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The natural sciences are concerned with how things are.
Design, on the other hand, is concerned with how things might be.

(Herbert. A. Simon, 1969)

2.1  Introduction

The opening citation, drawn from The Sciences of the Artificial by H.A. Simon (1969), 
on design being concerned with “how things might be,” evokes the idea that the field 
of mathematics education has been involved in design ever since its beginnings—going 
back to the time of Euclid and perhaps even Pythagoras, for whom the term mathema 
meant subject of instruction. However, as Wittmann (1995) remarked, in a paper titled 
Mathematics Education as a Design Science, the design of teaching units was never a 
focus of the educational research community until the mid-1970s. Artigue (2009), too, 
has argued that “didactical design has always played an important role in the field of 
mathematics education, but it has not always been a major theme of theoretical interest 
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in the community” (p. 7). According to Cobb, Confrey, diSessa, Lehrer, and Schauble 
(2003), design experiments are conducted to develop theories, not merely to tune 
empirically what works: “a design theory explains why designs work and suggests how 
they may be adapted to new circumstances” (p. 9). This movement in design within 
mathematics education from thoughtful tinkering, growing out of intuition and class-
room development, to theoretically based research has not only been interlaced with 
the emergence of an international research community in mathematics education but 
also been accompanied by additional influences from the discipline of mathematics 
and, of no less importance, the work of psychologists (Kilpatrick, 1992).

The objective of this chapter is to give an overview of the current state of the art 
related to frameworks and principles for task design so as to provide a better under-
standing of the design process and the various interfaces between teaching, research-
ing, and designing. In so doing, it aims at developing new insights and identifying 
areas related to task design that are in need of further study. The chapter consists of 
three main sections. The first main section (Sect. 2.2) begins with a historical overview 
of the emergence of the mathematics education research community, followed by 
developments within psychology at large that came to bear on design research in math-
ematics education. This is followed by a discussion of the ways in which mathematics 
education researchers took up some of these developments and adapted them to fit with 
a focus on mathematical content, thereby producing their own design frames. After this 
historical overview, the section offers a conceptualization of current frameworks for 
task design in mathematics education and describes the characteristics of the design 
principles/tools/heuristics offered by these frames. The second main section (Sect. 2.3) 
presents a set of cases that illustrate the relations between frameworks for task design 
and the nature of the tasks that are designed within a given framework. Because theo-
retical frameworks and principles do not account for all aspects of the process of task 
design, the third main section (Sect. 2.4) addresses additional factors that influence 
task design and the diversity of design approaches across various professional com-
munities in mathematics education. The chapter concludes with a discussion of the 
progress made in the area of task design within mathematics education over the past 
several decades and includes some overall recommendations with respect to frame-
works and principles for task design and for future design-related research.

2.2  Emergence and Development of Frameworks 
and Principles for Task Design

2.2.1  Brief History of the Emergence of Design-Related  
Work from the 1960s to the 1990s

When Wittmann (1995) remarked that the design of mathematical teaching units 
was never a focus of research until the mid-1970s, he was referring indirectly to the 
fact that it was only at that time that mathematics education research coalesced as a 
separate field of study. From the early 1900s, psychologists in various countries had 
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been conducting empirical research on how mathematics is learned, while mathe-
maticians and mathematics educators were more interested in focusing on the math-
ematical content to be taught and learned (Kilpatrick, 1992). Nevertheless, the 
post-Sputnik wave of mathematics education reform in the late 1950s and 1960s 
introduced many new task types using research methods and insights from prior 
psychological research. However, there was no community as such that could be 
called a mathematics education research community. That changed in the late 1960s 
and 1970s. In 1969, the first International Congress on Mathematical Education 
(ICME) took place in Lyon. A round table at that congress set the stage for the for-
mation in 1976 of what was to quickly become the largest association of mathemat-
ics education researchers in the world, the International Group for the Psychology 
of Mathematics Education (PME). The emergence of this community was accom-
panied by the creation of several research journals, including Educational Studies in 
Mathematics in 1968, Zentralblatt für Didaktik der Mathematik in 1969, and 
Journal for Research in Mathematics Education in 1970. In several countries, 
research institutes were formed, such as the Shell Centres for Mathematical 
Education at Chelsea College and at the University of Nottingham in 1968, the 
Instituts de Recherche pour l’Enseignement des Mathématiques in France in 1969, 
the Netherlands Institute for the Development of Mathematical Education (IOWO) 
at Utrecht University in 1971, and the Institut für Didaktik der Mathematik in 
Bielefeld in 1973. With its annual meetings, its journals, and the fertilization made 
possible by cross-national collaborations, an international community of mathemat-
ics education researchers had taken shape. The late 1960s and 1970s thus signaled 
a huge surge and interest in research in mathematics education.

2.2.1.1  Influences from Psychology at Large

This surge in research in mathematics education had to rely almost exclusively in its 
early days on psychology as a source of theory (Johnson, 1980). Piaget’s (1971) 
cognitively oriented, genetic epistemology is but one example of the psychological 
frames adopted by the emerging mathematics education research community in its 
studies on the learning of mathematics. However, other forces were beginning to be 
felt during these years—forces related to design that were being conceptualized and 
developed by psychologists with an interest in education.

In 1965, Robert Gagné published The Conditions of Learning. Based on models 
from behaviorist psychology, Gagné’s (1965) nine conditions of learning were 
viewed as principles for instructional design—instructional design being defined in 
Wikipedia as the “practice of creating instructional experiences which make the 
acquisition of knowledge and skill more efficient, effective, and appealing.” Gagné 
classified cognitive learning into the three areas of verbal information, cognitive 
strategies, and intellectual skills but tended to emphasize the learning and automat-
ing of procedures.

In parallel with the instructional design approach being developed by Gagné and 
others, a new field was emerging, that of cognitive science, often referred to as the 
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information processing movement. As Anderson (1995/2000) remarked in his book, 
Learning and Memory, “at the height of the behaviourist era, around 1950, learning 
was perceived as the key issue in psychology; … [but] learning was pushed some-
what from center stage by the cognitive movement in the 1960s” (p. vii). Advances 
in design considerations were stimulated by the theorizing of the cognitive scientist 
and Nobel laureate, H.A. Simon (1969), in The Sciences of the Artificial. He advo-
cated the notion that the design process involved generating alternatives and then 
testing these alternatives against a range of requirements and constraints. Some of 
H.A. Simon’s design ideas were taken up by the educational psychologist Robert 
Glaser (1976) in his Components of a Psychology of Instruction: Toward a Science 
of Design.

Glaser distinguished, in line with Bruner, between the descriptive nature of theo-
ries of learning and what he referred to as the prescriptive nature of theories of 
instruction. In integrating design considerations into instructional research, he argued:

Regardless of the descriptive theory with which one works, four components of a prescrip-
tive theory for the design of instructional environments appear to be essential: (a) analysis 
of the competence, the state of knowledge and skill, to be achieved; (b) description of the 
initial state with which learning begins; (c) conditions that can be implemented to bring 
about change from the initial state of the learner to the state described as the competence; 
and (d) assessment procedures for determining the immediate and long-range outcomes of 
the conditions that are put into effect to implement change from the initial state of compe-
tence to further development. (Glaser, 1976, p. 8)

Glaser emphasized that the structure of the subject-matter discipline may not be 
the most useful for facilitating the learning of less expert individuals. While reiter-
ating H.A. Simon’s notion that the design process involves the generation of alter-
natives, he did not designate specific principles on which the “generation of 
alternatives” might be based. Presumably, these would be related to various theo-
ries of learning, especially as design was considered to involve the application of a 
descriptive theory of learning to the generation of a prescriptive theory of instruc-
tion—but, according to Glaser, not necessarily foregrounding subject-matter con-
siderations. Thus, mathematics education researchers would need to develop 
during the years to come their own scientific approaches to designing environ-
ments for the learning of mathematics and to generating frameworks for task 
design in particular.

2.2.1.2  Early Design Initiatives of the Mathematics Education  
Research Community

During the 1970s, the focus within the mathematics education research community 
was squarely on the learning of mathematics and the development of models of that 
learning. For example, the paper that Hans Freudenthal presented at PME3, held in 
Warwick, UK, in 1979 (one of the 24 research reports presented at PME that year) 
dealt with the development of reflective thinking (Freudenthal, 1979); Alan 
Bishop’s, with visual abilities and mathematics learning (Bishop, 1979); and 
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Richard Skemp’s, with goals of learning and qualities of understanding (Skemp, 
1979). Nevertheless, two of the 1979 PME papers did touch upon issues related to 
tasks: one by Claude Janvier and the other by Alan Bell.

Janvier argued that, with the discovery learning movement, emphasis had been 
put on the “notion of appropriate learning environments and on the idea of rich situ-
ations likely to bring about discoveries or to encapsulate rich abstract ideas” (1979, 
p. 135). In his paper, he made use of one of the tasks (the racing car graph) devised 
for his doctoral research at the University of Nottingham in order to study various 
issues involved with the use of situations. At the conclusion of his paper, he remarked 
that his results were in line with Freudenthal’s phenomenological approach, which 
promoted the use of large-scale situations involving weeks of work and stressing the 
child’s point of view more than that of mathematical structures. In an earlier work, 
Weeding and Sowing, Freudenthal (1978) had introduced the approach of didactical 
phenomenology, which begins with a thorough mathematical analysis of the topic 
from which are generated hypothesized learning levels—an approach that he 
referred to as “developmental research” (see Gravemeijer & Cobb, 2006, 2013) and 
which was further elaborated by Streefland (1990) and Gravemeijer (1998). 
Freudenthal’s (1979) PME3 text, which reflected his ongoing work, sowed the seeds 
for a mathematical-psychological approach to task design—an approach that was to 
develop during the late 1980s and 1990s into the instructional theory specific to 
mathematics education known as Realistic Mathematics Education.

The PME3 paper presented by Alan Bell focused on the learning that develops 
from different teaching approaches with various curriculum units that had been 
designed for the South Nottinghamshire project. The teaching methods that were 
explored included “embodiment, guided discovery approaches, and cognitive con-
flict” (Bell, 1979, p. 5). In Bell’s research, design considerations were thus seen 
more through the lens of particular teaching methods than as approaches to the 
design of tasks per se.

In summary, the work of Hans Freudenthal at IOWO, of Alan Bell at Nottingham, 
and their colleagues during the 1970s reflected the beginnings of the new commu-
nity of mathematics education researchers’ efforts to grapple with the interaction 
between curriculum materials and the quality of mathematical teaching and learn-
ing—a dimension on which curriculum development efforts over the previous sev-
eral decades had yielded little information. This embryonic work in task design was 
characterized mainly by reflection on the nature of mathematics, with aspects drawn 
from the psychologically based learning theories of the day and supported by per-
sonal pedagogical experience, coupled with informal observations of children’s, 
students’, or teachers’ activity. The main aim seemed a combination of desiring to 
know more about the nature of learning mathematics and/or improving the teaching 
of mathematics rather than casting light on the nature of the tasks that might support 
such teaching or learning.

The 1980s within the mathematics education research community brought some 
integration of aspects of the design theories of H.A. Simon and others. In his 1984 
ESM paper (a modified version of his opening address at the 14th annual meeting of 
German mathematics educators in 1981), titled Teaching units as the integrating 
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core of mathematics education, Erich Wittmann (1984) argued for tasks displaying 
the following characteristics: the objectives, the materials, the mathematical prob-
lems arising from the context of the unit, and the mostly mathematical, sometimes 
psychological, background of the unit. He suggested that a teaching unit is not an 
elaborated plan for a series of lessons but rather it is an idea for a teaching approach 
that leaves open various ways of realizing the unit. Wittmann viewed the philosophy 
behind the teaching units as being embedded in Herbert Simon’s Sciences of the 
Artificial: teaching units, according to Wittmann, are simply artificial objects con-
structed by mathematics educators—objects to be investigated within different edu-
cational ecologies.

During the years 1985–1988, one of the PME working groups focused on the 
extent to which its activities had established principles for the design of teaching.  
In 1988, a collection of papers from this working group was put together by the 
Shell Centre under the title The Design of Teaching: Papers from a PME Working 
Group and subsequently published in a special issue of Educational Studies in 
Mathematics in 1993. In his editorial for the special issue, Alan Bell wrote:

Experimental work on the development of understanding in particular mathematical topics 
is relatively easy to conduct … but studies of the general properties of different teaching 
methods and materials are more difficult to set up. … Types of research on teaching which 
have been found productive, albeit in different ways, are the following: (1) basic psycho-
logical studies of aspects of learning …; (2) developmental activities in which teaching 
materials are designed on the basis of theory and practical experience and are then taken 
through several cycles of trial and improvement, …; and (3) comparative studies in which 
the same topic is taught to parallel classes by different methods. Examples of each of these 
types appear in this issue. But the design of teaching is a creative activity, and readers may 
hope to gain from these articles not only knowledge of some empirically established prin-
ciples, but also tested ideas for their practical implementation. (Bell, 1993a, pp. 1–2, italics 
added)

Note in the quote the integration of “teaching methods” and “materials”, that is, 
principles of teaching practice that are in harmony with principles that have been 
incorporated into the design of the teaching materials—an integration of two types 
of principles that will be seen to continue to be important in task design within the 
community over the decades to come. In his introductory article, “Principles for the 
Design of Teaching,” Bell specified the following set of design principles:

First one chooses a situation which embodies, in some contexts, the concepts and relations 
of the conceptual field in which it is desired to work. Within this situation, tasks are pro-
posed to the learners which bring into play the concepts and relations. It is necessary that 
the learner shall know when the task is correctly performed; hence some form of feedback 
is required. When errors occur, arising from some misconception, it is appropriate to expose 
the cognitive conflict and to help the learner to achieve a resolution. This is one type of 
intervention which a teacher may make to assist the learning process. (Bell, 1993b, p. 9, 
italics in the original)

The underlying psychological learning principles supporting this theory of teach-
ing design were said by Bell to include connectedness, structural transfer across 
contexts, feedback, reflection and review, and intensity.
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The late 1970s and 1980s also witnessed Soviet-style teaching experiments, both 
in individual settings as well as in classrooms (e.g., Kalmykova, 1966; Menchinskaya, 
1969), experiments that explored alternate teaching-with-task designs so as to 
investigate more deeply the learning of various mathematical concepts. The origin 
of these teaching experiments dated back to the 1920s with the individualized 
instructional experiments of Vygotsky, who believed that the development of men-
tal abilities was essentially dependent upon instruction.

Another important development during the decade of the 1980s with respect to 
design was the emergence within France of didactical engineering (DE), an exact-
ing theory-based approach to conducting research that had didactical design at its 
heart (Artigue, 1992). Despite its success as a design-based research practice, cer-
tain problems were encountered, according to Artigue (2009), when the rigorous 
designs were implemented in everyday classroom practice throughout its first 
decade. It was observed that the original designs went through a certain mutation in 
practice, leading her to note that “the relationships between theory and practice as 
regards didactical design are not under theoretical control” (Artigue, 2009, p. 12). 
This awareness pointed to one of the inherent limitations in theorizing about task 
design in isolation from considerations regarding instructional practice.

2.2.1.3  The 1990s and Early 2000s: Development of Research  
Specifically Referred to as Design Experiments

The term design experiment came into prominence in 1992 with the psychologist 
Ann Brown’s (1992) paper on design experiments (see also Collins, 1992). Brown 
emphasized that design experiments aim at increasing the relevance of earlier cog-
nitive science laboratory studies to the real activity of classrooms and that this 
research is designed to inform practice, as well as benefit from the experience of 
practitioners. This attention to classrooms, teaching, and teaching practice was a 
reflection of the movement from cognitive to sociocultural perspectives on learn-
ing—a movement that had emerged when Vygotsky’s works started to become bet-
ter known in the West toward the end of the 1980s and one that had already begun 
to take hold within the mathematics education research community.

Brown’s paper signaled a kind of tipping point with respect to interest in design 
in the mathematics education research community (Lesh, 2002). Several factors had 
fallen into place, including the maturing of the community over a 20-year period 
and an evolving desire to be able to study within one’s research not just learning or 
not just teaching. Design experiments aimed at taking into account the entire learn-
ing picture. As Cobb et al. (2003) pointed out:

Design experiments ideally result in greater understanding of a learning ecology. … 
Elements of a learning ecology typically include the tasks or problems that students are 
asked to solve, the kinds of discourse that are encouraged, the norms of participation that 
are established, the tools and related material means provided, and the practical means by 
which classroom teachers can orchestrate relations among these elements. (p. 9)
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Within this conception of design experiments, the task or task sequence is 
considered but one of a larger set of design considerations involving the entire 
learning ecology—task or task sequence (which could take an entire lesson or more) 
being characterized in the ICMI Study-22 Discussion Document as “anything that a 
teacher uses to demonstrate mathematics, to pursue interactively with students, or to 
ask students to do something … also anything that students decide to do for them-
selves in a particular situation” (Watson et al., 2013, p. 12).

Another central feature of design experiments is, according to Cobb et al. (2003), 
the role played by theory, as well as the nature of this theory:

General philosophical orientations to educational matters—such as constructivism—are 
important to educational practice, but they often fail to provide detailed guidance in orga-
nizing instruction. The critical question that must be asked is whether the theory informs 
prospective design and, if so, in precisely what way? Rather than grand theories of learning 
that may be difficult to project into particular circumstances, design experiments tend to 
emphasize an intermediate theoretical scope. (pp. 10–11)

Cobb et al.’s argument that theories of intermediate scope do a better job of 
informing prospective design leads naturally to the question of the nature of such 
theories and the ways in which they can inform prospective design. A broad 
approach to answering this question suggests that it might be helpful to first draw 
upon an example from outside the field to see what kinds of theories educational 
designers who specialize in the work of design integrate into their work.

2.2.1.4  An Example of Design Work by Educational Technologists

Jeroen van Merriënboer and his colleagues (van Merriënboer, Clark, & de Croock, 
2002) are leading educational technologists who have developed a design model 
that consists of the following four components of instructional design for complex 
learning: (1) classes of learning tasks that are ordered and that promote schema 
construction, along with rule-oriented tasks for routine aspects, (2) supportive 
bridging information to link with prior knowledge, (3) just-in-time prerequisite 
information, and (4) part-task practice. The elaboration of these components is sup-
ported explicitly by major theoretical foundations in cognitive psychology, accom-
panied by a mix of different instructional approaches suitable for the different 
components of the design model. For example, in discussing the ordering of tasks 
with respect to their complexity, van Merriënboer et al. (2002) refer to cognitive 
load theory (Sweller, van Merriënboer, & Paas, 1998); in describing the amount 
and nature of learner support required, they refer to the framework of human 
problem- solving provided by Newell and Simon (1972); in noting the important 
role of cognitive feedback, they refer to the cognitive apprenticeship model (Collins, 
Brown, & Newman, 1989); and for just-in-time information that is best characterized 
as “how- to instruction or rule-based instruction”, they cite Fisk and Gallini (1989). 
As an example of the kinds of instructional support useful in helping learners 
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identify relevant relationships, van Merriënboer et al. distinguish between the 
inquiry method (e.g., “ask the learners to present a well-known, familiar example 
or counterexample for a particular idea”) and the expository method (e.g., the 
instructor “presents a well-known, familiar example or counterexample for a par-
ticular idea”) and note that “inquiry approaches are time-consuming, but because 
they directly build on learners’ prior knowledge they are very appropriate for inter-
connecting new information and already existing cognitive schemata” (p. 48).

Van Merriënboer et al. state that their model was not developed for teaching 
conceptual knowledge or procedural skills per se nor is it very useful for designing 
very short learning programs that only take an instructional time of hours or a few 
days—it was generated with the aim of developing solutions to complex problems 
and has its roots in vocational education. Nevertheless, we consider it useful for 
illustrating how this team of professional task designers relies on a variety of theo-
ries of intermediate scope to underpin their design, as well as for pointing out how 
their suggested teaching approaches vary according to the nature of the given com-
ponent of the instructional design.

2.2.1.5  From Early 2000 Onward

Theorizing related to design in mathematics education research, and in educational 
research more broadly, continued to evolve during the 2000s (Kelly, Lesh, & Baek, 
2008). In addition, the term task design came to be more clearly present. For exam-
ple, at the 2005 PME conference, a research forum was dedicated to task design, 
having as its stated theme, “The significance of task design in mathematics educa-
tion” (Ainley & Pratt, 2005). One of the presenting teams, Gravemeijer, van Galen, 
and Keijzer (2005), pointed out that, “in Realistic Mathematics Education, instruc-
tional design concerns series of tasks, embedded in a local instruction theory; this 
local instruction theory enables the teacher to adapt the task to the abilities and 
interests of the students, while maintaining the original end goals” (pp. 1–108)—a 
local instructional theory being described by Gravemeijer et al. as the rationale for 
the instructional sequence, a rationale that evolves over several design experiments 
that involve testing and revising the sequence. Gravemeijer et al.’s statement sug-
gests another view of theory as one that not only informs prospective design but is 
also a product of instructional design—an issue to which we will return immedi-
ately below. These ideas continued to be explored at ICME-11 in 2008 where the 
scientific program, for the first time, included a Topic Study Group (TSG) on task 
design: “Research and development in task design and analysis”. The excitement 
generated regarding this research area was such that a similar TSG was put on the 
program for ICME-12 in 2012, as well as for ICME-13 in 2016. This interest was 
further illustrated by the holding of the 2013 ICMI Study-22 Conference on the 
same theme, a conference whose scientific work and discussions are the subject of 
this very volume.
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2.2.1.6  Two Key Issues

In bringing to a close this first subsection devoted to a historical overview of the 
emergence of research related to design activity, we emphasize two central issues in 
need of clarification regarding the place of task design within design research. 
These issues underpin and run through much of the discussion that follows in the 
next subsection on frameworks and principles. In a recent article on design tools in 
didactical research, Ruthven, Laborde, Leach, and Tiberghien (2009) elaborated on 
the distinction between design as intention and design as implementation (Collins, 
Joseph, & Bielaczyc, 2004). Design as implementation focuses attention on the 
process by which a designed sequence is integrated into the classroom environment 
and subsequently is progressively refined, whereas design as intention addresses 
specifically the initial formulation of the design. While many studies address both, 
the distinction can be useful for understanding certain nuanced differences between 
one study and another. Ruthven et al. state that design as intention emphasizes the 
“original design and the clarity and coherence of the intentions it expresses” 
(p. 329). Design as intention makes use, in general, of theoretical frames that are 
well developed so as to provide this clarity and coherence. Although Ruthven et al. 
add that “the availability of design tools capable of identifying and addressing spe-
cific aspects of the situation under design can support both the initial formulation of 
a design and its subsequent refinement in the light of implementation” (p. 329), their 
examples cast light in particular on the design as intention orientation. In so doing, 
they illustrate clearly the role that theoretical tools play in the initial design.

In contrast to the front-end importance given to theory-based design tools by 
Ruthven et al. (2009), Gravemeijer and Cobb (2006) put the focus more toward the 
development of theory and its role as a product of the design research. In their design 
experiment studies, the initial theoretical base for the study and its accompanying 
instructional plan undergo successive refinements by means of the implementation 
process. The description of the entire process constitutes the development of the 
theory. Because of the centrality of the implementation process in the development 
of the resulting theory, such studies are characterized as design as implementation 
studies—even if their theoretical starting points could also qualify them as design as 
intention studies. For example, Gravemeijer and Cobb (2006) point out that

from a design perspective, the goal of the preliminary phase of design research experiments 
is to formulate a local instruction theory that can be elaborated and refined while conduct-
ing the intended design experiment; … this local instruction theory encompasses both pro-
visional instructional activities, and a conjectured learning process that anticipates how 
students’ thinking and understanding might evolve when the instructional activities are 
employed in the classroom. (p. 48)

They emphasize that the “products of design experiments typically include 
sequences of activities and associated resources for supporting a particular form 
of learning, together with a domain-specific, instructional theory that underpins 
the instructional sequences and constitutes its rationale; a domain-specific, 
instructional theory consists of a substantiated learning process that culminates 
with the achievement of significant learning goals as well as the demonstrated 
means of supporting that learning process” (Cobb & Gravemeijer, 2008, p. 77). 
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More precisely, Cobb et al. (2003) insist that “design experiments are conducted 
to develop theories” (p. 9).

Put another way, theories are both a resource and a product. As a resource, they 
provide theoretical tools and principles to support the design of a teaching sequence 
(e.g., Ruthven et al., 2009) and, as a product of design research, theories inform us 
about both the processes of learning and the means that have been shown to support 
that learning (Cobb et al., 2003).

A second issue related to the role and nature of theory in design is the signifi-
cance given to task design itself within the design process. When theory and its 
design tools are viewed as a front-end resource in the design process, the way in 
which task design is informed by these theory-based tools moves to center stage 
(e.g., Ruthven et al., 2009). By way of contrast, when theory development is viewed 
as the aim of design experiments, task design tends to be less central: “One of the 
primary aims of this type of research is not to develop the instructional sequence as 
such, but to support the constitution of an empirically grounded local instruction 
theory that underpins that instructional sequence” (Gravemeijer & Cobb, 2006, 
p. 77, emphasis added). This is not to say, in the latter case, that task design is unim-
portant (it clearly is) but rather the design of the teaching/instructional sequence is 
only one of several all-encompassing considerations within the whole interactive 
learning ecology. In practice, most design experiments combine both orientations: 
the design is based on a conceptual framework and upon theoretical propositions, 
while the successive iterations of implementation and retrospective analysis con-
tribute to further theory building that is central to the research. In fact, both orienta-
tions will be seen to be present in most of the design studies exemplified below.

These two issues, that is, (1) design as intention and design as implementation 
and (2) the status given to the initial design of the set of tasks, point to central dif-
ferences in the way in which the roles of theory and task design are considered 
within the design process in the mathematics education research community. In the 
presentation that follows—one that focuses on current frameworks and principles 
for task design—we shall attempt to interweave these distinctions into our  discussion 
of the nature of the frames adopted, adapted, and developed within the activity of 
design. By so doing, we hope to be able to contribute to clarifying some of the ways 
in which theory and task design are related.

2.2.2  A Conceptualization of Current Theoretical Frameworks 
and Principles for Task Design in Mathematics 
Education Research

2.2.2.1  Introduction

Our historical look at the early research efforts related to task design revealed a mix 
of task and instructional considerations. However, the extent to which instructional 
aspects are factored into task design is but one of the ways in which design frame-
works can vary. Frameworks can also differ according to the degree to which the 
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learning environments are student centered, knowledge centered, or assessment 
centered (Bransford, Brown, & Cocking, 1999), as well as the manner in which they 
draw upon cognitive, sociological, sociocultural, discursive, or other theories. In 
addition, frameworks are distinguishable according to the extent to which they can 
be related to various task genres, that is, whether the tasks are geared toward (1) the 
development of mathematical knowledge (such as concepts, procedures, representa-
tions; see, e.g., Swan, 2008), (2) the development of the processes of mathematical 
reasoning (such as conjecturing, generalizing, proving, as well as fostering creativ-
ity, argumentation, and critical thinking; see, e.g., Leikin, 2013; Lin, Yang, Lee, 
Tabach, & Stylianides, 2012; Martinez & Castro Superfine, 2012), (3) the develop-
ment of modeling and problem-solving activity (e.g., Lesh, Hoover, Hole, Kelly, & 
Post, 2000; Ponte, Mata-Pereira, Henriques, & Quaresma, 2013; Schoenfeld, 1985), 
(4) the assessment of mathematical knowledge, processes, and problem-solving 
(e.g., Swan & Burkhardt, 2012), (5) the context of mathematical team competitions 
(e.g., Goddijn, 2008), and so on. As well, some frameworks may be more suited to 
the design of specific tasks, others to the design of lesson flow (e.g., Corey, Peterson, 
Lewis, & Bukarau, 2010), and still others to the design of sequences involving the 
integration of particular artifacts (e.g., Kieran & Drijvers, 2006). Because several 
considerations enter into an overall design—considerations that include the specific 
genre of the task, its instructional support, the classroom milieu, the tools being 
used, and so on—each part of the design might call for different theoretical under-
pinnings. Thus, the resulting design can involve a networking of various theoretical 
frames and principles (Prediger, Bikner-Ahsbahs, & Arzarello, 2008) or a bricolage 
(Gravemeijer, 1994) or a bridging (Koedinger, 2002). Furthermore, the nature of the 
principles or heuristics associated with various frames and the way in which these 
heuristics are construed—according to whether they are viewed as illuminating, 
inspiring, guiding, systematizing, or even constraining—all have a part to play (see 
Sect. 2.4 for discussion of other factors, such as the artistic and value-related aspects 
of task design). A more holistic way of thinking about frames is to view them as 
being of different levels (e.g., Goldenberg, 2008) or types, for example, grand 
frames, intermediate-level frames, domain-specific frames (i.e., frames related to 
the learning of specific mathematical concepts and reasoning processes), and frames 
related to particular features of the learning environment (e.g., frames for tool 
use)—all of them together constituting any one theoretical base for the design of a 
given study (Gravemeijer & Cobb, 2006). This manner of conceptualizing design 
frames according to the levels of grand, intermediate, and domain specific (note that 
tool-related frames are treated in Chap. 6) will now be used as a backdrop for exam-
ining the nature of current theoretical frameworks and principles for task design in 
mathematics education research.

2.2.2.2  Grand Theoretical Frames and Their Affordances

Mathematics education research has tended in large measure to adopt such grand 
theoretical perspectives as the cognitive-psychological, the constructivist, and the 
socioconstructivist. However, as pointed out by Lerman, Xu, and Tsatsaroni (2002), 
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these are but three of the vast array of theoretical fields, in addition to those from 
educational psychology and/or mathematics that have backgrounded mathematics 
education research. In line with Cobb (2007), who has argued that such grand theo-
ries need to be adapted and interpreted in order to serve the needs of design research, 
our discussion of them will be brief and limited to a few selective aspects.

A cognitive-psychological theoretical perspective has dominated research on the 
learning of mathematics ever since the days of Piaget—at least up until the late 
1980s and early 1990s when Vygotsky’s work came to be better known among 
Western mathematics educators (Bartolini Bussi, 1991). Tightly linked with the 
cognitive-psychological perspective is the constructivist frame (von Glasersfeld, 
1987) that stemmed mainly from Piaget’s genetic epistemology (Steffe & Kieren, 
1994). Learning came to be widely interpreted as a constructive process, a process 
in which students actively construct mathematical knowledge. While constructiv-
ism has always been with us, perhaps under another guise, its growing acceptance 
as an educational tenet during the 1980s (Cobb & Steffe, 1983) helped to oust the 
view of mathematical teaching as the transmission of the teacher’s knowledge and 
mathematical learning as the reception of that knowledge. However, constructivist, 
cognitively oriented research soon became hard pressed to reconcile the notion that 
all learning is individually constructed with the evidence of commonalities found 
across individuals. Constructivists had to admit the social dimensions of learning, 
thereby paving the way for integrating the Soviet work of Vygotsky and Leont’ev. 
The view of learning as situated with respect to social and cultural practices, and 
thus a socioconstructivist frame of reference, soon became widely accepted 
(Lerman, 1996). This frame directly allowed for a focus on the role of teaching and 
of classroom interactions in the learning process.

Within the tradition of cognitive psychology, two types of theories have been 
developed by mathematics education researchers (Cobb, 2007). One concerns 
 theories of learning across mathematics in general (e.g., Pirie & Kieren’s, 1994, 
recursive theory of mathematical understanding; Sfard’s, 1991, theory of reifica-
tion); the other concerns theories of the development of students’ learning in specific 
mathematical areas (e.g., Filloy & Rojano’s, 1989, theory of algebraic reasoning; 
Clements & Battista’s, 1992, theory of geometric reasoning). As will be seen below, 
these theories that have been inspired by and are situated within the grander theories 
are key components of design in mathematics education research, even if, as Cobb 
(2007) insists, they are not instructional and require adaptation or combination with 
other theories, in order to serve the needs of instructional design. Cobb’s point of 
view was also emphasized earlier by Bransford et al. (1999) in their volume How 
People Learn: “Learning theory provides no simple recipe for designing effective 
learning environments, but it constrains the design of effective ones” (p. xvi).

2.2.2.3  Intermediate-Level Frames

Intermediate-level frames have a more specialized focus than the grand theories of 
socioconstructivism and the like, yet intermediate-level frames still tend to be situ-
ated within the perspective of one or the other of these grand frames. Even if their 
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focus is more specialized, intermediate-level frames have the property that they can 
be applied across a wide variety of mathematical areas. In brief, intermediate-level 
frames are located between the grand theories and the more local, domain-specific 
frames that address particular mathematical concepts, procedures, or processes. 
A multitude of intermediate-level frames have been developed that are being applied 
in adaptive ways to design research in mathematics education. They include, for 
example, Realistic Mathematics Education theory (Treffers, 1987), the Theory of 
Didactical Situations (Brousseau, 1997), the Anthropological Theory of Didactics 
(ATD) (Chevallard, 1999), Lesson Study (Lewis, 2002), Cultural-Semiotics theory 
(Radford, 2003), Commognitive Theory (Sfard, 2008), and so on (see Sect. 2.3 for 
an elaboration of the ways in which some of the of various intermediate-level frames 
have been adopted and adapted for use in research on task design).

In general, intermediate-level frames can be characterized by explicit principles/
heuristics/tools that can be applied to the design of tasks and task sequences. 
Because these frames tend to be highly developed, they are often used in design-as- 
intention approaches. In addition, intermediate-level frames can also be character-
ized according to whether their roots are primarily theoretical or whether they are 
based to a large extent on deep craft knowledge. The two examples of intermediate- 
level frames and their accompanying principles for task design that we offer imme-
diately below reflect these two roots. The first is the Theory of Didactical Situations 
and the second is that of Lesson Study. For both types, we examine the framework 
and associated principles that support the process of task design.

An Example of a Theory-Based Intermediate-Level Frame: Theory 
of Didactical Situations

The Theory of Didactical Situations (TDS) is generally associated with Guy Brousseau 
(1997); however, its development over the years has been contributed to by the 
French mathematical didactique community at large. A central characteristic of 
TDS research is its framing within a deep a priori analysis of the underlying math-
ematics of the topic to be learned, integrating the epistemology of the discipline, 
and supported by cognitive hypotheses related to the learning of the given topic. 
TDS is said to be an intermediate theory in that it draws upon the grand theory of 
Piaget’s work in cognitive development. According to Ruthven et al. (2009), one of 
the central design tools provided by TDS is the adidactical situation, which medi-
ates the development of students’ mathematical knowledge through independent 
problem-solving. The term adidactical within TDS refers specifically to that part of 
the activity “between the moment the student accepts the problem as if it were her 
own and the moment when she produces her answer, [a time when] the teacher 
refrains from interfering and suggesting the knowledge that she wants to see appear” 
(Brousseau, 1997, p. 30).

A situation includes both the task and the environment that is designed to provide 
for the adidactical activity of the student. According to the TDS frame, the adidacti-
cal situation tool furnishes guidelines as to: “the problem to be posed, the conditions 
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under which it is to be solved, and the expected progression toward a strategy that 
is both valid and efficient; this includes the process of ‘devolution’ intended to lead 
students to directly experience the mathematical problem as such and the creation 
of a (material and social) ‘milieu’ that provides students with feedback conducive to 
the evolution of their strategies” (Ruthven et al., 2009, p. 331). During the early 
years of the development of the TDS, it was found that the frame needed some 
modification so as to take into account the necessary role played by the teacher in 
fostering the later institutionalization of the student’s mathematical knowledge 
acquired during the adidactical phase—the term institutionalization referring spe-
cifically to the process whereby the teacher gives a certain status to the ideas devel-
oped by students by framing and situating them within the concepts and terminology 
of the broader cultural body of scientific knowledge (see also Chaps. 3 and 5).

Identifying a suitable set of problem situations that can support the development 
of new mathematical knowledge is absolutely central to the design of a TDS teach-
ing sequence. The adidactical situation must be one for which students have a start-
ing approach but one that turns out to be unsatisfactory. Students must be able to 
obtain feedback from the milieu that both lets them know that their approach is 
inappropriate and also provides the means to move forward. The “enlargement of a 
shape puzzle” (see Ruthven et al., 2009, pp. 332–334) is a fine example of the design 
of an adidactical situation. When students (who are working in small groups) are 
asked to make a larger puzzle of the same shape but with the edge whose length is 
4 cm being enlarged to 7 cm, it is expected that they would use additive reasoning. 
But the feedback provided by the attempt to put the enlarged puzzle pieces together 
lets the students know that their way of solving the enlargement problem is  incorrect. 
Eventually, “intellectual” feedback is provided by the teacher in order to help the 
students to arrive collectively at a multiplicative model.

In addition to the adidactical situation tool, TDS-based design is also informed 
by a second design heuristic, that of the didactical variables tool. This supplemen-
tary design tool allows for choices regarding particular aspects of the main task and 
how it is to be carried out (e.g., shape and dimensions of the pieces, the ratio of the 
enlargement, the various pieces of the puzzle being constructed by different stu-
dents), aspects that are subject to modification as a result of successive cycles of the 
teaching sequence. Although certain modifications are made to those aspects of the 
task that are found to improve the learning potential of the situation (i.e., that stu-
dents are more likely to learn what is intended), the initial design of the task is 
absolutely central to the TDS-framed design-as-intention process.

An Example of a Craft-Based Intermediate-Level Frame: Lesson Study

Lesson Study is typically associated with Japanese education where its roots can be 
traced back to the early 1900s (Fernandez & Yoshida, 2004). However, variants of 
Lesson Study have been developed in China (Huang & Bao, 2006; Yang & Ricks, 
2013), as well as in other countries (Hart, Alston, & Murata, 2011). For example, in 
the Chinese version, according to Ding, Jones, and Pepin (2013), the role of the 
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expert in the development and refinement of a lesson plan is of critical importance. 
This role consists of contributions that are said to go beyond that of deep craft 
knowledge—contributions that Ding, Jones, Pepin, and Sikko (2014) describe as 
consisting of a complex combination of considerable knowledge of mathematical 
didactics and general theories of learning and of students, as well as the “accumu-
lated wisdom of practice.” Thus, the distinction we are proposing between craft- 
based and theory-based intermediate-level frames may be rather blurry for certain 
versions of Lesson Study. Even within Japan, various types of Lesson Study exist: 
at the school level, at the local and prefectural level, and at the national level. 
Nevertheless, in that the majority of Lesson Studies in Japan occur at the school 
level and that school-based Lesson Study in Japan tends to be considered around the 
world as prototypical of Lesson Study practice, it is this latter version of Lesson 
Study that is the focus here.

Lesson Study is a culturally situated, collaborative, approach to design—one 
where teachers with their deep, craft-based knowledge are central to the process and 
which at the same time constitutes a form of professional development (Krainer, 
2011; Ohtani, 2011). Fundamental to Japanese teachers’ ability to design and imple-
ment high-quality mathematics lessons that are centered on high-quality mathemat-
ical tasks is a detailed, widely shared conception of what constitutes effective 
mathematics pedagogy (Jacobs & Morita, 2002). Thus, Lesson Study, with its cul-
tural and collaborative foundations, could be said to be situated within the grand 
theory of socioculturalism.

Lesson Study consists of the following phases: (1) collaboratively planning a 
research lesson, (2) seeing the research lesson in action, (3) discussing the research 
lesson, (4) revising the lesson (optional), (5) teaching the new version of the lesson, 
and (6) sharing reflections on the new version of the lesson. Phases 4–6 are some-
times replaced with a single phase of “consolidating and reporting”. In any case, it 
is the research lesson—its planning, its implementation, and its evaluation, but 
especially its planning—that is the focus here. As will be seen, Lesson Study is a 
frame devoted as much to design as intention as it is to design as implementation.

A typical lesson plan proposal contains the following seven items (Lewis, 2002):

 1. Name of the unit
 2. Unit objectives
 3. Research theme
 4. Current characteristics of students
 5. Learning plan for the unit, which includes the sequence of lessons in the unit and 

the tasks for each lesson
 6. Plan for the research lesson, which includes:

•	 Aims of the lesson,
•	 Teacher activities
•	 Anticipated student thinking and activities
•	 Points to notice and evaluate
•	 Materials
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•	 Strategies
•	 Major points to be evaluated
•	 Copies of lesson materials (e.g., blackboard plan, student handouts, visual 

aids)

 7. Background information and data collection forms for observers (e.g., a seat-
ing chart).

While the unfolding of the research lesson and its evaluation takes only 1 day, its 
planning can occupy anywhere from 1 to 2 months. As can be seen from Lewis’s 
(2002) list of seven items, the plan of the lesson includes not only the detailed 
design of the task itself, which constitutes the essence of the research lesson, but 
also the links with other tasks in the larger unit. Central to this planning is the pro-
cess of kyozaikenkyu. Kyozaikenkyu means literally “instructional materials research” 
and constitutes a first principle for task design. The study of instructional materials 
goes beyond the textbook series being used in the classroom. As pointed out by 
Fujii (2013), kyozaikenkyu involves examining teaching materials and tasks from a 
mathematical point of view (mathematical content analysis), an educational point of 
view (considering broader values such as “skills for living”), as well as from the 
students’ point of view (readiness, what students know, anticipated students’ think-
ing and misconceptions, etc.). It includes studying other textbook series treating the 
same topic, thinking about the manipulatives being used, and analyzing what the 
curriculum standards and research have to say about the topic and its teaching and 
learning. If the decision is ultimately made to modify an existing textbook task, that 
decision is made with great care because the teachers know that the textbook task 
was designed with considerable thoughtfulness. Tasks that will lead to multiple 
strategies are crucial to the task design process of Lesson Study (for details, see the 
Lesson Study case that is illustrated in Sect. 2.3)—strategies that will ultimately 
comprise the basis for the classroom discussion phase of the research lesson.

Consequently, a second design principle concerns the actual form that the 
research lesson takes. Referred to as structured problem-solving by Stigler and 
Hiebert (1999), the research lesson involves a single task and the following four 
specific phases: (1) teacher presenting the problem (donyu, 5–10 min), (2) students 
working at solving the problem without the teacher’s help (jiriki-kaiketsu, 
10–20 min), (3) comparing and discussing solution approaches (neriage, 
10–20 min), and (4) summing up by the teacher (matome, 5 min). During students’ 
independent working, the teacher walks between the desks (kikan-junshi) and 
silently assesses students’ work; she is in the process of making a provisional plan 
as to which student contribution should be presented first in order to make clear the 
progress and elaboration from simple idea to sophisticated one: this is the core of 
neriage, a phase during which students’ shared ideas are analyzed, compared, and 
contrasted. During the fourth phase of the research lesson (matome), the teacher 
will usually comment as to the more efficient of the discussed strategies, as well as 
the task’s and the lesson’s mathematical and educational values. As an aside, it is 
noted that Japanese teachers use these specific didactical terms to discuss their 
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teaching and that such didactical terms not only mediate the activity of the various 
participants involved in Lesson Study but also lead to the co-construction of deep 
craft knowledge.

After the research lesson has been observed by other teachers, school adminis-
trators, and sometimes by an outside expert, it is then discussed and evaluated in 
relation to its overall goals. This process of lesson evaluation, and in particular task 
evaluation, is considered a third design principle. The post-lesson discussion 
focuses to a large extent on the effects of the initial task design with respect to stu-
dent thinking and learning. The teacher’s thought-out key questioning receives 
much attention. Another of the main aspects discussed is whether the anticipated 
student solutions were in fact evoked by the task and its accompanying manipula-
tive materials or whether improvements in specific parts of the task design are 
warranted.

Of the three design principles that are the core of the research lesson of Lesson 
Study, kyozaikenkyu is the most all encompassing. However, it is one that is often 
underrepresented or even overlooked in Lesson Study practice in other countries 
(Doig, Groves, & Fujii, 2011). Kyozaikenkyu is, in fact, central to Japanese teach-
ers’ everyday practice. As such, it is a key component of the Japanese Lesson Study 
example of craft-based frames for task design.

2.2.2.4  Domain-Specific Frames

In contrast to intermediate-level frames whose characterizations do not specify any 
particular mathematical reasoning process or any particular mathematical content 
area, domain-specific frames for the design of tasks or task sequences do specify 
particular reasoning processes (e.g., conjecturing, arguing, proving) or particular 
content (e.g., geometry, integer numbers, numerical concepts, algebraic techniques). 
Task design research involving domain-specific frames typically draws upon past 
research findings in a given area, in addition to being situated within more general, 
intermediate-level, and grand-level frameworks. As such, domain-specific frames 
for task design research tend to be more eclectic than their intermediate-level coun-
terparts. As an aside, note that Realistic Mathematics Education theory has at times 
been referred to by its adherents as a domain-specific instructional theory in that it 
is an instructional theory for the domain of mathematics education; however, in this 
chapter we reserve the term domain specific for frames dealing with specific math-
ematical content areas or reasoning processes. Some researchers use the term “local 
theories” or “local frames” for what we are referring to as domain-specific frames. 
In general, domain-specific frames are associated with design as implementation in 
that the main aim of the research is the further development of the domain-specific 
frame by means of the implementation process. However, this is not a hard distinc-
tion. As will be seen, for some examples of design research studies that make use of 
and develop domain-specific frames, the approach is as much design as intention as 
it is design as implementation.
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A Domain-Specific Frame for Fostering Mathematical Argumentation  
Within Geometric Problem-Solving

In a recent article, Prusak, Hershkowitz, and Schwarz (2013) reported on a yearlong, 
design research-based course with third graders in mathematical problem- solving 
that aimed at instilling inquiry learning and argumentative norms. The researchers 
investigated if, and in which ways, principled design is effective in promoting a 
problem-solving culture, mathematical reasoning, and conceptual learning. Their 
design was situated in a multifaceted framework that drew upon principles from the 
intermediate-level, educational theory of Cognitive Apprenticeship, as described in 
Schoenfeld (1994), and from domain-specific research in geometric reasoning 
(Hershkowitz, 1990) and argumentation (Arzarello & Sabena, 2011; Duval, 2006), 
as well as from multiple studies with a sociocultural orientation. The Prusak et al. 
study was, in fact, one that articulated explicitly two design components: one for the 
task and one for the learning environment.

The task that Prusak et al. (2013) discuss in their paper is the sharing a cake task:

Yael, Nadav, and their friends Itai and Michele came home from school very, very hungry. 
On the kitchen table was a nice square piece of cake, leftover from their birthday. They 
wanted to be fair and divide the square into four equal pieces so that everyone would get a 
fourth (1/4) of the leftover cake. Suggest different ways in which the children can cut up 
and divide the square piece of cake. For each suggestion, explain why this would give each 
child exactly a fourth of the leftover cake. (p. 6)

Accompanying the text on the task worksheet was a set of nine square grids upon 
which the students, who worked first individually and then in groups, could draw their 
suggested cuttings of the cake and several blank lines per grid where they were to 
explain their thinking. Prusak et al. state that the design of this task, as well as that of 
the others used within their yearlong study, relied on the following five principles:

•	 Encourage the production of multiple solutions (Levav-Waynberg & Leikin, 
2009).

•	 Create collaborative situations (Arcavi, Kessel, Meira, & Smith, 1998).
•	 Engage in socio-cognitive conflicts (Limón, 2001).
•	 Provide tools for checking hypotheses (Hadas, Hershkowitz, & Schwarz, 2001).
•	 Invite students to reflect on solutions (Pólya, 1945/1957).

Setting up a problem-solving culture in the classroom was an integral part of the 
Prusak et al. design study. More specifically, they brought into play Schoenfeld’s 
(1994) use of the Cognitive Apprenticeship model by which he scaffolded students’ 
problem-solving in a classroom culture that emphasized communication, reflective 
mathematical practice, and reasoning rather than results. In line with Schoenfeld, 
the following instructional-practice principles constituted a second overall design 
frame for the Prusak et al. study:

•	 Emphasize processes rather than solely results.
•	 Use a variety of social settings (individual, small group, and whole class).
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•	 Develop a critical attitude toward mathematical arguments using prompts like, 
“Does it convince me?”

•	 Encourage students to listen and try to persuade each other and, thus, to develop 
ideas together.

•	 Have students learn to report on what they do, first verbally, then in written form, 
explaining their solutions to their teammates or to the entire class.

The authors argue that the findings of their study provided evidence that

the meticulous design as well as the problem-solving culture triggered a general process 
according to which students capitalised on problem-solving heuristics and engaged in mul-
timodal argumentation, subsequently reaching deep understanding of a geometrical prop-
erty (the fact that non-congruent shapes may have equal areas). … The activity we described 
encourages the production of multiple solutions, which is an explicit instruction in the task. 
Also, students were arranged in small groups, and were asked to collaborate. Collaboration 
led students to compare solutions. Since they were asked to justify their solutions, these 
justifications naturally created socio-cognitive conflicts. The nine grids in the task provide 
a tool for checking hypotheses. (pp. 16–17)

The authors concluded their paper with a theoretical model for learning early 
geometry through multimodal argumentation in a problem-solving context—a 
model that includes the description of the learning process and the demonstrated 
means of supporting that learning process. They emphasize that the designed task 
served as a principle-based research tool, one that was central to the elaboration of 
their domain-specific model.

The Prusak et al. study presents an example of the use of well-defined, even if 
quite general, principles as a front-end resource for the design of the tasks. A sec-
ond set of principles provided the frame for the design of the learning culture in 
which the tasks would unfold. Both sets of principles make their study one that 
could be described as design as intention. The empirical evidence that the initial 
design was effective in eliciting the aimed-for learning of specific geometrical 
notions through argumentation within a problem-solving setting led to the theoreti-
cal elaboration of a domain-specific model. In this sense, the study could be said to 
be also an example of design as implementation. Additionally, and of pivotal impor-
tance for design in mathematics education research, the design of the task activities 
was supported by the accompanying design of an instructional environment involv-
ing specific teaching practices that would nurture a collaborative problem-solving 
culture. This emphasizes the crucial interactive relation between the design of a task 
or task sequence and the design of the instructional culture in which the task is to be 
integrated—an emphasis that is also seen in design research involving intermediate- 
level frames.

A Domain-Specific Frame for Proof Problems with Diagrams

The frame used by Komatsu and Tsujiyama (2013) in their design research, which 
centered on eighth grade proof and proving, was inspired by the notion of deductive 
guessing—a notion formulated by Lakatos (1976) as a heuristic rule for coping 

C. Kieran et al.



39

with counterexamples. In deductive guessing, after one proves conjectures and then 
faces their counterexamples or non-examples, one invents deductively more gen-
eral conjectures that hold true even for these examples. Because deductive guessing 
is a mathematical notion, some adaptation with respect to pedagogical perspectives 
was necessary so as to use deductive guessing as a frame for task design. Its adapta-
tion yielded the proof problems with diagrams frame—a proof problem with dia-
grams being a problem in which a statement is described with reference to particular 
diagrams with symbols (one diagram in most cases) and solvers are required to 
prove the statement and then to deal with related diagrams involving counterex-
amples and non-examples. The frame was also informed by the earlier research of 
Shimizu (1981) who had argued that, after students solve proof problems with dia-
grams, it is important for them to further inquire “of what (mathematical) relations 
the given diagram is a representative special case” (p. 36) by utilizing the already 
obtained proof.

As is the case with much of the current task design research in the field, Komatsu 
and Tsujiyama (2013) point out that, because “it is unrealistic to expect that only 
posing the designed problems will facilitate students’ activities and mathematical 
learning, task design involves not only selection or development of problems but 
also teachers’ instructional guidance related to the problems” (p. 472). In line with 
(a) deductive guessing in Lakatos’s work, (b) the nature of proof problems with 
diagrams, and (c) the instructional guidance to be provided by the teacher, the 
researchers derived the following three task design principles:

•	 Educators and teachers should select or develop certain kinds of proof problems 
with diagrams where students can find counterexamples or non-examples and 
engage in deductive guessing through changing the attached diagrams.

•	 Teachers should encourage their students to change the attached diagrams while 
keeping the conditions of the statements, so that they find counterexamples or 
non-examples of the statements.

•	 After students face the counterexamples or non-examples, teachers should plan 
their instructional guidance by which students can utilize their proofs of initial 
problems to invent more general statements that hold true for these examples.

Komatsu and Tsujiyama illustrate their principles for task design by means of a 
problem involving parallelograms, drawn from Okamoto, Koseki, Morisugi, and 
Sasaki et al. (2012) (see also Komatsu, Tsujiyama, Sakamaki, & Koike, 2014). 
Their principle-based description of the design of the parallelogram task, accompa-
nied by suggestions related to specific instructional guidance (see Komatsu & 
Tsujiyama, 2013, pp. 476–477), provides a detailed plan for the teaching of proof 
problems with diagrams, one that will eventually be subjected to further classroom 
implementation and possible revisions. Thus, the domain-specific frame crafted by 
Komatsu and Tsujiyama yielded, at this stage of their research, a primarily design-
as- intention tool—a tool for task design that integrated earlier research on proof 
problems with diagrams, a novel theoretical frame based on Lakatosian deductive 
guessing, and a cultural tradition involving the role of the teacher.
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A Domain-Specific Frame for the Learning of Integer Concepts and Operations

The design research of Stephan and Akyuz (2013) involved creating and imple-
menting a hypothetical learning trajectory (HLT) and associated sequence of 
instructional tasks for teaching integers in a middle-grade classroom over a 5-week 
period. Grounded in the researchers’ deep knowledge of past research on the learn-
ing of integers and integer operations, the design of their instructional sequence was 
underpinned by the following three heuristics of the intermediate-level frame of 
Realistic Mathematics Education (RME):

•	 Guided reinvention—“To start developing an instructional sequence, the designer 
first engages in a thought experiment to envision a learning route the class might 
invent with guidance of a teacher” (p. 510).

•	 Sequences experientially real for students—“Instructional tasks draw on realistic 
situations as a semantic grounding for students’ mathematizations” (p. 510).

•	 Emergent models—“Instructional activities should encourage students to transi-
tion from reasoning with models of their informal mathematical activity to mod-
eling their formal mathematical activity, also called emergent modeling 
(Gravemeijer & Stephan, 2002)” (p. 510).

The anticipated learning path (HLT) led to the generation of a six-phase instruc-
tional sequence involving various mathematical tools, which was then implemented 
in the classroom. The authors used a version of social constructivism, called the 
emergent perspective (Cobb & Yackel, 1996), to situate their interpretation of class-
room events. In the emergent perspective, learning is considered both an individual, 
psychological process and a social process. Thus, two frames were used by Stephan 
and Akyuz to analyze their classroom data: (a) a framework for interpreting the 
evolving classroom learning environment, that is, the emergent perspective, and  
(b) a framework for interpreting student mathematical reasoning and learning of 
integer concepts, that is, a frame based on the instructional theory for Realistic 
Mathematics Education. After implementation and analysis of the collective learn-
ing of the class, the authors considered various possible revisions to the instruc-
tional sequence. The details of the design of the instructional sequence, its 
implementation, classroom analysis, suggested revisions, and reflective theoretical 
discussion can be found in Stephan and Akyuz (2012).

The description of the entire process, which constitutes an empirically sustained, 
domain-specific theoretical model for the teaching of integers and integer opera-
tions, is a classic example of design as implementation. In the spirit of Cobb and 
Gravemeijer (2008), Stephan and Akyuz generated a domain-specific, instructional 
theory that embodied the classroom-based, activity-oriented process of learning a 
specific mathematical content and which included a very detailed description of the 
representational tools, classroom interactions, and teacher interventions that sus-
tained this learning. The elaboration of their domain-specific theoretical frame was 
supported explicitly in its design, implementation, and analysis by the two frames 
of Realistic Mathematics Education and the emergent perspective and implicitly by 
its reliance upon prior research and previous domain-specific design work on the 
learning of integers.
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In describing their research, Stephan and Akyuz stress students’ engagement 
with tasks: “In RME, … tasks are defined as problematic situations that are experi-
entially real for students” (Stephan & Akyuz, 2013, p. 509), a perspective based on 
Freudenthal’s assertion that “people need to see mathematics not as a closed system, 
but rather as an activity, the process of mathematizing reality and if possible even 
that of mathematizing mathematics” (Stephan & Akyuz, 2012, p. 432). This empha-
sis on the way in which students engage with tasks, and the way in which teachers 
actually facilitate that activity, is central to design as implementation. It also helps 
to shed an explanatory light on Gravemeijer and Cobb’s (2006) earlier statement 
that one of the primary aims of design research is not to develop an instructional 
sequence as such. More precisely, the description of the entire design process 
(including initial design, implementation, and revision) is intended to foster an 
understanding of why and how the final sequence is supposed to promote learning. 
The whole description supports others in implementing the sequence in other con-
texts and as such constitutes its theoretical role: that of a local instructional theory 
for a specific mathematical domain.

2.2.2.5 In Drawing This Section to a Close

A main objective of this section of the chapter has been to examine the nature and 
roles of frameworks and principles in the design process and, at the same time, to 
draw out the relative centrality given to the design of the task or task sequence itself. 
Building upon the pioneering work of scholars during the early years of the growth 
of the mathematics education research community and its evolution through to 
design experiments and beyond, a double lens was used to explore the nature of cur-
rent theoretical frameworks and principles for task design: (1) an analysis according 
to levels of frames that focused particular attention upon both intermediate and 
domain-specific frames and (2) a consideration of the constructs of design as inten-
tion and design as implementation within the design process. The lenses that were 
used, accompanied by a sampling of examples drawn from the international body of 
research literature related to design in mathematics education, helped to clarify 
some of the ways in which theory and task design are related. Among the relation-
ships that emerged from the analysis of frames and their roles in design in general 
and task design in particular, one was particularly salient: it was the design consid-
eration related to instructional support that was common to all the examples and 
central to each.

The examples all included attention to instructional support, some in the form of 
quite explicit principles. For instance, in the Prusak et al. (2013) example, a separate 
list of specific principles related to the design of the instructional environment was 
provided—principles that delineated a clear set of indices related to the way in which 
the instructional environment and the designed task were to mutually support each 
other. This example offers a viable model for further productive work in design in 
mathematics education and for its reporting. In fact, the way in which instructional 
principles were incorporated into the design of the studies exemplified so far in this 
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chapter leads to suggesting that it might be more appropriate, terminology- wise, to 
refer to this field as task design for instruction. This more precise terminology could 
thereby give weight to the notion that the initial formulation of the design and its 
description include principles related to the design of the instruction and instruc-
tional environment, as well as to the design of the task. This terminology would also 
capture the spirit of the early research efforts in this area by Freudenthal, Bell, 
Wittman, and others. But even more importantly, integrating the terms task design 
and for instruction would allow us to emphasize that which would appear to be fun-
damental to design in mathematics education, a fundamental that was well expressed 
by Komatsu and Tsujiyama (2013, p. 472), namely: “It is unrealistic to expect that 
only posing the designed problems will facilitate students’ activities and mathemati-
cal learning; task design involves not only selection or development of problems but 
also teachers’ instructional guidance related to the problems.”

2.3  Case Studies Illustrating the Relation Between 
Frameworks and Task Design

2.3.1  Introduction

The cases within this section illustrate the variety in types of frameworks for task 
design and the variety in relationships among the frameworks, design principles, 
and the actual design process. The heart of the discussion of each of the prototypical 
cases is guided by two questions:

 (a) What do tasks look like when designed within a given theoretical frame or 
according to given design principles?

 (b) Why do they look the way they do?

Using these questions as a lens, this section goes into some detail with respect to 
each example and thus extends the discussion that was initiated in the previous sec-
tion. Seven cases are herein presented, most of them drawing upon aspects of grand 
theories and illustrating the use of intermediate-level theories. The cases are based on 
the contributions of the participants of Theme Group D (Frameworks and Principles 
for Task Design) of the ICMI Study-22 Conference (Margolinas, 2013). They are not 
intended to represent a sample of all possible design principles and frameworks that 
are currently used or investigated all over the world. The cases reflect the different 
levels of frames discussed in the previous section and illustrate how these frame-
works can be applied across a variety of mathematical domains, as well as offer 
design approaches related to particular mathematical understandings. They also 
include cases that exemplify principles from design frames based on deep craft 
knowledge and from design related to various task genres, such as concept develop-
ment and assessment. In sum, the seven cases being discussed, often too briefly to do 
justice to the richness of the underlying theory and the design, are intended to pro-
vide insight into the current state of the art of task design in mathematics education.

C. Kieran et al.



43

2.3.2  Cases

2.3.2.1 Case 1: Anthropological Theory of Didactics

Within the ATD, mathematics is conceived as a human activity, institutionally 
situated, and modeled in terms of practices that go beyond learning “concepts” or 
“processes.” This results in the need for a renewed paradigm of learning mathe-
matics in school (Chevallard, 2012). The paradigm thus changes from visiting 
mathematical concepts and skills to questioning the world (motivated, functional 
encounters). This elaboration of the ATD has its roots in Chevallard’s earlier ATD 
work of the 1990s, as well as in his collaborative research with Brousseau on the 
notions of didactic engineering, the didactic transposition, and the Theory of 
Didactical Situations.

The following example focuses on the application of an intermediate-level frame 
to the design of a mathematical activity involving young children. It illustrates 
design principles that are related to the previously mentioned paradigm shift. These 
principles were not extracted from this particular case but result from a collection of 
ATD study and research paths that have been designed in the last 10 years (e.g., 
Barquero & Bosch, 2015).

The aim of the task was to embed the emergence and use of numbers and addi-
tion in the study of a system that is real and that gives rise to a meaningful mathe-
matical activity for (preschool) students (García & Ruiz-Higueras, 2013). The 
initial question for the students was if we’ve got a box with silkworms, how many 
leaves do we need to feed them?

Firstly, students would collect leaves by themselves. But after a few days, they 
would ask the gardener to collect the leaves for them, using a written message. That 
would provoke the need of being aware of quantities, as well as using codes to 
express them. Next, the biological system would start to evolve: silkworms turn into 
cocoons, then moths arise, and finally, they die. Students would have to control a 
heterogeneous collection made of silkworms, cocoons, and moths. As change hap-
pened, they would need techniques to record the evolution of the system. The teacher 
would prepare different tables to record and control the evolution of the system. She 
would introduce this tool so that students could take control of the evolution of the 
system under their own responsibility. This would widen students’ activity, particu-
larly toward addition, time control, and recording. At the end, when all the moths 
would have died, the system would disappear. However, students would have lots of 
information (models) about its evolution. Through the interpretation of these mod-
els, pupils would carry out the final task: reconstructing the system and its evolution. 
Figure 2.1 illustrates the unfolding of part of the task activity in class.

Designing tasks for a renewed paradigm of learning mathematics, from visiting 
mathematical works to questioning the world, is operationalized within the ATD by 
design principles for creating research paths for students (Table 2.1). The whole 
task, called a study and research path (SRP), is linked within the ATD to an episte-
mological conception of mathematics as a human activity and modeled in terms of 
practices.
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Table 2.1 Design principles for a study and research path in ATD

Design principle Illustrated by the case

Develop an epistemological reference 
model for the mathematical activity the  
task is aiming at. Investigate how the 
mathematical objects of study are related, 
how they are articulated and used in 
specific (out-of- school) practices, and  
how these can be transposed into the 
educational system.

Numbers (as mathematical objects) and codes to 
express them (numerals) emerge in 
communicative situations where the aim is not 
just to measure a discrete set but to communicate 
about it so that another person can understand 
the evolution of the system without having 
access to it (neither visually nor manipulatively).

Look for generating questions beyond 
school mathematics that are crucial and 
alive for the students, connected with 
society and its problems (questioning the 
world).

“When we’ve got a box of silkworms, how many 
leaves do we need to feed them?”

Generate questions that do not lead the 
study process to a dead end but that give 
rise to new questions that could expand it.

How to communicate the number of leaves 
needed?
How to keep track of the number of silkworms, 
cocoons, and moths?

Create a collaborative and shared study 
process with shared responsibilities and 
shared norms for justification.

The teacher introduced tools so that students 
could take control of the evolution of the system 
under their own responsibility.

Support the search for answers by 
stimulating the study of (extra) 
mathematical works or consulting other 
communities.

Students were stimulated to ask parents about 
the time needed for the cocoon phase.

Fig. 2.1 Children taking care of silkworms (García & Ruiz-Higueras, 2013)

Context: Taking care of our silkworms
Characteristics of this rich context:

• Dynamic system (evolving over time)
• Many different quantities to be measured
• Communicative tasks can be naturally

      formulated (representing quantities with
      numbers & numerals)

• Increasing complexity

For tasks like these, designers need to leave the school, step out of traditional 
school mathematics, and question the meaning of the objects they want students to 
work with (their origin, evolution, and purpose in current society). This leads to a 
reference model for the design of a study path and will inform possible overarching 
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generative questions. Piloting is an essential phase in the design process for check-
ing conjectured teaching and learning processes and for improving the ecological 
and economic robustness of the task.

2.3.2.2 Case 2: Variation Theory

Variation Theory (VT) focuses task designers on what varies and what remains 
invariant in a series of tasks in order to enable learners to experience and grasp the 
intended object of learning (Runesson, 2005). The learners’ experiences depend on 
the critical features of the object to which their awareness is directed. Consequently, 
designing task sequences requires an analysis of possible variations so that learners 
“might observe regularities and differences, develop expectations, make compari-
sons, have surprises, test, adapt and confirm their conjectures within the exercise” 
(Watson & Mason, 2006, p. 109). Analyses of variation space, patterns in learners’ 
experiences, and how these patterns are compatible with the intended object of 
learning are key elements in the intermediate-level frame of VT.

Three successive versions of a task for teachers illustrate how VT guided a cyclic 
process of task design, analysis, and redesign. The learning objective of the task was 
to facilitate the teachers’ awareness of mathematics as a connected field of study by 
directing their attention to structural similarities and differences among the basic con-
cepts of analytical geometry and loci of points (Koichu, Zaslavsky, & Dolev, 2013).

The first version of the task consisted of 24 representations of loci of points that 
had to be sorted by the teachers by creating groups of similar loci (see Fig. 2.2). 
It was created so that three types of controlled variation would be maximized:

•	 The first type of variation was related to the mathematical objects described in the 
cards for sorting (e.g., a straight line, circles, parabolas, ellipses, hyperbolas).

•	 The second type of variation was related to the type of representation (symbolic, 
graphical, and verbal).

•	 The third type of variation was related to the type of experience needed to handle 
the task (prior knowledge, information provided with the task).

During the trial of this first version of the task, it was found that a lot of time was 
devoted to technical work and to classifying the items by surface features. To reduce 
the amount of time and the attraction of surface features, the second version con-
sisted of 18 items. The items that were approached in all the groups only algebra-
ically were excluded (items 8–10, 15, and 19–21). In spite of a smaller intended 
variation space, it appeared that the enacted variation space became richer and the 
teachers more engaged. However, the presence of the well-familiar graphical and 
symbolic representations in the task postponed, and likely hindered, the learning 
experiences offered by the verbal items. For this reason, pictorial representations 
were eliminated and the third version of the task contained only 11 verbal items 
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[i.e., items 1, 3, 5–7, 11, 12, 16–18, and a new item 25: “Locus of points such that 
the distance from them to point (−3, 0) is 6.”].

The intention of the third version of the task was to suppress the affordance of 
using sorting criteria based upon surface features, in favor of criteria related to the 
identification of structural similarities and differences. The experiences showed that 
the two main enacted subcategories of the by-keywords criterion in the third version 
of the task (i.e., by main operation and by main generating elements) were remark-
ably close to one of the intended types of variation of the task.

Fig. 2.2 The first version of the sorting task (Koichu et al., 2013, edu.technion.ac.il/docs/
KoichuZaslavskyDolevThemeA_Supplementary_material.pdf)
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This example illustrates the process of task design guided by the interplay 
between analyzing and providing variation space and observing patterns in learn-
ers’ experiences. Design principles drawn from this example in connection with VT 
orient the designer to what varies and what remains invariant in a series of tasks 
(Table 2.2).

This case, which exemplifies the use of the VT frame in task design, shows that 
design decisions can easily hinder or support affordances of a task with respect to 
the intended object of learning. The challenge for task design is to anticipate and 
organize learners’ experiences so that they serve as reference points to more mean-
ingful decisions.

2.3.2.3 Case 3: Conceptual Change Theory

A particular issue for task design is the teaching of concepts that are known to be 
difficult for students because prior knowledge is in conflict with what is to be 
learned. Conceptual Change Theory (CCT) is an intermediate-level frame that 
allows researchers to specifically investigate this issue. The case, which is drawn 
from research into students’ learning of nonnatural numbers (Van Dooren, 
Vamvakoussi, & Verschaffel, 2013), illustrates design principles that are derived 

Table 2.2 Design principles underlying a VT example

Design principle Illustrated by the case

Identify and analyze the object  
of learning and its critical features 
that constitute a variation space 
(Marton, Runesson, & Tsui, 
2004).

The object of learning for the teachers is to facilitate their 
awareness of structural similarities and differences among 
the basic mathematical concepts of analytical geometry.  
A critical feature is to classify conics by names of loci of 
points, because this requires an understanding of structural 
similarities and differences. The variation space consisted 
of the mathematical objects, their various representations, 
and the types of prior experience needed to handle the task.

Create task(s) so as to have the 
learners discern critical aspects of 
the intended learning object and 
aim for coinciding the intended 
and enacted variation space.

Map the types of variation in the sorting task and connect 
them to the intended object of learning. The teacher- 
awareness facet of the study prompted a first version of the 
task where the space of variation was maximized.

Focus on the central role of the 
main intended activity (be careful 
with including mathematically 
challenging items and affording 
complementary mathematical 
techniques).

The central activity was discovering structural similarities 
and differences among the basic concepts of analytical 
geometry, but this was obscured by technical 
manipulations evoked by the first version of the task.

Carefully analyze whether the 
variation space of a task can be 
improved toward the intended 
object of learning.

The final version had a reduced variation space that was 
more engaging and resulted in richer learners’ 
experiences. This version succeeded in suppressing sorting 
criteria by surface features, in favor of criteria related to 
the identification of structural similarities and differences.
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from CCT, as well as from existing domain-specific research related to the learning 
of rational number.

Many difficulties that students have with nonnatural numbers are rooted in prior 
knowledge about whole (natural) numbers. The conceptual change perspective 
 provides an explanatory framework for these difficulties as it analyzes them in 
terms of students’ initial, intuitive theories that shape their predictions and explana-
tions in a coherent way (Vosniadou, Vamvakoussi, & Skopeliti, 2008). This results 
in the following starting point for task design: How to deal with an incompatibility 
between students’ initial theories and intended mathematical development that 
unavoidably will occur? The initial theories students rely on when encountering the 
ideas of nonnatural numbers are related to their understanding of whole numbers. 
Consequently, students see numbers as being discrete, used for counting, and 
grounded in additive reasoning (Ni & Zhou, 2005; Vamvakoussi & Vosniadou, 
2012). These initial theories easily lead to typical misconceptions like longer deci-
mals are larger, for example, 2.12 > 2.2; a fraction gets bigger when one of its parts 
is larger, for example, 2/5 < 2/7; and the density misconception that between two 
non-equal numbers, there is a finite number of other numbers. Furthermore, stu-
dents are often unaware of the background assumptions of their reasoning.

The sequence of tasks in this example takes these background assumptions into 
account and supports overcoming the incompatibility between the discreteness of 
whole numbers and the density of nonnatural numbers (see Table 2.3). The tasks 
were accompanied by the introduction of a tool-like representation that fostered 

Table 2.3 A sequence of tasks supporting conceptual change

Task Goal

1. What do you know about the number line? Describe it as well as 
you can. Read and comment upon the answers of your fellow 
students.

Express prior 
knowledge about the 
number line.

2. We often use the term “the set of all numbers”. Suppose someone 
tries to understand what we mean by that. Could you draw a 
picture to help him/her understand?

Construct a 
representation for all 
numbers.

3. Imagine the number line as a rubber band that can be stretched. 
Position 0 and 1 on the band and place numbers between them 
until it looks like you have used all the available points. If you 
stretch the rubber band, then you will find out there are more 
points, corresponding to more numbers. This procedure can be 
repeated infinitely many times—your imaginary rubber band 
never breaks!

Construct the 
imaginary rubber band 
as a representation for 
all numbers.

4. We have been talking about two different representations of 
numbers: A “formal” one, which we usually use at school, and a 
second one, which was proposed in our discussion and you seem 
to find adequate. Could you find a solid reason why we should 
prefer one over the other?

Compare two different 
representations.

5. Imagine that you can become as small as a point of the number 
line. Then you could see other points up close. Suppose that you 
are on the point that stands for the number 2.3. Can you define 
what point is the one closest to you? Describe in words or by 
drawing a picture.

Reason about density 
with the number line.
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reasoning with numbers in a geometrical analogy: an imaginary rubber band 
(Vamvakoussi & Vosniadou, 2012).

The sequence of tasks in this example illustrates how initial, usually largely 
unconscious assumptions can be elicited and made explicit. It also shows how 
cross-domain mapping between continuous magnitudes (points on the rubber band) 
and the set of numbers can be fostered (see Table 2.3). Design principles drawn 
from this conceptual change example are listed in Table 2.4.

CCT is primarily a cognitively oriented theory and therefore does not encompass 
all aspects related to instructional design. The design principles emerging in this 
case are intended as instructional tools to change, to move forward, students’ cogni-
tions. As such, this theory offers added value for task design when dealing with 
difficult concepts. The sequence of tasks in this example was designed on the basis 
of specific theoretical principles, was empirically tested, and appeared useful for 
teachers as well as for students. The resulting design principles have a wide field of 
application in that instructional design has to cope with similar prevailing miscon-
ceptions in many domains of mathematics and beyond.

2.3.2.4 Case 4: Conceptual Learning Through Reflective Abstraction

This case (M. Simon, 2013) is derived from a one-on-one teaching experiment (M. 
Simon et al., 2010) with a prospective primary school teacher, Erin. The teaching 
experiment focused on developing a common-denominator algorithm for the divi-
sion of fractions with conceptual understanding. Conceptual learning in this case is 
understood as the process of developing new and more powerful abstractions 
through activity. The approach draws task design principles from the grand-level 
frame of Piaget’s construct of reflective abstraction.

Table 2.4 Design principles for a Conceptual Change example

Design principle Illustrated by the case

Take students’ prior knowledge and potential 
initial understandings into consideration 
(explore existing literature).

Build on students’ prior knowledge of 
differences and similarities between natural 
and nonnatural numbers by explicitly 
addressing the number line (tasks 1 and 2).

Facilitate students’ awareness of their 
background assumptions by creating 
opportunities for them to externalize their  
ideas, to compare them with peers’ ideas,  
and to reflect on them.

Let students compare and discuss 
representations for all numbers (task 2).

Use models and external representations,  
know their power and their limitations.

The rubber band was introduced to prevent 
the number line from continuing to be 
interpreted as a ruler with a finite number 
of points (task 3, also task 4).

Foster analogical reasoning that supports 
conceptual restructuring.

The rubber band is a bridging analogy that 
fosters students’ comparison between a 
continuous geometrical object and the real 
number line (task 5).
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The researcher engaged Erin in a sequence of tasks, probed her thinking, and 
allowed Erin to develop her understanding without input from the researcher. The task 
sequence began with division-of-fraction word problems whose dividend and divi-

sors had common denominators. Erin was asked to solve them by drawing a diagram. 

She was able to solve the first task without difficulty (“I have 7
8

 of a gallon of ice 

cream and I want to give each of my friends a 1
8

-gallon portion. To how many friends 

can I give ice cream?”). The task sequence progressed to word problems in which the 
dividend and the divisor still had common denominators, but the divisor did not 

divide the dividend equally, and then to similar tasks presented using only number 

expressions (e.g., 8
5

 ÷ 3
5

 =). Erin still drew rectangles for solving the problem. For 8
5

 

÷ 3
5

, she first drew two whole rectangles divided into fifths. Next, she shaded 2
5

 of 

one rectangle leaving 8
5

 unshaded. She circled each 3
5

, counted 2 groups, and was 

able to deduce that the remainder 2
5

 is 2
3

 of 3
5

, thereby finding the solution 2 2
3

.

Next, Erin was asked to solve a more complex fraction division task 23
25

 ÷ 7
25

 
(see Fig. 2.3).

Erin made clear that she did not know the answer and the researcher encouraged 
her to talk through a diagram solution without actually drawing. Erin described the 
diagram process she would use and the result she would get. Erin easily solved the 

next task, 7
167

 ÷ 2
167

, using the same approach, that is, narration of a diagram solu-

tion. However, when that task was followed by the task, 7
103

 ÷ 2
103

, Erin gave the 

answer immediately. She realized that the change in the fractional units would not 
affect the quotient. Further, she was able to explain the invariance of the quotient 
across a range of denominators by creating a general diagram. Erin had made an 

Fig. 2.3 A task sequence for learning to solve division problems with common denominators 
(M. Simon, 2013, p. 508)
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abstraction as a result of this task sequence. She perceived a commonality in her 
activity involving these mental diagram solutions.

In this example, two design principles fostering Conceptual Learning by 
Reflective Abstraction can be recognized (see Table 2.5).

When Erin was faced with a second task with the same pair of numerators and 
different common denominators, she realized that she was about to enact the same 
activity as in the previous task. At that moment, she also realized why the size of the 
common denominators did not change the quotient. This was an example of Erin’s 
reflection on her (mental) activity. That is, she perceived the commonality in her 
activity in the two cases that led to an abstraction. These tasks helped her to fore-
ground key quantitative relationships and to create a need to invoke a new concept 
and mental operations that are critical to the concept being developed.

This is an example of task design for concept development that does not depend 
on students making a leap through problem-solving. Rather, the task sequence 
affords them the opportunity to build an abstraction from already available activity. 
In this case, the abstraction was built from the activity of creating informal diagram 
solutions for solving simple sharing tasks. The approach illustrated by this example 
can serve to inform ongoing and future research work on the crafting of domain- 
specific frames for task design related to the process of mathematical abstraction.

2.3.2.5 Case 5: Realistic Mathematics Education

Realistic Mathematics Education (RME) is an intermediate-level frame that has been 
developed in the Netherlands (see Van den Heuvel-Panhuizen & Drijvers, 2013). 
RME is rooted in the work of Freudenthal (1973, 1991) who argued for teaching 
mathematics that is relevant for students and instigated research in how students can 
be offered opportunities for guided reinvention of mathematics. This example illus-
trates design principles drawn from RME by presenting one task from a longitudinal 
sequence on the topic of percentage (Van den Heuvel-Panhuizen, 2003).

Table 2.5 Design principles for Conceptual Learning by Reflective Abstraction

Design principle Illustrated by the case

Identify a potential activity that is 
already available to the learner and that 
can be the basis for the intended 
abstraction (the identified learning goal).

The student’s informal diagram solutions supported 
anticipations toward a common-denominator 
algorithm for the division of fractions. This 
learning goal affected the identification of the 
solution strategy and the strategy affected the 
specific goal toward which the design was oriented.

Design tasks to elicit the available 
activity and to promote reflective 
abstraction (a learned anticipation 
supported by a shift from activities with 
external representations to mental runs).

The task sequence starts with word problems and 
context-free tasks to elicit and reinforce the 
diagram- drawing strategy. Once the student is using 
the intended strategy, the task sequence provokes 
the anticipated abstraction. For this purpose, larger 
numbers for the denominators and invited mental 
runs of diagram drawings were used.
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The learning of percentage is embedded within the domain of rational numbers 
and is strongly intertwined with learning fractions, decimals, and ratios. The example 
is taken from a sequence that starts with a qualitative informal introduction to 
percentages before it proceeds toward quantitative formal procedures. The underly-
ing notion is that you first need to know what the procedures are about before you can 
perform and practice them. The introduction attempts to evoke the use of so-many-
out-of-so-many reasoning in everyday situations. The design question from the RME 
perspective is How to evoke and build on informal and outside- school knowledge of 
students when aiming at having them make sense of percentage?

The introductory exploratory activities of the sequence are designed to make 
students aware of the daily life use of percentages, to evoke tentative representa-
tions, and to prepare for model building. The activities are cast in problem situations 
that “beg to be organized” by means of the mathematics under study (Freudenthal, 
1983, p. 32). Some of these initial tasks are based on a school theater scenario. The 
students are asked to indicate for different performances how busy the theater will 
be. They can do this by coloring in the part that is occupied and then writing down 
the related percentage (see Fig. 2.4).

Fig. 2.4 Percentage of occupied seats in a school theater (adapted from Van den Heuvel- 
Panhuizen, 2003, p. 19)
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This task is an example of an exploratory activity to support students in build-
ing models (i.e., the bar model) based upon their prior ideas and experiences. 
For the students, the coloring of theater halls is intended to lead to a way to express 
so-many- out-of-so-many situations. Furthermore, it is expected that students will 
spontaneously use fractions to “explain” the percentage of fullness. With a system 
of tasks, including more closed practicing tasks, students are guided to reinvent the 
mathematics of percentages.

This example illustrates core principles of RME that were articulated originally 
by Treffers (1987) but were reformulated over the years (see Table 2.6).

In recent years, new aspects, like mathematics in vocational education, in special 
education, and in linguistically diverse classrooms, have also been approached from 
an RME perspective. These projects enrich RME and enhance the robustness of the 
research that accompanies its further development.

Table 2.6 Design principles for an RME example

Design principle Illustrated by the case

Identify the fundamental concept, potential 
starting points, and models that support the 
learning of mathematics through a 
phenomenological didactical analysis, thought 
experiments, discussions with teachers, and 
working with students.

Starting points for the design of the sequence 
are the relative character in percentages (so 
many out of so many), the use of contexts 
like comparing the occupation of a school 
theater for various performances, and the bar 
model that supports the shift from intuitions 
to mathematical reasoning.

Model-eliciting activities are at the heart  
of an instructional sequence. They are cast in 
contexts that are familiar for students and 
provide relevant and challenging elements  
that need to be organized or schematized 
mathematically so as to have the potential to 
evoke their (informal) knowledge.

The theater context offers (limited) 
opportunities to be mathematically creative, 
to learn to solve problems for which the 
students do not have a standard solution 
procedure yet, and, at the same time, to learn 
about percentage.

A task sequence guides students from informal 
to formal mathematical reasoning. Models 
play a key role by shifting from a “model of”  
a particular situation to a “model for” 
mathematical reasoning (Streefland, 1993).

The drawings in the theater are expected to 
first become a “bar model of” so-many-out- 
of-so-many situations and later turn into a 
“model for” mathematical reasoning about 
percentages and fractions.

Take into account the design of skill 
development and connections with related 
mathematical topics to develop strong 
structures and procedures.

The notion of percentage is being taught in 
close connection with fractions, decimals, 
and ratios. A qualitative understanding 
precedes the development of quantitative 
skills.

Design whole-class and peer-to-peer 
interaction.

Whole-class discussion of students’ answers, 
their drawings, and estimated percentages is 
essential for the progress of the teaching 
process (not included in the example task).
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Fig. 2.5 The counting trees task (adapted from MARS, 2012)

2.3.2.6  Case 6: Formative Assessment for Developing  
Problem-Solving Strategies

This case is drawn from the work at the Shell Centre at Nottingham University (UK) 
(i.e., Burkhardt & Swan, 2013; Mathematics Assessment Project1). The case illus-
trates how formative assessment can support the development of problem-solving 
strategies in mathematics. The power of formative assessment for enhancing learn-
ing in mathematics classrooms is well known (Black, Harrison, Lee, Marshall, & 
Wiliam, 2003; Black & Wiliam, 1998).

Formative assessment includes “all those activities undertaken by teachers, and 
by their students in assessing themselves, which provide information to be used as 
feedback to modify the teaching and learning activities in which they are engaged; 
such assessment becomes ‘formative assessment’ when the evidence is actually 
used to adapt the teaching work to meet the needs” (Black & Wiliam, 1998, p. 140). 
Herein lies the real challenge: For assessment to be formative, the teacher must 
develop expertise in becoming aware of and adapting to the learning needs of stu-
dents, both in planning lessons and in the moment-by-moment of the classroom.

These problem-solving lessons are not about developing understanding of new 
mathematical concepts but rather about students developing and comparing alterna-
tive approaches to nonroutine tasks. The structure of a typical lesson is illustrated 
with the Counting Trees task (Fig. 2.5). This task is intended to assess how well 
students are able to select an appropriate sampling method and use it, together with 
mathematical concepts such as area and proportion, to solve an unfamiliar problem.

In a preliminary lesson, students are invited to tackle the problem individually. 
They are told not to worry if they don’t find an answer, that there are many ways to 

1 http://map.mathshell.org
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tackle the problem, and that there may be more than one correct answer. The task is 
used to expose students’ different intuitive approaches to the problem. Students’ 
responses are collected by the teacher and analyzed before the actual lesson. This 
gives the teacher time to plan well-considered responses to students.

The lesson itself begins with the teacher returning students’ attempts along with 
questions (not explanations) that are intended to move their thinking forward. This 
role shift for students encourages them to reflect on their own strategy and to con-
sider alternative methods. Instead of using the work of fellow students, the teacher 
introduces sample student work from materials provided. These samples are care-
fully chosen to highlight different approaches and common mistakes. Each piece of 
work is annotated with questions to focus students’ attention. Figure 2.6 shows two 
examples of this work. The first (from Laura) contains some common mistakes that 
students make (ignoring gaps, assuming that there are an equal number of old and 
new trees), while the second (from Amber) introduces students to a sampling 
method they may not have considered. Introducing work from outside the classroom 
is helpful in that (1) students are able to critique it freely without fear of other stu-
dents being hurt by criticism and (2) handwritten “student” work carries less status 
than printed or teacher-produced work and it is thus easier for students to challenge, 
extend, and adapt.

Fig. 2.6 Sample student work with commentary for discussion (MARS, 2012© 2007–2012 
Mathematics Assessment Resource Service, University of Nottingham reuse under Creative 
Commons License)
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After critiquing the work, students are offered the opportunity to refine their 
own approaches. This process of successive refinement in which methods are tried, 
critiqued, and adapted has been found to be extremely profitable for developing 
problem- solving strategies. The lesson concludes with a whole-class discussion 
that is intended to draw out some comparisons of the approaches used and the 
power of sampling.

Principles for task design underlying this example (Table 2.7) relate to both the 
design of the actual task and the supporting materials, including the student work 
and the lesson plan.

This example illustrates how a series of lesson activities (tackling the problem 
alone and then in groups, evaluating sample work, refining solutions, and whole- 
class discussion) may be designed to foster reflective, metacognitive behavior in 
which students step back from their own approaches and compare them with alter-
natives. The carefully designed nature of these lessons allows teachers to respond to 
student learning needs more sensitively and in a planned manner. The principles that 
are described for this example offer vital theoretical tools for designing formative 
assessment that can enhance the development of students’ approaches to nonroutine 
problem-solving in mathematics.

2.3.2.7 Case 7: Japanese Lesson Study

This case is drawn from a videotaped Lesson Study (Tejima, 1987) at an elementary 
school affiliated to the University of Tsukuba, the oldest normal experimental 
school in Japan. The case illustrates principles related to task design within Lesson 
Study, a “craft-based” intermediate-level frame, and shows how these principles 

Table 2.7 Design principles for Formative Assessment for Problem-Solving

Design principle Illustrated by the case

Tasks for formative assessment of problem- solving 
strategies need to be unfamiliar for students but at the 
same time offer opportunities to start the solving 
process in order to elicit students’ different intuitive 
approaches.

The counting trees task is unfamiliar to 
students, but students can start 
reasoning using mathematical concepts 
related to area and proportion.

Follow-up activities are intended to support reflection 
on intuitions and to help all students to move their 
thinking forward.

The well-chosen sample work handed 
over to students encourages them to 
reflect on possible mistakes (Laura’s 
work) and to consider more 
sophisticated methods (Amber’s work).

Formative assessment includes offering students 
opportunities to revise and improve their initial 
responses (e.g., based upon individual feedback or 
feedback through sample work).

After evaluating and discussing sample 
work in small groups, the students get 
the opportunity to revise their initial 
responses to the Counting Trees task.

A sequence of formative assessment activities asks 
for an explicit reflection and conclusion on the 
content as well as on the problem-solving strategies.

The example lesson finishes with a 
whole-class discussion of students’ 
revised responses so as to draw out 
lessons learned from the approaches 
used and about the power of sampling.
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encompass the various phases related to task design. These phases include an analysis 
of existing practices and instructional materials, a consideration of alternatives for 
reaching a new goal or for solving an educational problem, the actual task design, 
the teaching of the lesson, and the evaluation of the lesson and, in particular, the task 
(see also Sect. 2.2.2.3). As will be seen from this case, the task that is the basis for 
a Lesson Study can originate with a textbook task that is adapted for the research 
lesson.

This case focuses on how an expert mathematics teacher organized his research 
lesson. The task design challenge for this teacher was to support second-grade stu-
dents in developing their understanding of addition and subtraction for ordinal num-
bers. So far, these children have learned to add and subtract in many contexts dealing 
with cardinal numbers. The first task in a textbook that uses a situation with ordinal 
numbers deals with a row of children (see Fig. 2.7).

The textbook task illustrated in Fig. 2.7 was originally preceded by the question: 
There are twelve children standing in line. Hiroshi is the fifth from the front. How 
many children are standing after Hiroshi? From a mathematical point of view, this 
question is easier than the task shown in Fig. 2.7. However, the teacher (Mr. Tejima) 
thought it important to start immediately with Fig. 2.7 task so as to challenge the 
children, to induce their naïve ideas (e.g., adding the numbers in the text), and to cre-
ate opportunities for learning. The teacher also decided not to use the box representa-
tion of the textbook (i.e., the row of cubes with the double arches overlapping at the 
Hiroshi cube, in the bottom-right corner of Fig. 2.7). He wanted the students to think 
about this critical aspect of the problem for themselves.

Fig. 2.7 A textbook task (adapted from Sawada & Sakai, 2013)
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Next, the teacher taught the lesson with the adapted task. He started by presenting 
the situation: Children are standing in a line. Hiroshi is 9th from the front and 6th 
from the back. Then the teacher asked the students to formulate a mathematical 
question for this situation. Next, the teacher took the question of the number of 
children in the row (the question emerged in the class) and asked all students to 
solve it. He assessed the students’ answers as he circulated around the class, observ-
ing them working on the problem, and made a provisional plan for the following 
classroom discussion. The teacher intentionally picked up the dominant and wrong 
idea of 9 + 6 = 15. He asked volunteers to explain their answer. One student explained 
the reason why 9 plus 6 equals 15. Then the teacher asked for an explanation from 
a student who thought the answer should be 16. The student illustrated his explana-
tion on the blackboard (see Fig. 2.8).

In reaction to this idea, the proponents of 14 displayed their ideas in different 
representations with progressive sophistication (see Fig. 2.9).

Basically, the order in which the teacher nominated students to expose their 
reasoning was based on his provisional plan for the classroom discussion. In the 
course of this discussion, a student who usually struggled with mathematics said 
loudly: “I got it, I got it.” He came to the blackboard by himself and explained the 
reason why the answer should be 14 (see Fig. 2.10): “Assume the answer is 15, there 
must be two Hiroshis and it is impossible.”

This case illustrates how the alternate design generated by the teacher for the 
research lesson helped the students to come to understand the problem and to use a 
row representation for solving addition and subtraction tasks with ordinal numbers. 
The case also illustrates various design principles related to Japanese Lesson Study 
(Table 2.8).

Fig. 2.8 An intuitive (wrong) 
strategy and the emergence of 
a representation

Fig. 2.9 Several strategies resulting in 14 with variations on a row representation

Fig. 2.10 Explaining that 15 is wrong
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The reorganization of the task sequence actually challenged the students and 
created opportunities for learning. The teacher’s assessment of the students’ indi-
vidual naïve ideas allowed him to make a provisional plan for a whole-class discus-
sion of possible strategies for tackling the task. His order of nominating students to 
expose and discuss their ideas supported all students in developing an understand-
ing of the structure of the task situation and the emerging solution procedure.

2.3.3  Discussion

The cases in this section illustrate a variety of design principles and frameworks for 
task design in relation to specific starting points or learning aims. Each case shows 
how task design can start from learners with particular characteristics and needs or 
from (new) knowledge, skills, attitudes, and competences that are aimed at. The 
application of the principles to a particular content area or mathematical topic ren-
ders specific the rather general principles and frameworks for task design. The 
resulting implementation of the starting frame is domain specific, and the design 
process tells the story of converting the general to the particular. As already remarked 
in the introduction of this section, it must be said that the cases are discussed too 
briefly to do justice to the richness of the underlying theory, to the whole design and 
design process, and to the context in which the task was designed and used. However, 
the cases reflect aspects of the current state of the art in task design and offer pos-
sibilities for reflecting on the two starting questions of this section:

 (a) What do tasks look like when designed within a given theoretical frame or 
according to given design principles?

 (b) Why do they look the way they do?

Table 2.8 Design principles related to Japanese Lesson Study

Design principle Illustrated by the case

An examination of existing practices  
and instructional materials. The 
identification of an issue worth studying 
and the design of an alternative task and 
a structured lesson plan (kyozaikenkyu).

An analysis of the textbook task and a 
consideration of possible alternatives. Rearrange 
the task to evoke multiple solutions and to support 
the students in developing correct conceptions of 
ordinal situations.

Teaching the lesson. Evoke students’ 
naïve ideas and create opportunities for 
learning. Guide the students to critically 
analyze, compare, and contrast emerging 
ideas (neriage).

The teacher presents the task. After seeing how the 
students are solving the problem, he makes a 
provisional plan for them to share their work, 
starting with the more common, erroneous 
approach. Students present their reasoning at the 
blackboard and are encouraged to compare and 
discuss their ideas.

Lesson evaluation. The lesson was videotaped and afterwards discussed 
with colleagues. During the discussion, the task and 
the effects of the initial task design were evaluated.
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The cases describe a design challenge and how a framework for task design 
guides the design process and results in specific task characteristics. As such, these 
cases illuminate what is asked for with the first question. The second question is 
used to reflect on task characteristics and similarities and differences among the 
various cases. In some cases, the domain-specific implementation of a general 
framework is explicitly enriched by prior domain-specific findings. For example, 
the task design in the Conceptual Change case (case 3) is informed by previous 
research on students’ conceptions of rational numbers.

All cases have in common a view of mathematics learning as being driven by 
doing mathematics. Especially, the ATD and RME cases (cases 1 and 5) emphasize 
the importance of interpreting mathematics as a human activity. Learning mathe-
matics involves starting with students’ current understandings and aiming at extend-
ing (e.g., by using rich realistic contextual problems in ATD and RME) their 
mathematical knowledge and skills in connection with their common sense under-
standing of everyday phenomena (e.g., questioning the world in ATD).

The size of the design problem being addressed is different in the presented 
cases. Some cases offer principles to solve a local problem in an existing task 
sequence. For example, the VT case (case 2) is oriented toward improving the antic-
ipation and organization of learners’ experiences in an existing task setting. The 
Japanese Lesson Study case (case 7) focuses on improving an existing textbook 
task. Still other cases describe the design of tasks as part of a task sequence that 
covers an entire topic. For instance, the ATD describes a task as part of a design for 
cardinal numbers (case 1) and the RME case describes one task in a task sequence 
on percentages (case 5).

With respect to characteristics of the resulting tasks, we can distinguish between 
the context of the task and the learning opportunities offered by the task. Two cases 
describe explicitly characteristics of the context for the task. The ATD case (case 1) 
stresses the importance of looking for a context that offers generating questions that 
go beyond school mathematics (e.g., how to take care of silkworms?). The context 
of the task in the RME case (case 5) has a slightly different focus. It stresses the 
notion that contexts should “beg to be organized” from a mathematical perspective 
and thus evoke solution strategies that have the potential to be mathematized (from 
“model of” a situation to “model for” mathematical reasoning). The case dealing 
with Formative Assessment for Problem-Solving (case 6) asks for unfamiliar con-
texts, contexts that do not immediately refer to well-known solution procedures but 
that also provide opportunities to start solving the problem and require processes 
like planning, representing, and collaborating.

All cases have similarities with respect to the learning opportunities offered by 
the task. They all stress the importance of tasks that create opportunities to build 
upon students’ current understandings. For instance, the Conceptual Change exam-
ple (case 3) and the Conceptual Learning example (case 4) both take students’ cur-
rent ways of reasoning into account. The Conceptual Change case takes an inevitable 
misconception as starting point, while the latter case starts from a potential activity 
that is already available for abstraction. In addition, most cases reflect the principle 
that tasks offer opportunities to share initial ideas and strategies. For instance, in the 
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Formative Assessment example (case 6), students are offered sample work done by 
other students; in the Lesson Study example (case 7), students are asked to share 
their ideas at the blackboard in an order that the teacher thinks will be most condu-
cive to supporting all students in developing the intended understandings.

The cases show differences in the balance between learning opportunities aiming 
at mathematical content or aiming at more general regulative or motivational learn-
ing aims. For instance, the silkworm context in the ATD case (case 1) seems to be 
rather sophisticated in comparison with the mathematics involved, whereas the VT 
case (case 2) and the RME case (case 5) are explicitly oriented toward a specific 
mathematical object of learning. Design theories that focus on how an object  
of learning can be handled are important for helping teachers in their classrooms.  
In this respect, Variation Theory provides an effective instrument for design studies 
that also aim at promoting teachers’ professional development (Cheng & Lo, 2013).

In several cases, tasks were designed so as to foster the development of represen-
tations and models that support the learning of mathematical concepts and skills, for 
instance, the rubber band for a number line in case 3, the diagram for reasoning with 
fractions in case 4, and the row representation for reasoning with ordinal numbers 
in case 7. This feature of tasks is further utilized in task sequences that foster the 
constitution of mathematics by exploiting didactical models that emerge from the 
activity of students, as in the development of the percentages concept in case 5.

Another aspect that arises when considering all cases is the degree of “chal-
lenge” offered to the students. Not all tasks have to be very challenging, but to foster 
students’ learning, we need to provide them at some point with tasks that have (for 
them) some degree of challenge. This notion of challenge is not explicitly discussed 
in the cases presented in this section. It shows up in a somewhat incidental way in 
the discussion of VT (case 2) and of Japanese Lesson Study (case 7). Perhaps it is 
evident that tasks for students need to be challenging, but what “challenge” means 
for diverse classrooms with students having mixed abilities is not trivial at all. How 
to address this aspect in task design is an issue for future development related to 
design frameworks.

A theoretically important aspect that we can draw from the cases in this section 
is that the distinction between task design and lesson design is indeed blurred.  
In fact, the boundaries between them have been found to be extremely fluid. Almost 
all the cases presented in this section illustrated principles for task design that 
extended considerably beyond that of a task narrowly conceived as a question or 
sequence of questions proposed by a teacher or alternatively by a student. The task 
or task sequence, while treated as the main focus, was clearly conceived of within 
an orchestrated classroom activity—one where principles related to the actual class-
room processes and instructional support that would make it possible to experience 
the potential of the task(s) were explicitly included as part of the task design. Design 
as intention was inherent to these cases, even if some of them could also be charac-
terized by design as implementation. The current state of the art of task design  
in mathematics education would appear to suggest that designing a task or task 
sequence in isolation from consideration of the design of the instructional culture in 
which the task is to be integrated may be of quite limited value—somewhat analo-
gous to expecting a bird to fly with just one wing.
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Finally, in the process of moving from frameworks and principles to their actual 
application in the design of tasks, a great many decisions need to be made by the 
designer. How tasks look is largely determined by the hand of the artist! Nevertheless, 
these cases have shed some light upon the relation between these rather general 
starting points and the resulting tasks with their aimed-at learning processes.

2.4  Frameworks and Principles Do Not Tell  
the Whole Story in Task Design

2.4.1  Introduction

The two previous sections have examined the design process, and task design in 
particular, from the perspective of the frameworks and principles that have under-
pinned much of the design-oriented research in mathematics education. The par-
ticular perspective that was used was that of grand, intermediate, and domain-specific 
levels of frames—a perspective that aimed at elaborating the ways in which frames 
and task design are related. However, such frameworks and principles do not tell the 
whole story of task design. Some of the scholars and reflective practitioners who 
engage in task design see it as being a much more eclectic activity than has been 
suggested thus far. In addition, several factors have not yet been accounted for in the 
design process, such as its artistic and value-laden aspects. With the aim of provid-
ing a more balanced picture of the state of the art, this section of the chapter 
addresses task design from a variety of other perspectives, including the tension 
between design as science and design as art and the lens of “basic” versus “applied” 
research. Elaborating on these various perspectives opens up the idea of the value of 
collaborative work across different groups and leads to a discussion of some of the 
recent collaborative efforts in task design across professional communities.

2.4.2  Additional Factors Related to Task Design

2.4.2.1 The Tension Between Design as Science and Design as Art

In the educational design community at large, there is a tension between centripetal 
and centrifugal forces. Centripetal forces urge stasis and system and desire consis-
tency. Centrifugal forces urge change and feed the need for diversity (Clark & 
Holquist, 1986). The yin and yang of such forces are at work in the world of the 
educational design community. Schein (1972) characterized science and practice as 
“convergent” and “divergent”, respectively, and remarked that there is a gap between 
the two. Schoenfeld (2009) saw a similar gap between the theoretical aims of edu-
cational research and the practical aims of designers and consequently recom-
mended the unpacking of designers’ productive practices and a sharpening of the 
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notion of professional vision—an elaboration that would be of value not only to the 
design community itself but also to educational design researchers. In addition, he 
pointed to the mutual benefits to be derived from the collaboration of the educa-
tional researcher and the designer-practitioner.

In contrast to proponents for delineating the explicit and rational frameworks and 
principles for task design, some colleagues insist that educational design research 
cannot help to sharpen the notion of professional vision. According to de Lange 
(2012), educational design research hardly offers usable knowledge for designers 
and practical suggestions for design nor does it offer a theoretical underpinning for 
educational design at the microlevel. De Lange (2013; also Chap. 10) argues that 
this limitation of theory is due to the artistic aspects of task creation. He underlines 
his reasoning by quoting Hilton (1976):

Since mathematics [analogous to educational design theory/science] incorporates a system-
atic body of knowledge and involves cumulative reasoning and understanding, it is to that 
extent a science. And since applied mathematics (analogous to the actual practice of design-
ers) involves choices which must be made on the basis of experience, intuition, and even 
inspiration, it partakes the quality of art. (p. 95, emphasis added)

It thus comes as no surprise that some educational designers prefer the powers 
that inhere in centrifugal forces: design activity in flux, simultaneity, diversity, and 
heterogeneity. Moreover, according to Schunn (2008), the educational design com-
munity has no communal mechanisms for codifying craft knowledge. Codifying 
design thinking is said to threaten its central value of flexibility (Collopy, 2009). 
Schön (1983) explicitly challenged the positivist doctrine underlying much of the 
design science movement and offered instead a constructivist paradigm. He criti-
cized H.A. Simon’s view of a science of design for being based on approaches to 
solving well-formed problems, whereas professional practice throughout design 
and technology and elsewhere has to face and deal with “messy, problematic situa-
tions”. As pointed out by Cross (2001), Schön proposed instead to search for “an 
epistemology of practice implicit in the artistic, intuitive processes which some 
 practitioners do bring to situations of uncertainty, instability, uniqueness, and value 
conflict” and which he characterized as “reflective practice” (p. 54).

Based on his personal reflection, including experiences with the HEWET project 
(1981–1985), which involved designing a quite new Dutch secondary mathematics 
course (Wiskunde A—Mathematics A) for humanity and social majors, de Lange 
(2013) describes what he refers to as a “slow design process.” A slow design process 
involves several cyclic stages with rich partnership among researchers, designers, 
teachers, and students. It includes: selecting the subject, duration, and level; design-
ing a mental sketch of flow while using intuitions; choosing a context for mathema-
tization with the help of inspirations gained from random search; refining the design 
for a classroom experiment; discussing with experienced teachers; observing class-
room activities and checking students’ reactions while walking around; taking dis-
crepancies between “intended” and “achieved” seriously; and concentrating on 
essential conceptual development. According to de Lange, slow design is possible 
under the following conditions: freedom of choice of what to design, freedom in 

2 Frameworks and Principles for Task Design

http://dx.doi.org/10.1007/978-3-319-09629-2_10


64

time, freedom of thought, and freedom to explore with certain restrictions according 
to contextual and theoretical conditions.

To illustrate the slow design process, de Lange (1979) has described an example 
related to the topic of “Exponentials and Logarithms” for humanity and social 
majors, the design of which was guided by the philosophy of Realistic Mathematics 
Education. He progressively designed a task situation that functions as a model for 
a mathematical concept (de Lange, 1987). In this situation, “propagation of water 
plants” is chosen as the introductory task situation and the concept of logarithm is 
defined by growth factor and time: log310 is defined as the time needed to get 10 
times the spread of water plants when the growth factor per month is 3 (i.e., a bit 
more than 2 months). With this situation and language in mind, students can inter-
pret basic logarithmic relations such as log log3 310 1 30+ =  as follows: with this 
1 extra month, you get 3 times more than 10, which equals 30. Experimental text-
books were developed to elaborate, try out, and optimize this approach (de Lange & 
Kindt, 1984); eventually, the approach entered Dutch curriculum descriptions and 
was adopted by commercial textbooks (e.g., Boer et al., 2004, p. 30).

De Lange (2013) argues that such a design and implementation process asks for 
slow design. It illustrates the need for extensive design processes that can do justice 
to both scientific and artistic aspects of task design. The tension between design as 
science and design as art is not easily solved, if it can be solved at all, and empha-
sizes a reconsideration of the time allocated for task design in educational research 
and in curriculum innovation projects.

2.4.2.2 Values in Task Design

Frameworks and principles for task design will vary relative to philosophies of 
mathematics education. Different philosophies of mathematics education mediate 
different values with respect to task design. Ernest (1991) distinguishes four sets of 
issues related to one’s philosophy of mathematics education: the philosophy of 
mathematics, the nature of learning, the aims of education, and the nature of teach-
ing. In this regard, Burkhardt (2014) points out that different groups of people have 
different priorities with respect to curricular aims or goals in mathematics: “basic 
skills people”, “mathematical literacy people”, “technology people”, and “investi-
gation people”. Likewise, Treffers (1987) distinguished four trends in instructional 
approaches to mathematics in terms of “horizontal” and “vertical” mathematiza-
tion: mechanistic, empiricist, structuralist, and realistic, with each instructional 
approach drawing upon different psychological backgrounds—Gagné’s cumulative 
learning for the mechanistic, Piaget’s constructivism for the empiricist, Bruner’s 
modes of representation for the structuralist, and Gestalt psychology for the 
realistic.

The role of values in task design is illuminated by contrasting the approaches 
described in two recent studies that were presented at the ICMI Study-22 Conference 
on Task Design: Concept-development task design by Koichu et al. (2013) and 
Competence-based task design by Aizikovitsh-Udi, Clarke, and Kuntze (2013). 
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In the first study, based on Variation Theory, the task designer values delineating a 
variation space for the intended object of learning by eliminating or excluding 
hindering experience factors. This is done to direct the learner’s attention to certain 
aspects that constitute the defining characteristic of the concept. In the second study, 
the competence-based task design proposes the idea of a “hybrid task” that stimu-
lates different forms of thinking through a single task: the discipline-specific think-
ing of statistics and more generic forms of higher-order thinking, such as critical 
thinking. A hybrid task is characterized as having a structure that can offer to the 
learner superfluous and sometimes contradictory information. These two examples 
serve to illustrate that the frames and principles used in task design are intimately 
related to aims of mathematics education, which can in turn prioritize either the 
acquisition of conceptual and procedural knowledge or competence in dealing criti-
cally with information. A somewhat different perspective on the role of values in 
task design is exemplified by the explicit integration of “educating for values” into 
the teaching of mathematics. For instance, Movshovitz-Hadar and Edri (2013) con-
ducted a multifaceted study to investigate the possibilities of combining social and 
personal values like equity, tolerance, social justice, rationality, and achievement 
and reaching one’s intellectual potential—all within a designed approach to learn-
ing mathematics (see Chap. 5 for an elaborated example).

2.4.3  Diversity of Design Approaches Through the Lens 
of Basic Versus Applied Research

2.4.3.1 A Two-Dimensional Scheme for Classifying Research

In describing diverse approaches to task design, a useful perspective is offered by 
Schoenfeld’s (1999) text on the synergy between theory and applications. Here he 
discusses the productive dialectical relationship between pure and applied work in 
education and makes use of Stokes’s (1997) two-dimensional scheme of research  
in science and technology (see Fig. 2.11). Despite its formulation for the field of 
science, its applicability to the area of task design in mathematics education makes 
it of interest, especially with respect to situating the purely artistic position on task 
design as well as informing a potential bridging between the design-as-science and 
design-as-art tensions that were previously discussed.

In the two-dimensional representation, Niels Bohr and Thomas Edison are 
located as paradigmatic figures of pure basic and pure applied research. Louis 
Pasteur is located differently, as the paradigmatic figure of “use-inspired basic 
research”: he not only engaged in germ theory for solely basic biological interests 
but was also motivated by problems of spoilage of drinks and curing diseases.

By its nature, educational research generally and educational design research 
especially aim at conducting “use-inspired basic research.” According to McKenney 
and Reeves (2012): “Educational design research describes a family of approaches 
that strive toward the dual goal of developing theoretical understanding that can be of 
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use to others while also designing and implementing interventions to address prob-
lems in practice” (p. 17). However, in the development of educational research, it may 
be difficult for any work to contribute simultaneously to both theory and practice: 
“Sometimes the state of theory is such that it may best be nurtured, temporarily, aside 
from significant considerations of use; sometimes the need to solve practical prob-
lems seems so urgent that theoretical considerations may be given secondary status” 
(Schoenfeld, 1999, p. 9). In his seminal work on problem-solving, Schoenfeld (1985) 
describes the dialectical relationship of give and take between theory and practice. 
Purely theoretical research in a laboratory setting can suggest some substantial ideas 
for designing practical courses in problem-solving and vice versa; actually teaching a 
course can raise theoretical issues to be pursued in an experimental setting. In order 
to have a relatively comprehensive “use-inspired basic research”, it is necessary to 
move between such carefully designed laboratory settings and those settings that rep-
resent daily teaching practice.

2.4.3.2  Design Frames in the Light of Distinctions Between Basic 
and Applied Research

The principles and frameworks for task design that were described in earlier sec-
tions of this chapter in terms of levels of, or rootedness in, theory could alternatively 
be characterized according to their situatedness with respect to basic and applied 
research. In this spirit, we explore the use of the Stokes two-dimensional scheme as 
a lens for reflecting upon some of the various task design frames that were presented 
in Sect. 2.3 but in an alternative, albeit complementary, light.

Adherents of Variation Theory (VT) can be associated with the “basic research” 
cell of Stokes’s two-dimensional scheme. A paradigmatic example is the research 
aimed at identifying the critical features of designated objects of learning and at 

Fig. 2.11 Stokes’s (1997, p. 73) quadratic scheme for categorizing science research (Copyright 
1997 by the Brookings Institution)
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ensuring that the designed task situations impart these critical features (Koichu, 
2013). As pointed out by Cheng and Lo (2013), designers “must first identify a 
worthwhile object of learning and the critical features that the students must discern 
in order to see the object of learning in the intended way; they would then design 
patterns of variation (what to vary and what to keep invariant) to help the students 
to discern the critical features/aspects” (p. 10). Clinical observations in a laboratory 
setting are often used for identifying the affordances of task variations (see the VT 
case in Sect. 2.3). Such studies illustrate the complex relationships among the 
intended, enacted, and lived objects of learning and the need for clinical research 
settings to investigate these relationships. Task design for Conceptual Change (Van 
Dooren et al., 2013) and Conceptual Learning through Reflective Abstraction 
(M. Simon, 2013) are also associated with “basic research.” These two frames rely 
on laboratory and clinical settings for studying the kind of experiences a task affords 
and the extent to which those experiences are beneficial for conceptual change and 
salient abstraction, respectively.

The Japanese Lesson Study (LS) approach to task design, which is based on 
deep craft knowledge and expertise, can be located in the “pure applied research” 
cell. It does not aim at developing substantial theoretical understanding. Rather, LS 
aims at teachers’ professional development through kyozaikenkyu (Fujii, 2013): 
building up insights into children’s learning trajectories, decision-making compe-
tency with respect to carrying out tactical interventions during classroom interac-
tions, organizing provocative discourse, establishing a productive classroom 
microculture, and so forth. The setting of LS in daily teaching practice mediates the 
activity of the various participants involved in LS and leads to the co-construction 
of deep craft knowledge.

Research frames such as the ATD and Realistic Mathematics Education (RME) 
can be viewed as paradigmatic examples of the “use-inspired basic research”. Both 
paradigms can contribute simultaneously to theory and practice—the contributions 
to theory occurring especially during the early period of development of these 
intermediate- level research frames, as well as during their later application phases 
when the intermediate-level frame is particularized to the learning of domain- 
specific concepts and processes. ATD-based task sequences, or study research 
paths, are developed and implemented across many years of schooling from pre- 
primary to university. Many of the ATD-based tasks are characterized as open- 
ended mathematical modeling activities that address social issues. Likewise, RME 
has served in the development of different types of curriculum projects at all school 
levels varying from kindergarten (e.g., van Nes & Doorman, 2011) to upper sec-
ondary education (e.g., Doorman & Gravemeijer, 2009). As well, rich RME-based, 
problem-solving, assessment tasks (A-lympiade and Math B-day) are elaborated 
and implemented annually by teachers in their daily practice (Goddijn, 2008; 
Goris, 2006).

As a means of fostering further development of design principles that might 
contribute simultaneously to theory and practice, as well as exploring whether in 
fact some of the more theory-oriented and more practice-oriented frames for task 
design are in fact amenable to joint articulation, some researchers (e.g., Artigue, 
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Cerulli, Haspekian, & Maracci, 2009; Artigue & Mariotti, 2014; Kieran, Krainer,  
& Shaughnessy, 2013) have already begun to study the ways in which different groups, 
cultures, and communities work together productively on advancing such issues.  
As has been suggested by the examples in the previous paragraphs, basic laboratory 
research in VT, Conceptual Change, and Concept Learning can reveal some sub-
stantial ideas of potential interest to designers with a practical research orientation. 
Conversely, difficulties and dilemmas that have emerged in actual Lesson Studies 
raise salient theoretical issues that could be pursued in less complex clinical set-
tings. Immediately below, we address collaborative work across professional com-
munities, work that has begun to grapple with the theoretical-practical interface of 
design activity.

2.4.4  Design Activity Across Professional Communities

2.4.4.1  The Stakeholder Approach as a Foundation for Thinking  
About Collaborative Design Activity

In order to realize collaboration across the research and teaching communities (as 
well as collaboration involving the educational researcher and the educational 
designer-practitioner), a wise strategy is to establish a transparent context between 
researchers and practitioners, not forgetting that some practitioners are researchers 
themselves. A provisional theoretical perspective would be Krainer’s (2011) notion 
of the stakeholder approach, which avoids privileging theory over practice in the 
design process. According to Krainer, the term stakeholder approach is intended to 
capture the idea that teachers are key stakeholders in the design research enterprise, 
not mere users of research. It is teachers who are in a position to achieve one of the 
main purposes of that enterprise, which is the improvement of students’ learning of 
mathematics. Developing a stakeholder approach is central to establishing the kind 
of collaboration between these two communities that will facilitate mathematical 
learning with rich task design. Krainer asserts that researchers should highlight 
teachers’ reflective and creative practice and offer viable opportunities that encour-
age them to get interested in being involved in such research. The stakeholder 
approach asks of task design not what but where it is. With this approach, task 
design is situated in the interaction between practitioners and researchers.

2.4.4.2 Task Design Involving Practitioners and Researchers

In Sects. 2.2 and 2.3, our attention was fixed on the nature of the frameworks and 
principles used in the activity of task design research, without focusing on the nature 
of collaborative work in this area. We now take a closer look at this aspect and dis-
cuss some recent design efforts involving cross-community collaboration. A few of 
the research papers presented at the ICMI Study-22 Conference on Task Design 
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reflected a rethinking of the boundaries between theory and practice and the relative 
roles of researchers and practitioners (e.g., Ding et al., 2013; Morselli, 2013; Ponte 
et al., 2013; Stephan & Akyuz, 2013). Ding and her colleagues report on the process 
of design and implementation of tasks within a team consisting of academic 
researchers, teachers, and a teacher educator who was also an expert teacher, in a 
school-based teacher professional development program in Shanghai, China. In 
their report (Ding et al., 2013), they highlight, in particular, the role played by the 
expert teacher, who contributed to the development of a “hypothetical learning 
structure” for a particular topic (decimal value) and to creating tasks within a web-
like structure of knowledge constructions.

Morselli (2013) describes a collaborative project aiming at designing, experi-
menting, and refining task sequences for a smooth and meaningful approach to 
proof in lower secondary school in Genoa, Italy. The project was supported by an 
initiative of the Italian Ministry of Education aimed at fostering and stimulating 
young students’ interest in studying science. Within this context, collaborative work 
between university researchers and school teachers was set up. Teams were created 
for each school level and these teams met regularly in order to share theoretical 
references on argumentation and to discuss theoretical tools and their didactical and 
methodological potential. Productive cycles of task design, experimentation, analy-
sis, refinement, and modification emerged.

Ponte et al. (2013) address the design of exploratory tasks that were developed 
and implemented in collaboration between researchers and a group of teachers in 
Lisbon, Portugal. A new mathematics curriculum for basic education required 
teachers to develop and use exploratory tasks designed to support students’ mathe-
matical reasoning and the growth of their problem-solving abilities. With such an 
institutional context, developmental work on task design was conducted by using a 
combination of research expertise and classroom teaching expertise. The team 
started with an overall plan for a teaching unit, which included the formulation of 
the learning objectives, assumed previous knowledge of students, time available, 
and organization of a schedule. Tasks were later selected to fit the overall planning 
of the teaching unit, followed by a dialectical movement of adjustments at the mac-
rolevel of the unit and at the specific level of the tasks. Usually, the first idea for an 
exploratory task was provided by a classroom teacher, and the subsequent refine-
ment was carried out in interaction with the other teachers and researchers.

Stephan and Akyuz (2013) describe a design study involving a collaborative 
community in one middle school, consisting of two mathematics teachers, a special 
education teacher, a researcher, and a graduate student. After the researcher intro-
duced the main idea of the hypothetical learning trajectory (HLT), the members of 
the collaborative group worked together to create a six-phase instructional 
sequence, based on RME heuristics, for the learning of integers and integer opera-
tions (see also Sect. 2.2.2.4). The community met on several occasions before 
instruction began and then almost daily throughout the implementation. The piv-
otal contributions of various members of the group included anticipating support-
ive mathematical imagery, creating challenging formative assessment, using their 
mathematical knowledge to alter the instructional sequence, and working and 
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revising already created tasks or the sequence of the instruction. This collaborative 
research showed that, “during the implementation of the instruction, the practitioners 
began to discuss more theoretical issues while the researchers began to think more 
about teaching practices” (Stephan & Akyuz, 2013, p. 515).

In introducing this discussion on cross-community design activity, we were 
reminded of Krainer’s (2011) elaboration of the stakeholder approach and the 
related query that it is “not what task design is, but where it is situated” that needs 
to be considered. The design projects that have just been exemplified and which 
integrated the cross-professional communities of practitioners, researchers, and, in 
some cases, teacher educators allow us to respond more fully to this query. 
Sections 2.2 and 2.3 situated task design in the nexus between principles and frame-
works and their application to particular content areas or mathematical topics. The 
above collaborative projects have succeeded in showing that task design is also situ-
ated both in the interactions among its cross-community participants and in the 
interface between theory and practice.

2.4.5  Toward the Resolving of Perceived Tensions

By examining a variety of alternative perspectives, this section of the chapter has 
touched upon a range of additional factors affecting task design and its diversity—
factors that might suggest a certain inherent tension between opposing forces—but 
at the same time has offered avenues for resolving the perceived tensions. These 
alternative perspectives have allowed us to see that the structured frameworks and 
principles that characterize much of the design research in the mathematics educa-
tion research community do not capture the eclectic nature of design activity as 
engaged in by some of its scholars. For example, some of the proponents of design 
as art espouse a quite different set of starting points from the proponents of design 
as science. At the heart of this tension, as we have noted, is Schön’s (1983) criticism 
of H.A. Simon’s view of a science of design as being based on approaches to solving 
well-formed problems, whereas professional design practice has to deal with 
“messy” problems. With positivist approaches to design practice being found to be 
of limited utility during the 1980s (Lincoln & Guba, 1985), design had to be recon-
sidered as a process in which uncertainty must be grappled with. Artigue (2009) 
reminded us of this when she remarked that theory-based intervention programs 
have faced difficulty because of the many design factors that are not under theoreti-
cal control.

As was seen, one of the ways of approaching this dilemma is to consider the 
practitioner as a full actor in the design process. The stakeholder approach (Krainer, 
2011) embodies this perspective but also acknowledges that there are significant 
differences in the guiding principles specific to different communities. Stokes’s 
(1997) two-dimensional scheme enabled us to situate various orientations in design 
research, including design activity that is motivated as much by artistic as by 
 theoretical concerns. As was also seen in this section, frameworks and principles 

C. Kieran et al.



71

constitute a communal practice of task design, with innovation and use of specific 
frameworks and principles for task design being a reflexive activity. By means of 
interaction among diverse cultures and communities, frameworks and principles are 
progressively developed in the light of task implementation. Therefore, the interac-
tions between diverse communities and the concomitant grappling with diverse 
design principles would seem crucial to moving forward in the area of design. 
However, such interactions may not be straightforward or easy to orchestrate.  
As pointed out by Artigue and Mariotti (2014) in their discussion of the networking 
efforts engaged in by researchers from different cultures in the ReMath project: 
“[When] the possibilities of networking are examined in terms of potential for guid-
ing design, … the activity is much more demanding … [but can be] especially 
insightful; … such advances are especially important considering that design in 
mathematics education lies at the interface between theory and practice” (pp. 350–351). 
Although collaboration involving the diverse actors engaged in the enterprise of 
task design in mathematics education may be challenging, the process can yield not 
only an enhancement of the quality of the designed tasks and task sequences but 
also a narrowing of the perceived divide between design as artful practice and 
design as theory building. Recall Stephan and Akyuz’s (2013) earlier remark: “It is 
interesting to note that during the implementation of the instruction, the practitio-
ners began to discuss more theoretical issues while the researchers began to think 
more about teaching practices” (p. 515).

2.5  Concluding Discussion: Progress Thus Far  
and Progress Still Needed

The objective of this chapter was to give an overview of the current state of the art 
related to frameworks and principles for task design so as to provide a better under-
standing of the design process and the various interfaces between teaching, research-
ing, and designing. The chapter started with a description of the history of task 
design in mathematics education. The 1970s reflected the beginnings of the new 
community of mathematics education researchers’ efforts to grapple with the inter-
action between curriculum materials and the quality of mathematical teaching and 
learning. We noted, for example, that Alan Bell was one of the first colleagues who 
explicitly referred to the importance of design principles for the transition from a 
situation that embodies the concepts and relations of the conceptual field to the 
design of tasks that bring into play these concepts and relations.

What progress have we—as a community—made over the past four decades? 
This chapter has described in which directions we have made some progress in 
understanding and articulating aspects related to task design. These aspects have 
included aims, levels, communities, and values that influence and are influenced by 
frameworks and principles for task design in educational practice and in educational 
research. Topics that were addressed related to levels of frameworks for task design, 
the distinction between theories as resource for and as product of design research, 
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the tension between design as science and design as art, and the relations among the 
professional communities that develop and use specific frameworks for task design. 
So what have we learned about this field, about the topics, and about ourselves, as a 
result of coming together at the ICMI Study-22 Conference and developing this 
chapter on frameworks and principles?

One aspect that became more clear concerns the nature and levels of the frames 
that guide the process of task design. Using the lens of grand, intermediate, and 
domain-specific levels allowed us to see that our frames tend to be either holistic or 
multidimensional in nature. That is, the inspiration for our designs can come pri-
marily from one quite global, intermediate-level framework (e.g., TDS, ATD, VT) 
or from a constellation of theories of different levels and different types (e.g., the 
various examples of domain-specific frames for the learning of particular concepts 
or processes). We saw that drawing from a combination of theoretical foundations 
can present advantages that may not be available when we rely on just one overall 
frame and its design tools—advantages such as being able to delineate not only a 
broad set of principles for the design of tasks or task sequences but also a related set 
of principles for the design of the instructional culture in which the task is to be 
integrated. In fact, a significant number of the task design studies presented within 
the conference theme group on principles and frameworks relied upon principles for 
task design that extended considerably beyond that of a task narrowly conceived. 
While the task or task sequence was seen as being central, it was clearly viewed as 
taking place within an orchestrated classroom activity—one where principles 
related to the actual classroom processes and instructional support that would make 
it possible to experience the potential of the task were explicitly included as part of 
the task design. Thus, the distinction between task design and lesson design was 
found, indeed, to be quite blurred.

Another aspect that has emerged is that theories are both a resource for and a 
product of the design process. As a resource, they provide theoretical tools and prin-
ciples to support the design of a teaching sequence. As a product of design research, 
theories inform us about both the processes of learning and the means that have 
proven to be effective for supporting that learning. Related to this dual role of theory 
is the distinction between design as intention and design as implementation—design 
as intention addressing specifically the initial formulation of the design and design 
as implementation focusing attention on the process by which a designed sequence 
is integrated into the classroom environment, subsequently refined, and then theo-
rized about. This distinction highlights the relative nature of the significance given 
to the design of the task sequence or task itself within the design process.

Although the major part of this chapter has been devoted to the theoretical frames 
that underlie task design, not all design is based on theory. The Lesson Study frame 
is a classic example of craft-based task design based on teaching practice, one where 
teachers with their deep, experiential knowledge are central to the process. 
Fundamental to teachers’ ability to design, implement, and study high-quality math-
ematics lessons is a detailed, widely shared conception of what constitutes effective 
mathematics pedagogy and professional development. The planning of the research 
lesson, which is the main component of Lesson Study, includes not only the task and 
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its materials but also anticipated student thinking, the teacher’s planned questioning 
and intervention activities, and the points to be noticed and evaluated.

At the same time, we have become aware that the grain size for describing 
principles for task design is an area for further reflection and development. While 
the cases presented in this chapter took account of principles related to grand, inter-
mediate, and domain-specific levels of theories, as well as instructional and tool-
related principles, the work of the educational designer Kali (2008) suggests the 
feasibility of considering, and possibly integrating, a much finer grain size of levels 
of principles into our design work. We are reminded of the critical question that, 
according to Cobb et al. (2003), must be asked of our frames, that is, whether their 
principles inform prospective design and, if so, in precisely what way. As seen in 
Sect. 2.3, current work in task design indicates that there is a great deal of variation 
in the nature of the principles and heuristics being adopted for task design, with only 
a few points of convergence across the broad set of principles informing task design. 
Many of the principles tend to be phrased in rather general terms that are subject to 
broad interpretation and thus cannot be said to inform prospective design in highly 
specific ways. Clearly, further theoretical work on grain size of principles for task 
design is needed. For example, in applying general task design principles to the 
learning of particular mathematical content areas or reasoning processes, being 
more explicit with respect to the way in which past research in that area is being 
woven into the design of the task or task sequence would surely be useful.

Tasks play a crucial role in forwarding the process of improving the educational 
system. While, for instance, in the mathematics education community, competen-
cies like creativity, critical thinking, and problem-solving are highly valued, tasks 
presented by high-stakes examinations tend to address basic skills. Such examina-
tion tasks largely determine the types of tasks that are used in classrooms. Curriculum 
innovation can be moved forward with illustrative alternative tasks and explicit 
attention to the underlying principles and frameworks used to design them, without 
losing consideration of skill development, fluency, and flexibility. A vital compo-
nent often missing in curriculum innovation documents is the vivid exemplification 
that is necessary to show exactly what tasks might look like and how they relate to 
improving teaching and learning.

In addition, current changes in educational systems and trends in mathematics 
education ask for a reconsideration of design principles. Trends in education that are 
related to task design are, for instance, beginning to show an increasing focus on 
interdisciplinarity and authentic practices. Trying to better connect mathematics 
education to other subjects like physics, biology, and economics requires a recon-
sideration of the role of contexts and bridging concepts. A serious consideration of 
the use of authentic practices and the world of work in mathematics education calls 
for tasks with a purpose and utility, shifting from solving a school mathematics 
problem to asking for a product as a final result. New task characteristics emerge 
and others might become less relevant in the near future.

From this Study conference and its follow-up exchanges and research for the 
preparation of this chapter, we have also learned that knowledge about design grows 
in the community as design principles are explicitly described, discussed, and 
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refined. Although the papers presented within the Principles and Frameworks theme 
group of this conference all specified the frames and principles underlying their 
designs and illustrated how these were being implemented in the resulting tasks, 
such is not common in the majority of papers presented at mathematics education 
research conferences (Sierpinska, 2003). Despite the recent growth spurt of design 
studies within mathematics education, the specificity of the principles that inform 
task design in a precise way remains both underdeveloped and, even when some-
what developed, underreported. A possible obstacle that stands in the way of speci-
ficity can be traced to length constraints on published papers and the extended 
amount of space that the provision of specific details requires. Were it not for web-
sites such as Educational Designer (http://www.educationaldesigner.org), there are 
few avenues for presenting the explicit and detailed thinking that lies behind the 
final versions of designed tasks. Nevertheless, it seems reasonable to expect that 
mathematics education researchers could be more explicit in their published 
research papers about the principles that underlie the tasks they design for their 
research studies. Clearly, more work remains to be done in encouraging such prac-
tice. This chapter provides a starting point for future efforts that aim at a further and 
deeper investigation of task design, its frameworks, and its principles, so that design 
might become a mature element in mathematics education research and practice.
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