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Didactic Engineering as a Research 
Methodology: From Fundamental Situations 
to Study and Research Paths
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8.1  Didactic Engineering as a Research Methodology

The notion of didactic engineering (DE) has been at the core of the project of a 
science of didactics founded by Guy Brousseau in the 1970s along with the theory 
of didactic situations (TDS). In a recent paper presenting the origin of DE, Brousseau 
(2013) explains its necessity and locates it in the interface between research and 
teaching:

Didactic engineering was a necessary and ‘concrete’ domain between a poorly invested 
activity, teaching mathematics, and an absent science, Didactics. The latter was supposed 
to, on the one hand, newly define both of them and, on the other hand, find its contingency 
in their confrontation and complementarity. ‘Do not content yourself only with evidence’, 
‘systematically reproduce’, ‘analyze in order to save experiences’, ‘only accept exogenous 
concepts under their testing in didactic engineering’—those have been the guiding princi-
ples [of Didactics]. (Brousseau, 2013, p. 4, our translation)

In the entry didactic engineering of the new Encyclopaedia in Mathematics 
Education, Michèle Artigue tries to clarify this intermediate role between the reality 
of classrooms and the science of didactics:

The idea of didactical engineering (DE) […] contributed to firmly establish the place of 
design in mathematics education research. Foundational texts regarding DE such as 
(Chevallard, 1982) make clear that the ambition of didactic research of understanding 

Supported by the Spanish R&D projects EDU2012-39312-C03-01, EDU2012-39312-C03-03, and 
EDU2012-32644

B. Barquero 
Universitat de Barcelona, Barcelona, Spain 

M. Bosch (*) 
Universitat Ramon Llull, Barcelona, Spain
e-mail: mariannabosch@gmail.com

249© The Author(s) 2021
A. Watson, M. Ohtani (eds.), Task Design In Mathematics Education,
New ICMI Study Series, https://doi.org/10.1007/978-3-319-09629-2_8

This chapter has been made open access under a CC BY-NC-ND 4.0 license. For details on rights
and licenses please read the Correction https://doi.org/10.1007/978-3-319-09629-2_13 

mailto:mariannabosch@gmail.com


250

and improving the functioning of didactic systems where the teaching and learning of 
mathematics takes place cannot be achieved without considering these systems in their 
concrete functioning, paying the necessary attention to the different constraints and forces 
acting on them. Controlled realizations in classrooms should thus be given a prominent role 
in research methodologies for identifying, producing and re-producing didactic phenom-
ena, for testing didactic constructions. (Artigue, 2014, p. 159)

It is important to keep in mind that, in the theory of didactic situations (TDS), 
didactic engineering was part of a collective project, led by Brousseau, to build an 
empirical science of didactic phenomena where the issue of the empirical validation 
of results was to be carefully taken into account. This is how he remembers those 
beginnings, in the same text quoted above:

My contribution was to design, project and start creating a proper science, which has to be 
responsible for the original theoretical concepts needed by engineering and for submitting 
them to the exigencies of any mature science, enriched by its scientific peer to peer relation-
ships with other educational approaches. (ibid., p. 4, our translation)

In this context and as Artigue (2008, p. 4) explains, didactic design was called to 
fulfill two different needs: to take into account the complexity of classrooms, at a 
time when research mainly relied on laboratory experiments and questionnaires; 
and to articulate the relationships between research and teaching innovation. She 
also highlights five main characteristics of DE as a theory-based intervention: the 
central role given to the notion of situation in both the modeling of mathematical 
knowledge and the organization of its teaching; the crucial attention paid to the 
epistemology of knowledge and the need to rebuild any mathematical content as the 
answer to an issue raised within a social situation; the importance given to the char-
acteristics of the empirical milieu of the situation and of the students’ interaction 
with this milieu; the three different functionalities assigned to mathematical knowl-
edge, action—formulation—validation; and the vision of the teacher’s role as the 
organizer of the relationships between the adidactic1 and the didactic dimensions of 
situations (devolution, institutionalization).

As we shall see, DE appears as a research methodology to be closely related to 
the TDS, although it exceeds this initial framework:

As a research methodology, DE emerged with this ambition, relying on the conceptual tools 
provided by the Theory of Didactical Situations (TDS), and conversely contributing to its 
consolidation and evolution (Brousseau, 1997). It quickly became a well-defined and privi-
leged methodology in the French didactic community, accompanying the development of 
research from elementary school up to university level […] (Artigue, 1990, 1992). From the 
nineties, DE migrated outside its original habitat, being extended to the design of teacher 
preparation, and professional development sessions, used by didacticians from other disci-
plines […] and also by researchers in mathematics education in different countries. 
(Artigue, 2014, pp. 159–160)

What are then the main characteristics of DE that are preserved in the evolution 
of TDS and the approaches sharing its main epistemological principles, such as the 

1 In an adidactic situation, students interact with a milieu only considering the logic of the problem 
approached, without taking into account the teachers’ didactic intentions.
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Anthropological Theory of the Didactic (ATD) we are considering here? We are 
answering this question using the four-phase structure of DE as a research meth-
odology proposed by Michèle Artigue (2008). It will help us distinguish the theo-
retical assumptions underlying all DE works and emphasize its internal role in 
didactics research as a phenomenotechnique, that is, as a tool to produce didactic 
phenomena.

At the starting point of a DE process, we are locating a concrete content or issue 
to be taught and learned and usually a didactic problem related to it. The first phase, 
called preliminary analysis, mainly includes an epistemological questioning of the 
mathematical content at stake and of the necessity to introduce it at school, and a 
study of the conditions and constraints offered by the institutions where the teaching 
and learning process is to take place. This is an essential first step where research 
hypotheses are formulated and the content to be taught and learned is questioned, 
usually considering different kinds of hypothetical didactic phenomena involved. 
It is also in this phase where previous research results can be reinvested.

The second phase concerns the design and a priori analysis. This phase corre-
sponds to the statement of how the content at stake is considered or modeled within 
didactics research. A mathematical and a didactic level may be distinguished here, 
to first “define” or “characterize” the content (mathematical analysis), and then to 
propose how to make it emerge from problematic questions within a sequence of 
concrete situations (didactic analysis). In the theoretical frames here considered, 
these analyses are carried out in terms of mathematical and didactic situations 
(TDS) or mathematical and didactic praxeologies (ATD).

The third phase includes the implementation of the previously designed didactic 
process, its observation, and data collection. At this experimental level, an “in vivo” 
analysis is usually developed, when interpreting in real time (or straight after) what 
is taking place in the classroom. Finally, the a posteriori analysis culminates the DE 
process. It is organized in terms of the contrast, validation, and development of the 
research hypotheses and design proposals of the previous phases, usually often 
leading to the formulation of new problems, related to both fundamental research 
and teaching development (Fig. 8.1).

It needs to be highlighted that, even if the a priori analysis precedes the in vivo 
and a posteriori analyses, there is always a constant interaction between the out-
comes of the different phases: results from the a posteriori analysis may not only 
suggest introducing changes in the design of the teaching process, but also develop-
ing the characterization of the content at stake (preliminary analysis). It may also 
contribute to the science of didactics with the results obtained and the open prob-
lems raised, leading to new theoretical or methodological developments. In this 
sense, DE is not a development practice where previously established research 
results are transformed into teaching proposals. It is a way to empirically contrast 
assumptions about the possibilities of the diffusion of mathematical knowledge and 
the phenomena hindering it. As Brousseau said:

My ambition has been to turn didactic engineering not into a socio-professional cover, but 
a scientific activity based on a coherent and ‘proper’ body of scientific knowledge. (2013, 
p. 6, our translation)

8 Didactic Engineering as a Research Methodology
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DE is one among many other empirical methods elaborated and used by didactic 
research. We will not refer to it for instance when what is investigated is not directly 
a teaching and learning process but results from evidence coming from other sources 
gathered through naturalistic observation of institutions and their outcomes (includ-
ing classes, historical documentation, etc.) or through direct intervention via inter-
views, questionnaires, etc.

8.2  Didactic Engineering Within the Theory  
of Didactic Situations

After this brief introduction to the notion of DE, we are presenting two examples of 
research based on DE processes, one from the TDS about the measure of quantities 
at primary school level, and another one from the ATD and the teaching of modeling 
processes at university level. In spite of the initial difference between both investi-
gations, strong commonalities are being stressed, relying on what we propose to 
conceive as the mainstream of DE in Didactics.

8.2.1  An Example: Measuring Quantities at Primary School

We are using the case of the measurement of quantities at primary school to illus-
trate the four phases of the DE methodology within the TDS and, especially, their 
interactions. This example corresponds to a crucial issue in elementary mathematics 

Fig. 8.1 Phases of the DE research methodology within TDS
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education and has been the object of many investigations in the TDS that have not 
been widely disseminated in the international community. We will describe it in a 
brief and necessarily simplified way. More details can be found in Bessot and 
Eberhard (1983), Brousseau and Brousseau (1987, 1991–1992), Brousseau (2002), 
Douady and Perrin-Glorian (1989), Perrin-Glorian (2002, 2012), and Sierra (2006).

8.2.1.1  Preliminary Analysis

The starting point of the research is not the teacher’s problem, How to introduce the 
measurement of quantities in primary school? Rather, it is the insertion of this prob-
lem into a broader questioning including epistemological as well as social issues, 
such as: Why is it necessary to teach the measurement of quantities at primary 
school? What mathematical entities and practices are related to it? What social 
activities? How is it related to other mathematical notions, such as numbers, ratios, 
relationships, areas, volumes?

To answer these questions, one should take into account the processes of didactic 
transposition (Chevallard, 1982) and the analysis of the activities that have been, 
are, and could be taught at school, an analysis that usually leads to the identification 
of didactic phenomena. For instance, it can be shown (Brousseau, 1997; Chambris, 
2010; Perrin-Glorian, 2002, 2012) that, with the introduction of New Maths into the 
French curriculum in the 1970s, magnitudes and quantities disappeared from school 
mathematics, where they supported the construction of numbers. Only some basic 
practical measures and the metric system remained. Curricula have changed a lot 
since then, but the synthesis between quantities and sets to support the construction 
of numbers has still not been solved. Some indicators of this phenomenon are the 
fact that the choice of the unit of measure (gauge) is never raised, the blurry role 
played by units in modeling strategies and calculations, and the frequent situation 
that mathematical work is dominated by “abstract” numbers instead of “concrete” 
ones, that is, those directly representing physical quantities. Many years ago, Hans 
Freudenthal described this absence in the following terms:

To count people and eggs there are natural units. To measure quantities, one needs gauges; 
the result of the measuring procedure is a number, which measures the quantity. There is a 
variety of gauges, because there is a variety of magnitudes; length, area, volume, height, 
mass, work, current intensity, air pressure, and monetary value are notions that become 
magnitudes by measuring procedures. Sometimes it is not clear why some magnitudes need 
different gauges. […] A few of these gauges are learned in arithmetic instruction, and as far 
as he needs it, the physicist develops a rational measure system. In between a large domain 
is no man’s land. This is the fault of the mathematician. (1973, pp. 197–198)

During the same period, Hassler Whitney (1968) developed a mathematical the-
ory of physical quantities to justify calculations, not between numbers but between 
quantities (such as 6 m ÷ 2 s = 3 m/s or 5.25€/m × 0.8 m = 4.20€), thus trying to build 
a bridge between engineering or science practices and mathematical ones. However, 
his proposals remained in the “scholarly mathematics” and have not permeated the 
prevailing school mathematical culture where calculations are very often done with 
abstract numbers and where units appear (if at all) only at the end at the process.

8 Didactic Engineering as a Research Methodology
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8.2.1.2  A Priori Analysis: Design of Mathematical and Didactic 
Situations

In order to face the complex problem quickly outlined previously, research in didactics 
needs to elaborate its own vision about measure and quantities or, more precisely, a 
reference epistemological model (Bosch & Gascón, 2006). In the TDS, reference 
epistemological models are formulated in terms of fundamental situations defined 
as games of action, communication, and validation, in interaction with an experi-
mental milieu. The situation proposed by Brousseau (2002) defines the measure and 
quantities in terms of three intertwined universes and different situations between 
them. The first universe is the world of concrete measurable objects and their mate-
rial comparison (putting objects side by side, on the two plates of a weighing scale, 
into a liquid, etc.). The second one is the universe of quantities (lengths, weights, 
areas, volumes, prices, etc.) as equivalence classes of objects considering analogical 
measures, where objects do not need to be manipulated but can be compared through 
some intermediate measures (gauges). The third is the universe of units, numbers, 
and change of units, obtained after defining a single privileged gauge for each mag-
nitude (Fig. 8.2). We can thus obtain a general definition of measure in terms of 
triplets, including two universes and a situation to link them: something to measure 
(objects); a way to put objects into correspondence (adding specific conditions to 
get a measure application); and a positive numerical structure to express the mea-
sure (also with specific conditions depending on the number of units considered and 
other requirements). Usually, in school culture, only the first and third universes are 
considered, and only the third acquires a mathematical status.

To be operative, this definition needs to be specified in terms of sequences of 
games or adidactic situations passing through phases of action (solving a problem 
through empirical interaction with a milieu), communication (explaining the answer 
so that another person can follow and even reproduce the solution), and validation 
(justifying the solution without referring to the contingency of the milieu). 
Depending on the educational level and institution considered, the types of situa-
tions may obviously vary. Their design is part of both the delimitation of the refer-
ence epistemological model (mathematical situations) and their concrete realization 
under specific conditions (didactic situations).

Universe of 
objects

Universe of 
numbers

Universe of 
quantities

S(m)

S(g) S(m)

Fig. 8.2 Universes of 
measure (Brousseau, 2002)
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Let us take a short example from Brousseau and Brousseau (1987) which is part 
of a larger DE design: a situation for grade 4 of primary school where it is proposed 
to introduce the measure of “length” through the following situation of communica-
tion. The milieu is composed of similar strips of different lengths and colors, with rep-
etitions: short brown strips of the same length, medium red strips of different 
lengths, and long blue strips of different lengths. In this milieu, two strips can be 
compared by putting them side by side (action). The communication game, played 
by teams, consists in, given a blue strip, asking another team to bring as many 
smaller strips as necessary to build a new strip of the same size (Fig. 8.3). The aim 
of the activity is to raise the need for gauges to simplify the comparison of objects 
(common units for the messages) and, since there is no simple relationship between 
long and short strips, to move to the choice of a single unit and its fractions to sim-
plify the messages without decreasing the precision of the measure.

8.2.1.3  Implementation, Observation, and Data Collection

In the first part of the sequence related to the strips communication game (where 
small brown strips are called “u”), it can be seen how the initial messages may fail 
and students learn how to make more precise messages to get a strip of the same 
size as theirs. The types of messages produced are “2 u plus 3 quarters of a u”, “5 
strips and fold the small u strip in 2”, “3 times u, half, half of the half, half of the 
half of the half”, “2 strips and another one with a small part missing”, etc. (Fig. 8.4). 

Fig. 8.3 Measuring situations: a priori analysis

8 Didactic Engineering as a Research Methodology



256

The width of the strips was also used, thus including a new gauge that was not 
forecasted in the a priori analysis: “5 brown strips plus the width of a brown strip 
and half the width” (Brousseau & Brousseau, 1987, pp. 3–6).

During the very first experimentation of the sequence, an interesting problem 
appeared that partially discredited the a priori analysis. Because the students were 
familiar with the ruler and with measuring lengths in cm, some of them did not 
feel the need to choose a small strip as a gauge and started writing their messages 
using cm: “2 brown strips, one small strip and not a whole one, 3 or 4 cm have to 
be eliminated”. It was then very difficult, and artificial, to move the students back 
to the single brown strip as unit, keeping cm aside.

Due to this unexpected event, after the first two sessions of working with lengths, 
it was decided to change lengths for weights, less familiar to the students, and avoid 
the use of metric units. Strips were replaced by small objects (pencil cases, small 
glasses, exercise books, etc.); different sizes of nails and small plates were intro-
duced as gauges, and the comparison was made with a two-plate scale. This shows 
how the experimentation and in vivo analysis can make the design and a priori anal-
ysis evolve. We can consider that the reference epistemological model was also 
enriched through the experimentation, showing new conditions for the construction 
of the process of measuring quantities, as for instance the difficulties for the second 
universe (quantities) to exist without being directly absorbed by the third one 
(numbers), and also the relationships between the set of scalars needed in this 
second universe and the number of generators (gauges) used (Sierra, 2006).

Fig. 8.4 Measuring situations: experimentation (students’ productions)
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8.2.1.4  A Posteriori Analysis: Results, New Phenomena,  
New Research Questions

The situations about comparing lengths and weights are part of a long sequence of 
30 activities which form the DE work described in (Brousseau & Brousseau, 1987) 
to introduce the measuring of quantities in grade 4 of primary school. It contains the 
following activities:

•	 Measurement of lengths: communication game; studying the messages
•	 Measurement of weights: communication game; messages; work on the writings; 

comparing expressions; conversions; adding weights; comparing sums and total 
weight; transformation in basis 60

•	 Measurement of time: time and duration; calculation with numbers in basis 60
•	 Legal units of weight: presentation; conversions
•	 Finding the weight of an empty recipient: first part; second part (challenges)
•	 Measurement of lengths: adding lengths; decimal measures
•	 Writing decimal measures: length measures; decimal length and weight mea-

sures; comparison of decimal measures; order in decimal measures
•	 Operations with decimal measures: addition; multiplication by an integer; 

subtraction

In a later work, Brousseau and Brousseau (1991–1992) present some crucial 
issues derived from this research and describe some of the related phenomena.  
As we have seen before, there is, for instance, the fact that familiar milieus (such as 
lengths) are not always didactically productive, even if they may initially facilitate 
the devolution of a situation. A similar didactic phenomenon occurs with the teach-
ing of rational or negative numbers, when the fractional or directional measures that 
are used to introduce them become a didactic obstacle when defining their multipli-
cation or division.

There is also another example related to a very interesting experience with one 
of the reported activities, the weight of the receptacle. In spite of the errors of mea-
sure of the full and half-full receptacle, the students postulate and confirm an affine 
relationship between the volume of water and the total weight of the receptacle, 
which enables them to deduce the weight of the empty receptacle. It thus shows a 
complex relationship between the students’ reasoning in a validation situation and 
the empirical milieu used, because taking into account the errors of measure 
appears as a mathematical necessity. And it submerges students at the core of sci-
entific activity: “[Due to the measure errors], children became aware that when a 
theory or a method is made to forecast or obtain a result, the fact that its application 
happens once or twice is not enough for it to be accepted as true or valid. It has to 
‘work’ in all cases, something which can only be established through reasoning” 
(ibid., p. 80).

8 Didactic Engineering as a Research Methodology



258

8.2.2  Didactic Engineering in the Science of Didactics

8.2.2.1 The COREM as a Didactron

Even if DE can be understood as a general research methodology closely related to 
the constitution of Didactics as a scientific domain, its existence cannot be separated 
from the COREM, Centre d’Observations et de Recherches pour l’Enseignement 
des Mathématiques. It was created in 1973 by Guy Brousseau as a research labora-
tory of the University of Bordeaux 1 and was integrated in the elementary school 
Jules Michelet in Talence (Bordeaux, France).2 Till its closure in 1999, the COREM 
functioned as what Brousseau amusingly called a didactic accelerator or didactron.

In the COREM, new teaching proposals based on the TDS were regularly expe-
rienced by researchers, in close cooperation with the teachers of the school, who 
participated in the design, a priori analysis, teaching, observation, and a posteriori 
analysis of the lessons. Furthermore, all didactic engineering components, from the 
conception of situations to their setting up, managing, and observation, were the 
concern of all the staff, teachers, and researchers (Brousseau, 2013, p. 7). In fact, 
Michelet School was (and still is) a normal public elementary French school with 4 
classes of preschool level and 10 classes of primary level (2 groups per grade), with 
pupils from the neighborhood and the same curricular and administrative require-
ments as any other French school. The teachers at the school were also normal ones, 
in the sense that no specific educational training was required, even if they were 
asked to participate in research activities. The peculiarity is that they worked in 
teams of 3 teachers per 2 classes, devoting one third of their time to the COREM, 
where they attended seminars and meetings with researchers, made observations, 
and had teaching preparation sessions with the other teachers of the team. According 
to Greslard and Salin, “The complexity of the [COREM] functioning is due to the 
fact that the creators of the project wanted to avoid the educational vocation of the 
school being altered by the investigations, and that these could later be carried out 
in the best possible methodological conditions” (1999, p. 30, our translation). It also 
supposed a detailed regulation of the interactions between researchers, teachers, and 
the classes observed.

Usually, in the development of a didactic engineering process, researchers pre-
sented a teaching proposal partially including the a priori analysis (goals expected, 
problems addressed, strategies forecast) to the team of teachers. Then they jointly 
elaborated the details of the sequence of lessons up to the preparation of a didac-
tic card (fiche didactique) for each lesson. Researchers prepared the observation 
and decided on the kind of data to be gathered. During the lessons, observers had 
to try to be as invisible as possible, and teachers were supposed to forget that they 
were observed, taking their own decisions about the teaching of the lessons. 
Immediately after each lesson, a short meeting took place for the teacher, research-
ers, and other possible observers to share impressions, starting with the teacher’s 

2 A detailed presentation can be found at http://faculty.washington.edu/warfield/guy-brousseau.
com/index.html and http://guy-brousseau.com/le-corem/
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report of the experience. The observation of “ordinary lessons” which had not been 
organized through a didactic engineering process also took place at the COREM on 
a regular basis, although with a less structured procedure.

Throughout the existence of the COREM, all materials related to the teaching of 
mathematics were gathered, including class preparation activities (both the normal 
ones and those specially designed for research), students’ productions, video record-
ing of the lessons, reports from teachers and researchers after the lessons, annual 
planning of the courses, research seminars, etc. There was also a classroom espe-
cially designed for observations, with an extra surrounding area for observers, a 
windowed cubicle for the observers in an outer room, and technicians doing video 
and audio registration. Since 2010, the COREM archives have been made available 
by the Centre of Resources in Didactics of Mathematics Guy Brousseau (CRDM-GB) 
of the Spanish university Jaume 1 of Castelló (Valencia) (http://www.imac.uji.es/
CRDM). Video recordings can also be accessed at visa.inrp.fr/visa. The list of 
didactic engineering realizations observed is very long, including teaching propos-
als about the main mathematical content from preschool to grade 5:

Reasoning and logic (preschool, grade 1): Designation, equality, lists, belonging to 
a list; Classing, sets, propositions, no-and-or, equivalence, equality; Comparisons, 
physical quantities ordering; number, length, mass, price, capacity; Order, <, >, 
next, previous; P(E); Implicit theorems, demonstration (race to 20); Theorems, 
proofs (bigger number)

Quantities and measure (preschool, grades 1, 4, 5): Natural quantities (cardinal, 
lengths, masses, prices); Capacities; Sums, products, extractions, partitions; 
Volumes, capacities; Rational and decimal quantities (commensuration, unit par-
tition); Events measure (statistics)

Discrete quantities and arithmetic: Operations on natural numbers (addition, 
multiplication, subtraction, division); Functions

Rational quantities, arithmetic, and algebra: Rational and decimal numbers, defi-
nition, writing, operations; Order (density); Linear applications, enlargements; 
Numerical dilations, ordering, composition; Structure of rational numbers

Space and geometry: Topology, figures; Fundamental situation of geometry; 
Congruencies; Dilations

Statistics and probability: Random walk; Confidence interval; Compose probabil-
ity (two successive events); Approximation to the Law of Large Numbers. 
(Brousseau, 2013, p. 12)

8.2.2.2 An Experimental Epistemology

In the research program set up by the TDS, the experimental work carried out by DE 
processes is crucial, as it represents a way to empirically test epistemological and 
didactic proposals formulated in terms of sequences of adidactic and didactic situa-
tions. In a sense, the TDS appeared as a reaction to the New Mathematics reform of 
the 1960s and 1970s that Brousseau considered as “a utopia totally ignoring all the 

8 Didactic Engineering as a Research Methodology
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difficulties and laws of the dissemination of knowledge and practices in a society 
[…], which believed and died in the illusion of transparency of didactic facts” 
(2004, p. 23). This explains the importance given to the empirical contrast of teach-
ing proposals before their dissemination, as well as the necessity to base them on a 
consistent and explicit framework of theoretical assumptions. That was the very 
precise role of DE:

Didactic engineering became, de facto, a part of Didactics of mathematics where precise, 
observable and reproducible teaching devices, specific to different forms of knowledge of 
determined mathematical entities, were conceived and also empirically, experimentally and 
theoretically studied […] (Brousseau, 2013, p. 6, our translation)

In this context, the notion of situation does not only appear as a way to describe 
teaching activities, but was also first used as a model to conceive mathematical 
activities specific to each mathematical content to be taught. It contains the require-
ment to characterize each piece of mathematical knowledge by a set of conditions 
making it progressively appear as the answer to a given problematic question. The 
adidactic situations are thus a way to show the functionality of mathematical knowl-
edge in the institutional environment of the students who have to learn it.

This ambitious project requires a double rupture: researchers need to allow them-
selves to question mathematics as it is usually conceived and presented by mathe-
matics scholars and by school institutions, elaborating their own alternative 
reconstructions of mathematical knowledge and activities (the reference epistemo-
logical models). They also need to have the same attitude towards other disciplines 
(psychology, pedagogy, sociology, etc.) concerning the effects of their proposals on 
mathematical practices and knowledge. This is why it is important that the results 
obtained are empirically based, protecting researchers from adopting unfounded 
ideologies or implicit institutional viewpoints on both educational facts and math-
ematical knowledge.

8.3  Didactic Engineering Within the Anthropological Theory 
of the Didactic

8.3.1  From Situations to Study and Research Paths

The TDS conception of DE is located in what Chevallard (2012) calls the paradigm 
of questioning the world: mathematical contents, just like the content of any other 
subject matter, should not be taught as if their value and importance were taken for 
granted. On the contrary, they need to be constructed and appear for the students as 
true answers to real questions. The search for a fundamental situation to represent, 
model, and rebuild any given piece of knowledge is in fact a way for didactics 
research to assume its own responsibility in the search for the possible raisons 
d’être of mathematical contents within the students’ reach, and for the rationale of 
their teaching at school. For instance, the epistemological question, what is the 
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measure of quantities and how can it be constructed through a sequence of situa-
tions?, includes the primary question: what is the measure of quantities for, and why 
is it important to learn it?

The Anthropological Theory of the Didactic, as it has been developed by Yves 
Chevallard (1992, 2006, 2007, 2012), shares the TDS essential epistemological ques-
tioning, the search for a rationale for any piece of knowledge to be taught, and the 
central place given to problematic issues in learning and teaching processes. The 
modeling in terms of fundamental situations is replaced by two main theoretical tools: 
the notion of praxeology used to describe any kind of human activity (Chevallard, 
1999) and the Herbartian schema, named after the J. F. Herbart (1776–1841), into 
account the way praxeologies are built, taught, learned, or disseminated as the answer 
to a given problematic question (Chevallard, 2011).

If the starting point of the teaching and learning process is a given praxeology 
P a group of students X should learn under the supervision of a group of teachers 
Y, then the didactic process involving X, Y, and P can be described in terms of 
study and research activities structured in six didactic moments or dimensions 
closely linked to the structure of praxeologies (Barbé, Bosch, Espinoza, & Gascón, 
2005; Bosch & Gascón, 2010; Chevallard, 1999). However, this is not the only 
possible pattern to represent teaching and learning. A didactic process does not 
necessarily begin with the delimitation of a given piece of knowledge to be taught, 
but can also be motivated by the need to consider a problematic question Q0 a 
group of students X wants (or has) to answer with the help of a group of teachers 
Y. What then appears is a sequence of linked study and research activities called 
study and research paths (SRP), which can be formalized using the general 
“Herbartian schema” as follows:

 
S X Y Q A O Q A Ai j k k; ; 0( ) ®{ }é
ë

ù
û ®

à ©, , ,
 

The starting point of an SRP should be a “lively” question of genuine interest for the 
community of study, what we call a generating question referred to as Q0. The ques-
tion has to be taken seriously, not as a mere opportunity to cover some fixed a priori 
mathematical content. Elaborating answers to Q0 must become the main purpose of 
the study and an end in itself.

The study of Q0 evolves and opens many other derived questions Qk that appear 
as the starting point of new SRP or new branches of the initial one. One needs to 
constantly ask whether these derived questions are relevant in the sense of being 
capable of leading temporary answers Ak that can be helpful in elaborating a final 
answer A♥ for Q0. As a result, the study of Q0 and its derived questions Qk leads to 
successive temporary answers Ak tracing out the possible routes to be followed in 
the effective experimentation of the SRP. The work of producing A♥ can thus be 
described as a tree of questions Qk and temporary answers Ak related to each other 
through a modeling process.

The implementation of the SRP usually requires resorting to external preestab-
lished answers Ai

◊ to the derived questions Qk, as well as some other objects Oj used 

8 Didactic Engineering as a Research Methodology



262

to test the available answers, elaborate new ones, and formulate new questions. The 
preestablished answers Ai

◊ are accessible through different means of communica-
tion and diffusion called the media (in the sense of “mass media”). However, knowl-
edge provided by the media corresponds to constructions that have usually been 
elaborated to answer other questions than those specifically approached. Thus, it 
has to be “deconstructed” and “reconstructed” according to the new needs. This is 
the main role of the experimental milieu, M, containing empirical objects Oj as well 
as other old, well-established answers Ai

◊. Milieu M evolves throughout the study 
process and becomes one of the main guarantees of a successful outcome. It is usual 
that, during the SRP, emerges the need to make a given A◊ available to X because it 
is required or seems necessary to produce A♥, The specific branch of the SRP start-
ing in this case is called a study and research activity (SRA) focused on A◊. In this 
sense, SRP together with SRA provides a general modeling tool to describe any 
kind of teaching and learning process, from those based on the direct transmission 
of knowledge to those centered on inquiry activities.

This broadened conception of didactic processes can be used to describe almost 
any form of teaching and learning strategy, and it prevents researchers from assuming 
any kind of specific form of school organization as normal or natural. Furthermore, 
it encourages taking into account a broad set of conditions and constraints affecting 
the teaching and learning processes that far exceed the limits of the classroom.  
At the same time, the border between mathematics and didactics (in the sense of 
teaching and learning) is blurred: doing mathematics includes study, research, and 
supervision; learning mathematics includes collectively carrying out an activity of 
study and research; and teaching mathematics corresponds to leading or supervising 
a research and study activity.

It is in this context that DE experimentations are carried out in the setting of 
ATD, in very different conditions than those established by the COREM, although 
they maintain the main methodological gestures exposed at the beginning of the 
chapter.

8.3.2  An Example: Teaching Modeling at University Level

The second case of DE we are presenting approaches the problem of teaching math-
ematical modeling at university level. This case illustrates some of the tools used in 
the framework of the ATD going through the four phases of a DE methodology 
process (see Fig. 8.5). More details about this particular case can be found in 
(Barquero, 2009; Barquero, Bosch, & Gascón, 2008). Some other research about 
the design and integration of SRP at different school levels, and even in teachers’ 
professional development, has been established in the same framework and follow-
ing similar methodologies (García, Gascón, Ruiz-Higueras, & Bosch, 2006; Hansen 
& Winslow, 2010; Rodríguez, Bosch, & Gascón, 2008; Ruiz-Munzón, Matheron, 
Bosch, & Gascón, 2012; Winsløw, Matheron, & Mercier, 2013).
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8.3.2.1 Preliminary Analysis

The starting point of the research here considered is the integration of mathematical 
modeling in first-year university courses of Mathematics for Natural Sciences. 
When analyzing what kind of mathematics is taught at this level, one could think 
that natural sciences university degrees would offer favorable institutional conditions 
to teach mathematics as a modeling tool, as mathematical models are becoming 
more and more essential to the understanding, use, and development of scientific 
disciplines. However, this seems far away from reality: despite the fact that mathe-
matical models appear in the syllabi of almost all the courses, teaching mathemati-
cal models often comes at the end of the process, if there is time left for it. The 
dominant ideology is that modeling represents a mere application of some preestab-
lished knowledge, leaving little room for the process of proposing, constructing, 
validating, and questioning mathematical models. We define as applicationism this 
spontaneous epistemology, which appears to be dominant in many university insti-
tutions (Winsløw et al., 2013).

According to the ATD and to the epistemological principles considered, if we 
start from the principle that intra-mathematical modeling is part of mathematical 
modeling, then many mathematical activities can be reformulated as modeling 
activities. It is considered that, in a modeling process, both the initial system con-
sidered and the models used have a praxeological structure. Mathematical model-
ing activity then appears as a process of (re)construction and articulation of 
mathematical praxeologies which become progressively broader and more complex, 
the main aim of which is to provide answers to problematic questions.

Thus, mathematical modeling cannot only be considered as an aspect or modal-
ity of mathematical activity but has to be placed at the core of it. This integration 

Fig. 8.5 Phases of the DE research methodology within the ATD
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constitutes an essential aspect of our research problem, which opens the issue of the 
design of teaching proposals where mathematical modeling adopts an explicit and 
crucial role, emerging from initial problematic questions and able to link mathemat-
ical content that now appears as tools or models to provide answers to questions. 
Our working hypothesis is to suggest an SRP as one of the appropriate teaching 
proposals to move toward the (new) paradigm of questioning the world proclaimed 
by Chevallard, and which explicitly situates mathematical modeling problems at the 
heart of teaching and learning processes.

Several investigations from different theoretical perspectives have shown that 
mathematical modeling activities can exist at school under appropriate conditions, 
at all levels and in almost all curricular content. However, besides the good progress 
and encouraging results in research for the integration of modeling, many research-
ers have pointed out the existence of strong limitations hindering the large-scale 
dissemination of mathematical modeling practices in the classroom. For instance, 
Burkhardt makes the following harsh statement:

[W]e know how to teach modelling, have shown how to develop the support necessary to 
enable typical teachers to handle it, and it is happening in many classrooms around the 
world. The bad news? ‘Many’ is compared with one; the proportion of classrooms where 
modelling happens is close to zero. (2008, p. 2091)

The research problem that has to be addressed is thus the study of the conditions 
that make the teaching of mathematical modeling possible at school, as well as the 
constraints that hinder its development as a normalized activity. Of course this prob-
lem depends on how mathematical modeling is conceived by both the research com-
munity (epistemological model) and the institutions where it is to be disseminated 
(the usual school and scholar epistemology, which takes here the form of applica-
tions). In ATD, it is referred to as the problem of the ecology of mathematical mod-
eling in current educational environments. It can be specified with central questions 
about: what kinds of limitations and constraints exist in our current educational 
systems that prevent mathematical modeling from being widely incorporated in 
daily classroom activities? What kind of conditions could help a large-scale integra-
tion of mathematical modeling at school?

According to our previous analysis, the problem of the ecology of mathematical 
modeling becomes the problem of the ecology of SRPs and of their capacity to 
ensure the development of modeling activities. In the following section, we outline 
our partial answer to this enormous problem, focusing on the mathematical and 
didactic design of a particular SRP at university level with respect to the question of 
how to predict population dynamics.

8.3.2.2 A Priori Analysis: Mathematical and Didactic Design

Our generating question Q0 that leads to the a priori mathematical and didactic design 
of the SRP, given the size of a population over previous periods of time, focuses on 
the following questions: How can we predict the long-term behavior of its size? 
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What sort of assumptions about the population, its growth, and its surroundings 
should be made? How can one create forecasts and test them? In all its implementa-
tions, Q0 was introduced using different populations: first a pheasant population, then 
a fish population, and finally, a yeast population that was cultivated either in indepen-
dent containers or mixed.

To provide answers to Q0 and to the sequence of the derived questions that fol-
lowed it, the construction of different mathematical models was required. Depending 
on whether time was considered as a discrete or continuous magnitude and if popu-
lation generations were considered independent (xt only depends on xt–1) or mixed (xt 
depends on d > 1 past generations xt–1, xt–2, …, xt–d), a four-branch structure of the 
SRP can be delimited, giving rise to its a priori mathematical design (Fig. 8.6).

Looking into the derived questions opens a sequence of modeling activities that 
cover most of the content of a first-year course of mathematics for natural science 
students at university level: sequences and its convergence, one-variable calculus, 
linear algebra, and ordinary differential equations and their systems. This first 
mathematical design step is followed by the didactic a priori design of the SRP. 
It has inherited the structure defined in the mathematical a priori design and now 
includes questions about the mesogenesis (evolution of the experimental milieus), 
chronogenesis (evolution of the new questions and the knowledge introduced 
through the media), and topogenesis (sharing of responsibilities between teacher 
and students).

Fig. 8.6 General structure of the SRP branches derived from the study of Q0 (Barquero, 2009)
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Many important decisions are taken at this point to support the necessary change 
of students’ and teachers’ common strategies rooted in a dominant university teaching 
culture. For instance, students were constantly asked to assume new responsibilities 
so as to formulate new questions and approach them, to provide their own tempo-
rary answers to the successive derived questions, to plan the collective work, etc. 
In turn, the teacher has a new role to play as the supervisor of the inquiry, avoiding 
the temptation of imposing possible answers, inviting the groups of students to defend 
the successive answers they provide, to help decide on the questions to  pursue, etc. 
Moreover, students should be able to introduce any external work or piece of knowl-
edge they find appropriate in the milieu. The whole class will have the task to create 
the appropriate milieu for an internal validation of all those preestablished answers. 
All those new conditions in the implementation of the SRP required new teaching 
strategies and new devices: enabling the students to plan the work, elaborate new 
answers, compare data and models, write reports with temporary answers, validate 
final answers, defend them, etc.

8.3.2.3 Implementation and In Vivo Analysis

We tested the use of the SRP for five academic years (from 2005/06 to 2009/10) with 
first-year students of technical engineering degrees at the Autonomous University 
of Barcelona (Spain), who were attending a 1-year Mathematical Foundations of 
Engineering course. A special educational activity, called the “mathematical model-
ing workshop,” was introduced in the general organization of the course; it was 
optional for students. The workshop ran in parallel with the lecture and problem 
practice sessions scheduled in the usual course. In the successive implementation 
of the SRP, a 2-h weekly session of the workshop took place as follows: students 
worked in teams of 2 or 3 members and had to develop their own study and propose 
their own “temporary” answers to the intermediate questions of Q0.

Throughout the modeling workshop and its successive implementation year after 
year, the necessity arose to introduce several teaching and learning devices that 
were nonexistent in our usual university teaching settings. They had to evolve 
throughout the course and become accepted by the students. On the one hand, at the 
beginning of each workshop session, the teams were asked to deliver a report sum-
marizing the work carried out in the previous sessions with respect to assumptions 
considered, main problematic questions dealt with, mathematical models used, 
“temporary” answers obtained, and new questions opened. In each session, one 
team was in charge of explaining and defending their report. A discussion followed 
to state the main progress and to agree on how to continue the study process. 
Moreover, there was the “secretary of the week”, the person in charge of summariz-
ing the work done and the main points of debate during the session. The secretary 
of the week and the team of the week played a crucial role in the workshop and all 
their reports were included in the diary of the workshop. At the end of the SRP, each 
individual student had to write a final report of the entire study: evolution of the main 
questions studied, work in and with different mathematical models, relationship 
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between them, and so on. On the other hand, students were asked to search for any 
external information about the mathematical models they were building, and the 
answers they were providing in the media. Their findings were also explained in 
the workshop sessions and they discussed how these external mathematical objects 
could be useful (or not) and how they could be validated and used in relation to the 
questions they were dealing with.

Thanks to the several variations in the successive implementations of the SRP 
and to its in vivo analysis, several aspects could be improved every year. The a priori 
mathematical and didactic design of the SRP was gradually enriched, that is, after 
each implementation we had a more detailed description of the derived questions 
and temporary answers that were likely to appear in each of the SRP branches. 
Moreover, we obtained more details and got more control of the use and functional-
ity of the different learning and teaching devices that were included throughout the 
workshop, especially those aspects related to the new conditions of mesogenesis, 
chronogenesis, and topogenesis:

•	 What responsibilities did students find more difficult to assume?
•	 What teaching strategies can help achieve the transfer of passing on more respon-

sibilities to students?
•	 Do the weekly reports help students to formulate their own assumptions and to 

pose new questions?
•	 Does the debate generated at the beginning of each session help students to orga-

nize their own work?
•	 Does the workshop diary encourage the students and the teacher to have a broader 

perspective of the whole modeling process?

8.3.2.4 A Posteriori Analysis and Ecology

When considering the SRP as a whole, we verified from its first implementation that 
the sequence of derived questions arising from the generating question Q0 led the 
students and the teacher to consider most of the main content of the entire mathe-
matics course (sequences and their convergence, one-variable functions, derivative, 
ordinary differential equations, matrices, etc.). However, during the workshop, this 
content appeared in a structure that was completely different from the usual organi-
zation proposed in the main course. Instead of the classical “logic of mathematical 
concepts”, the workshop was more guided by the “looking for answers to problem-
atic questions” and “types of models” that progressively appeared. During its five 
courses of implementation, because the instructors were the same year after year, 
the first author of the paper and a lecturer who is an expert in applied mathematics, 
we found it easier to make SRP compatible with the standard formats of teaching 
(lectures and problem practice sessions). In the end, all these traditional devices 
were subordinated to the study of questions opened during the workshop. For 
instance, when questions appeared that needed some theoretical developments, such 
as “what was the relation between the relative rate of growth and the derivative or 
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how to calculate the n-power of a matrix”, we suspended the workshop sessions and 
spent several lectures and practice sessions on a study and research activity centered 
on the diagonalization of matrices before carrying on with the workshop.

However, it was not easy to preserve and transfer all these good conditions to 
the new teacher who came to replace us. Although he had all the material and 
descriptions from the previous SRP and all our assistance, the year after we left the 
course, the new implementation of the SRP only took 2 weeks. When we asked the 
teacher why it had taken such a short time, he told us that he only needed three 
sessions to show the students how to solve the questions and explain all the math-
ematical models they had to apply… In the end, the traditional ways, focused only 
on direct transmission and application, seem to have prevailed (Barquero, Bosch, 
& Gascón, 2013).

Other important constraints that could be identified were mainly related to the 
difficulties for keeping in mind the generating question of the SRP, given the fact 
that students were not used to pursuing a question for such a long period of time. 
SRP requires a strong modification of the usual didactic contract that currently 
exists at universities, where the teacher provides long lists of different small prob-
lems which the students have to solve. On the contrary, some other responsibilities 
that are usually assigned exclusively to the teacher were easily assumed by the 
students: searching information about models, discussing different ways of looking 
for an answer, comparing experimental data and reality, writing and defending 
reports with partial or final answers, etc. Others, however, were more difficult to 
share: choosing the relevant mathematical tools, criticizing the scope of the models 
constructed, posing new questions to continue with the study, planning the work to 
do, etc.

Last but not least, another strong constraint appeared in all the SRP implementa-
tions: the necessity of an ad hoc mathematical discourse available to describe the 
process that had just taken place. The work carried out in the workshop led to a need 
for new words, concepts, and discourses to talk about what was going on and to 
formalize it theoretically. The teacher and the students could no longer base their 
work on previously selected material, such as the one provided by textbooks or by 
previous lectures. In each case, they had to elaborate their own narrative of the pro-
cess followed, a collective and original mathematical text indispensable to describe 
the dynamics of the work done and to provide material for the writing of the final 
answer A♥. This lack of mathematical discourses to express, describe, and formalize 
the dynamics of mathematical activity brings to light the necessity to develop new 
mathematical and didactic infrastructures to support self-sufficient modeling 
activities.

Following Hans Freudenthal’s observation in the case of the mathematical work 
with quantities, we came across other “no man’s lands” which appear to be crucial 
for mathematical modeling to live in our school institutions. The problem is not 
only “the fault of the mathematician”; it seems to affect the entire educational cul-
ture and the conceivable ways of making it evolve.
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8.4  Open Questions

As was said in the introduction, this chapter focuses on the notion of DE as it was 
introduced in the TDS to empirically organize the study of didactic phenomena and 
new teaching proposals, and its later developments in the ATD with the problem of 
the ecology of teaching and learning processes. We have left aside other concep-
tions of DE which are more or less related to them (Margolinas et al., 2011), their 
contrast with other task-design works, and more general reflections about the role of 
design and theories in mathematics education (Burkhardt & Schoenfeld, 2003; 
Design-Based Research Collaborative, 2003; Godino et al., 2013).

In order to encourage the debate and nourish future comparative studies on this 
issue, we conclude by briefly addressing three main issues that, in our opinion, can-
not be left aside in the research work of contrasting and trying to articulate different 
approaches. First of all, we have seen that, in the research program established by 
the TDS and developed by the ATD, the transition to the paradigm of questioning 
the world becomes crucial: mathematical content, as well as any other subject mat-
ter, needs to appear as true answers to real questions rather than mere monuments to 
visit (Chevallard, 2012). The necessity to move away from monumentalism is not 
new, but it has not always been considered in the same manner, especially when 
researchers’ epistemological assumptions require a certain distance from assump-
tions which prevail in teaching and research institutions.

The TDS and the ATD locate the problem of the ecology of design realizations at 
the heart of DE research, didactics appearing as the scientific study of the conditions 
for mathematical knowledge (praxeologies) to disseminate in human institutions. 
Furthermore, the ATD proposes a considerable enlargement of the unit of analysis 
for research corresponding to the different levels of the scale of didactic codetermi-
nation (Chevallard, 2002). In the case of mathematical modeling, some approaches 
(Burkhardt, 2008; Kaiser & Maaβ, 2007; Lesh & Doerr, 2003; among others) have 
also highlighted the problem of the large-scale dissemination of new teaching pro-
posals. However, this issue is still far from becoming central in the main stream of 
research in mathematics education. We need more insight about how other 
approaches have experienced and proposed to deal with this ecological problem.

It seems clear that the ecological problem needs to engage different partnerships 
of the educational community: researchers, designers, policy makers, teacher asso-
ciations, mathematicians, editors, etc. In some approaches, the role of research is 
clearly distinguished from the teachers’ role, even if they are in broad agreement on 
their tight cooperation. The problem of the roles assigned in mathematics education 
to the different partners of the education process appears as an unavoidable issue 
related to the problem of the ecology, especially at a moment when all efforts should 
be put together, while responsibilities are of course typically different among the 
partners and institutions involved.
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