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Abstract. We study the NP-hard problem of approximating a Mini-
mum Routing Cost Spanning Tree in the message passing model with
limited bandwidth (CONGEST model). In this problem one tries to find
a spanning tree of a graph G over n nodes that minimizes the sum of
distances between all pairs of nodes. In the considered model every node
can transmit a different (but short) message to each of its neighbors in
each synchronous round. We provide a randomized (2+ε)-approximation
with runtime O(D+ log n

ε
) for unweighted graphs. Here, D is the diame-

ter of G. This improves over both, the (expected) approximation factor
O(log n) and the runtime O(D log2 n) stated in [13].

Due to stating our results in a very general way, we also derive an
(optimal) runtime of O(D) when considering O(log n)-approximations
as in [13]. In addition we derive a deterministic 2-approximation.

1 Introduction

A major goal in network design is to minimize the cost of communication be-
tween any two vertices in a network while maintaining only a substructure of the
network. Despite the fact that a tree is the sparsest substructure of a network it
can be surprisingly close to the optimal solution. Every network contains a tree
whose total cost of communication between all pairs of nodes is only a factor
two worse than the communication cost when all edges in the graph are allowed
to be used!

The problem of finding trees that provide a low routing cost is studied since
the early days of computing in the 1960s [18] and is known to be NP-hard [12]
on weighted and unweighted graphs1. These days networks of computers and
electric devices are omnipresent and trees offer easy and fast implementations
for applications. In addition, trees serve as the basis for control structures as well
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as for information gathering/aggregation and information dissemination. This
explains why routing trees are computed and used by wide spread protocols
such as the IEEE 802.1D standard [3]. When bridging [19] is used in Local
Area Networks (LAN) and Personal Area Networks (PAN), a spanning tree is
computed to define the (overlay) network topology. Finding such a tree with
low routing cost is crucial. As [3] demonstrates, current implementations do not
perform well under the aspect of optimizing the routing costs and there is the
need to find better and faster solutions. The nature of this problem and growth of
wired and wireless networks calls for fast and good distributed implementations.

In this paper we present new approaches for distributed approximation of a
Minimum Routing Cost Spanning Tree (MRCT) while extending previous work
for approximation of those. By doing so we improve both, the round complex-
ity and the approximation factor of the best known (randomized) result in a
distributed setting for unweighted graphs. Our main contribution is an algo-
rithm that computes a

(
2− 2

n +min
{

logn
D , α(n,D)

})
-approximation in time

O
(
D + logn

α(n,D)

)
w.h.p.2. Previously, the best known distributed approximation

for MRCT [13] (on weighted graphs) achieved an (expected) approximation-ratio
of O(log n) using randomness. The bound on the runtime of the algorithm of [13]
is O(n log2 n) in the worst case – even when the network is fully connected (a
clique). For unweighted graphs, the authors of [13] specify this runtime to be
O(D log2 n). The distributed algorithms we present in this paper are for un-
weighted graphs as well3 and compared to the (expected) approximation-ratio
O(log n) of [13] we essentially obtain a (guaranteed) approximation-ratio 2+ε in
time O(D+ logn

ε ) w.h.p.. This follows from choosing α(n,D) = ε for an arbitrary
small ε > 0. When choosing α(n,D) = logn, we obtain the same approximation
ratio as in [13] in time O(D). To be general, we leave the choice of α(n,D) to
the reader depending on the application.

Besides this randomized solution we present a deterministic algorithm running
in linear time O(n) achieving an approximation-ratio of 2.

2 Model and Basic Definitions

Our network is represented by an undirected graph G = (V,E). Nodes V corre-
spond to processors, computers or routers. Two nodes are connected by an edge
from set E if they can communicate directly with each other. We denote the num-
ber of nodes of a graph by n, and the number of its edges by m. Furthermore we
assume that each node has a unique ID in the range of {1, . . . , 2O(logn)}, i.e. each
node can be represented by O (logn) bits. Nodes initially have no knowledge of
the graph G, other than their immediate neighborhood.

We consider a synchronous communication model, where every node can send
B bits of information over all its adjacent edges in one synchronous round of
2 A more precise statement can be found in Theorem 3. This Theorem also considers

a generalized version of MRCT.
3 They extend to graphs with certain realistic weight-functions.
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communication. We also consider a modified model, where time is partitioned
into synchronized slots, but a message might receive a delay when traversing an
edge. This delay might not be uniform but fixed for each edge. In principle it is
allowed that in each round a node can send different messages of size B to each of
its neighbors and likewise receive different messages from each of its neighbors.
Typically we use B = O (logn) bits, which allows us to send a constant number of
node or edge IDs per message. Since communication cost usually dominates the
cost of local computation, local computation is considered to be negligible. For
B = O (logn) this message passing model is known as CONGEST model [15].
We are interested in the number of rounds that a distributed algorithm needs to
solve some problem. This is the time complexity of the algorithm.

To be more formal, we are interested in evaluating a function g : Gn → S,
where Gn is the set of all graphs over n vertices and S is e.g. {0, 1}, N or Gn,
and define distributed round complexity as follows:

Definition 1 (Distributed round complexity). Let A be the set of dis-
tributed deterministic algorithms that evaluate a function g on the underlying
graph G over n nodes (representing the network). Denote by Rdc (A (G)) the dis-
tributed round complexity (indicated by dc) representing the number of rounds
that an algorithm A ∈ A needs in order to compute g (G). We define Rdc (g) =
minA∈A maxG∈Gn Rdc (A (G)) to be the smallest amount of rounds/time slots
any algorithm needs in order to compute g.

We denote by Rdc−rand
ε (g) the randomized round complexity of g when the

algorithms have access to randomness and compute the desired output with an
error probability smaller than ε. By w.h.p. (with high probability) we denote a
success probability larger than 1− 1/n.

The unweighted shortest path in G between two nodes u and v is a path
with minimum number of edges among all (u, v)-paths. Denote by dG (u, v) the
unweighted distance between two nodes u and v in G which is the length of an
unweighted shortest (u, v)-path in G. We also say u and v are dG(u, v) hops apart.
By ωG : E → N we denote a graph’s weight function and by ωG(e) the weight
of an edge in G. By ωG(u, v) := min{P |P is (u,v)-path in G}

∑
e is edge in P ωG(e) we

define the weighted distance between two nodes u and v, that is the weight of a
shortest weighted path in a graph G connecting u and v4.

The time-bounds of our algorithms as well as those of previous algorithms
depend on the diameter of a graph. We also use the eccentricity of a node.

Definition 2 (Eccentricity, diameter). The weighted eccentricity eccωG (u)
in G of a node u is the largest weighted distance to any other node in the
graph, that is eccωG (u) := maxv∈V ωG (u, v). The weighted diameter Dω (G) :=
maxu∈V eccωG(u) := maxu,v∈V ωG (u, v) of a graph G is the maximum weighted
distance between any two nodes of the graph. The unweighted diameter (or hop
4 Note that in the context of MRCT, ω often corresponds to the cost of an edge. In the

literature the routing cost between any node u and v in a given spanning tree T of
G is usually denoted by cT (u, v), while in generalized versions of MRCT, the weight
of an edge can be different from the cost. In this paper we use ωT (u, v) = cT (u, v).
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diameter) Dh (G) := maxu,v∈V min{P |P is (u,v)-path} |P | of a graph G is the max-
imum number of hops between any two nodes of the graph. Here |P | indicates
the number of edges on path P .

We often write Dω and Dh instead of Dω(G) and Dh(G) when we refer to the
diameter of a graph G in context. Observe that Dh = Dω for unweighted graphs.

Finally, we define the problems that we study.

Definition 3 (S-Minimum Routing Cost Tree (S-MRCT)). Let S be a
subset of the vertices V in G. The S-routing cost of a subgraph H is defined as
RCS (H) :=

∑
u,v∈S ωH (u, v) and denotes the routing cost of H with respect to

S. An S-MRCT is a subgraph T of G that is a tree, contains all nodes S and
has minimum S-routing cost RCS (T ) among all spanning trees of T .

This is a generalization of the MRCT problem [22]. According to this definition
V -MRCT (i.e. S = V ) and MRCT of [22] are equivalent. Therefore all results
are valid for the classical MRCT problem when choosing S := V .

In this paper we consider approximation algorithms for these problems. Given
an optimization problem P , denote by OPT the cost of the optimal solution for
P and by SOLA the cost of the solution of an algorithm A for P . We say A is
ρ-approximative for P if OPT ≤ SOLA ≤ ρ ·OPT for any input.

Fact 1 The eccentricity of any node is a good approximation of the diameter.
For any node u ∈ V we know that eccωG (u) ≤ Dω (G) ≤ 2 · eccωG (u).

3 Our Results

In Section 8 we prove the following two theorems.

Theorem 2. In the CONGEST model, the deterministic algorithm proposed in
Section 8 needs time O (|S|+Dω) to compute a (2− 2/|S|)-approximation for
S-MRCT when using either uniform weights for all edges or a weight function
ω(e) that reflects the delay/edge traversal time of edge e.

Theorem 3. Let α(n,Dω) be some function in n and Dω. The randomized algo-
rithm proposed in Section 8 computes w.h.p. a

(
2− 2

|S| +min
{

log n
Dω

, α(n,Dω)
})

-

approximation for S-MRCT in the CONGEST model in time O
(
Dω + logn

α(n,Dω)

)

when using either uniform weights for all edges or a weight function ω(e) that
reflects the delay/edge traversal time of edge e.

We emphasize that the analysis of [20] yields a 2-approximation when com-
pared to the routing cost in the original graph5 and that we modify this analysis.
5 Note that most other approximation algorithms are with respect to the routing cost

of a minimal routing cost tree of the graph. In the full version of this paper [8] we
provide an example that shows that sometimes even no subgraph with o(n2) edges
exists that yields better approximations to the routing cost in the original graph
than the trees presented here. From this we conclude that algorithms that compare
their result only to the routing cost of the minimum routing cost tree do not always
yield better results than those presented here.
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4 Related Work

Minimum Routing Cost Trees are also known as uniform Minimum Communi-
cation Cost Spanning Trees [16,17] and shortest Total Path Length Spanning
Trees [21]. Furthermore the MRCT problem is a special case of the Optimal
Network Problem, first studied in the 1960s by [18] and later by [6]. In [20]
Wong presented heuristics and approximations to the Optimal Network Prob-
lem with a restriction that makes the problem similar to the MRCT problem
and obtained a 2-approximation. In [12] it is shown that this restricted version,
which Wong studied on unweighted graphs, is NP-hard as well. It seems that
earlier the authors of [11] formulated a similar problem under the name ”Opti-
mum communication spanning tree" where in addition to costs on edges, we are
given a requirement-value ru,v for each pair of vertices that needs to be taken
into account when computing the routing cost. In this setting one wants to find
a tree T such that

∑
u,v∈V ru,vdT (u, v) is minimized. In [22] it is argued that

for metric graphs, the results by [1,2,4] yield a O(log n log logn)-approximation
to this problem. Using a result presented in [7], this can be improved to be an
O(log n)-approximation. In [13] it is shown how to implement this result in a dis-
tributed setting. They state their result depending on the shortest path diameter
Dsp(G) := maxu,v∈V {|P | |P is a shortest weighted (u, v)-path} of a graph. This
diameter represents the maximum number of hops of any shortest weighted path
between any two nodes of the graph. The authors of [13] obtain a randomized
approximation of the MRCT with expected approximation-ratioO(log n) in time
O (

Dsp · log2 (n)
)
. Observe that this might be only a O(n log2 n)-approximation

even in a graph with Dh = 1 and Dsp = n− 1, such as a clique where all edges
have weight n except n− 1 edges of weight 1 forming a line as a subgraph.6 In
our distributed setting we know that it is hard to approximate an MRCT due
to Theorem 4.

Theorem 4 (Version of Theorem 5.1. of [5]). For any polynomial func-
tion α (n), numbers p, B ≥ 1, and n ∈ {22p+1pB, 32p+1pB, . . .}, there exists
a constant ε > 0 such that in the CONGEST model any distributed α(n)-
approximation algorithm for the MRCT problem whose error probability is smaller

than ε requires Ω
((

n
pB

) 1
2− 1

2(2p+1)

)
time on some Θ (n)-vertex graph of diameter

2p+ 2.

For certain realistic weight-functions our randomized algorithm breaks this
Ω(

√
n + D)-time lower bound. This is no contradiction, as the construction

of [5] heavily relies on being able to choose highly different weights, which might
not always appear in practice: in current LAN/PAN networks, weights (delays)
usually differ only by a small factor. In case the weights are indeed the delay-
times, the runtime of our algorithm just depends on the maximal delay that
occurs between any two nodes in the network. Observe that also the runtime of
the algorithm of [13] stated for arbitrary weight functions does not contradict this

6 According to [22] it is NP-hard to find an MRCT in a clique.
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approximation lower bound. The algorithm’s runtime depends on the shortest
path diameter Dsp, which is Θ(

√
n+D) in the worst case graphs provided in [5].

Finally we want to point out that for weighted graphs it might be possible to
combine the recent result of [14] with the techniques developed in this paper.
This might improve over the approximation factor of [13] for weighted graphs
while getting a better runtime in some cases.

Related work in the non-distributed setting includes [22], where a PTAS to
find the MRCT of a weighted undirected graph is presented. It is shown how to
compute a (1 + 2/(k + 1))-approximation for any k ≥ 1 in time O (

n2k
)
. Details

on the limits of transferring this PTAS into our distributed setting can be found
in the full version of this paper [8]. In [8] we also summarize further related
work in other models (non-distributed and parallel) that deal with the MRCT
problem as well as the related problem of computing low stretch spanning trees.

5 Trees That 2-Approximate the Routing Cost

The main structure we need in this section are shortest path trees:

Definition 4 (Shortest path tree). A shortest path tree (SP-tree) rooted in
a node v, is a tree that connects any node u to the root v by a shortest path in
G. In unweighted graphs, this is simply a breadth first-search tree.

Previously it was known due to Wong [20], Theorem 3, that there is an SP-
tree, which 2-approximates the routing cost of an MRCT. We restate this result
by using an insight stated in Wong’s analysis such that this tree not only 2-
approximates the routing cost RCV (T ) of an MRCT T of G (which is a V -
MRCT) as Wong stated it, but even yields a 2-approximation of the routing cost
RCV (G) when using shortest paths in the network G itself. Thus, on average
the distances between two pairs in the tree are only a factor 2 worse than the
distances in G.

The algorithm that corresponds to Wong’s analysis computes and evaluates
n SP-trees, one for each node in V . We show, that for the S-MRCT problem
it is sufficient to consider only those shortest path trees rooted in nodes of S.
At the same time, a slightly more careful analysis yields a slightly improved
approximation factor of 2 − 2/|S|, which is of interest for small sets S. Before
we start, we define a useful measure for the analysis.

Definition 5 (Single source routing cost). By SSRCS (v) :=
∑

u∈S ωG (v, u)
we denote the sum of the single source routing costs from node v to every other node
in S by using edges in G.

Note that for simplicity we defined an SP-tree to contain all nodes of V . However,
one could also consider the subtree where all leaves are nodes in S. The measures
RCS and SSRCS would not change, as any additional edges are never used by
any shortest paths and thus do not contribute to the S-routing cost of the tree.
Such a tree can easily be obtained from the tree we compute.
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Theorem 5. Let |S| be at least 2. In weighted graphs, the SP-tree Tv rooted in a
node v with minimal single source routing cost SSRCS(v) = minu∈S SSRCS(u)
over all SP-trees rooted in nodes of S is a (2− 2/|S|)-approximation to the S-
routing cost RCS(G) in G.

Corollary 1. In weighted graphs, an SP-tree with minimum routing cost over
all SP-trees rooted in nodes of S is a (2− 2/|S|)-approximation to an S-MRCT.

The proof of this theorem uses and modifies the ideas of the proof of Theorem
3 in [20]. The following proof is an adapted version of this proof.

Proof. Let v be the node for which the SP-tree Tv has minimal single source rout-
ing cost with respect to S among all SP-trees, that is v := argminv∈V SSRCS (v).

The cost of connecting a node u �= v to all other nodes in S using edges in Tv

is upper bounded by (|S| − 2) ·ωG (v, u)+SSRCS (v). This essentially describes
the cost of connecting u to each other node by a path via the root v and using
edges in Tv. Therefore the total routing cost RCS (Tv) for S using the network
Tv can be bounded by

RCS (Tv) ≤ SSRCS (v) +
∑

v �=u∈S

((|S| − 2) · ωG (v, u) + SSRCS (v)) .

As |S| ≥ 2, this can be further transformed and bounded to be

= |S| · SSRCS (v) + (|S| − 2)
∑
u∈S

ωG (v, u)

= |S| · SSRCS (v) + (|S| − 2) · SSRCS (v)

= (2 − 2/|S|) · |S| · SSRCS (v)

≤ (2 − 2/|S|) ·
∑
u∈S

SSRCS (u) .

Where the last bound follows, as SSRCS (v) is minimal among all SSRC(u)
for u ∈ S. Since

∑
u∈V SSRCS (u) is the same as RCS (G), we obtain that

RCS (Tv) ≤ 2RCS (G). �	

6 Considering few Randomly Chosen SP-Trees Is Almost
as Good

We show that when investigating a small subset of all SP-trees chosen uniformly
at random, with high probability one of these trees is a good approximation as
well.

Lemma 1. Let β(n,D) be a positive function in n and D and define γ :=⌈
2−2/|S|
β(n,D)

⌉
+ 1. Assume S ⊆ V is of size at least γ lnn. Let S′ in turn be a sub-

set of S chosen uniformly at random among all subsets of S of size γ lnn. Let
v ∈ S′ be a node such that SSRCS(v) = minu∈S′ SSRCS(u). Then RCS(Tv) ≤
(2− 2/|S|+ β(n,D))RCS(G).
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Proof. For simplicity, without loss of generality we assume that |S| is a multiple
of γ. Denote by v1, . . . , v|S| the nodes in S such that SSRCS(v1) ≤ SSRCS(v2) ≤
· · · ≤ SSRCS(v|S|). That is they are ordered corresponding to their single source
routing costs. We say a node v is good, if the corresponding SP-tree Tv is among
the 1/γ-fraction of the SP-trees with lowest single source routing cost7 . There-
fore v is good if SSRCS(v) ≤ SSRCS(v|S|/γ) with respect to the above order of
the trees.

First we prove that w.h.p. set S′ contains a good node. Second we prove, that
the corresponding SP-tree yields the desired approximation ratio.

1) Probability analysis: We know that Prv∈S [v is good] = 1/γ. Furthermore
each node v ∈ S is included in set S′ independent of the other nodes. Therefore
we can conclude that the probability that at least one of the nodes v in S′ is

good is 1−
(
1− 1

γ

)|S′|
= 1−

(
1− 1

γ

)γ lnn

> 1− 1/n and thus high.
2) Approximation-ratio analysis: Let vi be a good node. As in the proof

of Theorem 5 we know that RCS(Tvi) ≤ (2 − 2/|S|) · |S| · SSRCS(vi)..As
RCS(G) =

∑
u∈S SSRCS(u) and vi is good, we can conclude that SSRCS(vi) ≤

1
(1−1/γ)·|S| ·RCS(G) as there are at most (1−1/γ)|S| nodes vj with SSRCS(vj) ≥
SSRCS(vi). Equality is approached in the worst case, where j := |S|/γ and
SSRCS(vj) = 0 for each j < i and SSRCS(vi) = SSRCS(vj) for all j ≥ i.

Combined with Bound (6) it follows that RCS(Tvi) ≤ 2−2/|S|
1−1/γ ·RCS(G). Due

to the choice of γ we conclude the statement of the Lemma.

7 How to Compute the Routing Cost of Many SP-Trees
in Parallel

In Theorem 5 (and Lemma 1) we demonstrated that an SP-tree Tv with minimum
single source routing cost yields a 2-approximation for RCS(G). The single source
routing cost of a tree can be computed by computing distances between the root
of a tree and nodes in S. However, instead of finding an SP-tree with smallest
single source routing cost the literature usually considers finding an SP-tree with
smallest routing cost. This is done e.g. in [20]. The reason for this is that the
bound in the proof of Lemma 5 is not sharp when using the single source routing
cost. To see this, we recall that while obtaining the bound, one approximates the
distance between two nodes in the tree by adding up their distance to the root.
Thus the bound considers the single source routing cost of an SP-tree. Compared
to this, the routing cost takes the actual distance of the two nodes in an SP-tree
into account. An explicit example for a graph that contains a node u such that
RCS(Tu) < RCS(Tv), where Tv has minimum single source routing cost is given
in the full version of this paper [8]. Like in [20] we focus on this more powerful
version of finding a tree of small routing cost.

7 Due to the choice of γ :=
⌈

2−2/|S|
β(n,D)

⌉
+1 a good tree is among the nβ(n,D) cheapest

trees.
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Lemma 2. Let S := {v1, . . . , v|S|} be a subset8 S ⊆ V of all nodes of a graph.
Then we can compute the values RCS(Tv1), . . . , RCS(Tv|S|) in time O(Dω + |S|)
when using either uniform weights for all edges or a weight function implied by
the delay/edge traversal time.

The proof of this lemma can be found at the end of this section. First, we
describe our algorithm that is used to prove this lemma. In Part 1 of this al-
gorithm we start by computing SP-trees Tv for each v ∈ S. A pseudocode for
this algorithm can be found as Algorithm 7.1. Part 2 deals with computing the
routing cost of a single tree and is described later in this section.

We start by noting that for the weight functions we consider an SP-tree is just
a Breath First Search tree (BFS-tree). This part is essentially the same as in the
S-SP algorithm of [10] extended to edge-weights derived from the delays to send
a message. We also store some additional data that is used later in Algorithm 7.2
to compute routing costs but was not needed for the S-SP computation in [10].
In Algorithm 7.2, for each node v ∈ S an SP-tree Tv is constructed using what
we call delayed breadth first search (DBFS). By DBFS we think of a breadth
first search, where traversing edge (u, u′) takes ωG(u, u

′) time slots. In the end
each node u in the graph knows ωG (u, v). In addition each node u knows for
each v ∈ S its parent in the corresponding tree Tv. Furthermore node u knows
at what time the DBFS, that computed Tv, sent its message to u via u’s parent.
During Algorithm 7.2, these timestamps are used to compute the routing cost
of all these trees in time O (|S|+Dω).

Remark 1. Compared to Algorithm S-SP presented in [10] we added Lines 2, 6
and 26 in Algorithm 7.1 and extended the algorithm to certain delay functions
as mentioned above (the proof in [10] can be naturally extended to those.) By
doing so, we can store in τ [v] the time when a message of the computation of
tree Tv was received the first time (via edge parent_in_Tv). In the end, ωu[v]
stores the distance ωG (v, u) to v and parent_in_Tv indicates the first edge of
a (u, v)-path witnessing this.

Despite its similarity to algorithm S-SP in [10], we describe Algorithm 7.1 in
more detail for completeness. For the simplicity of the writeup, we refer to u
not only as a node, we use u to refer to u’s ID as well. Each node u stores δ (u)
sets Li, one for each of the δ (u) neighbors u1, . . . , uδ(u) of u, and the sets L and
Ldelay to keep track of which messages were received, transmitted or need to be
delayed. At the beginning, if u ∈ S, all these sets contain just u, else they are
empty (Lines 1–7). Set Ldelay is always initialized to be empty. Furthermore u
maintains an array ωu that eventually stores at position v (indicated by ωu[v])
the distance ωG (u, v) to node v. Initially ωu[v] is set to infinity for all v and is
updated as soon as the distance is known (Line 27). In each node u, array τ stores
at position v the time when a message of the computation of tree Tv was received
the first time in u. At any time, set L contains all node IDs corresponding to
8 Note that S used here can be e.g. S as in Section 5 or the smaller set S′ as in

Section 6.
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Algorithm 7.1. Computing SSRCS(v) for each v ∈ S Part 1 (executed by node u)
1: L := ∅; ωu := {0, 0, . . . , 0}; Ldelay := ∅;
2: τ := {∞,∞, . . . ,∞} // **new**
3: if u ∈ S then
4: L := {u};
5: ωu (u) := 0;
6: τ (u) := 0; // **new**
7: end if
8: L1, . . . , Lδ(u) := L;
9: if u equals 1 then

10: compute D′
ω := ecc(u); //** According to Fact 1, Dω is smaller than 2 ·D′

ω.
11: broadcast D′

ω ;
12: else
13: wait until D′

ω was received;
14: end if
15: //** Compute S shortest path trees
16: for t = 1, . . . , |S|+ 2 ·D′

ω do
17: for i = 1, . . . , δ (u) do

18: (li, ωi) :=

⎧⎪⎨
⎪⎩

⊥ : if Li \ ∩Ldelay = ∅
argmin {v ∈ Li \ Ldelay |
τ [v] + ωG(u, v) ≥ t} : else

19: end for
20: within one time slot:

if l1 �= ⊥ then send (l1, ωu[l1] + ωG (u, u1)) to neighbor u1;
receive (r1, ω1) from u1;
...
if lδ(u) �= ⊥ then send

(
lδ(u), ωu[lδ(u)] + ωG

(
u, lδ(u)

))
to neighbor uδ(u);

receive
(
rδ(u), ωδ(u)

)
from uδ(u);

21: R := {ri|ri < li and i ∈ 1 . . . δ(u)} \ L
22: s :=

{∞ if Ldelay = ∅
min(Ldelay) else

23: if s ≤ min(R) and s < ∞ then
24: Ldelay := Ldelay \ {s};
25: end if
26: for i = 1, . . . , δ (u) do
27: if ri < li then
28: //** Tli ’s message is delayed due to Tri .
29: if ri /∈ L then
30: τ [ri] := t; // **new**
31: ωu[ri] = ωi;
32: L := L ∪ {ri}, L1 := L1 ∪ {ri}, L2 := L2 ∪ {ri},

. . . Li−1 := Li−1 ∪ {ri}, Li+1 := Li+1 ∪ {ri}, . . . Lδ(u) := Lδ(u) ∪ {ri};
33: if min(R) < ri or s < ri then
34: Ldelay = Ldelay ∪ {ri}
35: end if
36: parent_in_Tri := neighbor i;
37: end if
38: else
39: Li := Li \ {li}; //** Tli ’s message was successfully sent to neighbor i.
40: end if
41: end for
42: end for
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the tree computations (where each node with a stored ID is the root initiating
the computation of such a tree) that already reached u until now. The set Ldelay

contains all root IDs that reached v until time t but are marked to be delayed
before forwarded. This ensures that we indeed compute BFS-trees.

Set Li contains all IDs of L except those that could be forwarded successfully
to neighbor ui in the past. We say an ID li is forwarded successfully to neighbor
ui, if ui is not sending a smaller ID ri to u at the same time.

To compute the trees in Algorithm 7.1, the unique node with ID 1 computes
D′

ω and thus a 2-approximation to the distance-diameter Dω. This value is sub-
sequently broadcast to the network (Lines 8–12). Then the computation of the
|S| trees starts and runs for |S|+2D′

ω time steps. Lines 14–17 make sure that at
any time the smallest ID, that is not marked to be delayed and was not already
forwarded successfully to neighbor ui is sent to ui together with the length of
the shortest (v, ui)-path that contains u. In Line 18 we define the set R of all
IDs that are received successfully in this time slot for the first time. This set is
then used to decide whether to remove an ID s from Ldelay in Lines 20 and 21,
since all IDs that cause a delay to s are transmitted successfully by now. ID s is
computed in Line 20. ID s is the smallest element of Ldelay and is removed from
Ldelay if no other ID smaller than s was received successfully for the first time
in this timeslot.

If a node ID ri was received successful for the first time (verified in Lines 23
and 25), we update τ [ri] and ωu[ri], add ri to the according lists (Lines 28–30)
and remember who u’s parent is in Tri (Line 31). In case the ID v was received
the first time from several neighbors, the algorithm as we stated it chooses the
edge with lowest index i. On the other hand if we did not successfully receive
a message from neighbor ui but sent successfully a message to neighbor ui, the
transmitted ID is removed from Li (Line 33).

Lemma 3. Algorithm 7.1 computes an SP-tree Tv for each v ∈ S in time
O(|S|+Dω).

Proof. This is essentially Theorem 6.1. in [9] stated for Algorithm 7.1 instead of
Algorithm S-SP of [9]. Those parts of the two algorithms which contribute to
the runtime and correctness are equivalent.

Now Part 2 of our algorithm calculates the routing cost of each tree Tv in
parallel in time O(Dω + |S|). A pseudocode of this algorithm is stated in Algo-
rithm 7.2.

To compute the routing cost of a tree, we look at each edge e in each tree
Tv and compute the number of (v, w)-paths in Tv that contain the edge e, for
v, w ∈ S. The sum of these numbers for each edge in a tree is the tree’s routing
cost. Given a tree T , for each edge e in T , the edge partitions the tree into
two trees (when e was removed). To be more precise, denote by we, w

′
e the two

vertices to which e is incident. Edge e partitions the vertices of T into two
subsets, which we call Z1

e and Z2
e defined by:

Z1
e (T ) := {w ∈ S|e is contained in the unique (we, w)-path in T }

Z2
e (T ) := {w ∈ S|e is contained in the unique (w′

e, w)-path in T }
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We observe that edge e occurs in all |Z2
e (T ) | paths from any node v ∈ Z1

e (T )
to any node w ∈ Z2

e (T ). Note that the total number of paths in which e occurs
is |Z1

e (T ) | · |Z2
e (T ) |. This fact is later used to compute RCS (T ).

Algorithm 7.2. Computing RCS(Tv) for each v ∈ S alternative Part 2 (executed by
node u)
1: rcS := {∞, . . . ,∞}; //** is updated during the runtime of the algorithm.
2: if u ∈ S then
3: z := {1, . . . , 1}; //** is updated during the runtime of the algorithm.
4: else
5: z := {0, . . . , 0};
6: end if
7: for t = 1, . . . , |S|+ 2D′

ω do
8: within one time slot:

For each v ∈ L such that t = |S|+ 2 ·D′
ω − τ [v] send (v, rcS[v], z[v]) to

parent_in_Tv;
receive (v1, r1, z1) from neighbor u1; //** r1 equals rcS (Tv1 , u1),

//** z1 equals Z1
(u,u1)

(Tv1)
receive (v2, r2, z2) from neighbor u2; //** r2 equals rcS (Tv2 , u2),

//** z2 equals Z1
(u,u2)

(Tv2)

...
receive

(
vδ(u), rδ(u), zδ(u)

)
from uδ(u); //** rδ(u) equals rcS

(
Tvδ(u)

, uδ(u)

)
,

//** zδ(u) equals Z1

(u,uδ(u))

(
Tvδ(u)

)

9: for i = 1, . . . , δ (u) do
10: if vi �= ⊥ then
11: rcS[vi] := rcS [vi] + ri + 2ωG (u, v) · zi · (|S| − zi);
12: z[v] := z[v] + zi;
13: end if
14: end for
15: end for
16: //** Now rcS[u] equals RCS (Tu) in case that u ∈ S. Else it is ∞ and was never

modified.

Lemma 4. For a tree T , the routing cost RCS(T ) can be restated as RCS(T ) =
2 ·∑e∈T |Z1

e (T )| · |Z2
e (T )| · ωG(e).

The proof of this lemma can be found in the full version of this paper [8].
To formulate the definition of RCS(T ) in this way helps us to argue that we

can compute RCS(T ) recursively in a bottom-up fashion for any T . To do so,
we consider trees to be oriented such that we use the notion of child/parent.

Definition 6 (Subtree, partial routing cost). Given a tree T , for each node
u in an oriented tree T , we define T |u to be the subtree of T rooted in u con-
taining all descendants of u in T . Denote by Vv the vertices in T |v. Given
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node u, denote by rcS (T, u) the part of the routing cost RCS (T ) that is due
to the edges in T |u. We define rcS(T, u) in a recusive way. In case that T |u con-
sists of only one node, T |u contains no edges that could contribute to rcS (T, u)
and we set rcS (T, u) := 0. In case that T |u contains more than one node,
we denote the children of u in T by u1, . . . , uδ(u)−1 and define rcS (T, u) :=∑δ(u)−1

i=1 rcS (T, ui) + 2 ·∑δ(u)−1
i=1 ωG (u, ui) · |Z1

(u,ui)
(T ) | · |Z2

(u,ui)
(T ) |.

Note that rcS(T, u) is a measure with respect to the routing cost in T and
thus different from RCS(T |u). Besides RCS(T |u) being undefined when T |u does
not contain all nodes in S, RCS(T |u) would take only routing cost within T |u
into account.

We now formally prove that rcS (T, u) essentially describes the contribution
of edges in subtree T |u to the total routing cost and conclude:

Lemma 5. Let T be a tree rooted in node r. Then RCS(T ) = rcS(T, r).

The proof of this lemma can be found in the full version of this paper [8].
Using this insight we are able to compute RCS (Tv) for all v ∈ S in parallel

recursively in a bottom-up fashion. This is by computing rcS (Tv, u) for each
u based on aggregating rcS (Tv, uj) for each of u’s children. For each v ∈ S
these computations of RCS (Tv) run in parallel. A schedule on how to do these
bottom-up computations in time O (|S|+Dω) is provided by using the inverted
entries of τ .

In more detail each node u computes for each v ∈ S the costs rcS(Tv, u) (stored
in rcS [v]) of its subtree of Tv as well as the number of nodes in Tv|u (stored in
z[v] and sends this information to its parent in Tv. When we computed Tv in
Algorithm 7.1, we connected u via edge parent_in_Tv to Tv at time τ [v]. To
avoid congestion we send information from u to its parent in Tv only at time
t = |S|+ 2D′

ω − τ [v] (Line 7). Note that this schedule differs from the one that
is implied by the computation of the trees in the sense that now only edges in
the tree are used, while more edges were scheduled while building the trees. The
edges used now in time slot t = |S|+2D′

ω − τ [v] are a subset of those scheduled
at time t = |S|+ 2D′

ω − τ [v] while constructing the trees, such that there is no
congestion from this modification.

At the same time as u sends, u receives messages from its neighbors. E.g.
neighbor ui might send rcS(Tv′ , ui) and Z1

(u,ui)
(Tv′) for another node v′. In

Lines 8 − 11 node u updates its memory depending on the received values. In
the end the node with ID 1 computes v := argminv∈V RCS (Tv) via aggregation
using T1. Node 1 informs the network that tree Tv is a 2-approximation to an
S-MRCT.

Theorem 6. The algorithm presented in this section computes all |S| values
RCS(Tv) for each node v ∈ S in time O(|S|+Dω).

Proof. Runtime: The construction of the |S| trees in Algorithm 7.1 takes at
most O (|S|+Dω) rounds as stated in Lemma 3. To forward/compute the costs
from the leaves to the roots v ∈ S in Algorithm 7.2 takes |S| + 2D′

ω since we
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just use the schedule τ of this length computed in Algorithm 7.1. Thus the total
time used is O (|S|+Dω).

Correctness: We consider time slot |S|+ 2D′
ω − τ [v]. If u is a leaf of Tv, it

sends (v, 0, 1) to its parent in Tv in case u ∈ S, else it sends (v, 0, 0), which is
correct. In case u is not a leaf, each child ui has sent rcS (Tv, ui) (stored in ri) as
well as Z1

(u,ui)
(Tv) (stored in zi) to u at an earlier point in time. This is true as

time-stamp τ [v] stored in ui is always larger than time-stamp τ [v] stored in u, as
ui is a child of u. Each time u received some of these values from its children in
Tv, it updated its memory according to Lemma 5 (Lines 8−11 of Algorithm 7.2),
leading to sending the correct values rcS (Tv, u) and Z1

(parent_in_Tv ,u)
(Tv) to its

parent in Tv at time |S|+2D′
ω−τ [v]. Thus in any case u sends the correct values.

We conclude that each node v ∈ S has computed rcS(Tv, v) = RCS(Tv) after
Algorithm 7.2 has finished.

8 Proofs of Main Results

We put the tools of the previous sections together and prove the Theorems of
Section 1.

Proof. (of Theorem 2). First, Algorithms 7.1 and 7.2 are used to compute RCS(v)
for each v ∈ S. For each such node v, the value RCS(v) is stored in node v itself.
A leader node (e.g. with lowest ID, which can be found in time O(Dω)) computes
u := argminv∈V RCS(v) via aggregation using Tl, where l is the leader node. As
stated in Theorem 5 the tree Tu is a (2− 2/|S|)-approximation of a S-MRCT.
The leader node informs the network that tree Tu is a (2− 2/|S|)-approximation
to an S-MRCT. The runtime follows from Lemma 2 and the fact, that to deter-
mine u by aggregating the corresponding minimum and to broadcast u can be
done in time O(Dω).

Proof. (of Theorem 3). First we select a subset S′ ⊆ S of the size stated in
Lemma 1. Each node joins a set S′′ with probability c · s/n, where s is the
(desired) size of S′ stated in Lemma 1 and c a constant depending on a Chernoff
bound used now. Using such a Chernoff Bound, w.h.p. S′′ is of size c · s or some
constant c ≥ 1. Now all IDs of nodes in S′′ are sent to the leader who selects
and broadcasts a subset S′ of the desired size among the IDs of S′′.

From now on the algorithm works exactly as in the proof of Theorem 2,
except that the algorithm is run on S′ instead of S (it computes and aggregates
each RCS(v) for v ∈ S′ instead of S). As stated in Lemma 1, a tree Tu is
found that is a (2− 2/|S|+ β(n,D))-approximation of an S-MRCT. The leader
node informs the network that tree Tu is a (2− 2/|S|+ β(n,D))-approximation
to an S-MRCT. Choosing β(n,D) := min

{
logn
D , α(n,D)

}
yields the desired

approximation ratio of 2−2/|S|+min
{

logn
D , α(n,D)

}
, as stated in the Theorem.
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Runtime analysis: As s =
(⌈

2−2/|S|
β(n,D)

⌉
+ 1

)
·lnn, selecting a set S′′ and deriving

S′ can be done w.h.p. in time

O(D + s) = O
(
D +

(⌈
2− 2/|S|
β(n,D)

⌉
+ 1

)
· lnn

)
= O

(
D +

logn

β(n,D)

)
,

which is O
(
D + logn

α(n,D)

)
due to the choice of β. The same runtime follows from

Lemma 2 for computing the single source routing costs for all v ∈ S′. Combined
with the fact that the aggregation and broadcast of u can be done in time O(D),
the stated result is obtained.
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