory automata.

Definition 1. For every k ∈ N, a k-memory automaton, denoted by MFA(k),
is a tuple M := (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is a finite
alphabet, q0 is the initial state, F is the set of final states and

δ : Q× (Σ ∪ {ε} ∪ {1, 2, . . . , k}) → P(Q× {o, c, �}k)

is the transition function (where P(A) denotes the power set of a set A). The
elements o, c and � are called memory instructions.

A configuration of M is a tuple (q, w, (u1, r1), . . . , (uk, rk)), where q ∈ Q is the
current state, w is the remaining input, for every i, 1 ≤ i ≤ k, ui ∈ Σ∗ is the
content of memory i and ri ∈ {O, C} is the status of memory i. For a memory
status r ∈ {O, C} and a memory instruction s ∈ {o, c, �}, we define r ⊕ s = O

if s = o, r ⊕ s = C if s = c and r ⊕ s = r if s = �. Furthermore, for a tuple
(r1, . . . , rk) ∈ {O, C}k of memory statuses and a tuple (s1, . . . , sk) ∈ {o, c, �}k of
memory instructions, we define (s1, . . . , sk)⊕(r1, . . . , rk) = (s1⊕r1, . . . , sk⊕rk).

M can change from a configuration c := (q, w, (u1, r1), . . . , (uk, rk)) to a con-
figuration c′ := (p, w′, (u′

1, r
′
1), . . . , (u′

k, r
′
k)), denoted by c �M c′, if there ex-

ists a transition δ(q, b) ) (p, s1, . . . , sk) such that w = v w′, where v = b
if b ∈ (Σ ∪ {ε}) and v = ub and rb = C if b ∈ {1, 2, . . . , k}. Furthermore,
(r′1, . . . , r

′
k) = (r1, . . . , rk) ⊕ (s1, . . . , sk) and, for every i, 1 ≤ i ≤ k, u′

i = uiv if
r′i = ri = O, u′

i = v if r′i = O and ri = C, u′
i = ui if r′i = C. The symbol �∗M de-

notes the reflexive and transitive closure of �M . For any w ∈ Σ∗, a configuration
(p, v, (u1, r1), . . . , (uk, rk)) is reachable ( on input w), if

(q0, w, (ε, C), . . . , (ε, C)) �∗M (p, v, (u1, r1), . . . , (uk, rk)) .

A w ∈ Σ∗ is accepted by M if a configuration (qf , ε, (u1, r1), . . . , (uk, rk)) with
qf ∈ F is reachable on input w and L(M) is the set of words accepted by M .

For any k ∈ N, MFA(k) is the class of k-memory automata and MFA :=⋃
k≥0 MFA(k). We also use MFA(k) and MFA in order to denote an instance of

a k-memory automaton or a memory automaton with some number of memories.
The set L(MFA) := {L(M) |M ∈ MFA} is the class of MFA languages.

As an example, we observe that an MFA(3) can accept L := {v1v2v3v1v2v2v3 |
v1, v2, v3 ∈ {a, b}∗} by reading a prefix u = v1v2v3 of the input and storing v1, v2
and v3 in the memories 1, 2 and 3. The length of u as well as the factorisation u =
v1v2v3 is nondeterministically guessed. Now we can check whether the remaining
input equals v1v2v2v3 by consulting the memories. Alternatively, while reading
the prefix u = v1v2v3, we can also store v1v2 and v2v3 in only two memories,
which is sufficient to check whether the remaining input equals v1v2v2v3. We
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point out that this alternative, which needs one memory less, requires the factor
v2 of the input to be simultaneously recorded by both memories or, in other
words, the factors recorded by the memories overlap in the input word.

Determinism in Memory Automata. Let M := (Q,Σ, δ, q0, F ) be a k-
memory automaton. M is pseudo deterministic if, for every q ∈ Q and b ∈
(Σ ∪ {ε} ∪ {1, 2, . . . , k}), |δ(q, b)| ≤ 1. We call a memory automaton with this
property pseudo deterministic, since it is still possible that for a q ∈ Q and
b ∈ (Σ ∪ {ε}), |

⋃k
i=1 δ(q, i)|+ |δ(q, b)| ≥ 1.

Any MFA can be transformed into an equivalent pseudo-deterministic one by
applying a variant of the subset construction that also takes the memories into
account, i. e., instead of P(Q) as the set of new states, we use P(Q)× {O, C}k.

Lemma 1. Let k ∈ N. For every M ∈ MFA(k), there exists a pseudo determin-
istic M ′ ∈ MFA(k) with L(M) = L(M ′).

Analogously to the definition of determinism for classical finite automata, we
can define determinism for memory automata as the situation that in every state
there is at most one applicable transition. More precisely, a k-memory automaton
M := (Q,Σ, δ, q0, F ) is deterministic if it is ε-free and, for every q ∈ Q and b ∈ Σ,

|
⋃k

i=1 δ(q, i)| + |δ(q, b)| ≤ 1. We denote the class of deterministic k-memory
automata by DMFA(k) and DMFA :=

⋃
k∈N

MFA(k). The class L(DMFA) shall
be investigated in more detail in Section 5.

Normal Forms of Memory Automata. Intuitively speaking, a memory au-
tomaton is in normal form if every transition can either read a part of the input
without changing the status of any memory or it changes the status of exactly
one memory, but then it does not touch the input. Furthermore, in every accept-
ing configuration, the automaton does not try to open or close memories that
are already opened or closed, respectively.

Definition 2. Let M = (Q,Σ, δ, q0, F ) be an MFA(k), k ∈ N. We say that
M is in normal form if the following conditions are satisfied. For every tran-
sition δ(q, b) ) (p, s1, . . . , sk), if si �= � for some i, 1 ≤ i ≤ k, then b =
ε and sj = �, for all j with 1 ≤ j ≤ k and i �= j. If M reaches config-
uration (q, w, (u1, r1), . . . , (uk, rk)) in a computation and transition δ(q, b) )
(p, s1, . . . , sk) is applied next, then, for every i, 1 ≤ i ≤ k, if ri = O, then
si �= o and if ri = C, then si �= c.

MFA can be transformed into normal form, by replacing transitions that
change the status of more than one memory by several transitions that satisfy
the conditions of the normal form. Furthermore, in the states we can store which
memories are currently open and use this information to remove transitions that
open or close memories that are already open or closed, respectively.

Lemma 2. Let k ∈ N. For every M ∈ MFA(k) there exists an M ′ ∈ MFA(k)
with L(M) = L(M ′) and M ′ is in normal form.
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Above, after Definition 1, we consider an example of an MFA that uses its
memories in an overlapping way. We shall now formally define this situation. Let
M be a k-memory automaton, let C be a computation of M with n steps and
let 1 ≤ i, j ≤ k with i �= j. We say that there is an i-j-overlap in C if there are
p, q, r, s, 1 ≤ p < q < r < s < n, such that memory i is opened in step p and
closed again in step r of C and memory j is opened in step q and closed again in
step s of C. A computation C is said to be nested if, for every i, j, 1 ≤ i ≤ j ≤ k,
i �= j, there is no i-j-overlap in C and an MFA M is nested if every possible
computation of M is nested.

For transforming MFA into REGEX, it is crucial to get rid of these overlaps,
which is generally possible. A formal definition of the construction is omitted;
here, we only give the general idea. We first modify M in such a way that in
the finite state control, for every currently open memory i, we store the set Ai

of currently open memories that have been opened after memory i. If memory
i is closed, then, for every j ∈ Ai, an i-j-overlap occurs. Thus, we close all
memories j ∈ Ai together with memory i and then, for every j ∈ Ai, we open a
new auxiliary memory instead. By doing this every time a memory is closed, we
make sure that no more overlaps occur. Whenever the original MFA consults a
memory, then we have to consult the right auxiliary memories in the right order
instead. This strategy is only applicable because, for every original memory i,
at most k − 1 auxiliary memories are needed.

Lemma 3. Let k ∈ N. For every M ∈ MFA(k) there exists a nested M ′ ∈
MFA(k2) with L(M) = L(M ′).

We conclude this section by pointing out that every MFA can be transformed
into an equivalent one that is pseudo-deterministic, in normal form and nested.

4 Equivalence of ref-REG, L(MFA) and L(REGEX)

In this section, we show that the ref-regular languages, the MFA languages and
the REGEX languages are identical. To this end, we shall first prove the equality
L(MFA) = ref-REG and then the inclusion L(MFA) ⊆ L(REGEX), which,
together with Proposition 1, implies our main result:

Theorem 1. ref-REG = L(MFA) = L(REGEX).

Intuitively speaking, L(MFA) = ref-REG follows from the fact that an NFA
that accepts a regular ref-language can be translated into an MFA that accepts
its dereference and any MFA in normal form can be translated into an NFA that
accepts a regular ref-language, the dereference of which equals the language
accepted by the MFA.

We recall that every transition δ(q, b) ) (p, s1, s2, . . . , sk) of an MFA(k) in
normal form is of one of the following four types:

Σ-transition: b ∈ Σ and si = �, 1 ≤ i ≤ k.
oi-transition: b = ε, si = o and, for every j, 1 ≤ j ≤ k, i �= j, sj = �.
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ci-transition: b = ε, si = c and, for every j, 1 ≤ j ≤ k, i �= j, sj = �.
mi-transition: b ∈ {1, 2, . . . , k} and si = �, 1 ≤ i ≤ k.

Let NFAref := {M | M ∈ NFA, L(M) ⊆ Σ[∗]} and MFAnf := {M | M ∈
MFA,M is in normal form}. We define a mapping ψD : NFAref → MFAnf. To
this end, let M := (Q,Σ ∪ Γk, δ, q0, F ) ∈ NFAref. We define a k-memory au-
tomaton ψD(M) := (Q,Σ, δ′, q0, F ), where δ′ is defined as follows. For every
transition δ(q, b) ) p of M , we add a transition δ′(q, b) ) (p, s1, s2, . . . , sk) to
ψD(M), where this transition is an Σ-transition if b ∈ Σ, an oi-transition if
b = [xi , a ci-transition if b = ]xi and an mi-transition if b = xi. This concludes
the definition of ψD(M) and it can be easily seen that ψD(M) ∈ MFAnf. With-
out loss of generality, we can assume that all elements of NFAref are such that
the input alphabet does not contain symbols that do not occur in the accepted
language. This implies that, for any two M1,M2 ∈ NFAref with M1 �= M2,
ψD(M1) �= ψD(M2) is implied, which means that ψD is injective. Furthermore,
since every transition of some MFA(k) in normal form is of one of the four types
described above, we can conclude that the reverse of ψD is an injective mapping
ψ−1
D : MFAnf → NFAref, which implies that ψD is a bijection. The following

lemma directly implies ref-REG = L(MFA).

Lemma 4. Let M ∈ NFA with L(M) ⊆ Σ[∗] and let N ∈ MFA be in normal
form. Then D(L(M)) = L(ψD(M)) and L(N) = D(L(ψ−1

D (N))).

In order to conclude the proof of Theorem 1, it only remains to show that
every MFA language can be expressed as a REGEX language. To do this, we
use the fact that every MFA language can be described by a nested MFA (see
Lemma 3). Next, we observe an obvious, but important property of nested MFA:

Proposition 2. Let M be a nested MFA(k) in normal form. There is no word
w ∈ L(ψ−1

D (M)) with overlapping references.

Let M be a fixed nested MFA(k) in normal form and let N := ψ−1
D (M)

with transition function δ. Without loss of generality, we can assume that every
transition of the form δ(p, b) ) q with b ∈ {[xi, ]xi | 1 ≤ i ≤ k} is such that at
least one accepting state is reachable from q and, furthermore, that every state
of N is reachable from the initial state. For every i, 1 ≤ i ≤ k, let ni,mi ∈ N
be such that δ(pi,j , [xi) ) qi,j , 1 ≤ j ≤ ni, are exactly the transitions of N
labeled with [xi and δ(ri,�, ]xi) ) si,�, 1 ≤ � ≤ mi, are exactly the transitions
of N labeled with ]xi . For every i, j, �, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, 1 ≤ � ≤ mi, let
Ri,j,� be the set of words that can take N from qi,j to ri,� without reading any
occurrence of ]xi . If some Ri,j,� contains a word that is not a ref-word, then,
since an accepting state can be reached from si,�, N accepts a word that is not
a ref-word or a ref-word with overlapping references, which is a contradiction:

Lemma 5. For every i, j, �, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, 1 ≤ � ≤ mi, Ri,j,� ⊆ Σ[∗].

In the following, we transform N into a regular expression r and, since we
want r to have the REGEX property, this has to be done in such a way that in r
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every [xi matches a ]xi and such matching parentheses enclose a subexpression.
The idea to achieve this is that, for each pair of transitions δ(pi,j , [xi) ) qi,j and
δ(ri,�, ]xi) ) si,�, we transform the set of words that take N from qi,j to ri,�, i. e.,
the set Ri,j,�, into a regular expression individually. For the correctness of this
construction, it is crucial that M is nested and that we transform the Ri,j,� into
regular expressions in a specific order, which is defined next.

Let the binary relation ≺ over the set Φ := {(i, j, �) | 1 ≤ i ≤ k, 1 ≤ j ≤
ni, 1 ≤ � ≤ mi} be defined as follows. For every (i1, j1, �1), (i2, j2, �2) ∈ Φ, we
define (i1, j1, �1) ≺ (i2, j2, �2) if and only if there is a computation of N that starts
in pi2,j2 and reaches si2,�2 and takes the transitions (1) δ(pi2,j2 , [xi2

) ) qi2,j2 , (2)
δ(pi1,j1 , [xi1

) ) qi1,j1 , (3) δ(ri1,�1 , ]xi1
) ) si1,�1 and (4) δ(ri2,�2 , ]xi2

) ) si2,�2 in
exactly this order and no ]xi2

is read between performing transitions 1 and 4
and no ]xi1

is read between performing transitions 2 and 3.

Lemma 6. If (i1, j1, �1) ≺ (i2, j2, �2), then i1 �= i2. The relation ≺ is irreflexive,
transitive and antisymmetric.

Next, we define a procedure that turns N into a regular expression that is
based on the well-known state elimination technique (see Yu [17] for details). To
this end, we need the concept of an extended finite automaton, which is an NFA
whose transitions can be labeled by regular expressions over the input alphabet.

For every (i, j, �) ∈ Φ, we define Δ(i, j, l) := {(i′, j′, �′) | (i′, j′, �′) ≺ (i, j, �)}
and Φ′ := Φ. We iterate the following steps as long as Φ′ is non-empty.

Step 1 For some (i, j, �) ∈ Φ′ with |Δ(i, j, l)| = 0, we obtain an automaton Ki,j,�

from (the current version of) N by deleting all transitions δ(ri,�′ , ]xi) ) si,�′ ,
1 ≤ �′ ≤ mi, and by defining qi,j to be the initial state and ri,� the only
accepting state. Then, we transform Ki,j,� into a regular expression ti,j,� by
applying the state elimination technique.

Step 2 For every (i′, j′, �′) ∈ Φ, we delete (i, j, �) from Δ(i′, j′, �′).
Step 3 We add the transition δ(pi,j , [xiti,j,�]xi) ) si,� to N .
Step 4 We delete (i, j, l) from Φ′.
Step 5 If, for every �′, 1 ≤ �′ ≤ mi, (i, j, �′) /∈ Φ′, then we delete the transition

δ(pi,j , [xi) ) qi,j from N .
Step 6 If, for every j′, 1 ≤ j′ ≤ ni, (i, j′, �) /∈ Φ′, then we delete the transition

δ(ri,j , ]xi) ) si,� from N .

In order to see that this procedure is well-defined, we observe that as long
as Φ′ �= ∅, there is at least one element (i, j, �) ∈ Φ′ with |Δ(i, j, l)| = 0, which
follows directly from the transitivity and antisymmetry of ≺ (see Lemma 6).
Furthermore, from the definition of the automata Ki,j,� constructed in Step 1,
it can be easily verified that L(ti,j,�) = Ri,j,� holds.

The automaton obtained by this procedure, denoted by N ′, does not contain
any transitions labeled with symbols from {[xi, ]xi | 1 ≤ i ≤ k}. We can now
transform N ′ into a regular expression r by the state elimination technique. The
next lemma concludes the proof of Theorem 1.

Lemma 7. The regular expression r has the REGEX-property and L(r) = L(N).
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5 DMFA Languages

We now take a closer look at the class of languages accepted by DMFA. As
an example, we consider {wcw | w ∈ {a, b}∗}, which can be accepted by a
DMFA(1). However, Lcopy := {ww | w ∈ {a, b}∗} /∈ L(DMFA), for which we
give a proof sketch. Let M ∈ DMFA with L(M) = Lcopy. Since Lcopy �∈ REG
there is a w ∈ Lcopy, such that M first reads a prefix v of w and then consults
a memory i that stores a non-empty word u. However, since M is deterministic,
this means that it cannot accept any word with prefix vb, where b does not equal
the first symbol of u, which is a contradiction.

Theorem 2. L(DMFA) ⊂ L(MFA).

Next, we note that the membership problem of this language class can be
solved in linear time by simply running the DMFA.

Theorem 3. For a given DMFA M and a word w ∈ Σ∗, we can decide in time
O(|w|) whether or not w ∈ L(M).

This contrasts the situation that for other prominent subclasses of REGEX
languages (e. g., the ones investigated in [16, 1, 3, 6]) the membership problem
is usually NP-complete.1

REGEX languages are closed under union, but not under intersection or com-
plementation [4, 7]. For the subclass L(DMFA), we observe a different situation:

Theorem 4. L(DMFA) is closed under complementation, but it is not closed
under union or intersection.

For the non-closure under intersection, we can apply the example used by
Carle and Narendran [7] to prove the non-closure of REGEX languages under
intersection. The closure under complementation follows from the fact that in-
terchanging the accepting and non-accepting states of a DMFA yields a DMFA
that accepts its complement. Finally, the non-closure under union follows from
{anban | n ∈ N} ∪ {ambanbak | m,n, k ∈ N0} /∈ L(DMFA), which can be shown
by a similar argument used to prove that Lcopy is not a DMFA language.2

In [4], which marks the beginning of the formal investigation of REGEX,
Câmpeanu et al. ask whether REGEX languages are closed under intersection
with regular languages, which has been answered in the positive by Câmpeanu
and Santean in [5]. We can give an analogue with respect to DMFA languages:

Theorem 5. L(DMFA) is closed under intersection with regular languages.

Theorem 5 follows from the fact that we can simulate a DMFA(k) M and a
DFA N in parallel by a DMFA M ′. The difficulty that we encounter is that if N
is currently in a state q and M consumes the content ui of a memory i from the
input, then we do not know in which state N needs to change. However, earlier

1 Other exceptions are REGEX with a bounded number of backreferences (see [16]).
2 This also proves non-closure of DMFA languages under union with regular languages.
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in this computation, memory i is filled with content ui and at the same time we
can determine and store the state in which N needs to change if ui is consumed
from the input. Since at this time we do not yet know that q will be the current
state of N when memory i is consulted, for every state of N , we have to store
which state is reached by reading ui. In order to update these informations we
use the transition function of N (when single symbols are read) and these stored
informations (when memories are consulted).

This also constitutes a much simpler alternative proof for the closure of
REGEX languages under intersection with regular languages, which demon-
strates that MFA are a convenient tool to handle REGEX languages.
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9. Dassow, J., Păun, G., Salomaa, A.: Grammars with controlled derivations. In:
Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, vol. 2, pp.
101–154. Springer (1997)

10. Floyd, R.W.: On the nonexistence of a phrase structure grammar for algol 60.
Communications of the ACM 5, 483–484 (1962)

11. Freydenberger, D.D.: Extended regular expressions: Succinctness and decidability.
Theory of Computing Systems 53, 159–193 (2013)

12. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)
13. Kallmeyer, L.: Parsing Beyond Context-Free Grammars. Springer (2010)
14. Kari, L., Rozenberg, G., Salomaa, A.: L systems. In: Rozenberg, G., Salomaa, A.

(eds.) Handbook of Formal Languages, vol. 1, ch. 5, pp. 253–328. Springer (1997)
15. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Synchronized regular expressions.

Acta Informatica 39, 31–70 (2003)
16. Schmid, M.L.: Inside the class of regex languages. International Journal of Foun-

dations of Computer Science 24, 1117–1134 (2013)
17. Yu, S.: Regular languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of

Formal Languages, vol. 1, ch. 2, pp. 41–110. Springer (1997)



Pumping Lemma and Ogden Lemma
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Abstract. The pumping lemma and Ogden lemma offer a powerful
method to prove that a particular language is not context-free. In 2008
Kanazawa proved an analogue of pumping lemma for well-nested mul-
tiple context-free languages. However, the statement of lemma is too
weak for practical usage. We prove a stronger variant of pumping lemma
and an analogue of Ogden lemma for this language family. We also use
these statements to prove that some natural context-sensitive languages
cannot be generated by tree-adjoining grammars.

1 Introduction

Since 1980s, context-free grammars are known to be too restrictive for syntactic
description of natural languages ([10]). The class of mildly context-sensitive lan-
guages ([1]) was an informal attempt to capture the degree of context-sensitivity
required for most common language phenomena preserving the advantages of
context-free grammars. The principal properties to inherit were feasible polyno-
mial parsing complexity, independence of derivation from the context (the notion
of context had to be extended to handle long-distance dependencies) and exis-
tence of convenient normal forms. The class of well-nested multiple context-free
languages (wMCFLs) is one of the candidates to satisfy these requirements1.
The corresponding grammar formalism called well-nested multiple context-free
grammars (well-nested MCFGs or wMCFGs), is defined as a subclass of mul-
tiple context-free grammars (MCFGs, [9]) with rules of special form providing
the correct embedding of constituents. In particular, 2-wMCFGs are equivalent
to tree-adjoining grammars (TAGs, [14], [2]) and then to head grammars ([8]).

We find it reasonable to think of wMCFGs as the generalization of head
grammars, not the restriction of MCFGs. Our approach is based on two principal
ideas. The first is to derive not words but terms whose values are the words of the
language. Then the generative power of a grammar formalism essentially depends
on the set of term connectives and their interpretation as language operations. If
the only operation in use is concatenation, the terms are just strings of terminals
and nonterminals and we get nothing but context-free grammars. Our approach
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seems redundant there, but is vital in more complex cases. The second idea is
to extend the alphabet by a distinguished separator 12. Using the separators,
well-nested MCFGs may be simulated with the help of intercalation connectives.
The binary operation *j of j-intercalation replaces the jth separator in its first
argument by its second argument (for example, a1b1c*2 a1b = a1ba1bc). It is
straightforward to prove that all “well-nested” combinations of constituents can
be presented using only intercalation and concatenation operations.

The exact generative power of wMCFGs is not known. Moreover, some lan-
guages are supposed not to be wMCFLs, although they are not proved to be out-
side this family. The most known example is the MIX language {w ∈ {a, b, c}∗ |
|w|a = |w|b = |w|c}. It was shown in [4] to be not a 2-MCFL, but the proof used
combinatorial and geometric arguments which are troublesome to be generalized
for the class of all wMCFGs. The pumping lemma for wMCFLs was presented
in [3] is also too weak since it does not impose any conditions on the length and
position of the pumped segment. We prove a stronger version of pumping lemma
and weak Ogden lemma3 for wMCFGs basing on the ideas already used in [3].
Our variant of Ogden lemma allows us to give a simple proof of the fact that
MIX cannot be generated by a TAG.

Due to the space constraints, heavy technical proofs are omitted in the paper4.
We suppose the reader to be familiar with the basics of formal languages theory
though all necessary definitions are explicitly formulated.

2 Preliminaries

2.1 Terms and Their Equivalence

In this section we define displacement context-free grammars (DCFGs) which
are a “purely logical” reformulation of well-nested MCFGs. The first subsection
is devoted to the notions of term, context and generalized context that play
the key role in the architecture of DCFGs, and contains some results on term
equivalence which are extensively used in the paper. We follow the definitions of
[12], but the purposes of this work require some technical complications.

Let Σ be a finite alphabet and 1 /∈ Σ be a distinguished separator, let Σ1 =
Σ ∪ {1}. For every word w ∈ Σ∗

1 we define its rank rk(w) = |w|1. We define the
jth intercalation operation *j which consists in replacing the jth separator in its
first argument by its second argument. For example, a1b11d*2 c1c = a1bc1c1d.

Let k be a natural number and N be the set of nonterminals. The function
rk : N → 0, k assigns ranks to elements of N . Let Opk = {·,*1, . . . ,*k} be
the set of binary operation symbols, then the ranked set of k-correct terms
Tmk(N,Σ) is defined in the following way (we write simply Tmk in the further):

2 This idea is inspired by the works of Morrill and Valent́ın on discontinuous Lambek
calculus ([5], [13]).

3 A stronger version of Ogden lemma for tree-adjoining languages, which form the
first level of well-nested MCFLs hierarchy, was proved in [7], but the proof hardly
can be generalized for entire class of wMCFLs.

4 The version with full proofs is available on http://arxiv.org/abs/1403.6230

http://arxiv.org/abs/1403.6230
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1. N ⊂ Tmk(N,Σ),

2. Σ∗ ⊂ Tmk(N,Σ), ∀w ∈ Σ∗ rk(w) = 0,
3. 1 ∈ Tmk, rk(1) = 1,

4. If α, β ∈ Tmk and rk(α) + rk(β) ≤ k, then (α · β) ∈ Tmk,
rk(α · β) = rk(α) + rk(β).

5. If j ≤ k, α, β ∈ Tmk, rk(α) + rk(β) ≤ k + 1, rk(α) ≥ j, then
(α*j β) ∈ Tmk, rk(α · β) = rk(α) + rk(β) − 1.

We refer to the elements of the set N ∪ Σ∗ ∪ {1} as basic subterms. We
will often omit the symbol of concatenation and assume that concatenation has
greater priority than intercalation, so Ab *2 cD means (A · b) *2 (c · D). This
simplification allows us to consider words in the alphabet Σ∗

1 as terms. The set
of k-correct terms includes all the terms of sort k or less that also do not contain
subterms of rank greater than k.

Let Var = {x1, x2, . . .} be a countable set of variables. We assume that every
variable has a fixed rank and there are infinitely many variables of each rank.
A context C[x] is a term in which a variable x occurs in a leaf position, and
the rank of x respects the constraints of term construction. Provided β ∈ Tmk

and rk(x) = rk(β), C[β] denotes the result of substituting β for x in C. For
example, C[x] = b1*1 (a ·x) is a context and C[A · c] = b1*1 aAc. The notion of
multicontext is defined in the same way, except it may contain several distinct
variables x1, . . . , xt. In the case t = 0 a multicontext is just a term. If for any i it
holds that rk(αi) = rk(xi), then C[α1, . . . , αt] denotes the result of substituting
α1, . . . , αt for x1, . . . , xt in C.

We call a term (respectively, a context, a multicontext) ground if it contains
no occurrences of nonterminals. Let μ be a valuation function, mapping each
variable of rank l to some language of words of rank l. Then every ground
multicontext α is assigned a value, interpreting the elements of Σ∗

1 as themselves
and the connectives from Opk as corresponding language operations. Note that
ground terms have the same value under all valuations.

Two ground multicontexts C1[x1, . . . , xt] and C2[x1, . . . , xt] with the same
variables are equivalent if the expressions C1[μ(x1), . . . , μ(xt)] and C2[μ(x1), . . . ,
μ(xt)] have the same value under any valuation μ. The equivalence relation is
denoted by ∼. Note that α ∼ μ(α) for any ground term α. Further, ∼ is a
congruence relation, which means that the equivalences C′ ∼ C′′ and αi ∼ βi

for any i ≤ t imply C′[α1, . . . , αt] ∼ C′′[β1, . . . , βt]. Two terms (not necessar-
ily ground) α1 and α2 are called equivalent if they can be represented in the
form α1 = C1[A1, . . . , At] and α2 = C2[A1, . . . , At] for some equivalent ground
multicontexts C1 and C2.

With every multicontext α we associate its syntactic tree tree(α) in a natural
way. Then submulticontexts of α correspond to the nodes of this tree and vice
versa. A submulticontext is internal if it corresponds to an internal node (it
means the submulticontext contains a binary connective). A multicontext α is
k-essential if its rank is at most k, as well as the rank of all its variables and
nonterminals. The next lemma is proved in the full version of the paper.
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Lemma 1. Any k-essential multicontext C is equivalent to a k-correct multi-
context C′.

Corollary 1. Any k-essential term α is equivalent to a k-correct term α′.

2.2 Displacement Context-Free Grammars

This subsection introduces the notion of a displacement context-free grammar.
In the definitions below, GrTmk denotes the set of all ground terms in Tmk.

Definition 1. A k-displacement context-free grammar (k-DCFG) is a quadru-
ple G = 〈N,Σ, P, S〉, where Σ is a finite alphabet, N is a finite ranked set of
nonterminals, Σ ∩N = ∅, S ∈ N is a start symbol such that rk(S) = 0 and P
is a set of rules of the form A → α. Here A is a nonterminal and α is a term
from Tmk(N,Σ) such that rk(A) = rk(α).

Definition 2. The derivability relation �G∈ N×Tmk associated with the gram-
mar G is the smallest reflexive transitive relation such that for any context C,
the conditions (B → β) ∈ P and A � C[B] imply A � C[β]. If LG(A) =
{ν(α) | A �G α, α ∈ GrTmk} is the set of words derivable from A ∈ N , then
L(G) = LG(S).

Example 1. Let the i-DCFG Gi be the grammar Gi = 〈{S, T }, {a, b}, Pi, S〉.
Here Pi is the following set of rules (notation A→ α|β means A→ α,A→ β):

S → (. . . (︸ ︷︷ ︸
i−1 times

aT *1 a) + . . .)*1 a | (. . . (︸ ︷︷ ︸
i−1 times

bT *1 b) + . . .)*1 b

T → (. . . (︸ ︷︷ ︸
i−1 times

aT *1 1a) + . . .)*i 1a | (. . . (︸ ︷︷ ︸
i−1 times

bT *1 1b) + . . .)*i 1b | 1i

The grammar Gi generates the language {wi+1 | w ∈ {a, b}+}. Below is the
derivation of the word (aba)3 in G2:

S → (aT *1 a)*1 a→ (a((bT *1 1b)*2 1b)*1 a)*1 a→
(a((b((aT *1 1a)*2 1a)*1 1b)*2 1b)*1 a)*1 a→
(a((b((a11*1 1a)*2 1a)*1 1b)*2 1b)*1 a)*1 a =

(a(b(a1a1a*1 1b) +2 1b) +1 a)*1 a = (aba1ba1ba*1 a)*1 a = abaabaaba.

Two k-DCFGs are equivalent if they generate the same language. Since inter-
nal nodes of terms in a k-DCFG rules are also of rank k or less, the k-DCFGs
can be binarized just like the context-free grammars to obtain a variant of the
Chomsky normal form. Precisely, the following theorem holds (see [12]):

Theorem 1. Every k-DCFG is equivalent to some k-DCFG G = 〈N,Σ, P, S〉
which has the rules only of the following form:
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1. A→ B · C, where A ∈ N, B,C ∈ N − {S},
2. A→ B *j C, where j ≤ k, A ∈ N, B,C ∈ N − {S},
3. A→ a, where A ∈ N, a ∈ Σ1,
4. S → ε.

We have already mentioned that k-DCFGs are equivalent to (k+1)-wMCFGs.
In the case of k = 1 this statement is straightforward since both 1-DCFGs and
2-wMCFGs are just reformulations of Pollard wrap grammars [8]. We will not
recall the definitions of a wMCFG, the interested reader may consult [9,3].

3 Terms and Derivations in DCFGs

In this section we investigate more thoroughly the properties of terms and deriva-
tion in DCFGs. First we give some fundamental notions. We assume that all the
grammars are in the Chomsky normal form.

Definition 3. A node v′ in the syntactic tree is a direct descendant of a node
v if rk(v′) = rk(v), v′ is a descendant of v and all the nodes on the path from v
to v′ has the same rank as v and v′. A subterm β is a direct subterm of a term
α, if its root node is the direct descendant of the root of α.

Let α be a term of rank l. We denote5 by α⊗ (u1, . . . , ul) the result of simul-
taneous replacement of all the separators in α by u1, . . . , ul.

Lemma 2. Let α = C[β] for some ground context C and term β of rank l.
There exist words s1, s2, u1, . . . , ul ∈ Σ∗

1 depending only from the context C such

that α ∼ s1(β ⊗ (u1, . . . , ul))s2 and rk(α) = rk(s1) + rk(s2) +
l∑

i=1

rk(ui).

Proof. By induction on the structure of the context C.

Lemma 3. Let β be a direct subterm of a term α and C be the ground context
such that α = C[β]. Then the equivalence α ∼ s1(β ⊗ (y11z1, . . . , yl1zl))s2 holds
for some words s1, s2, y1, z1 . . . , yl, zl ∈ Σ∗, depending only on the context C.

Proof. The proof is by induction on the structure of the context C. The inductive
step uses the fact that if v is the direct descendant of its ancestor v, then it is
also a direct descendant of all the nodes between them.

Let D be the derivation of α from some nonterminal A of the grammar G (we
denote it by D : A � α). We associate with D its derivation tree TD obtained by
attaching nonterminals to the nodes of tree(α). The labeling procedure is the
following: if in the last step of D the rule B → β in the context C was applied,
then we label by B the root node of the inserted subtree and keep other labels
unchanged. Since G is in the Chomsky normal form, only the nonterminal leaves
of tree(α) are unlabeled. Then we label every such node by the nonterminal it
contains. The lemma below is proved by induction on derivation length.

5 This notation is brought from discontinuous Lambek calculus.
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Lemma 4. Let D : A � α and TD be the corresponding derivation tree. For every
representation α = C[β1, . . . , βt] there are derivations D0 : A � C[B1, . . . Bt] and
Di : Bi � βi for any i ≤ t such that TD is obtained by replacing Bi with TDi in
the multicontext C.

Let G be a k-DCFG containing Nl nonterminals of rank l and T be a derivation
tree in this grammar. We call an l-matryoshka6 a subbranch of length Nl + 1 or
more, containing only nodes of rank l. Note that all the elements of l-matryoshka
are direct descendants of each other. By the pigeon-hole principle it contains two
nodes with the same nonterminal label.

A rule A→ α is derivable in a grammar G if A �G α. Adding derivable rules
to a grammar does not change the language it generates. Rules A → α and
A→ α′ are called equivalent if the terms α and α′ are equivalent. If one of such
rules is already in G, adding the other does not affect the generated language.
Note that if every rule of G′ is equivalent to some rule of G and vice versa, then
the grammars themselves are also equivalent.

We denote the depth of a term β by d(β). A term is called l-internal if all its
internal nodes, possibly except the root, are of rank l. An l-internal term β which
is l-essential and satisfies d(β) ≤ Nl+1, is called l-redundant. The grammar G is
called l-duplicated, if for every derivable rule A→ α with α being l-redundant,
there is an equivalent derivable rule A→ α′ with an (l−1)-correct term α′.

Lemma 5. For every k-DCFG G in the Chomsky normal form and every l ≤ k
there is an equivalent l-duplicated grammar G′ in the Chomsky normal form with
the same set of nonterminals of rank ≥ l.

Proof (sketched). We use downward induction on l; for any derivable rule A→ α
containing an l-redundant term α an equivalent rule A → α′ with an (l−1)-
correct term α′ is added. Such a term exists by Corollary 1. The process converges
since there is a finite number of l-redundant terms and such terms do not appear
in new derivable rules.

Definition 4. A k-DCFL G′ is m-compact if for every word w there is a deriva-
tion tree Tw such that for every node v of positive rank l in Tw there is an element
v′ of l′-matryoshka for some l′ ≥ l, such that the length of the path between v
and v′ is not greater than m and all the nodes in this path has rank l or greater.

Theorem 2. For every k-DCFL G there is an equivalent k-DCFL G′, which is
m-compact.

Proof. See the full paper. Lemma 5 implies that every word possesses a derivation
tree without l-redundant subtrees and such trees satisfy the definition of m-
compactness.

6 Matryoshka is a Russian souvenir consisting of several dolls nested one into another.
We use this term since the yields of the subtrees, whose roots are the elements of an
l-matryoshka, demonstrate the same nesting property.
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4 Main Results

In this section we use Theorem 2 to prove a strong version of Pumping lemma.

Definition 5. A pair of internal nodes v and v′ of a derivation tree such that
v and v′ has the same label of rank l−1 and v′ is the direct descendant of v, is
called an l-pump. Here v is the top node of the pump and v′ is its bottom node7.

Theorem 3. For any k-DCFL L there exists a number n such that any word
w ∈ L with |w| > n can be represented, for some l ≤ k + 1, in the form w =
s0y1u1z1s1y2u2z2s2 . . . ylulzlsl satisfying the following requirements:

1. |y1z1 . . . ylzl| > 0,
2. |y1u1z1 . . . ylulzl| ≤ n,
3. For any p ∈ N the word s0y

p
1u1z

p
1s1 . . . y

p
l ulz

p
l sl belongs to L(G).

Proof. By Theorem 2 we assume that L is generated by a m-compact grammar
G for some natural m. Let Nl be the number of nonterminals of rank l in this
grammar, N+ = max{Nl | l > 0} and N = N0 + N+ + m. We set n = 2N .

Let w ∈ L(G) be a word with |w| ≥ n and Tw be its derivation tree, deriving
the term α and satisfying the requirement of Theorem 2. Then d(Tw) ≥ n + 1.
Consider N0+1 deepest nodes of the longest branch of Tw. If all of them are of
rank 0, then some pair of nodes have the same label and hence form a 1-pump.
If conversely, some node vt is of rank t > 0, then there is an element of some l′-
matryoshka on the distance not greater than m from vt. Then the distance from
vt to the upper node of this matryoshka is at most m + N+. This l′-matryoshka
contains an (l′+1)-pump, and the depth of the top node of this pump differs
from the depth of Tw by at most N0 + N+ + m = n. So we have proved an
existence of such an l-pump for some l ≤ k + 1, that the depth of the subtree
below its top node is at most n (in this case l = l′ + 1).

Let v and v′ be the top and bottom nodes of this pump, B be their nonterminal
label, and C1 and C2 be their outer contexts. Then α = C1[C2[β]] for some
contexts C1 and C2 and term β such that S � C1[B], B � C2[B] and B � β.

Let ν(β) = u11 . . . 1ul. By Lemma 3, for any term γ of rank l−1 the context
C2[γ] is equivalent to y1(γ ⊗ (z11y2, . . . , zl−11yl))zl for some y1, z1, . . . , yl, zl ∈
Σ∗. Also C1[η] ∼ s0(η ⊗ (s1, . . . , sl−1))sl for some words s0, . . . , sl ∈ Σ∗. Then
w is equivalent and hence equal to the word

s0((y1((u11 . . . 1ul)⊗ (z11y2, . . . , zl−11yl))zl)⊗ (s1, . . . , sl−1))sl =

s0((y1u1z11 . . . 1ylulzl)⊗ (s1, . . . , sl−1))sl = s0y1u1z1s1 . . . ylulzlsl.

The depth of C2[β] is not greater than N , so its value y1u1z11 . . . 1ylulzl cannot
be longer than n. It remains to prove the third statement.

We write C1
2 = C2 and Cp

2 = C2[Cp−1
2 ] for any p > 1. Repeating the

derivation B � C2[B] p times, we obtain the derivation B � Cp
2 [B]. Apply-

ing Lemma 3 to the context C2 several times and using basic term equiv-
alences, we get that Cp

2 [γ] ∼ yp1(γ ⊗ (zp11yp2 , . . . , z
p
l−11ypl ))zpl . Setting γ = β

7 Our definition of l-pump reformulates the definition of an even k-pump from [3].
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yields yp1u1z
p
11 . . . 1zpl uly

p
l ∈ LG′(B) and consequently s0y

p
1u1z

p
1s1 . . . z

p
l uly

p
l sl ∈

LG′(S). The theorem is proved.

Let the pair of nodes v and v′ be an l-pump. The replacement of the subtree
rooted at v by the subtree rooted at v′ is called collapsing of the pump. The
scope of an l-pump consists of the nodes that are descendants of v but not of v′;
these are exactly the nodes removed by collapsing this pump.

Lemma 6. Let T ′ be a tree obtained from T by collapsing some pump. If the
nodes v1 and v2 form a pump in T ′, then they form a pump in T .

Proof. Let v and v′ be, respectively, the top and bottom nodes of the collapsed
pump. If v′ is not on the path from v1 to v2 in T ′ then v2 has already been a
direct descendant of v1 in T . Otherwise (v1, v

′) and (v′, v2) are the pairs of direct
descendants in T ′, which means that (v1, v) and (v′, v2) were the pairs of direct
descendants in T . Using the fact that v′ was a direct descendant of v in T and
the transitivity of direct descendance, we obtain that v2 is a direct descendant
of v1 in T . Hence they form a pump in T . The lemma is proved.

Lemma 6 implies that a terminal vertex in the scope of a pump in a collapsed
derivation tree is also in the scope of this pump in the original tree. This fact
allows us to prove a weaker analogue of the Ogden lemma ([6]).

Theorem 4 (Ogden lemma for 1-DCFGs). For any k-DCFL L there is a
number t such that for any word w ∈ L with at least t selected positions there
is a representation w = s0y1u1z1s1 . . . ylulzlsl for some k ≤ l + 1, satisfying the
following conditions:

1. For any p ∈ N the word s0y
p
1u1z

p
1 . . . y

p
l ulz

p
l sl belongs to L(G).

2. At least one of the words y1, z1, . . . , yl, zl contains a selected position.

Proof. We set t equal to n from pumping lemma. It suffices to show that one
of the selected positions is in the scope of some pump. We use an induction on
|w|; note that |w| ≥ n. There is a representation w = x′

0y
′
1u

′
1z

′
1x

′
1 . . . y

′
lu

′
lz

′
lx

′
l

such that the word x′
0u

′
lx

′
1 . . . u

′
lx

′
l is also in L. If the removed words contained a

labeled position, the lemma is proved. Otherwise the word w′ = x′
0u

′
lx

′
1 . . . u

′
lx

′
l

contains the same number of labeled positions and we can apply the induction
hypothesis to its derivation tree T ′, which is obtained from T by collapsing. Then
one of the selected positions is in the scope of some pump in T ′, which implies
by Lemma 6 that it is in the scope of a pump in T . The theorem is proved.

5 Examples of Non 1-DCFLs

In this section we use the established theoretical results to give some examples of
non-1-DCFLs. To address this question we need to investigate more thoroughly
the properties of constituents of displacement context-free grammars. A con-
stituent is the fragment of the word derived from a node of its derivation tree. In
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the context-free case every constituent is a continuous subword, hence it can be
described by two numbers: the position of its first symbol and the position of its
last symbol plus one (we add one to deal with empty constituents). Recall that
context-free constituents must be correctly embedded which means they either
do not intersect or one constituent is the part of another.

The situation is a bit more complex in the case of DCFGs. However, the
results of [11] provide analogous geometrical intuition. The constituents of rank
1 are the words of the form w11w2, where w1, w2 are continuous subwords of the
derived word w. Then a constituent of rank 1 is characterized by four indexes
i1 ≤ j1 ≤ i2 ≤ j2 of the border of its subwords. We identify a constituent with
a tuple of its characterizing indexes in the ascending order. The proofs of the
statements below, as well as illustrative figures, can be found in the full version
of the paper.

Lemma 7. One of the possibilities below hold without loss of generality for any
pair of constituents (i1, j1, i2, j2) and (i′1, j

′
1, i

′
2, j

′
2):

1. j2 ≤ i′1,
2. j1 ≤ i′1 ≤ j′2 ≤ i2,
3. i1 ≤ i′1 ≤ j′2 ≤ j1 or i2 ≤ i′1 ≤ j′2 ≤ j2,
4. i1 ≤ i′1 ≤ j′1 ≤ j1 ≤ i2 ≤ i′2 ≤ j′2 ≤ j2.

Since every pump is just a pair of properly embedded constituents labeled by
the same nonterminal, Lemma 7 helps to specify the mutual positions of different
2-pumps. The scope of the pump contains exactly the positions which are in the
top constituent but not in the bottom, so every 2-pump is described by eight
indexes i1 ≤ j1 ≤ k1 ≤ l1 ≤ i2 ≤ j2 ≤ k2 ≤ l2, such that (i1, l1, i2, l2) is the
tuple of indexes of its top constituent and (j1, k1, j2, k2) — of the bottom.

Lemma 8. One of the possibilities below hold without loss of generality for any
pair of 2-pumps (i1, j1, k1, l1, i2, j2, k2, l2) and (i′1, j

′
1, k

′
1, l

′
1, i

′
2, j

′
2, k

′
2, l

′
2):

1. l2 ≤ i′1,
2. i1 ≤ i′1 ≤ l′2 ≤ j1 or k2 ≤ i′1 ≤ l′2 ≤ l2,
3. i1 ≤ i′1 ≤j′1 ≤j1 ≤k1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤j2 ≤k2 ≤k′2 ≤ l′2 ≤ l2,
4. i1 ≤ i′1 ≤j′1 ≤k′1 ≤j1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤k2 ≤j′2 ≤k′2 ≤ l′2 ≤ l2,
5. i1 ≤ i′1 ≤j1 ≤k1 ≤j′1 ≤k′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j′2 ≤k′2 ≤j2 ≤k2 ≤ l′2 ≤ l2,
6. i1 ≤ i′1 ≤j1 ≤j′1 ≤k′1 ≤k1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤j2 ≤j′2 ≤k′2 ≤k2 ≤ l′2 ≤ l2,
7. k1 ≤ i′1 ≤ l′1 ≤ l1 ≤ i2 ≤ i′2 ≤ l′2 ≤ j2,
8. i1 ≤ i′1 ≤ l′1 ≤ j1 ≤ k2 ≤ i′2 ≤ l′2 ≤ l2,
9. k1 ≤ i′1 ≤ l′2 ≤ l1 or i2 ≤ i′1 ≤ l′2 ≤ j2,

10. j1 ≤ i′1 ≤ l′1 ≤ k1 ≤ j2 ≤ i′2 ≤ l′2 ≤ k2,
11. j1 ≤ i′1 ≤ l′2 ≤ k1 or j2 ≤ i′1 ≤ l′2 ≤ k2,
12. l1 ≤ i′2 ≤ l′2 ≤ i2.

Let π1 = (i1, j1, k1, l1, i2, j2, k2, l2) and π2 = (i′1, j
′
1, k

′
1, l

′
1, i

′
2, j

′
2, k

′
2, l

′
2) be two

2-pumps. We call a pair of π1 and π2 linear if l2 ≤ i′1 or l′2 ≤ i1. We call π1 outer
for the pump π2 if i1 ≤ i′1 ≤ l′2 ≤ l2. Note that if a pair of 2-pumps is not linear,
then one of its elements is the outer pump for another. We call π1 embracing for
π2 if l1 ≤ i′1 ≤ l′2 ≤ i2.
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Corollary 2. Let (i1, j1, k1, l1, i2, j2, k2, l2) and (i′1, j
′
1, k

′
1, l

′
1, i

′
2, j

′
2, k

′
2, l

′
2) be 2-

pumps such that one of the segments of the second pump is a proper subset of
the segment [l1; i2]. Then either the second pump is outer for the first (which
means i′1 ≤ i1 ≤ l2 ≤ l′2) or the first pump is embracing for the second.

Lemma 8 allows us to give some examples of non 1-DCFLs. The first example
is the language 4MIX = {w ∈ {a, b, c, d}∗ | |w|a = |w|b = |w|c = |w|d}.

Theorem 5. The language 4MIX cannot be generated by any 1-DCFG.

Proof. Since wMCFLs are closed under intersection with regular languages, it
suffices to prove that the language 4MIX∩(a+b+c+d+)2 is not a 1-DCFL. Assume
the contrary, let t be the number from Ogden’s lemma applied to this language.
Let the word w = am1bm2cm3dm4an1bn2cn3dn4 satisfy the following conditions:

1. min (mj , nj) ≥ t,
2. m1 ≥ (3M + 1)(M + t), where M = max (m2,m4, n3),
3. m4 ≥ (n1 + 1)(n1 + t).

Note that every 2-pump contains an equal number of a’s, b’s, c’s and d’s,
and every continuous segment of it consists of identical symbols (we call such
segments homogeneous). We enumerate the maximal continuous homogeneous
subwords of w from 1 to 8. Then every 2-pump intersects exactly four such
segments. We call a pump intersecting the segments with numbers d1, . . . , dl
(and possibly some others) a [d1, . . . , dl]-pump.

We select 3M+1 segments of length t in the first segment of the word w such
that any two segments are separated by at least M symbols. By Theorem 4
each such segment intersects with some 2-pump. We want to prove that some of
them intersects with a [1, 3, 6, 8]-pump. Any two points from different segments
cannot belong to the same [1, 7]-pump, since in this case there is a continuous
segment of at least M + 1 a’s in the pump. Then the pump contains at least
M + 1 c’s, which exceeds the length of the 7th segment. It follows that there
are at most M [1, 7]-pumps. By the same argument there are at most M [1, 2]-
pumps and at most M [1, 4]-pumps, therefore the number of [1]-pumps which
are not [1, 3, 6, 8]-pumps is less than 3M + 1 which proves the existence of a
[1, 3, 6, 8]-pump.

By the same argument there is at least one [4]-pump, which is not a [4, 5]-
pump. By corollary 2 applied to the [1, 3, 6, 8]-pump it is either a [1, 4, 8]-pump or
it is embraced by the [1, 3, 6, 8]-pump. In the first case there are two d-segments
in the pump, in the second case it should be a [3, 4, 5, 6]-pump which contradicts
our assumption. So we have reached a contradiction and the theorem is proved.

Our technique of embedding different 2-pumps also works in a more complex
case. Consider the language MIX = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c}. It is
expected to be not a DCFL since it demonstrates an extreme degree of non-
projectivity. It is proved in [4] that MIX is not a 2-wMCFL (and hence not
a 1-DCFL). The proof extensively uses geometrical arguments and is therefore
very difficult to be generalized for similar languages or wMCFGs of higher order.
Our proof uses only the Ogden’s lemma for DCFGs and is much shorter.
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Theorem 6. The MIX language is not a 1-DCFL.

Proof. We use the same method and notation as in the case of 4MIX language.
Again, it suffices to prove that the language L = MIX ∩ a+b+c+b+c+a+ is not
a 1-DCFL. Let t be the number from Ogden’s lemma for L. Consider the word
w = am1bm2cm3bn2cn3an1 satisfying the following properties:

1. min (mj , nj) ≥ t,
2. m1 ≥ (2M + 1)(M + t), where M = max (m3, n2),
3. n1 ≥ (2M + 1)(M + t), where M = max (m3, n2),
4. m3 ≥ (n2 + 1)(n2 + t).

By the same arguments as in Theorem 5 we establish the existence of [1, 2, 5]-
and [2, 5, 6]-pumps. Since they cannot form a linear pair of 2-pumps, one of them
is an outer pump for another, which implies one of them is a [1, 2, 5, 6]-pump.
The condition m3 ≥ (n2 + 1)(n2 + t) implies the existence of a [2, 3]-pump. By
Corollary 2 applied to the [1, 2, 5, 6]-pump and the [2, 3]-pump, the [2, 3]-pump
is actually a [1, 2, 3, 6]-pump since it contains some a’s.

The condition n2 ≥ t implies there is a [4]-pump, which is a [1, 4, 6]-pump
again by Corollary 2. To be correctly embedded with the [1, 2, 3, 6]-pump it
should be a [1, 2, 4, 6]-pump but there is no c’s in such pump. Hence we reached
the contradiction and the MIX language cannot be generated by a 1-DCFG.
The theorem is proved.

6 Conclusions and Future Work

We have proved a strong version of the pumping lemma and a weak Ogden
lemma for the class of DCFLs which is also the class of well-nested multiple
context-free languages. These statements allow us to prove that some languages,
like the well-known MIX language, do not belong to the family of 1-DCFLs or, in
other terms, the family of tree adjoining languages. We hope to adopt the proof
for the case of half-blind three-counter language {w ∈ {a, b, c}∗ | |w|a = |w|b =
|w|c, ∀u  w |u|a ≥ |u|b ≥ |u|c} to prove that a shuffle iteration of a one-word
language may lie outside the family of 1-DCFLs. The author supposes that the
technique used in the article will work not only in the case of 2-pumps, but also
in a more complex cases. We hope that our results will help to understand better
the structure of well-nested MCFLs and, in particular, to prove the Kanazawa-
Salvati conjecture stating that MIX is not a well-nested MCFL.

Acknowledgments. The author thanks Makoto Kanazawa for his helpful sug-
gestions and the anonymous referees of DLT 2014 conference, whose thoughtful
comments essentially improved the paper.
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Abstract. In this paper we present a construction of Kari-Culik ape-
riodic tile set, the smallest known until now. Our construction is self-
contained and organized to allow reasoning on properties of the result-
ing sets of tilings. With the help of this construction, we prove that
this tileset has positive entropy. We also explain why this result was not
expected.

1 Introduction

In this paper we focus on aperiodic tilesets. These tilesets can be used to tile
the plane but none of the obtained tilings has a period. The role of aperiodic
tilesets is crucial in different fields such as logics (see for instance [1]) or for
the study of quasi-periodic structures such as quasi-crystals. Furthermore these
aperiodic tilesets are a classical tool to prove undecidability problems for planar
structures or dynamical systems. We work with the formalization that Wang
proposed in [2].

A classical question about a tileset is to measure its entropy. Roughly speaking
the entropy of a tileset is positive if “points of freedom are dense”. One can easily
make it positive for any aperiodic tileset by a cartesian product with a free bit.
The number of tiles is then multiplicated by a factor two but the resulting tiling
has positive entropy. It is easy to observe that for classical self similar tilesets
such as Berger [3], Robinson [4] the entropy is zero. The main question we
address is the entropy of the smallest known aperiodic tileset: it was conjectured
that its entropy is zero but we prove it is positive. This entropy zero conjecture
comes from other works on this tileset and some algorithmic remarks developed
in Sect. 4.

Our paper is organized as follows: first we explain exactly the same tileset as
Kari and Culik in [5,6]. Our explanation makes it easier to analyze (repeating
the proof of aperiodicity). Then in Sect. 3 we formulate a substitutive property
that guarantee positive entropy of Kari-Culik tileset. The rest of the section is
devoted to the proof. The last section is focused on more refined approaches to
the entropy of a tileset.
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2 Presentation of the Tileset

2.1 Source of Aperiodicity

Let us start with an observation. Consider a bi-infinite sequence xn of positive
real numbers, such that either xn+1 = 2xn or xn+1 = xn/3 for every n.

Every such sequences are aperiodic. Indeed, for all n and all k > 0, we have
xn+k = xn × 2i/3j for some i, j > 0. If we had xn+k = xn, then we would have
1 = 2i/3j for i, j > 0, which is a contradiction.

Moreover, there exist some such sequences xn which lie in the interval [1/3; 2].
Starting from some x0 in this interval, we can always take xn+1 = 2xn if xn < 1,
and xn+1 = xn/3 otherwise. The same argument works in the opposite direction.

2.2 Aperiodic Sequences and Tilings

A tile is an unit square with colored sides. Consider the (geometric) plane with
a unit grid; a tiling is an assignation of a tile to each square of the grid, in such
manner that matching borders have the same color. Thus, in a tiling, we have a
bi-infinite sequence of colors along any horizontal or vertical line of the grid.

We are going to focus on the horizontal lines of our tilings. If we use three
colors (say, 0, 1 and 2) for the top and bottom sides of the tiles, we will get
bi-infinite sequences over the alphabet {0, 1, 2}. Such sequences might have an
average, i.e. a limit of averages over finite parts as the length of the parts
increases (In our tiling we prove that unique average always exists see Prop. 2).

Our goal is to construct a set of tiles with the following two properties:

1. for every tiling, if the averages of all horizontal lines exist, they form a
sequence xn with the property defined in Sect. 2.1.

2. for every such sequence xn, we can find a tiling where averages exist and are
equal to xn.

This tile set will be aperiodic. If it had a periodic tiling, it would also have
a bi-periodic tiling. In a bi-periodic tiling, all horizontal lines have an average
(due to horizontal periodicity), and form a periodic sequence (due to vertical
periodicity), which is impossible. The existence of tilings is a consequence of the
second claim.

2.3 Tilings and Automata

Our tileset should guarantee that some relation holds between any two consecu-
tive lines of a tiling (namely, “x = 2y or x = y/3”). Thus, let us consider a stripe
(a horizontal line of tiles), as displayed on Fig. 1. We call the sequence of bottom
numbers an, top numbers bn, and the matching left and right numbers qn. Such
a stripe can be viewed as a run of a non-deterministic automaton, where qn are
the traversed states, and (an, bn) are the input.

More precisely, each tile (q′, a, q, b) correspond to a transition q
(a,b)−−−→ q′,

where (a, b) is the input. This is illustrated by Fig. 2. Since a tileset only have a
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q0
b0
a0
q1 q1

b1
a1
q2 q2

b2
a2
q3 q3

b3
a3
q4 q4

b4
a4
q5

Fig. 1. Example of a horizontal tiled line

finite number of colors and tiles, the running automaton must be a finite-state
automaton reading pairs of letters. Note that our automaton has no initial state;
it runs infinitely in both directions.

q b
a
q′ =⇒ q q′

(a, b)

Fig. 2. Translation of a tile to a transition

We can see that there exists a bi-infinite run of the automaton on the sequence

. . . (a−2, b−2), (a−1, b−1), (a0, b0), (a1, b1), (a2, b2) . . .

if and only if there exists a tile horizontal stripe that carries the sequence
. . . a−2, a−1, a0, a1, a2 . . . on the bottom and . . . b−2, b−1, b0, b1, b2 . . . on the top.

If we try to extract a set of tiles from several automata, and take the union
of the results, we will get a tileset which performs a run of one of the automata
on each line. We have to ensure that the set of states of the several automata
are disjoint, which guarantees that automata will never be mixed within a single
line.

2.4 Construction of Actual Automata

Let us construct a finite-state automaton which reads sequences of couples
(an, bn) and checks if |

∑
i bi−2

∑
i ai| is bounded; and another one which checks

if |3
∑

i bi−
∑

i ai| is bounded. The sequences an and bn are on alphabets of two
integers, for instance an is on {0, 1} and bn on {1, 2}.

These automata are constructed in the following way: fix a set of states Q,

and have all transitions q
(a,b)−−−→ q′ to satisfy the following relation:

q′ = q + 2a− b (automaton for b = 2a)

q′ = q + a/3− b (automaton for b = a/3)

Thus, the automata will compute the cumulative sum of an and the cumulative
sum of 2bn (resp. bn/3), and hold the difference into its current state. Since the
number of states is finite, the difference must be bounded. As a consequence, if
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a couple of sequences (an, bn) is accepted by the first (resp. second) automaton
and an have an average, then bn have an average which is twice (resp. one third
of) an’s one.

It only remains to set the alphabet for the an and bn sequences. These alpha-
bets are directly connected to the allowed range for averages of an and bn. For
instance, if an is on alphabet {1, 2}, its average can be any real number between
1 and 2. Likewise, we have to set an alphabet for bn. As an additional restriction,
we can make automata in such manner that they reject some finite patterns, like
000. Sequences on alphabet {0, 1} without any pattern “000” cannot have an av-
erage lesser than 1/3. Using this fact, we can restrict allowed ranges for averages
in a more precise way.

We can describe our piecewise linear function with two automata on alphabet
{0; 1; 2} (one for each linear piece).

0/3 1/3 2/3

(1, 0) (1, 0)

(1, 1)

(2, 1) (2, 1)

(2, 0)

0 1

(0, 0)

(1, 2)

(0, 0)

(1, 2)

(1, 1)

(0, 1)

Fig. 3. Automata M1/3 and M2

These automata have 6 transitions each, yielding an almost aperiodic set of
12 tiles. Indeed one slight change must be made to avoid the tiling with only the
”0” tile. This change will be presented further in this paper.

2.5 Existence of a Tiling

Remark that if we want to tile the whole plane, our automata cannot be fed
with any sequences, even if those sequences have averages. Indeed, when the
M2 automaton reads with the sequence “an = 0011”, the output sequence bn
contains both a 0 and a 2. However, automata M1/3 only accepts sequences over
{1, 2} for an, and M2 only accepts {0, 1}. Thus, if a stripe has 0011 on its bottom
line, then it has both a 0 and a 2 on its top line. The next stripe cannot be a
run of M2 nor M1/3, and the tiling does not go to infinity.

As a consequence, we need to show that there exists sequences of average x,
for each positive real x, which are accepted by our automata. In order to achieve
this, we will use Sturmian sequences. Define:

Bx(k) = �x(k + 1)� − �xk�

Bx is the Sturmian sequence of slope x, and Bx(k) is its kth letter. This
sequence is bi-infinite over alphabet {�x�, �x�}. Since the sum over k of Bx(k)
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is telescopic, it is easy to calculate the average of this sequence and check it is
actually x.

Let us think a bit about Sturmian sequences. Fix a real number x. Imagine
you are on an infinite, measured line, and you are making jumps of length x
along the line. Whenever you make a jump, write down the number of integers
you jumped over: this is the Sturmian sequence of slope x.

We can get the Sturmian sequence of 2x by making jumps of length x, and
counting the number of multiples of 0.5 we jumped over. There are twice more
multiples of 0.5 than integers; thus, in the long run, we actually get the Sturmian
sequence of 2x. This idea is illustrated on Fig. 4a.

If we want to get the Sturmian sequence of x/3 from the sequence of x, we
have to consider multiples of 3. They actually occur three times less often than
integers. This is illustrated on Fig. 4b.

� � � � � � � �� � � � � � �

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

(1) (2) (3)
. . .

(4) (2′) (3′) (4′)
. . .

(1′)

(a) Multiplication by 2: eight types of transitions, but (2) = (2′) and (3) = (3′), yielding
six distinct types

0 0.33 0.66 1 1.33 1.66 2 2.33 2.66 3 3.33 3.66 4 4.33 4.66
. . .

2
3

2
3

2
3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

0
3

0
3

0
3

0
3

0
3

(a) (b) (c) (d)

2
3

2
3

2
3

2
3

2
3

1
3

1
3

1
3

1
3

1
3

0
3

0
3

0
3

0
3

0
3

(e) (f)

(b) Division by 3: six types of transitions

Fig. 4. Multiplications of Sturmian sequences

Note that, in Fig. 4a, jumping over a non-integer multiple of 0.5 (the “small
obstacles”) increments the difference between “twice number of integers jumped”
and “number of multiples of 0.5 jumped” by 1. By contrast, jumping over an
integer (big obstacles) decrements this difference by 1. Since we want it as close
to 0 as possible, two states are enough (before and after the small obstacle).

This works the same for Fig. 4b. Jumping over “small obstacles” increments
the difference between “one third of the obstacles jumped” and “number of big
obstacles jumped”. Jumping over “big obstacles” decrements this difference by
2. As a conclusion, only 3 states are needed.
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One can finally check that all possible types of jumps are displayed on Fig. 4,
and that each of them corresponds to a transition of our automata (Fig. 3). For

instance, type (1) corresponds to 1
(0,0)−−−→ 1, and (2) corresponds to 1

(0,1)−−−→ 0.
More generally, in M2, an corresponds to the number of jumped obstacles (of any
size) by an arrow, and bn corresponds to the number of jumped big obstacles.
In M1/3, it is permuted: an is the number of jumped big obstacles, and M2 the
number of jumped obstacles.

As a conclusion, (Bx, B2x) is always accepted by M2 and (B3x, Bx) is always
accepted by M1/3. Thus one can take any sequence xn from Sect. 2.1, write the
Sturmian sequence of xn on line n of the tiling, and get valid runs for automata.
Thus one get valid tilings.

2.6 Aperiodicity

This construction ensures that each tiling corresponds to a specific sequence
which is identically null or aperiodic. Then we just have to avoid this null se-
quence. Culik presented one way to achieve that in [6]. The idea is to forbid
three consecutive uses of the M2 automaton. This can be done by adding only
one tile. Consider a new color 0′ which value is 0 in the average, such that above
a 0 there can be either a 1 or a 0′, and above a 0′ there always is a 1. Thus
there cannot be three consecutive not − 1 in a row, ensuring that the all zero
configuration is forbidden. All tilings with this tileset are aperiodic. This tileset
is displayed on Fig. 6.

0
3

1
3

2
3

(2, 1)

(1, 0)

(2, 1)

(1, 0)

(1, 1)

(2, 0)

0 1

(0, 0′) (0, 0′)

(1, 2) (1, 2)

(1, 1)

(0′, 1)

(0, 1)

Fig. 5. Kari + Culik automata

3 Positive Entropy

3.1 Introduction

Let S be a palette and CS(n) be the number of different patterns of size
n × n which appear in a tiling. Then the entropy of S is defined by H(S) =

lim
n

logCS(n)

n2
(the limit always exists).
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0 0′ 1 2

0/3 1/3 2/3

0 1

Fig. 6. Kari + Culik Tileset and colors meaning

The question we address is whether the Kari-Culik tileset has positive entropy.
A usual method for proving such a fact is to exhibit a substitutive pair, i.e., a
couple of different patterns with the same borders.

Our method is a small variation of the above: we prove that our tileset contains
two substitutive pairs and for each sufficiently large square one of the pair items
appears. Our substitutive pairs are shown in Fig. 7.

A1
0
2

1
0 0

1

1
1

2
3

0

2
0
3

0
3

1

1
2
3

A′
1

0
1

1
1 1

2

1
1

2
3

0

1
1
3

1
3

1

2
2
3

A2
0
2

1
0 0

1

1
1

0
3

1

2
1
3

1
3

0

1
0
3

A′
2

0
1

1
1 1

2

1
1

0
3

1

1
2
3

2
3

0

2
0
3

Fig. 7. Substitutive pairs

3.2 Coming Back to the Function

Recall that our function is f : [ 13 ; 2] �→ [ 13 ; 2] such that

f(x) =

{
2x if x ∈ [ 13 ; 1]
1
3x if x ∈ [1; 2]

Lemma 1. The orbits of f are dense.

Proof. It is well-known that irrational rotations on the circle have dense orbits.
Thus, we map the interval [13 ; 2] on the unit circle in such manner that the
function f corresponds to a rotation of irrational angle.
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We consider the following mapping:

φ : [
1

3
; 2] → [0; 1]

φ(x) =
log(x) + log 3

log(2) + log 3
mod 1

We view the interval [0; 1] as a circle by identifying point 0 with point 1.

φ(2x) =
log(2) + log(x) + log 3

log(2) + log 3
mod 1 = φ(x) +

log(2)

log(2) + log 3
mod 1 (1)

φ(
x

3
) =

log(x)

log(2) + log 3
mod 1 = φ(x) +

log(2)

log(2) + log 3
mod 1 (2)

Both transitions map to the same irrational rotation of angle log 2
log 2+log 3 .

Proposition 1. Given any interval the maximal number of iterations of f be-
tween two occurrences in this interval is bounded.

Proof. Consider any interval I =]a; a + α[ in [0; 1] mod 1. As the orbits of f
are dense from starting point a, there exists N such that fN (a) mod 1 is in
]a; a + α/2[. Thus fN (a) = a + β with β < α/2. From any point x in I, either
x + β or x − β is in I. Thus either fN�1/β
(x) or fN�1/β�(x) is in I.Hence our
required bound on the number of iterations of f is N�1/β�.

β

α

a

Fig. 8. Crossing intervals

Now let us examine the colors that appear on any horizontal line of the tiling.
On this line colors represent 0 and 1 or 1 and 2 (0 and 0′ being interpreted as
the same zero).

Proposition 2. Any horizontal line in any tiling has an average (in the sense
of frequencies of numbers defined above).
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Proof. Our proof is based on the remark that on each line we have either 0 and
1 or 1 and 2 but never 0 and 2.

The average of any segment has a value in [0; 2] which is a compact set.
Consider two non overlapping growing sequences of subpatterns. Suppose their
averages have different limits. Then we can take subpatterns of different averages
as large as we want. With enough runs of the automata, one of this subpattern
will have average less than 1 and the other, greater than 1, on the same line.
But no automaton can read such a line, which makes a contradiction.

Remark that Kari’s basic idea is that the averages of the lines obey the function
f .

We prove below that a specific family of patterns appears dense in our tiling.
The following lemma gives us the horizontal density, and the vertical density is
obtained by combination of this lemma and Proposition 1.

Lemma 2. The family of patterns {01α0|α > 3} appear with positive density in
each line that has average in ] 45 ; 9

10 [.

The choice of 9
10 is arbitrary, the result remain true for any value in ] 45 ; 1[.

Proof. On each line with average greater than 4/5 the pattern 1111 must appear
with positive density. On each line with average less than 9/10, 0 appear with a
positive density, otherwise we would have a contradiction with Proposition 2.

We now have a family of linear patterns that appear in a dense way in our
tiling. Let us prove that each time one of this patterns appear, one element of
our substitutive pairs appear.

Let us consider the two lines above this pattern. Above the 0’s will always
be 1’s because reading 11 implies that the output alphabet is {1; 2}, and a 2 is
never above a 0 by construction. Above the 1’s there will be 2’s, expect for one 1.
We then distinguish three cases depending on the position of the 1 in the block
of 2’s : the leftmost, somewhere in the middle or the rightmost. The line above
this block of two is the result of a division by 3. This operation is deterministic,
there are a priori three possibilities for the phase of the carry on the whole line
: 0, 1/3, 2/3.

In the middle case (Fig. 9a), the three cases for the phase of the carry are
possible. In each of those cases one element of the substitutive pairs appears,
either with the bottomleft or the bottomright tile being the apparition of the 1
in the block of 2’s.

In the two other cases (leftmost and rightmost) we have two consecutive ones.
This prevents the appearance of one of the phases (one can check that block
0011 cannot be continued, drown in red in the pictures).

In the leftmost case (Fig. 9b), only two of the three possibilities for the phase
of the carry may appear. In both cases, one element of the substitutive pairs
appear above the two leftmost 1’s of the first line.

In the rightmost case (Fig. 9c), only two of the three phases of the carry are
possible. In both cases, one element of the substitutive pairs appear above the
two rightmost 1’s of the first line.

The colored vertical bar correspond to the code of bits presented in Fig. 6.
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0′ . . . 1 1 1 . . . 0′
1 . . . 2 1 2 . . . 1

. . . . . . 0 1 0 . . . . . .

0′ . . . 1 1 1 . . . 0′
1 . . . 2 1 2 . . . 1

. . . . . . 1 0 1 . . . . . .

0′ . . . 1 1 1 . . . 0′
1 . . . 2 1 2 . . . 1

. . . . . . 1 0 1 . . . . . .

(a) Middle case

0′ 1 1 1 1 . . . 0′
1 1 2 2 2 . . . 1

1 0 1 0 1 . . . . . .

0′ 1 1 1 1 . . . 0′
1 1 2 2 2 . . . 1

0 1 0 1 1 . . . . . .

0′ 1 1 1 1 . . . 0′
1 1 2 2 2 . . . 1

0 0 1 1 0 . . . . . .

(b) Leftmost case

0′ . . . 1 1 1 1 0′
1 . . . 2 2 2 1 1

. . . . . . . . . 0 1 0 1

0′ . . . 1 1 1 1 0′
1 . . . 2 2 2 1 1

. . . . . . . . . 1 1 0 0

0′ . . . 1 1 1 1 0′
1 . . . 2 2 2 1 1

. . . . . . . . . 1 0 1 0

(c) Rightmost case

Fig. 9. Our case analysis

Theorem 1. The Kari-Culik tileset have positive entropy.

Proof. The theorem is a consequence of all the other results of this section : we
have presented two substitutive pairs that together appear in a dense way in any
tiling of the plane.

3.3 Open Problems

We proved that our two pairs are together dense in any tiling. Is one of those
pairs dense alone in a given tiling?

Consider the extended tileset where we forbid one pattern in each of the
presented pairs. The obtained tileset is still a palette. Has this tileset a positive
entropy? If the answer is positive, is it possible to exclude a finite number of
patterns so that the resulting tileset has zero entropy?

Using substitutive pairs we proved that there are tilings which horizontal
lines do not represent mechanical words. Is it possible to better characterize the
Kari-words : the language of the lines that can appear in a tiling ?

Major Open Problem: Does a sub-shift of finite type A exists such that

– A has positive entropy;
– any sub-shift of finite type B included in A, has positive entropy.

This question addresses spaces of dimension at least 2 and any finite alphabet.

4 Choices, “cylindricity” and Entropy

Positive entropy is a very rough method for understanding the quantity of choice
that you meet when you effectively construct a tiling of the plane. Imagine that
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you walk over the plane in spiral trajectory, placing one matching tile after
another. Lets mark in red the cells were you have a ”real choice” i.e. were you
have at least two possibilities that can continue to an infinite tiling of the plane.
If the set of red cells is dense then the entropy of the tileset is positive. If you use
this approach on selfsimilar tilesets as usually constructed, then the red cells are
exponentially rare : as soon as you fix a tile on this cell you impose the next level
structure and the size of the such determined areas grows exponentially. From the
original construction of Kari [5] it is clear that there are horizontal lines where
the density of red points is constant (because of underlying mechanical words).
Nevertheless, even if this makes a difference between self similar tilesets and
Kari’s, this does not prove positive entropy, furthermore it was conjectured that
this freedom in representation of mechanical words of same density is strongly
coupled.

Another refined version of the entropy appraoch was presented by Thierry
Monteil in [7] using the notion of cylindricity. We explain below how this is
related with our work.

Consider a vertical cylinder of size n. If you can tile this cylinder with a tileset
then two of the horizontal rings are identical, thus one can tile a torus which
correspond to a periodic tiling of the plane. If the tileset is aperiodic, for each n
there exists a maximal vertical size for a portion of the cylinder to be tilable. The
smallest growing function greater than this vertical size is called the cylindricity
function of the tileset.

Consider any self similar tileset (for instance use the generic approach of
Nicolas Ollinger in [8] for generating a Wang tileset from a substitution). If one
can tile a cylinder of given size, then we can rewrite all the tiles into blocks and
thus obtain a larger cylinder with about the same proportions: depending on the
proportion between horizontal and vertical factors. The cylindricity function is
greater than xα with α positive.

Remark that the cylindricity is always greater than a logarithm : consider a
tiling of the plane and a vertical segment of size n in an horizontal stripe. The
minimal distance for seeing twice the same vertical segment is bounded by an
exponential in n (because the tileset is finite).

It would be interesting to study this function for more sophisticated tilesets,
for instance the most complicated one [9] or the robust to errors version in [10].
In Kari’s tiling if you have a periodic configuration then its image after a few
steps will have a period three times larger because when we divide by three,
consecutive periods assume different carry phases. Note that the ×2 operation
cannot diminish the period. Thus if we have a cylinder of length n and height
h, then the period of the first line is at most (n/3)αh where α is a constant
(some easy technical adjustments are needed to transform this argument into a
complete proof).

From this result it was conjectured in [7] that the logarithm of number of
patterns of size n×n was of order n. This would have produced an entropy zero
tiling with strictly more choices than for self similar case. But it is not the case.
We proved that the bound given by the cylindricity approach is not tight.
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Acknowledgments and Related Results. The authors thank Alexander
Shen for his help in stating the above results in a clear way.

Since the pre-publication of our paper in arXiv we received some comments
from people working in this area :

– Emmanuel Jeandel used a brute-force program to prove that one of our pairs
of entropic patterns always appears starting from a line of ones before a fixed
number of steps;

– Nathalie Aubrun and Michael Rao worked on substitutive pairs and discov-
ered the same pairs as ours. Their approach could be promising for solving
our open problems but is not yet published;

– Uwe Grimm pointed to us an article by N. Nikola, D. Hexner and D. Levine
[11]. Contrarily to what they write in their paper they do not provide a proof
of positive entropy with only one of our entropic pairs, the proof is supposed
to be in a paper of the same authors without title and labeled as ”to be
published”. If their proof is correct then one of our open problem is solved.
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Abstract. Two words are called k-abelian equivalent, if they share the
same multiplicities for all factors of length at most k. We present an
optimal linear time algorithm for identifying all occurrences of factors
in a text that are k-abelian equivalent to some pattern P . Moreover,
an optimal algorithm for finding the largest k for which two words are
k-abelian equivalent is given. Solutions for various online versions of the
k-abelian pattern matching problem are also proposed.

1 Introduction

The notion of k-abelian equivalence generalises the concepts of both the identity
and the abelian equivalence of two words. Two words are called k-abelian equiv-
alent, if they share the same multiplicities for all factors of length at most k.
It is straightforward to see that two words of length n are identical if they are
n-equivalent and they are abelian equivalent, if they are 1-abelian equivalent.

The notion of k-abelian equivalence was introduced in [1] and since then
has captured more and more attention. The concept has been investigated with
respect to repetitions [2–4], to periodicity properties [5], as well as to the com-
plexity functions of the equivalence classes it determines [6]. In particular, it has
been shown that in most situations, the concept oscillates between the two limit
cases given above, identifying itself with one or the other.

Pattern matching is one of the most basic and well studied algorithmic prob-
lems: given a text T and a pattern P , we are interested in finding one or all
occurrences of P in T . Besides the many obvious applications of pattern match-
ing for finding a specific fragment in a larger sequential data structure, practi-
cal applications often emphasise the approximate variants of pattern matching
like in the context of computational molecular biology [7]. Approximate pat-
tern matching problems aim to find occurrences of factors of the text T that are
equivalent to the pattern P by some given equivalence relation. In this paper, we
investigate the approximate pattern matching problem with respect to k-abelian
equivalence.

After fixing our notation, we show in Section 2 that the identification of all
factors of a text T which are k-abelian equivalent to some pattern P can be done
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in linear time with respect to the length of the text and the pattern, just as in
the special cases of identity and abelian equivalence (Theorem 2). Moreover, we
also show that identifying the largest k for which two given words are k-abelian
equivalent takes time linear in the length of the words (Theorem 3). In Section 3
we investigate the pattern matching problem for k-abelian equivalences in the
setting of online algorithms, and propose a series of real-time solutions of this
problem (Theorem 4). Section 4 studies the same problem for an extended form
of k-abelian equivalence. Finally, in Section 5 we give experimental results and
discuss the problem of building index structures for k-abelian pattern matching.

Preliminaries. An alphabet, i.e., Σ, is a finite set of symbols. Let σ = |Σ| denote
its cardinality and take Σ = {1, . . . , σ}; at times we will use the letter 0 /∈ Σ.
By ε we denote the empty symbol. A word w is a finite sequence of letters from
Σ. We denote by |w| its length and by |w|u the number of occurrences of u in w.

The set of all words over Σ is denoted by Σ∗, while the set of all words of
length n is denoted by Σn for any positive integer n. The catenation of two words
u and v is the word uv obtained by adding to the right of u the letters of v. For
a factorization w = uxv, we say that x is a factor of w. Whenever u is empty, x
is a prefix of w, i.e., x ≤p w, and when v is empty, x is a suffix of w. For w of
length n, and the numbers i ≤ j ∈ {1, . . . , n}, we denote by w[i] the ith symbol
of w and by w[i..j] the factor w[i] · · ·w[j]; clearly, w = w[1..n] = w[1] · · ·w[n].

Considering the lexicographical order on Σ∗, for words u and v, we say that
u is lexicographically smaller than v, i.e., u ≤lex v, if either u is a prefix of v or
there exist a, b ∈ Σ such that a < b, wa ≤p u, and wb ≤p v for some word w.

Let w be a word over Σ. The Parikh vector of the word w is an array πw[·]
with σ components, where πw[a] = |w|a for all a ∈ Σ.

Words u and v are abelian equivalent if |u|a = |v|a for all letters a ∈ Σ. That
is, two words are abelian equivalent over Σ iff they have the same Parikh vector.

We say that u and v are k-abelian equivalent, i.e., u ≡k v, if either u = v or
|u|, |v| ≥ k, |u|t = |v|t for every t ∈ Σk, u[1..k − 1] = v[1..k − 1] and u[n− k +
2..n] = v[n−k+2..n]. According to [6], the suffix-equality requirement can be in
fact dropped. An equivalent definition is that u ≡k v if |u|t = |v|t for every word
t of length at most k. A k-abelian nth power is a word u1 . . . un, where u1, . . . , un

are pairwise k-abelian equivalent. Obviously, 1-abelian equivalence is the same
as abelian equivalence, while equality is equivalent to ∞-abelian equivalence.

Recall that a multi-set represents a set together with the multiplicity of each
of the elements (i.e., both elements and multiplicities are present). We say that
two words are extended-k-abelian equivalent if their multi-sets of factors of length
k coincide (the condition of having the same prefixes is dropped).

In this paper, we solve a series of algorithmic problems related to k-abelian
equivalence. The algorithms we propose use the RAM with logarithmic word
size model. We also assume that whenever we are given as input of our problems
a word w of length n, the alphabet of w is in fact included in {1, . . . , n} (i.e.,
σ = |Σ| ≤ n). This is a common assumption in algorithmics on words and
can be in fact replaced with a more general assumption, namely that Σ can be
sorted in linear time by radix sort (see, e.g., the discussion in [8]). Clearly, for all
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results proved for integer alphabets our reasoning holds canonically for constant
alphabets (i.e., with σ ∈ O(1)), as well. Finally, note that most pattern matching
problems that we deal with require searching for a word P inside another word
T ; generally, P is called pattern and T is called text.

The following result is well known.

Theorem 1. For a pattern P ∈ Σm and a text T ∈ Σn, we can identify all
factors of T that are abelian equivalent to P in O(n + m).

Remark 1. The above result can be adapted to identify all the length |P | factors
P ′ of T that contain the same letters as P (not necessarily with same multiplicity
as in P , so not abelian equivalent), and

∑
a∈Σ |πP [a]− πP ′ [a]| ≤ Δ, for some Δ.

We conclude the preliminaries section with a series of data structures.
For a string u of length n, over an alphabet Σ ⊆ {1, . . . , n}, we define a suffix-

array data structure that contains two arrays Suf u, which is a permutation of
{1, . . . , n}, and lcpu, with n elements from {0, . . . , n−1}. Called the suffix array
of u, Suf u is defined such that Suf u[i] = j iff u[j..n] is the ith suffix of u, in the
lexicographical order. The following lemma is straightforward.

Lemma 1. Let w ∈ Σn. If for 1 ≤ i < j ≤ n and u ∈ Σ∗ we have u ≤p

w[Suf w[i]..n] and u ≤p w[Suf w[j]..n], then u ≤p w[Suf w[�]..n] for any i ≤ � ≤ j.

The array lcpu is defined by lcpu[1] = 1 and lcpu[r] is the length of the
longest common prefix of the suffixes found on positions r and r− 1 in the suffix
array, i.e., u[Suf u[r− 1]..n] and u[Suf u[r]..n]. Both arrays Suf u and lcpu can be
constructed in O(n) time (see [8], and the references therein). Moreover, lcpu

can be processed in O(n) time to produce a more general data structure that
enables us to return in constant time the answer to longest common prefix (or,
for short, LCP-) queries “LCP(i, j): What is the length of the longest common
prefix of u[i..n] and u[j..n]?”.

2 Offline k-Abelian Pattern Matching

The first step of our algorithms is to define the k-encoding of a word. For w ∈ Σn,
we define the word #(w, k) of length n− k + 1 as follows:

– let S = {w[i + 1..i + k] | 0 ≤ i ≤ n− k} be the set of length k factors of w;
– sort S lexicographically and associate with each factor w[i+1..i+k] its rank

(position) in the sorted set, i.e., rank(i + 1) for 0 ≤ i ≤ n− k;
– let #(w, k)[i] = rank(i) for 1 ≤ i ≤ n− k + 1.

Clearly, #(w, k) is defined over an alphabet included in {1, . . . , n−k+1}. More-
over, w is uniquely defined by the set S and the word #(w, k).

It is important to note that #(w, k) can be computed in linear time.

Lemma 2. Let w ∈ Σn with σ ≤ n. We can compute #(w, k) in O(n) time.
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Proof. We determine the ranks rank(i) of the factors w[i + 1..i + k] in the set
S = {w[i + 1..i + k] | 0 ≤ i ≤ n − k} by identifying in the suffix array of w
the contiguous groups of suffixes that share a common prefix of length k, and
then assigning to each of these groups (from left to right) consecutive numbers,
starting with 1; the suffixes of length less than k are not taken into account. ��

The following lemma, although straightforward, is essential to our algorithms.

Lemma 3. Let w1, w2 ∈ Σn. If w1 ≡k w2 for some integer k, then w1[1..k−1] =
w2[1..k − 1], w1[n− k + 2..n] = w2[n− k + 2..n], and #(w1, k) ≡1 #(w2, k).

Proof. The equality #(w1, k) ≡1 #(w2, k) follows from the fact that w1 and w2

have the same factors of length k, with the same multiplicities. ��
If we take w1 = 1236 and w2 = 1456, both over the alphabet {1, . . . , 6}, for
k = 1 we have w1[1..k − 1] = w2[1..k − 1] = ε and #(w1, 1) = 1234 = #(w2, 1),
but w1 is not abelian equivalent to w2. Hence, the converse implication of the
lemma does not necessarily hold. In order for the converse to hold as well, we
need to check that the two words have the same set of factors of length k.

We can test in linear time the k-abelian equivalence of two words:

Lemma 4. Let w1, w2 ∈ Σn and k be an integer with 1 ≤ k ≤ n. We can decide
whether w1 ≡k w2 in O(n) time.

Proof. We construct w = w10w2, and compute Suf w. Next, we compute #(w, k)
of length 2n− k + 2, and set w′

1 = #(w, k)[1..n − k + 1] and w′
2 = #(w, k)[n +

2..2n−k+2](the two encodings are done using the ranking of w, and disconsider
all letters of #(w, k) that contain a 0). Hence, w′

1 and w′
2 contain the same letters

if w1 and w2 have the same multi-set of factors of length k. Note that w′
1 and w′

2

are computed in linear time, as they only require the computation of #(w, k).
Finally, we remark that w1 ≡k w2 iff w1[1..k − 1] = w2[1..k − 1] and w′

1 ≡1 w′
2.

This last equality can be tested in linear time, by Theorem 1. ��
Lemma 4 together with its proof suggests a simple way to transform and solve

in linear time the k-abelian pattern matching problem following the classical
abelian pattern matching problem, solved in Theorem 1.

Problem 1. Given a text T and some pattern P , over an alphabet Σ, find all
factors of T that are k-abelian equivalent to P .

Theorem 2. Given a text T ∈ Σn and some pattern P ∈ Σm, we can find all
factors of T that are k-abelian equivalent to P in time O(n + m).

Proof. As in the proof of Lemma 4, we construct the word w = T 0P , and the
encoding #(w, k) = w′. Let T ′ = w′[1..n − k + 1] and P ′ = w′[n + 2..n + m −
k + 2]. Also, build LCP -data structures for T 0P . Now, for any i > 0, a factor
T [i..i+m− 1] is k-abelian equivalent to P iff T [i..i+ k− 2] = P [1..k− 1] (tested
in O(1) time using LCP -queries), and T ′[i..i + m− 1] ≡1 P ′.

Therefore, it is enough to find in linear time all the positions i of T ′ where
factors that are abelian equivalent to P ′ occur, and then check, for each of them,
whether T [i..i+ k− 2] = P [1..k− 1]. All the positions fulfilling these conditions
correspond to positions in T where a factor k-abelian equivalent to P occurs. ��
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Remark 2. Since Problem 1 is reducible to the classical abelian pattern matching
problem, by Remark 1, our algorithm can be adapted to produce in linear time
all the factors P ′ of length |P | of T that contain the same factors of length k
as P (not necessarily in the same numbers, so P ′ is not necessarily k-abelian
equivalent to P ) such that

∑
t∈Σk | |P ′|t − |P |t |≤ Δ, for some Δ.

Using the same reduction, we can extend a result from [9]:

Corollary 1. For a word w ∈ Σn and a positive integer k, we can identify all
factors of w that are k-abelian powers in Θ((n − k + 1)2) time.

The results shown so far help us answer a related, bit more difficult problem.

Problem 2. For words u, v ∈ Σn, find the largest integer k such that u ≡k v.

The immediate approach to solve this problem is to look through all possible
k for the largest value such that u ≡k v. With the search for k implemented as a
binary search, this approach takes O(n log n) time, using the solution described
in Lemma 4. However, this problem can also be solved in linear time.

Theorem 3. Given two words u, v ∈ Σn, we can find the greatest positive inte-
ger k such that u ≡k v in linear time O(n).

Proof. As before, we construct w = u0v, the Suf w and LCPw data structures.
Due to Lemma 1, if there exists a positive integer k such that u ≡k v, then

the suffixes of both u and v that share a common prefix of length at least k are
grouped together in Suf w. Also, if k is maximum such that u ≡k v, then the
suffixes of length at most k−1 of u and v coincide, and if we truncate the suffixes
of u and v to length k, then we should obtain the same multi-set for each word.

Following this remark, we split the suffix array of w into two separate new
arrays: one contains suffixes that correspond to u and the other one the suffixes
corresponding to v.Using the two arrays, we compute in linear time the maximum
�1, resp. �2, such that the suffixes of length �1− 1, resp. prefixes of length �2− 1,
of u and v coincide. We take � = min{�1, �2}.

Further, going simultaneously through the sorted suffixes of u and v we com-
pute the longest common prefix of the ith suffix of u (in lexicographic order)
and of the ith suffix of v. Let �′ be the minimum value for which there exists i
such that the ith suffix of u shares a common prefix of length exactly �′ with the
ith suffix of v (the suffixes are again counted in lexicographical order), but both
suffixes have length at least �′ + 1. The value k we were looking for is min{�′, �}.

Therefore, to solve Problem 2, we first compute in linear time the values �
and �′, and then return the value k we were looking for as min{�, �′}. The whole
algorithm takes O(n) time, clearly, and produces the desired output. ��

3 Real-Time k-Abelian Pattern Matching

So far we discussed static problems, i.e., in Problem 1 both P and T are given
at the beginning and we process them both in order to solve the problem. Now
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consider a different type of problem: we are given P ∈ Σm and k, while T is read
letter by letter (i.e., in an online manner). We want to preprocess P so we can
tell, after each new letter, whether the prefix of T read so far ends with a factor
k-abelian equivalent to P . We assume that Σ = {1, . . . , σ} with σ ∈ O(m).

Problem 3. Preprocess a pattern P and an integer k such that when given a text
T , in letter by letter manner, to answer at each moment, efficiently, whether the
prefix of T read so far ends with a factor k-abelian equivalent to P .

In general, an algorithm for such a problem is called online algorithm. For sim-
plicity, when discussing this type of problem, we call the time needed to tell
whether the prefix of T ends with a factor k-equivalent to P query time, while
the time needed to preprocess P is called preprocessing time. If a solution has
constant query time, then its algorithm is called real-time.

First, note that for k = 1, the result of Theorem 1 holds for the real-time
version of Problem 3, as well.

The solution for k > 1 is based on the k-encoding strategy used already in
the previous sections. We consider the sets of letters {1, . . . , �1} of #(P, k − 1)
and {1, . . . , �2} of #(P, k), where �1 ≤ �2 ≤ m−k+2. Recall that i ∈ {1, . . . , �1}
(resp., i ∈ {1, . . . , �2}) is the rank of a factor of length k − 1 (resp., k) of P , in
the lexicographically ordered set of all factors of length k− 1 (resp., k) of P . Let
f1[i] (resp., f2[i]) be the length k − 1 (resp., k) factor of P , whose position in
the lexicographically ordered set of factors of length k − 1 (resp., k) of P is i.

Further, we compute the list of triples L = {(i, a, j) | 1 ≤ i ≤ �1, 1 ≤ j ≤
�2, a ∈ Σ, and f1[i]a = f2[j]}. The suffixes of P that share the same prefix of
length k − 1 form a contiguous subarray of the suffix array of P , according to
Lemma 1. Moreover, each of these groups can be split into several subgroups,
that come one after the other in the suffix array, based on the letter following the
common prefix. Accordingly, these subgroups correspond to the groups of suffixes
that share a common prefix of length k, ordered lexicographically. Computing
the subgroups corresponding to a group of suffixes takes linear time, in the size
of the group, thus O(m), altogether. Therefore, we can compute all elements of
L in linear time, as well, and collect them in a linked list, for instance.

Alternatively, one can see L as the set of the (explicit or implicit) edges that
connect (explicit or implicit) nodes of depth k− 1 to (explicit or implicit) nodes
of depth k in the suffix tree constructed for P .

Now, we discuss several ways of implementing L so we can efficiently test
whether there is a triple (i, a, ·) in L, and, if so, quickly find its third component.

One way is to implement a m×σ table M [·][·], where M [i][a] = j iff (i, a, j) ∈
L. In this case, both operations mentioned above take constant time, while con-
structing this data structure takes O(mσ) time and space; however, the table M
is sparse, so such an implementation of L is not practical.

As each component of the triples of L is a number between 1 and m, and L
has at most m elements, we can also use perfect hashing to construct a hash
table with satellite information and a dictionary search data structure, useful
to do the above mentioned operations in O(1) time. The construction of these
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data structures can be done in O(m log logm) time deterministically (see [10,
Theorem 1]) or in O(m) expected time, while the table itself takes O(m) space.
Using these structures the two operations mentioned above take O(1) time.

Finally, allowing more than O(1) time for the operations on L, another imple-
mentation can be used. For each i we define a data structure in which the pairs
(a, j), with (i, a, j) ∈ L, are stored. Assume that these pairs (a, j) are ordered
by their first component, i.e., a. Now, each of the operations on L can be seen as
a predecessor search among the pairs stored in the data structure associated to
i, where the key on which the sorting/searching is done is the first component
of the stored pairs. There are at most σ such components, so we can construct
a van Emde Boas tree containing these pairs [11]. Since the time needed to con-
struct such a tree is ti (the number of triples having i on the first position) for
each i, the time needed to construct the trees for all i’s is O(m), and they can be
stored in O(m) space. Further, doing predecessor search in each structure takes
O(log log σ) time per query.

Once L constructed, we compute in O(m) time, using Suf P and L, the values
suf [j] upper bounded by �1, such that suf [j] = i iff f2[j] = af1[i] for some
a ∈ Σ.

As a first step for the real-time k-abelian pattern matching problem, using a
real-time pattern matching algorithm, e.g., [12], each time we read a new letter
of T we report whether P [1..k − 1] is a suffix of the prefix of T read so far.

Assume now that before reading the newest symbol of T , denoted a, the
longest suffix of the text we already read, was P ′. Furthermore, assume that
|P ′| ≤ |P | and its factors of length k are all factors of P . Then, #(P ′, k) =
j1 . . . jm′−kjm′−k+1 for some m′ ≤ m. Let i = suf [jm′−k+1], and check whether
a triple (i, a, ·) is in L.

If so, we return its third component, say j. The suffix of T becomes P ′′, with
#(P ′′, k) = j1 . . . jm′−kjm′−k+1j, if m′ < m, or #(P ′′, k) = j2 . . . jm′−kjm′−k+1j,
otherwise. Using real-time abelian pattern matching we check whether #(P ′′, k)
is abelian equivalent to #(P, k). If yes, we can decide in constant time whether
the prefixes of length k− 1 of P and P ′′ coincide, and, hence whether P ′′ ≡k P .

When no (i, a, ·) is in L, we restart the procedure above when we find a new
occurrence of P [1..k−1], by reading the next letter and taking i = #(P, k−1)[1].

Therefore, the time we spend for each read letter is upper bounded by the
time needed to find a triple in L. In conclusion, we obtain the following result.

Theorem 4. Given a pattern P ∈ Σm for |Σ| = σ, and a positive integer k,
the online k-abelian pattern matching problem can be solved in:

– O(mσ) preprocessing time, O(mσ) space, and O(1) query time.
– O(m log logm) preprocessing time, O(m) space, and O(1) query time.
– O(m) expected preprocessing time, O(m) space, and O(1) query time.
– O(m) preprocessing time, O(m) space, and O(log log σ) query time.

4 Online Extended-k-Abelian Pattern Matching

In this section, we consider the following more general problem.
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Problem 4. Preprocess a pattern P and an integer k such that given a text T ,
in letter by letter manner, to answer at each moment, efficiently, whether the
prefix of T read so far ends with a factor extended-k-abelian equivalent to P .

Although the idea used to solve Problem 3 cannot be directly applied in this
setting, the strategy stays the same: for every letter of the text T we read we
check if the suffix of length P can be encoded using the letters of #(P, k), and
use a real-time abelian pattern matching algorithm to tell whether this suffix is
extended-k-abelian equivalent to P . For this we maintain and update for each
new letter read, a succinct representation of the longest factor of P , with length
at most k, that is a suffix of the prefix of T read so far.

In addition to the previously mentioned data structures, we now also construct
in O(m) time the suffix tree of P together with the suffix links (see, e.g., [13]).
We say that a node of the suffix tree of P corresponds to the factor P [i..j] iff
the path from the root to that node is labelled with P [i..j]. For the succinct
representation of the longest factor of P with length at most k, that is a suffix of
the prefix of T read so far, we use the (explicit or implicit) node of the suffix-tree
of P that corresponds to this factor, together with its length; when that node is
implicit, we store the lowest explicit ancestor of this node.

For simplicity, we store the edges of the suffix tree of P using perfect hashing;
we can check in O(1) time whether a node is the source of an edge labelled
with a certain letter, and simultaneously get the respective target node (when
it exists). Also, the longest factor of P with length at most k, that is a suffix of
the prefix of T read so far is called the P -suffix of that prefix of T , or the current
P -suffix.

Online Algorithm. We first remark that if P [i..i+ �−1] is the P -suffix of T [1..j],
then the P -suffix of T [1..j+1] has length at most �+1. Therefore, when updating
the representation of the current P -suffix, we just have to find the longest suffix
of the previous P -suffix that can be extended by the letter T [j + 1].

We show first how to compute the P -suffix of T [1..j + 1] when the succinct
representation defined above of the P -suffix of T [1..j], namely X = P [i..i+�−1],
is known. If � = k we use the approach in the previous section. If � < k and
a = T [j+1], we first try to extend X with a, and see whether the new string Xa
is a factor of P (an edge whose label starts with a leaves the node corresponding
to X in the suffix tree of P ). If yes, then Xa becomes the current P -suffix and we
update the succinct representation of the factor of P according to the node where
the aforementioned edge leads. If not, then we try extending the factor X [2..�]
with a. To compute its corresponding node in the suffix tree, we take the lowest
explicit ancestor N1 of the node N corresponding to X , and follow its suffix
link. This takes us to an explicit node N2 that corresponds to a prefix of X [2..�],
which is not necessarily the lowest explicit ancestor of the node corresponding
to that factor. Thus, we use the letters that labelled the path from N1 to N (i.e.,
the remaining suffix of X [2..�]) to advance in the suffix tree from N2, until we
reach the node N3 corresponding to X [2..�]; we also compute in the same time
the lowest explicit ancestor of N3. Then we check again if this node is the source
of an edge whose label begins with a. If yes, then we found the current P -suffix;
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this is P [i+ 1..i+ �− 1]a, and we, therefore, also have its representation. If not,
we repeat the procedure for the factor X [3..�], now a suffix of X [2..�], and so on.

It is simpler to compute the total time spent executing all the above algorithm,
than upper bound each of the steps. Notice that each symbol of T is used only
once to go through an edge of the tree. Thus, in total, we make at most O(n)
steps for this action and only constant time for each of the other steps, which are
executed at most O(n) times. Therefore, the overall complexity of maintaining
the succinct representation of the longest suffix of T that is a factor of P with
length at most k, is O(n). Using this, together with the approach of the previous
section (for � = k), we get that Problem 4 can be solved in time O(n) and space
O(m), to which the time and space needed to preprocess the pattern P should
be added (either O(m log logm) in a deterministic implementation of the perfect
hashing, or O(m) expected). The space needed remains O(m).

Other implementations of the set of edges of the suffix tree lead, as previously
discussed, to other time complexities: with preprocessing time and space O(mσ)
(resp. O(m)) the algorithm runs in O(n) (resp. O(n log log σ)) time.

Real-Time Algorithm. For a real-time algorithm, the idea is to report only the
factors of T that are extended-k-abelian equivalent to P , thus not update the
information after each new read letter, but have it ready whenever a length k
factor of P is found. For this we also need the following data structures from [14]:

Lemma 5. We can preprocess a word P ∈ Σm in O(m log k) time and linear
space O(m) such that, for each i and j with j− i ≤ k, we can return in constant
time the (explicit or implicit) node of the suffix tree of P corresponding to P [i..j].

Using this we skip the search of the tree for nodes corresponding to the suffixes of
the current P -suffix. However, for a constant upper bound on the time needed to
perform the update of the representation of the P -suffix that we try to maintain,
we still have to deal with the unknown number of suffixes of the current P -suffix
of T [1..j], to determine the P -suffix of T [1..j + 1], when a new letter is read.

First, we maintain a queue of the letters read from T . In each step enqueue
the new letter, and perform two more checks: 1) check whether the factor of P
whose representation is stored can be extended by the first element in the queue;
if yes, 2) update the P -suffix and its representation accordingly, delete the first
letter from the queue, and repeat the previous check with the current P -suffix
and its representation (also performing the eventual update of the P -suffix and
of the queue); if no, 2′) using the O(1) query in Lemma 5, get the node for the
longest proper suffix of the factor of P whose representation we had, and check
whether the first letter of the queue extends it.

Since when the current P -suffix has length � and it cannot be extended the
number of suffixes of factors of P we have to check until reaching again a P -suffix
of length � equals the number of letters read between these two moments, we use
the lazy update algorithm described above to update the succinct representation
of the current P -suffix, and output that we did not find a factor of T that is
extended-k-abelian equivalent to P as long as its length is not k; when we reach
a length k factor, the queue is empty and the succinct representation is that of
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the current P -suffix of the read prefix. Then we proceed just as in the case of the
algorithm for Theorem 4, until the length decreases, and repeat the procedure.

Again, the previous discussion on the implementation of the suffix tree applies.
Thus, for a real-time algorithm, the preprocessing uses O(m) space and the time
needed is O(m(log k + log logm)) deterministically, or O(m log k) expected.

5 Further Remarks

Experiments. We tested the algorithm for Theorem 2 on the E.coli and Vibrio
cholera genomes with text sizes 4, 638, 690 and 1, 109, 333, respectively, for Σ =
{A, C, G, T}. Having in mind the DNA sequencing process, one may see our pattern
matching problem in the following way: given a template sequence P , we want to
find out whether the long sequence T contains other sequences that may produce
the same reads (of length k). For exemplification purposes, the pattern P was
chosen so that m = 100 and P = T [i..i+m−1] for random i ∈ {1, . . . , n−m+1}.
The values of k were chosen as multiples of 3, considering the normal length of a
codon, with the assumption that removing an entire amino acid does not change
the structure of a protein as much as the removal of one of the nucleotides from
the translating RNA. We looked, as suggested in Remark 2, for factors P ′ of
T such that the sum, over all factors of length k, of the absolute values of the
differences between the number of occurrences of a factor in P ′ and those of the
same factor in P is upper bounded by some Δ. For each values of k and Δ, we
ran 100 tests. As P is a factor of T , each test finds at least one match. Fig. 1
reports the average number of matches except for this one occurrence.

Δ E.coli Vibrio cholera
k=3 k=6 k=9 k=3 k=6 k=9

0 0.04 0.04 0.04 0.01 0 0
2 0.04 0.04 0.04 0.01 0 0
4 0.04 0.04 0.04 0.02 0 0
8 0.06 0.04 0.04 0.03 0 0
16 0.1 0.05 0.04 0.11 0 0
32 0.16 0.05 0.05 0.27 0 0
64 353.2 0.05 0.05 98.26 0 0
128 18576.09 0.04 0.05 4742.9 0.02 0
256 18715.59 7.32 0.05 4747.54 1.45 0

Fig. 1. Experiments with 100 runs each

k E.coli Vibrio cholera σk + k
1 5 5 5
2 18 18 18
3 67 67 67
4 260 260 260
5 1,011 1,029 1,029
6 4,102 4,102 4,102
7 16,390 16,389 16,391
8 65,371 65,106 65,544
9 256,559 234,324 262,153

Fig. 2. Alphabet size for #(w, k)

For k ≥ 6 the number of matches is quite low. Interestingly, the number of
matches for Δ = 256 is not too far from the expected number of matches, if these
tests were run on random data. In that case, as m ≥ 2k− 2 and Δ is sufficiently
large, the problem is degraded to finding exact matches on two factors of length
k − 1 each. Hence, the probability for a match is upper bounded by σ−2k+2.

Additionally, we tested the extended version of k-abelian matching (Fig. 3).
Here, we ignored the requirement of equal prefixes and suffixes of length k − 1.

Please note that for Δ = 256 there is a match on every factor of T . Again,
we found only few matches for small values of Δ. A reason for this may be the
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Δ E.coli Vibrio cholera
k=3 k=6 k=9 k=3 k=6 k=9

0 0.07 0.04 0.04 0.02 0 0
2 2.34 2.12 2.12 2.19 2 2
4 4.74 4.2 4.2 4.41 4 4
8 9.38 8.36 8.36 9.09 8.01 8
16 20.44 16.76 16.68 19.38 16.05 16
32 48.06 33.74 33.47 46.05 32.21 32.01
64 78747.81 68.12 67.19 22283 64.98 64.02
128 4594162.28 139.14 135.21 1106909.91 139.68 131.16
256 4638591 4638591 4638591 1108151 1108151 1108151

Fig. 3. Disregarding matches on prefixes and suffixes, 100 runs each

increased number of different length k factors which appear, in close numbers, in
the chosen texts. In Fig. 2 we give the number of different ranks that appeared
in #(w, k), together with an upper bound σk + k. This bound is due to the
fact that there are at most σk factors of length k, and additionally k factors
containing 0. The number of occurrences are quite close to the upper bound.

A motivation for the very rare occurrences of some pattern in an arbitrary
text comes also from an analytical analysis of the probability of a match in the
latter setting; given the dependencies among the letters of #(T, k), the problem
can be seen in terms of a Markov source of order k − 1. Another, more loose
view of the problem, would be in the form of the string matching over reduced
set of patterns problem, when the set of independent length k factors occurring
at positions kj + 1 in the pattern, for j ≥ 0, is the one that we look for within a
factor of length |P | in the text. However, this second model is not tight as it does
not consider the fact that each factor of length k is influenced by the preceding
k − 1 factors of length k. For more details, we recommend [15, Sect. 7.2–7.3].

Index Structures. A problem worth considering in this context, and that was
recently considered in the context of abelian pattern matching [16, 17], is that of
building index structures for k-abelian pattern matching. Basically, now we are
given a positive integer k and a text T , and we want to preprocess the text such
that we can answer quickly queries in which we are given a pattern P and have
to report whether T has a factor that is k-abelian to P . Recall our assumption
that the alphabet of T and of the query-patterns is integer.

Generally, we can approach the problem as follows. Following the solution of
the online pattern matching problem, we consider the sets of letters {1, . . . , �1}
of #(T, k − 1) and {1, . . . , �2} of #(T, k), where �1 ≤ �2 + 1 ≤ n − k + 2. Let
f1[i] (resp., f2[i]) be the factor of length k− 1 (resp., k) of T , whose rank in the
lexicographically ordered set of all factors of length k− 1 (resp., k) of T is i. We
construct Suf T and the list L = {(i, a, j) | 1 ≤ i ≤ �1, 1 ≤ j ≤ �2, a ∈ Σ, and
f1[i]a = f2[j]}, and implement L such that we can test efficiently whether there
is a triple (i, a, ·) in L, and, if so, to find efficiently its third component.

Assume we use perfect hashing to store the edges of the suffix tree of T and
the list L. Then, given a pattern P ∈ Σm, we find in time O(k) an occurrence
of P [1..k − 1] in T (if none exists, then no factor of T is k-abelian equivalent
to P ). Next, reading P [k..m] letter by letter, and checking the list L, we can
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produce #(P, k) in O(m−k) time. Hence the problem is reduced to producing an
index of #(T, k), useful to check efficiently whether a factor abelian equivalent to
#(P, k) occurs in #(T, k). Clearly, the classical abelian matching approach can
be slightly adapted so we can check whether the length k−1 prefix of P matches
the length k−1 prefix of the factor identified in T . Again, the preprocessing time
depends on the implementation of the suffix tree of T and the list L (see the
previous discussions); the query time is obtained by adding up the time needed
to locate P [1..k − 1] in T , then to compute #(P, k), and, finally, to answer the
abelian pattern matching query for the text #(T, k) and pattern #(P, k). Such
an abelian pattern matching query is answered in O(n−k+ 1) time, for #(T, k)
and #(P, k) over an integer alphabet. Note that even with Σ constant, #(T, k)
and #(P, k) are words over large alphabets (the letters of the encodings are words
in Σk, which is not of constant size when k is not a constant). Unfortunately, not
much is known about building indexes for abelian pattern matching on integer
alphabets. However, we hope that since the letters of #(T, k) or #(P, k) do not
occur in an arbitrary order (the alphabet is not a random integer alphabet), we
could solve the indexing problem faster than the naive approach.
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Abstract. A word is called a palindrome if it is equal to its reversal.
In the paper we consider a k-abelian modification of this notion. Two
words are called k-abelian equivalent if they contain the same number
of occurrences of each factor of length at most k. We say that a word
is a k-abelian palindrome if it is k-abelian equivalent to its reversal. A
question we deal with is the following: how many distinct palindromes
can a word contain? It is well known that a word of length n can contain
at most n+ 1 distinct palindromes as its factors; such words are called
rich. On the other hand, there exist infinite words containing only finitely
many distinct palindromes as their factors; such words are called poor.
It is easy to see that there are no abelian poor words, and there exist
words containing Θ(n2) distinct abelian palindromes. We analyze these
notions with respect to k-abelian equivalence. We show that in the k-
abelian case there exist poor words containing finitely many distinct k-
abelian palindromic factors, and there exist rich words containing Θ(n2)
distinct k-abelian palindromes as their factors. Therefore, for poor words
the situation resembles normal words, while for rich words it is similar
to the abelian case.

1 Introduction

The palindromicity of words is a widely studied area in formal languages. When
a model of a computation is introduced, among the first questions is to ask
whether the set of palindromes (or its infinite subset) can be recognized by the
model. In other words, can the model identify whether it is irrelevant if words
are read from left to right or from right to left? It is folklore that deterministic
finite automata cannot do that. On the other hand it is among the simplest
tasks for push-down automata, or on-line log-space Turing machines. A slightly
different approach is to look at palindromic factors of words. They can be viewed
as measuring how much the word is locally independent of the reading direction
of a factor. The notion of palindromic complexity was formalized for infinite
words in [6], and has been studied extensively ever since.

A problem related to our question of counting palindromes in a word is the
problem of counting maximal repetitions in a word of length n, that is, runs in a
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word. It was shown in [18] that the maximal number of runs in a word is linear
in n. Subsequently, there was much research performed to find the bound [8],
which led to a conjecture that the bound should be n. Very close lower and upper
bounds have been proved; however, the conjecture still remains open. Not only
runs, but also various other questions concerning counting squares in a word
have been considered, see, e.g., [13,14,19].

We recall that a word is a palindrome, if it is equal to its reversal. It is well
known that the maximal number of palindromes a word of length n can contain
is equal to n + 1, and such words are called rich in palindromes [10]. In some
papers the same class of words was called full words (see, e.g., [2,6]). Lately,
there is an extensive number of papers devoted to the study of rich words and
their generalizations (see, e.g., [7,12]). This notion can be extended to infinite
words: an infinite word is rich if each of its factors is rich. For example, Sturmian
words are known to be rich. Note also that Sturmian words can be characterized
via palindromic closures [9].

Recently the notion of palindromic poorness has been considered in [5,11].
Namely, an infinite word is called poor in palindromes if it contains only finitely
many distinct palindromes. In particular, it has been shown that there exist
poor words with the set of factors closed under reversal. Besides that, in [11] the
authors found the minimal number of palindromes an infinite word satisfying
different conditions (uniform recurrence, closed under reversal, etc.) can contain.
In a related paper [23] words avoiding reversed subwords were studied.

In this paper the k-abelian version of the notion of a palindrome is studied.
Two words are called abelian equivalent if they contain the same number of
occurrences of each letter, or, equivalently, if they are permutations of each other.
In the recent years there is a growing interest in abelian properties of words, as
well as modifications of the notion of abelian equivalence [1,4,17,21,23]. One
such modification is the notion of k-abelian equivalence: two words are called k-
abelian equivalent if they contain the same number of occurrences of each factor
of length at most k. For k = 1, the notion of k-abelian equivalence coincides
with the notion of abelian equivalence, and when k is greater than half of the
length of the words, k-abelian equivalence means equality. Therefore, the notion
of k-abelian equivalence is an intermediate notion between abelian equivalence
and equality of words. For more on k-abelian equivalence we refer to [15,16].

In analogy with normal palindromes, we say that a word v is a k-abelian
palindrome if its reversal is k-abelian equivalent to v. For example, the word
aabaaabbaa is a 3-abelian palindrome. We are interested in the maximal and
minimal numbers of k-abelian palindromes a word can contain.

For k = 1, clearly, each word is an abelian palindrome, since it is abelian
equivalent to its reversal. Therefore, there are no infinite 1-abelian poor words.
But for k > 1 this no longer holds. We build infinite k-abelian poor words for k >
1 and sufficiently large alphabets. In fact, we provide a complete characterization
of pairs (k,Σ) for which k-abelian poor words over the alphabet Σ exist.

Since a word of length n contains Θ(n2) factors in total, a k-abelian rich word
cannot contain more than Θ(n2) abelian palindromes. However, it can indeed
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contain Θ(n2) inequivalent abelian palindromes. We show that this extends to
k-abelian palindromes when k is small compared to n.

The maximal and minimal numbers of inequivalent palindromes in the case of
the equality, the k-abelian equality and the abelian equality are summarized in
Table 1 (here C is a constant). We remark that in the minimal case, that is for
poor words, infinite words are considered, while in the maximal case, that is in
rich words, only finite words are considered. The message of the table is that in
the big picture k-abelian equivalence behaves like equality for poor words, while
it behaves like abelian equivalence for rich words.

Table 1. Maximal and minimal numbers of palindromes in the case of equality, abelian
and k-abelian equivalence

equality k-abelian abelian

poor C C ∞
rich n+ 1 Θ(n2) Θ(n2)

2 Definitions and Notation

Given a finite non-empty set Σ (called the alphabet), we let Σ∗ and Σω, respec-
tively, denote the set of finite words and the set of (right) infinite words over
the alphabet Σ. We will always assume |Σ| ≥ 2. A word v is a factor (resp., a
prefix, resp., a suffix ) of a word w, if there exist words x, y such that w = xvy
(resp., w = vy, resp., w = xv). The set of factors of a finite or infinite word w is
denoted by F (w). The prefix and suffix of length k of w are denoted by prefk(w)
and suffk(w), respectively. Given a finite word u = u1u2 . . . un with n ≥ 1 and
ui ∈ Σ, we let |u| = n denote the length of u. The empty word is denoted by
ε and we set |ε| = 0. An infinite word is called recurrent if each of its factors
occurs infinitely often in it. An infinite word w is called uniformly recurrent if for
each v ∈ F (w) there exists N such that v ∈ F (wi · · ·wi+N ) for every i. In other
words, in a uniformly recurrent word each factor occurs with bounded gaps.

For each v ∈ Σ∗, we let |u|v denote the number of occurrences of the factor v
in u. Two words u and v in Σ∗ are said to be abelian equivalent, denoted u ∼ab v,
if and only if |u|a = |v|a for all a ∈ Σ. For example, the words aba and aab are
abelian equivalent. Clearly, abelian equivalence is an equivalence relation on Σ∗.

Let k be a positive integer. Two words u and v are k-abelian equivalent,
denoted by u ∼k v, if |u|t = |v|t for every word t of length at most k. This is
equivalent to the following conditions:

– |u|t = |v|t for every word t of length k,
– prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v) (or u = v, if |u| < k− 1

or |v| < k − 1).
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For instance, aabab ∼2 abaab, but aabab �2 aaabb. It is easy to see that k-
abelian equivalence implies k′-abelian equivalence for every k′ < k. In particular,
it implies abelian equivalence, that is, 1-abelian equivalence.

For a finite word v = v1 · · · vn we let vR = vn · · · v1 denote its reversal. A
word v is a palindrome if v = vR. A word is a k-abelian palindrome (or briefly
k-palindrome) if v ∼k vR. The empty word ε is considered as a palindrome and
k-palindrome.

An infinite word is k-abelian palindromic poor (briefly k-poor) if there exists
a constant C such that the word contains at most C inequivalent (in the sense of
k-abelian equivalence) k-abelian palindromes. Clearly, it makes sense to consider
only words having the set of factors closed under reversal, otherwise the example
can be built in the obvious way, e.g., one can take (abc)ω containing only 4 k-
palindromes.

A word of length n is called k-abelian palindromic rich (briefly k-rich), if it
contains at least n2/4k inequivalent k-abelian palindromes. Notice that the total

number of factors contained in a word of length n is equal to 1 + n(n+1)
2 . There-

fore, for a fixed k a k-abelian rich word contains the number of k-palindromes
of the same order as the total number of factors when k is small relatively to n.

We emphasize that for poor words we consider infinite words, and for rich
words we consider finite ones, and this is caused by the nature of the prob-
lem. Indeed, for poor words, since there exist infinite words containing only
finitely many palindromes, all their factors have a uniformly bounded number
of palindromes. On the other hand, the closed under reversal condition is not
applicable to finite poor words, since it would imply a growing number of palin-
dromes. Concerning rich words, an infinite word could easily contain infinitely
many palindromes, so we are interested in maximal number of palindromes in
finite ones. However, we propose an open problem concerning a modification of
k-palindromic richness for infinite words (see Problem 3 in Section 5). In the
next two sections we consider k-abelian poor and rich words, respectively.

3 k-Abelian Poor Words

In this section we show that there exist k-abelian palindromic poor words. This
holds for almost all values of k and |Σ|, and we characterize those.

Theorem 3.1. Let S = {(1, l)|l ∈ N} ∪ {(2, 2), (2, 3), (4, 2), (3, 2)}.
I. For (k, |Σ|) /∈ S there exist k-abelian palindromic poor words over Σ having a
set of factors that is closed under reversal.
II. For (k, |Σ|) ∈ S there are no k-abelian palindromic poor words over Σ having
a set of factors that is closed under reversal.

The results can be summarized in Table 2. Here + means that there exist
k-abelian poor words having a set of factors that is closed under reversal over
an alphabet Σ, and − indicates that there are no such words. In what follows,
we will write (k, l)-poor words for k-abelian poor words over an alphabet of
cardinality l for brevity.
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Table 2. The classification of (k, |Σ|) for the existence of k-poor words

k\|Σ| 2 3 4 . . .

1 − − − −
2 − − +

3 − + +

4 − + + . . .

5 + + +

. . . . . . +

Proof. First we prove Part I of the theorem by providing constructions of poor
words, and then prove the non-existence for Part II of the theorem.

I. We remark that the existence of a (k, l)-poor word implies the existence of a
(k′, l′)-poor word for each k′ ≥ k and l′ ≥ l. Indeed, for l′ > l to build a (k, l′)-
poor word from a (k, l)-poor word one could split any letter into several letters
in any way (i.e., for a chosen letter a, some of occurrences of a are substituted
by one of the l′ − l new letters). The word remains k-poor, and closed under
reversal condition can be preserved. For k′ > k, the statement follows from the
fact that every k′-abelian palindrome is also a k-abelian palindrome for any
k ≤ k′. Therefore, it is enough to build (5, 2)-, (3, 3)- and (2, 4)-poor words. We
will provide the construction and a proof for the (2, 4) case. The other cases are
similar, so we just outline the constructions.

We construct an infinite recurrent (2, 4)-poor word as follows:

U0 = abca abda acda,

Un = Un−1(abca)2
2n

(abda)2
2n

(acda)2
2n

UR
n−1.

(1)

The required word is obtained as the limit u = limn→∞ Un:

u = abca abda acda(abca)4(abda)4(acda)4adca adba acba(abca)16(abda)16 . . .

The set of factors of this word is closed under reversal since for each prefix the
word contains its reversal as a factor by the construction.

To prove that it contains only finitely many 2-abelian palindromes, we will
show that each factor of length greater than 12 contains either a unequal number
of occurrences of factors bc and cb, or a unequal number of occurrences of factors
bd and db, or a unequal number of occurrences of factors cd and dc.

A factor of the form (abca)t(abda)t(acda)t or (adca)t(adba)t(acba)t for t = 22
i

or t = 1 is called a block. In fact, the word u is a concatenation of blocks. A
subblock is a factor of the form (axya)t for t = 22

i

or t = 1 and for (x, y) ∈
{(b, c), (c, b), (b, d), (d, b), (c, d), (d, c)}. Notice that each factor xy appears only in
the corresponding subblock, and its reversal yx appears only only in the reversal
of the corresponding subblock. Therefore, we have three pairs of subblocks, where
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a pair consists of a block and its reversal. We will say that subblocks (axya)2
2i

and (ayxa)2
2i

are of type (x, y).
Basically, the idea of the construction is based on the fact that we have three

types of subblocks, each of them containing a specific factor, such that this factor
and its reversal are contained only in subblocks of this type. Each long enough
factor will contain a unequal number of occurrences of one of these specific
factors and its reversals. Notice that it is important to have three pairs of such
factors; two is not enough to guarantee absence of long k-abelian palindromes.

Take a factor v of length |v| ≥ 13. The following cases are possible. The first
case is the principal case when v intersects subblocks of all the three types. The
second case is a special case when v intersects at most two different blocks.

Case 1: v intersects subblocks of all the three types. In this case the ends of v
can cut at most two subblocks, and hence v contains only full subblocks of at
least one type. We let (x, y) denote this type (or one of the types, if there are
several of those). The sequence of numbers of occurrences of xy and its reversal
yx in full subblocks of v is given by

z = 1, 4,−1, 16, 1,−4,−1, 256, 1, 4,−1,−16, 1,−4,−1 . . .

Here positive numbers indicate occurrences of xy, and negative numbers mean
the occurrences of yx. In fact, this sequence corresponds to the sequence of
exponents of the corresponding block. For a subsequence v = z(i), . . . , z(j) of z
we let −v denote the sequence obtained by changing the sign of all numbers in
it: −v = −z(i), . . . ,−z(j). More formally, z is defined recursively as the infinite
sequence starting with Zn for all n:

Z0 = 1,

Zn = Zn−1, 2
2n , (−Zn−1)R.

(2)

If a factor v of u containing only full subblocks of type (x, y) is a palindrome,
then the sum of consecutive elements corresponding to the subsequence v in the
sequence z is equal to 0. We will prove the following auxiliary claim:

Claim. The sum of consecutive elements in the sequence z is never equal to 0.

Consider any subsequence of consecutive elements z(i), . . . , z(i + k) of z, and
take the element z(j) in it with the largest absolute value, i ≤ j ≤ i+k. We will
prove that

|z(j)| >
l=i+k∑
l=i

|z(l)| − |z(j)|.

In other words, |z(j)| is greater than the sum of absolute values of all other
elements of the subsequence, and hence the sum of all elements in z(i), . . . , z(i+k)
cannot be 0.

Let |z(j)| = 22
m

for some integer m. Clearly, either z(i), . . . , z(i + k) or
(−z(i), . . . ,−z(i + k))R is a factor of the prefix Zm of z, including the middle
element 22

m

of Zm. It is enough to prove that
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22
m

> 2
∑

z(l)∈Zm−1

|z(l)|. (3)

By the construction,∑
z(l)∈Zi

|z(l)| = 22
i

+ 2
∑

z(l)∈Zi−1

|z(l)|. (4)

We prove (3) by induction. Straightforward computation shows that it holds
for m = 1 and 2. Assume it holds for m = i. Then, using the induction hypoth-
esis, we obtain

22
i+1

= 22
i · 22i > 22

i · 2
∑

z(l)∈Zi−1

|z(l)| = 22
i ·

∑
z(l)∈Zi−1

|z(l)|+ 22
i ·

∑
z(l)∈Zi−1

|z(l)|.

For i ≥ 2 one has
∑

z(l)∈Zi−1
|z(l)| ≥ 2, and 22

i ≥ 4. Applying these two inequal-
ities to the first and the second summands, correspondingly, and then applying
(4), we get

22
i ·

∑
z(l)∈Zi−1

|z(l)|+22
i ·

∑
z(l)∈Zi−1

|z(l)| ≥ 22
i ·2+4·

∑
z(l)∈Zi−1

|z(l)| = 2
∑

z(l)∈Zi

|z(l)|.

Combining the above inequalities, we obtain

22
i+1

> 2
∑

z(l)∈Zi

|z(l)|,

i.e., we get that (3) holds for m = i + 1, and hence we have the induction step.
The claim is proved.

Therefore, the factor v contains different numbers of occurrences of xy and
yx, and hence is not a 2-palindrome.

Case 2: The factor v intersects subblocks of at most two types.

Case 2.1: The factor v is contained entirely in a block, i.e., we have v ∈
F ((abca)2

2i

(abda)2
2i

(acda)2
2i

) or v ∈ F ((adca)2
2i

(adba)2
2i

(acba)2
2i

). In this
case since |v| ≥ 13, the word contains at least one of the factors xy for
(x, y) ∈ {(b, c), (c, b), (b, d), (d, b), (c, d), (d, c)} and does not contain its reversal,
so v is not a 2-palindrome.

Case 2.2: The factor v intersects two blocks and subblocks of at most two types.
By construction, every other block in u is of exponent 1; therefore, one of the two

blocks is of exponent 1. So, in this case v is a factor of (axya)2
2m

(ax′y′a) (or that

of its reversal) or a factor of (ax′y′a)2
2m

(axya)2
2m

(ayxa)(ay′x′a), m ≥ 1, x �= x′,
y �= y′ (or that of its reversal). In the first case since |v| ≥ 13, the word contains at
least one occurrence of the factor xy and does not contains its reversal, so v is not
a 2-palindrome. In the second case the same argument works if v contains at least
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two copies of xy. Otherwise v is a factor of yaaxyaayxaay′x′a. Straightforward
checking shows that this word does not contain 2-abelian palindromes of length
greater or equal to 13.

So, the case (k, |Σ|) = (2, 4) is proved.

The proofs in the cases (k, |Σ|) = (3, 3) and (5, 2) are similar, so we only
provide the constructions.

An infinite recurrent (3, 3)-poor word can be constructed as follows:

V0 = bbacc aabcc bbcaa,

Vn = Vn−1(bbacc)2
2n

(aabcc)2
2n

(bbcaa)2
2n

V R
n−1.

The word is given by the limit v = limn→∞ Vn:

v = bbacc aabcc bbcaa(bbacc)4(aabcc)4(bbcaa)4aacbb ccbaa ccabb(bbacc)16 . . .

The proof is based on the fact that each sufficiently long factor contains either
unequal numbers of occurrences of factors bac and cab, or unequal numbers of
occurrences of factors abc and cba, or unequal numbers of occurrences of factors
bca and acb, and hence is not a 3-palindrome. In other words, two letter factors
of the case (2, 4) are now replaced by suitable three-letter factors over ternary
alphabet.

An infinite recurrent (5, 2)-poor word can be constructed as follows:

W0 = bbbabaaabbb bbbabbaabbb bbbabaabbbb,

Wn = Wn−1(bbbabaaabbb)2
2n

(bbbabbaabbb)2
2n

(bbbabaabbbb)2
2n

WR
n−1.

The word is given by the limit w = limn→∞ Wn. The proof is based on the fact
that each sufficiently long factor contains either unequal numbers of occurrences
of factors abaaa and aaaba, or unequal numbers of occurrences of factors abbaa
and aabba, or unequal numbers of occurrences of factors abaab and baaba, and
hence is not a 5-palindrome. Now the specific factors of two previous cases are
five-letter binary words.

II. For the proof we split the set S of pairs into two parts with different types
of proofs.

Case 1: (k, |Σ|) ∈ {(1, l)|l ∈ N} ∪ {(2, 2), (3, 2)}. For k = 1 (i.e., the abelian
equivalence) each word is an abelian palindrome, since every word is abelian
equivalent to its reversal. Therefore, all factors of any infinite word are abelian
palindromes, and hence there are no abelian palindromic poor words.

In the 2-abelian case, each word starting and ending in the same letter is a
2-abelian palindrome. Indeed, without loss of generality let a word v start and
end with a, and let it contains m blocks of b’s. Then v contains m occurrences of
the factor ab and m occurrences of the factor ba. Factors aa and bb do not affect
2-abelian palindromicity; hence v is a 2-palindrome. Since any infinite binary
word contains infinitely many factors starting and ending with the same letter,
there are no 2-abelian poor binary infinite words.
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In the 3-abelian binary case the proof is similar, just a bit more technical. We
omit the details of the proof.

Case 2: (k, |Σ|) ∈ {(2, 3), (4, 2)}. We provide a detailed sketch of the proof for
the (2, 3) case. The idea of the proof in the case (4, 2) is similar, although it
requires more thorough analysis.

First we introduce rewriting rules which do not affect the 2-palindromicity:

(1) for x ∈ Σ, substitute xx→ x
(2) for x, y ∈ Σ, substitute xyx→ x

Claim (i). Let v be ternary word, and let v′ be obtained from v by applying
a rewriting rule (1) or (2). Then v is a 2-palindrome if and only if v′ is a 2-
palindrome.

Indeed, after applying the rewriting rule (1), the multiset (the set with mul-
tiplicities) of factors of length 2 of v′ is obtained from the multiset of factors of
length 2 of v by removing one factor xx. Clearly, the resulting set coincides with
its reversal if and only if the original set does. After applying the rewriting rule
(2), the multiset of factors of length 2 of v′ is obtained from the multiset of fac-
tors of length 2 of v by removing two factors xy and yx. Again, the resulting set
coincides with its reversal if and only if the original set does. The claim follows.

Now take a ternary word v and apply rewriting rules until the word does not
contain factors of the form xx and xyx. We call the resulting word the reduced
form of v. We note that the reduced form of v is unique.

The following claim is straightforward:

Claim (ii). 1. The reduced form of any ternary word v is a factor of (abc)∞ or
(cba)∞. 2. A ternary word v is a 2-palindrome if and only if its reduced form is
a letter.

Now assume that an infinite ternary word w with its set of factors closed under
reversal does not contain 2-palindromes of length greater than N for some inte-
ger N . Take a factor v = wi · · ·wi+N of length N +1. Since the set of factors of w
is closed under reversal, there exists an occurrence of vR = wj · · ·wj+N . Without
loss of generality we can assume that j > i + N and that the reduced form of
v is a word u of the form (abc)m(pref(abc)) for some m ≥ 0. Then the reduced
form of vR equals uR. Now consider the factor wi+N+1 · · ·wj−1; again with-
out loss of generality its reduced form is of the form (suff(cba))(cba)r(pref(cba))
for some r ≥ 0. Consider the factor wi+N+1 · · ·wj+N+1, which was rewritten
to (suff(cba))(cba)r(pref(cba))(suff(cba))(cba)m. So, there exists s, i + N + 1 ≤
s ≤ j + N + 1, such that the reduced form of wi+N+1 · · ·ws is equal to
uR = (suff(cba))(cba)m. It is straightforward that wi · · ·ws is reduced to a, and
hence is a 2-palindrome. The length of this 2-palindrome is greater than N , a
contradiction. ��

Remark 1. Notice that the examples of k-abelian poor words we build are
recurrent, but not uniformly recurrent.

Remark 2. In the construction (1) in fact the powers can be made smaller
(although growing), it is convenient for us to use 22n in the proofs.
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Remark 3. Our constructions are modifications of the so-called sesquipowers,
see, e.g., [20, Chapter 4].

4 k-Abelian Rich Words

In this section we show that there exist words of length n which have the num-
ber of inequivalent k-abelian palindromic factors of the same order as the total
number of their factors Θ(n2). In this sense these words contain “many” k-
palindromes and hence are considered as rich.

Theorem 4.1. Let k be a natural number. There exists a positive constant C
such that for each n ≥ k there exists a word of length n containing at least Cn2

k-abelian palindromes. Actually, we can choose C = 1/4k.

Proof. The word is defined by

v = al(bak−1)m,

where l and m are chosen to give maximal number of k-palindromes among words
of this type. We let �r� denote the closest integer to r, we can take m = �n−k+1

2k �.
Let us count the number of inequivalent k-palindromes in the word v = v1 · · · vn,
n = km + l. The k-palindromes are the following:

– Starting from position 1, we get the following k-palindromes
• ε (empty word)
• v1, v1v2, . . . , v1 · · · vl (l k-palindromes consisting of only a’s)
• v1 . . . vl+k, v1 . . . vl+2k, . . . , v1 . . . vl+mk (m k-palindromes starting with

ak−1, of length l + ik and containing i letters b, i = 1, . . . ,m)
– Starting from each position j, j = 2, . . . , l − k + 1, we get the following

new k-palindromes: vj . . . vl+k, vj . . . vl+2k, . . . vj . . . vl+mk (m k-palindromes
starting with ak−1, of length l−j+ik and containing i letters b, i = 1, . . . ,m)

– Starting from each position j, j = l − k + 2, . . . , l + 1, we get the following
new k-palindromes: vj . . . v2l−j+2, vj . . . v2l−j+2+k, . . . , vj . . . v2l−j+2+(m−1)k

(m k-palindromes starting with al+1−j , of length 2l− 2j + 3 + (i− 1)k and
containing i letters b, i = 1, . . . ,m)

It is not hard to see that all the above k-palindromes are distinct up to k-
abelian equivalence; in fact, they are abelian inequivalent. So, in total we have
(l + 1)(m + 1) = (n − mk + 1)(m + 1) distinct k-palindromes. Considering
this as a function of m, we get that this function takes a maximal value when
m = n−k+1

2k . Since all numbers are integer there, the actual maximal number of
k-palindromes given by this construction is given by taking the closest integer
value, i.e., m = �n−k+1

2k � (since the function is quadratic in m). Taking these
values and taking into account the condition n ≥ k, we derive that the number
of k-palindromes is (l + 1)(m + 1) ≥ n2/4k. ��

We remark that in the Θ(n2) number of k-palindromic factors the constant
actually depends on k, so it makes sense when k is small relatively to n.
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5 Conclusions and Open Problems

We have considered the numbers of k-abelian palindromes in finite and infinite
words. These numbers are always between a constant and a quadratic bound,
corresponding to so-called poor and rich words. In the case of poor words to
avoid trivialities we always assumed that the words are closed under reversal.
Our main result was a construction of infinite words containing only finitely
many k-abelian palindromes. This construction could be modified for different
pairs (k, l), where k was a constant in k-abelian equivalence and l was the size
of the alphabet. For the remaining pairs to show that such an infinite poor word
does not exist, we used a different approach, based on rewriting rules preserving
k-abelian palindromicity. We also gave an example showing the existence of
rich finite words, that is words containing the maximal number of k-abelian
palindromes up to a constant multiplicative factor. The bound we found is n2/4k,
that is of order Cn2, where C is a constant independent of n.

A few natural open problems remain. We built recurrent, but not uniformly
recurrent k-abelian poor words. The problem is the following:

Problem 1. Does there exist an infinite uniformly recurrent word having the
set of factors that is closed under reversal and containing only finitely many
k-abelian palindromes?

The second problem asks for optimal constants for rich and poor words.

Problem 2. What is the exact minimal number of k-abelian palindromes an
infinite word having a set of factors closed under reversal can contain? What is
the exact maximal number of distinct k-abelian palindromes a word of length n
can contain?

Some bounds for the constants can be found in this paper, although we did
not try to find the best constants.

In the case of equality and classical palindromes the notion of a rich word
can be extended to infinite word. The question is whether this is possible for
k-abelian palindromes:

Problem 3. Does there exist an infinite k-abelian rich word? More precisely,
does there exist an infinite word w, such that for some constant C each of its
factors of length n contains at least Cn2 distinct k-abelian palindromes?
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16. Karhumäki, J., Saarela, A., Zamboni, L.Q.: On a generalization of Abelian equiva-
lence and complexity of infinite words. J. Comb. Theory, Ser. A 120(8), 2189–2206
(2013)

17. Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)

18. Kolpakov, R., Kucherov, G.: Finding Maximal Repetitions in a Word in Linear
Time. In: FOCS 1999, pp. 596–604 (1999)

19. Kucherov, G., Ochem, P., Rao, M.: How Many Square Occurrences Must a Binary
Sequence Contain? Electr. J. Comb. 10 (2003)

20. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press,
Cambridge (2002)

21. Puzynina, S., Zamboni, L.Q.: Abelian returns in Sturmian words. J. Comb. Theory,
Ser. A 120(2), 390–408 (2013)

22. Richomme, G., Saari, K., Zamboni, L.Q.: Abelian Complexity of Minimal Subshifts.
J. London Math. Soc. 83, 79–95 (2011)

23. Rigo, M., Salimov, P.: Another Generalization of Abelian Equivalence: Binomial
Complexity of Infinite Words. In: Karhumäki, J., Lepistö, A., Zamboni, L. (eds.)
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Abstract. In this paper we investigate local-to-global phenomena for
a new family of complexity functions of infinite words indexed by k ∈
N1∪{+∞} where N1 denotes the set of positive integers. Two finite words
u and v in A∗ are said to be k-abelian equivalent if for all x ∈ A∗ of length
less than or equal to k, the number of occurrences of x in u is equal to
the number of occurrences of x in v. This defines a family of equivalence
relations ∼k on A∗, bridging the gap between the usual notion of abelian
equivalence (when k = 1) and equality (when k = +∞). Given an infinite

word w ∈ Aω, we consider the associated complexity function P(k)
w :

N1 → N1 which counts the number of k-abelian equivalence classes of
factors of w of length n. As a whole, these complexity functions have a
number of common features: Each gives a characterization of periodicity
in the context of bi-infinite words, and each can be used to characterize
Sturmian words in the framework of aperiodic one-sided infinite words.
Nevertheless, they also exhibit a number of striking differences, the study
of which is one of the main topics of our paper.

1 Introduction

A fundamental problem in both mathematics and computer science is to describe
local constraints which imply global regularities. A splendid example of this
phenomena may be found in the framework of combinatorics on words. In their
seminal papers [17, 18], G. A. Hedlund and M. Morse proved that a bi-infinite
word w is periodic if and only if for some positive integer n, the word w contains
at most n distinct factors of length n. In other words, it describes the exact
borderline between periodicity and aperiodicity of words in terms of the factor
complexity function which counts the number of distinct factors of each length
n. An analogous result was established some thirty years later by E. Coven and
G. A. Hedlund in the framework of abelian equivalence. They show that a bi-
infinite word is periodic if and only if for some positive integer n all factors of
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w are abelian equivalent. Thus once again it is possible to distinguish between
periodic and aperiodic words on a local level by counting the number of abelian
equivalence classes of factors of length n.

In this paper we study the local-to-global behavior for a new family of com-

plexity functions P(k)
w of infinite words indexed by k ∈ N1 ∪ {+∞} where

N1 = {1, 2, 3, . . .} denotes the set of positive integers. Let k ∈ N1 ∪ {+∞} and
A be a finite non-empty set. Two finite words u, v ∈ A∗ are said to be k-abelian
equivalent if for all x ∈ A∗ of length at most k, the number of occurrences of x in
u is equal to the number of occurrences of x in v. This defines a family of equiv-
alence relations ∼k on A∗, bridging the gap between the usual notion of abelian
equivalence (when k = 1) and equality (when k = +∞). Abelian equivalence of
words has long been a subject of great interest (see, for instance, Erdős’s prob-
lem, [4–6, 8, 15, 20–23]). Although the notion of k-abelian equivalence is quite
new, there are already a number of papers on the topic [10–14, 16].

Given an infinite word w ∈ Aω, we consider the associated complexity func-

tion P(k)
w : N1 → N1 which counts the number of k-abelian equivalence classes of

factors of w of length n. Thus P(∞)
w corresponds to the usual factor complexity

(sometimes called subword complexity in the literature) while P(1)
w corresponds

to abelian complexity. As it turns out, each intermediate complexity function

P(k)
w can be used to detect periodicity of words. As a starting point of our re-

search, we list two classical results on factor and abelian complexity in connection
with periodicity, and their k-abelian counterparts proved by the authors in [14].
We note that in each case, the first two items are included in the third.

Theorem 1. Let w be a bi-infinite word over a finite alphabet. Then the follow-
ing properties hold:

– (M. Morse, G. A. Hedlund, [17]) The word w is periodic if and only if

P(∞)
w (n) < n + 1 for some n ≥ 1.

– (E. M. Coven, G. A. Hedlund, [5]) The word w is periodic if and only if

P(1)
w (n) < 2 for some n ≥ 1.

– The word w is periodic if and only if P(k)
w (n) < min{n + 1, 2k} for some

k ∈ N1 ∪ {+∞} and n ≥ 1.

Also, each complexity provides a characterization for an important class of binary
words, the so-called Sturmian words:

Theorem 2. Let w be an aperiodic one-sided infinite word. Then the following
properties hold:

– (M. Morse, G. A. Hedlund, [18]). The word w is Sturmian if and only if

P(∞)
w (n) = n + 1 for all n ≥ 1.

– (E. M. Coven, G. A. Hedlund, [5]). The word w is Sturmian if and only if

P(1)
w (n) = 2 for all n ≥ 1.

– The word w is Sturmian if and only if P(k)
w (n) = min{n + 1, 2k} for all

k ∈ N1 ∪ {+∞} and n ≥ 1.
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However, in other respects, these various complexities exhibit radically dif-
ferent behaviors. For instance, in the context of one-sided infinite words, the
first item in Theorem 1 gives rise to a characterization of ultimately peri-
odic words, while for the other two, the result holds in only one direction: If

P(k)
w (n) < min{n + 1, 2k} for some k ∈ N1 and n ≥ 1 then w is ultimately

periodic, but not conversely (see [14]). For instance in the simplest case when
k = 1, it is easy to see that if w is the ultimately periodic word 01ω, then for
each positive integer n there are precisely two abelian classes of factors of w of
length n. However, the same is true of the (aperiodic) infinite Fibonacci word
w = 0100101001001 · · · defined as the fixed point of the morphism 0 �→ 01,
1 �→ 0. Analogously, in Theorem 2 the first item holds without the added as-
sumption that w be aperiodic, while the other two items do not. Another striking
difference between them is in their rate of growth. Consider for instance the bi-
nary Champernowne word C = 011011100101110111 · · · obtained by concatenat-
ing the binary representation of the consecutive natural numbers. Let w denote
the morphic image of C under the Thue-Morse morphism 0 �→ 01, 1 �→ 10. Then

while P(∞)
w (n) has exponential growth, it can be shown that P(1)

w (n) ≤ 3 for all n.

Yet another fundamental disparity concerns the difference P(k)
w (n+1)−P(k)

w (n).

For factor complexity, one always has P(∞)
w (n + 1) − P(∞)

w (n) ≥ 0, while for
general k this inequality is far from being true.

A primary objective in this paper is to study the asymptotic lower and upper
complexities defined by

L(k)
w (n) = min

m≥n
P(k)
w (m) and U (k)

w (n) = max
m≤n

P(k)
w (m).

Surprisingly these quantities can deviate from one another quite drastically. In-
deed, one of our main results is to compute these values for the famous Thue-
Morse word. We show that the upper limit is logarithmic, while the lower limit
is just constant, in fact at most 8 in the case k = 2. This is quite unexpected
considering the Thue-Morse word is both pure morphic and abelian periodic (of
period 2). If we however allow more general words, then we obtain much stronger
evidence of the non-existence of gaps in low k-abelian complexity classes. We con-
struct uniformly recurrent infinite words having arbitrarily low upper limit and
just constant lower limit. The concept of k-abelian complexity also leads to many
interesting open questions. We conclude the paper in Section 6 by mentioning
some of these problems.

2 Preliminaries

Let Σ be a finite non-empty set called the alphabet. The set of all finite words
over Σ is denoted by Σ∗ and the set of all (right) infinite words is denoted by
Σω. The set of positive integers is denoted by N1. A function f : N1 → R is
increasing if f(m) ≤ f(n) for all m < n, and strictly increasing if f(m) < f(n)
for all m < n.
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Let w ∈ Σω. The word w is periodic if there is u ∈ Σ∗ such that w = uω, and
ultimately periodic if there are u, v ∈ Σ∗ such that w = vuω. If w is not ultimately
periodic, then it is aperiodic. Let u = a0 · · ·am−1 and a0, . . . , am−1 ∈ Σ. The
prefix of length n of u is prefn(u) = a0 · · ·an−1 and the suffix of length n of
u is suffn(u) = am−n · · · am−1. If 0 ≤ i ≤ m, then the notation rfactin(u) =
ai · · · ai+n−1 is used. The length of a word u is denoted by |u| and the number
of occurrences of another word x as a factor of u by |u|x. As a trivial boundary
case, |u|ε = |u|+ 1. Two words u, v ∈ Σ∗ are abelian equivalent if |u|a = |v|a for
all a ∈ Σ.

Let k ∈ N1. Two words u, v ∈ Σ∗ are k-abelian equivalent if |u|x = |v|x for
all words x of length at most k. k-abelian equivalence is denoted by ∼k. If the
length of u and v is at least k − 1, then u ∼k v if and only if |u|x = |v|x for all
words x of length k and prefk−1(u) = prefk−1(v) and suffk−1(u) = suffk−1(v).
This gives an alternative definition for k-abelian equivalence. A proof can be
found in [14].

Let w ∈ Σω. The set of factors of w of length n is denoted by Fw(n). The

factor complexity of w is the function P(∞)
w : N1 → N1 defined by

P(∞)
w (n) = #Fw(n),

where # is used to denote the cardinality of a set. Let k ∈ N1. The k-abelian

complexity of w is the function P(k)
w : N1 → N1 defined by

P(k)
w (n) = #(Fw(n)/ ∼k).

Factor complexity functions are always increasing, and even strictly increasing
for aperiodic words. For k-abelian complexity this is not true. This is why we

define upper k-abelian complexity U (k)
w and lower k-abelian complexity L(k)

w :

U (k)
w (n) = max

m≤n
P(k)
w (m) and L(k)

w (n) = min
m≥n

P(k)
w (m).

These two functions can be significantly different. For example, if w is the Thue-

Morse word and k ≥ 2, then U (k)
w (n) = Θ(log n) and L(k)

w (n) = Θ(1). This will
be proved in Section 4.

The abelian complexity of a binary word w ∈ {0, 1}ω can be determined by
using the formula (see [22])

P(1)
w (n) = max {|u|1 | u ∈ Fn(w)} −min {|u|1 | u ∈ Fn(w)} + 1. (1)

For k ∈ N1 ∪ {∞}, we define q(k) : N1 → N1, q
(k)(n) = min{n + 1, 2k}. The

significance of this function is that if w is Sturmian, then P(k)
w = q(k). This is

further discussed in Section 3.
There are large classes of words for which the k-abelian complexities are of

the same order for many values of k. This is shown in the next two lemmas.
Thus when analyzing the growth rate of the k-abelian complexity of a word, it
may be sufficient to analyze the abelian or 2-abelian complexity.
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Lemma 3. Let w ∈ {0, 1}ω be such that every factor of w of length k contains

at most one occurrence of 1. Then P(k)
w (n) = Θ(P(1)

w (n)).

Proof. Two factors of w are k-abelian equivalent if and only if they are abelian
equivalent and have the same prefixes and suffixes of length k − 1. ��

Lemma 4. Let k,m ≥ 2 and let w be a fixed point of an m-uniform morphism

h. Let i be such that mi ≥ k − 1. Then P(k)
w (mi(n + 1)) = O(P(2)

w (n)).

Proof. Every factor of w of length mi(n + 1) can be written as phi(u)q, where
u is a factor of w of length n and |pq| = mi. The k-abelian equivalence class of
phi(u)q is determined by p, q and the 2-abelian equivalence class of u. ��

In particular, Lemma 4 can be applied to the Thue-Morse word to analyze its
k-abelian complexity once the behavior of its 2-abelian complexity is known.

It has been shown that there are many words for which the k-abelian and
(k+1)-abelian complexities are similar, but there are also many words for which
they are very different. For example, there are words having bounded k-abelian
complexity but linear (k + 1)-abelian complexity. These words can even be as-
sumed to be k-abelian periodic, meaning that they are of the form u1u2 · · · ,
where u1, u2, . . . are k-abelian equivalent. This is shown in the next lemma.

Lemma 5. For every k ≥ 1 there is a k-abelian periodic word w such that

P(k+1)
w (n) = Θ(n).

Proof. Let w ∈ {0, 1}ω be a word with linear abelian complexity (e.g., the Cham-
pernowne word) and let h be the morphism defined by h(0) = 0k+110k−11,

h(1) = 0k10k1. Then the word h(w) is k-abelian periodic and P(k+1)
h(w) ((2k+2)n) =

Θ(P(1)
w (n)) = Θ(n). If m is the size of the alphabet, then P(k+1)

h(w) (n + 1) ≤
mP(k+1)

h(w) (n) for all n, so the claim follows. ��

3 Minimal k-Abelian Complexities

In this section classes of words with small k-abelian complexity are studied. Some
well-known results about factor complexity are compared to results on k-abelian
complexity proved in [14]. It should be expected that ultimately periodic words
have low complexity, and this is indeed true for k-abelian complexity, although
the k-abelian complexity of some ultimately periodic words is higher that the
k-abelian complexity of some aperiodic words. For many complexity measures,
Sturmian words have the lowest complexity among aperiodic words. This is also
true for k-abelian complexity.

We recall the famous theorem of Morse and Hedlund [17] characterizing ul-
timately periodic words in terms of factor complexity. This theorem can be

generalized for k-abelian complexity: If P(k)
w (n) < q(k)(n) for some n, then w is

ultimately periodic, and if w is ultimately periodic, then P(∞)
w (n) is bounded.

This was proved in [14].
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If k is finite, then this generalization does not give a characterization of ul-
timately periodic words, because the function q(k) is bounded. In fact, it is
impossible to characterize ultimately periodic words in terms of k-abelian com-
plexity. For example, the word 02k−11ω has the same k-abelian complexity as
every Sturmian word. On the other hand, for every ultimately periodic word w

there is a finite k such that P(k)
w (n) < q(k)(n) for all sufficiently large n.

The theorem of Morse and Hedlund has a couple of immediate consequences.

The words w with P(∞)
w (n) = n+ 1 for all n are, by definition, Sturmian words.

Thus the following classification is obtained:

– w is ultimately periodic ⇔ P(∞)
w is bounded.

– w is Sturmian ⇔ P(∞)
w (n) = n + 1 for all n.

– w is aperiodic and not Sturmian ⇔ P(∞)
w (n) ≥ n+1 for all n and P(∞)

w (n) >
n + 1 for some n.

This can be generalized for k-abelian complexity if the equivalences are replaced
with implications:

– w is ultimately periodic ⇒ P(k)
w is bounded.

– w is Sturmian ⇒ P(k)
w = q(k).

– w is aperiodic and not Sturmian⇒ P(k)
w (n) ≥ q(k)(n) for all n and P(k)

w (n) >
q(k)(n) for some n.

For k = 1 this follows from the theorem of Coven and Hedlund [5]. For k ≥ 2 it
follows from a theorem in [14].

The above result means that one similarity between factor complexity and
k-abelian complexity is that Sturmian words have the lowest complexity among
aperiodic words. Another similarity between them is that ultimately periodic
words have bounded complexity, and the largest values can be arbitrarily high:
For every n, there is a finite word u having every possible factor of length n.

Then P(k)
uω (n) is as high as it can be for any word, i.e., the number of k-abelian

equivalence classes of words of length n.
Another direct consequence of the theorem of Morse and Hedlund is that there

is a gap between constant complexity and the complexity of Sturmian words. For
k-abelian complexity there cannot be a gap between bounded complexities and
q(k), because the function q(k) itself is bounded. However, the question whether
there is a gap above bounded complexity is more difficult. The answer is that
there is no such gap, even if only uniformly recurrent words are considered. This
is proved in Section 5.

4 k-Abelian Complexity of the Thue-Morse Word

In this section the k-abelian complexity of the Thue-Morse word is analyzed.
Before that, the abelian complexity of a closely related word is determined.

Let σ be the morphism defined by σ(0) = 01, σ(1) = 00. Let S = 01000101 · · ·
be the period-doubling word, which is the fixed point of σ; see, e.g., [7].
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The abelian complexity of S is completely determined by the recurrence rela-

tions in the next lemma and by the first value P(1)
S (1) = 2. These relations were

proved independently in [3]. It is an easy consequence that the abelian com-
plexity of S is 2-regular (2-regular sequences were defined in [2]). The 2-abelian
complexity of the Thue-Morse word has been conjectured to be 2-regular [19],
and this is proved in [9].

Lemma 6. For n ≥ 1,

P(1)
S (2n) = P(1)

S (n) and P(1)
S (4n± 1) = P(1)

S (n) + 1.

Proof. Let pn = min {|u|1 | u ∈ Fn(S)} and qn = max {|u|1 | u ∈ Fn(S)} . Let
0 = 1 and 1 = 0. For a ∈ {0, 1}, σ(a) = 0a and σ2(a) = 010a. Because

F2n(S) = {σ(u) | u ∈ Fn(S)} ∪ {aσ(u)0 | au ∈ Fn(S)} ,
F4n−1(S) =

{
σ2(u)010 | u ∈ Fn−1(S)

}
∪
{

10aσ2(u) | au ∈ Fn(S)
}
∪{

0aσ2(u)0 | au ∈ Fn(S)
}
∪
{
aσ2(u)01 | au ∈ Fn(S)

}
,

F4n+1(S) =
{
σ2(u)0 | u ∈ Fn(S)

}
∪
{

10aσ2(u)01 | au ∈ Fn(S)
}
∪{

0aσ2(u)010 | au ∈ Fn(S)
}
∪
{
aσ2(u) | au ∈ Fn+1(S)

}
(here a always represents a letter), it can be seen that

p2n = n− qn, p4n−1 = pn + n− 1, p4n+1 = pn + n,

q2n = n− pn, q4n−1 = qn + n, q4n+1 = qn + n + 1.

The claim follows because P(1)
S (n) = qn − pn + 1 for all n. ��

Theorem 7. For n ≥ 1 and m ≥ 0,

P(1)
S (n) = O(log n), P(1)

S ((2 · 4m + 1)/3) = m + 2, P(1)
S (2m) = 2.

Proof. Follows from Lemma 6 by induction. ��

The abelian complexity of S has a logarithmic upper bound and a constant
lower bound. These bounds are the best possible increasing bounds.

Corollary 8. U (1)
S (n) = Θ(log n) and L(1)

S (n) = 2.

Let τ be the Thue-Morse morphism defined by τ(0) = 01, τ(1) = 10. Let
T = 0110100110010110 · · · be the Thue-Morse word, which is a fixed point of τ .

The first values of P(2)
T are 2, 4, 6, 8, 6, 8, 10, 8, 6, 8, 8, 10, 10, 10, 8, 8, 6, 8, 10, 10.

The 2-abelian equivalence of factors of T can be determined with the help of
the following lemma.

Lemma 9. Words u, v ∈ {0, 1}∗ are 2-abelian equivalent if and only if

|u| = |v|, |u|00 = |v|00, |u|11 = |v|11 and pref1(u) = pref1(v).
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Proof. The “only if” direction follows immediately from the alternative defini-
tion of 2-abelian equivalence. For the other direction, it follows from the assump-
tions that |u|01+ |u|10 = |v|01+ |v|10. In any word w ∈ {0, 1}∗, the numbers |w|01
and |w|10 can differ by at most one. If |w|01 + |w|10 is even, then |w|01 = |w|10. If
it is odd and pref1(w) = 0, then |w|01 = |w|10 + 1. If it is odd and pref1(w) = 1,
then |w|01 +1 = |w|10. This means that |u|01 = |v|01 and |u|10 = |v|10 and u and
v are 2-abelian equivalent. ��

The following lemma states that if u is a factor of T , then the numbers |u|00
and |u|11 can differ by at most one.

Lemma 10. In the image of any word under τ , between any two occurrences of
00 there is an occurrence of 11 and vice versa.

Proof. 00 can only occur in the middle of τ(10) and 11 can only occur in the
middle of τ(01). The claim follows because 10’s and 01’s alternate in all binary
words. ��

Let u be a factor of T . If |u| and |u|00 + |u|11 are given, then there are at
most 4 possibilities for the 2-abelian equivalence class of u. This is stated in a
different way in the next lemma. First we define a function φ as follows. If w =
a1 · · · an, then φ(w) = b1 · · · bn−1, where bi = 0 if aiai+1 ∈ {01, 10} and bi = 1
if aiai+1 ∈ {00, 11}. If w = a1a2 · · · is an infinite word, then φ(w) = b1b2 · · · is
defined in an analogous way.

Lemma 11. Let u1, . . . , un be factors of T . If φ(u1), . . . , φ(un) are abelian equiv-
alent, then u1, . . . , un are in at most 4 different 2-abelian equivalence classes.

Proof. The numbers |ui|00 + |ui|11 = |φ(ui)|1 are equal for all i; let this number
be m. By Lemma 10, {|ui|00, |ui|11} = {�m/2�, �m/2�}. There are at most four
different possible values for the triples (|ui|00, |ui|11, pref1(ui)). The claim follows
from Lemma 9. ��

Now it can be proved that the 2-abelian complexity of T is of the same order
as the abelian complexity of φ(T ). It is known that φ(T ) is actually the period-
doubling word S [1].

Lemma 12. For n ≥ 2, P(1)
S (n− 1) ≤ P(2)

T (n) ≤ 4P(1)
S (n− 1).

Proof. If the factors of T of length n are u1, . . . , um, then the factors of φ(T )
of length n− 1 are φ(u1), . . . , φ(um). If ui and uj are 2-abelian equivalent, then
φ(ui) and φ(uj) are abelian equivalent, so the first inequality follows. The second
inequality follows from Lemma 11 ��
Theorem 13. For n ≥ 1 and m ≥ 0,

P(2)
T (n) = O(log n), P(2)

T ((2 · 4m + 4)/3) = Θ(m), P(2)
T (2m + 1) ≤ 8.

Proof. Follows from Lemma 12 and Theorem 7. ��
With the help of Lemma 4, we see that the k-abelian complexity of T behaves

in a similar way as the abelian complexity of S.

Corollary 14. Let k ≥ 2. Then U (k)
T (n) = Θ(log n) and L(k)

T (n) = Θ(1).
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5 Arbitrarily Slowly Growing k-Abelian Complexities

In this section we study whether there is a gap above bounded k-abelian com-
plexity. This question can be formalized in two ways:

– Does there exist an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P(k)
w is bounded or P(k)

w = Ω(f)?
– Does there exist an increasing unbounded function f : N1 → N1 such that

for every infinite word w either P(k)
w is bounded or P(k)

w �= O(f)?

The first question has already been answered negatively in Section 4. The answer
to the second question is also negative, even if only uniformly recurrent words
are considered. A construction proving this is given below.

Let n1, n2, . . . be a sequence of integers greater than 1. Let mj =
∏j

i=1 ni

for j = 0, 1, 2, . . . . Let ai = 0 if the greatest j such that mj |i is even and
ai = 1 otherwise. Let U = a1a2a3 · · · . The word U could also be described by
a Toeplitz-type construction: Start with the word (0n1−1�)ω, then replace the
�’s by the letters of (1n2−1�)ω, then replace the remaining �’s by the letters of
(0n3−1�)ω, and keep repeating this procedure so that U is obtained as a limit.
It follows from the construction that U ∈ (prefmj−1(U){0, 1})ω for all j.

Lemma 15. The word U is uniformly recurrent.

Proof. For every factor u of U , there is a j such that u is a factor of prefmj−1(U).
Because U ∈ {prefmj−1(U)0, prefmj−1(U)1}ω, every factor of U of length mj +
|u| − 1 contains u. ��

Lemma 16. For every n ≥ 2, let n′ be such that mn′−1 < n ≤ mn′ . Then

P(1)
U (n) ≤ n′ + 1.

For all J ≥ 1, if n = 2
∑J

j=1(m2j −m2j−1), then

P(1)
U (n) ≥ (n′ + 1)/2.

For all j ≥ 1,

P(1)
U (mj) = 2.

Proof. Formula (1) will be used repeatedly in this proof. Another important
simple fact is that if a, b, c are integers and c divides a, then �(a + b)/c� =
a/c + �b/c� .

For all n ≥ 1,

|prefn(U)|1 =
∞∑
i=1

(−1)i+1

⌊
n

mi

⌋
,

and for all n ≥ 1 and l ≥ 0,

|rfactln(U)|1 = |prefn+l(U)|1 − |prefl(U)|1 =

∞∑
i=1

(−1)i+1

(⌊
n + l

mi

⌋
−
⌊

l

mi

⌋)
.
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For all i,

�(n + l)/mi� − �l/mi� ∈ {�n/mi� , �n/mi�} .

Moreover, for every n and l there is an i′ such that, for i ≥ n′,

⌊
n + l

mi

⌋
−
⌊

l

mi

⌋
=

{
1 if n′ ≤ i < i′

0 if i ≥ i′
,

so
∞∑

i=n′
(−1)i+1

(⌊
n + l

mi

⌋
−
⌊

l

mi

⌋)
∈
{

0, (−1)n
′+1
}
.

Thus there are at most n′+1 possible values for |rfactln(U)|1 and P(1)
U (n) ≤ n′+1.

Consider the second claim. Let n = 2
∑J

j=1(m2j−m2j−1). The sequence (mj)
is increasing and, moreover, mj+1 ≥ 2mj for all j, so by standard estimates for
alternating sums,

m2J ≤ 2(m2J −m2J−1) < n < 2m2J ≤ m2J+1.

Thus n′ = 2J + 1. Let l = m2J+1 − n/2. Then

|rfactln(U)|1 − |prefn(U)|1 =

∞∑
i=1

(−1)i+1

(⌊
n + l

mi

⌋
−
⌊

l

mi

⌋
−
⌊

n

mi

⌋)

and for i ≤ 2J (recall that mi|mj when j ≥ i)

�(n + l)/mi� − �l/mi� − �n/mi�

=
m2J+1 +

∑
(i+1)/2≤j≤J (m2j −m2j−1)

mi
+

⌊∑
1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
m2J+1 −

∑
(i+1)/2≤j≤J (m2j −m2j−1)

mi
−
⌊
−
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋

−
2
∑

(i+1)/2≤j≤J (m2j −m2j−1)

mi
−
⌊

2
∑

1≤j<(i+1)/2(m2j −m2j−1)

mi

⌋
= �s/mi� − �−s/mi� − �2s/mi� ,

where s =
∑

1≤j<(i+1)/2(m2j −m2j−1). If i is even, then mi/2 ≤ s < mi, and if

i is odd and i > 1, then mi−1/2 ≤ s < mi−1. Thus

⌊
s

mi

⌋
−
⌊
− s

mi

⌋
−
⌊

2s

mi

⌋
=

{
0 if i is even or i = 1

1 if i is odd and i > 1
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and

P(1)
U (n) ≥ |rfactln(U)|1 − |prefn(U)|1 + 1

=
J∑

i′=2

(−1)(2i
′−1)+1 +

∞∑
i=2J+1

(−1)i+1

(⌊
n + l

mi

⌋
−
⌊

l

mi

⌋
−
⌊

n

mi

⌋)
+ 1

= J + 1 =
n′ + 1

2
.

Consider the third claim. Because U ∈ {prefmj−1(U)0, prefmj−1(U)1}ω, ev-
ery factor of U of length mj is abelian equivalent to either prefmj−1(U)0 or

prefmj−1(U)1. Thus P(1)
U (mj) ≤ 2. Both prefmj−1(U)0 and prefmj−1(U)1 are

factors of U , so P(1)
U (mj) = 2. ��

If ni = 2 for all i, then the word U is the period-doubling word S. Thus
Lemma 16 gives an alternative proof for Corollary 8.

Theorem 17. For every increasing unbounded function f : N1 → N1 there is a

uniformly recurrent word w ∈ {0, 1}ω such that P(k)
w (n) = O(f(n)) but P(k)

w (n)
is not bounded.

Proof. Follows from Lemmas 3, 15 and 16. ��

6 Conclusion

In this paper we have investigated some generalizations of the results of Morse
and Hedlund and those of Coven and Hedlund for k-abelian complexity. We have
pointed out many similarities but also many differences. We have studied the k-
abelian complexity of the Thue-Morse word and proved that there are uniformly
recurrent words with arbitrarily slowly growing k-abelian complexities.

There are many open questions and possible directions for future work. One
open problem related to Lemma 5 is to determine the maximal (k + 1)-abelian
complexity of a k-abelian periodic word. Another interesting topic would be the
k-abelian complexities of morphic words. For example, for a morphic (or pure

morphic) word w, how slowly can U (k)
w (n) grow without being bounded? Can

it grow slower than logarithmically? More generally, can the possible k-abelian
complexities of some subclass of morphic words be classified?
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Abstract. The combinatorics of squares in a word depends on how
the equivalence of halves of the square is defined. We consider Abelian
squares, parameterized squares and order-preserving squares. The word
uv is an Abelian (parameterized, order-preserving) square if u and v are
equivalent in the Abelian (parameterized, order-preserving) sense. The
maximum number of ordinary squares is known to be asymptotically lin-
ear, but the exact bound is still investigated. We present several results
on the maximum number of distinct squares for nonstandard subword
equivalence relations. Let SQAbel(n, k) and SQ ′

Abel(n, k) denote the max-
imum number of Abelian squares in a word of length n over an alphabet
of size k, which are distinct as words and which are nonequivalent in the
Abelian sense, respectively. We prove that SQAbel(n, 2) = Θ(n2) and
SQ ′

Abel(n, 2) = Ω(n1.5/ log n). We also give linear bounds for parameter-
ized and order-preserving squares for small alphabets: SQparam(n, 2) =
Θ(n) and SQop(n,O(1)) = Θ(n). As a side result we construct infinite
words over the smallest alphabet which avoid nontrivial order-preserving
squares and nontrivial parameterized cubes (nontrivial parameterized
squares cannot be avoided in an infinite word).

1 Introduction

Repetitions in words are a fundamental topic in combinatorics on words [2].
They are widely used in many fields, such as pattern matching, automata the-
ory, formal language theory, data compression, molecular biology, etc. Squares,
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that is, words of the form uu, are one of the most commonly studied types of
repetitions. An example of an infinite square-free word over a ternary alphabet,
given by Thue [24], is considered to be the foundation of combinatorics on words.

If we allow other equivalence relations on words, several generalizations of the
notion of square can be obtained. One such generalization are Abelian squares,
that is, words of the form uv where the multisets of symbols of u and v are the
same. Abelian squares were first studied by Erdős [10], who posed a question on
the smallest alphabet size for which there exists an infinite Abelian-square-free
word. The first example of such a word over a finite alphabet was given by Ev-
dokimov [11], later the alphabet size was improved to five by Pleasants [23] and
finally an optimal example over four-letter alphabet was shown by Keränen [20].

In this paper we consider Abelian squares and introduce squares based on two
other known equivalence relations on words. The first is parameterized equiva-
lence [1], in which two words u, v of length n over alphabets Alph(u) and Alph(v)
are considered equal if one can find a bijection f : Alph(u) → Alph(v) such that
v[i] = f(u[i]) for all i = 1, . . . , n. The second model, order-preserving equivalence
[6], assumes that the alphabets are ordered. Two words u, v of the same length
are considered equivalent in this model if they are equal in the parameterized
sense with f being an strictly increasing bijection. We define a parameterized
square and an order-preserving square as a concatenation of two words that
are equivalent in the parameterized and in the order-preserving sense, respec-
tively. Another recently studied model, lying in between standard equality and
Abelian equivalence, is k-Abelian equivalence [17]. However, we do not consider
this model here. The nonstandard types of squares can be viewed as a part of
nonstandard stringology; see [21,22].

Example 1. Consider the alphabet Σ = {1, 2, 3, 4} with the natural order. Then
1213 1213 is a square, 1213 3112 is an Abelian square, 1213 4142 is a parameter-
ized square, and 1213 1314 is an order-preserving square over Σ.

An important combinatorial fact about ordinary squares is that the maximum
number of distinct squares in a word of length n is linear in terms of n. Actu-
ally this number is smaller than 2n−Θ(log n) [14,18,19]. This bound has found
applications in several text algorithms [5] including two different linear-time al-
gorithms computing all distinct squares [15,8]. A recent result shows that the
maximum number of distinct squares in a labeled tree is asymptotically Θ(n4/3)
[7]. Also some facts about counting distinct squares in partial words are known
[3,4]. In this paper we attempt the same type of combinatorial analysis for non-
standard squares. In turns out that the results that we obtain depend heavily
on which squares we consider distinct.

Let SQAbel(n, k), SQparam(n, k) and SQop(n, k) denote respectively the max-
imum number of Abelian, parameterized and order-preserving squares in a word
of length n over an alphabet of size k which are distinct as words. Moreover
let SQ ′

Abel(n, k), SQ ′
param(n, k) and SQ ′

op(n, k) denote the maximum number of
Abelian, parameterized and order-preserving squares in a word of length n over
an alphabet of size k which are nonequivalent in the Abelian, parameterized
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and order-preserving sense, respectively. We also use analogous notation, e.g.,
SQAbel(w), SQ ′

Abel(w), for any word w. Our main results are the following:

– SQAbel(n, 2) = Θ(n2), SQ ′
Abel(n, 2) = Ω(n1.5/ logn);

– SQop(n, k) = Θ(n) and therefore SQ ′
op(n, k) = Θ(n) for k = O(1);

– SQparam(n, 2) = Θ(n) and therefore SQ ′
param(n, 2) = Θ(n).

Example 2. Consider a Fibonacci word Fib5 = 0100101001001.1 It contains 5
Abelian squares of length 6: 010 010, 001 010, 010 100, 100 100, and 001 001,
which are all distinct as words but are Abelian-equivalent. In total Fib5 contains
13 distinct subwords which are Abelian squares. Hence, SQAbel(Fib5) = 13. On
the other hand, Fib5 contains only 5 Abelian-nonequivalent squares, with sam-
ple representatives: 0 0, 01 01, 001 010, 10010 10010, and 010010 100100. Hence,
SQ ′

Abel(Fib5) = 5. The value SQ ′ is usually much smaller than SQ , e.g., for Fib14

of length 987, SQ ′
Abel(Fib14) = 490 and SQAbel(Fib14) = 57796. In general one

can show that SQ ′
Abel(Fibk) = O(|Fibk|). Abelian repetitions in Fibonacci words

and Sturmian words were already studied in [13].

The second part of our paper can be viewed as an extension of the works of
Thue [24], Evdokimov [11], Pleasants [23] and Keränen [20] on infinite square-
free and Abelian-square-free words into the parameterized and order-preserving
equivalence. As no square-free word of length larger than 1 exists, we con-
sider words avoiding nontrivial nonstandard squares of length larger than 2.
We present an infinite word over the minimum-size (ternary) alphabet avoiding
nontrivial order-preserving squares. We also prove that there is no infinite word
avoiding nontrivial parameterized squares, but there is one avoiding nontrivial
parameterized cubes, that is, parameterized cubes of length greater than 3.

2 Bounds for Abelian Squares

For a word w = w[1] · · ·w[n] we denote |w| = n. A subword of w is a word of
the form w[i] · · ·w[j] for 1 ≤ i ≤ j ≤ |w|, which we denote by w[i..j]. A word is
said to be uniform if all its letters are equal. A block (also known as a run) in a
word is a maximal uniform subword.

In this section we restrict ourselves to the binary alphabet. First, we show a
simple example which yields SQAbel(n, 2) = Θ(n2). Afterwards we attempt an
analysis of SQ ′

Abel(n, 2). Our main result is a lower bound of Ω(n1.5/ logn). We
also obtain an upper bound O(nm) if the number of blocks is bounded by m.

A different proof of the following theorem was given independently by Fici [12].

Theorem 1. SQAbel(n, 2) = Θ(n2).

Proof. Consider the word uk = 0k10k102k of length 4k + 2. It contains Θ(k2)
Abelian squares of the form 0a10b 0k−b10a+2b−k for all 0 ≤ a, b ≤ k and a+2b ≥
k. Thus we obtain SQAbel(n, 2) = Θ(n2) for n = 4k+ 2. If n mod 4 �= 2, we pick
the longest word uk such that |uk| ≤ n and extend it with n−|uk| ≤ 3 zeros. ��
1 Fibonacci words are defined as: Fib0 = 0, Fib1 = 01, Fibk = Fibk−1Fibk−2 for
k ≥ 2.
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2.1 Lower Bound for SQ ′
Abel(n, 2)

For a word w and a letter c we denote the number of occurrences of c in w by
|w|c. The Parikh vector of a binary word w is P(w) = (|w|0, |w|1).

We say that (p, q) is a square vector in w if there exists an Abelian square
u1u2 in w such that P(u1) = P(u2) = (p, q). Then u1u2 is called a (p, q)-square.
Let SQV (w) denote the set of square vectors of w. Now SQ ′

Abel(n, 2) is the
maximum number of different square vectors in a binary word of length n.

In the proof of the lower bound we require some number-theoretic tools. Erdős
[9] investigated the problem of estimating the numbers:

Pk = |{i · j : 1 ≤ i, j ≤ k}|.
It is known that Pk = Ω(k2/ log k). Our auxiliary problem is similar, but instead
of the ordinary multiplication i · j we consider an operation

i⊗ j =
∑j

t=i t = (i + j)(j − i + 1)/2.

We define
Sums(a, b) = |{i⊗ j : a ≤ i ≤ j ≤ b}|.

Example 3. Sums(2, 5) = {2, 3, 4, 5, 7, 9, 12, 14}.
Lemma 1. Sums(� 34k�, k) = Ω(k2/ log k).

Proof. We use the following textbook fact:

Fact 1 ([16]). Let π(x) be the number of prime numbers in the range [1..x]. For
any ε > 0 we have π((1 + ε)x) − π(x) = εx

log x + o( x
log x).

Let Ik denote the set of primes in the interval
[
� 1012k�, �

11
12k�

]
(this interval is

a middle third of
[
� 34k�, k

]
). Let

Fk = {(i, j) : 0 ≤ j − i < � k
12� − 1 and i+j

2 ∈ Ik}.

Fact 1 implies that |Ik| = Ω(k/ log k), and consequently |Fk| = Ω(k2/ log k).
Note that {i⊗ j : (i, j) ∈ Fk} ⊆ Sums(� 34k�, k). Therefore it suffices to prove the
following:

Claim. If (i, j), (i′, j′) ∈ Fk, (i, j) �= (i′, j′), then i⊗ j �= i′ ⊗ j′.

However i⊗j = p·(j−i+1), i′⊗j′ = p′·(j′−i′+1), for p, p′ ∈ Ik. The claim follows
from the primality of p, p′ and the inequalities j−i+1, j′−i′+1 ≤ min(p, p′). ��
In our construction a crucial role is played by balanced Abelian squares and
balanced square vectors. A square vector (p, q) is called balanced if p = q, and a
word w is called balanced if its Parikh vector is balanced. We define

neigh+((p, q), r) = {(p, q + t) : 0 ≤ t ≤ r},
neigh−((p, q), r) = {(p, q − t) : 0 ≤ t ≤ r},

neigh((p, q), r) = neigh+((p, q), r) ∪ neigh−((p, q), r).

For i ≤ j let us define the following word of length 2 · (i⊗ j):

wi,j = 0i1i0i+11i+1 · · · 0j1j.
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0� 1� 0�+1 1�+1

· · ·
0i−1 1i−1 0i 1i

· · ·
0j 1j

x y
Δ |y|

· · · · · ·

Δ/2 x′ y′ Δ/2
Δ/2

Fig. 1. Illustration of the proof of Lemma 2 — construction of balanced Abelian
square x′y′

Observation 1. Let w = wi,j and Δ ∈ {0, . . . , i}. Then the subword w[1 +
Δ..|w| −Δ] is balanced.

Let us take wk = w1,k. For example w4 = 01001100011100001111. Also, let Sk

be a family of balanced vectors
{

(p, p) : p ∈ Sums
(
� 34k�, k

)}
.

Lemma 2. If k > 16, then Sk ⊆ SQV (wk).

Proof. Let p = i⊗ j for i, j such that � 34k� ≤ i, j ≤ k and let � < i be the largest
index such that �⊗ (i− 1) ≥ p. Such an integer � exists since for k > 16 we have
1⊗

(
� 34k� − 1

)
≥ � 34k� ⊗ k.

Consider the subwords x = w�,i−1, y = wi,j of wk. If |x| = |y|, then we have
just located a square xy with a square vector (p, p) and we are done. Otherwise,
let Δ = |x|−|y| > 0; see Fig. 1. Note that 0 < Δ/2 < � and |x|0 = |x|1 = p+Δ/2.
We modify x into x′ by cutting away the first Δ/2 zeros and the last Δ/2 ones:
x′ = x[Δ/2 + 1..|x| − Δ/2]. Then y′ is obtained from y by adding Δ/2 ones
on the left side, and removing Δ/2 ones from the right side. By Observation 1,
|x′|0 = |x′|1 = |y′|0 = |y′|1 = p. ��

Lemma 3. If k > 16, there exists rk = Ω
(√
|wk|

)
such that for every Γ ∈ Sk

neigh+(Γ, rk) ⊆ SQV (wk) or neigh−(Γ, rk) ⊆ SQV (wk).

Proof. For Γ ∈ Sk we define i, j, and the Abelian square x′y′ corresponding to
Γ as in the proof of Lemma 2. Let β and α be the distances from the right end
of x′ to the beginning and to the end of the block 1i−1; see Fig. 2. Similarly we
define δ as the distance of the right end of y′ to the left endpoint of the block
1j. One can easily check that the distance of the right end of y′ to the end of
the block 1j equals α (see Fig. 2).

Note that α + β = i− 1 ≥ � 34k� − 1 and δ ≥ β. There are two cases:

(a) If α ≥ β, then α ≥ (i− 1)/2. Then neigh+(Γ, �α/2�) ⊆ SQV (wk).
(b) If α < β, then β ≥ (i− 1)/2. Then neigh−(Γ, �β/2�) ⊆ SQV (wk).

Thus we set rk = �
(
� 34k� − 1

)
/4� = Ω

(√
|wk|

)
and the conclusion holds. ��
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· · ·
0i−1 1i−1

· · ·
0j 1j

x′ y′
β α δ α

Fig. 2. Illustration of the proof of Lemma 3. Observe that the number of ones to the
right of x′ and to the right of y′ is the same, due to the construction of Lemma 2.

Theorem 2. SQ ′
Abel(n) = Ω(n1.5/ logn).

Proof. We have constructed the family of words wk together with the sets Sk,
which we show (Lemma 2) to be square vectors of wk. Due to Lemma 1 we have

|Sk| = Ω(|wk|/ log |wk|).

Note that for any Γ1, Γ2 ∈ Sk, Γ1 �= Γ2, and r ≥ 0 we have neigh(Γ1, r) ∩
neigh(Γ2, r) = ∅. Thus by Lemma 3 we obtain

SQ ′
Abel(wk) = |SQV (wk)| ≥ |Sk|rk = Ω(|wk|1.5/ log |wk|).

This completes the lower bound proof for n = |wk|. Otherwise we pick the
longest word wk, |wk| ≤ n, and append it with sufficiently many zeros. ��

2.2 An Upper Bound for SQ ′
Abel(n, 2)

The number of blocks in a word w is defined as:

#bl(w) = 1 + |{1 ≤ i < |w| : w[i] �= w[i + 1]}|.

For example #bl(wk) = 2k. We show a nontrivial upper bound for the number
of nonequivalent Abelian squares in words with a given number m of blocks.

Lemma 4. For a word w and a nonnegative integer δ suppose the following
subwords are uniform but not all equal:

w1 = w[j..j + δ], w2 = w[j + k..j + k + δ], w3 = w[j + 2k..j + 2k + δ].

If w[j..j+2k−1] is an Abelian square, then no Abelian square of the same length
starts at any position in the interval [j + 1..j + δ].

Proof. Due to the binary alphabet we have exactly three cases: w1 = w3, w1 =
w2 or w2 = w3. We prove the lemma only in the first case; see Fig. 3. The
remaining cases admit similar proofs.

Let w1 = w3 = (c1)δ and w2 = (c2)δ with c1 �= c2. Denote u1 = w[j..j +
k − 1] and u2 = w[j + k..j + 2k − 1]. Whenever we shift u1 to the right (by at
most δ positions), the number of occurrences of c1 decreases and the number of
occurrences of c2 increases. However, when we shift u2 to the right, the number
of occurrences of c1 increases and the number of occurrences of c2 decreases.
Therefore, we cannot obtain an Abelian square. ��
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j j + k j + 2k

u1 u2

|w1| = δ |w2| = δ |w3| = δ

Fig. 3. Illustration of Lemma 4: the shaded areas correspond to uniform subwords (the
first and the third one are composed of the same letter). An Abelian square u1u2 at
position j excludes any Abelian square of the same length starting in the shaded area
to the right of j.

Theorem 3. If w is a binary word of length n with m blocks, then

SQ ′
Abel(w) ≤ 3(m + 1)n2 .

Proof. We call {0, 1, . . . , n} the set of interpositions of w. Intuitively, interposi-
tions can be interpreted as locations between two consecutive letters, before the
first letter or after the last letter. Let A, the set of alternating interpositions,
contain 0, n and all interpositions i for which w[i] �= w[i + 1]. In other words
if i is not alternating, then w[i] = w[i + 1], in particular both these letters are
well defined. Note that |A| = m + 1. To each Abelian square w[i..i + 2k − 1] we
assign three interpositions which we call special : the first interposition i− 1 (F),
the middle interposition i + k − 1 (M), and the last interposition i + 2k − 1 (L).

For each square vector Γ ∈ SQV (w) we consider only the rightmost occur-
rence of an Abelian square corresponding to Γ .

First, we consider Abelian squares for which one of the special interpositions
is alternating. Let v = w[i..i + 2k − 1] be such an Abelian square. We uniquely
label v with a triple representing an alternating interposition, the type of this
interposition (F/M/L) and the half of v’s length: if (i− 1) ∈ A, then the triple is
(i− 1, F, |v|/2), otherwise if (i+ k− 1) ∈ A, then it is (i+ k− 1, M, |v|/2), and
otherwise it is (i + 2k − 1, L, |v|/2).

As a second group we consider the remaining (rightmost) Abelian squares. Let
v = w[i..i+2k−1] be such an Abelian square. Note that w[i] = w[i+k] = w[i+2k]
could not hold, otherwise v would not be the rightmost occurrence (v would be
Abelian equivalent to w[i+1..i+2k]). Let �1 be the length of the maximal prefix of
w[i..n] of form w[i]∗, likewise �2 be the length of the maximal prefix of w[i+k..n]
of form w[i + k]∗, and �3 be the length of the maximal prefix of w[i + 2k..n] of
form w[i + 2k]∗. Let � = min(�1, �2, �3) > 0. We uniquely label v with a triple
representing an alternating interposition, the type of this interposition and the
half of v’s length: if �1 = �, then the triple is (i + � − 1, F, |v|/2), otherwise if
�2 = �, then it is (i+k+�−1, M, |v|/2), and otherwise it is (i+2k+�−1, L, |v|/2).

Lemma 4 implies that each Abelian square receives a different label. Therefore
there are at most 3(m + 1)n2 Abelian squares in total. ��

In particular, Theorem 3 implies the following result:

Observation 2. SQ ′
Abel(wk) = O(|wk|1.5).
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3 Bounds for Order-Preserving Squares

Recall that uv is an order-preserving square if |u| = |v| and there exists a strictly
increasing bijection f : Alph(u) → Alph(v) such that v[i] = f(u[i]) for all
i = 1, . . . , |u|. We start with an auxiliary abstract fact in which we do not
require f to be of any particular monotonicity.

Lemma 5. Let w be a word of length n over an alphabet Σ, and let Σ1, Σ2 be
two distinct subsets of Σ of the same cardinality. Also, let f be a given bijection
between Σ1 and Σ2. Then there are at most n distinct subwords of w of the form
xf(x), where Alph(x) = Σ1.

Proof. Suppose a word xf(x), where Alph(x) = Σ1, starts at position i in w.
Let j > i be the first occurrence of a letter in Σ2−Σ1. Suppose it is the letter c.
This letter is located in f(x). Let k ≥ i be the first occurrence of f−1(c). Then
|x| = j − k and this determines the word xf(x) as w[i..i + 2(j − k)− 1].

Consequently there is at most one occurrence of a subword of the required
form starting at a given position, so the number of such distinct subwords does
not exceed n. ��

Theorem 4. If k = O(1), then SQop(n, k) = Θ(n).

Proof. Let w be a word of length n over a k-letter alphabet Σ. Each order-
preserving square is of the form xf(x) where f : Alph(x) → Alph(f(x)) is
a strictly increasing bijection. If Alph(x) = Alph(f(x)), then f must be the
identity and thus xf(x) is an ordinary square. However, there are at most 2n such
squares in w [14]. Otherwise, Alph(x),Alph(f(x)) and f satisfy the assumptions
of Lemma 5. The number of such triples is constant with respect to n, which,
combined with Lemma 5, completes the proof. ��

4 Bounds for Parameterized Squares

In this section we consider words over the binary alphabet {0, 1}. An antisquare
is a nonempty word of the form xx̄, where x̄ denotes bitwise negation of x. For
example, 011 100 is an antisquare. Recall that uv is a parameterized square if
|u| = |v| and there exists a bijection f : Alph(u) → Alph(v) such that v[i] =
f(u[i]) for all i = 1, . . . , |u|. Observe that for binary alphabet each parameterized
square is an ordinary square or an antisquare.

We also introduce almost-squares, which are the words of the form xax, where
x is a word and a ∈ {0, 1}. Equivalently, an almost-square is an ordinary square
with the last letter missing. The following words are examples of almost-squares:
011 1 011, 11111 0 11111, 0.

For a binary word w of length n we define the word ŵ of length n − 1 so
that ŵ[i] = 1 if w[i] = w[i + 1] and ŵ[i] = 0 otherwise. For example, for w =
00110101100010 we have ŵ = 1010000101100.

For a word x of length � we construct a rooted directed labeled tree T (x)
as follows. We start with a single path with edges labeled with the consecutive
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root · · ·
x[1] x[2] x[�− 1] x[�] 0

x̄[1] x̄[2] x̄[3] x̄[�− 1] x̄[�] 1

Fig. 4. Rooted directed labeled tree T (x), |x| = �

letters of x. Then we attach leaves to all nodes of the path so that each of them
has two outgoing edges, one labeled with 0 and one labeled with 1; see Fig. 4.
A square in a directed labeled tree is defined as a directed path such that the
label of the path is an (ordinary) square.

Observation 3. The following are equivalent:
(a) the subword w[i..j] is a parameterized square,
(b) the subword ŵ[i..j − 1] is an almost-square,
(c) the subword ŵ[i..j − 1]a for some a ∈ {0, 1} is a square in the tree T (ŵ).

The proof of the following lemma is an immediate generalization of the proof
of the analogous upper bound on the number of ordinary squares in a word.
It suffices to note that there are at most two topmost occurrences of distinct
squares ending at each node of the tree; see [14,18].

Lemma 6. In a labeled directed rooted tree with m nodes there are at most 2m
distinct squares.

Theorem 5. SQparam(n, 2) ≤ 8n.

Proof. Let w be a word of length n. Observe that T (ŵ) has at most 2n nodes.
It follows from Observation 3 and Lemma 6 that the number of distinct almost-
squares in w is at most 4n. For each almost-square v there are exactly two
parameterized squares u1, u2 such that û1 = û2 = v (ū1 = u2 and u1, u2 are both
ordinary squares or both antisquares). Consequently SQparam(w) does not exceed
twice the number of distinct almost-squares in ŵ. Hence SQparam(w) ≤ 8n. ��

5 Infinite Words Avoiding Nonstandard Squares/Cubes

It is known that there are infinite words over a 4-letter alphabet avoiding Abelian
squares while over 3-letter alphabets such words do not exist [20]. Here, we
investigate an analogous problem for other nonstandard repetitions.

We say that a word is op-square-free if it does not contain an order-preserving
square of length greater than 2. Let Σ3 = {0, 1, 2} ordered in the natural way.
Consider the morphism:

ψ : 0 �→ 10, 1 �→ 11, 2 �→ 12.

Lemma 7. If a word w ∈ Σ∗
3 is square free, then ψ(w) is op-square-free.

Proof. Let ≈ denote the order-preserving equivalence (i.e., u ≈ v if |u| = |v| and
uv is an order-preserving square). We have the following simple observation.
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Observation 4. For any symbols a, b, c ∈ Σ3 we have:
(a) 1 a ≈ 1 b ⇔ a = b;
(b) a 1 b ≈ 1 c 1 ⇒ a = b.

Suppose to the contrary that w′ = ψ(w) contains an order-preserving square
u′v′ = w′[i..i+2k−1], with |u′| = |v′| = k ≥ 2. We consider four cases depending
on the parity of i and k.

If 2 | k and 2 � i, then u′ and v′ start with a 1 and every second symbol of
each of them is a 1. Consequently, by Observation 4(a), u′ = v′. Moreover, in
this case we have u′ = ψ(u) and v′ = ψ(v) for some subword uv of w. Hence, uv
is a square in w, a contradiction.

If 2 | k and 2 | i, then w′[i− 1...i + 2k− 2] is also an order-preserving square.
The conclusion follows from the previous case.

If 2 � k and 2 � i, then u′ and v′ start with 1c1 and a1b for some a, b, c ∈ Σ3,
respectively. By Observation 4(b) we conclude that a = b, which implies a square
ab in w, a contradiction.

The final case, 2 � k and 2 | i, also implies a 2-letter square in w just as in the
previous case. This completes the proof that w′ is op-square-free. ��

We apply Lemma 7 to all prefixes of an infinite square-free word [24] over a
ternary alphabet and obtain the following result.

Theorem 6. There exists an infinite op-square-free word over 3-letter alphabet.

A parameterized cube is a word uvw such that both uv and vw are parameterized
squares. A word is called parameterized-square-free (parameterized-cube-free)
if it does not contain parameterized squares (parameterized cubes) of length
greater than 3. We show that there is no infinite parameterized-square-free word
and construct a binary parameterized-cube-free word.

Theorem 7. There is no infinite parameterized-square-free word.

Proof. Suppose to the contrary that such an infinite word x exists. In the proof
we denote symbols of Alph(x) by a, b, c, d. Note that every suffix of x has to
contain two adjacent equal symbols. This is because abcd for a �= b and c �= d is
a parameterized square. Moreover, x has to contain some three adjacent equal
symbols. The reason is that abbd for a �= b �= d is a parameterized square.

We can therefore assume that x contains a subword aaa. To avoid a param-
eterized square of length 4, this subword must be followed in x by some letter
b �= a. For the same reason the next letter c must satisfy c �= b, and afterwards
the subword aaabc must be followed by two more occurrences of c. Finally the
next letter must be d �= c to avoid a parameterized square cccc. We conclude
that x contains a subword aaabcccd for b �= a and d �= c, which turns out to be
a parameterized square. This contradiction completes the proof. ��

Let τ be the infinite Thue-Morse word. Recall that τ is cube-free [25]. Also recall
the morphism ψ defined just before Lemma 7.

Theorem 8. The word ψ(τ) is parameterized-cube-free.
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Proof. Suppose to the contrary that u1u2u3 is a parameterized cube in ψ(τ),
with |u1| = |u2| = |u3| = k > 1. Note that ψ(τ) does not contain 6 ones in
a row. Hence, at least one of the words u1, u2, u3 contains 0, therefore each of
them contains 0. Moreover every second symbol of u1, u2, u3 is 1.

Recall from Section 4 that a binary parameterized square is either an ordinary
square or an antisquare. If 2 | k, then the ones of every second position of
u1, u2, u3 align and u1u2, u2u3 must be ordinary squares. Therefore u1u2u3 is
an ordinary cube in ψ(τ) which induces a cube in τ .

If 2 � k, the same argument implies that both u1u2 and u2u3 are antisquares.
Because of the ones on every second position of u1, u2, u3 we actually have u1 =
0101 · · · , u2 = 1010 · · · , u3 = 0101 · · · or u1 = 1010 · · · , u2 = 0101 · · · , u3 =
1010 · · · . In both cases we obtain a cube (10)3 in ψ(τ) which induces 03 in τ . ��

6 Final Remarks

We have presented several combinatorial results related to the maximum number
of nonstandard squares in a word of length n. For Abelian squares we have shown
that SQAbel(n, 2) = Θ(n2) and SQ ′

Abel(n, 2) = Ω(n1.5/ logn). The latter bound,
although reached by a simple family of words, required a rather involved proof.

For squares in order-preserving and parameterized setting we show that their
maximum number is linear of n for a constant and a binary alphabet, respec-
tively. We have also presented examples of infinite words over a minimal alphabet
that avoid squares in order-preserving setting and cubes in parameterized set-
ting, respectively.

The main open question that arises from our work is to provide an upper
bound for SQ ′

Abel(n, 2). We have made a step towards this bound by showing
that the maximum number of distinct Abelian squares in a word of length n
containing m blocks is O(nm). The remaining open questions are connected to
SQ ′

op(n, k) and SQ ′
param(n, k) for arbitrary k (not necessarily a constant). Based

on experimental results, we state the following conjecture:

Conjecture 1. SQ ′
Abel(n, 2) = O(n1.5), SQ ′

op(n, k) = SQ ′
param(n, k) = Θ(n)

for any k ≥ 2.
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Knight Tiles: Particles and Collisions

in the Realm of 4-Way Deterministic Tilings

Bastien Le Gloannec and Nicolas Ollinger
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Abstract. Particles and collisions are convenient construction tools to
compute inside tilings and enforce complex sets of tilings with simple tile-
sets. Locally enforceable particles being incompatible with expansivity in
the orthogonal direction, a compromise has to be found to combine both
notions in a same tileset. This paper introduces knight tiles: a frame-
work to construct 4-way deterministic tilings, that is tilings completely
determined by any infinite diagonal of tiles, for which local particles
and collisions with many slopes can still be constructed while being ex-
pansive in infinitely many directions. The framework is then illustrated
by an elegant yet simple construction to mark a diagonal with a 4-way
deterministic knight tileset.

Keywords: Deterministic tiles, domino problem, tiling problem, expan-
sive subdynamics, particles, Wang tiles.

A tiling is a coloring of the discrete plane Z2 assigning a tile from a finite
tileset to each position so that the local tiling rules associated to the tileset
are satisfied for every tile in its neighborhood. Wang tiles provide a convenient
and universal syntactic description of tiling rules: a Wang tile is a unit square
with colored edges and the tiling rule requires adjacent squares to share a same
color along their common edge – tiling constraints are readable directly on the
tiling. Starting with the study of the Domino Problem [2,11], computations have
been successfully embedded into tilings to enforce computational phenomena
and prove undecidability and complexity results. Following what is done in the
case of cellular automata, particles and collisions have been successfully used as
a tool to transmit information quanta through tilings and mark positions.

A tiling is 4-way deterministic if any infinite diagonal strip of tiles uniquely
determines the whole tiling. A syntactic way to enforce such a property on a
tileset is to require any consecutive pair of colors along its edges to uniquely
determine a tile. Kari and Papasoglu [4] were able to prove that it is still pos-
sible to construct aperiodic tilesets under such constraint as are every family
of tilings generated by substitution systems [6]. Ten years later, Lukkarila [8]
showed that Turing machines can still be simulated in this setting and proved
that the Domino Problem is still undecidable for 4-way deterministic tilesets.
The construction is subtle and quite involved, building on the previous con-
struction by Kari and Papasoglu [4]. The construction has to be quite involved
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in particular because such a syntactic constraint enforces the expansivity [3] of
the tilings in every directions but two, prohibiting the use of locally defined
particles that are neither horizontal nor vertical. In this paper, inspired by the
partitioned cellular automata [9], we propose to replace Wang tiles with knight
tiles, keeping a syntactic condition to enforce 4-way determinism and gaining
back particles and collisions.

Similar to a Wang tile, a knight tile is a colored unit square sharing colors
not only with its 4 direct neighbors but also with the 8 neighbors located at a
chess knight move. Determinism along one diagonal is then simply expressed as
a syntactic condition on tuples of colors. While keeping expansive in infinitely
many directions, knight tiles can be combined to construct particles along slopes
that are not too steep. The interest of this family of tilesets is illustrated by con-
sidering two problems handled with complicated constructions in Lukkarila [8].

The first construction is the key ingredient to the proof of the undecidability
of the Domino Problem: solving the seeded Domino Problem by simulating a
Turing machine.

The second construction is a key ingredient for the previous construction in
the classical case: marking a diagonal — a slope that cannot be obtained di-
rectly by knight tiles using a particle. Indeed, Lukkarila [8] asks “Could there
be a significantly simpler tile set for drawing a single diagonal line 4-way deter-
ministically?” The construction provided here is significantly simpler, combining
time-symmetry and the infinite Firing Squad technique by Kari [5] with proper-
ties of the Thue-Morse substitution to enforce 4-way determinism.

1 Preliminary Definitions

Wang Tiles and Deterministic Tilesets. Given a finite alphabet of colors C,
a Wang tile is an oriented unit square tile with one color on each side. Formally,
it is a quadruple t ∈ C4 whose four components are identified with the four
directions {w, s, e,n} and, for convenience, denoted as tw, ts, te and tn. A Wang
tileset τ is a finite set of Wang tiles. A tiling by τ is a map T : Z2 → τ associating
a tile of τ to each cell of the discrete plane Z2 such that two adjacent tiles (for
the 4-connectedness) share the same color on their common edge. More formally,
a tiling T satisfies the following constraints, for all (x, y) ∈ Z2: T (x, y)w = T (x−
1, y)e, T (x, y)s = T (x, y − 1)n, T (x, y)e = T (x + 1, y)w, T (x, y)n = T (x, y + 1)s.
The set of all tilings by a tileset τ is denoted as Xτ .

The tileset τ is ne-deterministic if for all couples of tiles (w, s) ∈ τ2, there
exists at most one tile t ∈ τ simultaneously compatible to the west with w and
to the south with s: we = tw and sn = ts. In the case of Wang tiles, one can
equivalently say that any tile t ∈ τ is uniquely identified by its couple of colors
(tw, ts). {sw, se,nw}-determinism is defined symmetrically. A tileset is 4-way
deterministic if it is simultaneously sw, se, ne and nw-deterministic.

Subshifts and Expansiveness. Given a finite alphabet Σ, a Σ-coloring (or
simply coloring in the absence of ambiguity) of the discrete plane is a map
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c : Z2 → Σ. For all u ∈ Z2, we define the translation σu over colorings by
σu(c)(x) = c(x−u) for all c ∈ ΣZ

2

and x ∈ Z2. A coloring c ∈ ΣZ
2

is periodic of

period p ∈ Z2 if σp(c) = c. The set ΣZ
2

of all Σ-colorings is endowed with the
product (over Z2) topology of the discrete topology (over Σ). A subshift X is a
(topologically) closed and translation-invariant (∀u ∈ Z2, σu(X ) = X ) subset of

ΣZ
2

. In particular, the set of tilings by a tileset τ is a subshift of τZ
2

.
For all slope α ∈ R ∪ {∞}, let us denote as lα the real line of slope α going

through the origin. For all radius ρ > 0, let us define Lα(ρ) = (lα+[−ρ, ρ]u)∩Z2

for u ∈ R2 a unit vector orthogonal to lα. Lα(ρ) is the discrete thick line of slope
α and width 2ρ centered on the origin. A slope α is a direction of expansiveness
of a subshift X ⊆ ΣZ

2

if there exists a radius ρ > 0 such that for all x, y ∈ X ,
x|Lα(ρ) = y|Lα(ρ) =⇒ x = y. In particular, if τ is a 4-way deterministic Wang
tileset, Xτ is expansive in (at least) all directions of R\{0}.

2 From Wang Tiles to Knight Tiles

The notion of 4-way determinism introduces a very strong constraint on the
tileset. Indeed, it strongly limits its capacity to construct particles locally. To
mix particles and determinism, one might loosen the constraints by generalizing
the notion of local determinism to a broader radius r ≥ 1 of determinism.

Radius of Determinism. A tileset τ is ne deterministic with radius r if for
all valid (i.e. containing no tiling error along its inner edges) (2r + 1) × (2r +
1) square pattern by τ , the center tile is perfectly determined by the shifted
diagonal formed by the 2r tiles at positions (1, 2r), (2, 2r − 1), . . . , (2r − 1, 1).
Determinism with radius r in the three other diagonal directions (sw, se and
nw) is defined symmetrically. The tileset is 4-way deterministic with radius r if
it is simultaneously deterministic with radius r in the four diagonal directions.

The different radiuses can be compared through the expansiveness of their
tilings as pointed out by the following proposition.

Proposition 1. If τ is a 4-way deterministic tileset with radius r, then Xτ is

(at least) expansive in directions
]
− r

r−1 ,−
r−1
r

[
∪
]
r−1
r , r

r−1

[
.

The expansiveness directions are actually tightly related to the particles that
can be locally realized. Expansiveness is, up to a change in the radius ρ, inde-
pendent of the profile chosen for the slope. At a fixed radius of determinism,
the ability to mark a line however depends on its profile. Let us denote the hor-
izontal and vertical unit vectors of Z2 as e1 = (1, 0) and e2 = (0, 1). For any
slope α ∈ Q∪{∞}, a (periodic) profile for α is a finite sequence (u0, . . . , uk−1) ∈
{e1, e2}k such that α =

∑
i ui·e2∑
i ui·e1

. Given a profile P = (u0, . . . , uk−1) for α, we

define the associated subshift LP ⊆ {0, 1}Z2

as the subshift generated by (i.e.
the smallest subshift containing) the configuration cP containing exactly one
discrete 4-connected line of slope α drawn following the profile P , i.e. formally
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defined by cP (x) = 1 if x =
∑

0≤i≤n ui mod k or x = −
∑

−n≤i<0 ui mod k for

some n ≥ 0, and cP (x) = 0 for all other x ∈ Z2. Note that LP exactly contains
all translated versions of cP , plus the blank coloring (all 0s) for compactness

reasons. A coloring c ∈ ΣZ
2

, where Σ contains an identified blank color c0 ∈ Σ,
is a particle of direction α ∈ Q∪{∞} if it is periodic in direction α (i.e. c admits
a periodicity vector (px, py) ∈ Z2 such that α =

py

px
) and ultimately constant1

equal to c0 in any other direction. This equivalently means that all non-blank
cells of c are contained in Lα(ρ) + Δ for some ρ > 0 and Δ ∈ Z2. We say that
a slope α ∈ Q ∪ {∞} is locally realized by a tileset τ if there exists a projection

π : τ → {0, 1} (naturally extended to colorings π : τZ
2 → {0, 1}Z2

) such that
there exists a profile P for the slope α such that π(Xτ ) = LP and every tiling of
Xτ is a particle. The previous definition introduces a reinforced notion of soficity
for LP .

The following results conclude our remarks on radiuses of determinism.

Proposition 2. If a slope α is locally realizable by a tileset τ then α is not a
direction of expansiveness for Xτ .

Proposition 3. The slopes that are locally realizable by 4-way deterministic

tilesets at radius r are exactly Q∩
([
−∞,− r

r−1

]
∪
[
− r−1

r , r−1
r

]
∪
[

r
r−1 ,+∞

])
.

Knight Tiles. Whereas classical 4-way determinism is a purely syntactic prop-
erty of the tileset, to check determinism at radius r one has to consider all tilings
of (2r+1)× (2r+1) squares. We introduce deterministic knight tiles as a conve-
nient and purely syntactic notion of determinism at radius 2 that can be checked
directly on the tiles.

Given a finite alphabet C of colors, a knight tile is formally a 12-tuple of
C12 and a knight tileset is a finite set of knight tiles. For convenience, each of
the twelve components of a knight tile will be identified by a direction among
{w, s, e,n,ws, sw, se, es, en,ne,nw,wn} and for a knight tile T ∈ C12, we will
for instance denote by Tw ∈ C the corresponding w color. A tiling of the discrete
plane by a knight tileset τ is a map t : Z2 → τ satisfying the following constraints,
for all (x, y) ∈ Z2: t(x, y)w = t(x − 1, y)e, t(x, y)s = t(x, y − 1)n, t(x, y)e =
t(x + 1, y)w, t(x, y)n = t(x, y + 1)s, t(x, y)ws = t(x − 2, y − 1)en, t(x, y)sw =
t(x − 1, y − 2)ne, t(x, y)se = t(x + 1, y − 2)nw, t(x, y)es = t(x + 2, y − 1)wn,
t(x, y)en = t(x+2, y+1)ws, t(x, y)ne = t(x+1, y+2)sw, t(x, y)nw = t(x−1, y+2)se,
and t(x, y)wn = t(x − 2, y + 1)es. This means that each tile of a tiling shares
each of its different color components with one of the twelve neighboring tiles
represented on the Fig. 1a.

A knight tileset τ is ne-deterministic if any tile t ∈ τ is uniquely identified
by its quadruple of colors (twn, tw, ts, tse), i.e. there is at most one tile in the set
that is compatible with the four colors pointed out on the Fig. 1b. Determinism
in the three other diagonal directions (sw, se and nw) is defined symmetrically.

1 Note that all our results would remain true replacing “ultimately constant” by “ul-
timately periodic” in the definition of a particle.
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(a) Neighborhood of a knight tile (b) ne determinism

Fig. 1. Knight tiles and determinism

A knight tileset is 4-way deterministic if it is simultaneously deterministic in the
four diagonal directions sw, se, ne and nw.

The rest of the paper is dedicated to advocate for the use of this notion of
radius-2 determinism by showing that constructions that are painful to handle
in the classical 4-way deterministic setting can be treated with particles and
collisions in the 4-way deterministic knight setting.

3 The Seeded Knight Domino Problem Is Undecidable

Simulating a Turing machine with classical 4-way tiles requires a complicated
machinery [8] involving particular aperiodic tilesets. Knight colors provide
enough flexibility to handle it directly and prove the undecidability of the Domino
Problem with a seed tile in a classical way.

Problem 1 (Domino Problem with a seed tile). Given a tileset τ and a specified
seed tile t0 ∈ τ , does there exist a tiling of Z2 by τ using (at least once) the
tile t0?

The reader is assumed familiar with Turing machines. As every Turing com-
putation can be made reversible [7,1], we directly work with reversible Turing
machines. A reversible Turing machine (RTM) is a 5-tuple (Σ,Q,←→qi , F, δ) where
Σ is the tape (finite) alphabet, Q the finite set of states. Before defining the
remaining elements of the tuple, let us state that the head always moves at
each transition and we denote its two possible moves by {←,→}. Let us also

define
←→
Q = Q × {←,→} whose elements will be written −→q (resp. ←−q ) to de-

note (q,→) (resp. (q,←)). Then we define the partial injective transition map

δ :
←→
Q ×Σ →←→

Q ×Σ. Finally ←→qi ∈
←→
Q is the initial (oriented) state and F ⊂ ←→Q

is the set of final (oriented) states (and we will assume that δ is not defined on
states of F ). This is an acceptable model for reversible Turing machines that
will be furthermore well-fitted to our purpose.

The tileset described on Fig. 2, where colors are conveniently represented by
arrows that must go uninterrupted across tile edges, is a 4-way deterministic
knight tileset that simulates a given RTM (Σ,Q,←→qi , F, δ). First note that the
only knight color components used in this simulation are {sw, se,ne,nw} hence
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there is no ambiguity on the knight colors represented on the Fig. 2. To be able
to use efficiently these knight colors for determinism, one must slow down the
simulation. To that purpose, each transition of the Turing machine is decomposed
into three steps in this fixed order: 1. a state transition step where the transition
is done but the head does not yet move, though its move is already contained

in the state of
←→
Q (the corresponding tiles are represented on the bottom line of

the figure); 2. a waiting step where nothing happens (middle line of the figure);
3. a move step where the head finally moves (top line of the figure). The Wang
constraints to enforce this order for the steps of the computation process are not
explicitely represented on the tiles of Fig. 2, but it is a simple counting modulo 3
in the vertical colors. Assuming that a Turing computation is correctly initialized
in a tiling, then each line of the space-time diagram of the Turing machine can
be read once every three lines of the tiling.

For all a, b ∈ Σ, ←→q ∈ ←→Q :

a

a

←−q

−→q b

b

←−q

a

←−q a

←−q

←−q

a

−→q a

−→q

−→q

−→q

←−q b

b

−→q

a

a

←→q a

←→q a

←−p

δ−1(←→q , a) = (−→p , b)

←→q a

←→q a

−→p

δ−1(←→q , a) = (←−p , b)

a

a

←→q a

←−r b

←−r

δ(←→q , a) = (←−r , b)

←→q a

−→r b

−→r

δ(←→q , a) = (−→r , b)

Fig. 2. Deterministic knight tiles simulating a RTM

One can enforce the initialization of the Turing computation using a seed tile
and the tiles of the Fig. 3a that force a blank tape containing a unique Turing
machine head to appear in the tilings. The labels “≤ −2”, “−1”, “0”, “1” and
“≥ 2” appearing on the tiles denote some specifications for the horizontal col-
ors: the tile with index 0 is only compatible to the left (resp. right) with the
tile with index −1 (resp. 1) and, to the left (resp. right) of the −1 (resp. 1)
tile, only the “≤ −2” (resp. “≥ 2”) tile can appear. However, these tiles cannot
directly be added to the previous simulation tile set without losing the 4-way
determinism. Indeed, it not difficult to see that, as is, predicting the tiles with
index −1 or 1 is not possible in every direction. To solve that problem, one
can add a very simple layer of information represented by the Wang tiles of the
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Fig. 3b: a blank tile g0 and a tile g1 carrying a vertical “ghost” signal (that
must be vertically preserved along columns of the tilings). Denoting as τT the
Turing simulation tiles of the Fig. 2, τ1i the three initialization tiles with indices
{−1, 0, 1} of the Fig. 3a, τ2i the two initialization tiles with labels “≤ −2” and
“≥ 2” of the Fig. 3a and b the blank tile of the Fig. 3a, we define the two-layered
knight tileset τ = ((τT ∪ {b})× {g0, g1}) ∪ (τ1i × {g1}) ∪ (τ2i × {g0}), which can
be interpreted as a standard knight tileset on couples of colors of each layer.
In a tiling, the three consecutive columns containing the initialization tiles with
indices {−1, 0, 1} are the only ones carrying a ghost signal (tile g1) on the second
layer. This allows to predict these tiles in every direction, hence the knight tileset
τ is 4-way deterministic. As the transition tiles are not defined on final states, τ
tiles the plane if and only if the simulated Turing machine does not halt on the
blank tape. It is then straightforward to derive the following result.

Theorem 1. The Domino Problem with a seed tile is undecidable for 4-way
deterministic knight tilesets.
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(a) Initialization tiles

g0

g1

(b) Ghost signals

Fig. 3. Additional knight tiles to initialize the Turing computation

4 Marking a Diagonal

Considering deterministic knight tiles allows to easily build particles that are not
realizable in the usual deterministic Wang framework (where the only realizable
slopes are 0 and ∞ by proposition 3) as illustrated by the following result.

Proposition 4. The slopes that are locally realizable using 4-way deterministic
knight tiles are exactly Q ∩

(
[−∞,−2] ∪

[
− 1

2 ,
1
2

]
∪ [2,+∞]

)
.

Our main construction will rely on these realizable slopes to mark a diagonal
in a lighter way than the construction of [8] in the Wang case. The general
idea is to use a fundamentaly one-dimensional hierarchical structure of signals
similar to an infinite version of Minsky’s classical solution to the Firing Squad
synchronization problem on cellular automata, as what is done for instance in [5].
This structure has moreover to be reversible so that the tileset can be made
deterministic in two opposite directions, say ne and sw. The structure also
has to be compatible with determinism for knight tiles in the two orthogonal
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directions nw and se. The reader might keep in mind that only knight colors
{ws, sw, en,ne} will be used. Thus the tileset will be deterministic at radius 1
(classical Wang tiles determinism) in directions ne and sw, while it will be
deterministic at radius 2 (using knights) in directions nw and se.

The general structure is described on Fig. 4 where the red dots represent the
diagonal to be marked, referred to as the fire line. For convenience, the four
kinds of signals are named H , H ′, V and V ′ according to the figure. Their re-
spective slopes are 0, 1

3 , 2
3 and∞. A binary hierarchical structure is used to mark

some points along successive front lines until the granularity of space allows all
the marked points of a front to be sufficiently close to decide by a local rule to
fire at that point (and consequently mark the diagonal). Let us enumerate the
front lines by their rank starting at 0 for the fire line. The points of the front
of rank k are regularly arranged and two consecutive points are separated by
2k − 1 non-marked positions. The marked points of the front of rank k will be
referred to as pillars, which correspond to the points that are marked on the
front of rank k + 1 (i.e. points that were already marked seen things as a firing
squad with time running towards ne), and middles, which exactly correspond to
the middle positions between pillars. Referring to the Fig. 4 for the orientation,
building a local rule for the construction to be deterministic in the ne direction is
not particularly difficult and goes straightforward using the represented signals.
By contrast, making this construction deterministic in the sw direction is more
challenging as one has to be able to locally and deterministically distinguish be-
tween pillars and middles. For this, one needs an infinite source of well-structured
alternating bits sequences. A way to get such information properly is to resort
to a sequence that is a fixed-point of a well-chosen substitution.

Let us define the Thue-Morse substitution (see [10]) s : {0, 1} → {0, 1}∗ by
s(0) = 01 and (1) = 10. We naturally extend the definition of s to finite words
of {0, 1}∗ (resp. infinite words of {0, 1}N) defining, for all u ∈ {0, 1}∗ (resp.
u ∈ {0, 1}N), s(u)2i+k = s(ui)k for all i ∈ {0, . . . , |u| − 1} (resp. i ∈ N) and
k ∈ {0, 1}. The Thue-Morse word T ∈ {0, 1}N is the unique fixed-point of s
starting with the letter 0: T = limn→+∞ sn(0) that exists as s(0)1 = 0 and is
infinite as |s(0)| > 1. As the Thue-Morse word is a fixed-point for s, it can be
unsubstituted into itself by s placing bars every two letters starting with a bar
at position 0. A given factor v of the Thue-Morse word is said even if there exists
an even position p ∈ N such that Tp · · · Tp+|v| = v, which means that there is a
bar just before its first letter v0 (i.e. between Tp−1 and Tp in the Thue-Morse
word) in one of the possible decompositions of v. Complementarily, a factor
is said odd if it appears at an odd position p in the Thus-Morse word, which
means that the bar is between v0 and v1 in a decomposition of v. A factor can
simultaneously be even and odd if it appears in the Thue-Morse word at both
even and odd positions: for instance 101 appears at positions 2 and 11. However,
the following lemma points out the fact that a sufficiently large factor cannot be
simultaneously even and odd.

Lemma 1. Any factor of T of length at least four is either even or odd, which
means that it admits a unique decomposition.
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H

V

V ′

H ′

fire
line

front
0

front
1

front
2

Fig. 4. General scheme of the structure

Hence it is sufficient to look at factors of size four to be able to determine
unambiguously their alignment. Observe that moving letter by letter a window of
size four over the Thue-Morse word, one sees an alternating sequence of even/odd
factors. This will constitute the alternating bits sequence we require.

Now that all the required objects are defined, each signal of the construction
will henceforth carry a factor of size four of the Thue-Morse sequence. The signals
H and V only carry the even words while H ′ and V ′ only carry odd words. When
two signals meet on a marked point, we require them to carry the same factor
u (|u| = 4) and we substitute it by s (|s(u)| = 8) to derive the four factors
carried by the four “outgoing” (seeing time going ne) signals: the produced
type V signal must carry s(u)0 · · · s(u)3, the type V ′ must carry s(u)1 · · · s(u)4,
the type H ′ must carry s(u)3 · · · s(u)6 and the type H must carry s(u)4 · · · s(u)7.
First remark that knowing s(u), one uniquely deduces u. Although there is no
“middle signal” to carry s(u)2 · · · s(u)5, it can easily be deduced from the four
other derived words we dispose of.

This defines a coherent structure. Indeed, let us consider any bi-infinite word
of {0, 1}Z such that every factor appears in the Thue-Morse sequence2, “writ-
ten” along a front line of rank k > 1 in the following sense: two consecutive
marked points hold two consecutive factors of size 4 with a one-letter shift. The
previously described local mecanisms of substitution/unsubstitution on marked
points enforce the same word (as it is a fixed-point) to appear on all the other
front lines and to be used as a ressource to properly alternate between middles
and pillars on a front line, coherently with other lines so that a proper global
binary hierarchical structure is enforced.

2 For topological reasons, such a word exists. The set of all these words is actually
a non-empty subshift of {0, 1}Z. All of them are fixed-point for the Thue-Morse
substitution.
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Fig. 5. Marking a diagonal

A realization of this structure using knight tiles is given on Fig. 5 where
the colors are represented using some convenient signal notations. The knight
colors are not represented on this figure but are all illustrated on Fig. 6. H and
V signals, of respective slopes 0 and ∞, carry even words and meet on pillars
(solid black squares on the figures). The pilar tiles force their two incoming H
and V signals to carry the same factor u. As the four outcoming factors are
derived from this common word, a pillar tile is perfectly determined by u, which
is explicitely written next to each pillar on Fig. 5. Similarly, H ′ and V ′ signals, of
respective slopes 1

3 and 2
3 realized using particular profiles for reasons that will

be exposed later and two different types of knight colors to distinguish the two
different types of angles that appear in that profile as illustrated by figures 6a
and 6b, carry odd factors. These signals meet on middles, that are represented
by gray squares on the figures. The middle tiles force their two incoming H ′ and
V ′ signals to carry the same factor u. As the four outcoming factors are derived
from this common word, a middle tile is perfectly determined by u, which is
explicitely written next to each middle on Fig. 5.

We do not dispose of enough space to formally describe the whole tileset.
Although most of it is a rather straightforward translation of the previously
exposed scheme (Fig. 4 and its symmetric along the fire line) into a tileset, several
points certainly require explanations. This is what the remaining paragraphs are
dedicated to.
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(a) H ′ signals (b) V ′ signals (c) Pillar

(d) Middle (e) Fire

Fig. 6. Knight colors of the tileset

First, when a H signal meets a V , they do not simply cross each other, there is
actually a collision occuring (grey dot on the figures) and there are actually two
kinds of H/V signals. When two signals of the first kind meet, they cross each
other and by the way change into the second kind (darker color on the figures).
When two signals of the second kind meet, they produce a pillar that will in turn
produce two signals of the first kind. This collision has to be treated particularly
when it is the last collision before the fire line, which can be detected as the
collision tile also has to contain some H ′/V ′ signals when it is near the fire line
(see Fig. 6e). In that case, the first kind of H/V signals is changed into a third
kind that produces a fire tile (instead of a pillar) when meeting.

The case of H ′ and V ′ signals requires some careful attention as we need to
use knight colors for them to be deterministic in the nw and se directions. The
knight colors used basically contain the type of signal and the word it carries.
However a knight must absolutely not cross a front line as in this case the deter-
minism in one of the orthogonal ne or sw directions would fail. Without entering
into details, our solution consists in using the (e1, e1, e2, e1, e1, e1, e1, e2) pro-
file (alternating between 2 and 4 horizontal steps) such that one can make sure
that the tiles that appear at both end of a signal are tiles with blank knight
colors (hence no knight crosses the front line). We use the symmetrical profile
for V ′ signals. All situations are illustrated by Fig. 6.
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The fire line must appear when marked points are sufficiently close (and as for
the front line, no knight should cross the fire line). We resort for that to several
ad-hoc tiles that appear only near the fire line, as this was already illustrated by
the third kind of H/V signals. This is illustrated by the Fig. 6e.

On the other side of the fire line, say the ne side, the hierarchical structure is
symmetrically dismantled. This is done by duplicating all the colors used in the
sw part and defining a ne tile from each sw tile by applying a symmetry along
the nw–sw diagonal on the tile and replacing each sw color by its ne duplicate.
Only the fire tiles, that make the junction between boths sides, simultaneously
hold sw and ne colors. That way, the resulting tileset is time-symmetric: it is
its own “inverse” up to a swap in colors.

To conclude, let us denote as κ the previously described knight tileset. The
following theorem underlines the properties κ was built for.

Theorem 2. κ is a 4-way deterministic knight tileset and its set of tilings
projects onto the diagonal subshift, i.e. {0, 1}-colorings containing at most one
diagonal of 1 and 0 everywhere else.
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Abstract. We study finite state transduction of automatic and mor-
phic sequences. Dekking [4] proved that morphic sequences are closed
under transduction and in particular morphic images. We present a sim-
ple proof of this fact, and use the construction in the proof to show that
non-erasing transductions preserve a condition called α-substitutivity.
Roughly, a sequence is α-substitutive if the sequence can be obtained
as the limit of iterating a substitution with dominant eigenvalue α. Our
results culminate in the following fact: for multiplicatively independent
real numbers α and β, if v is a α-substitutive sequence and w is an β-
substitutive sequence, then v and w have no common non-erasing trans-
ducts except for the ultimately periodic sequences. We rely on Cobham’s
theorem for substitutions, a recent result of Durand [5].

1 Introduction

Infinite sequences of symbols are of paramount importance in a wide range of
fields, ranging from formal languages to pure mathematics and physics. A land-
mark was the discovery in 1912 by Axel Thue, founding father of formal language
theory, of the famous sequence 0110 1001 1001 0110 1001 0110 · · · .Thue was in-
terested in infinite words which avoid certain patterns, like squares ww or cubes
www, when w is a non-empty word. Indeed, the sequence shown above, called
the Thue–Morse sequence, is cube-free. It is perhaps the most natural cube-free
infinite word.

q0

q1

q2

0 | ε

1 | ε

1 | 10 | 1

1 | 0

0 | 0

Fig. 1. A transducer computing the
difference (exclusive or) of consecu-
tive bits

A common way to transform infinite se-
quences is by using finite state transducers.
These transducers are deterministic finite au-
tomata with input letters and output words
for each transition; an example is shown in
Figure 1. Usually we omit the words “finite
state” and refer to transducers. A transducer
maps infinite sequences to infinite sequences
by reading the input sequence letter by let-
ter. Each of these transitions produces an output word, and the sequence formed
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by concatenating each of these output words in the order they were produced is
the output sequence. In particular, since this transducer runs for infinite time
to read its entire input, this model of transduction does not have final states. A
transducer is called k-uniform if each step produces k-letter words. For example,
Mealy machines are 1-uniform transducers. A transducer is non-erasing if each
step produces a non-empty word; this condition is prominent in this paper.

Although transducers are a natural machine model, hardly anything is known
about their capabilities of transforming infinite sequences. To state the issues
more clearly, let us write x � y if there is a transducer taking y to x. This trans-
ducibility gives rise to a partial order of stream degrees [6] that is analogous
to, but more fine-grained than, recursion-theoretic orderings such as Turing re-
ducibility ≤T and many-one reducibility ≤m. We find it surprising that so little
is known about �. As of now, the structure of this order is vastly unexplored
territory with many open questions. To answer these questions, we need a better
understanding of transducers.

The main things that are known at this point concern two particularly well-
known sets of streams, namely the morphic and automatic sequences. Morphic
sequences are obtained as the limit of iterating a morphism on a starting word
(and perhaps applying a coding to the limit word). Automatic sequences have a
number of independent characterizations (see [1]); we shall not repeat these here.
There are two seminal closure results concerning the transduction of morphic and
automatic sequences:

(1) The class of morphic sequences is closed under transduction (Dekking [4]).
(2) For all k, the class of k-automatic sequences is closed under uniform trans-

duction (Cobham [3]).

In this paper, we do not attack the central problems concerning the stream de-
grees. Instead, we are interested in a closure result for non-erasing transductions.
Our interest comes from the following easy observation:

(3) For every morphic sequence w ∈ Σω there is a 2-automatic sequence w′ ∈
(Σ ∪ { a })ω such that w is obtained from w′ by erasing all occurrences of a.
(See Allouche and Shallit [1, Theorem 7.7.1])

This motivates the question: how powerful is non-erasing transduction?

Our Contribution. The main result of this paper is stated in terms of the no-
tion of α-substitutivity. This condition is defined in Definition 5 below, and the
definition uses the eigenvalues of matrices naturally associated with morphisms
on finite alphabets. Indeed, the core of our work is a collection of results on
eigenvalues of these matrices.

We prove that the set of α-substitutive words is closed under non-erasing finite
state transduction. We follow Allouche and Shallit [1] in obtaining transducts
of a given morphic sequence w by annotating an iteration morphism, and then
taking a morphic image of the annotated limit sequence. For the first part of
this transformation, we show that a morphism and its annotation have the same
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eigenvalues with non-negative eigenvectors. For the second part, we revisit the
proof given in Allouche and Shallit [1] of Dekking’s theorem that morphic images
of morphic sequences are morphic. We simplify the construction in the proof to
make it amenable for an analysis of the eigenvalues of the resulting morphism.

For an extended version of this paper with examples we refer to [9].

Related Work. Durand [5] proved that if w is an α-substitutive sequence and
h is a non-erasing morphism, then h(w) is αk-substitutive for some k ∈ N. We
strengthen this result in two directions. First, we show that k may be taken to be
1; hence h(w) is αk-substitutive for every k ∈ N. Second, we show that Durand’s
result also holds for non-erasing transductions.

2 Preliminaries

We recall some of the main concepts that we use in the paper. For a thorough
introduction to morphic sequences, automatic sequences and finite state trans-
ducers, we refer to [1,8].

We are concerned with infinite sequences Σω over a finite alphabet Σ. We
write Σ∗ for the set of finite words, Σ+ for the finite, non-empty words, Σω for
the infinite words, and Σ∞ = Σ∗ ∪Σω for all finite or infinite words over Σ.

2.1 Morphic Sequences and Automatic Sequences

Definition 1. A morphism is a map h : Σ → Γ ∗. This map extends by concate-
nation to h : Σ∗ → Γ ∗, and we do not distinguish the two notationally. Notice
also that h(vu) = h(v)h(u) for all u, v ∈ Σ∗. If h1, h2 : Σ → Σ∗, we have a
composition h2 ◦ h1 : Σ → Σ∗.

An erased letter (with respect to h) is some a ∈ Σ such that h(a) = ε. A
morphism h : Σ∗ → Γ ∗ is called erasing if has an erased letter. A morphism
is k-uniform (for k ∈ N) if |h(a)| = k for all a ∈ Σ. A coding is a 1-uniform
morphism c : Σ → Γ .

A morphic sequence is obtained by iterating a morphism, and applying a
coding to the limit word.

Definition 2. Let s ∈ Σ+ be a word, h : Σ → Σ∗ a morphism, and c : Σ → Γ
a coding. If the limit hω(s) = limn→∞ hn(s) exists and is infinite, then hω(s) is
a pure morphic sequence, and c(hω(s)) a morphic sequence.

If h(x1) = x1z for some z ∈ Σ+, we say that h is prolongable on x1. In
this case, hω(x1) is a pure morphic sequence. If additionally, the morphism h
is k-uniform, then c(hω(s)) is a k-automatic sequence. A sequence w ∈ Σω is
called automatic if w is k-automatic for some k ∈ N.

2.2 Cobham’s Theorem for Morphic Words

Definition 3. For a ∈ Σ and w ∈ Σ∗ we write |w|a for the number of occur-
rences of a in w. Let h be a morphism over Σ. The incidence matrix of h is the
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matrix Mh = (mi,j)i∈Σ,j∈Σ where mi,j = |h(j)|i is the number of occurrences of
the letter i in the word h(j).

Theorem 4 (Perron-Frobenius). Every non-negative square matrix M has a
real eigenvalue α ≥ 0 that is greater than or equal to the absolute value of any
other eigenvalue of M and the corresponding eigenvector is non-negative. We
refer to α as the dominating eigenvalue of M .

Definition 5. The dominating eigenvalue of a morphism h is the dominating
eigenvalue of Mh. An infinite sequence w ∈ Σω over a finite alphabet Σ is said to
be α-substitutive (α ∈ R) if there exist a morphism h : Σ → Σ∗ with dominating
eigenvalue α, a coding c : Σ → Σ and a letter a ∈ Σ such that (i) w = c(hω(a)),
and (ii) every letter of Σ occurs in hω(a).

Two complex numbers x, y are called multiplicatively independent if for all
k, � ∈ Z it holds that xk = y� implies k = � = 0. We shall use the following
version of Cobham’s theorem due to Durand [5].

Theorem 6. Let α and β be multiplicatively independent Perron numbers. If a
sequence w is both α-substitutive and β-substitutive, then w is eventually peri-
odic. ��

2.3 Transducers

Definition 7. A sequential finite-state transducer (FST) M=(Σ,Δ,Q, q0, δ, λ)
consists of (i) a finite input alphabet Σ, (ii) a finite output alphabet Δ, (iii)
a finite set of states Q, (iv) an initial state q0 ∈ Q, (v) a transition function
δ : Q×Σ → Q, and (vi) an output function λ : Q×Σ → Δ∗.

We use transducers to transform infinite words. The transducer reads the
input word letter by letter, and the transformation result is the concatenation
of the output words encountered along the edges.

Definition 8. Let M = (Σ,Δ,Q, q0, δ, λ) be a transducer. We extend the state
transition function δ from letters Σ to finite words Σ∗ as follows: δ(q, ε) = q and
δ(q, aw) = δ(δ(q, a), w) for q ∈ Q, a ∈ Σ, w ∈ Σ∗.

The output function λ is extended to the set of all words Σ∞ = Σω ∪ Σ∗

by the following definition: λ(q, ε) = ε and λ(q, aw) = λ(q, a)λ(δ(q, a), w) for
q ∈ Q, a ∈ Σ, w ∈ Σ∞.

We introduce δ(w) and λ(w) as shorthand for δ(q0, w) and λ(q0, w), respec-
tively. Moreover, we define M(w) = λ(w), the output of M on w ∈ Σω. In this
way, we think of M as a function from (finite or infinite) words on its input
alphabet to infinite words on its output alphabet M : Σ∞ → Δ∞. If x ∈ Σω

and y ∈ Δω , we write y � x if for some transducer M , we have M(x) = y.

Notice that every morphism is computable by a transducer (with one state).
In particular, every coding is computable by a transducer.
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3 Closure of Morphic Sequences under Morphic Images

Definition 9. Let h : Σ∗ → Σ∗ be morphisms, and let Γ ⊆ Σ be a set of
letters. We call a letter a ∈ Σ

(i) dead if hn(a) ∈ Γ ∗ for all n ≥ 0,
(ii) near dead if a /∈ Γ , and for all n > 0, hn(a) consists of dead letters,

(iii) resilient if hn(a) �∈ Γ ∗ for all n ≥ 0,
(iv) resurrecting if a ∈ Γ and hn(a) �∈ Γ ∗ for all n > 0

with respect to h and Γ . We say that the morphism h respects Γ if every letter
a ∈ Σ is either dead, near dead, resilient, or resurrecting. (Note that all of these
definitions are with respect to some fixed h and Γ .)

Lemma 10. Let g : Σ∗ → Σ∗ be a morphism, and let Γ ⊆ Σ. Then gr respects
Γ for some natural number r > 0.

Proof. See Lemma 7.7.3 in Allouche and Shallit [1]. ��

Definition 11. For a set of letters Γ ⊆ Σ and a word w ∈ Σ∞, we write γΓ (w)
for the word obtained from w by erasing all occurrences of letters in Γ .

Definition 12. Let g : Σ∗ → Σ∗ be a morphism, and Γ ⊆ Σ a set of letters.
We construct an alphabet Δ, a morphism ξ : Δ∗ → Δ∗ and a coding ρ : Δ→ Σ
as follows. We refer to Δ, ξ, ρ as the morphic system associated with the erasure
of Γ from gω.

Let r ∈ N>0 be minimal such that gr respects Γ (r exists by Lemma 10). Let
D be the set of dead letters with respect to gr and Γ . For x ∈ Σ∗ we use brackets
[x] to denote a new letter. For words w ∈ {gr(a) | a ∈ Σ}, whenever γD(w) =
w0 a1w1 a2w2 · · · ak−1wk−1 akwk with a1, . . . , ak �∈ Γ and w0, . . . , wk ∈ Γ ∗,
we define blocks(w) = [w0a1w1] [a2w2] · · · [ak−1wk−1] [akwk]. Here it is to
be understood that blocks(w) = ε if γD(w) = ε, and blocks(w) is undefined if
γD(w) ∈ Γ+.

Let the alphabet Δ consist of all letters [a] and all bracketed letters [w] oc-
curring in words blocks(gr(a)) for a ∈ Σ. We define the morphism ξ : Δ → Δ∗

and the coding ρ : Δ → Σ by ξ([a1 · · · ak]) = blocks(gr(a1)) · · · blocks(gr(ak))
and ρ([w au]) = a for [a1 · · ·ak] ∈ Δ and a �∈ Γ , w, u ∈ Γ ∗. For a ∈ Γ we can
define ρ([a]) arbitrarily, for example, ρ(a) = a.

Proposition 13. Let g : Σ∗ → Σ∗ be a morphism, a ∈ Σ such that gω(a) ∈ Σω,
and Γ ⊆ Σ a set of letters. Let Δ, ξ and ρ be the morphic system associated to
the erasure of Γ from gω in Definition 12. Then ρ(ξω([a])) = γΓ (gω(a)).

Proof. For � ∈ N and [w1], . . . , [w�] ∈ Δ we define cat([w1] · · · [w�]) = w1 · · ·w�.
We prove by induction on n that for all words w ∈ Δ∗, and for all n ∈ N,
cat(ξn(w)) = gnr(cat(w)). The base case is immediate. For the induction step,
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assume that we have n ∈ N such that for all words w ∈ Δ∗, cat(ξn(w)) =
gnr(cat(w)). Let w ∈ Δ∗, w = [a1,1 · · ·a1,�1 ] · · · [ak,1 · · ·ak,�k ]. Then

cat(ξ(w)) = cat(ξ([a1,1 · · · a1,�1 ]) · · · ξ([ak,1 · · ·ak,�k ]))

= cat(blocks(gr(a1,1)) · · · blocks(gr(ak,�k))) = gr(cat(w))

By the induction hypothesis, cat(ξn+1(w)) = gnr(cat(ξ(w))) = gnr(gr(cat(w)))=
g(n+1)r(cat(w)). To complete the proof, note that by definition ρ([w au]) =
γΓ (w au) and thus ρ(w) = γΓ (cat(w)) for every w ∈ Δ∗. Hence, for all n ≥ 1,
ρ(ξn([a])) = γΓ (cat(ξn([a]))) = γΓ (gnr(a)). Taking limits, we obtain ρ(ξω([a])) =
γΓ (gω(a)). ��

Definition 14. Let g, h : Σ∗ → Σ∗ be morphisms such that h is non-erasing.
We construct an alphabet Δ, a morphism ξ : Δ∗ → Δ∗ and a coding ρ : Δ→ Σ
as follows. We refer to Δ, ξ, ρ as the morphic system associated with the morphic
image of gω under h.

Let Δ = Σ ∪ { [a] | a ∈ Σ }. For nonempty words w = a1a2 · · ·ak ∈ Σ∗ we
define head(w) = a1, tail(w) = a2 · · · ak and img(w) = [a1]u1 [a2]u2 · · · [ak]uk

where ui = tail(h(ai)) ∈ Σ∗. We define the morphism ξ : Δ∗ → Δ∗ and the
coding ρ : Δ→ Σ by ξ([a]) = img(g(a))) and ξ(a) = ε, and ρ([a]) = head(h(a))
and ρ(a) = a for a ∈ Σ.

Notice here the ρ([a]) and ui, defined using head() and tail(), are well-defined
since h is non-erasing and hence h(ai) will be nonempty.

Proposition 15. Let g, h : Σ∗ → Σ∗ be morphisms such that h is non-erasing,
and a ∈ Σ such that gω(a) ∈ Σω. Let Δ, ξ and ρ be as in Definition 12. Then
ρ(ξω([a])) = h(gω(a)).

Proof. We define z : Δ → Σ∗ by z(a) = ε and z([a]) = a for all a ∈ Σ. By
induction on n > 0 we show ρ(ξn(w)) = h(gn(z(w))) and z(ξn(w)) = gn(z(w))
for all w ∈ Δ∗.

We start with the base case. Note that ρ(ξ([a])) = h(g(a)) = h(g(z([a]))) and
ρ(ξ(a)) = ε = h(g(z(a))) for all a ∈ Σ, and thus ρ(ξ(w)) = h(g(z(w))) for all
w ∈ Δ∗. Moreover, we have z(ξ([a])) = g(a) = g(z([a])) and z(ξ(a)) = ε =
g(z(a)) for all a ∈ Σ, and hence z(ξ(w)) = g(z(w)) for all w ∈ Δ∗.

Let us consider the induction step. By the base case and induction hypothesis
ρ(ξn+1(w)) = ρ(ξ(ξn(w))) = h(g(z(ξn(w)))) = h(g(gn(z(w)))) = h(gn+1(z(w)))
and z(ξn+1(w)) = z(ξ(ξn(w))) = g(z(ξn(w))) = g(gn(z(w))) = gn+1(z(w)).
Thus ρ(ξn([a])) = h(gn(a)) for all n ∈ N, and taking limits: ρ(ξω([a])) =
h(gω(a)). ��

Every morphic image of a word can be obtained by erasing letters, followed
by the application of a non-erasing morphism. As a consequence we obtain:

Corollary 16. The morphic image of a pure morphic word is morphic or finite.
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Proof. Let w ∈ Σω be a word and h : Σ → Σ∗ a morphism. Let Γ = { a | h(a) =
ε } be the set of letters erased by h, and Δ = Σ \ Γ . Then h(w) = g(γΓ (w))
where g is the non-erasing morphism obtained by restricting h to Δ. Hence for
purely morphic w, the result follows from Propositions 13 and 15. ��

Theorem 17 (Cobham [2], Pansiot [7]). The morphic image of a morphic
word is morphic.

Proof. Follows from Corollary 16 since the coding can be absorbed into the
morphic image. ��

Eigenvalue Analysis

The following lemma states that if a square matrix N is an extension of a square
matrix M , and all added columns contain only zeros, then M and N have the
same non-zero eigenvalues.

Lemma 18. Let Σ, Δ be disjoint, finite alphabets.
Let M = (mi,j)i,j∈Σ and N = (ni,j)i,j∈Σ∪Δ be ma-
trices such that (i) ni,j = mi,j for all i, j ∈ Σ and
(ii) ni,j = 0 for all i ∈ Σ ∪Δ, j ∈ Δ. Then M and
N have the same non-zero eigenvalues.

⎛⎜⎜⎝ M 0 · · · 0

0 · · · 0

0 · · · 0

⎞⎟⎟⎠
Proof. N is a block lower triangular matrix with M and 0 as the matrices on the
diagonal. Hence the eigenvalues of N are the combined eigenvalues of M and 0.
Therefore M and N have the same non-zero eigenvalues. ��

We now show that morphic images with respect to non-erasing morphisms
preserve α-substitutivity. This strengthens a result obtained in [5] where it has
been shown that the non-erasing morphic image of an α-substitutive sequence is
αk-substitutive for some k ∈ N. We show that one can always take k = 1. Note
that every α-substitutive sequence is also αk-substitutive for all k ∈ N, k > 0.

Theorem 19. Let Σ be a finite alphabet, w ∈ Σω be an α-substitutive sequence
and h : Σ → Σ∗ a non-erasing morphism. Then the morphic image of w under
h, that is h(w), is α-substitutive.

Proof. Let Σ = { a1, . . . , ak } be a finite alphabet, w ∈ Σω be an α-substitutive
sequence and h : Σ → Σ∗ a non-erasing morphism. As the sequence w is α-
substitutive, there exist a morphism g : Σ → Σ∗ with dominant eigenvalue α,
a coding c : Σ → Σ and a letter a ∈ Σ such that w = c(gω(a)) and all letters
from Σ occur in gω(a). Then h(w) = h(c(gω(a))) = (h ◦ c)(gω(a))), and h ◦ c is
a non-erasing morphism. Without loss of generality, by absorbing c into h, we
may assume that c is the identity.

From h and g, we obtain an alphabet Δ, a morphism ξ, and a coding ρ as
in Definition 14. Then by Proposition 15, we have ρ(ξω([a])) = h(gω(a)). As
a consequence, it suffices to show that ρ(ξω([a])) is α-substitutive. Let M =
(Mi,j)i,j∈Σ and N = (Ni,j)i,j∈Δ be the incidence matrices of g and ξ, re-
spectively. By Definition 14 we have for all a, b ∈ Σ: |ξ([a])|[b] = |g(a)|b and
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|ξ(a)|b = |ξ(a)|[b] = 0. Hence we obtain N[b],[a] = Mb,a, Nb,a = 0 and N[b],a = 0
for all a, b ∈ Σ. After changing the names (swapping a with [a]) in N , we obtain
from Lemma 18 that N and M have the same non-zero eigenvalues, and thus
the same dominant eigenvalue. ��

4 Closure of Morphic Sequences under Transduction

In this section, we give a proof of the following theorem due to Dekking [4].

Theorem 20 (Transducts of morphic sequences are morphic). If M is a
transducer with input alphabet Σ and x ∈ Σω is a morphic sequence, then M(x)
is morphic or finite.

s t

a | aa b | bb

a | a b | b

Fig. 2. A transducer that doubles
every other letter

This proof will proceed by annotating en-
tries in the original sequence x with infor-
mation about what state the transducer is in
upon reaching that entry. This allows us to
construct a new morphism which produces
the transduced sequence M(x) as output. Af-
ter proving this theorem, we will show that
this process of annotation preserves α-substitutivity.

4.1 Transducts of Morphic Sequences Are Morphic

We show in Lemma 27 that transducts of morphic sequences are morphic. In
order to prove this, we also need several lemmas about transducers which are
of independent interest. The approach here is adapted from a result in Allouche
and Shallit [1]; it is attributed in that book to Dekking. We repeat it here partly
for the convenience of the reader, but mostly because there are some details of
the proof which are used in the analysis of the substitutivity property.

Definition 21 (τw, Ξ(w)). Given a transducer M = (Σ,Δ,Q, q0, δ, λ) and a
word w ∈ Σ∗, we define τw ∈ QQ to be τw(q) = δ(q, w). Note that τwv = τv ◦ τw.
Further, we define Ξ : Σ∗ → (QQ)ω by Ξ(w) = (τw, τh(w), τh2(w), . . . , τhn(w), . . .).

Next, we show that {Ξ(w) : w ∈ Σ∗ } is finite.

Lemma 22. For any transducer M and any morphism h : Σ → Σ∗, there are
natural numbers p ≥ 1 and n ≥ 0 so that for all w ∈ Σ∗, τhi(w) = τhi+p(w) for
all i ≥ n.

Proof. Let Σ = {1, 2, . . . , s}. Define H : (QQ)s → (QQ)s by H(f1, f2, . . . , fs) =
(fh(1), fh(2), . . . , fh(s)). When we write fh(i) on the right, here is what we mean.
Suppose that h(i) = v0 · · · vj . Then fh(i) is short for the composition fvj ◦fvj−1 ◦
· · · ◦ fv1 ◦ fv0 . Recall the notation τw from Definition 21; we thus have τi for
the individual letters i ∈ Σ. Consider T0 = (τ1, τ2, . . . , τs). We define its orbit
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as the infinite sequence (Ti)i∈ω of elements of (QQ)s given by Ti = Hi(T0) =
Hi(τ1, . . . τs) = (τhi(1), . . . , τhi(s)). Since each of the Ti belongs to the finite set

(QQ)s, the orbit of T0 is eventually periodic. Let n be the preperiod length and
p be the period length. The periodicity implies that (∗) τhi(j) = τhi+p(j) for each
j ∈ Σ and for all i ≥ n.

Let w ∈ Σ∗ and i ≥ n. Since w ∈ Σ∗, we can write it as w = σ1σ2 · · ·σm. We
prove that τhi(w) = τhi+p(w). Note that τhi(w) = τhi(σ1···σm) = τhi(σ1)···hi(σm) =
τhi(σn) ◦ · · · ◦ τhi(σ1). We got this by breaking w into individual letters, then
using the fact that h is a morphism, and finally using the fact that τuv = τu ◦ τv.
Finally we know by (∗) that for individual letters, τhi(σj) = τhi+p(σj). So τhi(w) =
τhi+p(w), as desired. ��

Definition 23 (Θ(w)). Given a transducer M and a morphism h, we find p
and n as in Lemma 22 just above and define Θ(w) = (τw , τh(w), . . . , τhn+p−1(w)).

Lemma 24. (i) Given M and h, the set A = {Θ(w) : w ∈ Σ∗ } is finite.
(ii) If Θ(w) = Θ(y), then Θ(h(w)) = Θ(h(y)).

(iii) If Θ(w) = Θ(y), then for all u ∈ Σ∗, Θ(wu) = Θ(yu).

Proof. Part (i) comes from the fact that each of the n + p coordinates of Θ(w)
comes from the finite set QQ. For (ii), we calculate:

Θ(h(w)) = (τh(w), τh2(w), . . . , τhn+p(w)) = (τh(w), τh2(w), . . . , τhn+p−1(w), τhn(w))

= (τh(y), τh2(y), . . . , τhn+p−1(y), τhn(y)) = Θ(h(y))

using by Lemma 22 and since Θ(w) = Θ(y). Part (iii) uses Θ(w) = Θ(y) as
follows:

Θ(wu) = (τu ◦ τw, τh(u) ◦ τh(w), τh2(u) ◦ τh2(w), . . . , τhn+p−1(u) ◦ τhn+p−1(w))

= (τu ◦ τy, τh(u) ◦ τh(y), τh2(u) ◦ τh2(y), . . . , τhn+p−1(u) ◦ τhn+p−1(y)) = Θ(yu) ��

Definition 25 (h). Given a transducer M and a morphism h, let A be as in
Lemma 24(i). Define the morphism h : Σ × A → (Σ × A)∗ as follows. For for
all σ ∈ Σ, whenever h(σ) = s1s2s3 · · · s�, let h((σ,Θ(w))) be defined as

(s1, Θ(hw)) (s2, Θ((hw)s1)) (s3, Θ((hw)s1s2)) · · · (s�, Θ((hw)s1s2 · · · s�−1))

By Lemma 24, h is well-defined. Notice that |h(σ, a)| = |h(σ)| for all σ.

Lemma 26. For all σ ∈ Σ, all w ∈ Σ∗ and all n ∈ N, if hn(σ) = s1s2 · · · s�,
then

h
n
((σ,Θ(w))) = (s1, Θ(hnw)) (s2, Θ((hnw)s1)) · · · (s�, Θ((hnw)s1 · · · s�−1)) .

In particular, for 1 ≤ i ≤ �, the first component of the ith term in hn(σ,Θ(w))
is si.



248 D. Sprunger et al.

Proof. By induction on n. For n = 0, the claim is trivial. Assume that it holds
for n. Let hn(σ) = s1s2 · · · s�, and for 1 ≤ i ≤ �, let h(si) = ti1t

i
2 · · · tiki

. Thus

hn+1(σ) = h(s1s2 · · · s�) = t11t
1
2 · · · t1k1

t21t
2
2 · · · t2k2

t�1t
�
2 · · · t�k�

. Then:

h(h
n
(σ,Θ(w))) = h(s1, Θ((hnw))) · · · h(s�, Θ((hnw)s1s2 · · · s�−1))

For 1 ≤ i ≤ �, we have

h(si, Θ((hnw)s1 · · · si−1))

= (ti1, Θ((hhnw)h(s1 · · · si−1))) (ti2, Θ((hhnw)h(s1 · · · si−1)ti1))
· · · (tiki

, Θ(hhnw)h(s1 · · · si−1)ti1t
i
2 · · · tiki−1))

= (ti1, Θ((hn+1w)t11t
1
2 · · · t1k1

· · · ti−1
1 ti−1

2 · · · ti−1
ki−1

)) (ti2, Θ((hn+1w)t11t
1
2

· · · t1k1
· · · ti−1

1 ti−1
2 · · · ti−1

ki−1
ti1))

· · · (tiki
, Θ((hn+1w)t11t

1
2 · · · t1ki

· · · ti−1
1 ti−1

2 · · · ti−1
ki−1

ti1 · · · tiki−1))

Concatenating the sequences h(si, Θ((hnw)s1 · · · si−1)) for i = 1, . . . , � completes
our induction step. ��

Lemma 27. Let M = (Σ,Δ,Q, q0, δ, λ) be a transducer, let h be a morphism
prolongable on the letter x1, and write hω(x1) as x = x1x2x3 · · ·xn · · · . Let
Θ be from Definition 23. Using this, let A be from Lemma 24(i), and h from
Definition 25. Then

(i) h is prolongable on (x1, Θ(ε)).
(ii) Let c : Σ × A → Σ × Q be the coding c(σ,Θ(w)) = (σ, τw(q0)). Then c is

well-defined.
(iii) The image under c of h

ω
((x1, Θ(ε)) is

z = (x1, δ(q0, ε)) (x2, δ(q0, x1)) · · · (xn, δ(q0, x1x2 · · ·xn−1)) · · · (1)

This sequence z is morphic in the alphabet Σ ×Q.

Proof. For (i), write h(x1) as x1x2 · · ·x�. Using the fact that hi(ε) = ε for all i, we
see that h((x1, Θ(ε))) = (x1, Θ(ε)) (x2, Θ(x1)) · · · (x�, Θ(x1, . . . , x�−1)) .
This verifies the prolongability. For (ii): if Θ(w) = Θ(u), then τw and τu are the
first component of Θ(w) and are thus equal. We turn to (iii). Taking w = ε in
Lemma 26 shows that h

ω
((x1, Θ(ε)) is

(x1, Θ(ε)) (x2, Θ(x1)) (x3, Θ(x1x2)) · · · (xm, Θ(x1x2 · · ·xm−1)) · · · .

The image of this sequence under the coding c is

(x1, τε(q0)) (x2, τx1(q0)) (x3, τx1x2(q0)) · · · (xm, τx1x2···xm−1(q0)) · · · .

In view of the τ functions’ definition (Def. 21), we obtain z in (1). By definition,
z is morphic. ��

This is most of the work required to prove Theorem 20, the main result of
this section.
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Proof (Theorem 20). Since x is morphic, there is a morphism h : Σ′ → (Σ′)∗,
a coding c : Σ′ → Σ, and a letter x1 ∈ Σ′ so that x = c(hω(x1)). We are to
show that M(c(hω(x1))) is morphic. Since c is computable by a transducer, we
have x = (M ◦ c)(hω(x1)), where ◦ is the wreath product of transducers. It is
thus sufficient to show that given a transducer M , the sequence M(hω(x1)) is
morphic.

The sequence z = (x1, δ(q0, ε)) (x2, δ(q0, x1)) (x3, δ(q0, x1x2)) · · · is morphic
by Lemma 27. The output function of M is a morphism λ : Σ × Q → Δ∗. By
Corollary 16, λ(z) is morphic or finite. But λ(z) is exactly M(x). ��

4.2 Substitutivity of Transducts

We are also interested in analyzing the α-substitutivity of transducts. We claim
that if a sequence x is α-substitutive, then M(x) is also α-substitutive for all M .

As a first step, we show that annotating a morphism does not change α-sub-
stitutivity.

Definition 28. Let Σ be an alphabet, A any set and w = (b1, a1) . . . (bk, ak) ∈
(Σ × A)∗ be a word. We call A the set of annotations. We write �w� for the
word b1b2 . . . bk, that is, the word obtained by dropping the annotations.

A morphism h : (Σ × A) → (Σ × A)∗ is an annotation of h : Σ → Σ∗ if
h(b) = �h(b, a)� for all b ∈ Σ, a ∈ A.

Note that the morphism h from Definition 25 is an annotation of h in this
sense. Then from the following proposition it follows that if x is α-substitutive,
then the sequence z in Lemma 27 is also α-substitutive.

Proposition 29. If x = hω(σ) is an α-substitutive morphic sequence with mor-
phism h : Σ → Σ∗ and A is any set of annotations, then any annotated mor-
phism h : Σ × A → (Σ × A)∗ also has an infinite fixpoint h

ω
((σ, a)) which is

also α-substitutive.

The proof of this proposition is in two lemmas: first that the eigenvalues of
the morphism are preserved by the annotation process, and second that if α is
the dominant eigenvalue for h, then no greater eigenvalues are introduced for h.

Lemma 30. All eigenvalues for h are also eigenvalues for any annotated version
h of h.

Proof. Let M = (mi,j)i,j∈Σ be the incidence matrix of h. Order the elements of
the annotated alphabet Σ×A lexicographically. Then the incidence matrix of h,
call it N = (ni,j)i,j∈Σ×A, can be thought of as a block matrix where the blocks
have size |A| × |A| and there are |Σ| × |Σ| such blocks in N . Note that by the
definition of annotation, the row sum in each row of the (a, b) block of N is ma,b.
To simplify the notation, for the rest of this proof we write J for |Σ| and K for
|A|. Suppose v = (v1, v2, . . . , vJ) is a column eigenvector for M with eigenvalue
α. Consider v = (v1, . . . , v1, v2, . . . , v2, . . . , vn, . . . vn). This is a “block vector”:
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the first K entries are v1, the second K entries are v2, and so on, for a total of
K · J entries. We claim that v is a column eigenvector for N with eigenvalue α.

Consider the product of row k of N with v. This is
∑K·J

j=1 nk,jvj =
∑J

b=1 vb ·
(
∑K

j=1 nk,Kb+j). Now k = Ka + r. So
∑K

j=1 nk,Kb+j is the row sum of the (a, b)

block of N and hence is ma,b. Therefore, row k of N times v is
∑J

b=1 vbma,b =
αva, since v is an eigenvector of M . Finally we note that the kth entry of v is
va by its definition. Hence multiplying v by N multiplies the kth entry of v by
α for all k.

We have shown that v is a column eigenvector of N with eigenvalue α, so
the (column) eigenvalues of M are all present in N . However, since a matrix
and its transpose have the same eigenvalues, the (column) qualification on the
eigenvalues is unnecessary. ��

If h is an annotation of h, then we have

|h(b)|b′ =
∑
a′∈A

|h((b, a)) |(b′, a′) for all b, b′ ∈ Σ and a ∈ A (2)

Lemma 31. Let h, h be morphisms such that h : (Σ × A) → (Σ × A)∗ is an
annotation of h : Σ → Σ∗. Then every eigenvalue of h with a non-negative
eigenvector is also an eigenvalue for h.

Proof. Let M = (mi,j)i,j∈Σ be the incidence matrix of h and N = (ni,j)i,j∈Σ×A

be the incidence matrix of h. Let r be an eigenvalue of N with corresponding
eigenvector v = (v(b, a))(b, a)∈Σ×A, that is, Nv = rv and v �= 0. We define a
vector w = (wb)b∈Σ as follows: wb =

∑
a∈A v(b, a). We show that Mw = rw. Let

b′ ∈ Σ, then:

(Mw)b′ =
∑
b∈Σ

Mb′,bwb =
∑
b∈Σ

(
Mb′,b

∑
a∈A

v(b, a)

)
=
∑
b∈Σ

∑
a∈A

Mb′,bv(b, a)

by (2)
=

∑
b∈Σ

∑
a∈A

( ∑
a′∈A

N(b′, a′),(b, a)

)
v(b, a) =

∑
a′∈A

∑
b∈Σ

∑
a∈A

N(b′, a′),(b, a)v(b, a)

Nv=rv
=

∑
a′∈A

rv(b′, a′) = r
∑
a′∈A

v(b′, a′) = rwb′

Hence Mw = rw. If w �= 0 it follows that r is an eigenvalue of M . Note that if
v is non-negative, then w �= 0. This proves the claim. ��

Corollary 32. Let h, h be morphisms such that h : (Σ × A) → (Σ × A)∗ is an
annotation of h : Σ → Σ∗. Then the dominant eigenvalue for h coincides with
the dominant eigenvalue for h.

Proof. By Lemma 30 every eigenvalue of h is an eigenvalue of h. Thus the domi-
nant eigenvalue of h is greater or equal to that of h. By Theorem 4, the dominant
eigenvalue of a non-negative matrix is a real number α > 1 and its correspond-
ing eigenvector is non-negative. By Lemma 30, every eigenvalue of h with a
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non-negative eigenvector is also an eigenvalue of h. Thus the dominant eigen-
value of h is also greater or equal to that of h. Hence the dominant eigenvalues
of h and h must be equal. ��

Theorem 33. Let α and β be multiplicatively independent real numbers. If v is
a α-substitutive sequence and w is an β-substitutive sequence, then v and w have
no common non-erasing transducts except for the ultimately periodic sequences.

Proof. Let hv and hw be morphisms whose fixed points are v and w, respectively.
By the proof of Theorem 20, x is a morphic image of an annotation hv of hv,
and also of an annotation hw of hw. The morphisms must be non-erasing, by the
assumption in this theorem. By Corollary 32 and Theorem 19, x is both α- and
β-substitutive. By Durand’s Theorem 6, x is eventually periodic. ��

5 Conclusion

We have re-proven some of the central results in the area of morphic sequences,
the closure of the morphic sequences under morphic images and transduction.
However, the main results in this paper come from the eigenvalue analyses which
followed our proofs in Sections 3 and 4. These are some of the only results known
to us which enable one to prove negative results on the transducibility relation
�. One such result is in Theorem 33; this is perhaps the culmination of this
paper. The next step in this line of work is to weaken the hypothesis in some of
results that the transducers be non-erasing.
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Abstract. We present here the notion of breadth-first signature of trees
and of prefix-closed languages; and its relationship with numeration sys-
tem theory. A signature is the serialisation into an infinite word of an
ordered infinite tree of finite degree. Using a known construction from
numeration system theory, we prove that the signature of (prefix-closed)
rational languages are substitutive words and conversely that a special
subclass of substitutive words define (prefix-closed) rational languages.

1 Introduction

This work introduces a new notion: the breadth-first signature of a tree (or of a
language). It consists of an infinite word describing the tree (or the language).
Depending on the direction (from tree to word, or conversely), it is either a
serialisation of the tree into an infinite word or a generation of the tree by the
word. We study here the serialisation of rational, or regular, languages.

The (breath-first) signature of an ordered tree of finite degree is a sequence
of integers, the sequence of the degrees of the nodes visited by a breadth-first
traversal of the tree. Since the tree is ordered, there is a canonical breadth-first
traversal; hence the signature is uniquely defined and characteristic of the tree.

Similarly, we call labelling the infinite sequence of the labels of the edges vis-
ited by the breadth-first traversal of a labelled tree. The pair signature/labelling
is once again characteristic of the labelled tree. It provides an effective serialisa-
tion of labelled trees, hence of prefix-closed languages.

The serialisation of a (prefix-closed) language is very close, and in some sense,
equivalent to the enumeration of the words of the language in the radix order.
It makes then this notion particularly fit to describing the languages of integer
representations in various numeration systems. It is of course the case for the
representations in an integer base p which corresponds to the signature pω, the
constant sequence. But it is also the case for non-standard numeration systems
such as the Fibonacci numeration system whose representation language has for
signature the Fibonacci word (cf. Section 4); and the rational base numeration
systems as defined in [1] and whose representation languages have periodic sig-
natures, that is, signatures that are infinite periodic words. To tell the truth, it is
the latter case that first motivated our study of signatures. In another work still
in preparation [2], we study trees and languages that have periodic signatures.

� Corresponding author.
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In the present work, we first introduce the notion of signature of trees (Sec-
tion 2) and of languages (Section 3). Then, in Section 4, we give with Theorem 1
a characterisation of the signatures of (prefix-closed) rational languages as those
whose signature is substitutive. The proof of this result relies on a correspondence
between substitutive words and automata due to Maes and Rigo [3] or Dumont
and Thomas [4] and whose principle goes back to the work of Cobham [5].

2 Signatures of Trees

Classically, trees are undirected graphs in which any two vertices are connected
by exactly one path (cf. [6], for instance). Our view differs in two respects.

First, a tree is a directed graph T = (V, Γ ) such that there exists a unique
vertex, called root, which has no incoming arc, and there is a unique (oriented)
path from the root to every other vertex. Elements of a tree get particular names:
vertices are called nodes ; if (x, y) is an arc, y is called a child of x and x the
father of y. We draw trees with the root on the left, and arcs rightwards.

Second, our trees are ordered, that is, that there is a total order on the set
of children of every node. The order will be implicit in the figures, with the
convention that lower children are smaller (according to this order).

The degree d(x) of a node is the number of children of x. A breadth-first
traversal of a tree T eventually meets every node of T if and only if all degrees
are finite. In the following, and as we are interested in trees in relation with
infinite languages (over finite alphabets), we deal with infinite trees of bounded
degree only. Since trees are ordered, there is a canonical breadth-first traversal
for every tree. We may then consider that the set of nodes of a tree is always
the set of integers N: 0 is the root and the integer i is the (i+ 1)-th node visited
by the breadth-first traversal of the tree.

It will prove to be extremely convenient to have a slightly different look at
trees and to consider that the root of a tree is also a child of itself, that is,
bears a loop onto itself. This convention is sometimes taken when implementing
tree-like structures (e.g. file systems): it makes the father function total. We call
such a structure an i-tree. It is so close to a tree that we pass from tree to i-tree
(or conversely) with no further ado.

We call signature any infinite sequence s of non-negative integers. The signa-
ture s = s0s1s2 · · · is valid if the following holds:

∀n ∈ N
n∑

i=0

si > j + 1 . (1)

Definition 1. The breadth-first signature or, for short, the signature, of a tree,
or an i-tree, T is the sequence of the degrees of the nodes of the i-tree T in the
order given by the breadth-first traversal of T .

In other words, s = s0s1s2 · · · is the signature of a tree T if s0 = d(0) + 1
and si = d(i) for every node i of T . Note that the definition implies that the
signatures of a tree and of the corresponding i-tree are the same.
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(b) L(s,λ), with λ = (012.12.1)ω

Fig. 1. The i-tree and a language whose signature is s = (321)ω

Proposition 1. A tree has a valid signature and conversely a valid signature s
uniquely defines a tree Ts whose signature is s.

The proof of Proposition 1 takes essentially the form of a procedure that
generates an i-tree from a valid signature s = s0s1s2 · · · . It maintains two
integers: the starting point n and the end point m of the transition, both initially
set to 0. In one step of the procedure, sn nodes are created, corresponding to
the integers m,m + 1, . . . , (m + sn − 1), and sn edges are created (all from n,
and one to each of these new nodes). Then n is incremented by 1, and m by sn.

The validity of s ensures that at each step of the procedure n < m, with the
exception of the first step where n = m = 0. It follows that every node is strictly
larger than its father, excepted for the root, whose father is itself. Figure 1a
shows the i-tree whose signature is (321)ω.

3 Labelled Signatures of Languages

In the sequel, alphabets are totally ordered; and we use implicitly the natural
order on digit alphabets (that is 0 < 1 < 2 < · · · ). A word w = a0a1 · · · ak−1

is increasing if a0 < a1 < · · · < ak−1. The length of a finite word w is denoted
by |w|.

A labelled (i-)tree T is an (i-)tree whose arcs hold a label taken in an alpha-
bet A. Since both T and A are ordered, the labels on arcs have to be consistent,
that is, the labels of the arcs to the children of a same node are in the same
order as the children: an arc to a smaller child is labelled by a smaller letter.

A labelled (i-)tree T defines the language of the branch labels. Conversely, a
prefix-closed language L (over an ordered alphabet) uniquely defines a labelled
(ordered) tree.

The labelling λ of a labelled tree T (labelled in A) is the infinite word in Aω

obtained as the sequence of the arc labels of T visited in a breadth-first search.



Breadth-First Serialisation of Trees and Rational Languages 255

Definition 2. Let s be a signature. An infinite word λ in Aω is consistent
with s if the factorisation of λ in the infinite sequence (wn)n∈N

of words in A∗:
λ = w0w1w2 · · · induced by the condition that for every n in N, |wn| = sn, has
the property that for every n in N, wn is an increasing word.

A pair (s,λ) is a valid labelled signature if s is a valid signature and if λ is
an infinite word consistent with s.

A simple and formal verification yields the following.

Proposition 2. A prefix-closed language L uniquely determines a labelled tree
and hence a valid labelled signature, the labelled signature of L and conversely
any valid labelled signature (s,λ) uniquely determines a labelled tree T(s,λ) and
hence a prefix-closed language L(s,λ), whose signature is precisely (s,λ).

Figure 1b shows the labelling of the i-tree whose signature is s = (321)ω by
the infinite word λ = (012 .12 .1)ω . This is of course a very special labelling:
labellings consistent with s need not be periodic.

The identification between a prefix-closed language L and the tree TL whose
branch language is L (and whose set of nodes is N) is very similar to the processes
proposed in the works of Lecomte et Rigo [7,8] for the definition of the Abstract
Numeration Systems (ANS) — without the assumption that L is rational, and
with the restriction that L is prefix-closed. Indeed, the (n + 1)-th word of L in
the radix order is the label of the path from the root 0 to the node n in TL. (The
first word of L is always ε and labels the empty path from the root to itself.)

Remark 1. A very simple tree paired with the appropriate labelling may produce
an artificially complex language. For instance, the infinite unary tree may be
labelled by a non-recursive word. This explains why a result relative to the
regularity of languages defined by signatures will always require some restriction
on the labelling. The notion of substitutive labelled signature defined in the next
Section 4 is an example of such a restriction.

4 Substitutive Signature and Rational Languages

We follow [9] for the terminology and basic definitions on substitutions. Let A
be an alphabet. A morphism σ : A∗ → A∗ is prolongable on a letter a in A
if σ(a) = au for some word u and moreover limn→+∞|σn(a)| = +∞. Then,
the sequence (σn(a))n∈N converges to an infinite word denoted by σω(a); any
such word is called purely substitutive. The image f(w) of a purely substitutive
word w by a letter-to-letter morphism f is called a substitutive word.

Definition 3. Let σ : A∗ → A∗ be a morphism prolongable on a in A and let fσ :
A∗ → D∗ be the letter-to-letter morphism defined by ∀b ∈ A, fσ(b) = |σ(b)|. The
substitutive word fσ(σω(a)) is called a substitutive signature.

Furthermore, let g : A∗ → B∗ be a morphism satisfying the following condi-
tion: ∀b ∈ A, |g(b)| = fσ(b). The pair (fσ(σω(a)), g(σω(a))) is called a substi-
tutive labelled signature.
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(a) L(r,μ): integer representations in the Fibonacci
numeration system.
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(b) A(r,μ): automaton
accepting L(r,μ).

Fig. 2. The Fibonacci signature r = σω(a) with σ(a) = ab and σ(b) = a

The next lemma is a direct consequence of the fact that if σ denotes a mor-
phism prolongable on a and if w denotes a prefix of σω(a), then |σ(w)| > |w|.

Lemma 1. A substitutive signature is valid.

Example 1 (The Fibonacci signature). The Fibonacci word is the purely substi-
tutive word σω(a) defined by σ(a) = ab and σ(b) = a:

σω(a) = abaababaabaab · · ·

Hence the substitutive signature defined by σ is

r = fσ(σω(a)) = 2122121221221 · · ·

Let g be the morphism defined by g(a) = 01 and g(b) = 1 defining the la-
belling μ = g(σω(a)) (which is consistent with r):

μ = g(σω(a)) = 01.0.01.01.0.01.0.01.01.0.01.01.0 . . .

The language L(r,μ), as shown at Figure 2a, is the language of integer represen-
tations in the Fibonacci numeration system.

Theorem 1. A prefix-closed language is rational if and only if its labelled sig-
nature is substitutive.

The proof of this theorem relies on a correspondence between finite automata
and substitutive words used by Rigo and Maes in [3] (cf. also [8, Section 3.4])
to prove the equivalence between two decision problems. A similar construction
was used by Dumont and Thomas in [4] to define the prefix-suffix graph.

We give here the proof of one direction in detail, reformulated into the next
proposition. The other direction is analogous.
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Fig. 3. The automaton A(θ,h) accepting the language L(s,λ) shown at Figure 1b
with θ(a) = abc, θ(b) = ab, θ(c) = c, h(a) = 012, h(b) = 12, h(c) = 1

Proposition 3. If (s,λ) is a valid substitutive labelled signature, then L(s,λ) is
a rational language.

Proof. Let σ : A∗ → A∗ such that s = fσ(σω(a)) and g : A∗ → B∗ such
that λ = g(σω(a)). Since we are using two alphabets at the same time, a, b, c
will denote letters of A and x, y letters of B.

Let A(s,λ) = 〈A,B, δ, a, A 〉 be the automaton whose set of states is A; the
alphabet is B; the initial state is a; all states are final; and the transition function
is defined as follows. For every b in A, let k = |σ(b)| = |g(b)|. From b, there are k
outgoings transitions and for every i, 1 � i � k, b y−−→ c, where c is the i-th letter
of σ(b) and y is the i-th letter of g(b). Figure 2b shows the automaton computed
from the Fibonacci signature; see Figure 3 for the signature of Example 2 below.

Note that since the morphism σ is prolongable on a, the automaton A(s,λ)

features a loop a x−−→ a on the initial state whose label x is the first letter
of g(a). This loop induces that L(A(s,λ)) is of the form x∗L and leading x’s
serve the same role as leading 0’s in usual numeration systems. We denote by L
the language containing the words of L(A(s,λ)) that does not start with an x.
Proving that L(A(s,λ)) has (s,λ) for signature amounts to prove that if wi

denotes the (i + 1)-th word of L in the radix order, then wi reaches the state
corresponding to the (i + 1) letter of σω(a).

Let b be a letter of A, hence a state of A(s,λ). The word σ(b) is exactly the
sequence of the states that are direct successors of b in A(s,λ) in the right order
that is, a successor by a smaller label is before a successor by a larger label. It
follows that the word σ(σ(b)) is the sequence of the states that are reachable
from b in two steps and once again, in the right order. An easy induction yields
that σi(b) is the sequence of the states reachable in exactly i steps.

If σ(a) = au, then the words of length 1 of L reach the states of u (and the
empty word reaches the state a). An easy induction yields that the words of
length i belonging to L reach the sequence of states σi(u). Hence the words of L
taken in the radix order reach the state sequence auσ(u)σ2(u)σ3(u) · · · which
is equal to σω(a).

Remark 2. As we said, our view on a prefix-closed rational language L essentially
amounts to considering L as an ANS, in the sense of [7,8]. The consequence of
Theorem 1 is to associate with L a substitution σL. In [4], Dumont and Thomas
described the numeration system associated with a substitution σ. It can be
derived from the construction of Theorem 1 that the ANS L may be mapped
onto the Dumont-Thomas numeration system associated with σL.
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5 On Ultimately Periodic Signature

Let s = uvω be an ultimately periodic word over the alphabet {0, 1, . . . , k}; we
call growth ratio of v, denoted by gr(v), the average of the letters of v:

gr(v) =

∑|v|−1
i=0 v[i]

|v| .

We treat here the case where gr(v) is an integer that is, when the sum of the
letters of v is a multiple its length. In this case, uvω is a substitutive signature.

Proposition 4. If s denotes an ultimately periodic valid signature whose growth
ratio is an integer, then s is a substitutive signature.

Proof. Let s = uvω be an ultimately periodic signature. We write k = |u|, n = |v|
and denote by A an alphabet whose (k + n) letters are denoted as follows.

A = B ( C where B = {b0, b1, . . . , b(k−1)} and C = {c0, c1, . . . , c(n−1)} .

The letters of B correspond to positions of u and those of C to positions of v.
Let σ : A∗ → A∗ be a morphism defined implicitly by

σ(b0b1 · · · b(k−1)c0c1 · · · c(n−1)) is prefix of b0b1 · · · b(k−1)(c0c1 · · · c(n−1))
ω (2a)

∀i < k |σ(bi)| = ui (2b)

∀i < n |σ(ci)| = vi (2c)

Let us denote by u = b0b1 · · · b(k−1) and by v = c0c1 · · · c(n−1), hence, re-
spectively from Equations 2b and 2c, fσ(u) = u and fσ(v) = v. Let i and j
be the two integers such that σ(u) = u(v)ic0 · · · c(j−1). Equation 2c implies
that |σ(v)| = n× gr(v) hence, from Equation 2a,

σ(v) = cj · · · c(n−1)(v)gr(v)−1c0 · · · c(j−1) .

It follows that u(v)ω is a fixed point of σ.
It remains to prove that the morphism σ is prolongable on b0 or, more pre-

cisely, that limn→+∞|σn(b0)| = +∞. Let us denote by w any prefix of u(v)ω and
prove that |σ(w)| > |w|. Since w is a prefix of u(v)ω, fσ(w) is a prefix of s, and
since s is valid, the sum of the letters of fσ(w) is strictly greater than |w|. From
the definition of fσ, |σ(w)| is equal to the sum of the letters of fσ(w), hence is
strictly greater than |w|.
Example 2. The purely periodic signature s = (321)ω is the substitutive signa-
ture fθ(θω(b0)) where θ is defined by θ(c0) = c0c1c2, θ(c1) = c0c1 and θ(c2) = c2.
Figure 3 shows the automaton A(θ,h) accepting L(s,λ) (shown at Figure 1b)
where λ = h(θω(c0))) with h(c0) = 012, h(c1) = 12 and h(c2) = 1. This lan-
guage consists of non-canonical representations of the integers in base 2 (that
is, the growth ratio of s): the (n + 1)-th word1 of L(s,λ) in the radix order is a
word dndn−1 · · · d0 over the alphabet {0, 1, 2} and its binary value

∑n
i=0 di2

i is
equal to n.

1 Recall that we are ignoring leading 0’s, hence the (n + 1)-th word of L(s,λ) is the
one labelling the path 0 −→ n in Figure 1b.
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6 Conclusion and Future Work

In this work, we introduced a way of effectively describing infinite trees and
languages by infinite words using a simple breadth-first traversal. Since this
transformation is essentially one-to-one, it is natural to wonder which class of
words is associated with which class of languages.

In this first work on the subject, we have proved that rational languages are
associated with (a particular subclass of) substitutive words. We also proved that
ultimately periodic signatures whose growth ratio is an integer are substitutive,
and hinted their link to integer base numeration systems.

In a forthcoming paper [2], we study the class of languages associated with
periodic signatures whose growth ratio is not an integer and how they are re-
lated to the representation language in rational base numeration systems. In the
future, our aim is to further explore this relationship by means of the notion of
direction, that extends the notion of growth ratio to aperiodic signatures.

Acknowledgements. The authors are grateful to the referee who drew their
attention to the work of Dumont and Thomas.
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Abstract. We consider systems of interacting finite automata. On the
one hand, we look at automata systems consisting of a small constant
number of synchronous and autonomous finite automata that share a
common input and communicate with each other as weakly parallel
models. On the other hand, we consider cellular automata consisting
of a huge number of interacting automata as massively parallel systems.
The communication in both types of automata systems is quantitatively
measured by the number of messages sent by the components. In cellular
automata it is also qualitatively measured by the bandwidth of the com-
munication links. We address several aspects concerning the complexity
of such systems. In particular, fundamental types of communication are
considered and the questions of how much communication is necessary
to accept a certain language and whether there are communication hier-
archies are investigated. Since even for systems with few communication
many properties are undecidable, another question is to what extent the
communication has to be limited in order to obtain systems with decid-
able properties again. We present some selected results on these topics
and want to draw attention to the overall picture and to some of the
main ideas involved.

1 Introduction

Parallel computational models are appealing and widely used in order to describe,
understand, and manage parallel processes occurring in real life. One principal task
in order to employ a parallel computational model in an optimal way is to under-
stand how cooperation of several processors is organized optimally. To this end, it
is essential to know which communication and which amount of communication
must or should take place between several processors. From the viewpoint of en-
ergy and the costs of communication links, it would be desirable to communicate
a minimal number of times with a minimum amount of information transmitted.
On the other hand, it would be interesting to know how much communication is
necessary in a certain parallel model to accomplish a certain task.

Whenever several heads of a device are controlled by a common finite-state
control, one may suppose that the heads are synchronous and autonomous finite
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automata that communicate their states in every time step. Similarly, for the
massively parallel model of cellular automata, one may assume that every cell
communicates its current state to its neighbors in every time step. From this
viewpoint it is almost self-evident to limit the communication allowed to address
the problems mentioned above.

Here we measure the communication in automata systems in two ways,
namely, quantitatively and qualitatively. First, the number of messages allowed
to be sent by the components is limited depending on the length of the input,
where we can distinguish between the total number of messages and the number
of messages between each two components. Clearly, the communication mode
plays a crucial role when posing these restrictions. Second, the bandwidth of the
communication links between the components can be restricted as well, that is,
the number of different messages is limited. In the following we address several
aspects concerning the complexity of such communication restricted devices.

In Section 2, we consider automata systems consisting of a few number of
interacting finite automata. We distinguish two types of communication. First,
we look at systems which communicate by broadcasting messages and we can
present a finite hierarchy with regard to the number of messages sent. Concern-
ing decidability questions, we obtain undecidability if the number of messages
broadcast is at least logarithmic with respect to the length of the input, but
we have decidability in case of a constant number of messages. In the second
part, we consider systems which communicate by requesting information from
other components. For such systems we yield an infinite hierarchy concerning
the number of messages sent and obtain similar undecidability results.

In Section 3, we restrict communication in the massively parallel model of
cellular automata. First, we investigate the qualitative restriction of a limited
bandwidth for the messages transmitted. The main result here is that cellular
automata communicating k different messages are more powerful than those
which are allowed to communicate at most k−1 different messages only. Second,
we consider the quantitative restriction to the number of messages sent and
distinguish between the maximum of messages sent between two cells and the
sum of all such messages. Again, it is possible to establish proper hierarchies with
respect to the number of messages sent. Finally, we look at cellular automata
which are qualitatively and quantitatively communication restricted. It turns out
that even such automata with minimal communication are still very powerful
which is demonstrated by the fact that almost all commonly studied decidability
question are undecidable.

The reader is assumed to be familiar with the basic notions of automata
theory as contained, for example, in [7, 9]. In the present paper we will use the
following notational conventions. We denote the set of nonnegative integers by N.
An alphabet Σ is a non-empty finite set, its elements are called letters or symbols.
We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted by wR

and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for strict
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inclusions. The family of languages accepted by devices of type X is denoted
by L (X).

2 Weakly Parallel Systems

One of the simplest systems that could be called parallel is a device consisting of
some constant number of synchronous and autonomous finite automata that may
communicate with each other. Basically, here we distinguish two fundamental
types of communication. On the one hand, the single automata can broadcast
messages to other components and, on the other hand, the single automata can
request information of other components.

2.1 Broadcasting Messages

When systems of synchronous and autonomous finite automata communicate
by broadcasting messages, several technical aspects have to be considered. For
example, is it allowed that more than one component broadcast messages at
the same time? If yes, what happens at the recipients? Is only one message
processed? If yes, which one? Or else are all messages processed? If yes, in which
order or in parallel? In this subsection we dodge these problems by starting our
considerations with very simple systems consisting of two one-way components
only.

A one-way two-party finite automata system (see Figure 1) is a device of
two finite automata working independently on a common read-only one-way
input tape. The automata communicate by broadcasting messages. The transi-
tion function of a single automaton depends on its current state, the currently
scanned input symbol, and the message currently received from the other au-
tomaton. Both automata work synchronously and the messages are delivered
instantly.

� �
Q1

Q2

Fig. 1. A two-party finite automata system

Formally, we define a deterministic one-way two-party finite automata system
(DFAS(2)) as a construct M = 〈Σ,B,�,�, A1, A2, 〉, where Σ is the finite set
of input symbols, B is the set of possible messages, � /∈ Σ and � /∈ Σ are the
left and right endmarkers, and each Ai = 〈Qi, Σ, δi, μi, q0,i, Fi〉, i ∈ {1, 2}, is ba-
sically a deterministic finite automaton with state set Qi, initial state q0,i ∈ Qi,
and set of accepting states Fi ⊆ Qi. Additionally, each Ai has a broadcast func-
tion μi : Qi × (Σ ∪ {�,�}) → B ∪ {⊥} which determines the message to be
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sent, where ⊥ /∈ B means nothing to send, and a (partial) transition function
δi : Qi × (Σ ∪ {�,�})× (B ∪ {⊥}) → Qi × {0, 1}, where 1 means to move the
head one square to the right and 0 means to keep the head on the current square.

The automata A1 and A2 are called components of the system M . Initially, the
input is presented on the tape in between the endmarkers, and both components
are in their initial states at the left endmarker. Whenever the transition function
of (at least) one of the single automata is undefined the whole systems halts. The
input is accepted if at least one of the automata is in an accepting state at this
moment. To study the impact of communication in DFAS(2), the communica-
tion is measured by the total number of messages sent during a computation,
where it is understood that ⊥ means no message and, thus, is not counted. Let
f : N → N be a mapping. If all w ∈ L(M) are accepted with computations
where the total number of messages sent is bounded by f(|w|), then M is said
to be communication bounded by f . We denote the class of DFAS(2) that are
communication bounded by f by (f)-DFAS(2).

The next example reveals that devices allowed to send just one message during
a computation can accept non-regular languages.

Example 1. The language { anbn | n ≥ 1 } belongs to L ((1)-DFAS(2)).
The principal idea of the construction is that both components move their

heads with different speeds. The first component moves in every time step, while
the second component moves in every other time step. The first component sends
a message when it arrives at the right endmarker. Now the second component
halts and accepts if and only if it receives the message at the first symbol b. ��

A straightforward generalization of Example 1 shows that another single
communication step strengthens the computational capacity so that even non-
context-free languages are accepted. In particular, the language {anbncn | n ≥ 1}
belongs to L ((2)-DFAS(2)). More general, any DFAS(2) can be simulated by
a one-way two-head finite automaton in a straightforward manner. Therefore,
the family L (DFAS(2)) is a proper subclass of the complexity class L. How-
ever, the witness languages from above are semilinear. In [8] it has been shown
that DFAS(2) that communicate in every time step accept non-semilinear lan-
guages. So, the question arises how much communication is necessary at all to
accept a non-semilinear language. An upper bound can be derived from a result
in [23]. The language Lexpo = { a20ba21b · · · ba2m | m ≥ 1 } is accepted by some
(O(log(n)))-DFAS(2)), where the components communicate only when a b or the
right endmarker is reached. Similarly, Lpoly = { aba3ba5b · · · ba2m+1 | m ≥ 0 }
belongs to L ((O(

√
n))-DFAS(2)). By means of Kolmogorov arguments, variants

of these languages and the copy language {wcw | w ∈ {0, 1}∗ } can be used to
separate the upper three levels of the finite hierarchy

L ((O(1))-DFAS(2)) ⊂ L ((O(log(n)))-DFAS(2)) ⊂
L ((O(

√
n))-DFAS(2)) ⊂ L ((O(n))-DFAS(2)).

Concerning the separation of the first two levels and a lower bound for the
communication necessary to accept non-semilinear languages, a simulation result
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from [23] is of tangible advantage. In particular, it reveals that any (k)-DFAS(2)
can effectively be simulated by a deterministic (r, s)-reversal bounded two-way
k-counter machine, where k, r, and s are constant. Basically, such a machine
is a device with a finite-state control, a two-way read-only input head, and k
counters. A move consists of moving the input head a position to the right, to
the left, or to keep it at its current position, adding −1, 0, or +1 to each counter,
and changing the state. The machine can test the counters for zero. The input
is accepted if the device eventually halts in an accepting state. The machine is
said to be (r, s)-reversal bounded if in every accepting computation the input
head reverses its direction at most r times and the content in each counter
alternately increases and decreases by at most s times. In [10] these machines
are formally defined and studied. In particular, it is shown that any language
which is accepted by a deterministic reversal-bounded two-way finite-counter
machine has a semilinear Parikh image. Together with the witness languages
from above, this separates the first two levels of the hierarchy. Moreover, any
unary language from L ((O(1))-DFAS(2)) is regular.

We continue this subsection with a focus on the edge between decidability and
undecidability. The question is to what extent communication has to be reduced
in order to regain the decidability of certain problems. By reduction of the cor-
responding problems for two-way cellular automata [14] one can show that the
problems of testing emptiness, finiteness, and infiniteness are not semidecidable
for a given (O(log(n)))-DFAS(2). The undecidability results for cellular automata
have been shown in [24]. A further reduction of these non-semidecidable problems
proves that also the problems of testing inclusion, equivalence, regularity, and con-
text-freeness are not semidecidable for a given (O(log(n)))-DFAS(2). However,
the edge between decidability and undecidability is crossed when the communi-
cation is reduced to be constant. Another result in [10] says that the properties
emptiness, finiteness, inclusion, and equivalence are decidable for deterministic
reversal-bounded two-way finite-counter machines. Due to the effectiveness of the
simulation result mentioned above they are decidable for (O(1))-DFAS(2) as well.

Finally, we conclude the subsection with some deep results from [11, 12]
dealing mostly with deterministic two-way multi-party finite automata systems
(2DFAS(k)). In these models each of the k components may also move to the left.
If more than one component broadcasts a message at the same time, all compo-
nents receive all messages in parallel. In [11] it is shown that there are gaps in
the hierarchy of message complexity. For one-way devices there is no language
accepted by some DFAS(k) that requires more than constant, that is ω(1), and
less than logarithmic, that is o(log(n)), messages to be sent. For two-way devices
there is a gap between ω(1) and o((log log log(n))c), where c is a constant. Solely
for two-way devices, in [12] infinite communication hierarchies are shown. On
the one hand, increasing a constant number of messages allowed by two gives a
strictly stronger device: L ((m− 1)-2DFAS(k)) ⊂ L ((m+ 1)-2DFAS(k)), for all
m ≥ 1. On the other hand, there is such a hierarchy between the communica-
tion bounds log log(n) and n. Furthermore, it is proved that the copy language
{wcw | w ∈ {0, 1}∗ } is not accepted by any two-way system with an arbitrary
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number of components if the communication is bounded by o(n). On the other
hand, there are languages that require a superlinear number of communications.

2.2 Requesting Messages

When systems of synchronous and autonomous finite automata communicate by
requesting messages, some of the technical issues for broadcasting messages can
be avoided. For example, if more than one component requests information from
other components, there is no conflict a priori. Particular models based on this
type of communication are the so-called parallel communicating finite automata
systems which were introduced in [25] as a simple automaton model of parallel
processes and cooperating systems, see also [1, 2, 5]. As before, the input is read
and processed in parallel by several one-way finite automata. The communication
takes place in such a way that a component can request the current state from
another component, and is set to that state after receiving it whereby its former
state is lost. If there is just one component that is allowed to query for states,
the system is said to be centralized. A further distinction of the models can be
made dependent on whether each automaton sending its current state is reset
to its initial state (returning mode) or stays in its state (non-returning mode).
Recently, these communication protocols have been refined in [35] and further
investigated for the case of parallel communicating systems of pushdown au-
tomata [28]. There, the communication process is performed in an asynchronous
manner, reflecting the technical features of many real communication processes.
Before we turn to discuss results on the degree of communication in such devices,
we present more details of the informal definition of the automata systems.

A deterministic parallel communicating finite automata system of degree k
(DPCFA(k)) is a device of k deterministic finite automata working indepen-
dently on a common read-only one-way input tape. The transition function of a
single automaton depends on its current state and the currently scanned input
symbol. All automata work synchronously. Each computation step of the whole
system consists of two phases. Let {q1, q2, . . . , qk} be a set of distinguished query
states. In a first phase, all components are in non-query states and perform an
ordinary (non-communicating) step independently. The second phase is the com-
munication phase during which components in query states receive the requested
states as long as the sender is not in a query state itself. That is, if a component i
is in query state qj , then component i is set to the current state of component j.
This process is repeated until all requests are resolved, if possible. If the requests
are cyclic the computation halts. Moreover, whenever the transition function of
(at least) one of the single automata is undefined the whole systems halts as
well. As before, the input is accepted if at least one of the components is in an
accepting state when the system halts.

Communication in nondeterministic PCFA was studied in [27], where the
amount of communication necessary to accept a language is considered as a
dynamical measure of descriptional complexity as follows: The degree of com-
munication of an accepting computation is defined as the number of queries
posed. The degree of communication Comm(w) of a nondeterministic PCFA M
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on input w is defined as the minimal number of queries posed in accepting
computations on w. The degree of communication Comm(M) of a PCFA M is
then defined as sup{Comm(x) | w ∈ L(M) }, and the degree of communica-
tion of a language (with respect to a PCFA of type X) is the infimum of the
degrees of communication taken over all PCFA of type X that accept the lan-
guage. It is shown in [27] that this measure cannot be algorithmically computed
for languages accepted by nondeterministic centralized or non-centralized non-
returning PCFA. The computability status of the degree of communication for
the other types of PCFA languages as well as for all types of PCFA is stated as
open question.

In [3] deterministic centralized returning PCFA are studied, where the de-
gree of communication is bounded by a function f in the length of the input
word ((f)-DRCPCFA(k)). The example languages Lexpo and Lpoly from the
previous subsection are similarly accepted as before. We have the containment
Lexpo ∈L ((O(log(n)))-DRCPCFA(2)) and Lpoly ∈ L ((O(

√
n))-DRCPCFA(2)).

So, again, two components are sufficient to accept non-semilinear languages.
However, in order to separate levels in a communication hierarchy the witnesses
are more sophisticated. The language of the next example combines the well-
known non-context-free copy language with Lexpo.

Example 2. The language

Lexpo,wbw = { $w1w2 · · ·wmba2
0

w1w1a
21w2w2 · · · a2

m−1

wmwm& |
m ≥ 1, wi ∈ {0, 1}, 1 ≤ i ≤ m }

is accepted by some (O(log(n)))-DRCPCFA(3).
We call the sole component allowed to request communication master. The

idea of the construction is as follows. The second non-master component initially
passes over the $ and, then, it reads a symbol, remembers it in its state, and
loops without moving. Whenever the component is reset into its initial state after
a communication, it reads the next symbol, remembers it, and loops without
moving. This component is used by the master to match the wi from the prefix
with the wi from the suffix.

The first non-master component initially passes over the prefix $w1w2 · · ·wm,
the b, and the adjacent infix aw1w1aaw2w2. On its way it checks whether the
neighboring symbols wi are in fact the same. If the second check is successful
the component enters some state sww. Exactly at that time it has to be queried
by the master, otherwise it blocks the computation. Subsequently, it repeatedly
continues to read the input, where each occurrence of neighboring symbols wi

is checked for equality, which is indicated by entering state sww again. This
component is used to verify that all neighboring symbols wi in the suffix are
equal and, by the master, to check the lengths of the a-blocks. After being reset
to its initial state, the component takes a number of time steps equal to the
length of the next a-block plus 2 to get on the first symbol after the next wiwi.



Measuring Communication in Automata Systems 267

The master initially passes over the prefix $w1w2 · · ·wm, the b, and the first a.
Then it reads the first of two adjacent symbols wi and requests the state of
the second non-master component (the equality of the symbols wi has already
been checked by the first non-master component). It receives the information
about the matching symbol wi from the prefix. If this symbol is the same as the
next input symbol, then the computation continues by requesting the state of
the first non-master component. If the master receives state sww the length of
the first two a-blocks are verified. Now the master repeatedly continues to read
the input, where on each occurrence of neighboring symbols wi the equality with
the corresponding symbol in the prefix is checked by querying the second non-
master component and the lengths of the a-blocks are compared by querying
the other non-master component. After that, it takes a number of time steps
equal to the length of the adjacent a-block plus 2 to request the state of the
first non-master component again. Finally, when the master has checked the last
symbol wm and gets the information that the first non-master component has
read symbol &, it queries the second non-master component. If it receives a b,
the input is accepted. In all other cases it is rejected.

The length of a word w ∈ Lexpo,wbw is |w| = 3m+3+
∑m−1

i=0 2i = 2m+3m+2,
for some m ≥ 1. In its accepting computation, two communications take place
for every wiwi and one more communication on the endmarker. So there are
2m + 1 communications which is of order O(log(|w|)). ��

From the combination of the copy language with Lpoly one gets another wit-
ness language. Again, by Kolmogorov arguments lower bounds on the commu-
nication necessary to accept these languages can be established. So, basically, a
finite hierarchy as in the case of broadcasting messages has been derived [3]:

L ((O(log(n)))-DRCPCFA(k)) ⊂ L ((O(
√
n))-DRCPCFA(k))

for every k ≥ 3, and

L ((O(
√
n))-DRCPCFA(k)) ⊂ L ((O(n))-DRCPCFA(k))

for every k ≥ 2. However, for at least four components, an infinite strict hierarchy
of language classes in between the logarithm and the square root can be shown.
The ingredients of the proof are functions f : N→ N with f ∈ Θ(nr), r ≥ 1, that
are time-computable by one-way cellular automata [4] and valid computations
of such devices (see, for example, [13, 14]). So, let Mr be a one-way cellular
automaton that time-computes f ∈ Θ(nr). Then the language Lr is designed as

Lr = { $1x1x2 · · ·x�$2w
′
1w

′
2 · · ·w′

mwm+1 · · ·w�$3

w′
1w

′
2 · · ·w′

mwm+1 · · ·w�$4a
20bba2

1

bb · · ·a2
m−1

bb& | m ≥ 1,

x1x2 · · ·x� is the valid computation of Mr on input am,

w′
i ∈ {0′, 1′}, 1 ≤ i ≤ m, wi ∈ {0, 1},m + 1 ≤ i ≤ � }.
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Let r ≥ 1 be an integer. Then Lr belongs to L ((O(log(n)r+2))-DRCPCFA(4))
but does not belong to the family L ((O(log(n)r))-DRCPCFA(4)). The proofs
of these results do not rely on a specific number of components as long as at
least four components are provided (see [3] for details). Therefore, the hierarchy
follows for any number of components k ≥ 4:

L ((O(log(n)r))-DRCPCFA(k)) ⊂ L ((O(log(n)r+2))-DRCPCFA(k)).

Next we come back to decidability issues. The fact that emptiness, finiteness,
infiniteness, universality, inclusion, equivalence, regularity, and context-freeness
are not semi-decidable for (O(log(n)))-DRCPCFA(k) if k ≥ 4, nicely comple-
ments the situation for devices that broadcast messages. So, let us turn to ques-
tions concerning the decidability or computability of the communication bounds.
In principle, we deal with three different types of problems. The first type is to
decide for a given DRCPCFA(k) M and a given function f whether or not M
is communication bounded by f . The problem has been solved negatively for all
non-trivial communication bounds and all degrees k ≥ 3:

Let k ≥ 3 be any degree, f ∈ o(n), and M be a DRCPCFA(k). Then it is not
semi-decidable whether M is communication bounded by f .

The second type of problems we are dealing with has been raised in [27]. The
question is whether the degree of communication Comm(M) is computable for a
given nondeterministic PCFA(k) M . Since Comm(M) is either finite or infinite,
in our terms the question is to decide whether or not M is communication
bounded by some function f ∈ O(1) and, if it is, to compute the precise constant.
Again, the problem has been solved negatively for all degrees k ≥ 3 in [3]:

Let k ≥ 3 be an integer. Then the degree of communication Comm(M) is not
computable for DRCPCFA(k).

The third type of problems we are dealing with is now the question whether
the degree of communication is computable for the language accepted by a given
nondeterministic PCFA(k) M . In [27] it is shown that CommCPCFA(L(M)) for
some nondeterministic non-returning centralized PCFA M is not computable.
However, the degree is not even computable for DRCPCFA [3]:

Let k ≥ 3. Then the degree of communication CommDRCPCFA(k)(L(M)) is
not computable.

3 Massively Parallel Systems

In this section we turn to parallel automata systems at the opposite end of the
parallelism scale. While in the previous section a finite number of components
process inputs of arbitrary lengths, here so-called cellular automata are consid-
ered, where the number of available processing elements, the cells, is given by
the length of the input. So, for every symbol of the input string we have one cell.
For this reason such devices are often called massively parallel.

Before we discuss communication issues, we present more details of the devices
in question. A two-way cellular automaton (CA) is a linear array of identical de-
terministic finite automata, called cells, that are identified by natural numbers.
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Except for the outermost cells each one is connected to its both nearest neigh-
bors. In general, the state transition depends on the current state of each cell
and on the current states of its neighbors. With an eye toward restrictions of
the communication, we have the viewpoint that the state transition depends on
the current state of each cell and the messages that are currently sent by its
neighbors. The possible messages are formalized as a set of possible communi-
cation symbols. If this set is equal to the state set, the general case applies. The
messages to be sent by a cell depend on its current state and are determined by
so-called communication functions. The two outermost cells receive a boundary
symbol # on their free input lines once during the first time step from the outside
world. Subsequently, these input lines are never used again. The state changes
take place simultaneously at discrete time steps. The input mode for cellular au-
tomata is called parallel. One can suppose that all cells fetch their input symbol
during a pre-initial step (see Figure 2).

· · ·# a1 a2 a3 an #

Fig. 2. A two-way cellular automaton

By providing a set of communication symbols the definition is more general
than really needed in the following, since here we are interested in the number of
messages sent only. However, the definition allows also to restrict the bandwidth
of the communication links by bounding the set of communication symbols and,
thus, fits well to the devices investigated in [15–17, 30–32, 36].

An input w is accepted by a CA M if at some time i during the course of its
computation the leftmost cell enters an accepting state. If all w ∈ L(M) are ac-
cepted with at most |w| time steps, then M is a real-time CA. The corresponding
family of languages is denoted by Lrt(CA).

An important subclass of cellular automata are so-called one-way cellular
automata (OCA), where the flow of information is restricted to one way from
right to left. For a definition it suffices to require that each cell is now connected
to its neighbor to the right only (see, for example, [13, 14] for more on cellular
automata).

There are natural possibilities to measure the communication in cellular au-
tomata computations [20]. On the one hand, the number of different messages
that can be sent over the inter-cell links can be bounded, say, by some constant k.
Such devices are called cellular automata with k-message restricted inter-cell
communication, and are abbreviated as CAk and OCAk. On the other hand, the
communication can be measured by the number of uses of the links between cells.
It is understood that whenever a communication symbol is sent, a communica-
tion takes place. Here we do not distinguish whether either or both neighboring
cells use the link. For computations we now distinguish the maximal number of
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communications between each two cells and the total number of communica-
tions. Let f : N → N be a mapping. If all w ∈ L(M) are accepted with compu-
tations such that any link between two neighboring cells is used at most f(|w|)
times, then M is said to be max communication bounded by f (MC(f)-CA,
MC(f)-OCA). Similarly, if all w ∈ L(M) are accepted with computations where
the total number of all communications does not exceed f(|w|), then M is said
to be sum communication bounded by f (SC(f)-CA, SC(f)-OCA).

3.1 Cellular Automata with Limited Inter-Cell Bandwidth

The most restricted setting of the bandwidth of the communication links be-
tween two cells is to allow one sole message only. However, these devices are still
powerful enough to solve problems such as the firing squad synchronization prob-
lem in optimal time [26]. Moreover, it is known [31, 32] that one-message CA1

can accept rather complicated non-semilinear unary languages in real time, for
example, words whose lengths are Fibonacci numbers. On the other hand, there
are regular languages which cannot be accepted by CAk, for k ≥ 1 [22]. So, the
family Lrt(CAk) is incomparable with the regular and context-free languages.
However, if the communication channels of the even one-way cellular automata
have a sufficient capacity, the regular languages are accepted. Essentially, every
regular language over a (k− 1)-letter alphabet is accepted by a real-time OCAk.
Basically, the idea of the construction is to simulate a deterministic finite au-
tomaton accepting the regular language in all and, thus, in the leftmost cell. The
input of the OCAk is continuously shifted to the left in order to feed the deter-
ministic finite automaton. To this end, (k − 1) different messages are sufficient.
In addition, one message is emitted by the right boundary cell that signals the
end of the input.

We conclude that the limitation of the bandwidth is a serious restriction of the
devices. So, the question arises whether the limitations yield gradually increasing
restrictions of the computational capacities. The question has been answered in
the affirmative for OCA in [36] and for CA in [22]. The infinite, dense, and
strict hierarchy depending on the number of messages for the two-way case is a
consequence of the proper inclusion Lrt(CAk) ⊂ Lrt(CAk+1).

Comparing one-way with two-way information flow, the situation for the unre-
stricted case transfers to devices with limitations of the bandwidth. Let k ≥ 2 be
a constant. Then Lrt(OCAk) ⊂ Lrt(CAk). The inclusion follows for structural
reasons. For the strictness, it is well known that all unary languages belonging
to Lrt(OCA) are regular [29]. Therefore, it suffices to show that the non-regular
language L = { a2x+2x | x ≥ 1 } belongs to Lrt(CA2) [22].

It is a long-standing open problem whether linear-time cellular automata are
more powerful than real-time cellular automata. Since linear-time CAk can ac-
cept all regular languages whereas real-time CAk cannot, we can answer this
question in the affirmative for the case of restricted communication. Further
results on cellular automata and iterative arrays with limited inter-cell commu-
nication can be found, for example, in [17–19, 21].
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3.2 Max and Sum Communication Bounded Cellular Automata

Here we consider cellular automata where the communication is quantitatively
measured by the number of uses of the links between cells. A simple example
that shows the principal idea of limiting the maximal number of communications
appearing between each two cells to a constant deals with signals as follows.

Example 3. The language { anbn | n ≥ 1 } belongs to Lrt(MC(O(1))-OCA).
The acceptance of the language is governed by two signals. The rightmost

cell sends a signal B with maximum speed to the left whereas the unique cell
which has an a in its input and has a right neighbor with a b in its input sends
a signal A with speed 1/2 to the left. When both signals meet in a cell, an
accepting state is entered. In this way, { anbn | n ≥ 1 } is accepted and each cell
performs only a finite number of communications. ��

By a straightforward generalization of the above construction with suit-
able signals having a certain speed it can be shown that { anbncn | n ≥ 1 },
{ anbmcndm | n,m ≥ 1 }, and { an1an2 · · ·ank | n ≥ 1 }, for k ≥ 1 and differ-
ent symbols a1, a2, . . . , ak, are accepted by real-time MC(O(1))-OCA. The lan-
guages are not context free. Moreover, though this technique is not applicable
directly, { anbn1cmbn2 | n,m ≥ 1 ∧ n1, n2 ≥ 0 ∧ n1 + n2 = n }, and language
Lk = { anw | n ≥ 1∧w ∈ (b∗c∗)kb∗ ∧ |w|b = n } belong to Lrt(MC(O(1))-OCA)
as well [19].

Next, we turn to identify the computational capacity of communication
bounded real-time devices more generally. In [33, 34] two-way cellular automata
are considered where the number of proper state changes is limited. Similar as
in the present paper the sum of all state changes or the maximal number of
the state changes of single cells are considered. It is not hard to see that such a
device can be simulated by the corresponding communication bounded device.
Whether or not state change bounded devices are strictly weaker than commu-
nication bounded ones is an open problem. However, the restrictions introduced
in [33, 34] have been investigated with respect to communication in cellular au-
tomata. Adapting the proofs we obtain the proper inclusions

REG ⊂ Lrt(MC(O(1))-CA) ⊂ Lrt(MC(
√
n)-CA) ⊂ Lrt(MC(n)-CA),

Lrt(MC(O(1))-CA) ⊂ Lrt(SC(n)-CA), and Lrt(MC(O(1))-CA) ⊂ NL. Actu-
ally, there exists an infinite proper hierarchy of real-time SC(f)-CA families [19].
The ingredients are the mirror language {wcwR | w ∈ {a, b}+ } which is not ac-
cepted by any real-time SC(f)-CA if f ∈ o(n2/log(n)), and for all i ≥ 1, language

Li = {w$ϕi(|w|)−2|w|wR | w ∈ {a, b}+ } defined by the function ϕi : N → N
which in turn is defined by ϕ1(n) = 2n, and ϕi(n) = 2ϕi−1(n), for i ≥ 2. Lan-

guage Li is accepted by some real-time SC(n log[i](n))-CA, but cannot be ac-

cepted by any real-time SC(f)-CA if f ∈ o((n log[i](n))/log[i+1](n)). From these

results, the inclusion Lrt(SC(n log[i+1](n))-CA) ⊂ Lrt(SC(n log[i](n))-CA) and,
thus, the proper hierarchy is derived.
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3.3 Cellular Automata with Minimal Communication

Reducing the communication drastically, but keeping still enough to have non-
trivial devices, systems were obtained where each two neighboring cells may
communicate only constantly often or where the total number of communica-
tions during a computation depends linearly on the length of the input, and
systems where the bandwidth of the inter-cell links is limited even to one mes-
sage. However, all these restrictions do not lead to decidable properties. So, it is
interesting to study cellular automata whose allowed communication is reduced
to its minimum. To this end, we combine both approaches. Clearly, if there is no
communication between two cells the array is split into two parts that work inde-
pendently of each other. By the definition of acceptance, the right part is useless.
So, to identify the minimum of communication, each two cells are allowed to com-
municate constantly often. Moreover, only one possible message is provided and
the information flow is one-way. That is, we consider the class MC(O(1))-OCA1.
When the constant is set to one, these devices characterize the regular languages
for unary alphabets. For non-unary alphabets non-context-free languages can be
accepted [18, 21]. Despite this strong restriction we derive again undecidability
for almost all questions for such automata. The results are obtained by a lemma
which relates languages accepted by real-time one-way cellular automata with a
constant number of communications with languages accepted by real-time one-
way cellular automata with a constant number of one-message communications.
Finally, this technique, in principle, can be applied also to cellular automata
obeying all aforementioned restrictions. In particular, emptiness, finiteness, in-
finiteness, equivalence, inclusion, regularity, and context-freeness are undecidable
for arbitrary real-time MC(O(1))-OCA1. Clearly, the undecidability carries over
to, for example, MC(O(1))-CAk with two-way communication and the models
SC(n)-OCAk and SC(n)-CAk.

In order to explore the borderline at which non-trivial decidability problems
become decidable, additional structural and computational restrictions are im-
posed. An approach often investigated and widely accepted is to consider a
given type of device for special purposes only, for example, for the acceptance
of languages having a certain structure or form. From this point of view it is
natural to start with unary languages. For general real-time OCA it is known
that they accept only regular unary languages [29]. Since the proof is construc-
tive, we derive that the borderline in question has been crossed. So, in [21]
acceptors for bounded languages are studied. A language L over some alphabet
{a1, a2, . . . , ak} is said to be bounded, if L ⊆ a∗1a

∗
2 · · · a∗k. For several devices it is

known that they accept non-semilinear languages in general, but only semilinear
bounded languages. Since for semilinear sets several properties are decidable [6],
constructive proofs lead to decidable properties for these devices in connection
with bounded languages. However, provided there are at least two different mes-
sages available, by reduction of Hilbert’s tenth problem undecidability results
for cellular automata are derived in which the number of communications al-
lowed between every two neighboring cells is at least logarithmically or the total
number of communications during a computation is linearly bounded in the
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length of the input. That is, emptiness, finiteness, infiniteness, inclusion, equiv-
alence, regularity, and context-freeness are undecidable for arbitrary real-time
SC(n)-OCA2 and MC(log n)-OCA2 accepting bounded languages.
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Abstract. This is a survey about a collection of results about a (dou-
ble) hierarchy of classes of regular languages, which occurs in a natural
fashion in a number of contexts. One of these occurrences is given by an
alternated sequence of deterministic and co-deterministic closure opera-
tions, starting with the piecewise testable languages. Since these closure
operations preserve varieties of languages, this defines a hierarchy of va-
rieties, and through Eilenberg’s variety theorem, a hierarchy of pseudo-
varieties (classes of finite monoids that are defined by pesudo-identities).
The point of this excursion through algebra is that it provides reason-
ably simple decision algorithms for the membership problem in the cor-
responding varieties of languages. Another interesting point is that the
hierarchy of pseudo-varieties bears a formal resemblance with another
hierarchy, the hierarchy of varieties of idempotent monoids, which was
much studied in the 1970s and 1980s and is by now well understood. This
resemblance provides keys to a combinatorial characterization of the dif-
ferent levels of our hierarchies, which turn out to be closely related with
the so-called rankers, a specification mechanism which was introduced
to investigate the two-variable fragment of the first-order theory of the
linear order. And indeed the union of the varieties of languages which
we consider coincides with the languages that can be defined in that
fragment. Moreover, the quantifier alternation hierarchy within that log-
ical fragment is exactly captured by our hierarchy of languages, thus
establishing the decidability of the alternation hierarchy.

There are other combinatorial and algebraic approaches of the same
logical hierarchy, and one recently introduced by Krebs and Straubing
also establishes decidability. Yet the algebraic operations involved are
seemingly very different, an intriguing problem. . .

Formal language theory historically arose from the definition of models of com-
putation (automata, grammars, etc) and relied for its first step on combinatorial
reasoning, especially combinatorics on words. Very quickly however, algebra and
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logic were identified as powerful tools for the classification of rational languages,
e.g. with the definition of the syntactic monoid of a language and Büchi’s the-
orem on monadic second-order logic. It did not take much time after that to
observe that, conversely, formal language theory is itself a tool for algebra and
logic.

The results which we will present are an illustration of this back-and-forth
movement between languages, algebra and logic. They deal with a hierarchy of
classes of rational languages which arises in different contexts and turned out
to solve a problem in logic, namely the decidability of the quantifier alternation
hierarchy within the two-variable fragment of first-order logic FO2[<].

The full picture uses a collection of results in logic, combinatorics on words
and algebra which were obtained independently of the quantifier alternation
hierarchy by various authors over several decades.

Let R0 be the class of piecewise testable languages, which is natural from a
combinatorial and automata-theoretic point of view, and corresponds to the first
level of the quantifier alternation hierarchy within FO2[<] (and within FO[<])
as well). This class is rather simple and reasonably well understood, see [1, 10].
We first consider the hierarchies of classes of languages obtained from R0 by
alternatingly closing it under deterministic and co-deterministic closure: we let
L0 = R0, Rk+1 (resp. Lk+1) be the deterministic (resp. co-deterministic) closure
of Lk (resp. Rk).

Results from the 1970s and 1980s [9,12] show that the classes Rk and Lk are
varieties (whether a language L belongs to one of these classes depends only on
its syntactic monoid) and describe the corresponding varieties of finite monoids
Rk and Lk. Results from the 1960s [5] (see also [6, 11, 17]) shows that their
membership problems are decidable and they form an infinite hierarchy.

A first view of the structure of the lattice formed by these varieties can be
obtained by using purely algebraic results from the 1970s on a seemingly dif-
ferent hierarchy, that of varieties of idempotent monoids [2]. The theory of the
latter varieties is particularly well understood, and one can exhibit for each of
them structurally elegant identities and solutions of the word problem (of the
corresponding relatively free object) [3].

To completely elucidate the structure of the lattice generated by the Rk and
Lk, Kufleitner and Weil introduced the notion of condensed rankers [8]. These
are a rather natural extension of the algorithm to solve the word problem in
the relatively free idempotent monoids and have natural connections with de-
terministic and codeterministic products. But they are also – and foremost – a
variant of the rankers introduced by Weiss and Immerman [18] (following the
turtle programs of Schwentick, Thérien and Vollmer [13]) to characterize the
levels of the quantifier alternation hierarchy of FO2[<]. As a result one can show
that the k-th level of this hierarchy coincides with the intersection Rk+1 ∩Lk+1,
thus proving the decidability of each level of the hierarchy [7].

The story does not end there: using algebraic methods similar to those de-
scribed in his book [15], Straubing showed [16] that the k-th level of the quan-
tifier alternation hierarchy of FO2[<] is the variety of languages whose syntactic
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monoid is in the k-th term of the sequence given by V1 = J and Vn+1 = Vn��J.
Here J is the class of J -trivial monoids, which characterizes piecewise testable
languages by Simon’s theorem [14] and �� denotes the two-sided block product,
the bilateral version of the more classical wreath product. Then Straubing and
Krebs showed that every one of these classes of finite monoids is decidable [4],
thus providing an alternate proof of the decidability of the quantifier alternation
hierarchy, but also giving an alternative characterization of the classes Vk: a
finite monoid M is in Vk if and only if it sits in both Rk+1 and Lk+1.

The coincidence of these two very differently defined hierarchies raises an in-
triguing question: what connects the block product with the alternate operation
of deterministic and co-deterministic closure?. . .
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Abstract. Pattern languages are a well-established class of languages
that is particularly popular in algorithmic learning theory, but very lit-
tle is known about their closure properties. In the present paper we
establish a large number of closure properties of the terminal-free pat-
tern languages, and we characterise when the union of two terminal-free
pattern languages is again a terminal-free pattern language. We demon-
strate that the equivalent question for general pattern languages is char-
acterised differently, and that it is linked to some of the most prominent
open problems for pattern languages. We also provide fundamental in-
sights into a well-known construction of E-pattern languages as unions
of NE-pattern languages, and vice versa.

Keywords: Pattern languages, Closure properties.

1 Introduction

Pattern languages were introduced by Dana Angluin [1] in order to model the
algorithmic inferrability of patterns that are common to a set of words. In this
context, a pattern is a sequence of variables and terminal symbols, and its lan-
guage is the set of all words that can be generated from the pattern by a substi-
tution that replaces all variables in the pattern by words of terminal symbols.
Hence, more formally, a substitution is a terminal-preserving morphism, i. e., a
morphism that maps every terminal symbol to itself. For example, the pattern
language of the pattern α := x1x1ax2b, where x1, x2 are variables and a, b are
terminal symbols, is the set of all words that have a square as a prefix, followed
by an arbitrary suffix that begins with the letter a and ends with the letter b.
Thus, e.g., abbabbaab is contained in the language of α, whereas bbbaa is not.
It is a direct consequence of these definitions that a pattern language is either
a singleton or infinite. Furthermore, it is worth noting that two basic types of
pattern languages are considered in the literature, depending on whether the
variables must stand for nonempty words (referred to as non erasing or NE-
pattern languages) or whether they may represent the empty word (so-called
extended, erasing or simply E-pattern languages).
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While the definition of pattern languages is simple, many of their proper-
ties are known to be related to complex phenomena in combinatorics on words,
such as pattern avoidability (see Jiang et al. [7]) and ambiguity of morphisms
(see Reidenbach [12]). Hence, the knowledge on pattern languages is still patchy,
despite recent progress mainly regarding decision problems (see, e. g., Freyden-
berger, Reidenbach [5], Fernau, Schmid [3], Fernau et al. [4] and Reidenbach,
Schmid [13]) and the relation to the Chomsky hierarchy (see Jain et al. [6] and
Reidenbach, Schmid [14]).

Establishing the closure properties of a class of formal languages is one of the
most classical and fundamental research tasks in formal language theory and any
respective progress normally leads to insights and techniques that yield a better
understanding of the class. In the case of pattern languages, it is known since
Angluin’s initial work that they are not closed under most of the usual opera-
tions, including union, intersection and complement. However, these non-closure
properties can be shown by using very basic example patterns and exploiting pe-
culiarities of the definition of pattern languages. For example, if a pattern does
not contain a variable, then its language is a singleton; hence the union of any
two distinct singleton pattern languages contains two elements, and therefore
it cannot be a pattern language. Furthermore, the intersection of two pattern
languages given by patterns that start with different terminal symbols is empty
and the empty set, although a trivial language, is not a pattern language as well.
Since, apart from a strong result by Shinohara [15] on the union of NE-pattern
languages, hardly anything is known beyond such immediate facts, we can ob-
serve that in the case of pattern languages the existing closure properties fail to
contribute to our understanding of their intrinsic properties.

It is the main purpose of this paper to investigate the closure properties of
pattern languages more thoroughly. To this end, in Section 3, we consider the
closure properties of two important subclasses of pattern languages, namely the
classes of terminal-free NE- and E-pattern languages, i. e., pattern languages that
are generated by patterns that do not contain any terminal symbols. This choice
is motivated by the fact that terminal-free patterns have been a recent focus
of interest in the research on pattern languages and, furthermore, most existing
examples for non-closure of pattern languages (including the two examples for
union and intersection given in the previous paragraph) do not translate to the
terminal-free case. In Section 3.1, we completely characterise when the union
of two terminal-free pattern languages is again a terminal-free pattern language
and, in Section 3.2, we prove their non-closure under intersection, for which the
situation is much more complicated compared to the operation of union.

We consider general pattern languages in Section 4, and we provide complex
examples demonstrating that it is probably a very hard task to obtain full char-
acterisations of those pairs of pattern languages whose unions or intersections
are again a pattern language. In Section 4.3, we also study the question whether
an E-pattern language can be expressed by the union of nonerasing pattern lan-
guages and, likewise, whether an NE-pattern language can be expressed by the
union of erasing pattern languages. This question is slightly at odds with the
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classical investigation of closure properties, since we apply a language operation
to members of one class and ask whether the resulting language is a member
of another class. However, in the case of pattern languages, this makes sense,
since every NE-pattern language is a finite union of E-pattern languages and
every E-pattern language is a finite union of NE-pattern languages (see Jiang et
al. [7]), a phenomenon that has been widely utilised in the context of inductive
inference of pattern languages (see, e.g., Wright [17], Shinohara, Arimura [16]).

Due to space constraints, all proofs have been omitted from this paper.

2 Definitions and Preliminary Results

The symbols ∪, ∩ and \ denote the set operations of union, intersection and
set difference, respectively. For sets U and B with B ⊆ U , B := U \ B is the
complement of B.

Let N := {1, 2, 3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A,
a word (over A) is a finite sequence of symbols from A, and ε stands for the
empty word. The notation A+ denotes the set of all nonempty words over A, and
A∗ := A+ ∪ {ε}. For the concatenation of two words w1, w2 we write w1 · w2 or
simply w1w2, and wn stands for the n-fold concatenation of the word w. We say
that a word v ∈ A∗ is a factor of a word w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 ·v ·u2. If u1 (or u2) is the empty word, then v is a prefix (or a suffix,
respectively) of w. The notation |K| stands for the size of a set K or the length
of a word K. A word w is primitive if, for any u such that w = uk, k = 1. The
primitive root of a word w is the primitive word u such that w = uk, k ∈ N.

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if, for every
a ∈ A, h(a) �= ε. A morphism h is ambiguous (with respect to a word w) if there
exists a morphism g satisfying g(w) = h(w) and, for a letter a in w, g(a) �= h(a).
If such a morphism g does not exist, then h is called unambiguous (with respect
to w). A morphism σ : A∗ → B∗ is periodic if for some (primitive) word w ∈ B∗,
σ(x) ∈ {w}∗ for every x ∈ A. The word w will be referred to as the primitive
root of σ. If |σ(x)| = 1 for every x ∈ A, then σ is 1-uniform.

Let Σ be a finite alphabet of so-called terminal symbols and X a countably in-
finite set of variables with Σ∩X = ∅. We normally assume X := {x1, x2, x3, . . .}.
A pattern is a nonempty word over Σ∪X , a terminal-free pattern is a nonempty
word over X ; if a word contains symbols from Σ only, then we occasionally
call it a terminal word. For any pattern α, we refer to the set of variables in
α as var(α). If the variables in a pattern α are labelled in the natural way,
then it is said to be in canonical form, i. e., α is in canonical form if, for some
n ∈ N, var(α) = {x1, x2, . . . , xn} and, for any xi, xj ∈ var(α) with i < j, there
is a prefix β of α such that xi ∈ var(β) and xj /∈ var(β). A pattern α is a
one-variable pattern if | var(α)| = 1. A morphism h : (Σ ∪X)

∗ → (Σ ∪X)
∗

is
terminal-preserving if h(a) = a for every a ∈ Σ. The residual of a pattern α is
the word hε(α), where hε : (Σ ∪X)∗ → (Σ ∪X)∗ is a terminal preserving mor-
phism with hε(x) := ε for every x ∈ var(α). A terminal-preserving morphism
h : (Σ ∪X)

∗ → Σ∗ is called a substitution.
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Definition 1. Let Σ be an alphabet, and let α ∈ (Σ ∪ X)∗ be a pattern. The
E-pattern language of α is defined by LE,Σ(α) := {h(α) | h : (Σ ∪X)

∗ →
Σ∗ is a substitution}. The NE-pattern language of α is defined by LNE,Σ(α) :=
{h(α) | h : (Σ ∪X)∗ → Σ∗ is a nonerasing substitution}.

Note that we call a pattern language terminal-free if there exists a terminal-free
pattern that generates it.

Some parts of our reasoning in the subsequent sections is based on word
equations, which are defined as follows. For a set of unknowns Y , a terminal
alphabet Σ, and two words α, β ∈ (Y ∪Σ)+, the expression α = β is called a word
equation. The solutions are terminal-preserving morphisms σ : (Y ∪ Σ)∗ → Σ∗

such that σ(α) = σ(β). The words σ(α) (= σ(β)) will be referred to as solution-
words. It is often convenient to interpret variables from patterns as unknowns,
and so word equations will often be formulated from two patterns.

This concludes the basic definitions of this paper. We now begin our investi-
gation of the closure properties of the class of pattern languages. As a starting
point, we refer to the corresponding result in the initial paper on pattern lan-
guages:

Theorem 1 (Angluin [1]). NE-pattern languages are not closed under union,
intersection, complement, Kleene plus, homomorphism and inverse homomor-
phism. NE-pattern languages are closed under concatenation and reversal.

3 Terminal-Free Patterns

As briefly explained in Section 1, the proof of Theorem 1 heavily relies on the fact
that patterns can contain terminal symbols. In the present section, we therefore
wish to study whether the situation changes if we consider the classes of terminal-
free E-pattern languages and terminal-free NE-pattern languages.

3.1 Union

Simple examples show that neither the terminal-free NE-pattern languages nor
the terminal-free E-pattern languages are closed under union:

Proposition 1. Let Σ be an alphabet with {a, b} ⊆ Σ. For every Z,Z ′ ∈
{E,NE}, there does not exist a pattern γ, such that LZ,Σ(γ) = LZ′,Σ(x1x1) ∪
LZ′,Σ(x1x1x1).

It is worth noting that the above statement also provides a first minor insight
into the topic of expressing E-pattern languages as unions of NE-pattern lan-
guages and vice versa. We shall study this subject in Section 4.3 for patterns with
terminal symbols in much more detail. In the present section, we merely want
to point out that the union of two terminal-free E-pattern languages is indeed
never a terminal-free NE-pattern language, and the union of two terminal-free
NE-pattern languages cannot be a terminal-free E-pattern language:
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Proposition 2. Let Σ be an arbitrary alphabet, and let α and β be terminal-
free patterns. Then there does not exist a terminal-free pattern γ with LE,Σ(α)∪
LE,Σ(β) = LNE,Σ(γ) or LNE,Σ(α) ∪ LNE,Σ(β) = LE,Σ(γ).

In the remainder of this section we wish to prove a similarly strong result
for the actual closure of the class of terminal-free E- or NE-pattern languages.
Hence, we wish to characterise those pairs of terminal-free (NE-/E-)pattern lan-
guages where the union again is a terminal-free (NE-/E-)pattern language. Our
results shall demonstrate that the union of two terminal-free E-pattern lan-
guages can only be a terminal-free E-pattern language if there is an inclusion
relation between the two languages, and that the same holds for the NE-pattern
languages.

Our reasoning on the E case is based on a result on the inclusion problem for
E-pattern languages. In [8], Jiang et al. provide a construction for a morphism τk
such that, for two patterns α and β, the word τ|β|(α) is contained in LE,Σ(β) if
and only if there exists a morphism ϕ from β to α. This in turn implies that the
erasing languages of two terminal free patterns satisfy a subset relation if and
only if there exists a morphism from one pattern to the other. It is not difficult
to see that this construction can be further used to satisfy, for patterns α, β,
γ, and k = max(|α|, |β|), that τk(γ) ∈ LE,Σ(α) ∪ LE,Σ(β) if and only if γ is a
morphic image of α or β. Thus if the relation LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ) is
satisfied, then LE,Σ(γ) is a subset of (and therefore also equal to) LE,Σ(α) or
LE,Σ(β) and we have the following situation.

Lemma 1. Let Σ be an alphabet, |Σ| ≥ 2, and let α and β be terminal-free pat-
terns. There exists a terminal-free pattern γ with LE,Σ(α) ∪LE,Σ(β) = LE,Σ(γ)
if and only if LE,Σ(α) ⊆ LE,Σ(β) or LE,Σ(β) ⊆ LE,Σ(α).

It can be observed from simple examples that, in the nonerasing case, inclusion
cannot be characterised by the existence of a morphism between the generating
patterns. Thus, no equivalent argument can be derived for the nonerasing case.
However, a corresponding result can be obtained by looking at the shortest words
in the nonerasing languages of α, β and γ. To this end, we define, for a pattern
α, the set Mα to be {σ(α) | σ : var(α)∗ → Σ∗ is 1-uniform}.

The set Mα has been used to positive effect in existing literature (see, e.g., [9]).
It is particularly useful when considering nonerasing pattern languages because it
encodes exactly the original pattern α (up to a renaming of variables). Moreover,
it has a number of convenient properties when considering the union of two NE-
pattern languages. One such example is that if α is strictly shorter than β, then
the set of shortest words in LNE,Σ(α) ∪ LNE,Σ(β) will be exactly Mα. Thus, if
the union is itself the nonerasing language of some pattern γ, we have that γ = α
up to a renaming of variables. A similar result can be obtained for the case that
|α| = |β| by considering |Mα ∪Mβ |.

Lemma 2. Let Σ be an alphabet, |Σ| ≥ 2, and let α, β be terminal free patterns
in canonical form with |α| = |β|. Suppose that γ is a terminal free pattern (again
in canonical form) with Mα ∪Mβ = Mγ. Then γ ∈ {α, β}.



284 J.D. Day, D. Reidenbach, and M.L. Schmid

Consequently, we can verify the same statement for nonerasing languages as we
have for erasing languages.

Lemma 3. Let Σ be an alphabet, |Σ| ≥ 2, and let α and β be terminal-free
patterns. There exists a terminal-free pattern γ with LNE,Σ(α) ∪ LNE,Σ(β) =
LNE,Σ(γ) if and only if LNE,Σ(α) ⊆ LNE,Σ(β) or LNE,Σ(β) ⊆ LNE,Σ(α).

Note that Lemma 3 extends an equivalent result by Shinohara [15] that holds
for alphabets with at least 3 letters.

Thus, in general, the languages of two terminal-free patterns only union to-
gether to produce a third in the trivial case.

Theorem 2. Let Z, Z ′ ∈ {E,NE}. Let Σ be an alphabet, |Σ| ≥ 2, and let α,
β, γ be terminal-free patterns. Then LZ,Σ(α) ∪ LZ,Σ(β) = LZ′,Σ(γ) if and only
if LZ,Σ(α) = LZ′,Σ(γ) and LZ,Σ(β) ⊆ LZ,Σ(α) or LZ,Σ(β) = LZ′,Σ(γ) and
LZ,Σ(α) ⊆ LZ,Σ(β).

It is worth noting that, for terminal-free patterns, the inclusion problem –
and therefore the question of closure under union – is decidable in the E case
(see Jiang et al. [8], as explained above), but still open in the NE case.

3.2 Intersection

In the present section, we wish to investigate if the terminal-free NE- or E-pattern
languages are closed under intersection. For the NE case, simple counterexamples
such as α := xyx and β := xxy can be used to prove the following observation:

Proposition 3. The terminal-free NE-pattern languages are not closed under
intersection.

We can obtain an equivalent result for the terminal-free E-pattern languages,
but our reasoning is significantly more complex and requires the analysis of
certain word equations. Moreover, we are able to provide a characterisation for
a restricted class of pairs of patterns, and show that, for this class, the situation
is non-trivial (i.e., there exist both positive and negative examples). We proceed
by considering the link between word equations and intersections of pattern-
languages.

If, for a word equation α = β, the words α and β are over disjoint alphabets,
then the set of solutions σ : (var(α) ∪ var(β))∗ → Σ∗ corresponds exactly to
the set of pairs of morphisms τ1 : var(α)∗ → Σ∗, τ2 : var(β)∗ → Σ∗ such that
τ1(α) = τ2(β). Thus, it also exactly describes the intersection LE,Σ(α)∩LE,Σ(β).
Furthermore, such an intersection is invariant under renamings of α and of β, so
any intersection of E-pattern languages can be described in this way. The next
proposition gives a characterisation of when the intersection of two terminal-free
E-pattern languages is again a terminal-free E-pattern language in the restricted
case that the corresponding word equation permits only periodic solutions. Note
that, for α and β over disjoint alphabets, such solutions always exist.
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Proposition 4. Let Σ be an arbitrary alphabet. Let α, β be terminal-free pat-
terns over disjoint alphabets and suppose that the word equation α = β permits
only periodic solutions. Let w be the shortest non-empty solution-word. Let

μ := lcm(gcd{|α|xi | xi ∈ var(α)}, gcd{|β|yj | yj ∈ var(β)}).

Then LE,Σ(α) ∩ LE,Σ(β) is a terminal-free E-pattern language if and only if
μ = |w|.

Despite Proposition 4, it is still a non-trivial task to find two terminal-free E-
pattern languages whose intersection is not a terminal-free E-pattern language.
In particular, it remains to find appropriate patterns α and β such that the word
equation α = β has only periodic solutions. The following proposition provides
such an example, and hence we have the analogous result to Proposition 3.

Proposition 5. Let Σ be an arbitrary alphabet, and let α := x1x2x
2
1x2x

3
1x

2
2 and

β := x3x
2
4x

2
3x

6
4x

3
3. Then LE,Σ(α)∩LE,Σ(β) cannot be expressed as a terminal-free

E-pattern language.

It is even possible to give a much stronger statement, showing the extent to
which the ‘pattern-language mechanism’ is incapable of handling this seemingly
uncomplicated set of solutions.

Corollary 1. For any alphabet Σ, LE,Σ(x1x2x
2
1x2x

3
1x

2
2) ∩ LE,Σ(x3x

2
4x

2
3x

6
4x

3
3)

cannot be expressed as a finite union of terminal-free E-pattern languages.

It is worth noting that the approach above can be used to show that for
α′ := x1x2x

2
1x

2
2x

3
1x

3
2 and β′ := x3x

2
4x

2
3x

7
4x

3
3, one has that LE,Σ(α′) ∩LE,Σ(β′) =

LE,Σ(x6
1). This demonstrates that the intersection of two E-pattern languages

can in some cases be expressed as an E-pattern language, and therefore that
the problem of whether the intersection of two E-pattern languages form an
E-pattern language is nontrivial. However it is worth pointing out that a char-
acterisation of this situation is probably very difficult to acquire due to the
challenging nature of finding solution-sets of word equations.

3.3 Other Closure Properties

In this Section, we show that regarding the closure under the operations of
complementation, morphisms, inverse morphisms, Kleene plus and Kleene star,
terminal-free pattern languages behave similarly to the full class of pattern lan-
guages.

Proposition 6. For every terminal-free pattern α, LE,Σ(α) is not a terminal-

free E-pattern language and LNE,Σ(α) is not a terminal-free NE-pattern lan-
guage.

Proposition 6 does not only prove the non-closure of terminal-free E- and
NE-pattern languages under complementation, but also characterises in a trivial
way the terminal-free pattern languages whose complement is also a terminal-
free pattern language.
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Proposition 7. Let Σ be a terminal alphabet with |Σ| ≥ 2. The terminal-free
NE- and E-pattern languages, with respect to Σ, are not closed under morphisms,
inverse morphisms, Kleene plus and Kleene star.

4 General Patterns

As explained in Section 1 and formally stated in Theorem 1, the closure prop-
erties of the full classes of NE-pattern languages and of E-pattern languages are
understood. In the present section, we therefore wish to expand the more spe-
cific insights into the terminal-free pattern languages gained in Section 3 to the
full classes. More precisely, with respect to the operations of complementation,
intersection and union, we investigate those patterns that exhibit the property
that their complement, intersection or union is again a pattern language and we
try to characterise these patterns. Our strongest results are with respect to the
operation of union.

4.1 Complement

With respect to the full class of E- and NE-pattern language, an analogue of
Proposition 6 exists:

Proposition 8 (Bayer [2]). Let Σ be a terminal alphabet with Σ ≥ 2. For
every pattern α, LE,Σ(α) is not an E-pattern language and LNE,Σ(α) is not an
NE-pattern language.

In the same way as Proposition 6 does for terminal-free patterns, this propo-
sition yields a trivial characterisation of pattern languages with a complement
that again is a pattern language.

4.2 Intersection

It is straightforward to construct patterns α and β such that LE,Σ(α)∩LE,Σ(β)
is not an E-pattern language or LNE,Σ(α) ∩ LNE,Σ(β) is not an NE-pattern
language. Furthermore, any two terminal-free patterns α and β are an example
for the situation that LE,Σ(α) ∩LE,Σ(β) is not an NE-pattern language and, as
long as there are at least two symbols in Σ, also for the situation that LNE,Σ(α)∩
LNE,Σ(β) is not an E-pattern language. Moreover, there are non-trivial examples
of patterns α, β and γ, such that LNE,Σ(α) ∩ LNE,Σ(β) = LE,Σ(γ):

– LNE,Σ(ax) ∩ LNE,Σ(xx) = LE,Σ(axax).
– LNE,Σ(xay) ∩ LNE,Σ(xxx) = LE,Σ(xayxayxay).
– LNE,Σ(axa) ∩ LNE,Σ(xx) = LE,Σ(axaaxa).
– LNE,Σ(axax) ∩ LNE,Σ(xbxb) = LE,Σ(axbaxb).
– LNE,Σ(axy) ∩ LNE,Σ(xxx) = LE,Σ(axaxax).

However, it is not known whether or not there are patterns α and β, such that
LE,Σ(α) ∩ LE,Σ(β) is an NE-pattern language. Moreover, we do not have any
characterisations for the situation that the intersection of two pattern languages
is again a pattern language.
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4.3 Union

Examples of patterns α and β such that LZ,Σ(α) ∪ LZ,Σ(β) is not a Z ′-pattern
language, for all Z,Z ′ ∈ {E,NE}, are provided by Proposition 1.

Theorem 2 is our strongest result in Section 3, as it shows that the union of
terminal-free pattern languages can only be a terminal-free pattern language if
one of the languages is contained in the other. At first glance it seems a reasonable
hypothesis that a similar result might hold for the full class of pattern languages,
but in the present section we show that this is not true.

For all but the union of pairs of E-pattern languages and the question of
whether they can form an E-pattern language, suitable examples are not too
hard to find:

Proposition 9. Let Σ be a terminal alphabet.

– LE,{a,b}(aax) ∪ LE,{a,b}(abx) = LNE,{a,b}(ax).
– LNE,Σ(abc) ∪ LNE,Σ(axbxcx) = LE,Σ(axbxcx).
– LNE,{a,b}(ax1) ∪ LNE,{a,b}(bx1) = LNE,{a,b}(x1x2).

Regarding the question of whether LE,Σ(α)∪LE,Σ(β) = LE,Σ(γ) for patterns
α, β, γ implies that there is an inclusion relation between LE,Σ(α) and LE,Σ(β),
the following three propositions provide increasingly complex counterexamples
for alphabet sizes 2, 3, and 4.

Proposition 10. Let Σ = {a, b}, α := x1ax2bx2ax3, β := x1ax2bbx2ax3

and γ := x1ax2bx3ax4. Then LE,Σ(α) � LE,Σ(β), LE,Σ(β) � LE,Σ(α) and
LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ).

Proposition 11. Let Σ := {a, b, c},

α := x1ax2x
6
3x

3
4x

6
5x6bx7ax2x

12
8 x6

4x
12
9 x6bx10,

β := x1ax2x
6
3x

2
4x

5
5x

6
6x7bx8ax2x

12
9 x4

4x
10
5 x12

10x7bx11 and

γ := x1ax2x
6
3x

2
4x

3
5x

6
6x7bx8ax2x

12
9 x4

4x
6
5x

12
10x7bx11.

Then

LE,Σ(α) �⊆ LE,Σ(β), LE,Σ(β) �⊆ LE,Σ(α) and LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ).

Proposition 12. Let Σ := {a, b, c, d},

α := x1ax2x
2
3x

2
4x

2
5x6bx7ax2x

2
8x

2
4x

2
9x6bx10cx11x

2
12x

2
13x

2
14x

2
15x16d

x17cx11x
2
18x

2
13x

2
14x

2
19x16dx20x

2
13x

2
14x

2
13x

2
14x

2
13x

2
14x21x

6
4,

β := x1ax2x
2
3x

2
4x

2
5x

2
6x7bx8ax2x

2
9x

2
4x

2
5x

2
10x7bx11cx12x

2
13x

2
14x

2
15x16d

x17cx12x
2
18x

2
14x

2
19x16dx20x

6
14x21x

2
4x

2
5x

2
4x

2
5x

2
4x

2
5 and

γ := x1ax2x
2
3x

2
4x

2
5x

2
6x7bx8ax2x

2
9x

2
4x

2
5x

2
10x7bx11cx12x

2
13x

2
14x

2
15x

2
16x17d

x18cx12x
2
19x

2
14x

2
15x

2
20x17dx21x

2
14x

2
15x

2
14x

2
15x

2
14x

2
15x22x

2
4x

2
5x

2
4x

2
5x

2
4x

2
5.

Then

LE,Σ(α) �⊆ LE,Σ(β), LE,Σ(β) �⊆ LE,Σ(α) and LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ).
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We are not able to give equivalent examples for larger alphabets, and we ex-
pect the question of their existence to be a complex and important problem. This
is because the above examples depend on the ambiguity of terminal-preserving
morphisms, which is a phenomenon that underpins many properties of pattern
languages. Similar constructions to those in Propositions 10, 11, and 12 have
been used to disprove longstanding conjectures on inductive inference (see Rei-
denbach [10,12]) of and the equivalence problem (see Reidenbach [11]) for E-
pattern languages over alphabets of up to 4 letters and, similarly, it has so far
not been possible to expand those techniques to arbitrary alphabets. Our exam-
ples, thus, suggest a close link between the problem in the current section and
the two most important open problems for E-pattern languages over alphabets
with at least 5 letters, and we expect that substantial progress on any one of
them will require combinatorial insights that will allow the others to be solved
as well.

For all Z,Z ′ ∈ {E,NE}, we have seen example patterns α and β such that
LZ,Σ(α)∪LZ,Σ(β) is a Z ′-pattern language. We shall now try to generalise these
examples in order to obtain characterisations of such pairs of patterns.

For the case Z = Z ′ = E, we are only able to state a necessary condition for
LE,Σ(α) ∪ LE,Σ(β) = LE,Σ(γ) that, unfortunately, is not very strong:

Theorem 3. Let Σ be an alphabet, and let α, β and γ be patterns with LE,Σ(α)∪
LE,Σ(β) = LE,Σ(γ). Furthermore, let wα, wβ and wγ be the residuals of α, β
and γ, respectively. Then wγ = wα and wγ is a subsequence of wβ or wγ = wβ

and wγ is a subsequence of wα.

In view of the fact that the examples of Propositions 10, 11 and 12 are rather
complicated, we expect that a full characterisation for the case Z = Z ′ = E is
difficult to obtain.

For the case Z = Z ′ = NE, we can present a strong necessary condition that,
similarly to Lemma 3, strengthens a result by Shinohara [15]:

Theorem 4. Let Σ be an alphabet with {a, b} ⊆ Σ and let α, β and γ be
patterns. If LNE,Σ(α) ∪ LNE,Σ(β) = LNE,Σ(γ), then one of the following three
statements is true:

– LNE,Σ(α) ⊆ LNE,Σ(β) and β = γ.
– LNE,Σ(β) ⊆ LNE,Σ(α) and α = γ.
– |Σ| = 2 and

α = δ0 a δ1 a δ2 . . . δm−1 a δm ,

β = δ0 b δ1 b δ2 . . . δm−1 b δm ,

γ = δ0 x δ1 x δ2 . . . δm−1 x δm ,

where m ≥ 1, δi ∈ (X ∪Σ)∗, 0 ≤ i ≤ m.

It remains to consider the cases Z = NE, Z ′ = E and Z = E, Z ′ = NE, for
which we have full characterisations. Before we prove these characterisations, we
recall that Jiang et al. show in [7] that, for every pattern α, we can construct finite
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sets of patterns Γ and Δ such that LE,Σ(α) =
⋃

β∈Γ LNE,Σ(β) and LNE,Σ(α) =⋃
β∈Δ LE,Σ(β). More precisely, Γ is the set of all patterns that can be obtained

from α by erasing some (possibly none) of the variables and Δ contains all
pattern that can be obtained from α by substituting each x ∈ var(α) by bx,
for some b ∈ Σ. We note that the examples LNE,Σ(abc) ∪ LNE,Σ(axbxcx) =
LE,Σ(axbxcx) and LE,{a,b}(aax)∪LE,{a,b}(abx) = LNE,{a,b}(ax) of Proposition 9
are applications of exactly this construction.

The characterisation for the case Z = NE, Z ′ = E follows from the fact
that we can prove that if we restrict ourselves to unions of only two pattern
languages, then LE,Σ(α) =

⋃
β∈Γ LNE,Σ(β) is the only possible way to describe

an E-pattern language by NE-pattern languages.

Theorem 5. Let Σ be an alphabet with |Σ| ≥ 2 and let α, β and γ be patterns.
Then LNE,Σ(α) ∪ LNE,Σ(β) = LE,Σ(γ) if and only if α ∈ Σ+ and β = γ =
u1 x

j1 u2 x
j2 . . . xjm um+1, ji ∈ N0, 1 ≤ i ≤ m, such that u1 u2 . . . um+1 = α.

With respect to the case Z = E, Z ′ = NE, we can even present a charac-
terisation for the situation LNE,Σ(α) =

⋃k
i=1 LE,Σ(βi) with k ≤ |Σ|. It shall be

explained later on that this characterisation is a generalisation of the construc-
tion given by Jiang et al.

Theorem 6. Let � ≥ 2 and let Σ be an alphabet with {a1, a2, . . . , a�} ⊆ Σ.
Furthermore, let α1, α2, . . . , α� and γ be patterns with LE,Σ(αi) �= LE,Σ(αj), 1 ≤
i < j ≤ �. Then

⋃�
i=1 LE,Σ(αi) = LNE,Σ(γ) if and only if, for some permutation

π of (1, 2, . . . , �),

– Σ = {a1, a2, . . . , a�},
– γ = u1 xu2 xu3 . . . uk xuk+1, k ≥ 1, ui ∈ Σ∗, 1 ≤ i ≤ k + 1, and,
– for every i, 1 ≤ i ≤ �,

αi = u1 α
′
i aπ(i) α

′′
i u2 α

′
i aπ(i) α

′′
i u3 . . . uk α

′
i aπ(i) α

′′
i uk+1 ,

where α′
i, α

′′
i ∈ X∗,

– for every i, 1 ≤ i ≤ �, there exists a yi ∈ var(αi) with |αi|yi = k and

• |α′
i|yi = 1 for all i, 1 ≤ i ≤ �, or

• |α′′
i |yi = 1 for all i, 1 ≤ i ≤ �.

If we apply the construction of Jiang et al. to a one-variable pattern γ, then
we obtain patterns αi, 1 ≤ i ≤ |Σ|, that satisfy the conditions of the patterns in
the statement of Theorem 6. More precisely, this corresponds to the special case
where α′

iα
′′
i = yi, 1 ≤ i ≤ |Σ|. Moreover, it can be easily verified that if γ and

patterns αi, 1 ≤ i ≤ |Σ|, satisfy the conditions of the statement of Theorem 6,
then, depending on whether |α′

i|yi = 1 for all i, 1 ≤ i ≤ |Σ|, or |α′′
i |yi = 1 for

all i, 1 ≤ i ≤ |Σ|, we can obtain patterns βi from the patterns αi by replacing

α′
iaiα

′′
i by yiai or by aiyi, respectively, and

⋃|Σ|
i=1 LE,Σ(βi) = LNE,Σ(γ) still holds.

Furthermore, the patterns βi are exactly the patterns that are obtained if we
apply the construction of Jiang et al.
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Abstract. We compare deterministic finite automata (DFAs) and biau-
tomata under the following two aspects: structural similarities between
minimal and hyper-minimal automata, and computational complexity of
the minimization and hyper-minimization problem. Concerning classi-
cal minimality, the known results such as isomorphism between minimal
DFAs, and NL-completeness of the DFA minimization problem carry over
to the biautomaton case. But surprisingly this is not the case for hyper-
minimization: the similarity between almost-equivalent hyper-minimal
biautomata is not as strong as it is between almost-equivalent hyper-
minimal DFAs. Moreover, while hyper-minimization is NL-complete for
DFAs, we prove that this problem turns out to be computationally in-
tractable, i.e., NP-complete, for biautomata.

1 Introduction

The minimization problem for finite automata is well studied in the literature,
see, e.g., [8] for a recent overview on some automata related problems. The prob-
lem asks for the smallest possible finite automaton that is equivalent to a given
one. Because regular languages are used in many applications and one may like to
represent the languages succinctly, this problem is also of practical relevance. It
is well known that for a given n-state deterministic finite automaton (DFA) one
can efficiently compute an equivalent minimal automaton in O(n logn) time [10].
More precisely, the DFA minimization problem is complete for NL, even for DFAs
without inaccessible states [3]. On the other hand, minimization of nondetermin-
istic finite automata (NFAs) is highly intractable, namely PSPACE-complete [12].
These results go along with the structural properties of minimal finite automata.
While minimal DFAs are unique up to isomorphism, this is not the case for min-
imal nondeterministic state devices anymore [1]. In fact, the characterization of
minimal DFAs is one of the basic building blocks for efficient DFA minimization
algorithms.

When changing from minimization to hyper-minimization a quite similar pic-
ture as mentioned above emerges. Hyper-minimization asks for the smallest
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automaton that is equivalent to a given one up to a finite number of exceptions—
this form of “equivalence” is referred to as almost-equivalence in the literature.
Let us discuss the situation for hyper-minimal DFAs and NFAs in more detail.
First, all of the above mentioned computational complexity results remain valid
for hyper-minimization. Thus, computing a hyper-minimal DFA can be done in
O(n log n) time [9] and the hyper-minimization problem is NL-complete [5]. In
fact it is known that minimization for DFAs linearly reduces to hyper-minimi-
zation [9]. Moreover, the intractability result for NFAs remains, that is, hyper-
minimization for NFAs is PSPACE-complete [5], just as it is for ordinary NFA
minimization. What can be said about the structural properties of hyper-minimal
finite state machines? Neither hyper-minimal DFAs nor hyper-minimal NFAs are
unique up to isomorphism. Nevertheless, hyper-minimal DFAs obey a structural
characterization as shown in [2]. Almost-equivalent hyper-minimal DFAs have
isomorphic kernels and isomorphic preambles up to state acceptance. Here the
kernel of an automaton consists of the states that are reachable from the start
state by an infinite number of inputs; all other states belong to the preamble of
the automaton.

Recently, an alternative automaton model to deterministic finite automata,
the so called biautomaton (DBiA) [17] was introduced. Roughly speaking, a
biautomaton consists of a deterministic finite control, a read-only input tape, and
two reading heads, one reading the input from left to right (forward transitions),
and the other head reading the input from the opposite direction, i.e., from right
to left (backward transitions). An input word is accepted by a biautomaton, if
there is an accepting computation starting the heads on the two ends of the
word meeting somewhere in an accepting state. Although the choice of reading
a symbol by either head is nondeterministic, a deterministic outcome of the
computation of the biautomaton is enforced by two properties. In [17] and a
series of forthcoming papers [6,7,13,16] it was shown that biautomata share a
lot of properties with ordinary finite automata. For instance, as minimal DFAs,
also minimal DBiAs are unique up to isomorphism [17]. Moreover, in [6] it was
shown that classical DFA minimization algorithms can be adapted to biautomata
as well. As a first result we show that biautomaton minimization is NL-complete
as for ordinary DFAs.

Now the question arises, which of the structural similarities between almost-
equivalent or hyper-minimal DFAs similarly hold for biautomata as well? More-
over, what can be said about the computational complexity of biautomaton
hyper-minimization? We give answers to both questions in the forthcoming.
Some of the structural similarities found for almost-equivalent and hyper-minimal
DFAs carry over to the case of biautomata, but there are subtle differences. On
the one hand we show that the kernel isomorphism for almost-equivalent DFAs
carries over to almost-equivalent biautomata, but on the other hand, the iso-
morphism for the preambles of almost-equivalent hyper-minimal DFAs does not
transfer to the biautomaton case. In fact, we present an example of two almost-
equivalent hyper-minimal biautomata the preambles of which are not isomorphic
at all. The observed phenomenon is later used to prove the main result of this



Minimal and Hyper-Minimal Biautomata 293

paper, namely that hyper-minimizing biautomata is not as easy as for DFAs.
More precisely, we show that hyper-minimization of biautomata is NP-complete.
This is in sharp contrast to the case of hyper-minimal DFAs. Due to space con-
straints all proofs can be found in the Appendix.

2 Preliminaries

A deterministic biautomaton (DBiA) is a sixtuple A = (Q,Σ, ·, ◦, q0, F ), where Q,
Σ, q0, and F are defined as for deterministic finite automata (DFAs), and where ·
and ◦ are mappings from Q×Σ to Q, called the forward and backward transition
function, respectively. It is common in the literature on biautomata to use an
infix notation for these functions, i.e., writing q ·a and q ◦a instead of ·(q, a) and
◦(q, a). Similar as for the transition function of a DFA, the forward transition
function · can be extended to · : Q×Σ∗ → Q by q ·λ = q, and q ·av = (q ·a)·v, for
all states q ∈ Q, symbols a ∈ Σ, and words v ∈ Σ∗. The extension of the back-
ward transition function ◦ to ◦ : Q×Σ∗ → Q is defined as follows: q ◦λ = q and
q ◦va = (q ◦a)◦v, for all states q ∈ Q, symbols a ∈ Σ, and words v ∈ Σ∗. Notice
that ◦ consumes the input from right to left, hence the name backward transition
function. The DBiA A accepts a word w ∈ Σ∗ if there are words ui, vi ∈ Σ∗,
for 1 ≤ i ≤ k, such that w can be written as w = u1u2 . . . ukvk . . . v2v1, and

((. . . ((((q0 · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk ∈ F.

The language accepted by A is L(A) = {w ∈ Σ∗ | A accepts w }.
The DBiA A has the �-property, if (q · a) ◦ b = (q ◦ b) · a, for all q ∈ Q

and a, b ∈ Σ, and it has the F -property, if we have q · a ∈ F if and only
if q ◦ a ∈ F , for all q ∈ Q and a ∈ Σ. The biautomata as introduced in [17]
always had to satisfy both these properties, while in [6,7] also biautomata that
lack one or both of these properties, as well as nondeterministic biautomata were
studied. Throughout the current paper, when writing of biautomata, or DBiAs,
we always mean deterministic biautomata that satisfy both the �-property, and
the F -property, i.e., the model as introduced in [17]. For such biautomata the
following is known from the literature [6,17]:

– (q · u) ◦ v = (q ◦ v) · u, for all states q ∈ Q and words u, v ∈ Σ∗,
– (q · u) ◦ vw ∈ F if and only if (q · uv) ◦ w ∈ F , for all states q ∈ Q and

words u, v, w ∈ Σ∗.

From this one can conclude that for all words ui, vi ∈ Σ∗, with 1 ≤ i ≤ k, we
have

((. . . ((((q0 · u1) ◦ v1) · u2) ◦ v2) . . . ) · uk) ◦ vk ∈ F

if and only if
q0 · u1u2 . . . ukvk . . . v2v1 ∈ F.

Therefore, the language accepted by a biautomaton A can as well be defined as
L(A) = {w ∈ Σ∗ | q0 · w ∈ F }.
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For a state q of an automaton A (DFA or DBiA), the right language of q
is the language LA(q) accepted by the automaton that is obtained from A by
making q its initial state. Notice that the right language of the initial state q0
of A is LA(q0) = L(A). We say that two automata A and A′ are equivalent,
denoted by A ≡ A′, if L(A) = L(A′). Similarly, if q is a state of A and q′ a
state of A′, then q and q′ are equivalent, for short q ≡ q′, if LA(q) = LA′(q′). An
automaton A is minimal if there is no automaton B of the same type, that has
fewer states than A and satisfies A ≡ B.

We often use regular expressions to describe languages—see, e.g., [11]. As
usual we identify an expression with the language it describes, and by abuse of
notation we also use regular expressions as names for states.

Recently, the notions of almost-equivalence and hyper-minimality were intro-
duced [2]. Two languages L and L′ are almost-equivalent, denoted by L ∼ L′,
if their symmetric difference L0L′ := (L \ L′) ∪ (L′ \ L) is finite. This no-
tion naturally carries over to automata and states: two automata A and A′ are
almost-equivalent, for short A ∼ A′, if L(A) ∼ L(A′), and two states q and q′ of A
and, respectively, A′ are almost-equivalent, for short q ∼ q′, if LA(q) ∼ LA′(q′).
An automaton A is hyper-minimal if there is no automaton B of the same type,
that has fewer states than A and satisfies A ∼ B. A useful concept for the study
of almost-equivalent automata is the partitioning of the state set into preamble
and kernel states. A state q of an automaton A is a kernel state if it is reach-
able from the initial state of A by an infinite number of inputs, otherwise q is
a preamble state. The set of all preamble states of A is denoted by Pre(A), and
the set of kernel states is Ker(A).

We assume familiarity with the basic concepts of complexity theory [11,18]
such as reductions, completeness, and the inclusion chain NL ⊆ P ⊆ NP. Here NL
is the set of problems accepted by nondeterministic logarithmic space bounded
Turing machines. Moreover, let P (NP, respectively) denote the set of prob-
lems accepted by deterministic (nondeterministic, respectively) polynomial time
bounded Turing machines.

3 Structural Similarity between Hyper-Minimal
Automata

Let us first recall some important facts on classically minimal and equivalent
DFAs and biautomata. It is well known that two equivalent minimal DFAs must
be isomorphic, i.e., there exists a bijective mapping between the state sets of
the automata that preserves acceptance of states and is compatible with the
transition functions. Moreover, we know that a DFA is minimal if and only if all
its states are reachable, and no two distinct states are equivalent. These results
carry over to biautomata: the isomorphism between two equivalent minimal bi-
automata was shown in [17], and the characterization of minimal biautomata
in terms of reachable and non-equivalent states was given in [6]. Moreover, one
can show the following connection between (minimal) DBiAs and DFAs: if A is a
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(minimal) DBiA, then the automaton Afwd obtained from A by considering only
forward transitions is a (minimal) DFA that accepts the language L(A).

What is known for almost-equivalent and hyper-minimal automata? The no-
tions of almost-equivalence and hyper-minimality were introduced in [2]. There
it was shown that two almost-equivalent hyper-minimal DFAs are isomorphic
in their kernels, and isomorphic in their preambles (up to acceptance values
of preamble states). The following theorem, which summarizes results from [2],
formalizes this isomorphism.

Theorem 1. Let A = (Q,Σ, δ, q0, F ) and A′ = (Q′, Σ, δ′, q′0, F
′) be two minimal

deterministic finite automata with A ∼ A′. There exists a mapping h : Q → Q′

satisfying the following conditions.

1. If q ∈ Pre(A) then q ∼ h(q), and if q ∈ Ker(A) then q ≡ h(q).
2. If q0 ∈ Pre(A) then h(q0) = q′0, and if q0 ∈ Ker(A) then h(q0) ∼ q′0.
3. The restriction of h to Ker(A) is a bijection between the kernels of A and A′,

that is compatible with taking transitions:
3.a We have h(Ker(A)) = Ker(A′), and if q1, q2 ∈ Ker(A) with h(q1) = h(q2)

then q1 = q2.
3.b We have h(δ(q, a)) = δ′(h(q), a), for all q ∈ Ker(A) and all a ∈ Σ.

Further, if A and A′ are hyper-minimal then also the following condition holds.

4. The restriction of h to Pre(A) is a bijection between the preambles of A
and A′, that is compatible with taking transitions, except for transitions from
preamble to kernel:
4.a We have h(Pre(A)) = Pre(A′), and if q1, q2 ∈ Pre(A) with h(q1) = h(q2)

then q1 = q2.
4.b We have h(δ(q, a)) = δ′(h(q), a), for all q ∈ Pre(A) and all a ∈ Σ, that

satisfy δ(q, a) ∈ Pre(A).

Notice that the bijection between the preamble states does not preserve final-
ity of states. Further, the mapping h does not necessarily respect the transitions
from preamble states to kernel states—see Condition 4.b of Theorem 1. Thus,
two almost-equivalent hyper-minimal DFAs can differ in the following:

– acceptance values of preamble states,
– transitions leading from preamble to kernel states,
– the initial state, if the preamble is empty.

However, the transitions connecting preamble and kernel of almost-equivalent
DFAs cannot differ arbitrarily. Assume that for some DFA A we have a state q ∈
Pre(A), and some symbol a ∈ Σ, such that δ(q, a) ∈ Ker(A). Then it could be
that the two states h(δ(q, a)) and δ′(h(q), a) are different, but they must at least
be almost-equivalent. This follows from a result from [2]. Also a characteriza-
tion of hyper-minimal DFAs, which is similar to the characterization of minimal
DFAs, was shown in [2]: a deterministic finite automaton is hyper-minimal if
and only if it is minimal, and there is no pair of distinct but almost-equivalent
states such that one of them is in the preamble.
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Now let us investigate, which of the structural similarity results for almost-
equivalent hyper-minimal DFAs carry over to biautomata. We first show the
following result.

Lemma 2. Let A = (Q,Σ, ·, ◦, q0, F ) and A′ = (Q′, Σ, ·′, ◦′, q′0, F ′) be two biau-
tomata. Let q ∈ Q and q′ ∈ Q′, then q ∼ q′ if and only if (q ·u)◦ v ∼ (q′ ·′ u)◦′ v,
for all words u, v ∈ Σ∗. Moreover, q ∼ q′ implies (q · u) ◦ v ≡ (q′ ·′ u) ◦′ v, for all
words u, v ∈ Σ∗ with |uv| ≥ k = |Q×Q′|. ��

Now we come to a mapping between the states of two almost-equivalent biau-
tomata. As in the case of finite automata, we can find an isomorphism between
the kernels of the two automata. However, we cannot find a similar isomorphism
between their preambles. Of course, two almost-equivalent hyper-minimal biau-
tomata must have the same number of states, and if their kernels are isomorphic,
then also their preambles must be of same size. But still we cannot always find a
bijective mapping that preserves almost-equivalence, as in the case of finite au-
tomata. We will later see an example for this phenomenon, but first we present
our result on the structural similarity between almost-equivalent minimal biau-
tomata.

Theorem 3. Let A = (Q,Σ, ·, ◦, q0, F ) and A′ = (Q′, Σ, ·′, ◦′, q′0, F ′) be two
minimal biautomata with A ∼ A′. There exists a mapping h : Q → Q′ that
satisfies the following conditions.

1. If q ∈ Pre(A) then q ∼ h(q), and if q ∈ Ker(A) then q ≡ h(q).
2. If q0 ∈ Pre(A) then h(q0) = q′0, and if q0 ∈ Ker(A) then h(q0) ∼ q′0.
3. The restriction of h to Ker(A) is a bijection between the kernels of A and A′,

that is compatible with taking transitions:
3.a We have h(Ker(A)) = Ker(A′), and if q1, q2 ∈ Ker(A) with h(q1) = h(q2)

then q1 = q2.
3.b We have h(q · a) = h(q) ·′ a and h(q ◦ a) = h(q) ◦′ a, for all q ∈ Ker(A)

and all a ∈ Σ. ��

Notice that Theorem 3 requires the almost-equivalent DBiAs A and A′ to
be minimal, but not necessarily hyper-minimal. Of course, the theorem also
holds for hyper-minimal automata, since these are always minimal. However, the
question is whether we can find more structural similarities—like Statement 4.b
from Theorem 1 on DFAs—if both DBiAs are hyper-minimal. Unfortunately the
answer is no, as the following example demonstrates.

Example 4. Consider the biautomaton A which is depicted in Figure 1—as usual,
transitions which are not shown lead to a non-accepting sink state, which is
also not shown. The state labels of the eight states in the lower two rows of
the automaton denote the right languages of the respective states. The kernel
of A consists of those states, and the sink state. The right languages of the
preamble states q0, q1, and q2, are as follows: LA(q0) = L(A) = (a+b)ba∗b+c∗a,
LA(q1) = ba∗b + λ, and LA(q2) = ba∗b. One can verify that A satisfies the �-
and the F -property. Let us first show that A is hyper-minimal.
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(a+b)ba∗ ba∗ a∗b c∗

a+b λ a∗ c∗a

a
a, b

b

a

b b

a

bb

c

c

a, b

a, b
aa

a

c

a

preamble

kernel

q0

q1 q2

a bb a

c

b b b b

Fig. 1. The hyper-minimal biautomaton A accepting L(A) = (a+ b)ba∗b+ c∗a—solid
arrows denote forward transitions by ·, and dashed arrows denote backward transitions
by ◦. The gray shading of state pairs denotes almost-equivalence, i.e., we have q1 ∼ q2
and a+ b ∼ λ.

Claim. The biautomaton A depicted in Figure 1 is hyper-minimal. ��

Now consider the DBiA A′, depicted in Figure 2. This biautomaton accepts
the language L(A′) = (a + b)ba∗b + cc∗a, so it is almost-equivalent to A. Since
both A and A′ have the same number of states and A is hyper-minimal, the
device A′ is hyper-minimal, too. Consider a mapping h from the states of A to
the states of A′, that satisfies the conditions of Theorem 3. Between the kernels
of the automata, the mapping is clear. Moreover, since q0 and q′0 are preamble
states, it must be h(q0) = q′0. This can even be concluded if q0 and q′0 were not
the initial states, because state q′0 of A′ is the only state that is almost-equivalent
to q0, and h must satisfy q ∼ h(q) for all states q. With the same argumentation
we obtain h(q1) = h(q2) = q′2. The mapping h is now fully defined, so in this
example, there is no other possible mapping from the states of A to the states
of A′ that preserves almost-equivalence.

Notice that mapping h is not a bijection between the preambles: because we
have h(q1) = h(q2) = q′2, it is not injective, and it neither is surjective, since no
state of A is mapped to state q′1 of B. This shows that the bijection Condition 4.a
of Theorem 1 for preambles of deterministic finite automata does not hold for
biautomata.

Similarly, also Condition 4.b of Theorem 1 cannot be satisfied here, which is
witnessed by the following. We have h(q0 ◦ a) = h(c∗) = c∗—here c∗ in h(c∗)
denotes the kernel state of A, and c∗ after the equation symbol denotes the
kernel state of A′—but it is h(q0) ◦B a = q′0 ◦B a = q′1, so h(q0 ◦ a) �= h(q0) ◦B a.

Of course there exist bijective mappings between the state sets of the two
automata A and A′, but none of these can preserve almost-equivalence because
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(a+b)ba∗ ba∗ a∗b c∗

a+b λ a∗ c∗a

a
a, b

b

a

b b

a

bb
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c

a, b

a, b
aa

a

c

a

preamble

kernel

q′0

q′1q′2

a, bb

a

c
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Fig. 2. The hyper-minimal biautomaton A′ with L(A′) = (a + b)ba∗b + cc∗a. The
preamble states of A′ are q′0, q

′
1, and q′2 and their right languages are LA′(q′0) = L(A′),

LA′(q′1) = cc∗, and LA′(q′2) = ba∗b. The gray shading of state pairs denotes almost-
equivalence.

the corresponding almost-equivalence classes in the state sets are not always of
same size. For example, there are two states in A that are almost-equivalent
to q1, namely q1 itself and q2, but in A′ there is only state q′2 in its equivalence
class. ��

Recall that if a biautomaton is minimal, then also the DFA obtained from that
biautomaton by considering only forward transitions is minimal, too. Notice
that this relation does not hold if we consider hyper-minimal automata: the
biautomaton A from Example 4 is hyper-minimal. But the contained DFA Afwd

is not hyper-minimal because the two preamble states q1 and q2 are almost-
equivalent, which contradicts the characterization of hyper-minimal DFAs.

Due to the lack of structural similarity in the preambles of almost-equivalent
hyper-minimal biautomata, we do not hope for a nice characterization of hyper-
minimal biautomaton, as in the case of hyper-minimal DFAs, or as it is the case
for classically minimal automata. Another effect related to these unsatisfying
structural properties of hyper-minimal biautomata will show up in the following
section, where we show that hyper-minimizing biautomata is computationally
hard.

4 Computational Complexity of (Hyper)-Minimization

Given a deterministic finite automaton, it is an easy task to construct an equiva-
lent minimal automaton. A lot of minimization algorithms for DFAs are known,
the most efficient of them being Hopcroft’s algorithm [10] with a running time
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of O(n logn), where n is the number of states of the input DFA. In fact, the deci-
sion version of the DFA minimization problem—given a DFA A and an integer n,
decide whether there exists an n-state DFA B with A ≡ B—is NL-complete [3].

Concerning minimization of biautomata, it was discussed in [6] how classical
DFA minimization techniques can also be applied to DBiAs. In the following
we investigate the computational complexity of the minimization problem for
biautomata, and show that it is NL-complete, too. For proving NL-hardness we
use the following NL-complete variant of the graph reachability problem [14,15].

Reachability: given a directed graph G = (V,E) with V = {v1, . . . , vn},
where every vertex has at most two successors and at most two prede-
cessors, decide whether vn is reachable from v1.

We use this variant in order to make sure that the DFA that is obtained from G
by a straight-forward construction is also backward deterministic, so that the
corresponding biautomaton is not too big. The next theorem reads as follows:

Theorem 5 (DBiA Minimization Problem). The problem of deciding for
a given biautomaton A, and an integer n, whether there exists an n-state biau-
tomaton B with A ≡ B, is NL-complete. ��

Now we turn to hyper-minimization. For deterministic finite automata the
situation is similar as in the case of classical minimization: efficient hyper-
minimization algorithms with running time O(n logn) are known [4,9], and it
was shown in [5] that the hyper-minimization problem for DFAs is NL-complete.
On the one hand, since classical DFA minimization methods also work well for
DBiAs, one could expect that hyper-minimization of DBiAs is as easy as for
ordinary DFAs. On the other hand, the problems related to the structure of
hyper-minimal biautomata, which we discussed in Section 3, already give hints
that hyper-minimization of DBiAs may not be so easy. In fact, we show in the
following that the hyper-minimization problem for biautomata is NP-complete.
To prove NP-hardness we give a reduction from the NP-complete MAX-2-SAT
problem [18] which is defined as follows.

MAX-2-SAT: given a Boolean formula ϕ in conjunctive normal form,
where each clause has exactly two literals, and an integer k, decide
whether there exists an assignment that satisfies at least k clauses of ϕ.

Let us describe the key idea of the reduction. Given as instance of MAX-2-
SAT a formula ϕ and number k, we construct a DBiA Aϕ such that for every
clause that can be satisfied in ϕ, we can save one state of Aϕ, obtaining an
almost-equivalent DBiA. Every clause of ϕ will be translated to a part of the
biautomaton using a separate alphabet, so that the clause gadgets in Aϕ are
mostly independent from each other. Assume that ϕi = (�i1∨�i2) is a clause of ϕ,
and the first literal is �i1 = xu, and the second is �i2 = xv, for some variables xu

and xv. Then the DBiA Aϕ contains the structure which is depicted in Figure 3.
The states q1 and q′1 correspond to literal �i1 , and states q2 and q′2 to the

literal �i2 . States pu and pv correspond to the variables xu and xv, respectively,
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Fig. 3. Simplified structure of Aϕ corresponding to the clause ϕi = (xu∨xv). The gray
shading denotes almost-equivalence of states.

and are shared by all clause gadgets related to these variables. Now assume
that there is a truth assignment ξ to the variables that satisfies clause ϕi, say
by ξ(xu) = 1. Then we make the preamble state pu accepting, and merge the
preamble state q′1 to the almost-equivalent state q1. To preserve the �-property
of the biautomaton, we further re-route the backward c transition of the initial
state, making state s1 the target of the transition. The case where the clause ϕi is
satisfied by the second literal corresponds to the similar situation, where state pv
stays non-accepting, state q′2 is merged to q2, and the target of the backward c
transition from q0 is state s2. The changing of acceptance of preamble states only
introduces a finite number of errors. Further, the merging of preamble states
to almost-equivalent kernel states also yields an almost-equivalent automaton.1

Therefore, if k clauses of ϕ can be satisfied, then k states of Aϕ can be saved.

1 In general, this needs some more argumentation. Here the described changes in
the biautomaton preserved the �-property, and the F -property. Therefore the lan-
guages accepted by the original and the modified biautomata are the same as the
languages accepted by the contained DFAs (using only forward transitions). Now
almost-equivalence of these DFAs, and thus, of the biautomata, follows from the
fact that merging preamble states to almost-equivalent kernel states in a DFA pre-
serves almost-equivalence.
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The other direction, i.e., the deduction of a truth assignment ξ from a given
biautomaton B that is almost-equivalent to Aϕ, is similar: let ξ(xu) = 1 if and
only if state pu of automaton B is accepting. Now assume that state B has k
states less than Aϕ. The reduction will make sure that only the states q′1 and q′2
can be saved. If for example state q′1 is not present in B, then the initial state
of B must enter state q1 on reading symbol b1 with a forward transition. Due
to the F -property of B, the state pu reached from the initial state by taking a
backward b1 transition must be accepting. Since the variable states are shared
by all clause gadgets, the information that pu is accepting—i.e., that variable xu

should be assigned truth value 1—is transported to all other clause gadgets that
use variable xu. Therefore, no state corresponding to the negative literal xu can
be saved, i.e., no clause can be satisfied by a literal xu.2 It may be the case
that both states q′1 and q′2 are merged to their almost-equivalent kernel states q1
and q2, respectively. But then, due to the �-property, the initial state must go
to some state s′ on reading a c symbol with a backward transition, and this
state s′ must go to state t1 on a forward b1 transition, and it must go to state t2
on a forward b2 transition. Such a state is not present in the biautomaton Aϕ,
so this state s′ is an additional state in the preamble of B. Hence, even if both
states q′1 and q′2 are merged into the kernel, the clause gadget in B cannot save
more than one state compared to the clause gadget in Aϕ. Altogether, for every
state that B has less than A, there is a clause of ϕ that is satisfied by ξ.

Containment of the hyper-minimization problem in NP can be seen by an easy
guess-and-check-algorithm, therefore, we obtain the following theorem.

Theorem 6 (DBiA Hyper-Minimization Problem). The problem of decid-
ing for a given biautomaton A, and an integer n, whether there exists an n-state
biautomaton B, with A ∼ B, is NP-complete. ��

In [5] another form of equivalence of languages and automata was consid-
ered, namely E-equivalence. Given an error language E ⊆ Σ∗, two languages L
and L′ over Σ are E-equivalent, for short L ∼E L′, if L0L′ ⊆ E, and two
automata A and A′ are E-equivalent, if L(A) ∼E L(A′). It is shown in [5] that
the following E-minimization problem for DFAs is already NP-complete: given
two DFAs A and AE , and an integer n, decide whether there exists an n-state
DFA B, with A ∼E B, for E = L(AE). The E-minimization problem for DBiAs
turns out to be NP-complete, too.

Theorem 7 (DBiA E-Minimization Problem). The problem of deciding for
a given biautomaton A, a deterministic finite automaton AE , and an integer n,
whether there exists an n-state biautomaton B, such that A ∼E B, for E =

2 The reader may have noticed that there is still a possibility to “cheat:” one could
use accepting and non-accepting copies of variable states in the preamble in order to
satisfy a lot more clauses than possible. We take care of this problem in the detailed
proof. (The problem can be solved by using many copies b1,j and b2,j of the b1 and b2
symbols, each connected to a different copy pu,j of variable states. If the number of
these copies is larger than the number of clauses, then the “cheat” turns out to be
a bad trade-off.)
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L(AE), is NP-complete. This also holds, if AE is a biautomaton instead of a
finite automaton. ��
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16. Kĺıma, O., Polák, L.: Biautomata for k-piecewise testable languages. In: Yen, H.-C.,
Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 344–355. Springer, Heidelberg
(2012)
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Abstract. We consider the model of deterministic set automata which
are basically deterministic finite automata equipped with a set as an ad-
ditional storage medium. The basic operations on the set are the insertion
of elements, the removing of elements, and the test whether an element
is in the set. We investigate the computational power of deterministic
set automata and compare the language class accepted with the context-
free languages and classes of languages accepted by queue automata. As
results the incomparability to all classes considered is obtained. In the
second part of the paper, we examine the closure properties of the class
of DSA languages under Boolean operations. Finally, we show that de-
terministic set automata may be an interesting model from a practical
point of view by proving that their emptiness problem is decidable.

1 Introduction

The regular languages and their corresponding automata model, deterministic
and nondeterministic finite automata, are well investigated [6]. It is well known
that this family of languages has many desirable properties. For example, all
commonly studied decidability questions are decidable and the regular languages
are closed under almost all commonly studied operations such as, for example,
the Boolean operation, concatenation, (inverse) homomorphism, and substitu-
tion. From a practical point of view, finite automata are in particular interesting,
since many of the decidability questions are decidable in polynomial time and,
in addition, an effective minimization algorithm is known for deterministic finite
automata.

But with respect to the computational power, this model is quite weak since
it builds the lowermost level of the Chomsky hierarchy. Hence, much efforts have
been made to find models that extend the computational power of regular lan-
guages by adding storage media, but keep as many ‘good’ properties as possible.
Consider, for example, the extension by a stack [4] or by a pushdown store [2],
which leads to the context-free languages. For both models nondeterministic
variants are more powerful than deterministic variants, which is in contrast to
finite automata. Moreover, some positive closure properties are lost. On the other
hand, the decidability of emptiness and finiteness is preserved [4,6,9]. In addi-
tion, equivalence is decidable for deterministic pushdown automata [10], but not
for the nondeterministic variant [6].

A.M. Shur and M.V. Volkov (Eds.): DLT 2014, LNCS 8633, pp. 303–314, 2014.
c© Springer International Publishing Switzerland 2014
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Another extension studied is that of a queue. In their general definition queue
automata can accept the class of recursively enumerable languages for which
all non-trivial decidability questions are undecidable. A meaningful restriction
for queue automata is considered in [1] where quasi-real-time computations are
studied. The restriction of quasi-real-time means that in any computation the
number of subsequent λ-moves is bounded by some constant. Another restriction
is investigated in [7] where the number of turns, that is, the changes between an
enqueuing and a dequeuing phase, is bounded by some constant. This restric-
tion is similar to finite turn pushdown automata where the number of changes
between increasing and decreasing the height of the pushdown store is bounded
by some constant. Both restrictions lead to language classes less powerful than
the class of recursively enumerable languages. With the latter restriction it is
possible to decide the emptiness problem [7].

The paper [3] introduces bag automata which are basically finite automata
equipped with a finite number of bags in which the automaton can put symbols
and also multiple versions of symbols. The symbols are stored as multisets and,
therefore, the order in which they are added to the bags is not remembered.
This model is quite powerful, because it is possible to simulate certain counter
machines. If the model is restricted to so-called well-formed bag automata, a
language class in between the (deterministic) one-counter and the (deterministic)
context-free languages is obtained.

In this paper, we consider deterministic set automata (DSA) that extend
deterministic finite automata by adding the storage medium of a set which, in
contrast to bag automata, allows words to be stored and is not a multiset. As
operations on the set it is possible to add elements, to remove elements, and to
test whether some element is in the set. To prepare a set operation the DSA
can write on a one-way write-only tape. For the set operation the contents of
that tape are taken and added to the set, removed from the set, or tested. After
the set operation, the writing tape is reset to the empty tape and a new set
operation may be prepared. A similar model has been introduced by Lange and
Reinhardt in [8]. In contrast to DSA, their model may work nondeterministically,
allows no remove operations, and a test operation implicitly adds the word tested
to the set. The main results in [8] are the decidability of emptiness for the
model considered and the closure of the corresponding language class under
the operations homomorphism, inverse homomorphism, and intersection with
regular languages.

This paper is organized as follows. After the definition of the model and some
examples in Section 2, we compare DSA with pushdown automata, quasi-real-
time queue automata, and queue automata with finite turns with regard to their
computational power. As result we obtain the incomparability with all classes
investigated. This shows that DSA can accept languages which are not accepted
by the other models. In Section 4 we consider closure properties. It turns out that
the language class accepted by DSA is closed under complement and union with
regular languages as well as intersection with regular languages, but is not closed
under general union and general intersection. Finally, we show that emptiness
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is decidable for DSA which is a pleasant property from a theoretical as well as
from a practical point of view. We would like to note that missing proofs have
been omitted due to space constraints.

2 Preliminaries

We write Σ∗ for the set of all words over the finite alphabet Σ. The empty word
is denoted by λ, and we set Σ+ = Σ∗ \ {λ}. The reversal of a word w is denoted
by wR, and for the length of w we write |w|. We use ⊆ for inclusions and ⊂ for
strict inclusions.

A set automaton is a system consisting of a finite state control, a one-way
writing tape where transductions of parts of the input can be temporarily stored,
and a data structure set where words of arbitrary length can be stored. At each
time step, it is possible to either write a transduction of the current input letter
to the end of the writing tape, to insert or remove the word written on the tape
to or from the set, or to test whether the word written on the tape belongs to
the set. Each time a set operation {in, out, or test} is done, the content of the
writing tape is erased and its head is reset to the left end.

Definition 1. A deterministic set automaton, abbreviated as DSA, is a system
M = 〈S,Σ, Γ,�, δ, s0, F 〉, where

1. S is the finite set of internal states,
2. Σ is the finite set of input symbols,
3. Γ is the finite set of tape symbols,
4. � /∈ Σ is the right endmarker,
5. s0 ∈ S is the initial state,
6. F ⊆ S is the set of accepting states, and
7. δ : S × (Σ ∪ {λ,�}) → (S × (Γ ∗ ∪ {in, out})) ∪ (S × {test} × S) is the

partial transition function, where in is the instruction to add the content of
the tape to the set, out is the instruction to remove the content of the tape
from the set, and test is the instruction to test whether the content of the
tape is in the set. If the transition function is defined for some pair (s, λ)
with s ∈ S, then it is not defined for any pair (s, a) with a ∈ Σ ∪ {�}.

A configuration of a DSA M = 〈S,Σ, Γ,�, δ, s0, F 〉 is a quadruple (s, v, z, S),
where s ∈ S is the current state, v ∈ {Σ∗�} ∪ {λ} is unread part of the input,
z ∈ Γ ∗ is the content of the tape, and S ⊆ Γ ∗ is the finite set of stored words.
The initial configuration for an input string w is set to (s0, w�, λ, ∅). During
the course of its computation, M runs through a sequence of configurations.
One step from a configuration to its successor configuration is denoted by �. Let
s, s′, s′′ ∈ S, x ∈ Σ ∪ {λ,�}, v ∈ {Σ∗�} ∪ {λ}, z, z′ ∈ Γ ∗, and S ⊆ Γ ∗. We set

1. (s, xv, z, S) � (s′, v, zz′, S), if δ(s, x) = (s′, z′),
2. (s, xv, z, S) � (s′, v, λ, S ∪ {z}), if δ(s, x) = (s′, in),
3. (s, xv, z, S) � (s′, v, λ, S \ {z}), if δ(s, x) = (s′, out),
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4. (s, xv, z, S) � (s′, v, λ, S), if δ(s, x) = (s′, test, s′′) and z ∈ S,
5. (s, xv, z, S) � (s′′, v, λ, S), if δ(s, x) = (s′, test, s′′) and z /∈ S.

We denote the reflexive and transitive closure of � by �∗. It should be noted
that an instruction to remove some z from S does not test whether z ∈ S; it only
ensures that z �∈ S after the operation. The language accepted by the DSA M
is the set L(M) of words for which there exists a computation beginning in the
initial configuration and ending in a configuration in which the whole input is
read and an accepting state is entered. Formally:

L(M) = {w ∈ Σ∗ | (s0, w�, λ, ∅) �∗ (sf , λ, z, S) with sf ∈ F, z ∈ Γ ∗, S ⊆ Γ ∗ }.

The family of all languages accepted by DSA is denoted by L (DSA).

Example 2. Language L1 = {wcw | w ∈ {a, b}∗ } is accepted by a DSA. The
idea is to read the whole sequence up to the letter c and to copy it to the tape.
When the input head arrives at the c, it stores the word w on the tape in its set.
Then it reads the second subword consisting of a’s and b’s and copies it also to
the tape. When the input head arrives at the right endmarker, it tests whether
the content on the tape is in the set. If this is the case, then the input is accepted
and otherwise rejected. ��

Example 3. Language L2 = { anbm$0c
n | m,n ≥ 1 } ∪ { anbm$1c

m | m,n ≥ 1 }
is accepted by a DSA. First, the automaton writes for every a in the input an a
on the tape. When the first b is read, it adds the word on the tape to the set.
Then the automaton writes for every b in the input an b on the tape until the
dollar is in the input. Subsequently, the word on the tape, consisting of b’s, is
added to the set. Depending on whether there has been a $0 or a $1 in the input
the automaton writes an a or a b for each c in the input on the tape. In the last
step, the automaton checks whether the word on the tape is in the set. If the
test is successful, the input is accepted and otherwise rejected. ��

Example 4. Language L3 = { anbncn | n ≥ 1 } is accepted by a DSA in such a
way that it writes for every a in the input an a on the tape. When it reads the
first b, it adds the content of the tape to the set. Then, it writes for every b in the
input an a on the tape and when it reads the first c, it tests whether the word
on the tape is in the set. If this is not the case, the input is rejected. Otherwise,
for every c in the input an a is written on the tape. If at the end again the word
on the tape is in the set, then the input is accepted and otherwise rejected. ��

3 Computational Power of Deterministic Set Automata

In this section, we study the computational power of deterministic set automata.
Hence, we compare the model with the known models of pushdown automata and
queue automata. Since in general queue automata characterize the recursively
enumerable languages, we compare our model with the restricted versions of
quasi-real-time queue automata and queue automata with a finite number of
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turns, that is, the number of changes between enqueuing and dequeuing periods
is bounded by a fixed number.

Let us first consider unary languages. It is known that pushdown automata
accept only semilinear unary languages, hence regular languages, whereas even
quasi-real-time queue automata may accept non-semilinear unary languages [1].

Theorem 5. Every unary language accepted by a DSA is semilinear.

Proof. Let M = 〈S, {a}, Γ,�, δ, s0, F 〉 be a DSA accepting a unary language
and k be the length of a longest word that M can write in one step on the
tape. We may assume that M accepts an infinite language, since finite unary
languages are semilinear. Let w be an input such that |w| > |S|. When processing
this input, the automaton necessarily has to enter a loop. We consider two cases.

First, we assume that there is no situation occurring in which the automaton
performs an operation {in, out, test} on the set. Then, there will never be a
word in the set and M can be easily transformed into an equivalent deterministic
finite automaton. Second, we assume that M performs an in-, out, or test-
operation after which the content of the tape is deleted. In each computation
step, M can write at most k symbols on the tape. Due to the unary input, M
can distinguish between at most |S| different situations. Thus, the words written
on the tape and possibly added to the set are at most of length k · |S|. Hence, we
can construct a deterministic finite automaton that simulates M by storing the
content on the tape as well as the finite number of words in the set in its state.
Since the languages accepted by finite automata are semilinear, the theorem
follows. ��

With this result we are able to show that the family of languages accepted by
deterministic set automata is incomparable with the family of languages accepted
by quasi-real-time queue automata.

Theorem 6. The family of languages accepted by DSA is incomparable with the
family of languages accepted by quasi-real-time queue automata.

Proof. The non-semilinear unary language { an | n is a Fibonacci number } is
accepted by some quasi-real-time queue automaton [1]. Since by Theorem 5,
DSA do not accept non-semilinear unary languages, it remains to show the other
direction. The witness language used is language L2 of Example 3. ��

In the next proof as well as in the section for the decidability we need that set
automata are in a special form where each state carries the information whether
the last action on the set was a test-, in-, or out-operation or was a write
operation on the tape. Additionally, it is distinguished between successful and
unsuccessful test-operations.

Definition 7. A DSA M is in action normal form, if the initial state of M
is only visited once at the beginning of the computation and each other state
indicates uniquely which action the automaton M did in the last computation
step. The states are marked with a corresponding subscript test+, test-, in,
or out. Non-marked states are interpreted as states where the last action was a
write operation on the tape.
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Lemma 8. Any DSA M = 〈S,Σ, Γ,�, δ, s0, F 〉 can be converted into an equiv-
alent DSA M ′ = 〈S′, Σ, Γ,�, δ′, s′0, F

′〉 in action normal form.

Proof. In a first step, we construct a DSA M ′′ = 〈S′′, Σ, Γ,�, δ′′, s′′0 , F
′′〉 with

a new initial state s′′0 which is visited at most once. Let S′′ = S ∪ {s′′0} with
s′′0 �∈ S. If s0 ∈ F we define F ′′ = F ∪ {s′′0}, and set F ′′ = F otherwise. The
transition function δ′′ is defined as follows for si, sj, sk ∈ S, a ∈ Σ ∪{λ,�}, and
z ∈ Γ ∗ ∪ {in, out}.

1. δ′′(s′′0 , λ) = (s0, λ),
2. δ′′(si, a) = (sj , z), if δ(si, a) = (sj , z),
3. δ′′(si, a) = (sj , test, sk), if δ(si, a) = (sj , test, sk).

In the next step, we define a state set consisting of five pairwise disjoint sets
Sin, Sout, Stest+, Stest-, and Swrite. The idea is that we introduce a new state
for every state connected with a non-writing operation, whereas the states of S′′

indicate writing operations. So, let Swrite = S′′, Stest = Stest+ ∪ Stest- and
S′ = Sin ∪ Sout ∪ Stest ∪ Swrite. We set s′0 = s′′0 and F ′ = F ′′. For the definition
of δ′, consider si, sj, sk ∈ S′′, a ∈ Σ ∪ {λ,�}, and z ∈ Γ ∗.

1. δ′(si, a) = (sjin , in) and δ′(sjin , λ) = (sj , λ), if δ′′(si, a) = (sj , in),
2. δ′(si, a) = (sjout , out) and δ′(sjout , λ) = (sj , λ), if δ′′(si, a) = (sj , out),
3. δ′(si, a) = (sjtest+ , test, sktest-

), δ′(sjtest+ , λ) = (sj , λ), and δ′(sktest-
, λ) =

(sk, λ), if δ′′(si, a) = (sj , test, sk),
4. δ′(si, a) = (sj , z), if δ′′(si, a) = (sj , z).

The DSA M ′ is still a deterministic automaton, since newly introduced λ-
transitions start only from newly introduced states. Moreover, M ′ is in action
normal form and is equivalent to M , since the same transitions as in M are per-
formed and the additional λ-transitions do not affect the language accepted. ��

Our next goal is to achieve another normal form for DSA which plays a crucial
role in further proofs. Let M = 〈S,Σ, Γ,�, δ, s0, F 〉 be a DSA in action normal
form. Thus, S = Sin ∪ Sout ∪ Stest ∪ Swrite. We note that the tape is empty
at the beginning of the computation as well as after each operation on the set.
Now we build sets of the form Lsi,sj with si ∈ {s0} ∪ Sin ∪ Sout ∪ Stest and
sj ∈ Sin ∪ Sout ∪ Stest that describe all words that can be written on the tape
when the computation starts in state si with empty tape and ends in state sj ,
and in between no other state performing an operation on the set is entered.
Formally we define

Lsi,sj = {wn ∈ Γ ∗ | there is u ∈ Σ∗ such that (si, u, λ, S) � (si+1, u1, w1, S)

�∗ (si+(n−1), un−1, wn−1, S) � (si+n, un, wn, S) � (sj , λ, λ, S′),
and si+1, si+2, . . . , si+n /∈ Sin ∪ Sout ∪ Stest }.

All these sets Lsi,sj are regular, since an equivalent finite automaton Msi,sj can
be built from M : Msi,sj has S as state set, si as initial state, and sj as only
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accepting state. We consider all transitions in M from some state s ∈ {si}∪Swrite

to some state s′ ∈ {sj}∪Swrite writing some word w ∈ Γ ∗ on the tape. For every
such transition we add to Msi,sj a transition from s to s′ on input w.

We say that a DSA M is in infinite action normal form if M is in action
normal form and all sets Lsi,sj are infinite. The next lemma says that we always
may assume that a DSA is in infinite action normal form.

Lemma 9. Any DSA M can be converted into an equivalent DSA M ′ in infinite
action normal form.

The context-free languages and their important subclass of deterministic
context-free languages are one of the best studied families of languages.

Theorem 10. The family of languages accepted by DSA is incomparable with
the (deterministic) context-free languages.

Proof. By Example 2, the non-context-free language L1 = {wcw | w ∈ {a, b}∗ }
is accepted by some DSA. So, it suffices to show that the deterministic context-
free language L = {wcwR | w ∈ {a, b}∗ } is not accepted by any deterministic
set automaton. In the following, we are often arguing with two parts of a word
in L. So, we call the sequence up to the middle marker c the first part of the
word, and the remaining sequence the second part of the word.

The proof is by contradiction. Assuming that L is accepted by some DSA M ,
we will show as a first step that L is accepted by M in such a way that all possible
set operations performed on the first part of the input are a finite number of
in-operations, and on the second part are a finite number test-operations. In
a second step, based on M an equivalent one-way multi-head finite automaton
accepting L is constructed. This leads to a contradiction.

Let L be accepted by a DSA M = 〈S,Σ, Γ,�, δ, s0, F 〉 which is in infinite
action normal form. Thus, S = Sin ∪ Sout ∪ Stest ∪ Swrite and we know that all
sets Lsi,sj with si ∈ {s0} ∪ Sin ∪ Sout ∪ Stest and sj ∈ Sin ∪ Sout ∪ Stest are
infinite.

Next, we will show that there are no test-operations in the first part of an
accepted input. Let us first discuss the case when some test in the first part is
negative. We consider the subcomputation (si, uvcw

R, λ, S) �∗ (sj , vcw
R, λ, S′)

on input u′uvcwR ∈ L with w = u′uv, sj ∈ Stest, si ∈ {s0} ∪ Sin ∪ Sout ∪ Stest,
and assume that the test has a negative result. Since Lsi,sj is infinite, there are
infinitely many input sequences whose transductions belong to Lsi,sj . Therefore,
there exists some u′′ ∈ {a, b}+ with u �= u′′, so that the DSA also accepts the
input u′u′′vcwR, which is a contradiction. We conclude that every test in the
first part has to be successful. Now assume as before that the DSA is in state si
after the processing of the input prefix u′. For any input ũv there is a word
u′ũvc(u′ũv)R ∈ L. Since there are only finitely many words in S, the test has to
be successful, and Lsi,sj is infinite, we can conclude that there are two different
words ũ and û whose transduction on the tape is the same. This implies that M
is in the same configuration after reading u′ũ and after reading u′û. Thus, both
words u′ũvc(u′ũv)R and u′ûvc(u′ũv)R are accepted, a contradiction. Hence, we
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may assume that there is never a test-operation in the first part of accepted
inputs.

In a similar way it can be proved that for accepting computations there are
never out-operations in the first or in the second part of the input, and that
there are never in-operations in the second part of the input.

Next, we turn to show that M can perform only a constant number of in-
operations in the first part of accepting computations. Assume contrarily that M
performs k > |S|2 input operations in the first part of some input. Then there
are two states si ∈ Sin∪Sout∪Stest and sj ∈ Sin such that M runs from si to sj
twice. Consider such a computation on an input w = zczR with z = vuv′u′v′′,
where M is in state si when it reads the first symbol of u, and is in state sj
when it reads the first symbol of v′, and is again in state si when it reads the
first symbol of u′, and is again in state sj when it reads the first symbol of v′′.
Then we can conclude out of the fact that M does not perform any test- or out-
operations while computing the subword v′, that M is in the same configuration
after reading the subwords vuv′u′v′′ and vu′v′u′v′′. Choosing u �= u′, which is
always possible since Lsi,sj is infinite, we obtain a contradiction, because both
words zczR ∈ L with z = vuv′u′v′ and vu′v′u′v′′czR �∈ L would be accepted.

Next, we turn to prove that there are only a constant number of tests in the
second part of accepted inputs. First, we show that M never performs a negative
test-operation in the second part of an accepted input. Assuming the contrary,
there is a word wcuvu′ ∈ L such that M is in state si ∈ Sin ∪ Sout ∪ Stest

with empty tape after reading wcu. Now, M reads v, writes some z on the tape,
tests z, and enters some state sj ∈ Stest- as result of a negative test. Thus, M
is in configuration (sj , u

′, λ, S). Since Lsi,sj is infinite and the content of the
set S is finite, there is a another word wcuv′u′ with v �= v′ such that M is also
in configuration (sj , u

′, λ, S) after reading v′. This is a contradiction, since then
wcuv′u′ �∈ L would be accepted. So, we can conclude that all test-operations
performed in the second part of accepted inputs are positive. Assume now that
the number of tests is greater than |S|. Then one test-state is entered at least
twice. We may assume that in the computation on an accepted word w = zczR

with zR = vuv′ M reaches some state sj ∈ Stest when it reads the first symbol
of u and again when reading the first symbol of v′. Therefore all words zcvuiv′

with i ≥ 1 are accepted as well, since we know that there are no out-operations
in the second part. Choosing i = 2 leads to a contradiction.

Now we know that M never performs test- or out-operations in the first part
of accepted inputs and never performs in- or out-operations in the second part
of accepted inputs. Furthermore, at most |S|2 in-operations in the first part as
well as at most |S| test-operations in the second part are performed. In the
following, we describe how M can be simulated by a one-way multi-head finite
automaton.

Let uv be an input word and let u1, u2, . . . , un be the subwords of u whose
transductions are added to the set by in-operations, and v1, v2, . . . , vm be the
subwords of v whose transductions are tested. We construct a one-way multi-
head finite automaton M ′ that leaves |S| many heads at position p0 = 1, that
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is, at the beginning of the input word, reads the input using some head h, starts
to simulate M omitting the simulation of the tape, and leaves |S| many heads
in the first part of the input at every moment when M empties its tape and
adds some ui to its set, except for the last in-operation. In the following, these
positions are denoted by p1, p2, . . . , pn−1. Moreover, for 0 ≤ i ≤ |S| − 1, hi,j

denotes the jth head (out of |S| heads) that has been left at position pi. The
states s1, s2, . . . , sn−1 the DSA M is in at these moments are stored in the
state set of M ′. Let us first assume that exactly n = |S|2 in-operations are
performed. By counting the number of in-operations in the state set, we know
when the last in-operation has been performed. At that moment, M starts
to write v1 on the tape which is eventually tested with the contents of the
set. To simulate this behavior by M ′, we use the heads h0,1, h1,1, . . . h|S|2−1,1

to start in states s0, s1, s2, . . . , sn−1 at positions p0, p1, p2, . . . , pn−1 to compare
the transductions of the words u1, u2, . . . , un with the transduction of v1 read
by head h. If an agreement is found when some state sj ∈ Stest is entered,
that is, M has added some word to the set which is now positively tested,
then the simulation is continued by comparing the transductions of the words
u1, u2, . . . , un with the transduction of v2 using the heads h0,2, h1,2, . . . h|S|2−1,2.
This behavior is continued until all m tests have been simulated successfully.
Finally, it is checked with head h whether M enters an accepting state. In this
case M ′ accepts the input and rejects otherwise. The following two pictures show
the situation of dropping all heads in the first part, and the simulation for the
test of the transduction of v1. The rightmost head is head h.

�
p0 p1 p2u1 u2 u3 v1 v2 v3

�
p0 p1 p2u1 u2 u3 v1 v2 v3

Let us now discuss the case when n < |S|2 in-operations have been per-
formed. In this case, it not clear which in-operation is the last one that starts
the comparing phase. To manage this case, we drop another |S|2 heads at every
position p0, p1, . . . , pn−1 and interpret every in-operation as the last operation
which starts the comparing phase. If the next operation is an in-operation, we
start a new comparing phase with a new set of heads. If the next operation is
a test-operation, we continue the comparing phase with a new set of heads.
Altogether, we need at most |S|3 + |S|4 + 1 heads.

In summary, the simulation shows that L is accepted by a one-way multi-head
finite automaton. This is a contradiction, since it is known that L is not accepted
by any one-way multi-head finite automaton. ��

Next, we derive the incomparability of the family of languages accepted by
deterministic set automata with the family of languages accepted by queue au-
tomata with finite turns as follows.
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Theorem 11. The family of languages accepted by DSA is incomparable with
the family of languages accepted by queue automata with finite turns.

Proof. We consider language L3 of Example 4. Let us assume that L3 is accepted
by some finite-turn deterministic queue automaton. It is shown in [7] that any
k-turn deterministic queue automaton can be converted into an equivalent 2k-
flip deterministic flip-pushdown automaton which is basically a deterministic
pushdown automaton with the additional ability to reverse the current contents
of the pushdown store. Thus, L3 can be accepted by such an automaton with
a finite number of flips. On the other hand, it is shown in [5] that L3 cannot
even be accepted by any nondeterministic flip-pushdown automaton with a finite
number of flips. Hence, L3 is not accepted by any finite-turn deterministic queue
automaton.

Let us now consider the union L = L′ ∪ L′′ with L′ = { anbmcn | m,n ≥ 1 }
and L′′ = { anbmcn+m | m,n ≥ 1 }. It is not difficult to construct a queue
automaton with one turn which accepts L. On the other hand, it can be shown
that L is not accepted by any DSA. ��

4 Closure Properties

In this section, we investigate the closure properties of DSA with respect to the
Boolean operations.

Lemma 12. The family of languages accepted by DSA is closed under comple-
mentation.

Proof. The closure under complementation for deterministic finite automata can
be easily proved by interchanging accepting and rejecting states. We cannot
translate this idea directly to DSA, because mainly three problems may occur.
First, the given DSA may not read its input completely by either entering a
configuration in which no next move is defined (1) or by entering an infinite
λ-loop (2). Second, the given DSA may perform λ-steps leading from an accept-
ing state to a rejecting state and back (3).

Now, let M be a DSA for which we want to construct a DSA accepting
its complement. To overcome problem (1), we introduce a new non-accepting
state srej to which all undefined transitions of M are directed. Additionally,
we define further moves from srej which shift the input head to the end of the
input. For problem (3), we note that M can accept at the earliest after reading
the endmarker. Thereafter additional λ-steps may be possible. We now want to
achieve that in this case M enters an accepting state as soon as possible which
cannot be left. To this end, a new accepting state sacc is added for with the
transition function is undefined. Moreover, we double the state set of M and
store in every state the information whether the endmarker has been passed. If
we now have a transition entering an accepting state with the knowledge that
the endmarker has been passed, we redirect such a transition to enter state sacc.
By these modifications we have obtained an equivalent DSA M ′ in which prob-
lems (1) and (3) do no longer occur. However, M ′ may enter infinite λ-loops.
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Next, we transform M ′ into infinite action normal form and note that by the
construction problems of type (1) and (3) are not occurring. Let us distinguish
two cases: first, we assume that on infinite λ-loops only states from Swrite can
be visited. By an inspection of the transition function we can check in advance
which states from Swrite will end in an infinite λ-loop. Then, any transition end-
ing in such a state will be redirected to srej . Second, we assume that we have
an infinite λ-loop in which some state s1 ∈ Sin ∪ Sout ∪ Stest is entered. Let
s2 ∈ Sin ∪ Sout ∪ Stest be the next, not necessarily different, non-writing state
along the λ-loop. Then, we consider the language Ls1,s2 which has to be infinite
due to the infinite action normal form. On the other hand, M ′ is deterministic,
no input is read while moving from s1 to s2, and the tape is empty when starting
in s1 and when having reached s2. Hence, it is only possible to write one word
on the tape while moving from s1 to s2. This implies that Ls1,s2 is finite. Thus,
this case cannot occur.

Now, we have obtained that any computation ends when the whole input
and the endmarker is read either in an accepting or non-accepting state which
cannot be left once entered. Thus, the standard technique for constructing an
automaton that accepts the complement can be used: all accepting states become
non-accepting states and all non-accepting states become accepting states. ��

Lemma 13. The family of languages accepted by DSA is not closed under union
and intersection.

Proof. In the proof of Theorem 11, we have shown that the language L = L′ ∪ L′′

with L′ = { anbmcn | m,n ≥ 1 } and L′′ = { anbmcn+m | m,n ≥ 1 } is not
accepted by any DSA. Similar to the construction in Example 3, we can con-
struct DSA accepting L′ as well as L′′. Thus, we obtain that L (DSA) is not
closed under union. Moreover, since L (DSA) is closed under complementation
by Lemma 12, it cannot be closed under intersection. ��

Lemma 14. The family of languages accepted by DSA is closed under intersec-
tion with regular languages and under union with regular languages.

Proof. A DSA can simulate a given deterministic finite automaton in parallel to
its computation by using the standard cross product construction. Thus, family
L (DSA) is closed under intersection with regular languages. Since L (DSA)
is closed under complementation by Lemma 12, it is closed under union with
regular languages as well. ��

5 Decidability of Emptiness

Here we turn to show that emptiness is decidable for deterministic set automata.
This is of interest both from a theoretical and practical point of view. For ex-
ample, it is known that emptiness is decidable for pushdown automata and
stack automata [4], but is undecidable for deterministic quasi-real-time queue
automata [1] and deterministic one-way multi-head finite automata.
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Theorem 15. It is decidable whether a given deterministic set automaton ac-
cepts the empty language.

Proof. The proof here will only be sketched. Given a DSA M , the basic idea
is to construct a meta automaton M ′ and to explore all possible paths up to
a certain length in its state graph to find a path from the initial state to some
accepting state. If such a path does not exist, the accepted language is empty.

In a first step, the DSA M is transformed into the meta automaton M ′ whose
states are the initial state and the in- out-, and test-states of M . The edges
of M ′ are labeled with regular languages. The language of an edge connecting
state si with sj represents all strings that can be written on the tape when a
computation of M passes from si to sj .

The next step is to elaborate several properties of accepting paths of M
and M ′. In particular, it can be shown that there exists an accepting path
of bounded length if there is an accepting path at all.

Finally, it can be analyzed which of the paths of M ′ can be expanded to
paths of M , that is, how a path can be evaluated to represent an accepting
computation of M . If there is no such path, then the language accepted by M
is empty and non-empty otherwise. ��
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Abstract. We consider minimal space requirements when using mem-
ory with restricted access policy (pushdown - hence giving pushdown
automata (PDAs), and counter - hence giving counter automata (CAs))
in connection with two-way and realtime head motion. The main results
are that: (i) log log n is a tight space lower bound for accepting gen-
eral nonregular languages on weak realtime PDAs, (ii) there exist unary
nonregular languages accepted by realtime alternating CAs within weak
log n space, (iii) there exist nonregular languages accepted by two-way
DPADs within strong log log n space, and, (iv) there exist unary non-
regular languages accepted by two-way CAs with quantum and classical
states within middle log n space and bounded error.

1 Introduction

It is a fundamental research direction to determine the minimum amount of
useful “resources” which are necessary adding to a realtime deterministic fi-
nite automaton to recognize a nonregular language. There have been introduced
many different “resources” such as the access way to the input (realtime, one-
way, or two-way), computation mode or model (deterministic, nondeterministic,
alternating, probabilistic or quantum), type of the working memory (counter,
stack, or tape), etc. Moreover, unary languages needs a special attention since
they may have resource requirements different from those used for languages
built on general (binary) alphabets. We focus on the minimum amount of useful
space and present some new results.

Firstly, we show that realtime nondeterministic pushdown automata (PDAs)
can recognize a nonregular language with log log n weak space. Then, we show
that their two-way deterministic counterparts can recognize the same language
with log logn strong space. These bounds are tight since even two-way alter-
nating Turing machines (TM) cannot recognize any nonregular language with
less space. In the case of unary languages, it is a well-known fact that one-way
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nondeterministic PDAs can recognize only regular languages. Their alternating
counterparts, on the other hand, were shown to recognize any unary language
in deterministic exponential time with linear exponents by giving a simulation
of the computation of linear-space alternating TMs [3]. However, this simula-
tion is very space inefficient and it does not seem applicable if we replace the
stack with a counter. Thirdly, we show that realtime alternating one-counter au-
tomata can recognize some nonregular unary languages with logn weak space1.
Here we also present a trade-off to alternation depth. Note that two-way deter-
ministic one-counter automata (2DCAs) cannot recognize any unary nonregular
language using a sublinear space [5]. Bounded-error two-way quantum models
can recognize some nonregular languages in constant-space [2]. But, we do not
know whether constant-space is sufficient for unary nonregular languages. Lastly,
we show that 2DCAs having two–qubits can recognize some nonregular unary
languages by using middle logarithmic space on its counters for the members.

We assume that the reader is familiar with the definitions of classical compu-
tational models and so we provide only the definition for 2DCAs using a fixed-
size quantum memory (in the next section). We present our results in Section
3 with a discussion of the known results. We also identify some new directions
and formulate a few open questions. We put the proofs in Section 4 which also
includes our trade-off results regarding alternation depth (Section 4.3). We refer
the reader to [16] for a complete reference of quantum computation.

2 Preliminaries

We use three different modes of space usage [20]: (i) Strong space refers to the
space used by the machine on all possible inputs, (ii) middle space refers to
the space used by the machine on the inputs it gives the decision of “accep-
tance”, and, (iii) weak space refers to the minimum space used by the machine
on an accepting path. The length of the input is denoted by n in space bounds
throughout the paper.

A two-way one-counter automaton with quantum and classical states
(2QCCA) [22] is such an automaton endowed with a constant-size quantum
register. If we remove the counter we obtain a two-way finite automaton with
quantum and classical states (2QCFA) [2]. In the original definition of 2QCFA,
the automaton can apply unitary and measurement operators to its quantum
part. Here we allow our quantum models to apply a superoperator (see Fig. 1),
a generalization of classical and unitary operators including measurement. This
does not change the computational power of 2QCFAs and 2QCCAs in general [2].
The only remaining open case is when the operators are defined using rational
numbers. We present our quantum algorithms using rational superoperators.

A 2QCCA M is a 8-tuple M = (S,Q,Σ, δ, s1, sa, sr, q1), where S is the set
of classical states, s1 ∈ S, sa ∈ S, and sr ∈ S (sa �= sr) are the initial, accept-
ing, and rejecting states, respectively, Q is the set of quantum states, q1 is the

1 Space means here the value of the counter and not the space needed to represent
the counter value.
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A superoperator E is composed of a finite number of operation elements, E =
{E1, . . . , Ek}, satisfying

k∑
i=1

E†
iEi = I, (1)

where k > 0 and the indices are the measurement outcomes. When a superoper-
ator, say E , is applied to the quantum register in state |ψ〉, i.e. E(|ψ〉), we obtain

the measurement outcome i with probability pi = 〈ψ̃i|ψ̃i〉, where |ψ̃i〉, the uncon-

ditional state vector, is calculated as |ψ̃i〉 = Ei|ψ〉 and 1 ≤ i ≤ k. Note that using
unconditional state vector simplifies calculations in many cases. If the outcome i is
observed (pi > 0), the new state of the system, which is obtained by normalizing

|ψ̃i〉, is given by |ψi〉 = |ψ̃i〉√
pi
. Moreover, as a special operator, the quantum register

can be initialized to a predefined quantum state. This initialize operator has only
one outcome.

Fig. 1. The details of superoperators [23]

initial quantum state, Σ not containing the left and right end-markers (¢ and $,
respectively) is the input alphabet, and, δ is the transition function composed
of δq and δc that governs the quantum and classical part, respectively.

The given input w ∈ Σ∗ is placed on the input tape as ¢w$. At the beginning
of the computation, the input head is on symbol ¢, the automaton in state s1
and |q1〉 in the classical and quantum parts, respectively, and the counter value
is zero. Assume that the automaton is in state s ∈ S, the tape head is on symbol
σ ∈ Σ ∪ {¢, $}, the status of the counter is θ ∈ {0,±}, and the quantum state is
|ψ〉, where ± means the value of the counter is nonzero. Each step is composed
by a quantum and then a classical transition. In the quantum part, δq(s, σ, θ) de-
termines a superoperator which is applied to the quantum register and a classical
outcome, say τ , is observed. The quantum state is updated to |ψτ 〉. Then, the
following transition is implemented in the classical part: δc(s, σ, θ, τ) = (s′, di, c)
such that the automaton enters state s′ ∈ S, the input head and the value of
the counter are updated with respect to di ∈ {←, ↓,→} and c ∈ {−1, 0, 1}, re-
spectively. When the automaton enters sa (sr), the input is accepted (rejected).

3 Our Results and New Directions

3.1 Deterministic, Nondeterministic, and Alternating Machines

An almost complete picture is known for TMs. Thus, no weak o(log log(n))-space
alternating TM can recognize a nonregular language and there exists a unary
nonregular language recognized by strong O(log log(n))-space deterministic TM
[20]. For one-way TMs, the tight bounds are given in Table 1, taken from a
recent paper by Yakaryılmaz and Say [26] in which it was shown that all these
bounds are tight for almost all realtime TMs. (One-way head is a restricted two-
way head which is not allowed to move to left and realtime head is a restricted
one-way head which stays on the same symbol at most a fixed number of steps.)
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Table 1. Minimum space used by one-way TMs for recognizing nonregular languages

General input alphabet Unary input alphabet

Strong Middle Weak Strong Middle Weak

Deterministic TM log n log n log n log n log n log n

Nondeterministic TM log n log n log log n log n log n log log n

Alternating TM log n log log n log log n log n log n log log n

Open Problem 1. [26] Are the double logarithmic lower bounds for the recog-
nition of the nonregular unary languages by real-time nondeterministic and al-
ternating TMs tight?

If a TM has a stack as memory, then we obtain a pushdown automaton (PDA).
It is known that no weak o(n)-space bounded one-way deterministic PDA can
recognize any nonregular language [10] and it is a well-known fact that a real-
time deterministic PDA can recognize the nonregular language {anbn | n ≥ 0}
in strong linear space. For one-way nondeterministic PDAs, a weak logarith-
mic space algorithm was given for a nonregular language [19]. We improve this
bound to weak log logn space. We denote the reverse of string c by cR. Our
language is REI composed by the non-prefixes of the following infinite word
bc0ac

R
1 bc1a · · · bckacRk+1bck+1ac

R
k+2b · · · , where

– ck = eb1dbk,1db
R
1 eb2dbk,2db

R
2 eb3dbk,3db

R
3 e · · · ebk,�logk�db�logk�dbRk,�logk�e is a

counter representation for k augmented with subcounters,
– bi ∈ {0, 1}∗ is the binary representation of i, and
– bk,i ∈ {0, 1} is the i-th last bit (value 2i) in the binary representation of k.

Theorem 1. Realtime nondeterministic PDAs can recognize nonregular lan-
guage REI with weak log log n space.

This bound is also tight for one-way/realtime alternating PDAs since alter-
nating TMs cannot recognize any nonregular language in o(log log n) weak space
[20].

Open Problem 2. What are the tight strong/middle space bounds for one-way/
realtime nondeterministic and alternating PDAs for the recognition of nonregular
languages?

In case of unary language, we know that one-way nondeterministic PDAs can-
not recognize any nonregular language [11]. Realtime alternating one-counter
automata (CAs), on the other hand, can recognize some unary nonregular lan-
guages even in weak logarithmic space on the counter. We define two unary
languages: UPOWER = {a2n | n ≥ 0} and UPOWER+ = {a2n+2n | n ≥ 0}.

Theorem 2. Realtime alternating CAs can recognize nonregular UPOWER+ in
weak logarithmic space.
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Open Problem 3. What are the tight space bounds for realtime/one-way al-
ternating CAs for the recognition of nonregular unary and binary languages?

In Section 4.2, we first present a one-way algorithm for UPOWER and then
our realtime algorithm for UPOWER+. Both algorithms have a linear alternation
depth (for the members). We also investigate (in Section 4.3) whether we can
have a shorter alternation depth. We present a realtime algorithm for UPOWER

with logarithmic alternation depth but it uses a linear counter for the members.2

Moreover, we show that if we replace the counter with a stack, then we can have
only a single alternation using a linear space on the stack.

In the case of two-way PDAs, we have tight bounds due to the following

Theorem 3. Two-way deterministic PDAs can recognize REI in strong
log logn-space.

In [5], it was shown that any unary language recognized by a two-way deter-
ministic PDA using sublinear space on its stack is regular. Moreover, two-way
deterministic CAs can recognize nonregular unary language UPOWER with linear
space. Therefore, linear-space is a tight bound for both two-way deterministic
PDAs and CAs. Currently, we do not know whether nondeterminism or using
random choices can help for unary languages.

Another interesting direction is to identify the tight space bounds for one-
way/realtime multi-counter/pushdown automata. Yakaryılmaz and Say [26]
showed that realtime deterministic automata with k-counter can recognize some
nonregular languages in middle O(n

1
k ) space, where k > 1. They also remark

that the same result can be followed by bounded-error probabilistic 1-counter
automata but the error bound increases depending on the value of k.

3.2 Probabilistic and Quantum Machines

We start by observing that the probabilistic models are special cases of their
quantum counterparts. In the unbounded error case, realtime probabilistic finite
automata (PFAs) can recognize unary nonregular languages [17]. Therefore, it
is interesting to consider the bounded error case. One-way PFAs can recognize
only regular languages with bounded-error [18]. Two-way PFAs can recognize
some nonregular languages but only with exponential expected time [7,6]. With
an arbitrary small space, two-way probabilistic TMs can recognize nonregular
languages [9] in polynomial time. One-way probabilistic TMs, on the other hand,
cannot recognize any nonregular language in space o(log logn) [8,13].

Two-way quantum finite automata (QFAs), on the other hand, can recognize
some nonregular languages in polynomial time [2]. If the input head is quantum,
i.e. the head can be in a superposition of more than one place on the input
tape, then one-way QFAs can recognize some nonregular languages in linear
time [15,1,24,21]. But, it is still not known whether two-way QFAs can recognize
any nonregular unary language with bounded-error. Note that 2PFAs cannot
recognize a nonregular unary language with bounded-error [12].

2 Our algorithm is a slightly modified version of the algorithm provided by Ďurǐs [4].
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Here we show that using a fixed-size quantum memory can save some space for
bounded-error 2QCCA on unary nonregular languages when considering middle-
space.

Theorem 4. The nonregular language UPOWER can be recognized by a 2QCCA
with bounded-error and the automaton uses middle logarithmic space in its
counter.

One-way probabilistic PDAs cannot recognize any nonregular unary language
with bounded-error [14] but the question is open for its quantum counterpart.
On the other hand, realtime bounded-error probabilistic PDAs can recognize the
following binary language by using middle logarithmic space:

{b1abR2 abR3 ab4a · · ·ab2k−1ab
R
2k | k > 0 and bi is the binary represenation of i}.

Currently, we do not know any better result and whether quantumness helps.

4 The Details of the Proofs

4.1 Proof of Theorem 1

A realtime non-deterministic PDA accepts words which are non-prefixes of the
infinite word by guessing and verifying errors of the following kind:

– Some error in the format which means there is a part between a b and
the following a respectively between an a and the following b which is not
in (e{0, 1}∗d{0, 1}d{0, 1}∗)∗e and thus can not be the representation of a
counter ck or cRk . This can be recognized already using the finite control.
(We also check if the part after the last a respectively b can not be a prefix.)

– One of the counter representations is not starting correctly with a 1 in the
first sub-counter. This means some be is not followed by 1d or some eb is not
following d1. Again, this can be recognized using the finite control.

– One of the sub-counters bi is not correct or not correctly incrementing. This
means one of the counter representations ck would contain a defective part
ebidbk,idv

Re or dbRi−1evd with bi �= v ∈ {0, 1}∗. This can be recognized using
|bi| space on the push-down store. Assuming this i-th sub-counter is the
first (and thus smallest) where this error occurs, the space is bounded by
|bi| ≤ log i ≤ log k.

– The part between two sequential a’s is not a correct palindrome of the form
acRk bcka. One possibility would be that the highest sub-counter is not cor-
rect. This means the outer part ae{0, 1}∗d · · · b · · · d{0, 1}∗ea is already not
palindromic. Again, this can be recognized using |bk| ≤ log k space on the
push-down store (assuming that the sub-counters before b are correct). As-
suming now that the sub-counters are correct, an error in the main counter
can be recognized by guessing the position of the wrong bit bk,i, pushing the
following sub-counter bi on the push-down store, then guessing the corre-
sponding position in the second part, verifying the sub-counter value there
and checking that the bit bk,i really differs.
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Fig. 2. The structure of a prefix of the infinite word, where each counter representation
ck consists of a logarithmic bounded number of bits, and each of this bits is controlled
by a subcounter represented by at most log log bits

– The part between two sequential b’s does not have the correct form
bckac

R
k+1b. Like in the previous case, the last sub-counter might not be cor-

rect. This means they are either not identical (the part d{0, 1}∗ebe{0, 1}∗d
around the b is not palindromic) although there is no length increment in
bk, or the highest sub-counter (written reverse) after the b is not the highest
sub-counter before the b incremented by one although there is an increment
in the length from bk = 1111 · · ·1 to bk+1 = 1000 · · ·0. This can be recog-
nized similarly as in the previous case. Assuming now that the sub-counters
are correct, an error in the main counter can be recognized again similar to
the previous case verifying that either bk,i changed although bk,i−1 did not
change from 1 to 0, or bk,i did not change although bk,i−1 changed from 1
to 0 (or i = 1).

In each case, the automaton only needs to store a sub-counter bi with i ≤
�log k�. This means the required space is ≤ �log i� ≤ �log(�logk�)�. We may
assume that everything was correct before the found error, which means that
indeed k counters are occurring and the input must have size n > k. Thus the
push-down size log(logn) is sufficient to guess and verify the smallest occurring
incorrectness. ��

4.2 Proof of Theorem 2

First, we give a one-way automaton A for UPOWER since we need incrementations
and decrementations without a movement of the input head.

The idea of the construction is to represent decrementing binary counters
along the length of the input. The counter is only used to address a single bit
of this binary counter identifying an assertion of this bit with the existence of
an accepting sub-tree. Here we need to distinguish two (existential) states o and
z and construct A in a way such that the configuration in state o (respectively
z) with the input head on the k-th last position in the word and value j in
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the counter has an accepting sub-tree if and only if the j-th bit in the binary
representation of k, namely bk,j , is 1 (respectively 0).

If A in state o (respectively z) detects the end of the word (which happens
in position k = 0) then all bits of the binary counter have to be 0 and thus A
rejects (respectively accepts).

In the recursion, we use the fact that bk,j depends only on bk,j−1, bk−1,j and
bk−1,j−1. (The equality bk,j = bk−1,j holds if and only if bk,j−1 ≥ bk−1,j−1). In
state o (respectively z) A guesses one of the four possible combinations which
cause bk,j to be 1 (respectively 0). These four possible following states are uni-
versal (this means A alternates). Now A branches to check all three conditions
by moving the input head and/or decrementing the counter and going to state o
or z correspondingly (this means the automaton alternates again). For example
A might guess in state o that the reason for bk,j = 1 was bk,j−1 = 0, bk−1,j = 0,
and bk−1,j−1 = 1, then the corresponding universal branch is to decrement the
counter going to z, to move the input head going to z, and to decrement the
counter while at the same time move the input head going to o.

Now given an input consisting of a’s, A wants to have an accepting sub-tree if
the length of the input is 2n, so it starts with looping in an existential state while
incrementing the counter to guess n on the counter. Then, to verify that k = 2n

which means bk,n = 1 and bk,j = 0 for all j �= n, it suffices to check bk,n = 1 and
bk,j = 0 for all j < n and bj,n = 0 for all j < k. So A alternates and branches
universally to state o (to check bk,n = 1), to a universal loop decrementing the
counter with branches to z (to check bk,j = 0 for all j �= n) and to a universal
loop moving the input head with branches to z (to check bj,n = 0 for all j < k).

This completes the construction for UPOWER. The detection of the end of the
input word can be replaced by first guessing that the end of the input word is
reached, then decrementing the counter to zero and then finally checking that the
end of the input word is reached. Once n is guessed, the remaining computation
will then make exactly n decrements of the counter one each path. Changing the
automaton to read an additional input symbol for each of the n increments and
decrements makes the automaton realtime (i.e. at most two steps per symbol)
and changes the accepted language from UPOWER to UPOWER+. ��

4.3 A Trade-Off to Alternation Depth

The proof of Theorem 2 requires linear alternation depth. On the other hand, it
is possible to recognize UPOWER with only logarithmic alternation depth but this
requires using linear counter values. The details are given below.

Let A be our realtime alternating one-counter automaton. We assume that
A updates the value of the counter from the set {i ∈ Z | −3 ≤ i ≤ 3}
instead of {−1, 0, 1}.3 Let am be the input, where m ≥ 0. The automaton A non-
deterministically picks a position on the input, say j1, by reading j1 symbols. The
value of counter is set to j1 meanwhile. Then, Amakes a universal choice:

3 A can be easily modified without changing its program to use the latter set for updates
on the counter, and so, this assumption is not essential but makes our algorithm easier
to follow.
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– In the first branch, A reads j1 more symbols on the input tape by using
the counter and accepts the input only if there is exactly j1 symbols in the
remaining part of the input. In other words, this branch returns “true” only
if j1 is the exact half of m, i.e. 2j1 = m. Otherwise, this branch returns
“false” and so the parent universal node never returns “true”.

– In the second branch, we assume that j1 = m
2 since the result in this branch is

insignificant for any other value of j1 due to the first branch. The automaton
A nondeterministically picks a new position, say j2, by reading j2 symbols.
For each reading symbol, A decrements the value of counter by 3, and so
the new counter value becomes j1 − 3j2. Then, A makes another universal
choice very similar to previous one. In the new first branch, A adds 1 to
the counter for each reading symbol. The input is accepted if the counter
hits to zero when finishing the input. Otherwise, the input is rejected. So,
this branch returns “true” only if j1 − 2j2 = 0, i.e. j2 is the exact half of
j1. We can again assume that j2 = j1

2 in the new second branch and so this
branch starts with the counter value −j2. The details are the same as the
previous universal branch except that A increments the value of counter by
3 for the new nondeterministically picked position j3, and later A adds −1 to
the counter for each reading symbol in order to check the counter hitting to
zero when finishing the input which happens only if 2j3 = j2. By assuming
j3 = j2

2 , we can start the newest universal branch with the counter value
of +j3. This procedure is repeated in this way (the updates on the counter,
in the second branches, alternates between −3 and 3, followed by adding
respectively +1 and −1 in the first child branch) until there remains only a
single symbol after a universal choice where the input is accepted.

If m is a power of 2, A has an accepting computation tree where the values of
j’s are set as

j1 =
m

2
, j2 =

m

4
, . . . , ji =

m

2i
, . . . , jlog2 m−1 = 1 (2)

and the counter value is set to +j1,−j2,+j3,−j4, · · · at the beginning of each uni-
versal choice. Note that this is the unique setting of j’s, the next one is the exact
half of the previous one, leading to ending up with an accepting tree. Therefore,
there is a single accepting tree for each member of UPOWER. If m is not a power of
2, then there is no such setting as given in (2), and so there is no accepting tree,
i.e.,A fails at least once to find the exact half of the remaining input in an iterative
step. It is clear that the depth of alternation is logarithmic for members.

In a similar way, UPOWER can be recognized with only one alternation but requir-
ing a linear pushdown store instead of a counter as follows: The automaton guesses
some word ∈ {a, b}∗c{a, b}∗ onto the pushdown store then alternates and verifies
if the word has the formwRcw where |w| is the input length, w2i = b for all i (other
positions in w are a) and wn = b. This verfication starts with branching to check
if the part after c has the input length and a loop on a universal state in which one
symbol is popped from the push-down store and at the same time the input head
is moved. Each time the automation branches to do the following two checks:
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1. The same letter ∈ {a, b} must occur at the position with the same distance
to c. To find this position, the automaton stops to move the input head until
c is reached and then continues until the end of the input is reached.

2. The same letter ∈ {a, b} must also occur at the position with the double
distance to c and the following symbol must be an a. This time, to find the
position, two of the symbols after c are popped for each remaining position
on the input.

4.4 Proof of Theorem 3

Here we can follow the same construction as in the proof of Theorem 1. (We might
even use an easier version abandoning the reverse written parts.) Instead of guess-
ing the kind of incorrectness, we have to check it one by one in an appropriate order
to make sure that we find the smallest occurring incorrectness first:

Assume the automaton already checked that the sequence is correct until ck
then it first checks that the last sub-counter is consistent in the next counter,
then that the sub-counters in the next counter are correctly incrementing and
then that bk is incremented correctly by going back and forth for each bit using
the sub-counter content in the pushdown store to find the corresponding position
in the next counter representation (crossing exactly one a respectively b).

Checking that sub-counters are correctly incrementing can be done by re-
peatedly pushing a binary sub-counter representation to the push-down store
and comparing it with the next sub-counter representation. Finding the identi-
cal sub-counter representation in the next counter representation can be done
by comparing the push-down contents with each sub-counter representation on
the way; if a comparison fails, the automaton can reverse and on the way back
to the beginning of the counter restore the push-down contents using the prefix
which had so far been identical. ��

4.5 Proof of Theorem 4

Recently, Yakaryılmaz [22] introduced a new programming technique for 2QC-

CAs and it was shown that USQUARE = {an2 | n ≥ 1} can be recognized by
them for any error bound by using O(

√
n)-space on its counter for the members.

Based on this technique, we show that logarithmic space can also be useful.
2QCFAs can recognize POWER = {anb2n | n ≥ 1} such that any member

is accepted with probability 1 and any non-member is rejected a probability
arbitrarily close to 1 [25]. Let P be such a 2QCFA rejecting any member with
a probability at least 4

5 (see Appendix A of arxiv:1405.2892v1). One important
property of P is that it reads the input from left to right in an infinite loop and
another one is that it uses three quantum states.4

We present a 2QCCA UP for UPOWER calling P as a subroutine such that any
member is accepted with probability 1 and any non-member is rejected with
probability at least 4

5 . Moreover, the counter value of UP never exceeds the

4 If we use computable complex numbers then a single qubit is sufficient [2].
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logarithm of the input length for the members. The pseudo-code of UP is given
below. Let w = am be the input.

REJECT (ACCEPT) w if it is a0 (a1)
FOR i = 1 TO m

RUN P on w′ = aibm

IF P accepts w′ THEN TERMINATE FOR-LOOP
IF P rejects w′ AND i = m THEN REJECT the input

END FOR
ACCEPT w with a nonzero probability at most

(
1
9

)m
RESTART the algorithm (from the second line)

In order to implement the FOR-LOOP, we use the counter. Its value is set to i,
and then P can be simulated on w′ = aibm. It is clear that, if am is a member, P
never rejects w′ = alog2 mbm and so the counter value is never set to log2 m + 1.
That is, the FOR-LOOP is terminated with certainty and i is never set to m
which is the only case the input might be rejected. Therefore, for the members
of UPOWER, the decision of “rejection” is never given in FOR-LOOP. Therefore,
they are accepted exactly. For the non-members, the input is rejected with a
probability at least

(
8
9

)m
at the end of the FOR-LOOP. Since the input can be

accepted with a probability at most
(
1
9

)m
after the FOR-LOOP, the rejecting

probability is at least 8m times greater than the accepting probability after the
FOR-LOOP. Therefore, any non-member is rejected with a probability at least
8
9 . It is clear that for the members, the counter value never exceeds log(|w|), so
the space complexity is logarithmic for the members. Note that, the rejecting
probability can be arbitrary close to 1 by running UP sufficient times. ��
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Abstract. We study a model where two opposing provers debate over
the membership status of a given string in a language, trying to convince
a weak verifier whose coins are visible to all. We show that the incorpo-
ration of just two qubits to an otherwise classical constant-space verifier
raises the class of debatable languages from at most NP to the collection
of all Turing-decidable languages (recursive languages). When the veri-
fier is further constrained to make the correct decision with probability
1, the corresponding class goes up from the regular languages up to at
least E.

Keywords: quantum finite automata, quantum computing, probabilis-
tic finite automata, Arthur-Merlin games, debate systems, zero-error.

1 Introduction

It is well known that the model of alternating computation is equivalent to
a setup where two opposing debaters try to convince a resource-bounded de-
terministic verifier about whether a given input string is in the language under
consideration or not [4]. Variants of this model where the verifier is probabilistic,
and the communications between the debaters are restricted in several different
ways, have been studied [6,11,9]. Quantum refereed games, where the messages
exchanged between the debaters are quantum states, were examined by Gutoski
and Watrous [13].

Most of the work cited above model the verifier as opaque, in the sense that
the outcomes of its coin throws are not visible to the debaters, who have a
correspondingly incomplete picture of its internal state during the debate. These
models can therefore be classified as generalizations of private-coin interactive
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proof systems [12] to the competing multiple provers case. In this paper, we
focus on models where all of the verifier’s coins, as well as all communications,
are publicly visible to all parties, making them generalizations of Arthur-Merlin
games [3]. A recent result [17] established that a very small quantum component
is sufficient to expand the computational power of classical proof systems of this
kind considerably, by studying a setup where an otherwise classical constant-
space verifier is augmented by a quantum register of just two qubits. We modify
that protocol to show that the addition of a two-qubit quantum register to the
classical finite state verifier raises the class of debatable languages from at most
NP to that of all Turing-decidable languages. We also study the case where the
verifier is required to take the correct decision with probability 1. We show that
small quantum verifiers outperform their classical counterparts in this respect
as well, exhibiting an increase from the class of regular languages to at least
E = DTIME(2O(n)).1

The rest of this paper is structured as follows: Section 2 describes our model
and reviews previous work. Our result on the computational power of the model
with a two-qubit constant-space verifier in the two-sided bounded error case is
presented in Section 3. Section 4 contains an examination of the more restricted
zero-error case. Section 5 concludes the paper with some remarks on the possible
usage of multihead automata as verifiers.

2 Preliminaries

Consider an interactive system consisting of three actors: two debaters named
Player 1 (P1) and Player 0 (P0), respectively, and a Verifier (V). All actors
have access to a common input string w. P1 tries to convince V that w is a
member of the language L under consideration, whereas P0 wants to make V
reject w as a non-member. The debaters communicate with each other through
a communication cell which is seen by every actor. Each debater writes a symbol
in the communication cell when its turn comes, and V executes a further step
of its computation, taking this communication and the outcomes of its coin
into account. The debate continues in this way until the computation of V is
terminated as it reaches a decision. We assume that both debaters see the coin
outcomes of V as they occur, and thereby have complete information about the
state of the verifier at any point.

In such a setup, we say that language L has a debate checkable by a machine
V with error bound ε ∈ [0, 1

2 ) if

– for each w ∈ L, P1 is able to make V accept w with probability at least 1−ε,
no matter what P0 says in return,

– for each w /∈ L, P0 is able to make V reject w with probability at least 1− ε,
no matter what P1 says in return.

A language is said to be debatable if it has a debate checkable by some verifier.

1 Note that E is a proper subset of EXP = DTIME(2poly(n)).
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Note that the class of debatable languages is closed under complementation.
We focus on verifiers which are only allowed to operate under constant space

bounds. When V is set to be a deterministic two-way finite automaton, the sys-
tem described above is equivalent to an alternating two-way finite automaton,
and the class of debatable languages coincides with the regular languages [15].
When one replaces V with a two-way probabilistic finite automaton, the class
in question becomes one that should be denoted ∀BC-SPACE(1) in the terminol-
ogy of [5], and is known to contain some nonregular languages [10], and to be
contained in NP. We will show that the addition of a small amount of quantum
memory to the probabilistic model increases the power hugely, all the way to
the class of decidable languages.

The public-coin quantum verifier model that we will use is the two-way finite
automaton with quantum and classical states (2QCFA) [2], in which the quantum
and classical memories are nicely separated, allowing a precise quantification of
the amount of “quantumness” required for our task. Such automata execute
quantum and classical moves alternately at each step:

– First, a superoperator2 (Figure 1), determined by the current classical state
and the symbols being scanned on the input tape and in the communica-
tion cell, is applied to the quantum register (the quantum memory of the
machine), with the outcome of the operator being automatically sent to the
debaters. All entries of quantum operators are rational numbers, meaning
that the probabilities of the outcomes are always rational,3 and the debaters
can easily keep track of the superposition in the quantum register.

– Then, the next classical state and tape head movement is determined by the
current classical state and the observed outcome.

Execution halts when an outcome associated with “acceptance” or “rejection”
is observed.

One obtains the definition of the quantum Arthur-Merlin (qAM) systems of
[17] when one removes P0 from the picture described above. Our results on small
quantum verifiers for debates are based on the following result:

Fact 1. For any error bound ε > 0, every Turing-recognizable language (re-
cursively enumerable language) has an Arthur-Merlin system where the verifier
uses just two quantum bits, (i.e. four quantum states,) members of the language
are accepted with probability 1, nonmembers are accepted with a probability not
greater than ε, and a dishonest P1 can cause the machine to run forever without
reaching a decision.

Proof. We outline the basic idea, referring the reader to [17] for a detailed ex-
position of this proof. Let T be the single-tape Turing machine recognizing the

2 The usage of superoperators generalizes and simplifies the quantum transition setup
of the 2QCFA’s of [2]; see [20].

3 The classical probabilistic finite automata, to which we compare our quantum model,
can only flip fair coins. It is known that this is sufficient for two-way automata to
realize any rational transition probability.
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For a 2QCFA with j quantum states, each superoperator E is composed of a finite
number of j × j matrices called operation elements, E = {E1, . . . , Ek}, satisfying

k∑
i=1

E†
iEi = I, (1)

where k ∈ Z+, and the indices are the measurement outcomes. When a superopera-
tor E is applied to a quantum register in state |ψ〉, then we obtain the measurement

outcome i with probability pi = 〈ψ̃i|ψ̃i〉, where |ψ̃i〉 is calculated as |ψ̃i〉 = Ei|ψ〉,
and 1 ≤ i ≤ k. If the outcome i is observed (pi > 0), the new state of the system is

obtained by normalizing |ψ̃i〉 which is |ψi〉 = |ψ̃i〉√
pi
. Moreover, the quantum register

can be set to a predefined quantum state by an initialize operator with a single
outcome.

Fig. 1. Superoperators (adapted from [17])

language L under consideration. For any input string w, P1 (the only debater
in this restricted scenario) is supposed to send the computation history (i.e. the
sequence of configurations) of T on input w to the verifier V. Some of the pos-
sible outcomes of V’s observations of its quantum register will be interpreted
as “restart” commands to P1. At any point, V may interrupt P1 and ask it to
restart sending the computation history from the beginning in this manner. (In
fact, the verifier is highly likely to require a restart at each step.)

Whenever the verifier catches P1 lying (i.e. giving an incorrect configuration
description), it rejects the input. If the verifier reads a computation history sent
by P1 all the way to its completion by a halting configuration without detecting
an incorrect configuration, it halts with a decision paralleling the one described
in that history with a certain non-zero probability, and requests a restart with
the remaining probability.

A classical public-coin finite automaton faced with this task would not be able
to compare two consecutive configuration descriptions ci and ci+1 (which may be
very long).4 A 2QCFA verifier handles this problem by encoding the substrings
in question into the amplitudes of its quantum states.5 Let next(c) denote the
description of the configuration that is the legitimate successor, according to
the transition function of T , of configuration c, and let e(x) denote an integer
that encodes string x according to a technique to be described later. After the
description ci+1 has been read, the amplitudes of the quantum states of V form

the vector α (1 e(next(ci)) e(ci+1) e(next(ci+1)))
T
, where α is a small rational

number. (The amplitude of the first state is used as an auxiliary value during
the encoding [17], as will also be seen in the next section.)

4 The associated complexity class is known [7] to be included in P. When the verifier
is allowed to hide its coins, its power increases [8].

5 Actually, this encoding can also be performed by a classical probabilistic machine
[16]. It is the subsequent subtraction that is impossible for classical automata.
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When P1 concludes the presentation of ci+1, V executes a move that has
the effect of subtracting αe(next(ci)) from αe(ci+1), rejecting with a probability
equal to the square of the difference, continuing with some little probability
after placing the encoding of next(ci+1) into the second state’s amplitude and
resetting the third and fourth amplitudes to zero for beginning the next encode-
compare stage, and requesting a restart with the remaining probability. If ci+1’s
description is indeed equal to the valid successor of ci, the subtraction mentioned
above yields zero probability of rejection. Otherwise, the rejection probability
arising from a transition error within a computation history is guaranteed to be
a big multiple of the acceptance probability that may arise due to that spurious
history ending with an accepting configuration.

If w ∈ L, P1 need only obey the protocol, sending the accepting computation
history, restarting each time V tells it to do so. In each try, P1 has a small
but nonzero probability of sending the full history without being interrupted,
leading to a nonzero probability of halting with acceptance. Since V will detect
no transition errors between configurations, the probability of rejection is zero.

If w /∈ L, any attempt of P1 to trick V to accept w with high probability by
sneaking a transition error to the history and ending it with an accepting config-
uration will be foiled, since the rejection probability associated with the defect in
the history can be guaranteed to be as big a multiple of the final acceptance prob-
ability as one desires. There is, however, one annoyance that P1 can cause V in
this case: If P1 sends an infinite-length “configuration description” at any point6

during its presentation, V will never reach the point where it compares the two
amplitudes it uses for encoding, and it will therefore fail to halt. ��

3 Small Transparent Verifiers for All Decidable
Languages

Our first result is a generalization of the proof of Fact 1 to the setup with two
debaters described in the previous section.7

Theorem 1. For every error bound ε > 0, every Turing-decidable language has
a debate checkable by a 2QCFA with four quantum states, and with error bounded
by ε.

Proof. We modify the verifier V described in the proof of Fact 1 in Section 2 to
obtain a new verifier V1 as follows: V1 listens to both P0 and P1 in parallel. In
the protocol imposed by V1, both debaters are expected to behave exactly as
P1 was supposed to behave in that earlier proof; transmitting the computation

6 Except at the beginning, since V can check the first configuration itself by matching
it with the input.

7 In separate work, the techniques of [17] were used to define amodel called q-alternation
[18]. This model is distinct from debate checking in the same sense that the two equiva-
lent definitions of classical nondeterminism (the “probabilistic machine with zero cut-
point” and the “verifier-certificate” views) lead to quantum counterparts ([1] and [14],
respectively) which are remarkably different from each other.
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history of the single-tape Turing machine T for language L on input string
w, interrupting and restarting transmissions whenever V1 observes an outcome
associated with the “restart” action in its quantum register.

The strategy of V1 is based on the fact that the two debaters are bound to
disagree at some point about the computation history of T on w. As long as the
same description is coming in from both debaters, V1 uses the same technique
mentioned in the proof of Fact 1, to be described in more detail shortly, for
encoding the successive configurations. At the first point within a history when
a mismatch between the two debaters is detected, V1 uses its register to flip a
fair coin to choose to trace one or the other debater’s transmission from that
time. The chosen debater’s description of what it purports to be the computation
history is then checked exactly as in the earlier proof, and the other debater is
ignored until a restart is issued by V1 to both players during (or at the end of)
that check. The truthful debater always obeys the protocol. In the case that the
other debater’s transmission is identical to that of the truthful one, V1 parallels
the decision of T depicted by both debaters.

If it sees the debater it is tracing violating the protocol, for instance, making
a transition error, V1 rules in favor of the other player. When it sees a debater
announcing the end of a computation history, V1 decides in that debater’s favor
with some probability, and demands a restart with the remaining probability.
Like the program described in the proof of Fact 1, V1 is constructed so that
the probability of the decision caused by the detection of a transition error in
a computation history is guaranteed to be much greater than the probability of
the decision caused by mimicking the result described at the end of that history.

A full description of V1 would involve the complete presentation of its classical
transition function, as well as all the operation elements of every superoperator
associated with every triple of state, input symbol, and debate symbol. We will
give a higher-level description of the program and its execution at a level that will
allow the interested reader to construct the full 2QCFA if she wishes to do so.

A segment of computation which begins with a (re)start, and ends with a
halting or restarting configuration will be called a “round” [19]. In each such
round, each debater is supposed to transmit a string of the form

c1$$c2$$ · · · ch−1$$,

where c1 is the description of the start configuration of T on w, each ci+1 is
the legal successor of the corresponding ci, and ch−1 is the last configuration
in the computation history before the halting configuration. (V1 will be able to
understand whether the successor of ch−1 is an accepting or rejecting configu-
ration by focusing on the symbols around the tape head in ch−1.) We assume
that each configuration description ends with the blank symbol #, and that the
alphabet Γ used to write the configurations does not include the $ symbol. Fix
an ordering of the symbols in Γ , and let e(σ) denote the position of any symbol
σ ∈ Γ in this ordering. Let m be an integer greater than the cardinality of Γ ,
we will fix its value later.

The state of the quantum register is set to |ψ1,0〉 = (1 0 0 0)
T

at the beginning
of each round.
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Let li be the length of c1$$c2$$ · · · ci$$ (i > 0).
As it reads the string w1 = c1$$ from the debaters, V1 both compares it

with the input to catch a debater that may lie at this point, and also applies
a superoperator corresponding to each symbol of w1 to the register in order to
encode next(c1) as a number in base m (times a factor that will be described
later) into the amplitude of the second quantum state. One operation element
of the superoperator E1,j applied when reading the jth symbol, say, σ, of w1 is

E1,j,1 =
1

d

⎛
⎜⎜⎝

1 0 0 0
e(σ) m 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

where d is an integer which has the properties to be described now.8 Since E1,j
would not obey the wellformedness criterion (Equation 1 in Figure 1) if its only
operation element were E1,j,1, we add as many 4×4 rational matrices as necessary
as auxiliary operation elements of E1,j to complement its single main operation
element E1,j,1 to ensure that Equation 1 is satisfied. Furthermore, we do this
for all superoperators to be described in the rest of the program in such a way
that each of their main operation elements can be written with the same factor
1
d in front, as we just did for E1,j,1. This is the property that d must satisfy, and
such a d can be found easily [17,20].

The observation outcome associated with all auxiliary operation elements will
be interpreted as a “restart” command to the debaters. Some operation elements
to be described below are associated with halting (acceptance or rejection). The
outcomes of all remaining operation elements, including the E1,j,1, are “continue”
commands.

Depending on whether the length of T ’s configuration description increases
as a result of its first move or not, we have the following cases:

– If |next(c1)| = |c1|, the main operation elements of E1,|c1| and E1,|c1$| are

1

d

⎛
⎜⎜⎝

1 0 0 0
e(#) m 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and

1

d

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

respectively, since the encoding of next(c1) is finished by superoperator
E1,|c1|.

– If |next(c1)| = |c1| + 1, and the |c1|th symbol of next(c1) is σ, the main
operation elements of E1,|c1| and E1,|c1$| are

1

d

⎛
⎜⎜⎝

1 0 0 0
e(σ) m 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ and

1

d

⎛
⎜⎜⎝

1 0 0 0
e(#) m 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

8 Note that the “names” we are using for the superoperators are based on their ap-
plication position on the debater transmissions; this same superoperator would be
applied again (but would have a different index in our exposition) if another σ comes
up elsewhere in the transmission of c1.
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respectively, since the encoding of next(c1) is finished by superoperator
E1,|c1|+1.

The main operation element of E1,|c1$$| just multiplies the state vector by 1
d .

As long as the debaters are in agreement, and a halting configuration has
not been detected, each configuration description block wi = ci$$ (i ≥ 2) is
processed in the following manner. The state vector is

|ψ̃i,0〉 =

(
1

d

)li−1

(1 e(next(ci−1)) 0 0)
T

at the beginning of the processing. The tasks are:

1. To encode ci and next(ci) into the amplitudes of the third and fourth quan-
tum states, respectively, during the processing of the substring ci$, and

2. To accept (resp. reject) the input if next(ci) is an accepting (resp. rejecting)
configuration, or to prepare for the (i + 1)st configuration description block
if next(ci) is not a halting configuration, during the processing of the final
$ symbol.

The details of superoperators to encode ci and next(ci) are similar to the ones
given above. For each j ∈ {1, . . . , |ci| − 1}, the main operation element of Ei,j is

1

d

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0

e(σ) 0 m 0
e(γ) 0 0 m

⎞
⎟⎟⎠ ,

where σ and γ are the j’th symbols of ci and next(ci), respectively. Ei,|ci| and
Ei,|ci$| handle the two cases where e(next(ci)) may or may not be longer than
e(ci), similarly to the superoperators seen for the processing of c1 [17]. Thus,
before applying Ei,|ci$$|, the state vector becomes

|ψ̃i,|ci$|〉 =

(
1

d

)li−1

(1 e(next(ci−1) e(ci) e(next(ci)))
T . (2)

Task (2) described above is to be realized by operator Ei,|ci$$|, which has one
main operation element, as described in Figure 2.

After a disagreement between the debaters is noticed, the verifier picks a
debater with probability 1

2 . (A fair coin can be implemented in this setup by

the superoperator E =
{
Eh1 = 1

2I, Eh2 = 1
2I, Et1 = 1

2I, Et2 = 1
2I
}

with the out-
comes for the first two operation elements interpreted as heads and the other
ones as tails, for instance.) The processing of the transmission of the chosen
debater is the same as the processing of the common stream, except for the last
superoperator dealing with the final $ symbol of each description block. That
superoperator has two main operation elements. The first one realizes the first
actual transition correctness check:

1

d

⎛
⎜⎜⎝

0 0 0 0
0 1 −1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .
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DESCRIPTION OPERATOR

If next(ci) is a halting configuration, then this operator is ap-
plied with the action of acceptance or rejection, as indicated
by next(ci), associated with the outcome. The input is thereby

accepted or rejected with probability p1 =
(
1
d

)2li . The round
is terminated in this case.

1

d

⎛
⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

If next(ci) is not a halting configuration, then this op-

erator is applied. The state vector becomes |ψ̃i+1,0〉 =(
1
d

)li (1 e(next(ci)) 0 0)T .

1

d

⎛
⎜⎜⎝

1 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

Fig. 2.Operation element for preparing for the next configuration in the debater stream

The associated action of this operation element is to reject the claim of this
debater. Therefore, when talking to P0 (resp., P1), the input is accepted (resp.,

rejected) with probability
(
1
d

)2li
(e(next(ci−1))− e(ci))

2
, which is zero if the

check succeeds (next(ci−1) = ci), and is at least p2 =
(
1
d

)2li
m2 if the check fails

(next(ci−1) �= ci). Since the last symbols of next(ci−1) and ci are identical, the
value of |e(next(ci−1))− e(ci)| can not be less than m in this case.

The second main operation element is the one already described in Figure
2, which either halts and decides, or readies the state vector for scanning the
next configuration (with small probability) depending on whether that next
configuration is a halting one or not.

Note that if the chosen debater is cheating and never sends any $’s, then the
communication with it terminates with probability 1 without any decision.

The overall acceptance probability of such a “program with restart” equals the
ratio of the acceptance probability to the halting probability in a single round
[19]. The probability that the truthful debater will be selected after the disagree-
ment is 1

2 . If this happens, V1 will reach a halting state with the correct decision
with some small probability, and restart with the remaining probability. In case
the other debater is selected, there are two different possibilities of deception. If
that debater presents an infinite “configuration”, V1 will restart sooner or later.
Otherwise, if a finite but spurious history with one or more incorrect transitions
is presented, V1 may make the wrong decision with some small probability p1,
but this is more than compensated by the much greater probability p2 of its mak-
ing the correct decision earlier on, when the transition error(s) in this history
were detected. Overall, the error rate of ε of V1 is bounded by p1

p1+p2
= 1

m2+1 ,
and can be tuned down to any desired positive value by choosing m, the base of
the encoding used, to be a sufficiently large integer. ��

4 Debates with Zero Error

In classical computation, the benefits of using random bits come at the cost of
incurring some nonzero probability of error; and “zero-error” probabilistic finite
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automata can be shown trivially to be no more powerful than their deterministic
counterparts. We will now show that randomness without some tolerance of error
is not useful for classical finite-state verifiers of debates, and then prove that
things change in the quantum case.

Theorem 2. The computational power of a public-coin probabilistic debate
checking system is reduced to the level of its deterministic counterpart when
the verifier is not allowed to make any error in its final decision.

Proof. Assume that a language L has a debate checkable by a probabilistic
verifier Vp with zero error. We construct a deterministic verifier Vd with the
same space and time bounds as Vp. Vd mimics Vp, except that whenever it
needs to simulate a coin throw of Vp, it reads the corresponding bit from P0.

If a string w ∈ L, then P1 is able to convince Vp to accept w, no matter what
P0, or the coins of Vp, can “say.” Note that in such a case, P1 will be able to
convince Vd to accept w, no matter what P0 can say. If w /∈ L, then P0 is able
to convince Vp to reject w, no matter what P1, or the coins of Vp, can say. In
this case, P0 would of course be able to convince Vd to reject w, regardless of
what P1 might say. ��

As mentioned in Section 2, languages with debates checkable by deterministic
finite state verifiers are regular, whereas probabilistic verifiers can handle some
nonregular languages when some error is allowed. We will now see that our small
quantum verifiers can do much more with zero error.

Theorem 3. Every language in the class E has a debate checkable by a 2QCFA
with four quantum states, and with zero error.

Proof. Since E = ASPACE(n) (the class of languages recognized by alternating
Turing machines (ATMs) using linear space) [4], it is sufficient to show how to
trace the execution of a linear-space alternating Turing machine (ATM). Let A
be an ATM that decides a language L, using at most kn tape squares for its
computation on any string of length n, for a positive integer k. Assume, without
loss of generality, that A alternates between existential and universal states at
each step, and that the start state is an existential state.

We construct a 2QCFA V0 that checks debates on membership in L. V0 is a
variant of the verifier V1 described in the proof of Theorem 1. In this version, the
debaters play a game to produce a computation history of A on the input w of
length n. The protocol dictates that P1 starts by announcing the first existential
choice to be made. Both debaters then transmit the start configuration of A
on w parallelly. P0 then announces the first universal choice as a response to
the first move of P1, followed by both debaters transmitting the configuration
that A would reach by executing the choice announced by P1 in the beginning.
In general, the choice that determines configuration ci+1 is announced by the
corresponding debater before the transmission of configuration ci. As usual, the
verifier may order the debaters to restart the whole thing at any step.

After using it to check that the first configuration description is accurate, V0

starts moving its reading head on the input tape back and forth at the appropriate
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speed to make sure that neither debater sends a configuration description longer
than nk symbols in the rest of the transmission, deciding against any debater seen
to violate this rule. As described for the verifiers in our earlier proofs, V0 scans
the parallel transmissions, encoding the last configuration descriptions it has seen,
as well as their legal successors according to the choices that have already been
announced by the debaters. If the debaters send the same complete history, V0

halts and announces the result in that history. If the debaters disagree, V0 flips a
coin and picks one debater’s transmission to trace, just like V1. Unlike V1, however,
V0 does not trace this debater until it sends a halting configuration. Instead, V0

just performs the transition check between the previously sent configuration and
the presently sent one,9 and then issues a restart command. V0 does not imitate
any decision ofA that it may see in the transmission of the chosen debater; the only
way that V0 can halt without any restarts after choosing a debater is by detecting
a transition error, and deciding in favor of the other debater.

If both debaters obey the protocol, then P1 will always be able to demonstrate
an accepting computation history of A on w if w ∈ L, and P0 will always be
able to demonstrate a rejecting computation history of A on w if w /∈ L. So let
us examine the case where one debater is lying.

If V0 chooses the truthful debater to trace, it will detect no error, and so will
restart with certainty. If it chooses the other debater, it will detect a transition
error and announce the correct decision with some probability, and restart with
the remaining probability. There is no possibility that V0 can make an error. ��

5 Concluding Remarks

It is well known that finite automata with k classical input heads can use them
as one can use logarithmic space; for instance, to count up to O(nk). One can
therefore extend the argument of Theorem 3 to APSPACE (the class of languages
recognized by ATMs using polynomial space), which equals EXPTIME [4], con-
cluding that every language in the class EXPTIME has a zero-error (public-coin)
debate checkable by a multiple-head 2QCFA with four quantum states

Debate systems with deterministic logarithmic-space (or equivalently, multi-
head finite-state) verifiers which have the additional property that P0 can hide
some of its messages to the verifier from P1 are known to correspond to the class
EXPTIME. If one upgrades the verifier in this model to a probabilistic version,
but demands that it should still make zero error, the computational power does
not change, since zero-error probabilistic machines can be derandomized easily.
We can therefore also state that every language in the class EXPTIME has such a
“partial-information” debate checkable by a private-coin multiple-head two-way
probabilistic finite automaton with zero error.

Acknowledgements. We thank the anonymous reviewers for their helpful
comments.

9 If the chosen debater attempts to send an exceedingly long configuration at this point,
it will be caught by the control implemented by the input head.
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Abstract. In this paper, we study languages of finite and infinite bi-
rooted words. We show how the embedding of free ω-semigroups of finite
and infinite words into the monoid of birooted words can be generalized
to the embedding of two-sorted ω-semigroups into (some notion of) one-
sorted ordered ω-monoids. This leads to an algebraic characterization of
regular languages of finite and infinite birooted words that generalizes
and unifies the known algebraic characterizations of regular languages of
finite and infinite words1.

1 Introduction

Infinite strings naturally arise in Software Engineering as models of (poten-
tially) non-terminating system behaviors. From an abstract point of view, in-
finite strings are defined as infinite concatenations of non-empty finite strings,
with an infinite associativity law ensuring that this infinite product is compat-
ible with the standard concatenation of finite strings. This leads to the notions
of ω-semigroups and morphisms that provide an algebraic characterization of
regular languages of infinite words (see [25]). Programming languages such as
Haskell [8] allow for effectively defining infinite streams of values by means of lazy
evaluation mechanisms. In view of application to temporal media programming,
that is, finite and infinite sequences of media type values such as images, sounds
or control events, the abstract data type implicitly induced by ω-semigroups
is enriched with the parallel product of finite or infinite strings. This leads to
effective tools for handling temporal media types [7].

It has recently been advocated that there are benefits in embedding finite
strings as well as infinite streams into (some notion of) tiled temporal media [9].
Typical temporal media synchronization constructs such as musical pickups
(anacruses) lead to distinguishing the effective starts of temporal media – the
first note of a melody, from their logical starts – the first strong beat of that
melody [1]. Then, the notion of tiled temporal media allows for a fairly simple
modeling of these multi-level synchronization constructs. This comes from the

1 See http://hal.archives-ouvertes.fr/hal-00910002 for a complete version.
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fact that they are equipped with a tiled product that is neither a sequential nor
a parallel product but both [9, 17].

In the general setting of higher-dimensional strings and tiling semigroups [16,
18, 19], the tiled temporal media and the related tiled product lay in the math-
ematical framework of inverse semigroup theory [21] and semigroups with local
units [5, 6, 20]. Projecting tiled temporal media onto semantical tags, we ob-
tain sorts of tiled words. In the finite case, the induced algebra is the inverse
semigroup of McAlister whose elements are birooted words [22, 23].

Aiming at providing a robust mathematical framework for handling languages
of tagged tiled temporal media, we extend here the language-theoretical tools
available for languages of finite birooted words (see [3, 11, 13, 14]) to the case of
infinite birooted words.

For such a purpose, we show that the obvious embedding of the free ω-
semigroups of finite and infinite words into the monoid of birooted words can be
generalized to the embedding of two-sorted ω-semigroups into one-sorted ordered
ω-monoids.

This leads to an algebraic characterization of regular languages of finite and
infinite birooted words that generalizes and unifies the algebraic characteriza-
tions of regular languages of finite and infinite words.

2 From Finite or Infinite Words to Birooted Words

Let A be a finite alphabet. Let (A∗, ·) be the free monoid of finite strings on the
alphabet A, and let (A+, Aω, ·, ∗, π) be the associated free ω-semigroup (see [25])
with finite product ·, mixed product ∗ and infinite product π.

In the sequel, both the finite product u1 · u2 when u1, u2 ∈ A∗ or the mixed
product u1 ∗ u2 when u1 ∈ A∗ and u2 ∈ Aω may simply be denoted by u1u2.

The set A∞ = A∗ ∪ Aω of finite and infinite strings is ordered by the prefix
order ≤p, defined, for every u and v ∈ A∞, by u ≤p v when either u = v, or
u is finite and there is w ∈ A∞ such that v = uw. Extended with a maximum
element denoted by 0, the set A∞+0 ordered by the prefix order ≤p is a complete
lattice. The prefix join u∨p v of two words u and v ∈ A∞ is then the least word
w ∈ A∞, if it exists, such that we have both u ≤p w and v ≤p w, or 0 otherwise.
Then, for every u ∈ A∗ and v ∈ A∞, the right residual u−1(v) of v by u, is
defined as the word w ∈ A∞, unique if it exists, such that v = uw. We take
u−1(v) = 0 otherwise. By definition, u−1(v) �= 0 if and only if u ≤p v.

Definition 1. A positive (right) birooted word u is a pair u = (u1, u2) where
u1 ∈ A∗ and u2 ∈ A∞. The word u1u2 ∈ A∞ is called the domain of the birooted
word u, and the word u1, its root path. The birooted word (u1, u2) is finite when
u2 is finite. The set of positive birooted words on the alphabet A is denoted by
T∞(A). The set of finite positive birooted words on A is denoted by T+(A).

The product u ·v of two birooted words u = (u1, u2) and v = (v1, v2) is defined
as the birooted word w = (w1, w2) with w1 = u1v1 and w2 = v−1

1 (u2)∨p v2 when
v−1
1 (u2) ∨p v2 �= 0. Otherwise, we take u · v = 0 for some new birooted word 0,

with 0 · u = u · 0 = 0 for every u ∈ T∞(A), and 0 · 0 = 0.
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Examples. The following examples illustrate the definition of the product:

(ab, ab) · (a, bc) = (aba, bc) (ab, (ab)ω) · (a, bc) = 0
(ab, (ab)ω) · (a, ba) = (aba, (ba)ω) (ab, ab) · (a, (ba)ω) = (aba, (ba)ω)
(ab, ab) · (a, (bc)ω) = (aba, (bc)ω) (ab, ac) · (a, (ba)ω) = 0
(1, ab) · (1, abc) = (1, abc) (1, ab) · (1, ac) = 0

Let T∞
0 (A) (resp. T+

0 (A)) be the set of positive birooted words (resp. finite
positive birooted words) extended with 0.

Theorem 1. The set T∞
0 (A) equipped with the above product is a partially or-

dered monoid with unit 1 = (1, 1).

Let u �→ uR and, resp., u �→ uL be the right projection (or reset) and, resp.,
the left projection (or co-reset) defined on the monoid T∞

0 (A) by

0R = 0L = 0 , uR = (1, u1u2) and uL = (1, u2)

for every u = (u1, u2) ∈ T∞
0 (0). Then the natural order relation (see [10, 20]) is

defined by

u ≤ v when u = uR · v · uL , or, equivalently, u = uR · v

for every u and v ∈ T∞
0 (A). Elements u such that u ≤ 1 are called subunits and

the set of subunits is denoted by U(T∞
0 (A)).

Theorem 2. The natural order relation on T∞
0 (A) is a partial order relation

stable under product, that is if u ≤ v then uw ≤ vw and wu ≤ wv for all
u, v, w ∈ T∞

0 (A). Subunits and idempotents coincide, that is, we have u ≤ 1 if
and only if u = uu for all u ∈ T∞

0 (A). Moreover, the set U(T∞
0 (A)) ordered by

the natural order is a complete lattice with product as meet.

An immediate interest of the notion of finite and infinite birooted words is that
the (two sorted) free omega monoid (A+, Aω) can be embedded into the (one
sorted) monoid T∞

0 (A). More precisely, let u∗v be the mixed product defined by
u ∗ v = (u · v)R for all u ∈ T∞

0 (A) and v ∈ U(T∞
0 (A)), and let π(ui)i∈ω be the

infinite product defined by π(ui)i∈ω =
∧

n∈ω(u0 · u1 · · · · · un−1)R for all infinite
sequences of birooted words (ui)i∈ω . Then we have:

Theorem 3. The pair (T+
0 (A), U(T∞

0 (A))) equipped with the finite product, the
mixed product and the infinite product is a well-defined ω-semigroup.

Moreover, let θf : A∗ → T+
0 (A) be the mapping defined by θf (v) = (v, 1) for

every finite word v ∈ A∗ and let θω : Aω → U(T∞
0 (A)) be the mapping defined

by θω(w) = (1, w) for every infinite word w ∈ Aω.
Then, the pair of mappings (θf , θω) : (A+, Aω) → (T+

0 (A), U(T∞
0 (A))) is an

ω-semigroup embedding, that is, a one-to-one mapping that preserves the finite,
the mixed and the infinite products.

In the particular case where the infinite sequence (ui)i∈ω is constant, that is,
when there is some v ∈ T∞

0 (A) such that ui = v for every i ∈ ω, then we write
vω for π(ui)i∈ω. One can easily check that for every idempotent (or subunit)
u ≤ 1 we have uω = u.
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3 Embedding ω-semigroups into Ordered ω-monoids

We show here that the above embedding of the free ω-semigroup (A+, Aω) into
the monoid of birooted words T∞(A) can be generalized to an embedding of any
ω-semigroup S into (some notion of) ordered ω-monoid M(S).

Let M be a monoid partially ordered by a relation ≤. We assume that the
order relation ≤ is stable under product, i.e. if x ≤ y then xz ≤ yz and zx ≤ zy
for every x, y and z ∈ M . The set U(M) of subunits of the partially ordered
monoid M is defined by U(M) = {y ∈M : y ≤ 1}.

The following definition is adapted from [14] and then, following [20], refined
with the congruence property [4, 10].

Definition 2 (Adequately ordered and E-ordered monoids). A (stable)
partially ordered monoid M is an adequately ordered monoid when:

(A1) idempotent subunits: for every x ∈M , if x ≤ 1 then xx = x,
(A2) left and right projection: for every x ∈M , both the left projection defined

by xL = min{y ∈ U(M) : xy = x} and the right projection defined by
xR = min{y ∈ U(M) : yx = x} exist in U(M),

It is an Ehresmann-ordered monoid (or E-ordered monoid) when, moreover:

(A3) congruence property: for every x, y, z ∈M , if xL = yL then (xz)L = (yz)L

and if xR = yR then (zx)R = (zy)R,

Examples. Every monoid trivially ordered is an adequately ordered monoid. Ev-
ery inverse monoid ordered by the natural order [21] is also an adequately
ordered monoid with left and right projections defined by xR = x · x−1 and
xL = x−1 · x for every element x.

The notion of adequately ordered monoid is extended here with an infinite
(right) product as follows.

Definition 3 (E-ordered ω-monoid). An E-ordered ω-monoid is an E-ordered
monoid M equipped with an infinite product operator π : Mω → U(M) satisfy-
ing the following properties:

(I1) subunit preservation: for every (xi)i∈ω such that for every i ∈ ω we have
xi = x for some x ∈ U(M), then π(xi)i∈ω = x,

(I2) monotonicity: for every infinite sequences (xi)i∈ω ∈ Mω and (yi)iω , if
xi ≤ yi for every i ∈ ω then π(xi)i∈ω ≤ π(yi)i∈ω,

(I3) mixed associativity: for every infinite sequence (xi)i∈ω ∈ Mω, for every
x ∈ M , given x′

i = x when i = 0 and x′
i = xi−1 when i > 0, we have

(x · (π(xi)i∈ω))R = π(x′
i)i∈ω

(I4) infinite associativity: for every infinite sequence (xi)i∈ω ∈ Mω, for every
strictly increasing sequence (ki)i∈ω of positive integers with k0 = 0, given
yi = xki · xki+1 · · ·xki+1−1 defined for every i ∈ ω, we have π(yi)i∈ω =
π(xi)i∈ω.
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Definition 4 (Monoid completion). Let S = (Sf , Sω) be an ω-semigroup
with finite product · : Sf × Sf → Sf , mixed product ∗ : Sf × Sω → Sω and
infinite product π : (Sf )ω → Sω. By definition (see [25]) the finite, mixed and
infinite product are related by mixed and infinite associativity laws. Let S1

f be
the semigroup Sf extended with a unit and let P∗(Sω) be the set of non-empty
subsets of Sω.

The monoid completion M(S) of the ω-semigroup S is defined to be the
M(S) = S1

f × P∗(Sω) + 0 equipped with the product · defined, for every non

zero element (x,X) and (y, Y ) ∈ M(S) by (x,X) · (y, Y ) = (xy, y−1(X) ∩ Y )
when y−1(X) ∩ Y �= 0 with y−1(X) = {z ∈ Sω : y ∗ z ∈ X} and is defined to
be 0 all other cases, with y−1(X) = {z ∈ Sω : y ∗ z ∈ X}. Element of M(S) are
also ordered by the relation ≤ defined over M(S) by taking 0 to be the smallest
element and by (x,X) ≤ (y, Y ) when x = y and X ⊆ Y for every (x,X) and
(y, Y ) ∈M(S).

Theorem 4. The set M(S) with the above product · and the natural order ≤ is
an E-ordered monoid with unit 1 = (1, Sω).

We define the infinite product π almost by iteration although, as well known
in ω-language theory, the infinite product itself cannot be defined as a limit since
many regular languages are not closed in prefix topology.

Among subunits of M(S), the meet ∧ in the order correspond to the product.
Indeed, a subunit in M(S) is either zero (with just behave like (1, ∅)) or of the
form (1, X) for some non empty X ⊆ Sω with (1, X) · (1, Y ) = (1, X ∩ Y ).
The monoid of subunits U(S) is thus isomorphic to the power set P(Sω) with
intersection as product. In the next definition, when appropriate, we thus may
use at will the meet operator ∧ in place of the product.

Definition 5 (Infinite product). Let (xi)i∈ω ∈ (M(S))ω . Let π0() = 1 and

for every n ∈ ω, let πn+1(xi)i≤n = (x0 · πn(xi+1)i<n)
R

. Then, the infinite prod-
uct π(xi)i∈ω is defined by

π(xi)i∈ω = (1, Xω) ∧
∧

n∈ω πn(xi)i≤n

with Xω defined by Xω = Sω when J = {i ∈ ω : xi ≤ 1} is finite and Xω

defined by Xω = {xω} when J is infinite, with xω = π(sji)i<ω where (ji)i∈ω is
the increasing enumeration of the elements of J and, for very j ∈ J , the (non
zero) element xj is of the form xj = (sj , Xj).

Theorem 5. The E-ordered monoid M(S) equipped with the above infinite prod-
uct is an adequately ordered ω-monoid.

Last, we aim at showing that the ω-monoid S = (Sf , Sω) can be embedded as
an ω-monoid into M(S). This means defining over M(S) an ω-monoid structure
(Mf (M),Mω(S)), which can be done by taking Mf (S) = M(S) for the “finitary”
part and Mω(S) = U(M(S)) for the “infinitary” part. The infinite product is
the one already defined, and the mixed product of two elements x ∈ M(S) and
y ∈ U(M(S)) is defined to be x ∗ y = (x · y)R.
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Theorem 6. The mapping θ = (θf , θω) : (Sf , Sω) → (M(S), U(M(S))), defined
by θf (x) = (x, Sω) for every x ∈ Sf and by θω(y) = (1, {y}) for every y ∈ Sω, is
a one-to-one ω-monoid morphism.

4 Application to Language Theory

A language of birooted words is a set X ⊆ T∞(A) of non-zero birooted words.
The class of such languages is equipped with the boolean operators union (also
called sum), intersection and complement, plus operators derived from the struc-
ture of T∞

0 (A): for all X and Y ⊆ T∞(A), the product X ·X , the star X∗, as well
as X+ and the omega Xω, are defined by extending the corresponding operators
on T∞

0 (A) in a point-wise manner, always omitting the birooted word zero possi-
bly resulting from these products. Additionally, we define the left and right pro-
jections XL and XR of the language X as the sets XL = {xL ∈ T∞(A) : x ∈ X}
and XR = {xR ∈ T∞(A) : x ∈ X}.

Theorem 7. The class of languages of (positive) birooted words definable in
MSO is closed under all the operators defined above. Moreover, it is finitely
generated from the finite languages of (positive) birooted words, sum, product,
star, omega and left and right projections.

Proof. Easily follows from standard relativization techniques of mathematical
logic.

Combining the notions of Muller ω-word automata [24] (see also [25]) and of
tile automata [14], we define birooted words ω-automata as follows.

Definition 6. A (finite) birooted word ω-automaton is a tuple A = 〈Q, δ,K,W 〉
with a (finite) set of states Q, a transition function δ : A → P(Q × Q), a
finitary acceptance condition K ⊆ Q×Q and an infinitary acceptance condition
W ⊆ P(Q). For technical reasons, we always assume that ∅ ∈ W .

A run of the automaton A on a birooted word u = (u1, u2) is a labeling
mapping ρ : [0, |u1 ∗ u2| + 1[→ Q that satisfies the local consistency property :
(ρ(k), ρ(k + 1)) ∈ δ((u1 ∗ u2)[k]) for every 0 ≤ k ≤ |u1|+ |u2|.

The run ρ of the automaton A on the birooted word u = (u1, u2) is locally
accepting when the pair of states (ρ(0), ρ(|u1|)) that marks the input and output
roots belongs to K.

The run ρ is globally accepting when the set of states that occur infinitely
often belongs to W , i.e. {q ∈ Q : |ϕ−1(q)| = ∞} ∈ W}. Observe that when
(u1, u2) is finite then the global acceptance constraint is always satisfied since
we assume that ∅ ∈ W .

The language L(A) is then defined as the set of birooted words (u1, u2) ∈
T∞(A) for which there exists a locally and globally accepting run of A on
(u1, u2).

Theorem 8. A language L ⊆ T∞(A) of non nul birooted words is recognized
by a finite-state birooted word ω-automaton if and only if L is definable in MSO
and upward closed.



Embedding Finite and Infinite Words into Overlapping Tiles 345

Corollary 1. The class of languages recognized by a finite-state birooted word
ω-automaton is closed under the sum, intersection, product, star and omega
operations. Moreover, it is finitely generated from finite languages of (positive)
birooted words, sum, product, star and omega, and the upward closure of left
and right projections.

The next definitions and theorem extend a similar result proved in [14] for
languages of finite birooted words.

A mapping ϕ : T∞
0 (A) → T from birooted words to an adequately ordered

monoid T is a premorphism when ϕ(1) = 1 and ϕ(xy) ≤ ϕ(x)ϕ(y) and if x ≤ y
then ϕ(x) ≤ ϕ(y) for every x and y ∈ T∞

0 (A).
The premorphism ϕ is adequate when, moreover, ϕ(xL) = (ϕ(x))L and

ϕ(xR) = (ϕ(x))R for every x ∈ S, and if xLyR �= 0 and xL ∨ yR = 1 then
ϕ(xy) = ϕ(x)ϕ(y) for every x and y ∈ S. In the latter case we say that the
product xy is disjoint.

The adequate premorphism ϕ is ω-adequate when T is an adequately or-
dered ω-monoid and, for every infinite sequence (ui)0≤i ∈ (T 0

∞(A))ω , we have
ϕ(π(ui)0≤i) ≤ π(ϕ(ui))0≤i and, moreover, if the product π(ui)0≤i is disjoint (i.e.
for every 0 < k, given x = u0 ·u1 · · ·uk−1 and y = π(ui+k)0≤i we have xLyR �= 0
and xL ∨ yR = 1), then we also have ϕ(π(ui)0≤i) = π(ϕ(ui))0≤i.

A language L ⊆ T∞(A) is quasi-recognizable when there exists a finite ade-
quately ordered ω-monoid S and an ω-adequate premorphism ϕ : T∞

0 (A) → S
such that L = ϕ−1(ϕ(T )).

Theorem 9. Let L ⊆ T∞
0 (A) be a language of non-zero finite or infinite bi-

rooted words. The language L is quasi-recognizable if and only if it is a finite
boolean combination of upward-closed (for the natural order) languages definable
in monadic second order logic (MSO).

Remark 1. As a concluding remark, following [12,15], we could also aim at gen-
eralizing the present approach to trees, possibly leading to further developments
in the very subtle and difficult emerging algebraic theory of languages of infinite
trees [2]. However, there is no evidence yet that such a generalization could lead
to a successful algebraic characterization of infinite tree languages.
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12, LaBRI, Université de Bordeaux (2012), http://hal.archives-ouvertes.fr/
hal-00673123

11. Janin, D.: Quasi-recognizable vs MSO definable languages of one-dimensional over-
lapping tiles. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS,
vol. 7464, pp. 516–528. Springer, Heidelberg (2012),
http://hal.archives-ouvertes.fr/hal-00671917

12. Janin, D.: Algebras, automata and logic for languages of labeled birooted trees. In:
Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part
II. LNCS, vol. 7966, pp. 312–323. Springer, Heidelberg (2013),
http://hal.archives-ouvertes.fr/hal-00784898

13. Janin, D.: On languages of one-dimensional overlapping tiles. In: van Emde Boas,
P., Groen, F.C.A., Italiano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013.
LNCS, vol. 7741, pp. 244–256. Springer, Heidelberg (2013),
http://hal.archives-ouvertes.fr/hal-00659202

14. Janin, D.: Overlapping tile automata. In: Bulatov, A.A., Shur, A.M. (eds.) CSR
2013. LNCS, vol. 7913, pp. 431–443. Springer, Heidelberg (2013)

15. Janin, D.: On languages of labeled birooted trees: Algebras, automata and logic.
Information and Computation (in print, 2014),
http://hal.archives-ouvertes.fr/hal-00982538

16. Janin, D.: Towards a higher dimensional string theory for the modeling of com-
puterized systems. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M.
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