
Continuous Aggregation

in Dynamic Ad-Hoc Networks�

Sebastian Abshoff and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{abshoff,fmadh}@hni.upb.de

Abstract. We study a scenario in which n nodes of a mobile ad-hoc
network continuously collect data. Their task is to repeatedly update
aggregated information about the data, e.g., the maximum, the sum, or
the full information about all data received by all nodes at a given time
step. This aggregated information has to be disseminated to all nodes.

We propose two performance measures for distributed algorithms for
these tasks: The delay is the maximum time needed until the aggregated
information about the data measured at some time is output at all nodes.
We assume that a node can broadcast information proportional to a
constant number of data items per round. A too large communication
volume needed for producing an output can lead to the effect that the
delay grows unboundedly over time. Thus, we have to cope with the
restriction that outputs are computed not for all but only for a fraction
of rounds. We refer to this fraction as the output rate of the algorithm.

Our main technical contributions are trade-offs between delay and
output rate for aggregation problems under the assumption of T -stable
dynamics in the mobile ad-hoc network: The network is always connected
and is stable for time intervals of length T ≥ c ·MIS(n) where MIS(n) is
the time needed to compute a maximal independent set. For the maxi-
mum function, we are able to show that we can achieve an output rate
of Ω(T/(n · MIS(n))) with delay O(n · MIS(n)). For the sum, we show
that it is possible to achieve an output rate of Ω(T 5/2/(n2 · MIS(n)3))
with delay O(n2 ·MIS(n)2/T 3/2) if T = O(n2/3 ·MIS(n)2/3), and if T =
Ω(n2/3 ·MIS(n)2/3), we can achieve an output rate of Ω(T/(n ·MIS(n)2))
with delay O(n ·MIS(n)).

Keywords: Dynamic Networks, Aggregation, Token Dissemination.

1 Introduction

There are various devices that communicate wirelessly with each other and ob-
serve their environment. For example, many smartphones are able to commu-
nicate with close-by smartphones via technologies such as Bluetooth, WiFi, or

� This work was partially supported by the German Research Foundation (DFG)
within the Priority Program “Algorithms for Big Data” (SPP 1736), by the EU
within FET project MULTIPLEX under contract no. 317532, and the International
Graduate School “Dynamic Intelligent Systems”.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 194–209, 2014.
c© Springer International Publishing Switzerland 2014

Continuous Aggregation in Dynamic Ad-Hoc Networks 195

Near Field Communication. In addition, these smartphones are equipped with
more and more sensors nowadays, e.g. accelerometers, magnetometers, gyro-
scopic, light, temperature, pressure, and humidity sensors to name only a few.
In this paper, we consider a scenario where these devices have to form an ad-hoc
network to process the huge amount of data collected by their sensors. The links
in such a network are unstable and they change over time, and thus, the network
is dynamic – especially, if the nodes are mobile. We are interested in providing
all nodes of the network with aggregated information about their sensor data.

We model the ad-hoc network as a T -stable dynamic network, which is con-
trolled by an adaptive adversary (as introduced by Haeupler and Karger [7]).
This adversary is able to change all edges of the network every T rounds, but is
restricted to give a connected network. The set of nodes is fixed and nodes have
unique IDs. A message of O(log n) bits sent by some node in some round r is
delivered to all its neighbors in the graph of the following round r + 1.

In this adversarial model, we study two aggregation problems: the extremum
problem (e.g., the maximum) and the summation problem (e.g., the sum). Here,
the nodes are given inputs (e.g., integers) and they have to compute a function
of all inputs of the network. While both problems can be solved with existing al-
gorithms for dissemination problems, which allow for full reconstruction of each
input, we show that they can be solved faster with algorithms that aggregate
information within the process. For this purpose, we exploit certain properties
of the binary operations used to define the problems. For speeding up the sum-
mation, we make use of the commutativity and associativity, and we exploit the
additional idempotence of the extremum which makes the problem simpler.

Our main focus lies on continuous versions of these problems where nodes
receive a new input in each round and have to compute a function of all inputs
for a single round. Here, we refer to the delay of an algorithm as the maximum
number of rounds between the round when inputs arrive at all nodes and the
round the last node outputs the result of the function of these inputs. We are
interested in algorithms that have a high output rate, i.e., algorithms that output
as many results for different rounds at all nodes as possible. One way to continu-
ously produce outputs is to start the execution of the non-continuous algorithm,
output one result and restart the execution of the algorithm again to produce
the next result. However, we show how to use a pipelining technique to increase
this trivial output rate but only slightly increase the delay.

1.1 Our Contribution

In static networks, all three (non-continuous) problems can be solved in a linear
number of rounds (cf. Section 4). The continuous variants of the extremum and
summation problem can be solved with constant output rate, and the continuous
dissemination problem with rate Ω

(
1
n

)
while all delays remain linear. Note that

these results are asymptotically tight in static networks.
For 1-stable dynamic networks, we show that the (non-continuous) extremum

problem still can be solved in a linear number of rounds (cf. Section 5). To
solve the other problems, we assume T ≥ c · MIS(n) where c is a sufficiently

196 S. Abshoff and F. Meyer auf der Heide

large constant and MIS(n) is the number of rounds required to compute a
maximal independent set in a graph with n nodes (note that there are some
restrictions under which this maximal independent set must be computed, cf.
Section 5.1). Compared to the (non-continuous) dissemination problem, we are
able to solve the (non-continuous) summation problem T

MIS(n) times faster if

T = O(
√
n ·MIS(n)), and if T = Ω(

√
n ·MIS(n)), this problem can be solved

in a linear number of rounds. For the continuous extremum and summation
problem, we prove non-trivial output rates, i.e., output rates that are higher
than these obtained by executing the non-continuous algorithms over and over
again. For the continuous extremum problem, we thereby increase the delay only
slightly. If T = O(n2/3 MIS(n)2/3), we can achieve the same delay and a slightly
smaller output rate for the continuous summation problem compared to the ex-
tremum problem. Besides these deterministic results (cf. Table 1), we show in
the corresponding sections how randomization helps to improve these results.

Table 1. Overview about the deterministic results shown in this paper

(a) Static Networks.

Extremum Summation Dissemination

non-continuous

Running Time: O(n) O(n) O(n)

continuous

Delay: O(n) O(n) O(n)

Output Rate: Ω(1) Ω(1) Ω
(
1
n

)

(b) T -Stable Dynamic Networks with T ≥ c ·MIS(n).

Extremum Summation Dissemination

non-continuous

Running Time:

if T = O(
√

n ·MIS(n)) O(n)
O

(
n2·MIS(n)

T2

)

O
(

n2

T

)

if T = Ω(
√

n ·MIS(n)) O(n)

continuous

Delay:

if T = O(n2/3 MIS(n)2/3) O(n ·MIS(n))
O

(
n2·MIS(n)2

T3/2

)

O
(

n2

T

)

if T = Ω(n2/3 MIS(n)2/3) O(n ·MIS(n))

Output Rate:

if T = O(n2/3 MIS(n)2/3)
Ω

(
T

n·MIS(n)

) Ω
(

T5/2

n2·MIS(n)3

)

Ω(T
n2)

if T = Ω(n2/3 MIS(n)2/3) Ω
(

T
n·MIS(n)2

)

Continuous Aggregation in Dynamic Ad-Hoc Networks 197

2 Models and Problems

We adapt the dynamic network model from Haeupler and Karger [7]: A dynamic
network is a dynamic graph Gr, which consists of a fixed set of n nodes. Each
node has a unique ID that can be encoded with O(log n) bits. Time proceeds in
discrete, synchronous rounds. An adaptive adversary chooses a set of undirected
edges Er defining the graph Gr = (V,Er) for round r. This adversary is only
restricted to choose a connected graph in each round. In each round r, each node
can send a message of Θ(log n) bits, which is delivered to all neighbors in the
graphGr+1 in the following round r+1. The computational power of each node is
unbounded. A dynamic network is called T -stable if the adversary is restricted to
change the network only once every T rounds. We assume throughout the paper
that T ≤ n. Furthermore, we assume that the nodes know both values T and
n. Note that T -stability is a stronger assumption than T -interval connectivity
that has been proposed by Kuhn et al. [12] because T -interval connectivity only
requires a stable spanning subgraph for T rounds.

We study the following three (non-continuous) aggregation problems.

Problem 1 (Extremum). Let (S,+) be a commutative and idempotent semi-
group and let the elements of S be representable with O(log n) bits. Each
node i in the network receives as input an element xi ∈ S. Let f be de-
fined by f(x1, x2, . . . , xn) :=

∑n
i=1 xi. All nodes of the network have to output

f(x1, x2, . . . , xn).

Problem 2 (Summation). Let (S,+) be a commutative semigroup and let the
elements of S be representable with O(logn) bits. Each node i in the network
receives as input an element xi ∈ S. Let f be defined by f(x1, x2, . . . , xn) :=∑n

i=1 xi. All nodes of the network have to output f(x1, x2, . . . , xn).

Problem 3 (Dissemination). Let S be a structure representable with O(log n)
bits. Each node i in the network receives as input an element xi ∈ S called
token. All nodes of the network have to output x1, x2, . . . , xn.

In addition to that, we solve continuous versions of these problems where f has
not to be computed only once but several times for different inputs.

Problems 4/5/6 (Continuous Extremum/Summation/Dissemination). Define f
and (S,+) as in the corresponding extremum/summation/dissemination prob-
lem. In each round r, each node i in the network receives as input an element
xi,r ∈ S. For a subset of rounds R ⊆ N (defined by the algorithm) and each
r′ ∈ R, all nodes have to output f(x1,r′ , x2,r′ , . . . , xn,r′).

For example, consider S to be a subset of N of size polynomial in n. Then,
computing the sum is a summation problem whereas computing the maximum or
the minimum of all inputs is an extremum problem. The dissemination problem
is also known as the all-to-all token dissemination problem [12].

Note that solving these problems for one round, in general, requires more
than just one round. Although it is possible to produce the result for each round

198 S. Abshoff and F. Meyer auf der Heide

r ∈ N, it could take longer and longer: Let T be the number of rounds required
to produce one output. Then, it is possible to output the result of round r in
round r ·T by running the algorithm for each round one by one. Since we intend
to run our algorithms for a long time, this is not a feasible approach and we do
not want the number of rounds to produce one output to depend on the round
when the computation is started.

Instead, we would like our algorithms to drop some rounds and produce out-
puts without this dependence. Intuitively, a good algorithm that continuously
gives results produces as many results as possible and requires few rounds per
output. This is captured by the following two definitions.

Definition 1 (Output Rate). The output rate of an algorithm is defined as

lim
r→∞

#results up to round r

r
.

Definition 2 (Delay). The delay of an algorithm is defined as the maximum
number of rounds between the round when inputs arrive and the round the func-
tion of these inputs is output by all nodes.

3 Related Work

For static networks, one knows that many problems such as computing the max-
imum, sum, parity, or majority can be solved in linear time in a graph by first
computing a spanning tree (see, e.g., Awerbuch [3]). More specifically, if D is
the diameter of the graph, all these functions can be computed in O(D) rounds.
Beyond that, more complicated problems have been studied, e.g., selection prob-
lems [11] or the problem of computing the mode (most frequent element) [10].

The dynamic network model was introduced by Kuhn et al. [12]. In contrast
to the model we use, they assumed that the number of nodes in the network is
not known beforehand. In their setting, they studied two problems, the token
dissemination and the counting problem. In the token dissemination problem,
each node receives as input a token that has to be disseminated to all nodes
such that in the end all nodes know all tokens. In the counting problem, the
nodes have to determine the exact number of nodes in the network. They solved
both problems with so-called token forwarding algorithms that are only allowed
to store and forward tokens. Especially, these algorithms are not allowed to
annotate or combine tokens or to send any other message except the empty
message. For T -interval connected dynamic networks, they gave a deterministic
O(n(n+ k)/T) algorithm. This algorithm can also be used to solve the counting
problem in O(n2/T) rounds. If n is known, k tokens can be disseminated in
O(nk/T + n) rounds. On the negative side, they showed that a subclass of
knowledge-based token-forwarding algorithms needs Ω(nk/T) rounds for solving
the token dissemination problem. In addition to that, they showed that even a
centralized deterministic token-forwarding algorithm needs Ω(n log k) rounds.

In a subsequent paper, the lower bound by Kuhn et al. was improved by Dutta
et al. [6]. They showed that any randomized (even centralized) token-forwarding

Continuous Aggregation in Dynamic Ad-Hoc Networks 199

algorithm requires Ω(nk/ logn + n) rounds. Furthermore, they gave an algo-
rithm that can solve the k-token dissemination problem in O((n+ k) logn log k)
rounds w.h.p. in the presence of a weakly-adaptive adversary. For the offline
case, they developed two randomized and centralized algorithms where one gives
an O(n,min{k logn}) schedule w.h.p. and the other gives an O((n + k) logn2)
schedule w.h.p. if each node is allowed to send one token along each edge in each
round. Haeupler and Kuhn [8] proved lower bounds when each node is allowed
to send b ≤ k tokens per round or when the nodes have to collect a δ-fraction of
the tokens only. Their results are applicable for T -interval connected dynamic
networks and dynamic networks that are c-vertex connected in each round.

Abshoff et al. [1] adapted the model by Kuhn et al. and restricted the adver-
sary in a geometric setting. Here, each node has a position in the Euclidean plane
and is moved by the adversary with maximum velocity vmax. The nodes are able
to reach all nodes within distance R > 1 and the adversary must keep the unit
disk graph w.r.t. radius 1 connected. The k-token dissemination problem can be
solved in O(n ·k ·min{vmax, R} ·R−2) rounds. In a different paper, Abshoff et al.
[2] established a relation between counting and token dissemination by showing
that a special token dissemination problem is at most as hard as counting the
number of nodes in a directed variant of dynamic networks.

Haeupler and Karger [7] applied network coding techniques to the domain of
dynamic networks. Their algorithm solves the token dissemination problem in
O(n2/ logn) rounds w.h.p. when both the message size and token size have length
Θ(log n) bits. With T -stability, they achieve a T 2 speedup. In the deterministic

case, they can solve k-token dissemination in O
(

1√
lognT

· n ·min{k, n
T }+ n

)
·

2O(
√
log n) rounds. In the randomized case, they can solve k-token dissemination

in O
(
min{nk

T 2 + T 2n log2 n, nk log n
T 2 + Tn log2 n, n2 logn

T 2 + n logn}
)
rounds.

Cornejo et al. [5] studied a different aggregation problem where tokens have to
be gathered at a minimum number of nodes. On the one hand, they proved that
there is no algorithm with a good competitive ratio compared to an optimal
offline algorithm. On the other hand, under the assumption that every node
interacts with at least a p-fraction of the nodes, they give an algorithm that
aggregates the tokens to a logarithmic number of nodes with high probability.

Mosk-Aoyama and Shah [15] showed how so-called separable functions can be
approximated with a gossiping algorithm based on exponential random variables.
Their techniques can also be applied in dynamic networks as Kuhn et al. [12]
showed for approximate counting.

A main building block of this paper is the construction of maximal indepen-
dent sets (MIS). The distributed algorithm by Luby [14] computes an MIS in
expected O(log n) rounds. It can also be shown that the number of rounds is
O(log n) w.h.p. [9,4]. The best known distributed deterministic algorithm by

Panconesi and Srinivasan [16] computes an MIS in 2O(
√
logn) rounds. In growth-

bounded graphs, Schneider and Wattenhofer [17] showed how to deterministi-
cally create an MIS in O(log∗ n) communication rounds. This is asymptotically
optimal as Linial [13] gave a corresponding Ω(log∗ n) lower bound.

200 S. Abshoff and F. Meyer auf der Heide

4 Static Networks

For the sake of a simpler presentation of the algorithms for T -stable dynamic
networks, we shortly discuss how the problems can be solved in static networks.

The extremum problem can be solved in n − 1 rounds: Each node i initially
broadcasts its input xi. In every other round up to round n − 1, each node i
takes its incoming messages m1, . . . ,ml and broadcasts

∑l
j=1 mj + xi. In round

n− 1,
∑l

j=1 mj + xi = f(x1, . . . , xn) since all inputs must be contained in this
sum and multiplicities cancel out due to the idempotence of the semigroup.

To solve the summation problem, we can first find the node with the smallest
ID in n−1 rounds (this is an extremum problem). Then, in further n−1 rounds,
we can build up a shortest path tree rooted at the node with the smallest ID.
Along this tree, starting from the leaves up to the root, we can sum up the inputs
and finally broadcast the result back from the root to all elements. We thereby
guarantee that each summand is only considered once.

Finally, to solve the dissemination problem, we can build up a tree as for the
summation problem. Then, each node in the tree sends a token it has not yet
sent upwards to the root of the tree in each round. After that the tokens are
sent one after the other from the root to the leaves.

Proposition 1. In static networks, the extremum, the summation, and the dis-
semination problem can be solved in O(n) rounds.

We could have used the algorithm that solves the dissemination problem to
solve the extremum and the summation problem. However, we chose the afore-
mentioned algorithms since they are similar to those we will use to solve these
problems in their continuous versions in dynamic networks.

To continuously solve both the extremum and the summation problem, we
build up a tree as before and apply a pipelining technique. The leaves of the tree
start sending their inputs from the first round upwards. In the next round, the
leaves start sending their inputs from the second round upwards and so on until
round n. The nodes with distance l to the leaves within the tree in round r sum
up the incoming messages from the level below and add their input from round
r− l if r− l > 0. Then, after n rounds, the results for round 1 to n are sent one
after the other from the root to the leaves. This gives n outputs in O(n) rounds.
Since the best possible output rate is 1 and the delay cannot be better than the
diameter of the network, we get the following result.

Proposition 2. In static networks, the continuous extremum problem and the
continuous summation problem can be solved with delay O(n) and output rate
Ω(1). The delay and the output rate are asymptotically optimal.

For the dissemination problem, we cannot achieve better delays and output
rates than these we get if we just solve the non-continuous version over and over
again. The delay is bounded by the diameter of the network. For the output
rate, consider |S| = n, a line of n nodes and the edge e with �n

2 � nodes on the
left an �n

2 	 nodes on the right. If the output rate was ω(1n), then ω(rn) outputs

Continuous Aggregation in Dynamic Ad-Hoc Networks 201

must have been computed up to round r. We know that at most O(r · logn)
bits could have passed e from the left to the right. These bits separate up to

nO(r) instances. However, there are
(|S|
n/2

)ω(r/n)
= nω(r) possibilities to choose

the tokens on the left side. Hence, at least one output must be wrong.

Proposition 3. In static networks, the continuous dissemination problem can
be solved with delay O(n) and output rate Ω

(
1
n

)
. The delay and the output rate

are asymptotically optimal.

5 T -stable Dynamic Networks

We now show how to solve the problems in T -stable dynamic networks. First,
we introduce a graph patching technique.

5.1 Graph Patching in T -stable Dynamic Networks

In this section, we show how a T -stable dynamic network can be partitioned
into patches such that aggregation is possible. This partitioning will help speed-
ing up the summation problem, the continuous extremum, and the continuous
summation problem. The following patching idea is adapted from Haeupler and
Karger [7].

Definition 3 (D-Patch, D-Patching). A D-patch of a graph G = (V,E) is
a rooted tree in G that spans at least D

2 nodes and has depth at most D
2 . A D-

patching of a graph is a set of D-patches such that the sets of the nodes of all
D-patches give a disjoint partition of V .

Such a D-patching of G can be distributedly computed by

1. finding a set of nodes in G that form a maximal independent set (MIS) in
GD, i.e., the Dth power1 of G,

2. computing breadth-first trees rooted in each node of the MIS, where each
non-MIS node is assigned to its closest MIS node.

Existing distributed MIS algorithms can be adapted for this approach. Let
MIS(n) be the number of rounds necessary to compute an MIS in a graph with
n nodes. If an MIS algorithm running in GD is simulated in G, one needs to
take care that one edge in GD corresponds to a path of length up to D in G.
Therefore, an MIS algorithm is slowed down by a factor of D. In addition to
that, it is also important to consider the congestion in the nodes of G caused
by paths that overlap during simulation. If an MIS algorithm can be modified
appropriately, a D-patching can be computed in O(MIS(n) ·D) rounds.

Proposition 4. [7,14,9,4] A graph G can be partitioned into D-patches of size
Ω(D) in O(log(n) ·D) rounds w.h.p. with Luby’s randomized MIS algorithm.

1 GD = (V,ED) with ED = {{u, v}|∃path between u, v ∈ V of length ≤ D in G}.

202 S. Abshoff and F. Meyer auf der Heide

Proposition 5. [7,16] A graph G can be partitioned intoD-patches of size Ω(D)

in O(2O(
√
log n) ·D) rounds with Panconesi and Srinivasan’s deterministic MIS

algorithm.

We would like to add that a patching can be computed faster in growth-bounded
graphs.

Proposition 6. A growth-bounded graph G can be partitioned into D-patches
of size Ω(D) in O(log∗(n) ·D) rounds with Schneider and Wattenhofer’s deter-
ministic MIS algorithm.

Proof. The algorithm by Schneider and Wattenhofer [17] can be modified such
that it can be executed in our setting: In each competition and whenever the
states are updated, each competitor is interested in the competitor u in its
neighborhood that has the minimum result rj−1

u among all its neighbors. In
addition to that, the nodes only need to know whether there exists a competitor,
a ruler, or a dominator in their neighborhood. Therefore, each node only needs
to flood the minimum result of a competitor, whether there exists a ruler, and
whether there exists a dominator for D rounds.
�

5.2 Non-Continuous Extremum

Despite the presence of an adaptive adversary, the extremum problem can be
solved without the need for a graph patching. This is a tight result since even
in a static network the extremum problem cannot be solved faster.

Theorem 1. In 1-stable dynamic networks, the extremum problem can be solved
in O(n) rounds.

Proof. The algorithm that solves the extremum problem in dynamic networks
is the same as the algorithm used for static networks. Each node i initially
broadcasts its input xi. In every other round up to round n − 1, each node i
takes all its incoming messages m1, . . . ,ml and broadcasts

∑l
j=1 mj + xi. In

round n− 1, the sum
∑l

j=1 mj +xi is equal to f(x1, . . . , xn) because it contains
all inputs (each node causally influenced each other node after n−1 rounds [12])
and multiplicities cancel out due to the idempotence of the semigroup.
�

5.3 Non-Continuous Summation

Theorem 2. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the summation problem can be solved in

– O
(

n2·MIS(n)
T 2

)
rounds if T = O(

√
n ·MIS(n)) and

– O(n) rounds if T = Ω(
√

n ·MIS(n)).

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

Continuous Aggregation in Dynamic Ad-Hoc Networks 203

1. Compute a D-patching.
2. In each patch, compute the sum of all inputs of the nodes in the patch.
3. Disseminate all partial sums of the patches to all nodes and sum them up.

If c is large enough and D is chosen properly, then we can do the first and the
second step in at most T rounds. Since each patch has size at least D

2 nodes, we

have at most 2n
D = O

(
n·MIS(n)

T

)
partial sums left. To disseminate them in the

third step, we can use the token dissemination algorithm by Kuhn et al. [12] for
T -interval connected dynamic networks. Thus, we solve the summation problem

in O
(

n2·MIS(n)
T 2 + n

)
rounds.
�

Corollary 1. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the summation problem can be solved in

– O
(

n2

T 2 · 2c·
√
logn

)
rounds if T = O

(√
n · √2

c·√logn
)

and

– O(n) rounds if T = Ω

(√
n · √2

c·√logn
)
.

Randomization allows us to speed up this computation if we use Luby’s algo-
rithm to compute the patching and Haeupler and Karger’s randomized network
coding algorithm for dissemination.

Theorem 3. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the summation problem can be solved within the number of
rounds as listed in Table 2a.

Proof. Let D =
1
2T

L+1 . Then, we need at most D · L ≤ 1
2T rounds to compute

a D-patching and have further D ≤ 1
2T rounds to sum up all values in each

patch. Now, we can use the randomized network coding algorithm by Haeupler
and Karger [7] for dissemination. It needs

O
(
min{nk

T 2
+ T 2n log2 n,

nk logn

T 2
+ Tn log2 n,

n2 logn

T 2
+ n logn}

)

rounds to disseminate k tokens with high probability. For different ranges of T ,
we need the following number of rounds with high probability.

1. O
(

n2 logn
T 3

)
if T = O(n1/5 log−1/5 n)

2. O(T 2n log2 n) if Ω(n1/5 log−1/5 n) = T = O(n1/5)

3. O
(

n2 log2 n
T 3

)
if Ω(n1/5) = T = O(n1/4)

4. O(Tn log2 n) if Ω(n1/4) = T = O(n1/3 log−1/3 n)

5. O
(

n2 logn
T 2

)
if Ω(n1/3 log−1/3 n) = T = O(n1/2)

6. O(n logn) if Ω(n1/2) = T

204 S. Abshoff and F. Meyer auf der Heide

Note that the number of rounds in the second and fourth range increase with T .
However, a T -stable dynamic network is also T

l -stable for any l > 1. Therefore,
we can replace T by the lower bound of the range.

1. O
(

n2 logn
T 3

)
if T = O(n1/5 log−1/5 n)

2. O(n7/5 log8/5 n) if Ω(n1/5 log−1/5 n) = T = O(n1/5 logn2/15)

3. O
(

n2 log2 n
T 3

)
if Ω(n1/5 logn2/15) = T = O(n1/4)

4. O(n5/4 log2 n) if Ω(n1/4) = T = O(n3/8 log−1/2 n)

5. O
(

n2 logn
T 2

)
if Ω(n3/8 log−1/2 n) = T = O(n1/2)

6. O(n logn) if Ω(n1/2) = T

This gives the results for the non-continuous summation in Table 2a.
�

Table 2. Summation in T -Stable Dynamic Networks with T ≥ L

(a) (Non-Continuous) Summation.

Running Time Range for T

O
(

n2 log n
T3

)
w.h.p. if L ≤ T = O(n1/5 log−1/5 n)

O(n7/5 log8/5 n) w.h.p. if Ω(n1/5 log−1/5 n) = T = O(n1/5 log n2/15)

O
(

n2 log2 n
T3

)
w.h.p. if Ω(n1/5 log n2/15) = T = O(n1/4)

O(n5/4 log2 n) w.h.p. if Ω(n1/4) = T = O(n3/8 log−1/2 n)

O
(

n2 log n
T2

)
w.h.p. if Ω(n3/8 log−1/2 n) = T = O(n1/2)

O(n log n) w.h.p. if Ω(n1/2) = T ≤ n

(b) Continuous Summation.

Delay Output Rate Range for T

O
(

n2

T2

)
w.h.p. Ω

(
T3

n2

)
w.h.p. if L ≤ T = O(n1/4 log−1/2 n)

O(n3/2 log n) w.h.p. Ω
(

T

n3/2 log n

)
w.h.p. if Ω(n1/4 log−1/2 n) = T = O(n1/4)

O
(

n2 log n
T2

)
w.h.p. Ω

(
T3

n2 log n

)
w.h.p. if Ω(n1/4) = T = O(n1/2)

O(n log n) w.h.p. Ω
(

T
n log n

)
w.h.p. if Ω(n1/2) = T ≤ n

Continuous Aggregation in Dynamic Ad-Hoc Networks 205

5.4 Continuous Extremum

Theorem 4. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the continuous extremum problem can be solved with delay O(n ·
MIS(n)) and output rate Ω

(
T

n·MIS(n)2

)
.

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

1. Each node i ∈ V initializes yi,r,0 with xi,r for r = 1, . . . , D.

2. For j = 1, . . . , 2n
D phases of T rounds do:

(a) Compute a D-patching.

(b) Each node i in each patch P , computes yi,r,j as the sum of yi′,r,j−1 for
all nodes i′ from P and all adjacent patches of P for r = 1, . . . , D.

3. Each node i ∈ V returns yi,r, 2nD for r = 1, . . . , D.

If c is large enough and D is chosen properly, we can do a) and b) in a stable
phase of T rounds. Consider any input xi,r . We say a patch P knows xi,r iff xi,r

is contained in any yi′,r,j for i
′ ∈ P . If there is a patch P that does not know xi,r

at the beginning a phase, then there is a patch P ∗ that does not know xi,r at the
beginning of the phase but knows xi,r at the end of the phase. Thus, at least D

2
nodes learn about xi,r in each phase until all nodes know xi,r. We can conclude
that after 2n

D phases all inputs xi,r are contained in all yi′,r, 2nD . Therefore, after
2n
D · T = O(n · MIS(n)) rounds, we have generated D outputs which gives the
claimed delay and the output rate.
�

Corollary 2. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the continuous extremum problem can be solved with delay O(n ·
2c·

√
log n) and output rate Ω

(
T

n·2c·√log n

)
.

Again, randomization allows us to speed up this computation.

Theorem 5. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the continuous extremum problem can be solved with high

probability with output rate Ω
(

T
n logn

)
and delay O(n logn).

Proof. Let D =
1
9T

L+1 . Then, we need at most D ·L ≤ 1
2T rounds to compute a D-

patching and have further 9D ≤ 1
2T rounds to do the computations in the patch

as we do in the proof of Theorem 4. If we repeat this n
D times, then, w.h.p., we

still have at least n
D validD-patchings. Therefore, w.h.p., after n

D ·T = O(n log n)
rounds, we can generate D outputs which gives the claimed delay and output
rate.
�

206 S. Abshoff and F. Meyer auf der Heide

5.5 Continuous Summation

Theorem 6. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the continuous summation problem can be solved with delay

– O
(

n2·MIS(n)2

T 3/2

)
if T = O(n2/3 ·MIS(n)2/3) and

– O(n ·MIS(n)) if T = Ω(n2/3 ·MIS(n)2/3)

and output rate

– Ω
(

T 5/2

n2·MIS(n)3

)
if T = O(n2/3 ·MIS(n)2/3) and

– Ω
(

T
n·MIS(n)2

)
if T = Ω(n2/3 ·MIS(n)2/3).

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

1. Compute a D-patching.
2. In each patch, compute D

2 sums of all inputs of the nodes in the patch of D
2

rounds.
3. Disseminate all partial sums of the patches to all nodes and sum them up.

If c is large enough and D is chosen properly, then we can do the first and
the second step in at most T rounds. Since each patch has size at least D

2 , we
have at most n partial sums left. Now, we use the network coding algorithm
by Haeupler and Karger [7]. This algorithm is able to disseminate k ≤ n to-

kens in O
(
(n·MIS(n)√

T
·min{k · √logn, n

T }+ n) ·MIS(n)
)

rounds. Thus, we can

disseminate all up to n partial sums in O
(
(n

2·MIS(n)

T 3/2 + n) ·MIS(n)
)
rounds. If

T = O(n2/3 ·MIS(n)2/3), we thereby generate D
2 outputs in O

(
T + n2·MIS(n)2

T 3/2

)

rounds and achieve an output rate of Ω
(

T 5/2

n2·MIS(n)3

)
. If T = Ω(n2/3 ·MIS(n)2/3),

we are able to generate D
2 outputs in O(n·MIS(n)) rounds and achieve an output

rate of Ω
(

T
n·MIS(n)2

)
.
�

Corollary 3. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the continuous summation problem can be solved with delay

– O
(

n2·22c·
√

log n

T 3/2

)
if T = O

(
n2/3 · 2c· 23 ·

√
logn

)
and

– O
(
n · 2c·

√
logn

)
if T = Ω

(
n2/3 · 2c· 23 ·

√
log n

)

and output rate

– Ω
(

T 5/2

n2·23c·√log n

)
if T = O

(
n2/3 · 2c· 23 ·

√
log n

)
and

– Ω
(

T
2c·

√
log n

)
if T = Ω

(
n2/3 · 2c·23 ·

√
logn

)
.

Continuous Aggregation in Dynamic Ad-Hoc Networks 207

Again, we can use Luby’s algorithm to compute the patching and Haeupler
and Karger’s randomized network coding algorithm for dissemination.

Theorem 7. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the continuous summation problem can be solved with the
output rates and delays as listed in Table 2b.

Proof. Let D =
1
2T

L+1 . Then, we need at most D ·L ≤ 1
2T rounds to compute a D-

patching and have further 2D ≤ 1
2T rounds to do the computations in the patch

as we do in the proof of Theorem 6. Now, we can use the randomized network
coding algorithm by Haeupler and Karger [7] for dissemination. It needs

O
(
min{nk

T 2
+ T 2n log2 n,

nk logn

T 2
+ Tn log2 n,

n2 logn

T 2
+ n logn}

)

rounds to disseminate k tokens with high probability. For different ranges of T
and k = n, we need the following number of rounds with high probability.

1. O
(

n2

T 2

)
if T = O(n1/4 log−1/2 n)

2. O(T 2n log2 n) if Ω(n1/4 log−1/2 n) = T = O(n1/4 log−1/4 n)

3. O
(

n2 logn
T 2

)
if Ω(n1/4 log−1/4 n) = T = O(n1/2)

4. O(n logn) if Ω(n1/2) = T

Note that the number of rounds in the second range increases with T . However,
a T -stable dynamic network is also T

l -stable for any l > 1. Therefore, we can
replace T by the lower bound of the range.

1. O
(

n2

T 2

)
if T = O(n1/4 log−1/2 n)

2. O(n3/2 logn) if Ω(n1/4 log−1/2 n) = T = O(n1/4)

3. O
(

n2 logn
T 2

)
if Ω(n1/4) = T = O(n1/2)

4. O(n logn) if Ω(n1/2) = T

This gives the results for the continuous summation in Table 2b.
�

6 Geometric Dynamic Networks

In the geometric dynamic network model by Abshoff et al. [1], nodes have po-
sitions in the Euclidean plane and the adversary is allowed to move the nodes
with maximum velocity vmax. Furthermore, the adversary must keep the unit
disk graph w.r.t. radius 1 connected in each round and the nodes are able to
reach all nodes within communication range R > 1. This special class of dynamic

networks is
⌊

R−1
2·vmax

⌋
+ 1-interval connected because a node within distance 1

can increase its distance by at most 2vmax. If in addition to that R ≥ 2, then

208 S. Abshoff and F. Meyer auf der Heide

the communication graph contains a spanning Θ(R)-connected subgraph that
is stable for Θ(R · v−1

max) rounds. If nodes know their positions (e.g., by using
GPS) or if they at least have the ability to sense the distances to their neigh-
bors, then they are able to determine the stable subgraphs and the algorithms
presented in this paper can be applied. For the MIS computation, we can use
the algorithm by Schneider and Wattenhofer [17] since the stable subgraphs are
growth-bounded. This yields improved results for geometric dynamic networks
with MIS(n) = O(log∗ n) and T = Θ(R · v−1

max).

7 Conclusion and Future Prospects

We showed that both extremum and summation problems can be solved faster
than dissemination problems in T -stable dynamic networks by exploiting proper-
ties such as commutativity, associativity, and idempotence. Especially, the idem-
potence seems to make the extremum problem a lot simpler. Future work could
focus on new problems that have different properties and allow for aggregation.
It would also be interesting to see if similar techniques could be applied to other
dynamic models such as T -interval stable dynamic networks where only a con-
nected subgraph must be stable for T rounds. Furthermore, we would like to
investigate lower bounds for these problems. In case of the summation problem,
this could lead to a non-trivial lower bound for the counting problem (if n is not
known beforehand) since the counting problem can be reduced to a summation
problem where each node starts with a 1 as input.

References

1. Abshoff, S., Benter, M., Cord-Landwehr, A., Malatyali, M., Meyer auf der Heide,
F.: Token dissemination in geometric dynamic networks. In: Flocchini, P., Gao,
J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS,
vol. 8243, pp. 22–34. Springer, Heidelberg (2014)

2. Abshoff, S., Benter, M., Malatyali, M., Meyer auf der Heide, F.: On two-party
communication through dynamic networks. In: Baldoni, R., Nisse, N., van Steen,
M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 11–22. Springer, Heidelberg (2013)

3. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems (detailed summary). In: Aho, A.V.
(ed.) STOC, pp. 230–240. ACM (1987)

4. Chaudhuri, S., Dubhashi, D.P.: Probabilistic recurrence relations revisited. Theor.
Comput. Sci. 181(1), 45–56 (1997)

5. Cornejo, A., Gilbert, S., Newport, C.C.: Aggregation in dynamic networks. In:
Kowalski, D., Panconesi, A. (eds.) PODC, pp. 195–204. ACM (2012)

6. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Khanna, S. (ed.) SODA, pp.
717–736. SIAM (2013)

7. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: Gavoille, C., Fraigniaud, P. (eds.) PODC, pp. 381–390.
ACM (2011)

Continuous Aggregation in Dynamic Ad-Hoc Networks 209

8. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180.
Springer, Heidelberg (2012)

9. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
10. Kuhn, F., Locher, T., Schmid, S.: Distributed computation of the mode. In: Bazzi,

R.A., Patt-Shamir, B. (eds.) PODC, pp. 15–24. ACM (2008)
11. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed selection. In:

Gibbons, P.B., Scheideler, C. (eds.) SPAA, pp. 145–153. ACM (2007)
12. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-

works. In: Schulman, L.J. (ed.) STOC, pp. 513–522. ACM (2010)
13. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–

201 (1992)
14. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput. 15(4), 1036–1053 (1986)
15. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: Rup-

pert, E., Malkhi, D. (eds.) PODC, pp. 113–122. ACM (2006)
16. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and

network decomposition problems. In: Kosaraju, S.R., Fellows, M., Wigderson, A.,
Ellis, J.A. (eds.) STOC, pp. 581–592. ACM (1992)

17. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set al-
gorithm for growth-bounded graphs. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC,
pp. 35–44. ACM (2008)

	Continuous Aggregation
in Dynamic Ad-Hoc Networks

	1 Introduction
	1.1 Our Contribution

	2 Models and
Problems
	3 Related Work
	4 Static Networks
	5 T-stable Dynamic Networks

	5.1 Graph Patching in T-stable Dynamic Networks

	5.2 Non-Continuous Extremum
	5.3 Non-Continuous Summation
	5.4 Continuous Extremum
	5.5 Continuous Summation

	6 Geometric Dynamic Networks
	7 Conclusion and Future Prospects
	References

