
Magnús M. Halldórsson (Ed.)

 123

LN
CS

 8
57

6

21st International Colloquium, SIROCCO 2014
Takayama, Japan, July 23–25, 2014
Proceedings

Structural Information
and Communication
Complexity

Lecture Notes in Computer Science 8576
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Magnús M. Halldórsson (Ed.)

Structural Information
and Communication
Complexity

21st International Colloquium, SIROCCO 2014
Takayama, Japan, July 23-25, 2014
Proceedings

13

Volume Editor

Magnús M. Halldórsson
Reykjavik University
School of Computer Science
Menntavegur 1
101 Reykjavik, Iceland
E-mail: mmh@ru.is

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-09619-3 e-ISBN 978-3-319-09620-9
DOI 10.1007/978-3-319-09620-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014944560

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The 21st International Colloquium on Structural Information and Communica-
tion Complexity (SIROCCO 2014) took place in Takayama, Japan, during July
23–25, 2014.

SIROCCO is devoted to the study of communication and knowledge in dis-
tributed systems from both the qualitative and quantitative viewpoints. Special
emphasis is given to innovative approaches and fundamental understanding, in
addition to efforts to optimize current designs. The typical areas include dis-
tributed computing, communication networks, game theory, parallel computing,
social networks, mobile computing (including autonomous robots), peer-to-peer
systems, communication complexity, fault-tolerant graph theories, and random-
ized/probabilistic issues in networks.

This year, 51 papers were submitted in response to the call for papers, and
each paper was evaluated by three to four reviewers. Over 160 reviews were
received. The Program Committee selected 24 papers for presentation at the
colloquium and publication in this volume after in-depth discussions.

The conference featured five invited talks by Yuval Emek, Technion; Fried-
helm Meyer auf der Heide, Paderborn; Rotem Oshman, Princeton; Gopal Pan-
durangan, NTU Singapore; and Michel Raynal, IRISA.

The SIROCCO Prize for Innovation in Distributed Computing was awarded
this year to Pierre Fraigniaud from Université Paris Diderot and CNRS. A com-
mendation summarizing his many and important innovative contributions to
distributed computing appears in these proceedings.

The collaboration of Program Committee members and the external review-
ers enabled completing the process of reviewing the papers and discussing them
in less than four weeks. We thank them all for their devoted service to the
SIROCCO community. We thank the authors of all the submitted papers, with-
out them we could not have prepared a program of such quality.

The preparation of this event was guided by the SIROCCO Steering Com-
mittee, headed by Shay Kutten.

The conference was supported by the following organizations:

– KDDI Foundation

– Takayama City

– Nagoya Institute of Technology

– Research Foundation for the Electrotechnology of Chubu
It was also supported by the research projects:

– MEXT Grant-in-Aid for Scientific Research on Innovative Areas “A Multi-
faceted Approach toward Understanding the Limitations of Computation”,

– MEXT Grant-in-Aid for Scientific Research(B) “Deepening and Expanding
Coding Theory based on Probabilistic Methods”

VI Preface

The EasyChair system was used to handle the submission of papers, manage
the review process, and generate these proceedings.

July 2014 Magnús Halldórsson

Organization

Program Committee

Hagit Attiya Technion, Israel
Amotz Bar-Noy CUNY, USA
Guy Even Tel Aviv University, Israel
Sándor Fekete TU Braunschweig, Germany
Paola Flocchini University of Ottawa, Canada
George Giakkoupis Inria Rennes, France
Magnús M. Halldórsson Reykjavik University (Chair), Iceland
Taizuke Izumi Nagoya Institute of Technology, Japan
Valerie King University of Victoria, Canada
Friedhelm Meyer auf der Heide University of Paderborn, Germany
Alessia Milani University of Bordeaux, France
Calvin Newport Georgetown University, USA
Hirotaka Ono Kyushu University, Japan
Peter Robinson NTU Singapore, Singapore
Jukka Suomela Aalto University, Finland
Corantin Travers ENSEIRB-MATMECA, France
Roger Wattenhofer ETH, Switzerland
Peter Widmayer ETH, Switzerland

Steering Committee

Guy Even Tel Aviv University, Israel
Ralf Klasing CNRS and University of Bordeaux, France
Shay Kutten Technion (Chair), Israel
Thomas Moscibroda Microsoft Research, China
Boaz Patt-Shamir Tel Aviv University, Israel
Masafumi Yamashita Kyushu University, Japan

Organizing Committee

Taisuke Izumi Nagoya Institute of Technology (Chair), Japan
Tomoko Izumi Ritsumeikan University, Japan
Sayaka Kamei Hiroshima University, Japan
Yoshiaki Katayama Nagoya Institute of Technology, Japan
Fukuhito Oosita Osaka University, Japan
Yukiko Yamauchi Kyushu University, Japan

VIII Organization

Additional Reviewers

Abshoff, Sebastian
Bampas, Evangelos
Biely, Martin
Bienkowski, Marcin
Castañeda, Armando
Cord-Landwehr,

Andreas
D’Angelo, Gianlorenzo
Dobrev, Stefan
Dolev, Shlomi
Duchon, Philippe
Efrat, Alon
Englert, Matthias
Even, Guy
Ghaffari, Mohsen
Gustedt, Jens

Göös, Mika
Jung, Daniel
Kapron, Bruce
Kiyomi, Masashi
Kobayashi, Yusuke
Kortsarz, Guy
Kranakis, Evangelos
Královič, Rastislav
Lampis, Michael
Mallmann-Trenn,

Frederik
Marathe, Madhav
Markarian, Christine
Markou, Euripides
Medina, Moti
Mihalák, Matúš

Nanongkai, Danupon
Navarra, Alfredo
Nonaka, Yoshiaki
Pacheco, Eduardo
Parter, Merav
Pelc, Andrzej
Rabanca, George
Raynal, Michel
Rybicki, Joel
Schmidt, Christiane
Sundaram, Ravi
Trehan, Chhaya
Wada, Koichi
Wadayama, Tadashi
Widder, Josef

Laudatio

It is a pleasure to award the 2014 SIROCCO Prize for Innovation in Distributed
Computing to Pierre Fraigniaud. The prize is awarded for his contribution to the
understanding of routing in small world models and social networks, and to the
understanding of the trade - offs between information and efficiency in routing
in general.

Pierre’s contribution to research and his innovation in distributed comput-
ing are by now well-known and well documented. His work and publications in
our community range from routing and labeling problems, mobility, exploration
and information spreading, to wireless networks, and from algorithms to lower
bounds. Moreover, this is just a partial list. In particular, Pierre has had a large
impact on the research into problems of using information for routing. For ex-
ample, he dealt with compact routing tables (and more generally, with compact
distributed data structures) starting with an early paper in SIROCCO’98 [7], and
later in other conferences. Another related example is his work on distributed
search.

Out of Pierre’s rich contributions to routing, we would like to concentrate on
his contribution to routing in social networks. The phenomenon of small worlds
was investigated originally in a sociological context (see the famous work of
Milgram), rather than in the realm of mathematics or distributed computing.
Kleinberg has shown that specific graphs could be enhanced to show this phe-
nomenon. That is, not only did the enhanced graph enjoy a small diameter, but
also it was easily navigable. Others have later shown a similar phenomenon for
other graphs. One could have suspected that this was a general phenomenon of
graphs, unrelated to the sociological context.

In a series of papers [1]-[6] Pierre, with his various coauthors, succeeded in
defining the conditions necessary for a graph to become navigable. In particular,
the small world phenomenon is not a universal property of any graph. On the
other hand, he brought evidence supporting the claim that this is an inherent
property of social networks. As Pierre showed in his paper “A Doubling Dimen-
sion Threshold Θ(log logn) for Augmented Graph Navigability” [1], not every
graph could be augmented in such a way that it can become navigable. Then,
around 2010, Pierre’s paper, “On the searchability of small-world networks with
arbitrary underlying structure” [5], presented an optimal algorithm for naviga-
tion in any graph and analyzed the exact performance of the algorithm. The
result of the paper answered the question of navigability in general graphs. As
this paper showed, there is a gap between general graphs and social networks.
In his SIROCCO paper [3], Pierre also suggested how to test the model of social
augmentation. This paper took the ideas of navigability and augmentation of
social networks from a mathematical model to a practical big data application

X Laudatio

by asking how to verify the theory of navigability by augmentation. This paper
bridged the boundary between theory and measurement in the real world.

Pierre’s results have had a profound impact on the field of social networks
and on connecting this field to the field of distributed computing.

References

1. Fraigniaud, P., Lebhar, E., Lotker, Z.: A Doubling Dimension Threshold Θ(loglogn)
for Augmented Graph Navigability. In: Azar, Y., Erlebach, T. (eds.) ESA 2006.
LNCS, vol. 4168, pp. 376–386. Springer, Heidelberg (2006)

2. Fraigniaud, P., Gavoille, C., Kosowski, A., Lebhar, E., Lotker, Z.: Universal aug-
mentation schemes for network navigability: overcoming the sqrt(n)-barrier. In:
SPAA 2007, pp. 1–7 (2007)

3. Fraigniaud, P., Lebhar, E., Lotker, Z.: Recovering the Long-Range Links in Aug-
mented Graphs. In: Shvartsman, A.A., Felber, P. (eds.) SIROCCO 2008. LNCS,
vol. 5058, pp. 104–118. Springer, Heidelberg (2008)

4. Fraigniaud, P., Giakkoupis, G.: The effect of power-law degrees on the navigability
of small worlds: [extended abstract]. In: PODC 2009, pp. 240–249 (2009)

5. Fraigniaud, P., Giakkoupis, G.: On the searchability of small-world networks with
arbitrary underlying structure. In: STOC 2010, pp. 389–398 (2010)

6. Fraigniaud, P.: A New Perspective on the Small-World Phenomenon: Greedy Rout-
ing in Tree-Decomposed Graphs. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005.
LNCS, vol. 3669, pp. 791–802. Springer, Heidelberg (2005)

7. Fraigniaud, P., Gavoille, C.: A Theoretical Model for Routing Complexity. In:
SIROCCO 1998, pp. 98–113 (1998)

Invited Presentations

From Turing to the Clouds

(On the Computability Power of
Distributed Systems)

Michel Raynal

Institut Universitaire de France
IRISA, Université de Rennes, France

Department of Computing, Polytechnic University, Hong Kong

raynal@irisa.fr

Abstract. One of the main issues addressed in Turing’s work was about
computability, namely, one of his Holy Grail’s quests was to answer the
question “What can be mechanically computed?”. Since the definition of
the Turing’s machine and the statement of the Turing-Church’s thesis,
a lot of great technological advances have modified our view of what
is a “computing device”. Among them, distributed systems –sometimes
cosmetically called “cloud computing”– are among the most pervasive,
and force us to think again to the computability power of such systems.
This is becoming more and more important because, not only the world
is distributed, but more and more applications are distributed.

Hence, a fundamental question is the following one: What can be com-
puted in a distributed system? The answer to this question depends on
the environment in which evolves the considered distributed system, i.e.,
the assumptions the system relies on. This environment is very often
left implicit and nearly always not formulated in terms of precise under-
lying requirements. In the extreme case where the environment is such
that there is no synchrony assumption and the computing entities may
commit failures, many problems become impossible to solve (in these
cases, a network of Turing machines where some machines may crash, is
less powerful than a single reliable Turing machine). Given a distributed
computing problem, it is consequently important to know the weakest
assumptions (lower bounds) that give the limits beyond which the con-
sidered distributed problem cannot be solved.

This talk is a short introduction to this kind of issues. It first presents
concepts and results related to distributed computability, and then briefly
addresses distributed complexity issues, which are the two lenses that al-
lows us to understand and master computing. The following table sum-
marizes the main issues encountered in distributed computing seen from
these two lenses.

Synchronous Asynchronous

Failure-free complexity complexity

Failure-prone complexity computability

The full content of this talk can be found in [19]. The interested reader
will find more elements on computability and complexity issues in dis-
tributed computing in the (non-exhaustive) list of papers and books that
appears below.

XIV M. Raynal

References

1. Attiya, H., Welch, J.L.: Distributed computing: fundamentals, simulations and
advanced topics, 2nd edn., p. 414. Wiley-Interscience (2004) ISBN 0-471-45324-2

2. Borowsky, E., Gafni, E., Generalized, F.L.P.: Impossibility Results for t-Resilient
Asynchronous Computations. In: Proc. 25th ACM Symposium on Theory of Com-
puting (STOC 1993), pp. 91–100. ACM Press (1993)

3. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

4. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. Journal of the ACM 60(5), Article 35, 16 (2013)

5. Gafni, E.: Round-by-round Fault Detectors: Unifying Synchrony and Asynchrony.
In: Proc. 17th ACM Symposium on Principles of Distributed Computing (PODC
1998), pp. 143–152. ACM Press (1998)

6. Herlihy, M.P.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13(1), 124–149 (1991)

7. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed computing through combina-
torial topology, p. 336. Morgan Kaufmann/Elsevier (2014) ISBN 9780124045781

8. Herlihy, M.P., Rajsbaum, S., Raynal, M.: Power and limits of distributed computing
shared memory models. Theoretical Computer Science 509, 3–24 (2013)

9. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
Journal of the ACM 46(6), 858–923 (1999)

10. Herlihy, M., Shavit, N.: The art of multiprocessor programming, p. 508. Morgan
Kaufmann (2008) ISBN 978-0-12-370591-4

11. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM 21(7), 558–565 (1978)

12. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

13. Lynch, N.A.: Distributed algorithms, p. 872. Morgan Kaufmann (1996)
14. Peleg, D.: Distributed computing, a locally sensitive approach. SIAM Monographs

on Discrete Mathematics and Applications, p. 343 (2000) ISBN 0-89871-464-8
15. Raynal, M.: Communication and agreement abstractions for fault-tolerant asyn-

chronous distributed systems, p. 251. Morgan & Claypool Pub. (2010) ISBN 978-
1-60845-293-4

16. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, p.
165. Morgan & Claypool Publishers (2010) ISBN 978-1-60845-525-6

17. Raynal, M.: Concurrent programming: algorithms, principles, and foundations, p.
530. Springer (2013) ISBN 978-3-642-32026-2

18. Raynal, M.: Distributed algorithms for message-passing systems, p. 515. Springer
ISBN: 978-3-642-38122-5

19. Raynal, M.: What can be computed in a distributed system? In: Bensalem, S.,
Lakhneck, Y., Legay, A. (eds.) From Programs to Systems. LNCS, vol. 8415, pp.
209–224. Springer, Heidelberg (2014)

20. Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.)
STACS 1989. LNCS, vol. 349, pp. 304–316. Springer, Heidelberg (1989)

21. Taubenfeld, G.: Synchronization algorithms and concurrent programming, p. 423.
Pearson Education/Prentice Hall (2006) ISBN 0-131-97259-6

Biological Distributed Computing

Yuval Emek

Technion, Israel

yemek@ie.technion.ac.il

Biological systems are built by nature, shaped and optimized through billions of
years of evolution, and their exact behavior is typically a mystery that requires
an enormous effort to be revealed. Digital systems, on the other hand, are built
by engineers from fully specified programs in time frames that rarely last for more
than a few years. Therefore, it seems unlikely that tools and methodologies that
were originally developed in the context of digital systems may be employed
for a successful investigation of biological systems. Surprisingly, the distributed
computing toolbox does exactly that!

Ranging from the level of individual cells to that of whole organisms, many
biological systems are distributed. Although these systems lack a centralized con-
trol, they may be involved in computational processes whose level of complexity
is a good match for that of their digital counterparts. Recent advances in tech-
nologies for querying gene expression as well as for monitoring interactions at the
molecular level facilitate a much deeper understanding of these computational
processes. Based on that understanding, we can build more accurate models,
which in turn provide us with the opportunity to study biological distributed
systems through the lens of theoretical distributed computing.

By applying the toolbox of theoretical distributed computing to various bio-
logical problems, new insights can be provided. The last few years have been a
flourishing period for scientific work that follows this approach and by now, one
can safely argue that a new research area that lies at the interface of biology and
theoretical distributed computing has emerged.

Arguably the most influential paper in this research area is that of Afek et
al. [2] who discovered that a biological process that occurs during the develop-
ment of the nervous system of the Drosophila melanogaster is in fact equivalent
to solving the maximal independent set (MIS) problem. This has led to an ex-
tensive work on MIS under the beeping model [3, 11] that provides a good
approximation for the communication model in cellular networks, resulting in
improved algorithms and lower bounds [1, 2, 13]. It also led to the development
of fundamentally new models for distributed computing in networks of devices
whose computation and communication capabilities are much weaker than those
assumed by the traditional message passing model [4, 7, 8].

Common to the papers mentioned in the previous paragraph is that they focus
on the (distributed) computational process that occurs at the cellular level, i.e.,
in networks whose basic components are individual cells. However, fascinating
distributed computing phenomena prevail in biological systems of a much larger
scale as well. Indeed, insect colonies can be regarded as a distributed system
whose survival relies on the communication and coordination among its entities.
The research lane that inspects basic insect colony tasks such as foraging and

XVI Y. Emek

navigation from the perspective of theoretical distributed computing has been
very fruitful in the last couple of years [5, 6, 9, 10, 12].

In the talk, we will survey the emerging research area of applying the dis-
tributed computing toolbox to biological systems with a particular focus on the
aforementioned biological domains of cellular networks and insect colonies. The
main results of this research area will be discussed and some open questions will
be raised. The talk will be self-contained.

References

[1] Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping
a maximal independent set. In: Peleg, D. (ed.) Distributed Computing. LNCS,
vol. 6950, pp. 32–50. Springer, Heidelberg (2011)

[2] Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A
Biological Solution to a Fundamental Distributed Computing Problem. Sci-
ence 331(6014), 183–185 (2011)

[3] Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Hei-
delberg (2010)

[4] Dolev, S., Gmyr, R., Richa, A., Scheideler, C.: Ameba-inspired self-organizing
particle systems. A manuscript

[5] Emek, Y., Langner, T., Stolz, D., Uitto, J., Wattenhofer, R.: How Many Ants
Does It Take To Find the Food? In: 21th International Colloquium on Structural
Information and Communication Complexity (SIROCCO), Hida Takayama, Japan
(July 2014)

[6] Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem
with Asynchronous Finite State Machines. In: Esparza, J., Fraigniaud, P., Hus-
feldt, T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–
482. Springer, Heidelberg (2014)

[7] Emek, Y., Uitto, J., Wattenhofer, R.: Failures in the stone age. A manuscript
[8] Emek, Y., Wattenhofer, R.: Stone age distributed computing. In: PODC, pp. 137–

146 (2013)
[9] Feinerman, O., Korman, A.: Memory lower bounds for randomized collaborative

search and implications for biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

[10] Feinerman, O., Korman, A., Lotker, Z., Sereni, J.-S.: Collaborative search on the
plane without communication. In: PODC, pp. 77–86 (2012)

[11] Flury, R., Wattenhofer, R.: Slotted Programming for Sensor Networks. In: IPSN
(April 2010)

[12] Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between selection
complexity and performance when searching the plane without communication.
In: PODC (2014)

[13] Scott, A., Jeavons, P., Xu, L.: Feedback from nature: an optimal distributed algo-
rithm for maximal independent set selection. In: PODC, pp. 147–156 (2013)

Table of Contents

Invited Presentations

Algorithmic Aspects of Resource Management in the Cloud 1
Sebastian Kniesburges, Christine Markarian,
Friedhelm Meyer auf der Heide, and Christian Scheideler

Communication Complexity Lower Bounds in Distributed
Message-Passing . 14

Rotem Oshman

Distributed Algorithmic Foundations of Dynamic Networks 18
Gopal Pandurangan

Best Student Paper

The Beachcombers’ Problem: Walking and Searching with Mobile
Robots . 23

Jurek Czyzowicz, Leszek G ↪asieniec, Konstantinos Georgiou,
Evangelos Kranakis, and Fraser MacQuarrie

Shared Memory and Multiparty Communication

Reliable Shared Memory Abstraction on Top of Asynchronous
Byzantine Message-Passing Systems . 37

Damien Imbs, Sergio Rajsbaum, Michel Raynal, and Julien Stainer

Distributed Transactional Contention Management as the Traveling
Salesman Problem . 54

Bo Zhang, Binoy Ravindran, and Roberto Palmieri

The Complexity Gap between Consensus and Safe-Consensus
(Extended Abstract) . 68

Rodolfo Conde and Sergio Rajsbaum

The Simultaneous Number-in-Hand Communication Model for
Networks: Private Coins, Public Coins and Determinism 83

Florent Becker, Pedro Montealegre, Ivan Rapaport, and Ioan Todinca

Network Optimization

Approximation of the Degree-Constrained Minimum Spanning
Hierarchies . 96

Miklós Molnár, Sylvain Durand, and Massinissa Merabet

XVIII Table of Contents

Secluded Path via Shortest Path . 108
Matthew P. Johnson, Ou Liu, and George Rabanca

CONGEST Algorithms and Lower Bounds

Distributed Approximation of Minimum Routing Cost Trees 121
Alexandra Hochuli, Stephan Holzer, and Roger Wattenhofer

Randomized Lower Bound for Distributed Spanning-Tree Verification . . . 137
Taisuke Izumi

Lessons from the Congested Clique Applied to MapReduce 149
James W. Hegeman and Sriram V. Pemmaraju

Wireless networks

Oblivious Rendezvous in Cognitive Radio Networks 165
Zhaoquan Gu, Qiang-Sheng Hua, Yuexuan Wang, and
Francis Chi Moon Lau

Local Broadcasting with Arbitrary Transmission Power in the SINR
Model . 180

Fabian Fuchs and Dorothea Wagner

Aggregation and Creation Games in Networks

Continuous Aggregation in Dynamic Ad-Hoc Networks 194
Sebastian Abshoff and Friedhelm Meyer auf der Heide

Network Creation Games with Traceroute-Based Strategies 210
Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti

Patrolling and Barrier Coverage

Patrolling by Robots Equipped with Visibility . 224
Jurek Czyzowicz, Evangelos Kranakis, Dominik Pajak, and
Najmeh Taleb

Distributed Barrier Coverage with Relocatable Sensors 235
Mohsen Eftekhari, Paola Flocchini, Lata Narayanan,
Jaroslav Opatrny, and Nicola Santoro

Exploration

Exploration of Constantly Connected Dynamic Graphs Based
on Cactuses . 250

David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade

Table of Contents XIX

How Many Ants Does It Take to Find the Food? . 263
Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and
Roger Wattenhofer

What Do We Need to Know to Elect in Networks with Unknown
Participants? . 279

Jérémie Chalopin, Emmanuel Godard, and Antoine Naudin

Rendezvous

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 295
Shantanu Das, Dariusz Dereniowski, Adrian Kosowski, and
Przemys�law Uznański

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted
Networks . 311

Dariusz Dereniowski, Ralf Klasing, Adrian Kosowski, and
�Lukasz Kuszner

Mobile Agents

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous
Trees . 327

Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa, and
Toshimitsu Masuzawa

A Recursive Approach to Multi-robot Exploration of Trees 343
Christian Ortolf and Christian Schindelhauer

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty
Host . 355

Evangelos Bampas, Nikos Leonardos, Euripides Markou,
Aris Pagourtzis, and Matoula Petrolia

Author Index . 371

Algorithmic Aspects of Resource Management

in the Cloud�

Sebastian Kniesburges, Christine Markarian��, Friedhelm Meyer auf der Heide,
and Christian Scheideler

Heinz Nixforf Institute & Department of Computer Science,
University of Paderborn, Germany

{seppel,fmadh}@upb.de, {chrissm,scheideler}@mail.upb.de

Abstract. In this survey article, we discuss two algorithmic research
areas that emerge from problems that arise when resources are offered
in the cloud. The first area, online leasing, captures problems arising
from the fact that resources in the cloud are not bought, but leased by
cloud vendors. The second area, Distributed Storage Systems, deals with
problems arising from so-called cloud federations, i.e., when several cloud
providers are needed to fulfill a given task.

1 Introduction

Cloud Computing offers the opportunity to access IT resources and services
such as computing power, storage, network capacities, and software, over the
internet. The first commercial cloud, Amazon Web Services [1], was launched
in 2006. Since then, many other cloud providers have shown up, among them
Salesforce [2], Google App Engine [3], and Microsoft Azur [4]. According to a
recent report by Forrester Research [9], the market of cloud computing in 2020 is
expected to increase by a factor of six compared to that in 2010. In this survey
article, we discuss two algorithmic research areas that emerge from problems
that arise when resources are offered in the cloud.

Rather than buying resources, as it is typical for traditional resource providers,
the cloud computing paradigm offers the possibility to rent resources for time
periods, capacities and qualities tailored to its current needs. As observed in [7],
this may lead to significant cost reductions. Algorithmic challenges arising from
this property of cloud computing will be our first topic online leasing.

A significant amount of research has been done to improve the management
of the resources in the cloud (see [19] for a survey). Algorithmic problems moti-
vated by so-called cloud federations, i.e., when several cloud providers are needed
to fulfill a given task, are addressed in our second topic Distributed Storage
Systems.

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre ”On-The-Fly Computing” (SFB 901).

�� Fellow of the International Graduate School ”Dynamic Intelligent Systems”.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 1–13, 2014.
c© Springer International Publishing Switzerland 2014

2 S. Kniesburges et al.

Target One: Online Leasing. The trend of renting servers for shorter time
durations is continuing, as some providers have already started renting machines
for less than an hour [9]. This is beneficial both for the providers and the clients.
On the one hand, providers want to minimize idle times of resources, and there-
fore allow that users may rent them for individual time periods. On the other
hand, clients seek to reduce their costs, i.e., clients seek to pay for resources only
when they need them. This trend is expected to go on just like in phone com-
panies which nowadays provide more flexible services compared to before, i.e.,
they moved from charging land-lines per several minutes to charging cell-phones
per minute, and nowadays even per second [10]. There have been many attempts
to capture these two needs [11–18], one of the most efficient is by allowing com-
petition among providers by reducing providers’ costs, which was addressed by
Malik et al. in [8]. They propose the Virtual Cloud Model which is based on the
concept of Rent Out the Rented Resources. The idea of this model is to virtu-
alize an already virtualized infrastructure, i.e., a cloud vendor rents resources
from a third party enterprise, performs virtualization, and then rents them out
to clients. In this way, fewer resources are left idle, cloud providers reduce their
upfront and administrative costs, and clients rent resources for cheaper prices.
(See Fig 1)

Problem Definition: We describe our view of this model as follows. Requests
are given by clients, which specify the kind of service demanded and its duration
(Ex. 1 minute, 2 minutes,..., 1 hour). Each cloud provider offers a number of

Fig. 1. Virtual Cloud Model

Algorithmic Aspects of Resource Management in the Cloud 3

services for different prices. Based on the clients’ requests, a cloud vendor leases
services from providers, i.e., selects the provider to rent from(among those which
offer the demanded service) and rents the service from it for some duration (Ex.
1 minute, 2 minutes,..., 1 hour). A service may be used by all clients as long
as it is rented. Each period of lease has a cost and the longer the duration of
the lease, the cheaper the price per minute. The goal of the cloud vendor is to
serve each client while minimizing its leasing costs. Since the cloud vendor does
not know in advance which services will be requested and for how long, it might
happen that it buys long/expensive leases for some service, just to realize later
on that no more requests for this service are issued in subsequent times. Or it
buys short leases, just to notice later on that having bought a longer lease would
have cost less. Such a scenario can be formalized as an Online Leasing Problem.

The first online leasing problem was introduced by Meyerson [21] with the
Parking Permit Problem. Here, each day, depending on the weather, we have to
either use the car (if its rainy) or walk (if its sunny). If we take the car, we must
have a valid parking permit. There are K different types of parking permits,
each with its own duration and cost. The goal is to buy a set of permits in order
to cover all rainy days and minimize the total cost of purchases (and without
using weather forecasts). In Section 2, we give an overview of the state of the
art of online leasing problems and propose future work.

Target Two: Distributed Storage Systems. The benefits of cloud comput-
ing led to a wide acceptance of cloud services as a cost reducing alternative com-
pared to in-house IT solutions. Nevertheless, cloud computing also comes with
some downsides and obstacles that have prevented potential cloud customers
from moving their applications and data into the cloud. The major obstacles are
[32, 33]:

– Availability concerns: Can availability be ensured if the application no longer
runs on in-house IT services?

– Data lock-in concerns: Can applications and data easily be moved from one
cloud provider to another?

– Security and auditability objections: Can the security of essential data be
ensured, and can it be controlled where the data is stored?

– Data transfer bottlenecks: Can the placement of data and applications in
the cloud be controlled to reduce the data transfer costs?

One proposed solution for the availability concerns, the data transfer bottle-
neck and the data lock-in concerns is to use multiple cloud providers instead
of one, just as a large service provider in the Internet may use multiple net-
work providers to ensure connectivity [32]. This has led to the concept of cloud
federation [34], which is the practice of interconnecting the cloud computing
environments of two or more service providers for the purpose of load balancing
traffic and accommodating spikes in demand. A cloud federation offers two sub-
stantial benefits to cloud providers. On the one hand, it allows providers to earn
revenue from computing resources that would otherwise be idle or underutilized,

4 S. Kniesburges et al.

and on the other hand, a cloud federation enables cloud providers to expand
their geographic footprints and accommodate sudden spikes in demand without
having to build new points-of-presence. Cloud federations are also interesting in
the context of security because a possible solution to address the security con-
cerns is to combine a public cloud with a private cloud, where the sensitive data
is kept in the private cloud. The ability to form cloud federations is also very
useful for cloud vendors since it would allow them to set up their own virtualized
infrastructure by renting resources at various cloud providers and implementing
their service platform on top of these resources so that the desired service can
be offered to the clients.

In recent years several solutions for cloud federations have been proposed
[35, 36, 7, 11, 14–17, 37–39]. One of the key research challenges in this field is
the question how to connect the different resources available in a cloud federation
and how to distribute the data among the resources. One proposed approach is
based on the use of distributed hash tables (DHTs) [11, 37, 39]. The basic idea
behind this approach is to create a new virtual address space and to hash the
data as well as the resources to that space in order to determine which resource
is supposed to store which data item. The virtual addresses of the resources may
also be used to establish connections between these resources so that a fully
decentralized DHT can be established.

Problem Definition: We consider the following problem. A cloud vendor that
leases a set of n possibly heterogeneous resources by different cloud providers
needs to connect these resources to build its own virtual cloud to satisfy the de-
mands of its clients. In our model each resource can be identified by its specific
address. Since the cloud vendor may dynamically release some rented resources
and lease some other resources, we model the set of resources as dynamic. In
order to minimize the overhead for the cloud vendor, the resources should ideally
be able to manage their connections and storage themselves by running appro-
priate distributed protocols. For that approach to be scalable and sufficiently
robust it is important to maintain an overlay network between the resources
that has a low diameter and a high expansion. In Section 3, we give an overview
of the state of the art of algorithmic research in the area of distributed storage
systems and propose some future work.

2 Online Leasing Problems

Typical infrastructure problems consider scenarios where one has to buy cer-
tain goods or resources (e.g., facilities, network nodes, or network connections)
in order to generate or improve a given infrastructure (e.g., a supply network).
Such problems have not only been widely studied in the offline- but also in
the online-setting [26–30], where the decision which goods to buy when must be
taken without knowledge of future demands. One of the best known online prob-
lems is the ski rental problem, where we either rent skies (on a daily basis) or buy

Algorithmic Aspects of Resource Management in the Cloud 5

them. Seen as an infrastructure problem, it gives us the additional possibility
to rent (lease) a good to satisfy our “skiing demand” (instead of only buying).
Meyerson [21] generalized this idea with the Parking Permit Problem. If we have
two lease types, one for a single day and one of infinite length, we get a variant
of the ski rental problem.

Parking Permit Problem. The Parking Permit Problem, as stated earlier,
was the first problem to introduce leasing [21]. Meyersen [21] gave an O(K)-
deterministic and an O(logK)-randomized algorithm for the Parking Permit
Problem. He showed that these bounds are optimum and gave a randomized
O(log n logK)-algorithm for the leasing variant of Online Steiner Forest as well.
The O(K)-deterministic algorithm for the Parking Permit Problem goes as fol-
lows. For each rainy day, we buy a 1-day permit, until there is some (k ∈ K)-
interval where the optimum offline solution for the sequence of days seen so
far, would buy a k-day permit. In this case, we also buy a k-day permit. The
O(logK)-randomized algorithm for the Parking Permit Problem first computes
an O(logK)-competitive fractional solution and then converts it, by randomized
rounding, into a randomized integer solution which maintains the O(logK)-
competitive factor. A fractional algorithm is allowed to purchase fractional per-
mits, such that on each rainy day, the total fractional permits sums up to at
least one. The fractional algorithm is described as follows. We initially set all
permits to fraction zero. As long as the sum of the total fractional permits for a
rainy day is not one, we do the following. For each 1 ≤ i ≤ K, we multiply the
fraction by which the currently valid permit of type i is purchased by 1 + 1/Ci,
and then we add to it 1/K · Ci, where Ci is the cost of permit i.

Facility Leasing. Anthony and Gupta [20] presented the leasing model more
generally in many infrastructure problems: Facility Location, Steiner Tree, and
Set Cover. As a typical infrastructure problem, Facility Leasing was the first
leasing variant which was studied. In this leasing variant of Facility Location
(presented by Anthony and Gupta [20]), we are given a set F of m facilities
and a set D of n clients. The goal is to minimize the costs of serving the clients
by opening facilities and connecting each client to an open facility. Connecting
a facility i to client j incurs a connection cost cij .However, in contrast to the
classical Facility Location model, there is a notion of (discrete) time. Clients
do not arrive all at once. Instead, at time t ∈ N , a subset Dt ⊆ D of clients
appear and these clients need to be served for the current time t only. Moreover,
opening a facility is not merely a binary decision. Instead, in order to open a
facility, we are asked to determine the point in time at which the facility is going
to be opened and one of the K different lease types that is to be used to open
it. A facility i opened at time t using lease type k incurs a cost cki and can serve
clients arriving during the interval [t, t + lk]. The problem is known as metric
when connection costs are assumed to satisfy the triangle inequality. The leasing
model was studied in both offline and online settings. For the offline setting, An-
thony and Gupta [20] gave an O(K)-approximation for Facility Leasing, which

6 S. Kniesburges et al.

was a result of an interesting relationship between deterministic leasing problems
and problems in multistage stochastic optimization. The O(K)-approximation
for Facility Leasing was later improved to a 3-approximation by Nagarajan and
Williamson [22]. In the online setting, Nagarajan and Williamson [22] gave an
O(K logn)-competitive algorithm for metric Facility Leasing. Their algorithm is
an extension of the algorithm in [25] for Online Facility Location. We extended
the results by Nagarajan and Williamson [22] for Facility Leasing by removing
the dependency on n (and thereby on time) [24]. We gave an O(lmax log(lmax))-
competitive algorithm where lmax is the maximum lease length. Moreover, we
showed that our algorithm has an O(log2(lmax))-competitive factor for many
natural client arrival patterns. Such patterns include, for example, situations
where the number of clients arriving in each time step does not vary too much,
or is non-increasing, or is polynomially bounded in lmax.

Set Cover Leasing. In the leasing variant of Set Cover (presented by An-
thony and Gupta [20]), elements in U , |U | = n, arrive over time and must be
covered by sets in a family F of subsets of U , |F | = m. Each set can be leased
for K different periods of time. Leasing a set S for a period k incurs a cost of
ckS and allows S to cover its elements for the next lk time steps. The objective is
to minimize the total cost of the sets leased, such that the elements arriving at
any time t are covered by sets which contain them and are leased during time t.
Anthony and Gupta [20] gave an O(log n)-approximation for the problem in the
offline setting. This is the best possible unless P = NP [31]. Currently, we have
randomized algorithms for Set Cover Leasing and many of its variants [23]. Our
algorithm for Set Cover Leasing has an expected O(log(Km) logn)-competitive
factor and draws ideas from the Parking Permit Problem algorithm [21] and the
randomized algorithm for non-metric Online Facility Location [29].

Future Research Directions. It is easy to see that the aspect of manag-
ing the renting of cloud resources may contain many online leasing problems as
subproblems. Therefore, with the ongoing advances in the cloud computing tech-
nologies, many attempts to capture these advances in the form of online leasing
problems are expected. These include new online leasing problems, in addition
to variants of existing online leasing problems, which we stated above. From the
technical point of view, the research in online leasing problems seems to be in its
infancy. All the algorithms for the online leasing variants of the problems studied
so far build upon the algorithms for the non-leasing variants of the corresponding
problems and the Parking Permit Problem algorithm. Since all these problems
generalize the Parking Permit Problem, the only lower bound we have for these
problems is Ω(K + f()) where K is the lower bound for the Parking Permit
Problem and f() is the lower bound for the underlying non-leasing variant of
the problem. It is still not known whether we can prove stronger lower bounds
for these problems. This means, we do not know yet the price we have to pay for
leasing. In other words, we do not know whether there is a common difficulty

Algorithmic Aspects of Resource Management in the Cloud 7

among these problems in their leasing variant or the same techniques used for
the non-leasing variants could be extended to solve the leasing variants.

3 Distributed Storage Systems

DHTs have been a popular choice for maintaining distributed storage systems.
The widely used distributed database management system Apache Cassandra
[5], for example, has been realized as a DHT-based distributed storage system
[40] that, like many other DHTs, uses the concept of consistent hashing [42] to
support scalability. A similar concept is introduced in [41], a predecessor of the
current AmazonDynamDB offered by Amazon web services [6]. We will give a
high-level overview of different implementations of DHTs and different concepts
of load balancing in DHTs.

Distributed Hash Tables. DHTs were introduced as structured peer-to-peer
networks. The most basic and popular concepts are Chord [46], Pastry [45] and
Tapestry [47]. All of these DHTs map the set of hosts (randomly) to a virtual
address space so that each host is responsible for a part or region of the address
space. The data is usually mapped to addresses in that space using some pseudo-
random hash function, and each data item is stored in that host responsible for
the address of that data item. Whenever a host enters or leaves the system, the
regions of some hosts may change, which may then cause the relocation of data.
The simplest variant of this approach is the concept of consistent hashing [42].
In consistent hashing, the data items are hashed to points in the [0, 1)-interval,
and the hosts are mapped to disjoint intervals in the same [0, 1)-interval, and a
host stores all data items that are hashed to points in its interval. An alterna-
tive strategy is to hash data items and hosts to pseudo-random bit strings and
to store (indexing information about) a data item at the host with the longest
prefix match [43]. This concept is used by Pastry and Tapestry [47]. Chord,
Pastry and Tapestry provide the following features for a set of n hosts:

– logarithmic diameter with high probability,
– (expected) logarithmic degree,
– (poly-)logarithmic structural changes in case of joining or leaving hosts, and
– the maximum load exceeds the average by at most a logarithmic factor with

high probability.

Several other DHTs have been proposed since then that optimize the degree and
the diameter. For example, Koorde [48] achieves a diameter of O(log n) with a
degree of just O(1) and a routing distance of O(log n/ log logn) with a degree of
O(log n).

Load Balancing for DHTs. In order to improve the load balancing of DHTs
like Chord, different approaches have been proposed in the last years. One con-
cept already mentioned in the work introducing Chord [46] is the concept of
virtual hosts. Instead of being responsible for a single region, a host simulates

8 S. Kniesburges et al.

Θ(log n) virtual hosts and is responsible for all the regions assigned to these
virtual hosts. With this strategy it can be shown that the maximal load exceeds
the average load by a factor of just O(1) instead of O(log n) with high probabil-
ity. However, this increases the degree at each host by a factor of O(log n). The
concept of virtual hosts has been further studied in [49, 50]. Another approach
is based on the paradigm of many choices [52], i.e., a host is given set of possible
positions in the address space from which it chooses the most balancing one. For
example, in case of the Chord network a host would choose the position that
cuts the longest of all intervals a host is currently responsible for. This concept
has been used in [51, 53, 54] and can achieve a constant ratio of the maximal
load and the minimal load provided that the data items are evenly distributed.
However, the approaches above have a certain drawback. They assume that hosts
join the network sequentially and they do not say how to balance the load in
case of leaving hosts. This problem is attacked in [55, 56]. The authors propose
a scheme in which each host chooses O(log n) places in the network and takes
responsibility for only one of them. This place can change if some hosts leave or
join, but each host migrates only among its O(log n) alternative places, and after
each operation only O(log logn) hosts have to migrate on expectation. Another
solution in which hosts change their places over time is proposed in [57]. Each
host estimates the number n of hosts currently in the system and then decides
whether the interval it is responsible for is small, medium, or large. Hosts with
small intervals are migrated to places where a long interval is cut to reach a
constant ratio of the maximal interval size (resp. load) to the minimal interval
size (resp. load). The number of hosts migrating is asymptotically optimal, but
to find the right places for the migration can incur high communication costs
depending on the diameter of the network and logn. Some drawbacks of all the
presented approaches is that they assume that data is evenly distributed and that
the hosts are homogeneous. Furthermore, to calculate or estimate O(log n) the
hosts need some kind of global knowledge. Another issue is that although DHTs
are considered to be self-organizing, rarely mechanisms are proposed to maintain
the system in cases of failing communication links or if hosts fail. Mostly, only
join and leave routines are presented.

Heterogeneous DHTs. In a heterogeneous setting, each host u has its specific
capacity c(u), and the goal is to balance the load among the hosts so that each

host u stores a fraction of c(u)∑
∀v c(v) of the data. The simplest solution would

be to reduce the heterogeneous case to the homogeneous case by splitting a
host of k times the base capacity (e.g., the minimum capacity of a host) into
k many virtual hosts like already seen for homogeneous hosts. In [62] the main
idea is not to place the virtual hosts belonging to a real host randomly in the
identifier space but in a restricted range to achieve a low degree in the overlay
network. However, they still need an estimation of the network size and a clas-
sification of nodes with high, average, and low capacity. A similar approach is
presented in [63]. Rao et al. [50] proposed some schemes also based on virtual
servers, where the data is moved from heavy nodes to light nodes to balance

Algorithmic Aspects of Resource Management in the Cloud 9

the load after the data assignment. However, the concept of virtual hosts has
some major drawbacks. As already mentioned, an estimation of the network size
n is needed. Furthermore, knowledge about the overall capacity of the DHT is
needed to determine whether a host has a low, medium or high capacity. So far,
the only solution independent of the overall capacity and the number of hosts is
the weighted distributed hash table by Schindelhauer and Schomaker [65]. Their
basic idea is to assign a distance function to each host that scales with the capac-
ity of the host. A data element is then assigned to the host of minimum distance
with respect to these distance functions. The authors show that when using a
specific logarithmic function, a fair load balancing can be achieved. However,
this approach lacks a distributed implementation, as the authors do not state
how the hosts have to be interconnected to easily determine which data is stored
on which host. Instead, they only present a centralized algorithm to calculate
the mapping of the data to the hosts.

Self-Stabilizing DHTs. For a distributed system to be self-stabilizing, two
properties have to be fulfilled:

– Convergence: The system has to be able to eventually reach a legal state
from any initial state.

– Closure: Whenever the system starts in a legal state, it stays in a legal state.

Since the introduction of the concept of self-stabilizing in the seminal paper of
Dijkstra [66], a huge volume of protocols for self-stabilizing systems has been pro-
posed. However, until recently most of these protocols just dealt with the case that
the interconnection network is static. Self-stabilizing overlay networks were only
proposed in the past few years. Some prominent examples are a self-stabilizing
hypertree [59], a self-stabilizing skip graph [60], and a universal protocol for self-
stabilizing overlay networks [58]. Recently, we also proposed a self-stabilizing over-
lay network for hosts of different bandwidths [61].

In [64] we introduced the concept of self-stabilization [66] to the area of
DHTs. In this work a distributed protocol is presented that recovers a variant
of the Chord network from any state, as long as the set of hosts remains con-
nected. Recently, we also presented a self-stabilizing overlay network that allows
an efficient distributed implementation of the weighted distributed hash table
by Schindelhauer and Schomaker [65]. We showed that in the overlay network
each host has a degree of at most O(log n) with high probability and also the
routing distance is O(log n) with high probability. Applying the analysis of [65],
we were able to show that the load of each host is balanced in a fair way. A fu-
ture challenge will be to obtain a self-stabilizing DHT that does not just handle
arbitrary capacities but also arbitrary bandwidths.

Future Research Directions. As can be seen from the results above, a lot of
work has already addressed the problem of load balancing in distributed storage
systems. However, not much rigorous work is known if the hosts in that storage
system show several degrees of heterogeneity like heterogeneous bandwidths and
capacities. Also, for most approaches a uniform distribution of the data items

10 S. Kniesburges et al.

is assumed, which cannot be ensured if related data is supposed to be stored
close to each other or there are some geographic or security constraints. Cloud
provides also offer different degrees of control. E.g., in Amazon Web Services a
customer can specify and control the cloud service (a virtual machine (VM)) in a
detailed way while in the Google App Engine the cloud service is automatically
adapted to the application running on it, giving the customer less control. Also,
the concept of self-stabilizing deserves further attention because the fact that a
system is self-stabilizing does not necessarily mean that it is highly available.
Here, it is important that the system is able to fix its faulty parts while all other
parts that are still functional remain functional. In other words, a more local
form of convergence and closure is needed, where closure is to be preserved for
the legal parts while convergence is ensured for the illegal parts of the system.

References

1. Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
2. Salesforces Force.com Cloud Computing Architecture,

http://www.salesforce.com/platform/

3. Google App Engine, https://appengine.google.com
4. Windows Azur Platform, http://www.microsoft.com/windowsazure/
5. Apache Cassandra, http://cassandra.apache.org/
6. Amazon Web Services, http://aws.amazon.com/
7. Assuncao, M.D., Costanzo, A., Buyya, R.: Evaluating the Cost-Benefit of Using

Cloud Computing to Extend the Capacity of Clusters. In: Proceedings of the 18th
International Symposium on High Performance Distributed Computing (HPDC)
(2009)

8. Malik, S., Huet, F.: Virtual Cloud: Rent Out the Rented Resources. In: Proceedings
of the 6th IEEE International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 536–541 (2011)

9. Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: Deconstructing Ama-
zon EC2 Spot Instance Pricing. In: Proceedings of the 3rd IEEE International
Conference on Cloud Computing Technology and Science (Cloud-Com) (2011)

10. Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A., Tsafrir, D.: The Resource-as-a-
Service (RaaS) Cloud. In: Proceedings of the 4th USENIX Conference on Hot
Topics in Cloud Computing (HotCloud) (2012)

11. Buyya, R., Ranjan, R., Calheiros, R.N.: InterCloud: Utility-Oriented Federation of
Cloud Computing Environments for Scaling of Application Services. In: Hsu, C.-
H., Yang, L.T., Park, J.H., Yeo, S.-S. (eds.) ICA3PP 2010, Part I. LNCS, vol. 6081,
pp. 13–31. Springer, Heidelberg (2010)

12. Assuno, M., Buyya, R., Venugopal, S.: InterGrid: A Case for Internetworking Is-
lands of Grids. Journal of Concurrency and Computation: Practice and Experience
Archive 20(8) (2008)

13. Assuncao, M., Buyya, R.: Performance Analysis of Allocation Policies for Inter-
Grid Resource Provisioning. Information and Software Technology 51(1), 42–55
(2009)

14. Bernstein, D., Ludvigson, E., Sankar, K., Diamond, S., Morrow, M.: Blueprint for
the Inter-cloud Protocols and Formats for Cloud Computing Interoperability. In:
Proceedings of the 4th International Conference on Internet and Web Applications
and Services (2009)

http://aws.amazon.com/ec2/
http://www.salesforce.com/platform/
https://appengine.google.com
http://www.microsoft.com/windowsazure/
http://cassandra.apache.org/
http://aws.amazon.com/

Algorithmic Aspects of Resource Management in the Cloud 11

15. Campbell, R., Gupta, I., Heath, M., Ko, S., Kozuch, M., Kunze, M., Kwan, T.,
Lai, K., Lee, H., Lyons, M., Milojicic, D., O’Hallaron, D., Soh, Y.: Open CirrusTM
Cloud Computing Testbed: Federated Data Centers for Open Source Systems and
Services Research. In: Proceedings of the Conference on Hot Topics in Cloud Com-
puting, HotCloud (2009)

16. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: How to Enhance Cloud Architec-
tures to Enable Cross-Federation. In: Proceedings of the IEEE 3rd International
Conference on Cloud Computing, CLOUD (2010)

17. Celesti, A., Tusa, F., Villari, M., Puliafito, A.: Three-Phase Cross-Cloud Federation
Model: The Cloud SSO Authentication. In: Proceedings of the 2nd International
Conference on Advances in Future Internet (2010)

18. Keahey, K., Tsugawa, M., Matsunaga, A., Fortes, J.: Sky Computing. Proceedings
of the IEEE Journal of Internet Computing 13(5), 43–51 (2009)

19. Vinothina, V., Sridaran, R., Ganapathi, P.: A Survey on Resource Allocation
Strategies in Cloud Computing. International Journal of Advanced Computer Sci-
ence and Applications 3(6), 97–104 (2012)

20. Anthony, B.M., Gupta, A.: Infrastructure leasing problems. In: Fischetti, M.,
Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 424–438. Springer, Hei-
delberg (2007)

21. Meyerson, A.: The parking permit problem. In: Proceedings of the 46th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 274–284
(2005)

22. Nagarajan, C., Williamson, D.P.: Offline and online facility leasing. In: Lodi,
A., Panconesi, A., Rinaldi, G. (eds.) IPCO 2008. LNCS, vol. 5035, pp. 303–315.
Springer, Heidelberg (2008)

23. Abshoff, S., Markarian, C., Meyer auf der Heide, F.: Online Algorithms for Set
Cover Leasing Problems (in preparation)

24. Kling, P., Meyer auf der Heide, F., Pietrzyk, P.: An algorithm for online facility
leasing. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355,
pp. 61–72. Springer, Heidelberg (2012)

25. Fotakis, D.: A primal-dual algorithm for online non-uniform facility location. Jour-
nal of Discrete Algorithms 5, 141–148 (2007)

26. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. In: Proceedings of the 35th Annual ACM Symposium on the Theory of
Computation (STOC), pp. 100–105 (2003)

27. Meyerson, A.: Online Facility Location. In: Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, pp. 426–431 (2001)

28. Fotakis, D.: On the Competitive Ratio for Online Facility Location. In: Baeten,
J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 637–652. Springer, Heidelberg (2003)

29. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N.: A General Approach to Online
Network Optimization Problems. In: Proceedings of the 15th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 577–586 (2004)

30. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing
problems. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp.
689–701. Springer, Heidelberg (2005)

31. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Transactions on Algorithms 2, 153–177 (2006)

32. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I.O.N., Zaharia, M.: A view of cloud computing.
Communications of the ACM 53(4), 50–58 (2010)

12 S. Kniesburges et al.

33. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I.O.N., Zaharia, M.: Above the clouds: A
berkeley view of cloud computing. Technical Report (2009)

34. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud Feder-
ation. In: Proceedings of the 2nd International Conference on Cloud Computing,
GRIDs, and Virtualization (CLOUD COMPUTING 2011) (2011)

35. Villegas, D., Bobroff, N., Rodero, I., Delgado, J., Liu, Y., Devarakonda, A., Fong,
L., Sadjadi, S.M., Parashar, M.: Cloud federation in a layered service model. Jour-
nal of Computer and System Sciences 78(5), 1330–1344 (2012)

36. Zhang, Z., Zhang, X.: Realization of open cloud computing federation based on mo-
bile agent. In: Proceedings of IEEE International Conference on Intelligent Com-
puting and Intelligent Systems (ICIS 2009), pp. 642–646 (2009)

37. Ranjan, R., Buyya, R.: Decentralized overlay for federation of enterprise clouds.
CoRR abs/0811.2563 (2008)

38. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Mon-
tero, R., Wolfsthal, Y., Elmroth, E., Cceres, J., Ben-Yehuda, M., Emmerich, W.,
Galn, F.: The reservoir model and architecture for open federated cloud computing.
IBM Journal of Research and Development 53, 535–545 (2009)

39. Bernstein, D., Vij, D., Diamond, S.: An Intercloud Cloud Computing Economy -
Technology, Governance, and Market Blueprints. In: SRII Global Conference (SRII
2011), pp. 293–299 (2011)

40. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review 44(2), 35–40 (2010)

41. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: Proceedings of twenty-first ACM SIGOPS Symposium on
Operating Systems Principles (SOSP 2007), pp. 205–220 (2007)

42. Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Con-
sistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In: STOC 1997, pp. 654–663 (1997)

43. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated
objects in a distributed environment. In: SPAA 1997, pp. 311–320 (1997)

44. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: SIGCOMM, pp. 161–172 (2001)

45. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location, and
routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

46. Stoica, I., Morris, R., Karger, D., Frans Kaashoek, M., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: SIGCOMM, pp.
149–160 (2001)

47. Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D., Kubiatowicz, J.D.:
Tapestry: a resilient global-scale overlay for service deployment. IEEE Journal on
Selected Areas in Communications 22(1), 41–53 (2006)

48. Kaashoek, F., Karger, D.R.: Koorde: A Simple Degree-optimal Hash Table. In:
Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 98–107.
Springer, Heidelberg (2003)

49. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balanc-
ing in dynamic structured p2p systems. In: 23rd Conference of the IEEE Commu-
nications Society, INFOCOM (2004)

Algorithmic Aspects of Resource Management in the Cloud 13

50. Rao, A., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in
structured P2P systems. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS,
vol. 2735, pp. 68–79. Springer, Heidelberg (2003)

51. Byers, J., Considine, J., Mitzenmacher, M.: Simple Load Balancing for DHTs.
In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 80–87.
Springer, Heidelberg (2003)

52. Mitzenmacher, M., Richa, A.W., Sitaraman, R.: The power of two random choices:
A survey of techniques and results. In: Handbook of Randomized Computing (2000)

53. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous
discrete approach. In: Proc. of the 15th ACM Symp. on Parallel Algorithms and
Architectures (SPAA), pp. 50–59 (2003)

54. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: Kaashoek,
M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 88–97. Springer, Heidel-
berg (2003)

55. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-peer
systems. In: Voelker, G.M., Shenker, S. (eds.) IPTPS 2004. LNCS, vol. 3279, pp.
131–140. Springer, Heidelberg (2005)

56. Karger, D.R., Ruhl, M.: Simple efficient load balancing algorithms for peer-to-
peer systems. In: Proc. of the 16th ACM Symp. on Parallelism in Algorithms and
Architectures (SPAA), pp. 36–43 (2004)

57. Bienkowski, M., Korzeniowski, M., Meyer auf der Heide, F.: Dynamic load bal-
ancing in distributed hash tables. In: van Renesse, R. (ed.) IPTPS 2005. LNCS,
vol. 3640, pp. 217–225. Springer, Heidelberg (2005)

58. Berns, A., Ghosh, S., Pemmaraju, S.V.: Building self-stabilizing overlay networks
with the transitive closure framework. In: Défago, X., Petit, F., Villain, V. (eds.)
SSS 2011. LNCS, vol. 6976, pp. 62–76. Springer, Heidelberg (2011)

59. Dolev, S., Kat, R.: Hypertree for self-stabilizing peer-to-peer systems. In: NCA,
pp. 25–32 (2004)

60. Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: PODC, pp. 131–140
(2009)

61. Feldotto, M., Graffi, K., Scheideler, C.: HSkip+: A self-stabilizing overlay network
for nodes with heterogeneous bandwidths. Technical report, University of Pader-
born (2014)

62. Godfrey, P.B., Stoica, I.: Heterogeneity and Load Balance in Distributed Hash
Tables. In: IEEE INFOCOM (2005)

63. Bienkowski, M., Brinkmann, A., Klonowski, M., Korzeniowski, M.: SkewCCC+: A
heterogeneous distributed hash table. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 219–234. Springer, Heidelberg (2010)

64. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: Re-chord: a self-stabilizing chord
overlay network. In: SPAA 2011, pp. 235–244 (2011)

65. Schindelhauer, C., Schomaker, G.: Weighted distributed hash tables. In: SPAA
2005, pp. 218–227 (2005)

66. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17, 643–644 (1974)

67. Kniesburges, S., Koutsopoulos, A., Scheideler, C.: CONE-DHT: A Distributed Self-
Stabilizing Algorithm for a Heterogeneous Storage System. In: Afek, Y. (ed.) DISC
2013. LNCS, vol. 8205, pp. 537–549. Springer, Heidelberg (2013)

Communication Complexity Lower Bounds

in Distributed Message-Passing

Rotem Oshman�

Center for Computational Intractability, Princeton University

Most theoretical models of distributed systems neglect the cost of local compu-
tation, and charge only for communication between the participants in the com-
putation. For example, in shared memory models, we charge only for steps where
processes interact with the shared memory, and in message-passing systems we
charge only for messages sent between network nodes. For message-passing sys-
tems, traditional cost measures (with many exceptions) include the total number
of messages and the number of rounds, but of late there has been much interest
in characterizing the number of bits that need to be sent to solve various tasks,
and also the round-complexity of solving problems under bandwidth restrictions.

To prove lower bounds in settings where local computation is “free” and com-
munication is our main concern, it is natural to use techniques and results from
the field of communication complexity, introduced by Yao in his seminal pa-
per [17]. Two-player communication games involve two players, Alice and Bob,
who receive private inputs X,Y (respectively) and wish to compute a joint func-
tion f(X,Y) of their inputs (or accomplish some other task, e.g., produce out-
puts A,B satisfying some joint constraint R(X,Y,A,B), or sample a value from
some distribution specified by the inputs). Perhaps the most widely-applied lower
bound in this setting is the lower bound on set disjointness [6,13]: in the set dis-
jointness problem, Alice and Bob receive sets X,Y ⊆ {0, 1}n, and their goal is
to determine whether or not X ∩ Y = ∅. In [6,13] it is shown that even using
randomness, Ω(n) bits of communication are required to solve set disjointness
with constant error probability; this bound was later strengthened to show that
the players need to learn Ω(n) bits of information (in the information-theoretic
sense) about each others’ inputs [2]. The set disjointness lower bound has found
applications in streaming algorithms, data structures, sublinear-time property
testing, and other fields, and it has many interesting applications in distributed
computing. We will discuss some of them.

Message-passing models that charge for bits of communication can be broadly
classified into three classes.

1. CONGEST with point-to-point communication [11]: the most popular model,
the CONGESTmodel assumes synchronous computation. In each round, each
node has a budget of B bits that it may send on each of its communication
links (possibly a different B-bit message on each link). We are interested
in the number of rounds required to solve problems under this constraint.

� The author is supported by NSF grants CCF-0832797 and NSF CCF-1149888.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 14–17, 2014.
c© Springer International Publishing Switzerland 2014

Communication Complexity Lower Bounds in Distributed Message-Passing 15

For example, in [14] it is shown that even in networks with low diameter,
finding a spanning tree (as well as various other tasks) requires Ω(

√
n/B)

rounds of computation, where n is the number of nodes in the network.
One instance of the CONGEST model with point-to-point communication

is the congested clique, where the communication network is assumed to be
complete. In this model there are several surprisingly fast algorithms for
tasks such as routing, sorting, and subgraph detection [9,10,4], and lower
bounds have been elusive. Some explanation for this is provided in [1], where
it is shown that even slightly super-constant lower bounds for the congested
clique would imply better lower bounds for bounded-depth circuits than are
currently known.

A popular technique introduced in the textbook [8] for proving lower
bounds in the CONGEST model is to reduce from two-player communication
games by finding a sparse cut in the network, and then having the players
simulate the distributed algorithm’s run on the network, with Alice simulat-
ing the nodes on one side of the cut and Bob simulating the nodes on the
other side.

2. CONGEST with communication by broadcast: this model is similar to the
one above, but instead of communicating over point-to-point links, nodes
communicate by broadcasting messages that are received by all nodes in
their neighborhood. This more closely matches communication in wireless
networks. The most widely-studied instance is the one where the network is
the complete graph; this is the classical shared blackboard model of multi-
party communication complexity [8], since broadcasting a message to all
other players is equivalent to writing it on a blackboard that everyone can
read. However, there are also lower bounds for the case where the network
is not complete [7,5]. Lower bounds in this setting usually focus on round-
complexity under restricted bandwidth, as in the previous model.

To prove lower bounds in this model, one also frequently uses reductions
from two-player communication games, using a similar technique to the one
outlined above.

3. Private-channel models of communication complexity: recently there has
been much interest in studying the total number of bits required to solve
various problems. In contrast to the models above, here we allow players to
send an unbounded number of bits in each round, and we are generally not
interested in the round complexity. For technical convenience, it is usually
assumed that the communication network is a star, with a special player, the
coordinator, at the center. In [12,15,16], lower bounds on distributed stream-
ing are shown, including bounds on approximating the frequency moments
of input distributed among the players and testing various graph properties.
In [3], a tight lower bound of Ω(nk) bits is given for k-party set disjoint-
ness, where the players must determine whether or not their input sets have
some global intersection; several of the lower bounds from [12,16] can also
be obtained by reduction from set disjointness.

Lower bounds in this class of models are not as easy to obtain by reduc-
tion from two-player communication complexity, but in some cases they can

16 R. Oshman

be: the symmetrization technique, introduced in [12] and applied to harder
problems in [15,16], allows one to reduce from two-player games to mul-
tiple players, by randomly choosing one player for Alice to simulate, and
having Bob simulate all the other players as well as the coordinator. The
input distribution needs to be chosen quite carefully for such reductions to
go through. Symmetrization has its limits, and it cannot be used to show a
tight lower bound on set disjointness; the bound from [3] was shown “from
scratch” using information complexity, where we charge players for the bits
that they learn about the other players’ inputs.

Conclusion. Communication complexity lower bounds have many applications
in distributed computing. In many cases, known lower bounds (most frequently,
the set disjointness lower bound) can be applied as a black-box, using reduc-
tions from two-party communication games. However, in other cases, existing
bounds do not quite suffice, for several reasons: first, even if a two-player reduc-
tion is possible, the particular two-player problems that are natural to reduce
from may not have been studied before (as in [7]). Fortunately, recent develop-
ments in the field of information complexity have made two-party lower bounds
much more approachable, even for those who are not experts in communication
complexity. In other cases, a two-player reduction cannot yield a tight lower
bound, and multi-player problems must be considered. This area of communi-
cation complexity is still somewhat in its infancy: although the communication
complexity community has long been interested in multi-player communication
complexity, most attention has until recently been focused on the number-on-
forehead model, where each player can see the other players’ inputs, but not its
own. In contrast, distributed systems are more naturally modeled as number-in-
hand games, where each player sees its own input. Although much progress has
been made in the last few years, many fascinating problems remain open, and
number-in-hand multi-party models are in general much less understood than
their two-party counterpart.

References

1. Kuhn, F., Drucker, A., Oshman, R.: The computational power of the congested
clique. To appear in PODC 2014 (2014)

2. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statis-
tics approach to data stream and communication complexity. J. Comput. Syst.
Sci. 68(4), 702–732 (2004)

3. Braverman, M., Ellen, F., Oshman, R., Pitassi, T., Vaikuntanathan, V.: A tight
bound for set disjointness in the message-passing model. In: Proc. 54th Symp. on
Found. of Comp. Science (FOCS), pp. 668–677 (2013)

4. Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again”: Finding triangles and small
subgraphs in a distributed setting (extended abstract). In: Aguilera, M.K. (ed.)
DISC 2012. LNCS, vol. 7611, pp. 195–209. Springer, Heidelberg (2012)

5. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed
task allocation. In: PODC, pp. 67–76 (2012)

Communication Complexity Lower Bounds in Distributed Message-Passing 17

6. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

7. Kuhn, F., Oshman, R.: The complexity of data aggregation in directed networks.
In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 416–431. Springer, Heidelberg
(2011)

8. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (2006)

9. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In:
Proc. 32nd Symp. on Principles of Distr. Comp. (PODC), pp. 42–50 (2013)

10. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting: ex-
tended abstract. In: Proc. 30th Symp. on Principles of Distr. Comp. (PODC), pp.
249–256 (2011)

11. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for In-
dustrial and Applied Mathematics (2000)

12. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multi-
party communication complexity, made easy. In: Proc. 23rd Symp. on Discrete
Algorithms (SODA), pp. 486–501 (2012)

13. Razborov, A.: On the distributed complexity of disjointness. TCS: Theoretical
Computer Science 106 (1992)

14. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM Journal on Computing 41(5), 1235–1265 (2012)

15. Woodruff, D.P., Zhang, Q.: Tight bounds for distributed functional monitoring. In:
Proc. 44th Symp. on Theory of Comp. (STOC), pp. 941–960 (2012)

16. Woodruff, D.P., Zhang, Q.: When distributed computation is communication ex-
pensive. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 16–30. Springer, Hei-
delberg (2013)

17. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: STOC, pp. 209–213 (1979)

Distributed Algorithmic Foundations

of Dynamic Networks

Gopal Pandurangan�

Division of Mathematical Sciences, Nanyang Technological University,
Singapore 637371 and Department of Computer Science and ICERM,

Brown University, Providence, RI 02912
gopalpandurangan@gmail.com

Introduction. Much of the well-established theory of distributed algorithms fo-
cuses on static networks, where nodes do not crash and edges maintain opera-
tional status forever. On the other hand, large real-world networks are inherently
dynamic: the participants in peer-to-peer networks and social networks change
over time, mobile nodes in wireless networks move in and out of each other’s
transmission range, and, in distributed data center networks, faulty machines
need to be replaced by new machines without interrupting the operation of the
remaining network. Dynamic network models, where the communication topol-
ogy varies over time but where the set of nodes is fixed, have been studied ex-
tensively in literature. Recently, dynamic networks have been considered in the
context of distributed computation, mostly assuming the model of [15,11,12].
In this setting, algorithms and complexity bounds for problems like distributed
consensus [13], random walks [17,5], token dissemination [7,17], aggregation [6],
and counting [1] have been developed. Most of this work assumes that the set
of participating nodes is fixed. In contrast, much less is known about dynamic
networks with churn, i.e., where the set of participants can change over time.
Measurement studies of real-world dynamic networks [9,10,18] show that the
churn rate (i.e. the number of nodes that can join/leave the network at the same
time) is quite high: nearly 50% of the nodes can be replaced within an hour.
Thus it is important to develop a rich theory of dynamic networks with churn.

Dynamic networks pose non-trivial challenges in solving even basic distributed
problems. Algorithmic techniques developed for static networks are not readily
applicable to dynamic networks[4]. We need rigorous models and algorithmic
techniques for dynamic networks. In highly dynamic networks, where nodes can
join and leave continuously and substantially change over time, doing non-trivial
distributed computing tasks is particularly challenging. In particular, it is im-
portant to design algorithms that work continuously over time (not assuming
any eventual quiescence or stabilization). In this talk, we will focus on the fol-
lowing fundamental distributed computing problems in the context of dynamic
networks with churn:

� Supported in part by Nanyang Technological University grant M58110000, Singa-
pore Ministry of Education (MOE) Academic Research Fund (AcRF) Tier 2 grant
MOE2010-T2-2-082, Singapore MOE AcRF Tier 1 grant MOE2012-T1-001-094, and
by a grant from the United States-Israel Binational Science Foundation (BSF).

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 18–22, 2014.
c© Springer International Publishing Switzerland 2014

Distributed Algorithmic Foundations of Dynamic Networks 19

– Agreement: Nodes have to agree on a common value.
– Search and Storage: Find data and resources in the network; store data

reliably and securely.
– Byzantine agreement: Solve agreement problem under the presence of mali-

cious nodes.

We will give an overview of our recent results that make progress towards
developing an algorithmic theory of dynamic networks. First, we will present a
rigorous theoretical framework for studying dynamic networks. Then we will
present efficient techniques and algorithms for solving agreement, Byzantine
agreement, and search/storage. The techniques we use are efficient information
spreading, support estimation (estimating aggregate functions) and random-walk
based methods and show that these can be adapted to work even under highly
dynamic networks with provable guarantees.

Model. Apart from nodes independently joining and leaving the network, the
evolution of the network might also be triggered by coordinated attacks (e.g.
denial-of-service attacks) with the goal of corrupting the communication in the
network. In large-scale networks of millions of nodes, it is unrealistic to assume
that all nodes faithfully execute the given protocol. Thus we must design scalable
algorithms that can handle adversarial dynamic changes and are robust against
malicious (i.e. Byzantine nodes [16]) that might collude and send corrupted
messages. In particular, we assume that the churn is controlled by an all-powerful
adversary that comes in two flavors: (1) oblivious —- has complete knowledge
and control of what nodes join and leave and at what time and has unlimited
computational power — but is oblivious to the random choices made by the
algorithm and (2) adaptive — in addition to the above it has knowledge of past
random choices (but not current and future ones). Byzantine nodes, on the other
hand, have knowledge about the entire state of network at every round (including
random choices made by all the nodes) and can behave arbitrarily. However, they
can communicate only through the (current) edges of the dynamic network and
cannot send messages to nodes which are not neighbors at that point in time.
Key parameters of the model are the amount of churn per round (called the
churn rate) that the adversary can control and the number of Byzantine nodes
(per round) that are allowed.

Our model is a synchronous dynamic network (with Byzantine nodes) repre-
sented by a bounded-degree graph with a dynamically changing topology (both
nodes and edges change from round to round) whose nodes execute a distributed
algorithm and whose edges represent connectivity in the network. To rule out
trivial impossibility results, we assume that in each round the network is an
expander. We note that although the churn can be quite high, the network size
is stable, in particular, the results below assume that the size is n in every round
(this can be relaxed somewhat). We refer to [4,3,2] for a detailed description of
our model.

Main Results. We develop fast randomized algorithms that run in polylogarith-
mic number of rounds and prove lower bounds for several fundamental problems

20 G. Pandurangan

in this setting: First, we consider the distributed agreement problem in a net-
work with εn churn per round (but without Byzantine nodes) where each node
starts with an input value and eventually, we require nodes to decide on the
same value. It is easy to see that in our adversarial setting, achieving global
consensus among all nodes is impossible—the adversary can effectively isolate
some nodes by subjecting all of their neighbors to churn in every round, since
we assume bounded node degrees. Thus we consider almost-everywhere (AE)
agreement (cf. [8]), where we allow a small number of nodes to decide on the
wrong value. By leveraging properties of the exponential distribution and the
expansion of the network, we obtain an algorithm (cf. [4]) that sends messages
of only polylogarithmic (in n) size and achieves AE agreement in polylogarithmic
number of rounds, despite the fact that, within �1/ε� = Θ(1) rounds, the entire
network can be subjected to churn, in other words, the amount of churn per
round can be up to εn. Thus this result shows that agreement in possible even
under linear (in the size of n) amount of churn. The above result works under an
oblivious adversary. Under an adaptive adversary we show that the amount of
churn that can be tolerated is less, up to ε

√
n. (Moreover, this algorithm requires

polynomial sized messages per round.) In follow up paper [3], we show that this
is essentially the best possible amount of churn that can be tolerated under an
adaptive adversary, if one requires fast (i.e., polylogarithmic) number of rounds.

Next, we consider Byzantine almost-everywhere (BAE) agreement where ma-
licious nodes can deviate arbitrarily from the protocol, which has been studied
extensively throughout the past decades. In this setting, we prove that there is
no polylogarithmic-time algorithm that achieves BAE agreement if the number
of Byzantine nodes is ω(

√
n logn) [3]. On the positive side, we present an al-

gorithm that achieves BAE agreement by leveraging the fast mixing of random
walks on expander graphs and employing a majority rule-based agreement algo-
rithm. This algorithm tolerates up to O(

√
n/polylog(n)) Byzantine nodes and

(adaptive) churn, thus matching our lower bound (up to logarithmic factors) [3].
Finally, we focus on the fundamental problem of storing, maintaining, and

searching data in P2P networks [2]. Search in P2P networks is a well-studied
fundamental application with a large body of work in the last decade or so,
both in theory and practice (e.g., see the survey [14]). While many P2P sys-
tems/protocols have been proposed for efficient search and storage of data, a
major drawback of almost all these is the lack of algorithms that work with
provable guarantees under a large amount of churn per round. The problem is
especially challenging since the goal is to guarantee that almost all nodes are
able to efficiently store, maintain, and retrieve data, even under high churn rate.
In such a highly dynamic setting, it is non-trivial to even just store data in a
persistent manner; the churn can simply remove a large fraction of nodes in just
one time step. On the other hand, it is costly to replicate too many copies of a
data item to guarantee persistence. Thus the challenge is to use as little storage
as possible and maintain the data for a long time, while at the same time de-
signing efficient search algorithms that find the data quickly, despite high churn
rate. We develop algorithms that, in the presence of O(n/polylog(n)) (oblivious)

Distributed Algorithmic Foundations of Dynamic Networks 21

churn per round, (1) enable almost all (except o(n)) nodes to store data among
their peers, and (2) guarantee that these data items can be successfully searched
by almost all nodes. To satisfy the above requirements, it is sufficient if we store
each data item at only Θ(n1/2+ε) peers, for any small constant ε > 0. Our algo-
rithms are scalable, as they only require polylogarithmic number of rounds and
messages of polylogarithmic size.

Conclusion. Large-scale, highly dynamic networks are increasingly dominant in
the real world. Distributed algorithms that are robust, efficient, and secure are
required. An important goal is to solve fundamental distributed computing prob-
lems with provable guarantees, under strong models. We have developed models,
algorithms, and techniques that work even under a high amount of dynamism
— however it requires properties, such as good expansion. A agenda for future
work is to build on current framework to design even stronger algorithms that
work with minimal assumptions.

References

1. Abshoff, S., Benter, M., Malatyali, M., Meyer auf der Heide, F.: On two-party
communication through dynamic networks. In: Baldoni, R., Nisse, N., van Steen,
M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 11–22. Springer, Heidelberg (2013)

2. Augustine, J., Molla, A.R., Morsy, E., Pandurangan, G., Robinson, P., Upfal, E.:
Storage and search in dynamic peer-to-peer networks. In: SPAA, pp. 53–62 (2013)

3. Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agreement in dy-
namic networks. In: Fatourou, P., Taubenfeld, G. (eds.) PODC, pp. 74–83. ACM
(2013)

4. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and effi-
cient computation in dynamic peer-to-peer networks. In: ACM-SIAM, SODA 2012,
pp. 551–569. SIAM (2012)

5. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover time
of a simple random walk on evolving graphs). In: Aceto, L., Damg̊ard, I., Goldberg,
L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part
I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

6. Cornejo, A., Gilbert, S., Newport, C.C.: Aggregation in dynamic networks. In:
PODC, pp. 195–204 (2012)

7. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Khanna, S. (ed.) SODA, pp.
717–736. SIAM (2013)

8. Dwork, C., Peleg, D., Pippenger, N., Upfal, E.: Fault tolerance in networks of
bounded degree. SIAM J. Comput. 17(5), 975–988 (1988)

9. Falkner, J., Piatek, M., John, J.P., Krishnamurthy, A., Anderson, T.E.: Profiling
a million user dht. In: Internet Measurement Comference, pp. 129–134 (2007)

10. Krishna Gummadi, P., Saroiu, S., Gribble, S.D.: A measurement study of napster
and gnutella as examples of peer-to-peer file sharing systems. Computer Commu-
nication Review 32(1), 82 (2002)

11. Kuhn, F., Oshman, R.: Dynamic networks: Models and algorithms. SIGACT
News 42(1), 82–96 (2011)

22 G. Pandurangan

12. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: ACM STOC, pp. 513–522 (2010)

13. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In:
Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC 2011, pp. 1–10. ACM (2011)

14. Lua, E.K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and comparison of
peer-to-peer overlay network schemes. IEEE Communications Survey and Tutorial
(2004)

15. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DIALM-POMC, pp. 104–110 (2005)

16. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

17. Das Sarma, A., Molla, A.R., Pandurangan, G.: Fast distributed computation in
dynamic networks via random walks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 136–150. Springer, Heidelberg (2012)

18. Sen, S., Wang, J.: Analyzing peer-to-peer traffic across large networks. In: Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, IMW
2002, pp. 137–150. ACM, New York (2002)

The Beachcombers’ Problem:
Walking and Searching with Mobile Robots

Jurek Czyzowicz1, Leszek Gąsieniec2, Konstantinos Georgiou3,
Evangelos Kranakis4, and Fraser MacQuarrie4

1 Université du Québec en Outaouais, Department d’Informatique,
Gatineau, Québec, Canada

2 University of Liverpool, Department of Computer Science, Liverpool, UK
3 University of Waterloo, Dept. of Combinatorics & Optimization,

Waterloo, Ontario, Canada
4 Carleton University, School of Computer Science, Ottawa, Ontario, Canada

Abstract. We introduce and study a new problem concerning the explo-
ration of a geometric domain by mobile robots. Consider a line segment
[0, I] and a set of n mobile robots r1, r2, . . . , rn placed at one of its end-
points. Each robot has a searching speed si and a walking speed wi, where
si < wi. We assume that every robot is aware of the number of robots
of the collection and their corresponding speeds.

At each time moment a robot ri either walks along a portion of the
segment not exceeding its walking speed wi, or it searches a portion of
the segment with speed not exceeding si. A search of segment [0, I] is
completed at the time when each of its points have been searched by at
least one of the n robots. We want to develop efficient mobility schedules
(algorithms) for the robots which complete the search of the segment
as fast as possible. More exactly we want to maximize the speed of the
mobility schedule (equal to the ratio of the segment length versus the
time of the completion of the schedule).

We analyze first the offline scenario when the robots know the length
of the segment that is to be searched. We give an algorithm producing a
mobility schedule for arbitrary walking and searching speeds and prove
its optimality. Then we propose an online algorithm, when the robots do
not know in advance the actual length of the segment to be searched.
The speed S of such algorithm is defined as S = infIL S(IL) where S(IL)
denotes the speed of searching of segment IL = [0, L]. We prove that
the proposed online algorithm is 2-competitive. The competitive ratio is
shown to be better in the case when the robots’ walking speeds are all
the same, approaching 1.29843 as n goes to infinity.

Keywords: Algorithm, Mobile Robots, On-line, Schedule, Searching,
Segment, Speed, Walking.

1 Introduction

A line segment has to be explored collectively by n mobile robots initially placed
at a segment endpoint. At every time moment a robot may perform either of

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 23–36, 2014.
c© Springer International Publishing Switzerland 2014

24 J. Czyzowicz et al.

the two different activities of walking and searching. While walking, each robot
may traverse the domain with a speed not exceeding its maximal walking speed.
During searching, the robot performs a more elaborate task on the domain. The
bounds on the walking and searching speeds may be distinct for different robots,
but we always assume that each robot can walk with greater maximal speed
than it can search. Our goal is to design the movement of all robots so that each
point of the domain is being searched by at least one robot and the time when
the process is completed is minimized (i.e. its speed is maximized).

In many situations two-speed searching is a convenient way to approach explo-
ration of various domains. For example foraging or harvesting a field may take
longer than walking across. Intruder searching activity takes more time than
uninvolved territory traversal. In computer science, problems such as web pages
indexing, forensic search, code inspection, and packet sniffing require a more in-
volved inspection process. Similar problems arise in many other domains. We
use the analogy of the robots as beachcombers to emphasize that when searching
a domain (e.g. a beach looking for things of value), robots would need to move
slower than if they were simply traversing the domain.

In our problem, the searchers collaborate in order to terminate the searching
process as quickly as possible. Our algorithms generate mobility schedules i.e. se-
quences of moves of the robots, which assure that every point of the environment
is inspected by at least one robot while this robot was performing the searching
activity.

1.1 Preliminaries

Let IL denote the interval [0, L] for any positive integer L. Consider n robots
r1, r2, . . . , rn, each robot ri having searching speed si and walking speed wi, such
that si < wi. A searching schedule A of IL is defined by an increasing sequence
of moments t0 = 0, t1, . . . , tz, such that in each interval [tj , tj+1], for 0 ≤ j < z,
every robot ri either walks along some sub-segment of IL not exceeding its
walking speed wi, or searches some sub-segment of IL not exceeding its searching
speed si. The searching schedule is correct if for each point p ∈ IL there is
some j ≥ 1 and some robot ri, such that during the interval [tj , tj+1] robot ri
searches the sub-segment of IL containing point p. We assume that there is no
communication between robots during the execution of the algorithm.

By the speed SA(IL) of schedule A searching interval IL we mean the value
of SA(IL) = L/tz. We call tz the finishing time of the searching schedule. The
searching schedule is optimal if there does not exist any other correct searching
schedule having a speed larger than S.

It is easy to see that the schedule speed maximization criterion is equivalent
to its finishing time minimization when the segment length is given or to the
searched segment length maximization when the time bound is set in advance.
However the speed maximization criterion applies better to the online problem
when the objective of the schedule is to perform searching of an unknown-length
segment or a semi-line. Such a schedule successively searches the intervals IL

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 25

for the increasing values of L. The speed of such a schedule is defined as SA =
infIL SA(IL).

Observe that any searching schedule may be converted to another one, which
has the property that all sub-segments which were being searched (during some
time intervals [tj , tj+1] by some robots) have pairwise disjoint interiors. Indeed,
if some sub-segment is being searched by two different robots (or twice by the
same robot), the second searching may be replaced by the walk through it by
the robot involved. Since the walking speed of any robot is always larger than
its searching speed, the speed of such converted schedule is not smaller than
the original one. Therefore, when looking for the optimal searching schedule, it
is sufficient to restrict consideration to schedules whose searched sub-segments
may only intersect at their endpoints. In the sequel, all searching schedules in
our paper will have this property.

Notice as well, that, when looking for the most efficient schedule, we may
restrict our consideration to schedules such that at any time moment a robot ri
is either searching using its maximal searching speed si, or walking with maximal
allowed speed wi. Indeed, whenever ri searches (or walks) during a time interval
[tj , tj+1] using a non-maximal and not necessarily constant searching speed (resp.
walking speed) we may replace it with a search (resp. walk) using the maximal
allowed speed. It is easy to see that the search time of any point is never longer
for the modified schedule, so the speed of such a schedule is not decreased.

We assume that all the robots start their exploration at the same time and
that they are allowed to cross over each other. We study the offline and online
versions of the problem.

Definition 1 (Beachcombers’ Problem). Consider an interval IL = [0, L]
and n robots r1, r2, . . . , rn, initially placed at its endpoint 0, each robot ri having
searching speed si and walking speed wi, such that si < wi. The Beachcombers’
Problem consists of finding an efficient correct searching schedule A of IL. The
speed SA of the solution to the Beachcombers’ Problem equals SA = IL/tz, where
tz is the finishing time of A.

Definition 2 (Online Beachcombers’ Problem). Consider n robots r1, r2,
. . . , rn, initially placed at the origin of a semi-line I, each robot ri having search-
ing speed si and walking speed wi, such that si < wi. The Online Beachcombers’
Problem consists of finding an efficient correct searching schedule A of I. The
cost SA of the solution to the Online Beachcombers’ Problem, called the speed
of A, equals SA = infIL SA(IL) = infL

|IL|
tz(IL) where IL = [0, L] for any positive

integer L and tz(IL) denotes the time when the search of the segment IL = [0, L]
is completed.

1.2 Related Work

The original text on graph searching started with the work of Koopman [1].
Many papers followed studying searching and exploration of graphs (e.g. [2, 3])
or geometric environments, (e.g.[4–8]). The purpose of these studies was usually

26 J. Czyzowicz et al.

either to learn (map) an unknown environment (e.g.[2]) or to search it, looking
for a target (motionless or mobile) (cf. [3]).

Many searching problems were studied from a game-theoretic viewpoint (see
[5]). [5] presented an approach to rendezvous and searching, when two mobile
players either collaborate in order to find each other, or they compete against
each other - one willing to meet and the second one attempting to avoid the
meeting. Searching one-dimensional environments (segments, lines, semi-lines),
similarly to the present paper, despite the simplicity of the environment, often
led to interesting results in this model (cf. [9–11]).

The efficiency of the searching or exploration algorithm is usually measured
by the time used by the mobile agent, often proportional to the distance trav-
elled. Many searching and especially exploration algorithms are online, i.e. they
concern a priori unknown environments, cf. [12, 13]. Performance of such algo-
rithms is usually expressed by the competitive ratio, i.e. the proportion of the
time spent by the online algorithm versus the time of the optimal offline al-
gorithm, which assumes the knowledge of the environment (cf. [14, 15]). Most
exploration algorithms (e.g. [7, 8, 16] and several search algorithms (cf. [11–13])
use the competitive ratio to measure their performance.

Most of the above research concerned single robots. Collections of mobile
robots, collaborating in order to reduce the exploration time, were used, e.g., in
[17–20]. Most recently [16] studied tradeoffs between the number of robots and
the time of exploration showing how a polynomial number of robots may search
the graph optimally.

Some research studying mobile robots assumes distinct robot speeds. Varying
mobile sensor speed was used in [21] for the purpose of sensor energy efficiency.
[22] was utilizing distinct robot speeds to design fast converging protocols, e.g.
for gathering. [23, 24] considered distinct speeds for robots performing boundary
patrolling. However to the best of our knowledge, the present paper is the first
one assuming two-speed robots for the problem of searching or exploration.

1.3 Outline and Results of the Paper

In Section 2 we first study the properties of optimal mobility schedules. We
then propose Comb, an optimal algorithm for the Beachcombers’ Problem, which
requires O(n log n) computational steps, and prove its correctness. Section 3 is
devoted to online searching, where the length of the segment to be searched
is not known in advance. In this section we propose the online searching algo-
rithm LeapFrog, prove its correctness and analyze its efficiency. We prove that
the LeapFrog algorithm is 2-competitive. The competitive ratio is shown to be
reduced to 1.29843 in the case when all robots’ walking speeds are the same.
Section 5 concludes the paper and proposes problems for further research. Due
to space limitations all missing proofs can be found in the full paper.

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 27

2 Searching a Known Segment

We proceed by first identifying in Subsection 2.1 a number of structural prop-
erties exhibited by every optimal solution to the Beachcombers’ Problem. This
will allow us to conclude in Subsection 2.2 that the Beachcombers’ Problem can
be solved efficiently.

2.1 Properties of Optimal Schedules

In the following lemmas we identify some properties of optimal schedules. By
the observation made in the preliminaries we suppose that the segment may be
divided into a sequence of sub-intervals σ1, σ2, . . . , σk, each sub-interval σi being
solely and entirely searched by the same robot.

Lemma 1. In every optimal schedule all robots terminate their work simulta-
neously and each robot completes its work by searching some non-empty part of
the segment.

Proof. Suppose, to the contrary, that the finishing time of some optimal schedule
A is T and some robot re finishes its work at an earlier time T − ε, for ε > 0.
We show that it is possible to rearrange the schedule (i.e. the times of walking
and searching of all robots) so that 1o the rearranged schedule A′ is correct, 2o
it completes within time T , 3o robot re is the one which searches the very first
sub-interval of the segment, and 4o re finishes its work at some time T − ε1, for
ε1 > 0.

Let [0, A] be the first sub-interval being searched by a particular robot in A
and [A,B] be the second such interval, with 0 < A < B < 1. If it is re which
searches [0, A] in A, we make re also search X = [A,min(ε2 (se),

B
2)] - the portion

of [A,B], while the robot searching [A,B] in A is switched to walking in X .
Otherwise, if it is robot rf �= re which searches [A,B] in A we make robot re
search interval Y = [0,min(ε2 (we − se),

A
2)] while robot rf in A is switched to

walking in Y . Observe that, we made re search more than in A, but still finishing
within time T − ε

2 < T . However this permits some other robot rf to switch from
searching to walking in some non-empty sub-interval. As rf was completing its
work in schedule A within at most time T and wrf > srf robot rf finishes now
its work in time T − ε1 for some ε1 > 0.

As a result of the above rearrangement we have a correct schedule in which
a sequence of subsequent sub-intervals σ1, σ2, . . . , σk are searched by the robots,
such that the robots searching σ1 and σ2 both finish their work before time T
(i.e. σ1 is searched by re finishing not later than T − ε

2 and σ2 searched by rf
finishing not later than T − ε2). Similarly as above, we can make robot rf search
into sub-interval σ3 for time ε2

2 permitting the robot responsible for searching σ3

switch to walking for some positive amount of time and finish searching strictly
before time T . By induction, we can thus reduce the finishing times of all robots
contradicting that schedule A was optimal.

28 J. Czyzowicz et al.

In case when some robot does not participate in searching or if it finishes its
work by walking, we can reduce its makespan by cutting off the last walk without
affecting the correctness of the schedule. We then repeat the same argument as
above. �

Lemma 2. In every optimal schedule, each robot searches a continuous interval.

Proof. Suppose, to the contrary, that in an optimal schedule A some robot
searches more than one interval σ1, σ2, . . . , σk. Let σq be the last interval of
this sequence, such that some robot, say rj , searching σq searches also σp, for
1 ≤ p < q − 1. Denote by L the length of the segments between σq and σp, i.e.
L =

∑q−1
i=p+1 |σi|. Consider moving interval σp distance L to the right and each

σi, for i = p+1, . . . , q− 1 distance L to the left. By movement of an interval we
mean that the robot searching this interval changes to the searching mode in the
new position of the interval and to the walking mode in the old position (except
in the intersection of the intervals). Observe that such rearranged schedule A′

is correct and no robot searches or walks longer than in A. However, the robot
which was searching interval σq−1 in A finishes its work earlier in A′ (it finishes
by walking in A′). By Lemma 1 A′ is not optimal, hence A as well. �

By Lemmas 1 and 2 every optimal schedule is defined by a sequence of inter-
vals σ1, σ2, . . . , σn, such that robot ri walks at maximal speed through intervals
σ1, . . . , σi−1 and finishes its work by searching σi (we suppose w.l.o.g. that we
rename the robots with respect to the order of the intervals). The next lemma
shows that such robots must be arranged in this sequence by the non-decreasing
order of their walking speeds.

Lemma 3. In every optimal schedule, for any two robots ri, rj with wi < wj,
robot ri searches a sub-interval closer to the starting point than the sub-interval
of robot rj .

Proof. Suppose, to the contrary, that the robots are not arranged by the non-
decreasing walking speed. Then there must exist a pair of consecutive robots
ri, ri+1 with wi > wi+1, searching, respectively, the consecutive intervals σi, σi+1.
In what follows, we investigate the effect of switching the order of the search
intervals of two robots ri, ri+1, so that the union of the intervals remains un-
changed. In particular we will redistribute the portions of the union of the two
intervals that each robot will search. Since we will only redistribute the union of
intervals σi, σi+1 , the remaining sub-intervals will remain the same, and so will
the finishing search times of the remaining robots.

For the sake of notational convenience, let |σi| = ci and |σi+1| = ci+1. We may
also assume that ci + ci+1 = 1, and therefore that ci = λ and that ci+1 = 1− λ,
after proper scaling of the intervals.

Note that robot ri searches σi while robot ri+1 walks within σi and searches
σi+1. Each robot will have to walk the distance x ≥ 0 between the start point and
the leftmost point of σi. By Lemma 1 all robots have the same finishing time, so
we have x

wi
+ λ

si
= x

wi+1
+ λ

wi+1
+ 1−λ

si+1
. Solving for λ gives

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 29

λ =
(

x
wi+1

− x
wi

+ 1
si+1

)
/
(

1
si

+ 1
si+1
− 1

wi+1

)
. Therefore, as λ ≥ 0 (by Lem-

mas 1, 2), the finishing time

T =
x

wi
+

λ

si
=

x

wi
+

x
si

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1
− 1

wi+1

+
1(

1
si

+ 1
si+1
− 1

wi+1

)
sisi+1

.

We now reschedule the robots so that robot ri+1 searches first, say a μ portion
of ci + ci+1 = 1, and robot ri searches the remaining sub-interval of length
(1−μ)(ci+ ci+1) = 1−μ. This means that robot ri will now walk the interval of
length μ. Since by Lemma 1 the two robots must finish simultaneously, the same
reasoning shows that x

wi
+ μ

wi
+ 1−μ

si
= x

wi+1
+ μ

si+1
. As before, we can eliminate

μ, so as to conclude that

T ′ =
x

wi+1
+

μ

si+1
=

x

wi+1
+

x
si+1

(
1
wi
− 1

wi+1

)
1
si

+ 1
si+1
− 1

wi

+
1(

1
si

+ 1
si+1
− 1

wi

)
sisi+1

.

We show below that T > T ′. Observe first that, since wi > wi+1 we have

K =

⎛⎝ 1(
1
si

+ 1
si+1
− 1

wi+1

)
sisi+1

− 1(
1
si

+ 1
si+1
− 1

wi

)
sisi+1

⎞⎠ > 0

Hence

T − T ′ =

⎛⎝ x

wi
+

x
si

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1
− 1

wi+1

+
1(

1
si

+ 1
si+1
− 1

wi+1

)
sisi+1

⎞⎠
−

⎛⎝ x

wi+1
+

x
si+1

(
1
wi
− 1

wi+1

)
1
si

+ 1
si+1
− 1

wi

+
1(

1
si

+ 1
si+1
− 1

wi

)
sisi+1

⎞⎠
= x

⎛⎝(1

wi
− 1

wi+1

)
+

1
si

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1
− 1

wi+1

+

1
si+1

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1
− 1

wi

⎞⎠+K

> x

⎛⎝−(1

wi+1
− 1

wi

)
+

1
si

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1

+

1
si+1

(
1

wi+1
− 1

wi

)
1
si

+ 1
si+1

⎞⎠+K

where the last term above equals K which is > 0. Therefore in schedule A′ the
finishing time of both robots ri, rj is smaller than in A, which by Lemma 1
contradicts the optimality of A. �

30 J. Czyzowicz et al.

By using the properties obtained in Lemmas 1, 2 and 3, we determine a useful
recurrence for the sub-intervals searched by robots in an optimal schedule.

Lemma 4. Let the robots r1, r2, . . . , rn be ordered in non-decreasing walking
speed, and suppose that Topt is the time of the optimal schedule. Then, the seg-
ment to be searched may be partitioned into successive sub-segments of lengths
c1, c2, . . . , cn and the optimal schedule assigns to robot ri the ith interval of length
ci, where the length ci satisfies the following recursive formula, and where we as-
sume, without loss of generality, that w0 = 0 and w1 = 1.1

c0 = 0; ck =
sk
wk

((
wk−1

sk−1
− 1

)
ck−1 + Topt(wk − wk−1)

)
, k ≥ 1 (1)

Proof. From Lemma 2 we know that all robots search contiguous intervals. Since
by Lemma 1 we need to utilize all robots, it follows that the optimal schedule
defines a partition of the unit domain into n sub-intervals. Finally by Lemma 3,
if we order the robots in non-decreasing walking speed, then robot ri will search
the ith in a row interval, showing the first claim of the lemma.

Now, from Lemma 1, we know that all robots finish at the same time, Topt.
Since all robots start processing the domain at the same time, robot k will
walk its initial sub-interval of length

∑k−1
i=1 ci in time proportional to 1/wk,

and in the remaining time it will search the interval of length ck. Hence ck =

sk

(
Topt −

∑k−1
i=1 ci
wk

)
, from which we easily derive the desired recursion. �

2.2 The Optimal Schedule for the Beachcombers’ Problem

As a consequence of Lemmas 1, 2 and 3 we have the following offline algorithm
Comb producing an optimal schedule. The algorithm is parametrized by the real
values ci equal to the sizes of intervals to be searched by each robot ri.

Figure 1(a) illustrates the schedule produced by algorithm Comb for a set of
five robots. The trajectory of each robot (except the first one) is formed by a
segment of walking (thin line) followed by a segment of searching (bold). The
dashed line corresponds to the slope representing the speed Sopt of the schedule.
Each sub-segment Ci in Fig. 1(a) has length ci stated in Lemma 4.

We can now prove the following theorem:

Theorem 1. The Beachcombers’ Problem can be solved optimally in O(n log n)
many steps.

Proof. By Lemma 4 we need to order the robots by non-decreasing walking
speed, which requires O(n log n) many steps. We then show how to compute all
ci in linear number of steps, modulo the arithmetic operations that depend on
the encoding sizes of wi, si.
1 We set w0 = 0 and w1 = 1 for notational convenience, so that (1) holds. Note that
w0 does not correspond to any robot, while w1 is the walking speed of the robot
that will search the first sub-interval, and so will never enter walking mode, hence,
w1 does not affect our solution.

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 31

Algorithm Comb;
1. Sort the robots in non-decreasing walking speeds;
2. for i ← 1 to n do
3. Robot ri first walks the interval of length

∑i−1
j=1 cj ,

and then searches interval of length ci

Topt Tonline

C1

C2

C3

C4

0

1

0

1

C1

C2

C3

C4

C5
Sopt

S

(a) (b)

Fig. 1. Schedules produced by (a) Algorithm Comb and (b) Algorithm LeapFrog

Consider an imaginary unit time period. Starting with the slowest, for each
robot, we use (1) to compute (in constant time) the sub-interval yi it would
search if it were to remain active for the unit time period. Consequently, we can
compute in n steps the total length

∑n
i=1 yi of the interval that the collection

of robots can search within a unit time period. This schedule, scaled to a unit
domain, will have finishing time T = 1/

∑n
i=1 yi. The length of the interval that

robot rk will search is then ck = yk/
∑n

i=1 yi. �

2.3 Closed Formulas for the Optimal Schedule of the Beachcombers’
Problem

From the proof of Theorem 1 we can implicitly derive the time (and the speed) of
an optimal solution to the Beachcombers’ Problem. In what follows, we assume
that wi = 0, that the robots are ordered in non-decreasing walking speeds, and
that w1 = 1 (see Lemma 4).

Lemma 5. Consider a set of robots such that in the optimal schedule each robot
finishes searching in time Topt. Robot rk will search a sub-interval of length ck,
such that

ck
Topt

= sk −
sk
wk

k−1∑
r=1

sr

k−1∏
j=r+1

(
1− sj

wj

)
(2)

Definition 3 (Search Power). Consider a set of n robots r1, r2, . . . , rn, with
si < wi, i = 1, . . . , n. We define the search power of any subset A of robots using

32 J. Czyzowicz et al.

a real function g : 2[n] �→ R+ as follows: For any subset A, first sort the items
in non-decreasing walking speeds wi, and let wA

1 , . . . , w
A
|A| be that ordering (the

superscripts just indicate membership in A). We define the evaluation function

(search power of set A) as g(A) :=
∑|A|

k=1 s
A
k

∏|A|
j=k+1

(
1− sAj

wA
j

)
.

The search power of any subset of the robots is well defined, and it is always
positive (since si < wi). By summing (2) for k = 1, . . . , n and using

∑n
k=1 ck = 1,

we obtain the following theorem:

Theorem 2. The speed Sopt of the optimal schedule equals the search power of
the collection of robots. In other words, if N denotes the set of all robots, then
Sopt = g(N).

3 The Online Search Algorithm

In this section we present an algorithm which produces a searching schedule for a
segment of unknown size. Each robot executes the same sequence of movements
for each unit interval of the segment. Therefore, the speed of searching each
integer segment is the same. We call this the swarm speed. Contrary to the offline
case, where all robots finish searching at the same time (at different positions), in
the online algorithm the robots arrive at each integer point of the segment at the
same time. Robots which cannot contribute to increasing the swarm speed are
not used in the schedule. Each utilized robot ri (called a swarm robot) searches
a sub-segment of the unit segment of size ci and walks along the remainder. The
lengths of the sub-segments ci are chosen to synchronize the arrival of all robots
at every integer point. The sub-segments are pairwise interior disjoint and their
union covers the entire unit segment, i.e.

∑k
i=1 ci = 1.

Theorem 3. Consider a partition of the unit interval into k consecutive non-
overlapping segments C1, C2, . . . , Ck, from left to right, of lengths c1, c2, . . . , ck,
respectively. Assume that all the robots start (at endpoint 0) and finish (at end-
point 1) simultaneously. Further assume that the ith robot ri searches the segment
Ci with speed si and walks the rest of the interval I \Ci with speed wi such that

wi > si. Then the swarm speed satisfies S =
∑k

i=1
1
δi

1+
∑

k
i=1

1
wiδi

,where δi :=
1
si
− 1

wi
,

for i = 1, 2, . . . , k.

Proof. The partition of the interval [0, 1] into segments as prescribed in the
statement of the theorem gives rise to the equation

c1 + c2 + · · ·+ ck = 1. (3)

Let s be the speed of the swarm of n robots. Since all the robots must reach
the other endpoint 1 of the interval at the same time, we have the following
identities.

ci
si

+
1− ci
wi

=
1

S
, for 1 ≤ i ≤ k, (4)

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 33

where ci
si

is the time spent searching and 1−ci
wi

the time spent walking by robot
ri. Using the notation δi := 1

si
− 1

wi
,and substituting into Equation (4), after

simplifications we get ci =
1

Sδi
− 1

wiδi
, for 1 ≤ i ≤ k. Using Equation (3) we see

that 1 =
∑k

i=1 ci =
∑k

i=1
1

Sδi
−
∑k

i=1
1

wiδi
= 1

S

∑k
i=1

1
δi
−
∑k

i=1
1

wiδi
, which

implies the theorem, as desired. �

We define the procedure SwarmSpeed which finds the speed of a swarm in
linear time and algorithm OnlineSearch which defines the swarm. Algorithm
OnlineSearch, defines the schedule for a swarm of k robots r1, r2, . . . , rk out of
the original n robots such that w1 ≥ w2 ≥ · · · ≥ wk.

Once the swarm speed has been computed, we can compute the sub-segments’
lengths ci, that we call the contribution of robot ri - the fraction of the unit
interval that ri is allotted to search.

real procedure SwarmSpeed();
1. var S ← 0, Snum ← 0, Sden ← 1, δ : real; i ← 1 : integer;
2. while i ≤ n and S < wi do
3. δ ← 1/(1

si
− 1

wi
);

4. Snum ← Snum + δ; Sden ← Sden + δ/wi; S = Snum
Sden

;
5. i ← i+ 1;
6. return S;

Algorithm LeapFrog(robot rj);
1. var S ← SwarmSpeed();
2. if wj ≤ S then
3. EXIT; {robot rj stays motionless}
4. else
5. for i ← 1 to j − 1 do
6. WALK((1

s
− 1

wi
)/(1

si
− 1

wi
));

7. while not at line end do
8. SEARCH((1

s
− 1

wj
)/(1

sj
− 1

wj
));

9. WALK(1− (1
s
− 1

wj
)/(1

sj
− 1

wj
));

The schedule produced by algorithm LeapFrog is illustrated at Fig. 1(b). We
used the same set of robots as in the offline case, i.e. robots having identical
walking and searching speeds as those in Fig. 1(a). Observe that robot r1, while
useful in the Comb algorithm, was not used by LeapFrog algorithm in Fig. 1(b),
since its walking speed is smaller than the swarm speed. The swarm speed is
represented by the slope of the dashed line in Fig. 1(b).

Lemma 6. Algorithm OnlineSearch is correct (i.e. every point of [0,+∞) is
searched).

Proof. Let Cj(i) denote the sub-segment of [i, i+1] of length cj which is searched
by robot rj . The lemma follows from the observation that

⋃k
j=1 Cj(i) = [i, i+1],

for all i ≥ 0 and j = 1, . . . , k. �

34 J. Czyzowicz et al.

4 Competitiveness of the Online Searching

In this section we discuss the competitiveness of the LeapFrog algorithm. Since
competitive ratio is naturally discussed more often for cost optimization (min-
imization) problems, we assume in this section that we compare the finishing
time (rather than speed) of the online versus offline solution. We show first that
in the general case the LeapFrog Algorithm is 2-competitive.

Theorem 4. Consider any set of robots r1, r2, . . . , rn, ordered by non-decreasing
walking speed. If the completion time of the optimal schedule produced by Comb
equals Topt then the completion time Tonline of the searching schedule produced
by LeapFrog is such that Tonline < 2 · Topt.

Proof. As LeapFrog outputs schedules of the same speed for all integer-length
segments it is sufficient to analyze its competitiveness for a unit segment. As-
sume, to the contrary, that the time Tonline of the schedule output by LeapFrog is
such that Tonline ≥ 2 · Topt. The swarm speed S of LeapFrog is then at most
S ≤ 1/(2 · Topt). Consider C1, C2, . . . , Cn - the sub-segments searched by robots
r1, r2, . . . , rn, respectively. Recall that each robot ri of Comb walks along seg-
ments C1, C2, . . . , Ci−1 and searches Ci arriving at its right endpoint at time
Topt. Let i∗ be the index such that the midpoint 1/2 ∈ Ci∗ (or point 1/2 is a
common endpoint of Ci∗ and Ci∗+1). Observe, that in time 2 · Topt each robot
ri, such that i ≥ i∗ could reach the right endpoint of the unit segment, while
searching its portion of length 2 · |Ci|. For each robot ri, such that i ≥ i∗, we
have wi > 1/(2 · Tonline) ≥ S, each such robot is used by LeapFrog in lines 5-9.
However, since

∑n
i=i∗ 2 · |Ci| > 1 all robots ri, for i ≥ i∗ search a segment longer

than 1, arriving at its right endpoint within time 2 ·Topt, or Tonline < 2 · Topt for
the unit segment. This contradicts the earlier assumption. �

Observe that, the competitive ratio of 2 may be approached as close as we
want.

Proposition 1. For any sufficiently small ε > 0 there is a set of two robots
for which the LeapFrog algorithm produces a schedule of completion time Tonline
such that Tonline = (2− ε)Topt.

Proof. Let the speeds of the two robots be s1 = 1 − ε/2, w1 = 1, s2 = 1, w2 =
(2 − ε)/ε. As the swarm speed S computed in SwarmSpeed procedure equals
1, the line 2 of the LeapFrog algorithm excludes r1 from the swarm, so the
search is performed uniquely by r1 with Tonline = 1. Using Theorem 2 we get
Sopt =

∑2
k=1 sk

∏2
j=k+1

(
1− sj

wj

)
=
(
1− ε

2

) (
1− ε

2−ε

)
+ 1 = 2 − ε. Hence

Topt = 1/(2− ε) and Tonline = 1 = (2 − ε)Topt �

The following theorem concerns the competitiveness of the LeapFrog algo-
rithm in the special case when all robot walking speeds are the same.

The Beachcombers’ Problem: Walking and Searching with Mobile Robots 35

Theorem 5. Let be given the collection of robots r1, r2, . . . , rn with the same
walking speed w = w1 = . . . = wn. The LeapFrog algorithm has the competitive
ratio αn which is increasing in n. In particular, α2 = 1.115, α3 ≈ 1.17605,
α4 ≈ 1.20386 and limn→∞ αn ≈ 1.29843.

Our strategy for proving Theorem 5 is to show that the competitive ratio of
LeapFrog -among all problem instances when walking speeds are the same - is
maximized when all robots’ searching speeds are also the same. Because of lack
of space, a section related to the proof of Theorem 5 is entirely deferred to the
full paper.

5 Conclusion and Open Problems

We proposed and analyzed offline and online algorithms for addressing the beach-
combers’ problem. The offline algorithm, when the size of the segment to search
is known in advance is shown to produce the optimal schedule. An interested
reader may observe that, if all walking speeds are different, then the Comb algo-
rithm is the only one achieving the optimal speed. The online searching algorithm
is shown to be 2-competitive in general case and 1.29843-competitive when the
robots’ walking speeds are identical. We conjecture that there is no online algo-
rithm with the competitive ratio of (2−ε) for any ε > 0. Observe that, instead of
repeating the same search pattern for each unit-length segment, we could scale
down such schedule and repeat it for a segment of arbitrary small value ε > 0.
This would permit to keep the swarm speed S within an arbitrarily small range
also for an interval of length being any real value (greater than 1) thus obtaining
a competitive ratio of (2 − ε) for any ε > 0. This conjecture is made only for
the class of algorithms where the robots cannot communicate. A model which
allows communication could possibly beat this ratio, and would be an interest-
ing problem to study. Other possible open questions concern different domain
topologies, robots starting from different initial positions or the case of faulty
robots.

References

1. Koopman, B.O.: Search and screening. Operations Evaluation Group, Office of the
Chief of Naval Operations, Navy Department (1946)

2. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Proceedings of
the 31st Annual Symposium on Foundations of Computer Science, pp. 355–361.
IEEE (1990)

3. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph
searching. Theor. Comput. Sci. 399(3), 236–245 (2008)

4. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Com-
put. 29(4), 1164–1188 (2000)

5. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Kluwer
Academic Publishers (2002)

36 J. Czyzowicz et al.

6. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. In-
formation and Computation 106, 234 (1993)

7. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Worst-case optimal exploration
of terrains with obstacles. Inf. Comput. 225, 16–28 (2013)

8. Deng, X., Kameda, T., Papadimitriou, C.H.: How to learn an unknown environ-
ment (extended abstract). In: FOCS, pp. 298–303 (1991)

9. Bellman, R.: An optimal search problem. Bull. Am. Math. Soc., 270 (1963)
10. Beck, A.: On the linear search problem. Israel Journal of Mathematics 2(4), 221–

228 (1964)
11. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical

Computer Science 361(2), 342–355 (2006)
12. Albers, S.: Online algorithms: a survey. Math. Program. 97(1-2), 3–26 (2003)
13. Albers, S., Schmelzer, S.: Online algorithms - what is it worth to know the future?

In: Algorithms Unplugged, pp. 361–366 (2011)
14. Berman, P.: On-line searching and navigation. In: Fiat, A., Woeginger, G.J. (eds.)

Online Algorithms 1996. LNCS, vol. 1442, pp. 232–241. Springer, Heidelberg (1998)
15. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive

online approximation of the optimal search ratio. SIAM J. Comput. 38(3), 881–898
(2008)

16. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collabora-
tive graph exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D.
(eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 520–532. Springer, Heidelberg
(2013)

17. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent
and oblivious robots. In: Thilikos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp.
208–219. Springer, Heidelberg (2010)

18. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of
unknown graphs by multiple agents. Theor. Comput. Sci. 385(1-3), 34–48 (2007)

19. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

20. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online graph exploration
algorithms for cycles and trees by multiple searchers. J. Comb. Optim. (2012)

21. Wang, G., Irwin, M.J., Fu, H., Berman, P., Zhang, W., Porta, T.L.: Optimizing
sensor movement planning for energy efficiency. ACM Transactions on Sensor Net-
works 7(4), 33 (2011)

22. Beauquier, J., Burman, J., Clement, J., Kutten, S.: On utilizing speed in networks
of mobile agents. In: Proceeding of the 29th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing, pp. 305–314. ACM (2010)

23. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

24. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 598–608. Springer, Heidelberg (2012)

Reliable Shared Memory Abstraction on Top of
Asynchronous Byzantine Message-Passing Systems

Damien Imbs1, Sergio Rajsbaum1, Michel Raynal2,3, and Julien Stainer3

1 Instituto de Mathematicas, UNAM, D.F. 04510, Mexico
2 Institut Universitaire de France

3 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract. This paper is on the construction and the use of a shared memory
abstraction on top of an asynchronous message-passing system in which up to
t processes may commit Byzantine failures. This abstraction consists of arrays
of n single-writer/multi-reader atomic registers, where n is the number of pro-
cesses. Differently from usual atomic registers which record a single value, each
of these atomic registers records the whole history of values written to it. A dis-
tributed algorithm building such a shared memory abstraction it first presented.
This algorithm assumes t < n/3, which is shown to be a necessary and sufficient
condition for such a construction. Hence, the algorithm is resilient-optimal. Then
the paper presents distributed algorithms built on top of this shared memory ab-
straction, which cope with up to t Byzantine processes. The simplicity of these
algorithms constitutes a strong motivation for such a shared memory abstraction
in the presence of Byzantine processes.

For a lot of problems, algorithms are more difficult to design and prove correct
in a message-passing system than in a shared memory system. Using a protocol
stacking methodology, the aim of the proposed abstraction is to allow an easier
design (and proof) of distributed algorithms, when the underlying system is an
asynchronous message-passing system prone to Byzantine failures.

Keywords: APppproximate agreement, Asynchronous message-passing system,
Atomic read/write register, Broadcast abstraction, Byzantine process, Distributed
computing, Message-passing system, Quorum, Reliable broadcast, Reliable shared
memory, Single-writer/multi-reader register, t-Resilience.

1 Introduction

Distributed computing. Distributed computing occurs when one has to solve a prob-
lem in terms of physically distinct entities (usually called nodes, processors, processes,
agents, sensors, etc.) such that each entity has only a partial knowledge of the many
parameters involved in the problem. In the following, we use the term process to denote
a computing entity. From an operational point of view this means that the processes of
a distributed system need to exchange information, and agree in some way or another,
in order to cooperate to a common goal. If processes do not cooperate, the system is no
longer a distributed system. Hence, a distributed system has to provide the processes
with communication and agreement abstractions.

Designing distributed applications is not an easy task (e.g., see [2,13,20,21,22]). This
is due to the fact that, due its very nature, no process can capture instantaneously the

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 37–53, 2014.
c© Springer International Publishing Switzerland 2014

38 D. Imbs et al.

global state of the application it is part of. More precisely, as processes are geograph-
ically localized at distinct places, distributed applications have to cope with the un-
certainty created by asynchrony and failures. As a simple example, it is impossible to
distinguish a crashed process from a very slow process in an asynchronous system prone
to process crashes.

As in sequential computing, a simple approach to facilitate the design of distributed
applications consists in designing appropriate abstractions. With such abstractions, the
application designer can think about solutions to solve problems at a higher conceptual
level than the one offered by the basic send/receive communication layer.

Byzantine behavior. This failure type has first been introduced in the context of syn-
chronous distributed systems (e.g., [11,19], see also the monography [21]), and then
investigated in the context of asynchronous ones (e.g., see the textbooks [2,13,20]). A
process has a Byzantine behavior when it arbitrarily deviates from its intended behavior;
it then commits a Byzantine failure. Otherwise it is non-faulty (or non-Byzantine). This
bad behavior can be intentional (malicious) or simply the result of a transient fault that
altered the local state of a process, thereby modifying its behavior in an unpredictable
way. Let us notice that process crashes (unexpected halting) and communication omis-
sions, define a strict subset of Byzantine failures.

The major part of the papers on Byzantine failures considers (synchronous or asyn-
chronous) message-passing systems, and mainly addresses agreement problems, such
as consensus and total order broadcast, or the construction of a Byzantine-tolerant disk
storage (e.g., [5,10,14,15]). Many of these papers consider registers built on top of
duplicated disks (servers), which are accessed by clients, and where disks and clients
may exhibit different type of failures. Moreover, in these client/server models, clients
communicate only with servers and vice versa (the communication graph is bipartite).

Content of the paper: Construction of an atomic read/write memory. Differently, this
paper is on the construction of a shared memory (atomic registers) on top of an asyn-
chronous message-passing system where processes may exhibit a Byzantine behavior.
Its first contribution is the definition of a shared memory (atomic registers) in the con-
text of Byzantine processes, and the design of an algorithm that builds such a shared
memory on top of an asynchronous message-passing systems where up to t processes
may be Byzantine. These registers differ from classical registers in that each register
contains the whole history of the values written to it. This allows preventing a ma-
licious process from overwriting a previously written value letting correct processes
believe it wrote it only once. Hence, such a register is called a h-register (h standing for
“history”), and a read of it returns the complete history of writes to the registers. This
t-resilient shared memory is made up of n single-writer/multi-reader (SWMR) atomic
h-registers (one per process). The paper also shows that t < n/3 is a necessary and
sufficient requirement for such a construction.

This construction and the associated upper bound t < n/3 complement the previous
result known on the construction of an atomic shared memory in asynchronous crash-
prone message-passing systems, where it has been shown that t < n/2 is an upper
bound on the number of faulty processes [1]. Interestingly, the upper bound t < n/3 is
the same as the one for solving consensus in both Byzantine synchronous systems [11]

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 39

and Byzantine asynchronous systems (enriched with an appropriate oracle such as a
common coin, e.g., [4,17,18]).

Content of the paper: From read/write h-registers to higher level abstractions. The
second contribution of the paper consists of algorithms that solve distributed computing
problems on top of the previous t-resilient shared memory abstraction. These algorithms
illustrate the versatility of Byzantine-tolerant atomic h-registers. The first algorithm,
which is pretty simple, solves the “correct-only” agreement problem (a weakened ver-
sion of the consensus problem). Then the paper describes an algorithm that solves the
multidimensional approximate agreement on top of the t-resilient shared memory ab-
straction. This algorithm can be seen as an adaptation to a Byzantine read/write shared
memory system of Mendes-Herlihy’s algorithm [16], which solves the same problem
“directly” on top of an asynchronous Byzantine message-passing system.

As shown by these examples, the important feature of the proposed shared mem-
ory abstraction lies in the fact that it prevents Byzantine processes from corrupting
synchronization among the correct processes. A Byzantine process can create inconsis-
tency only on the values it writes, but any two correct processes see the same sequence
of written values.

Roadmap. The paper is composed of 6 sections. Section 2 introduces the underly-
ing Byzantine asynchronous message-passing model. Section 3 defines the notion of
Byzantine-tolerant atomic read/write h-registers, and presents an algorithm that builds
such h-registers on top of the basic Byzantine asynchronous message-passing model.
This section shows also that t < n/3 is a necessary and sufficient requirement for such
a construction. Then, Section 4 and Section 5 present algorithms that solve distributed
computing problems on top of Byzantine-tolerant atomic h-registers. Finally, Section 6
concludes the paper. Due to page limitations, missing proofs and additional develop-
ments will be found in [9].

2 Computation Model, Reliable Broadcast and Two Properties

2.1 Computation Model

Computing entities. The system is made up of a set Π of n sequential processes, de-
noted p1, p2, ..., pn. These processes are asynchronous in the sense that each process
progresses at its own speed, which can be arbitrary and remains always unknown to the
other processes.

Communication model. The processes cooperate by sending and receiving messages
through bi-directional channels. The communication network is a complete network,
which means that each process pi can directly send a message to any process pj (in-
cluding itself). It is assumed that, when a process receives a message, it can unambigu-
ously identify its sender. Each channel is reliable (no loss, corruption, or creation of
messages), not necessarily first-in/first-out, and asynchronous (while the transit time of
each message is finite, there is no upper bound on message transit times). Moreover,
Byzantine processes are not prevented from reading messages and reordering them.

40 D. Imbs et al.

Byzantine failures. The model parameter t is an upper bound on the number of pro-
cesses that can exhibit a Byzantine behavior [11,19]. A Byzantine process is a process
that behaves arbitrarily: it may crash, fail to send or receive messages, send arbitrary
messages, start in an arbitrary state, perform arbitrary state transitions, etc. Hence, a
Byzantine process, which is assumed to send the same message m to all the processes,
can send a message m1 to some processes, a different message m2 to another subset of
processes, and no message at all to the other processes. Moreover, Byzantine processes
can collude to “pollute” the computation.

Terminology and notation. A Byzantine process is also called a faulty process. A pro-
cess that never commits a failure is called a correct (or non-faulty) process. Given an
execution, let C and F denote the sets of correct and faulty processes, respectively.

This process model is denoted BAMPn,t[c(n, t)], where c(n, t) is a constraint im-
posed on the model parameter t, e.g., (t < n/3).

2.2 Reliable Broadcast Abstraction

This section presents a reliable broadcast abstraction (denoted r-broadcast), that will
be used to build atomic read/write h-registers. (Section 3). This abstraction is a simple
generalization of a reliable broadcast due to Bracha [3]. While Bracha’s abstraction is
for a single broadcast, the proposed abstraction considers that each process can issue
a sequence of broadcasts. It is shown in [3] that t < n/3 is a necessary requirement
when one has to build such an abstraction in the presence of asynchrony and Byzantine
failures.

Specification. The reliable broadcast abstraction provides each process with the oper-
ations R_broadcast() and R_deliver(). When a process pi invokes R_broadcast() we
say that “pi r-broadcasts a value”. Similarly, when pi returns from an invocation of
R_deliver() and obtains a value, we say “pi r-delivers a value”.

The operation R_broadcast() has two input parameters: a broadcast value v, and
an integer sn, which is a local sequence number used to identify the successive r-
broadcasts issued by the invoking process pi. The sequence of numbers used by each
(correct) process is the increasing sequence of consecutive integers.

– RB-Validity. If a correct process r-delivers a pair (v, sn) from a correct process px,
then px invoked the operation R_broadcast(v, sn).

– RB-Integrity. Given any process pi and any sequence number sn, a correct process
r-delivers at most once a pair (−, sn) from pi.

– RB-Uniformity. If a correct process r-delivers a pair (v, sn) from pi (possibly
faulty), then all correct processes eventually r-deliver the same pair (v, sn) from pi.

– RB-Termination. If the process that invokes R_broadcast(v, sn) is correct, all the
correct processes eventually r-deliver the pair (v, sn).

RB-Validity relates the outputs to the inputs, namely what is r-delivered was r-broadcast.
RB-Integrity states that there is no r-broadcast duplication. RB-Uniformity is an “all or
none” property (it is not possible for a pair to be delivered by a correct process and to be
never delivered by the other correct processes). RB-Termination is a liveness property:
at least all the pairs r-broadcast by correct processes are r-delivered by them.

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 41

2.3 Two Preliminary Quorum-Related Properties

The following properties are central in the understanding and the proof of the construc-
tion of atomic SWMR h-registers described in the next section (Proofs in [9]).

Property 1. Let m, n, and t be positive integers.
(
m > n+t

2

)
⇔
(
m ≥ �n+t

2 �+ 1
)
.

Property 2. Any two sets of processes Q1 and Q2 of size at least �n+t
2 � + 1 have at

least one correct process in their intersection.

3 Construction of Single-Writer/Multi-Reader Atomic h-Registers

3.1 Atomic Read/Write h-Registers in the Presence of Byzantine Processes

Single-writer/multi-reader (SWMR) h-registers. The fault-tolerant shared memory sup-
plied to the upper abstraction layer is an array denoted REG[1..n]. For each i, REG[i]
is a single-writer/multi-reader (SWMR) h-register, i.e., REG [i] can be written only by
pi. To that end, pi invokes the operation REG[i].write(v) where v is the value it wants
to write. Any process pj can read REG [i]. It invokes then the operationREG [i].read().

Let us notice that the “single-writer” requirement is natural in the presence of Byzan-
tine processes. If h-registers could be written by any process, it would be possible for
the Byzantine processes to pollute the whole memory, and no non-trivial computation
could be possible.

The value returned by a read operation. A h-register REG[i] contains the sequence
of values (also called a history) that have been written into it, and such a sequence is
returned by the invocations of the operation REG [i].read(). Each h-register REG [i] is
initialized to the empty sequence (denoted ε), which corresponds to the default value⊥.
It is assumed that no process can write⊥ into its h-register. Let us remark that returning
a sequence of values is not a restriction, as, when a process obtains such a sequence h,
it can always consider only its last value (or ⊥ if h = ε). |h| denotes the length of h.

Notations. Let pi and pj be correct processes. We use the following notations.

– op_read[j, i, h]: execution by a correct process pj of REG[i].read(), returning the
history h.

– op_write[i,wsn]: wsn th execution by a correct process pi of REG[i].write().

Specification. The correct behavior of an SWMR h-register is defined as follows.

– R-Termination (liveness). Let pi be a correct process.
• Each invocation of REG[i].write() issued by pi terminates.
• ∀ j, each invocation of REG[j].read() issued by pi terminates.

– R-Consistency (safety).
• Single history. Let pi be a (correct or faulty) process. There exists exactly one

history Hi such that, for any correct process pj , any op_read[j, i, h] is such that
h is a prefix of Hi.
• Read followed by write. Let pi and pj be two correct processes. If op_read
[j, i, h] terminates before op_write[i,wsn] starts, then |h| < wsn .

42 D. Imbs et al.

• Write followed by read. Let pi and pj be two correct processes. If op_write
[i,wsn] terminates before op_read[j, i, h] starts, then wsn ≤ |h|.
• No read inversion. Let pi and pj be two correct processes. If op_read[j, i, h]

terminates before op_read[k, i, h′] starts, then |h′| ≥ |h|.

As, whatever i, the invocations of REG[i].read() by a faulty process pj can return
any value, the previous specification do not need to take them into account. Moreover,
it is possible that, while executing a code different from the code of the write opera-
tion, a faulty process modifies the content of its h-register REG [j] (at the operational
level, this happens when the messages it generates could have been sent by a correct
implementation of the operation write()). The specification of the consistency of such
a h-register REG [j] takes this into account in the “no read inversion” property.

The previous properties state that each h-register is linearizable [8]. This means that
it is possible to totally order the executions of the operations in such a way that (a)
the execution of each operation appears as if it has been executed at a single point of
the time line between its start event and its end event, (b) no two operations have been
executed at the same time, and (c) each read by a correct process returns the sequence
of values written before it in the sequence (when considering read/write h-registers,
linearizability is atomicity [12,22]).

An important theorem associated with linearizability is the following [8]: If each
object (h-register) is linearizable, then the set of all the objects, considered as a single
object, is linearizable. This means that linearizable objects compose for free.

3.2 The Construction

An algorithm constructing an SWMR atomic (linearizable) h-register in the presence of
up to t Byzantine processes, is described in Figure 1. This algorithm requires t < n/3,
hence it is suited to the computing model BAMPn,t[t < n/3]. This algorithm uses
a wait(condition) statement. The corresponding process is blocked until condition
becomes satisfied. While a process is blocked, it can process the messages it receives.

Local variables. Each process pi manages four local variables whose scope is the full
computation (local variables are denoted with lower case letters, and subscripted by the
process index i).

– regi[1..n] is the local representation of the array REG [1..n] of atomic SWMR h-
registers. Each local register regi[j] is initialized to the empty sequence ε whose
size is 0 (the corresponding value being the default value⊥). The content of regi[j]
is called the local history of REG[j], as known by pi.

– wsni is a sequence number generator (initialized to 0) for the writes of REG[i]
(issued by pi).

– rsni[1..n] is a local array such that rsni[j] is used to associate sequence numbers
to the invocations of REG[j].read() issued by pi. Each rsni[j] is initialized to 0.

– approx_rsni[1..n, 1..n] is a matrix of sequence numbers, each initialized to 0;
approx_rsni[k, j] (initialized to 0) is the last read sequence number (rsnk[j]) used
by pk to to read REG [j], as known by pi.

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 43

The operation REG[i].write(v). This operation is implemented by the client lines 01-
04 and the server lines 09-12. Process pi first increases wsni and r-broadcasts the mes-
sage WRITE(v,wsni). Let us remark that this is the only place where the algorithm uses
the underlying reliable broadcast abstraction. The process pi then waits for acknowl-
edgments (message WRITE_DONE(wsni)) from a quorum including strictly more than
n+t
2 processes, and finally terminates the write operation. As we have seen (Lemmas 1

and 2), the intersection of any two quorums of such a size contains at least one correct
process. This property will be used to prove the consistency of the h-register REG[i].

When pi is r-delivered a message WRITE(v,wsn) from a process pj , it first waits
until the previous write of REG[j] by pj has locally terminated (line 09). Hence, all the
writes of REG [j] are locally processed by pi in the order they have been issued by pj .
When |regi[j]|+ 1 = wsn , pi adds v at the tail of regi[j] (line 10), and sends back an
acknowledgment to pj (line 11).

Finally, pi sends to each pk the message READ_VALUE(j, approx_rsni[k, j], regi[j])
to inform pk that this write from pj has locally been taken into account at pi (line 12).
As we will see, this is to help terminate the invocations of REG[j].read() issued by
correct processes.

operation REG[i].write(v) is
(01) wsni ← wsni + 1;
(02) R_broadcast WRITE(v, wsn i);
(03) wait

(
WRITE_DONE(wsni) received from > n+t

2
different processes

)
;

(04) return ().

operation REG[j].read() is
(05) rsn i[j] ← rsni[j] + 1;

(06) broadcast READ(j, rsn i[j]);
(07) wait

(
∃h : READ_VALUE(j, rsni[j], h) received from > n+t

2
different processes

)
;

(08) return (h). % last value in h can be returned if not interested in history of REG[j] %
%———————————————————————————————————–

when a message WRITE(v,wsn) from pj is R_delivered:
(09) wait (|regi[j]| + 1 = wsn);
(10) regi[j] ← regi[j] · v;
(11) send WRITE_DONE(wsn) to pj ;
(12) for k ∈ [1..n] do send READ_VALUE(j,approx_rsn i[k, j], regi[j]) to pk end for.

when a message READ(j, rsn) from pk is received:
(13) if (approx_rsn i[k, j] < rsn) then
(14) approx_rsn i[k, j] ← rsn ;
(15) send READ_VALUE(j, rsn, regi[j]) to pk
(16) end if.

Fig. 1. Array of SWMR atomic h-registers in BAMPn,t[t < n/3] (code for pi)

The operation REG [j].read(). This operation is implemented by the client lines 05-08
and the server lines 12-16. When pi wants to read REG[j], it first broadcasts a read

44 D. Imbs et al.

request appropriately identified (message READ(j, rsn i[j]), lines 05-06), and waits for
acknowledgment messages carrying the same history h (in READ_VALUE(j, rsni[j], h)),
from a quorum of strictly more than n+t

2 distinct processes (lines 07). When pi stops
waiting, it knows that, when they sent their acknowledgments, the history of REG [j]
was equal to h for strictly more than n+t

2 processes. When this occurs, pi returns this
history h as the result of the read operation (line 08).

On its server side, when a process pi receives a read request message READ(j, rsn)
from a process pk, it first checks if its view of the read of REG [j] by pk is “late”, i.e.,
if approx_rsni[k, j] < rsn (line 13). If it is the case, pi updates approx_rsni[k, j]
(line 14), and sends by return to pk the message READ_VALUE(j, rsn, regi[j]), to in-
form it of its current value of REG [j] (line 15). If approx_rsni[k, j] ≥ rsn , the read
request is an old message and pi ignores it.

Comparing with the crash failure model. It is known that the algorithms implementing
an atomic register on top of an asynchronous message-passing system prone to process
crashes, require that “read have to write” [1]. More precisely, before returning a value,
a process must write this value to ensure atomicity. Doing so, it is not possible that two
sequential read invocations, both concurrent with a write invocation, are such that the
first read obtains the new value while the second read obtains the old value (demanding
the reader to write the value it is about to return guarantees that there is no new/old
inversion [20]).

As Byzantine failures are more severe than crash failures, the algorithm of Figure 1
needs to use a mechanism analogous to the “read have to write” to prevent new/old in-
version from occurring. This is done by sending to each process pk the customized mes-
sage READ_VALUE(j, approx_rsni[j, k], regi[j]) issued at line 12. These messages
play the role of writes, that allow the wait statement of line 07 to always terminate
with a correct history value for REG[j].

Message complexity. It follows from the previous discussion that, in addition to a reli-
able broadcast, each write generates O(n) messages WRITE_DONE() and O(n2) mes-
sages READ_VALUE()), and each read generates at most 2n messages. Hence, while the
algorithm presented in [1] requires the assumption t < n/2 (which is a necessary and
sufficient requirement on the model parameter t) and O(n) messages to implement an
SWMR atomic register in the crash failure model, the proposed algorithm requires the
assumption t < n/3 (which is shown to be necessary and sufficient, see below), and
O(n2) messages plus a reliable broadcast, to implement SWMR atomic h-registers in
the Byzantine asynchronous message-passing model.

3.3 Proof of the Construction and Upper Bound

Lemma 1. Let n ≥ 3t+ 1. If pi is correct and invokes REG[i].write(), its invocation
terminates (Proof in [9]).

Lemma 2. (Single history). Let pi be a (correct or faulty) process. It exists a history Hi

such that any invocation of the operation REG[i].read() by a correct process returns a
prefix of Hi (Proof in [9]).

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 45

Lemma 3. Let n ≥ 3t + 1. If pj is correct and invokes REG[i].read(), its invocation
terminates.

Proof. The proof is by contradiction. let us assume that a correct process pj invokes
REG[i].read() and this invocation never terminates. This means that the predicate asso-
ciated with the wait statement of line 07 remains false forever, namely, �h such that the
message READ_VALUE(i, rsnj [i], h) is received from strictly more than n+t

2 different
processes.

As pj is correct, it broadcasts the request message READ(i, sn) where sn = rsnj [i]
(line 06), and this message is received by all correct processes. Moreover, sn is the
greatest sequence number ever used by pj to read REG[i], and, due to the contradiction
assumption, rsnj [i] keeps forever the value sn.

Let pk be any correct process. When pk receives READ(i, sn) from pj , the predi-
cate approx_rsnk[j, i] < sn is satisfied (line 13). This is because sn is greater than
all previous sequence numbers used by pj to read REG[i]. It follows that pk updates
approx_rsnk[j, i] to sn = rsnj [i], and sends READ_VALUE(i, sn, regk[i]) to pj
(lines 14-15). Moreover, as the read ofREG[i] by pj never terminates, approx_rsnk[j, i]
remains forever equal to sn = rsnj [i].

As the predicate of line 07 remains forever false at pj , and pj receives at least (n −
t) messages READ_VALUE(i, sn,−) (one from each correct process), it follows that
pj receives at least two messages READ_VALUE(i, sn, h) and READ_VALUE(i, sn, h′)
such that h is a strict prefix of h or h′ is a strict prefix of h (this is because, due to
Lemma 2, both h and h′ are prefixes of Hi). Without loss of generality, let h′ be the
shortest history received, and h be the longest.

Due to the RB-uniformity property of the underlying broadcast abstraction, it follows
that all the correct processes r-delivers the same messages WRITE() from pi, and process
them in the same order (line 09). Let pk be a correct process. It follows directly from
the code of the algorithm that, each time pk adds a value to regk[i] (line 10), it sends a
message READ_VALUE(i, sn, regk[i]) to pj (line 12). It follows that there is a finite time
after which pj has received the very same message READ_VALUE(j, sn, h) from strictly
more than n+t

2 different processes. The predicate of line 07 becomes then satisfied. This
contradicts the initial assumption, and the lemma follows. �Lemma 3

Lemma 4. (Read followed by write). Let pi and pj be two correct processes. If the
execution of op_read[j, i, h] terminates before op_write[i,wsn] starts, then the returned
history h is such that |h| < wsn .

Proof. As pi is correct and has not yet invoked op_write[i,wsn] when pj terminates
op_read[j, i, h], it follows that no correct process r-delivers a message WRITE(v,wsn)
from pi before op_read[j, i, h] terminates. Hence, when they received from pj the mes-
sage READ(i, sn) generated by op_read[j, i,−], strictly more than n+t

2 different pro-
cesses px (i.e., strictly more than n−t

2 correct processes) returned the same message
READ_VALUE(i, sn, h) where h = regx[i] and |h| < wsn . Consequently, the history h
returned by pj is smaller than wsn . �Lemma 4

46 D. Imbs et al.

Lemma 5. (Write followed by read). Let n > 3t. Let pi and pj be two correct pro-
cesses. If op_write[i,wsn] terminates before op_read[j, i, h] starts, then the returned
history h is such that |h| ≥ wsn .

Proof. It follows from line 03 and lines 10-11 that, when op_write[i,wsn] termi-
nates (which implies before op_read[j, i, h] starts), there is a quorum QW of strictly
more than n+t

2 processes px such that |regx[i]| ≥ wsn . Moreover, the invocation
op_read[j, i, h] obtains the same message READ_VALUES(i, sn, h) from a quorum QR

including strictly more than n+t
2 correct processes. According to Lemmas 1 and 2, it

follows that QW ∩QR contains at least one correct process py. As this process is such
that |regy[i]| ≥ wsn , it follows that |h| ≥ wsn . �Lemma 5

Lemma 6. (No read inversion). Let n > 3t. Let pj and pk be two correct processes. If
op_read[j, i, h] terminates before op_read[k, i, h′] starts, we have then |h| ≤ |h′|.

Proof. To terminate,op_read[j, i, h] received the same message READ_VALUE(j, rsn, h)
from a quorum QR1 of strictly more than n+t

2 different processes. Similarly, let QR2 be
the quorum of strictly more than n+t

2 processes that allowed op_read[k, i, h′] to
terminate.

According to Lemmas 1 and 2, there is a correct process px inQR1∩QR2. As, (a) px is
correct and sent the message READ_VALUE(j, rsn, h) to pj , and later sent the message
READ_VALUE(j, rsn, h′) to pk, and (b) regx[i] can only increase, we necessarily have
|h| ≤ |h′|, which concludes the proof of the lemma. �Lemma 6

The following theorem follows from the previous lemmas 1-6.

Theorem 1. The algorithm described in Figure 1 implements an array of n SWMR
atomic h-registers (one per process) in the system model BAMPn,t[t < n/3].

Theorem 2. The condition t < n/3 is necessary to built an SWMR atomic h-register
in BAMPn,t[∅].

Proof. The algorithm presented in the previous section has shown that the condition t <
n/3 is sufficient to built an SWMR atomic register. So, the rest of the proof addresses
the necessity part of the condition.

The proof is by contradiction. Let us assume that there is an algorithm A that builds
an atomic register in BAMPn,t[n ≤ 3t], which means that it satisfies the R-consistency
and R-termination properties stated in Section 3.1. For simplicity, and without loss of
generality, we consider the largest possible value of t, i.e., n = 3t. Let us first observe
that to guarantee R-termination, a process cannot wait for messages from more than
n− t = 2t processes.

Let us partition the set of processes into three sets Q1, Q2 and Q3, each of size (at
most) t. Moreover, let us consider two processes p1 ∈ Q1 and p2 ∈ Q2.

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 47

Let us consider a first execution E1 defined as follows.

– The set of Byzantine processes is Q1; these processes do not send messages and
appear as crashed.

– The process p2 ∈ Q2 writes a value v inREG [2]. Due to the R-termination property
of the algorithm A, the invocation of REG[2].write(v) by p2 terminates. Let τw be
the time instant at which this write terminates.

Let E2 be a second execution defined as follows.

– All processes are correct, but the processes of Q2 execute no step before τr (defined
below).

– After τw, the process p1 ∈ Q1 reads the register REG [2]. Due to the R-termination
property of the algorithm A, and because the processes of Q2 could be Byzantine,
the invocation of REG[2].read() by p1 terminates. Let τr be the time instant at
which this read terminates. As, no process of Q2 executes a step before the read
terminates, p2 does not write REG[2] before τr. Consequently, according to the
R-consistency property read followed by write, REG [2] has still its initial value ε.
It follows that the read operation by p1 returns this initial value.

Let us finally consider E3, a third execution defined as follows.

– The set of Byzantine processes is Q3, and these processes behave exactly as in E1

with respect to the processes of Q2, and exactly as in E2 with those of Q1.
– The messages sent by the processes of Q1 to the processes of Q2 and by the pro-

cesses of Q2 to the processes of Q1 are delayed until after τr.
– The messages exchanged between themselves by the processes of Q2 ∪ Q3 are

received at exactly the same time instants as in E1. Similarly, the messages ex-
changed between themselves by the processes of Q1 ∪ Q3 are received at exactly
the same time instants as in E2.

– As the very same time instants as in E1, process p2 ∈ Q2 writes a value v in
REG[2]. Since, from the point of view of the processes of Q2, the executions E1

and E3 are indistinguishable, the invocation of REG [2].write(v) by p2 terminates
at τw too.

– As in execution E2, after τw the process p1 ∈ Q1 reads the register REG [2]. Since,
from the point of view of the processes of Q1, the executions E2 and E3 are indis-
tinguishable, the invocation of REG[2].read() by p1 terminates at τr and returns ε.
But this violates the R-Consistency property write followed by read, which contra-
dicts the existence of Algorithm A.

�Theorem 2

4 A Simple Abstraction on Top of SWMR Atomic h-Registers

This section presents a simple use of the previous construction of an array of n SWMR
atomic h-registers. Other examples are given in [9]. The simplicity of this algorithm
comes from the high abstraction level provided by SWMR atomic h-registers built on
top of a message-passing system.

48 D. Imbs et al.

The classical notations for atomic registers are used in the following, namely, given
an atomic h-register XX , XX ← v stands for XX.write(v), and x ← XX stands
for x ← XX.read(v). Moreover, only the last value of the sequence returned by
XX.read(v) is considered.

Correct-Only Agreement. A correct-only agreement object is a one-shot object that
provides the processes with a single operation denoted correct_only_agreement(). This
operation is used by each process to propose a value and decide a set of values. A
decided set contains only values proposed by correct processes and the decided sets
satisfy the containment property. According to the topological bounds stated in [7],
the problem captured by the correct-only agreement object can be solved if and only
if n > (dim(I) + 2)t, where dim(I) is the dimension of the colorless input complex
I with which the problem is instantiated. In our context, this necessary and sufficient
condition boils down to n > (w + 1)t, where w > 1 is the maximal number of distinct
values that can be proposed by the correct processes in any execution (in the topology
parlance, w−1 is the greatest dimension of a simplex of the colorless input complex I).

A correct-only agreement object is defined by the following properties, where
outputi denotes the set of values output by a correct process pi.

– Termination. The invocation of correct_only_agreement() by a correct process pi
terminates.

– Containment. If both pi and pj are correct and invoke correct_only_agreement(),
then outputi ⊆ outputj or outputj ⊆ outputi.

– Validity. The set outputi of a correct process pi is not empty and contains only
values proposed by at least one correct process.

operation correct_only_agreement(vi) is
(01) IN [i] ← vi;
(02) for x ∈ {1, ..., n} do aux1[x] ← IN [x] end for;
(03) for x ∈ {1, ..., n} do aux2[x] ← IN [x] end for;
(04) while [(aux1 �= aux2) ∨ (�v : |{j : aux1[j] = v}| > t)] do
(05) aux1 ← aux2;
(06) for x ∈ {1, ..., n} do aux2[x] ← IN [x] end for
(07) end while;
(08) outputi ← { v : |{j : aux1[j] = v}| > t};
(09) return(outputi).

Fig. 2. Correct-only agreement on top of BAMPn,t[t < n/(w + 1)] (code for pi)

Algorithm. The algorithm implementing the operation correct_only_agreement(), is
described in Figure 2. It uses an array IN [1..n] of SWMR h-registers. A successful
double scan is necessary but not sufficient to exit the while loop. Namely, a process pi
must additionally observe that at least one value has been proposed by (t+1) processes
(i.e., by at least one correct process). Finally, the output outputi contains all the values
that, from pi’s point of view, have been proposed by at least (t+ 1) processes.

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 49

The containment property is a consequence of the fact that the writes in the array
IN [1..n] are atomic, and the number of non-⊥ entries can only increase. The termi-
nation property is a consequence of the following observations: (a) there is a bounded
number of processes, (b) the atomic h-registers are one-write registers, and (c) the con-
dition n > (w+1)t. The validity follows from the condition n > (w+1)t (hence there
is at least one value that appears (t+ 1) times), and the predicate of line 04.

5 Solving Multidimensional Approximate Agreement

This section shows how an algorithm designed for the Byzantine asynchronous message-
passing system model can be easily adapted to the Byzantine asynchronous shared
memory model introduced in Section 3. The shared memory abstraction being at a
higher abstraction level than message-passing, the shared memory version of the al-
gorithm seems much easier to understand.

5.1 The Multidimensional Approximate Agreement Problem

Approximate agreement. The ε-approximate agreement problem has been introduced
in the context of synchronous and asynchronous message-passing systems where pro-
cesses can commit Byzantine failures [6]. Each process proposes a value in R, and each
correct process has to decide a value such that: (a) any decided value is in the range
of the values proposed by the correct processes (validity), and (b) the distance between
any two values decided by correct processes is at most ε (agreement).

The condition t < n/3 is necessary and sufficient to solve ε-approximate agreement
in both synchronous and asynchronous systems [6].

Multidimensional approximate agreement. The ε-approximate agreement problem has
been generalized in [16] to the case where each input value is a point in Rd (space of
dimension d). Such a point is defined by a size d vector (one entry per coordinate). The
problem is then defined by the following properties. Let multi_approx_agreement() be
the associated operation invoked by processes.

– Termination. The invocation of multi_approx_agreement() by a correct process pi
terminates.

– Validity. The value decided by any correct process is a point ofRd within the convex
hull of the points proposed by the correct processes.

– Agreement. The Euclidean distance between any two points decided by correct
processes is at most ε.

It is shown in [16] that n > (d + 2)t is a sufficient and necessary requirement for the
problem to be solved.

5.2 Solving Multidimensional Approximate Agreement

An algorithm solving the multidimensional approximate agreement problem on top of
the shared memory abstraction is presented in Figure 3. This algorithm is an adaptation
of Mendes-Herlihy’s algorithm designed to asynchronous message-passing [16].

50 D. Imbs et al.

Shared memory: arrays of n SWMR atomic h-registers. The processes cooperate through
the following arrays of SWMR atomic h-registers. Each h-register is written at most
once by its writer. An input value is a d-dimensional vector (coordinates of the input of
pi in Rd).

– VAL[1..n]: array such that VAL[i] is written by pi to publish its input.
– VIEW [1..n]: array such that VIEW [i] contains pi’s view of the inputs.
– EST [1..][1..n]: array such that EST [r][i] contains pi’s estimate of its decision

value at round r.
– MAX [1..n]: array such that MAX [i] = r means that pi has estimated that r

rounds are enough to reach approximate agreement. Initially, MAX [i] = +∞.

The value of any of these arrays is obtained with a collect() operation, which (differ-
ently from a snapshot) is an asynchronous and unordered read of the corresponding
entries of the array [2,22].

Procedures used in the algorithm. Let X denote a multiset of values of Rd and CH(X)
the convex hull of such a multiset. Algorithm 3 uses the notion of safe area [16]. The
safe area of X is defined by Safet(X) =

⋂
X′⊆X,|X′|=|X|−t CH(X ′).Informally, this

captures the region of Rd that is contained in all the convex hulls of the subsets of
cardinal n − t of |X |. If the values of |X | are proposed by distinct processes, then
this region is consequently contained in the convex hull of the subset of the values of
X proposed by correct processes. It is shown in [16] that for any X such that |X | >
t(d+ 1), the safe area Safet(X) is non-empty [16, Lemma 3.6].

The procedures bary(S), MD_Midpoint(S) and SingleDimMaxDist(S), whereS is a
convex polytope of Rd, are called locally by the processes; bary(S) denotes the barycen-
ter of S, while the two later are defined as follows, where s[x] designate the xth coor-
dinate of s ∈ Rd:

∀x ∈ {1, . . . , d} : MD_Midpoint(S)[x] = (max{s[x], s ∈ S}+min{s[x], s ∈ S})/2,
and SingleDimMaxDist(S) = max

x∈{1,...,d}
(max{s[x], s ∈ S} −min{s[x], s ∈ S}) .

Local variables at each process pi. Each process pi manages the following local data
structures: two arrays my_viewi[1..n] and viewsi[1..n], both initialized to [⊥, ...,⊥]; a
set of points safe_initi ; a local estimate esti of the point that will be locally decided; an
array valsi[1..n] of estimates values; an array max_ri[1..n] containing round number
upper bounds; and ri which contains pi’s current round number.

Behavior of a process pi. A process pi first writes its input value vi (point in ∈ Rd)
in VAL[i], and collects a local view (my_viewi[1..n]) including at least (n − t) in-
puts (lines 01-02). Then, to make it public, pi writes its view in VIEW [i], and collects
in viewsi the views of at least (n − t) processes (lines 03-04). The process pi then
calculates in safe_initi the barycenter of the safe area of these views (line 05). The
parameters d and ε of the problem, and the set of barycenters safe_initsi of its current
instance, allow pi to locally compute an upper bound on the number of rounds to be exe-
cuted, which is written into the atomic h-register MAX [i] (line 06). The set safe_initsi
is also used to compute pi’s first estimate (esti) of its decision value (line 07).

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 51

operation multi_approx_agreement(vi) is
(01) VAL[i] ← vi; ri ← 0;
(02) repeat my_viewi [1..n] ← VAL.collect()

until (|{x | my_viewi [x] �= ⊥}| ≥ n− t) end repeat;
(03) my_viewi [1..n] ← VAL.collect(); VIEW [i] ← my_viewi [1..n];
(04) repeat viewsi [1..n] ← VIEW .collect() until (|{x | viewsi [x] �= ⊥}| ≥ n− t) end;
(05) viewsi [1..n] ← VIEW .collect(); safe_initsi ← {bary(Safet(X)) : X ∈ viewsi};
(06) MAX [i] ←
log2

(√
d/ε · SingleDimMaxDist(safe_initsi)

)
�;

(07) esti ← bary(Safet(safe_initsi));
(08) repeat ri ← ri + 1;
(09) EST [ri][i] ← esti;
(10) repeat valsi[1..n] ← EST [ri].collect(); max_ri[1..n] ← MAX .collect()
(11) until (|{x : valsi[x] �= ⊥}| ≥ n− t) ∨ (|{x : max_ri[x] < ri}| > t) end repeat;
(12) if (|{x : valsi[x] �= ⊥}| ≥ n− t) then valsi[1..n] ← EST [ri].collect();
(13) esti ← MD_Midpoint(Safet(valsi)) end if
(14) until (|{x : max_ri[x] < ri}| > t) end repeat;
(15) return(esti).

Fig. 3. Multidimensional approximate agreement on top of BAMPn,t[t < n/(d+2)] (code pi)

Then, process pi starts a sequence of asynchronous rounds whose aim is to refine
its current estimate esti (lines 09-13) until it returns its last estimate value. This occurs
when pi attains a round ri during which it sees a set of more than t processes –i.e.,
at least one correct process– such that each process pj of this set posted in its atomic
h-register MAX [j] a last round upper bound smaller than ri. This is captured by the
outer termination predicate (|{x : max_ri[x] < ri}| > t) used at lines 12 and 13.

During a loop iteration ri, pi first writes its current decision value estimate in
EST [ri][i] (line 09), and repeatedly collects both current estimates of decision values
written in EST [ri][1..n], and upper bounds of the last round number from MAX [1..n],
until either the outer termination predicate is satisfied, or it sees at least (n−t) estimates
computed at round ri (first sub-predicate of line 11). The use of the outer termination
predicate in the inner repeat loop (line 11) allows pi not to remain blocked forever wait-
ing for a correct process that has already terminated. Then, if it knows enough values
deposited in EST [ri], pi collects again current estimates of decision values written in
EST [ri] (line 12), and computes a new estimate esti (line 13). Finally, once a large
enough number of rounds is reached (line 14), pi returns (decides) its current estimate
value (line 15). The proof of the correctness of this algorithm is given in [9]. It is similar
to, and follows the structure of, the one of Mendes-Herlihy’s algorithm [16]

Theorem 3. The algorithm presented in Figure 3 is a correct implementation of multi-
dimensional approximate agreement in the BAMPn,t[t < n/(d+ 2)] model.

6 Conclusion

This paper has first proposed a clean notion of atomic h-registers in the presence of
Byzantine failures, and has then shown how to build it on top of a Byzantine

52 D. Imbs et al.

asynchronous message-passing system. More precisely, an algorithm building a shared
memory abstraction, made up of n single-writer/multi-reader atomic h-registers, has
been presented and proved correct. The paper has also shown that t < n/3 is a neces-
sary and sufficient condition for such an algorithm.

The paper has then presented distributed algorithms suited to such a shared memory
abstraction, which can cope with up to t Byzantine processes. The simplicity of these
algorithms constitutes a strong motivation for the use of such a shared memory abstrac-
tion in the presence of Byzantine processes. As, for a lot of problems, algorithms are
more difficult to design and prove correct in a message-passing system than in a shared
memory system, the proposed abstraction should allow easier designs and proofs for
other algorithms that have to cope with Byzantine failures.

Acknowledgments. This work has been partially supported by the French ANR projects
DISPLEXITY (devoted to computability and complexity in distributed computing) and
CO2Dim, the Mexican projects UNAM PAPIIT IN107714 and ECOS-ANUIES, and
the CONACYT project LAISLA.

References

1. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message passing systems.
Journal of the ACM 42(1), 121–132 (1995)

2. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations and advanced topics,
2nd edn., 414 p. Wiley-Interscience (2004)

3. Bracha, G.: Asynchronous Byzantine agreement protocols. I&C 75(2), 130–143 (1987)
4. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in Constantinople: practical asyn-

chronous Byzantine agreement using cryptography. In: Proc. 19th Annual ACM Symposium
on Principles of Distributed Computing (PODC 2000), pp. 123–132. ACM Press (2000)

5. Chockler, G., Malkhi, D.: Active disk Paxos with infinitely many processes. Distributed
Computing 18(1), 73–84 (2005)

6. Dolev, D., Lynch, N.A., Pinter, S.S., Stark, E.W., Weihl, W.E.: Reaching approximate agree-
ment in the presence of faults. Journal of the ACM 33(3), 499–516 (1986)

7. Herlihy, M.P., Kozlov, D., Rajsbaum, S.: Distributed computing through combinatorial topol-
ogy, 336p. Morgan Kaufmann/Elsevier (2014) ISBN 9780124045781

8. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects.
ACM Transactions on Programming Languages and Systems 12(3), 463–492 (1990)

9. Imbs, D., Rajsbaum, S., Raynal, M., Stainer, J.: Reliable shared memory abstractions on
top of asynchronous t-resilient Byzantine message-passing systems. Tech Report 2018, 18p.,
IRISA, Université de Rennes, France (2014)

10. Ittai, A., Chockler, G., Keidar, I., Malkhi, D.: Byzantine disk paxos: optimal resilience with
byzantine shared memory. Distributed Computing 18(5), 387–408 (2006)

11. Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM Transactions
on Programming Languages and Systems 4(3), 382–401 (1982)

12. Lamport, L.: On interprocess communication, Part I: basic formalism. Distributed Comput-
ing 1(2), 77–85 (1986)

13. Lynch, N.A.: Distributed algorithms, 872p. Morgan Kaufmann Pub., San Francisco (1996)
ISBN 1-55860-384-4

14. Malkhi, D., Merritt, M., Reiter, M.K., Taubenfeld, G.: Objects shared by Byzantine pro-
cesses. Distributed Computing 16(1), 37–48 (2003)

Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine 53

15. Martin, J.-P., Alvisi, L.: A framework for dynamic Byzantine storage. In: Proc. Int’l Confer-
ence on Dependable Systems and Networks (DSN 2004), pp. 325–334. IEEE Press (2004)

16. Mendes, H., Herlihy, M.: Multidimensional approximate agreement in Byzantine asyn-
chronous systems. In: Proc. 46th ACM STOC, pp. 391–400. ACM Press (2013)

17. Mostéfaoui, A., Moumem, H., Raynal, M.: Signature-free asynchronous Byzantine consen-
sus with t < n/3 and O(n2) messages. In: Proc. 33rd ACM PODC. ACM Press (2014)

18. Mostéfaoui, A., Raynal, M.: Communication and agreement abstractions in the presence of
Byzantine processes. Tech Report 2015, 24 p., IRISA, Univ. de Rennes, France (2014)

19. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal
of the ACM 27, 228–234 (1980)

20. Raynal, M.: Communication and agreement abstractions for fault-tolerant asynchronous dis-
tributed systems, 251p. Morgan & Claypool Pub. (2010) ISBN 978-1-60845-293-4

21. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, 165p. Mor-
gan & Claypool Pub. (2010) ISBN 978-1-60845-525-6

22. Raynal, M.: Concurrent programming: algorithms, principles and foundations, 515p.
Springer (2013) ISBN 978-3-642-32026-2

Distributed Transactional Contention

Management as the Traveling Salesman Problem

Bo Zhang, Binoy Ravindran, and Roberto Palmieri

Virginia Tech, Blacksburg VA 24060, USA
{alexzbzb,binoy,robertop}@vt.edu

Abstract. In this paper we consider designing contention managers for
distributed software transactional memory (DTM), given an input of n
transactions sharing s objects in a network of m nodes. We first con-
struct a dynamic ordering conflict graph G∗

c(φ(κ)) for an offline algo-
rithm (κ, φκ). We show that finding an optimal schedule is equivalent to
finding the offline algorithm for which the weight of the longest weighted
path in G∗

c (φ(κ)) is minimized. We further illustrate that when the set
of transactions are dynamically generated, processing transactions ac-
cording to a χ(Gc)-coloring of Gc does not lead to an optimal schedule,
where χ(Gc) is the chromatic number of Gc. We prove that, for DTM,
any online work conserving deterministic contention manager provides

an Ω(max[s, s2

D
]) competitive ratio in a network with normalized diam-

eter D. Compared with the Ω(s) competitive ratio for multiprocessor
STM, the performance guarantee for DTM degrades by a factor pro-
portional to s

D
. To break this lower bound, we present a randomized

algorithm Cutting, which needs partial information of transactions and
an approximate algorithm A for the traveling salesman problem with ap-
proximation ratio φA. We show that the average case competitive ratio
of Cutting is O

(
s · φA · log2 m log2 n

)
, which is close to O(s).

Keywords: Synchronization, Distributed Transactional Memory.

Transactional Memory [18] is an alternative synchronization model for shared
memory objects that promises to alleviate the difficulties of manual implemen-
tation of lock-based concurrent programs, including composability. The recent
integration of TM in hardware by major chip vendors (e.g., Intel, IBM), together
with the development of dedicated GCC extensions for TM (i.e., GCC-4.7) has
significantly increased TM’s traction, in particular its software version (STM).
Similar STM, distributed STM (or DTM) [12,20,7,19,14,13] is motivated by the
difficulties of lock-based distributed synchronization.

In this paper we consider the data-flow DTM model [6], where transactions
are immobile, and objects are migrated to invoking transactions. In a realization
of this model [15], when a node initiates a transaction that requests a read/write
operation on object o, it first checks whether o is in the local cache; if not, it
invokes a cache-coherence protocol to locate o in the network. If two transactions
access the same object at the same time, a contention manager is required to

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 54–67, 2014.
c© Springer International Publishing Switzerland 2014

Distributed Transactional Contention Management as the TSP 55

handle the concurrent request. The performance of a contention manager is often
evaluated quantitatively by measuring its makespan — the total time needed to
complete a finite set of transactions [1]. The goal in the design of a contention
manager is often to minimize the makespan, i.e., maximize the throughput.

The first theoretical analysis of contention management in multiprocessors
is due to Guerraoui et. al. [5], where an O(s2) upper bound is given for the
Greedy manager for s shared objects, compared with the makespan produced
by an optimal clairvoyant offline algorithm. Attiya et. al. [1] formulated the
contention management problem as a non-clairvoyant job scheduling problem
and improved this bound to O(s). Furthermore, a matching lower bound of
Ω(s) is given for any deterministic contention manager in [1]. To obtain alter-
native and improved formal bounds, recent works have focused on randomized
contention managers [16,17]. Schneider and Wattenhofer [16] presented a deter-
ministic algorithm called CommitRounds with a competitive ratio Θ(s) and a
randomized algorithm called RandomizedRounds with a makespan O(C logM)
for M concurrent transactions in separate threads with at most C conflicts with
high probability. In [17], Sharma et. al. consider a set of M transactions and
N transactions per thread, and present two randomized contention managers:
Offline-Greedy and Online-Greedy. By knowing the conflict graph, Offline-Greedy
gives a schedule with makespan O(τ · (C + N logMN)) with high probability,
where each transaction has the equal length τ . Online-Greedy is only O(logMN)
factor worse, but does not need to know the conflict graph. While these works
have studied contention management in multiprocessors, no past work has stud-
ied it for DTM, which is our focus.

Alternative solutions for reducing the abort rate in STM and DTM can be
found in [4] and [3,11], respectively.

In this paper we study contention management in DTM. Similar to [1], we
model contention management as a non-clairvoyant scheduling problem. To find
an optimal scheduling algorithm, we construct a dynamic ordering conflict graph
G∗

c(φ(κ)) for an offline algorithm (κ, φκ), which computes a k-coloring instance
κ of the dynamic conflict graph Gc and processes the set of transactions in the
order of φκ. We show that the makespan of (φ, κ) is equivalent to the weight
of the longest weighted path in G∗

c(φ(κ)). Therefore, finding the optimal sched-
ule is equivalent to finding the offline algorithm (φ, κ) for which the weight of
the longest weighted path in G∗

c(φ(κ)) is minimized. We illustrate that, unlike
the one-shot scheduling problem (where each node only issues one transaction),
when the set of transactions are dynamically generated, processing transactions
according to a χ(Gc)-coloring of Gc does not lead to an optimal schedule, where
χ(Gc) is Gc’s chromatic number.

We prove that for DTM, an online, work conserving deterministic contention

manager provides an Ω(max[s, s2

D
]) competitive ratio for s shared objects in

a network with normalized diameter D. Compared with the Ω(s) competitive
ratio for multiprocessor STM, the performance guarantee for DTM degrades by
a factor proportional to s

D
. This motivates us to design a randomized contention

manager that has partial knowledge about the transactions in advance.

56 B. Zhang, B. Ravindran, and R. Palmieri

We thus develop an algorithm called Cutting, a randomized algorithm based
on an approximate TSP algorithm A with an approximation ratio φA. Cutting

divides the nodes into O(C) partitions, where C is the maximum degree in the
conflict graph Gc. The cost of moving an object inside each partition is at most
AtspA

C , where AtspA is the total cost of moving an object along the approximate
TSP path to visit each node exactly once. Cutting resolves conflicts in two
phases. In the first phase, a binary tree is constructed inside each partition, and
a transaction always aborts when it conflicts with its ancestor in the binary
tree. In the second phase, Cutting uses a randomized priority policy to resolve
conflicts. We show that the average case competitive ratio of Cutting is O

(
s ·

φA · log2 m log2 n
)
for s objects shared by n transactions invoked by m nodes,

which is close to the multiprocessor bound of O(s) [1].
Cutting is the first ever contention manager for DTM with an average-case

competitive ratio bound, and constitutes the paper’s contribution.

1 Preliminaries

DTM model. We consider a set of distributed transactions T := {T1, T2, . . . , Tn}
sharing up to s objects O := {o1, o2, . . . , os} distributed on a network of m nodes
{v1, v2, . . . , vm}, which communicate by message-passing links. For simplicity
of the analysis, we assume that each node runs only a single thread, i.e., in
total, there are at most m threads running concurrently.1 A node’s thread issues
transactions sequentially. Specifically, node vi issues a sequence of transactions
{T i

1, T
i
2, . . .} one after another, where transaction T i

j is issued once after T i
j−1

has committed.
An execution of a transaction is a sequence of timed operations. There are

four operation types that a transaction may take: write, read, commit, and abort.
An execution ends by either a commit (success) or an abort (failure). When a
transaction aborts, it is restarted from its beginning immediately and may ac-
cess a different set of shared objects. Each transaction Ti has a local execution
duration τi, which is the time Ti executes locally without contention (or inter-
ruption). Note that τi does not include the time Ti acquires remote objects. In
our analysis, we assume a fixed τi for each transaction Ti. Such a general as-
sumption is unrealistic if the local execution duration depends on the properties
of specific objects. In that case, when a transaction alters the set of requested
objects after it restarts, the local execution duration also varies. Therefore, if
the local execution duration varies by a factor of c, then the performance of our
algorithms would worsen by the same factor c.

A transaction performs a read/write operation by first sending a read/write
access request through CC. For a read operation, the CC protocol returns a
read-only copy of the object. An object can thus be read by an arbitrary number

1 When a node runs multiple threads, our analysis can still be adopted by treating each
thread as an individual node. This strategy overlooks the possible local optimization
for the same threads issued by the same node. Therefore, multiprocessor contention
management strategy can be used to improve performance.

Distributed Transactional Contention Management as the TSP 57

of transactions simultaneously. For a write operation, the CC protocol returns
the (writable) object itself. At any time, only one transaction can hold the
object exclusively. A contention manager is responsible for resolving the conflict,
and does so by aborting or delaying (i.e., postponing) one of the conflicting
transactions.

A CC protocol moves objects via a specific path (e.g., the shortest path for
Ballistic [6], or a path in a spanning tree for Relay [21]). We assume a fixed CC
protocol with a moving cost dij , where dij is the communication latency to move
an object from node vi to vj under that protocol. We can build a complete cost
graph Gd = (Vd, Ed), where |Vd| = m and for each edge (vi, vj) ∈ Ed, the weight
is dij . We assume that the moving cost is bounded: we can find a constant D
such that for any dij , D ≥ dij .

Conflict graph. We build the conflict graph Gc = (Tc, Ec) for the transaction
subset Tc ⊆ T , which runs concurrently. An edge (Ti, Tj) ∈ Ec exists if and only
if Ti and Tj conflict. Two transactions conflict if they both access the same ob-
ject and at least one of the accesses is a write. Let NT denote the set of neigh-
bors of T in Gc. The degree δ(T) := |NT | of a transaction T corresponds to the
number of neighbors of T in Gc. We denote C = maxi δ(Ti), i.e., the maximum
degree of a transaction. The graph Gc is dynamic and only consists of live trans-
actions. A transaction joins Tc after it (re)starts, and leaves Tc after it commits/
aborts. Therefore, NT , δ(T), and C only capture a “snapshot” of Gc at a certain
time. More precisely, they should be represented as functions of time. When there
is no ambiguity, we use the simplified notations. We have |Tc| ≤ min{m,n}, since
there are at most n transactions, and at most m transactions can run in parallel.
Then we have δ(T) ≤ C ≤ min{m,n}.

Let o(Ti) := {o1(Ti), o2(Ti), . . .} denote the sequence of objects requested by
transaction Ti. Let γ(oj) denote the number of transactions in Tc that concur-
rently writes oi and γmax = maxj γ(oj). Let λ(Ti) = {o : o ∈ o(Ti)∧ (γ(o) ≥ 1)}
denote the number of transactions in Tc that conflict with transaction Ti and
λmax = maxTi⊂Tc λ(Ti). We have C ≤ λmax · γmax and C ≥ γmax.

2 The DTM Contention Management Problem

2.1 Problem Measure and Complexity

A contention manager determines when a particular transaction executes in case
of a conflict. To quantitatively evaluate the performance of a contention manager,
we measure the makespan, which is the total time needed to complete a set of
transactions T . Formally, given a contention manager A, makespanA denotes
the time needed to complete all transactions in T under A.

We measure the contention manager’s quality, by assuming Opt, the opti-
mal, centralized, clairvoyant scheduler which has the complete knowledge of each
transaction (requested objects, locations, released time, local execution time).

The quality of a contention manager A is measured by the ratio makespanA

makespan
Opt

,

called the competitive ratio of A on T . The competitive ratio of A is

58 B. Zhang, B. Ravindran, and R. Palmieri

maxT
makespanA

makespan
Opt

, i.e., the maximum competitive ratio of A over all possible

workloads.
An ideal contention manager aims to provide an optimal schedule for any

given set of transactions. However, it is shown in [1] (for STM) that if there
exists an adversary to change the set of shared objects requested by any trans-
action arbitrarily, no algorithm can do better than a simple sequential execution.
Furthermore, even if the adversary can only choose the initial conflict graph and
does not influence it afterwards, it is NP-hard to get a reasonable approximation
of an optimal schedule [16].

We can consider the transaction scheduling problem for multiprocessor STM
as a subset of the transaction scheduling problem for DTM. The two problems
are equivalent as long as the communication cost (dij) can be ignored, compared
with the local execution time duration (τi). Therefore, extending the problem
space into distributed systems only increases the problem complexity.

(a) Conflict graph Gc. (b) Ordering conflict graph Gc(φκ).

Fig. 1.

We depict an example of a conflict graph Gc in Figure 1(a), which consists of
9 write-only transactions. Each transaction is represented as a numbered node in
Gc. Each edge (Ti, Tj) is marked with the object which causes Ti and Tj to con-
flict (e.g., T1 and T4 conflict on o1). We can construct a coloring of the conflict
graph Gc = (Tc, E). A 3-coloring scenario is illustrated in Figure 1(a). Trans-
actions are partitioned into 3 sets: C1 = {T1, T2, T3}, C2 = {T4, T5, T6}, C3 =
{T7, T8, T9}. Since transactions with the same color are not connected, every set
Ci ⊂ Tc forms an independent set and can be executed in parallel without facing
any conflicts. With the same argument of [1], we have the following lemma.

Lemma 1. An optimal offline schedule Opt determines a k-coloring κ of the
conflict graph Gc and an execution order φκ such that for any two sets Cφκ(i)

and Cφκ(j), where i < j, if (1) T1 ∈ Cφκ(i), T2 ∈ Cφκ(j), and (2) T1 and T2

conflict, then T2 is postponed until T1 commits.

In other words, Opt determines the order in which an independent set Ci is
executed. Generally, for a k-coloring of Gc, there are k! different choices to order
the independent sets. Assume that for the 3-coloring example in Figure 1(a),
an execution order φκ = {C1, C2, C3} is selected. We can construct an ordering
conflict graph Gc(φκ), as shown in Figure 1(b).

Distributed Transactional Contention Management as the TSP 59

Definition 1 (Ordering conflict graph). For the conflict graph Gc, given a
k-coloring instance κ and an execution order {Cφκ(1), Cφκ(2), . . . , Cφκ(k)}, the
ordering conflict graph Gc(φκ) = (Tc, E(φκ), w) is constructed. Gc(φκ) has the
following properties:
1. Gc(φκ) is a weighted directed graph.
2. For two transactions T1 ∈ Cφκ(i) and T2 ∈ Cφκ(j), a directed edge (or an

arc) (T1, T2) ∈ E(φκ) (from T1 to T2) exists if: (i) T1 and T2 conflict over
object o; (ii) i < j; and (iii) �T3 ∈ Cφκ(j′), where i < j′ < j, such that T1

and T3 also conflict over o.
3. The weight w(Ti) of a transaction Ti is τi; the weight w(Ti, Tj) of an arc

(Ti, Tj) is dij .

For example, the edge (T1, T4) in Figure 1(a) is also an arc in Figure 1(b).
However, the edge (T1, T7) in Figure 1(a) no longer exists in Figure 1(b), because
C2 is ordered between C1 and C3, and T1 and T4 also conflict on o1.

Hence, any offline algorithm can be described by the pair (κ, φκ), and the
ordering conflict graph Gc(φκ) can be constructed. Given Gc(φκ), the execution
time of each transaction can be determined.

Theorem 2. For the ordering conflict graph Gc(φκ), given a directed path
P = {TP (1), TP (2), . . . , TP (L)} of L hops, the weight of P is defined as w(P) =∑

1≤i≤Lw(TP (i))+
∑

1≤j≤L−1 w(TP (j), TP (j+1)). Then transaction T0 ∈ Tc com-
mits at time: maxP={TP (1),...,T0} tP (1) + w(P), where TP (1) starts at time tP (1).

Proof. We prove the theorem by induction. Assume T0 ∈ Cφκ(j). When j=1, T0

executes immediately after it starts. At time t0+τ0, T0 commits. There is only
one path that ends at T0 in Gc(φκ) (which only contains T0). The theorem holds.

Assume that when j = 2, 3, . . . , q − 1, the theorem holds. Let j = q. For
each object oi ∈ o(T0), find the transaction T0(i) such that T0(i) and T0 conflict
over oi, and (T0(i), T0) ∈ E(φκ). If no such transaction exists for all objects,
the analysis falls into the case when j = 1. Otherwise, for each transaction T0(i),
from Definition 1, no transaction which requests access to oi is scheduled between
T0(i) and T0. The offline algorithm (κ, φκ) moves oi from T0(i) to T0 immediately
after T0(i) commits. Assume that T0(i) commits at tc0(i). Then T0 commits at time:

maxoi∈o(T0) t
c
0(i) +w(T0(i), T0) +w(T0). Since (T0(i), T0) ∈ E(φκ), then from the

induction step, we know that tc0(i) = maxP={TP (1),...,T0(i)} tP (1) + w(P). Hence,

by replacing tc0(i) with maxP={TP (1),...,T0(i)} tP (1) + w(P), the theorem follows.

Theorem 2 illustrates that the commit time of transaction T0 is determined
by one of the weighted paths in Gc(φκ) which ends at T0. Specifically, if every
node issues its first transaction at the same time, the commit time of T0 is
solely determined by the longest weighted path in Gc(φκ) which ends at T0.
However, when transactions are dynamically generated over time, the commit
time of a transaction also relies on the starting time of other transactions. To
accommodate the dynamic features of transactions, we construct the dynamic
ordering conflict graph G∗

c(φκ) based on Gc(φκ).

60 B. Zhang, B. Ravindran, and R. Palmieri

Definition 2 (Dynamic ordering conflict graph). Given an ordering con-
flict graph Gc(φκ), the dynamic ordering conflict graph G∗

c(φκ) is constructed by
making the following modifications on Gc(φκ):

1. For the sequence of transactions {T i
1, T

i
2, . . . , T

i
L} issued by each node vi, an

arc (T i
j−1, T

i
j) is added to G∗

c(φκ) for 2 ≤ j ≤ L and w(T i
j−1, T

i
j) = 0.

2. If transaction Tj which starts at tj does not have any incoming arcs in
G∗

c(φκ), then w(Tj) = tj + τj.

Theorem 3. The makespan of algorithm (κ, φκ) is the weight of the longest
weighted path in G∗

c(φκ): makespan(κ,φκ) = maxP∈G∗
c(φκ) w(P)

Proof. We start the proof with special cases, and then extend the analysis to
the general case. Assume that (i) each node issues only one transaction, and (ii)
all transactions start at the same time. Then the makespan of (κ, φκ) is equiva-
lent to the execution time of the last committed transaction: makespan(κ,φκ) =
maxT0∈Tc,P∈Gc(φκ),P={...,T0} w(P) = maxP∈Gc(φκ) w(P) = maxP∈G∗

c(φκ) w(P).
Then, we can progressively relax the assumptions and use Theorem 2 to prove
this theorem. Now, we relax the second assumption: each node issues a sin-
gle transaction at arbitrary time points. Let P be the path which maximizes
makespan(κ,φκ). Therefore, TP1 (the head of P) has no incoming arcs in G∗

c(φκ)
(since each node only issues a single transaction). From the construction of
G∗

c(φκ), w(TP1) = t(P1) + τP1 . We can find a path P ∗ in G∗
c(φκ) which contains

the same elements as P with weight w(P ∗) = t(P1)+w(P), which is the longest
path in G∗

c(φκ).
Now, we relax the first assumption: each node issues a sequence of transac-

tions, and all nodes start their first transactions at the same time. Similar to the
first case, we have: makespan(κ,φκ) = maxP∈Gc(φκ),P={TP1 ,...,T0} t(P1) + w(P).

Let P be the path which maximizes makespan(κ,φκ). If TP1 (the head of P)
is the first transaction issued by a node, the theorem follows. Otherwise, ∀oi ∈
o(TP1), TP1 is the first transaction scheduled to access oi by (κ, φκ), because
there is no incoming arc to TP1 in Gc(φκ). If TP1 is the lth transaction issued
by node vj , when we convert from Gc(φκ) to G∗

c(φκ), the longest path P ∗ that

ends at T0 is a path starting from T j
1 to T j

l−1, followed by an arc (T j
l−1, TP1), and

then followed by P . Note that T j
l−1 commits at tP1 (the starting time of TP1).

Hence, we have w(P ∗) = t(P1) + w(T j
l−1, TP1) + w(P). Since w(T j

l−1, TP1) = 0
(from the construction of G∗

c(φκ)), we have t(P1)+w(P) = w(P ∗). We conclude
that the path in Gc(φκ) corresponding to the commit time of transaction T0 is
equivalent to the longest path which ends at T0 in G∗

c(φκ). The theorem follows.

Theorem 3 shows that, given an offline algorithm (κ, φκ), finding its makespan
is equivalent to finding the longest weighted path in the dynamic ordering conflict
graphG∗

c(φκ). Therefore, the optimal scheduleOpt is the offline algorithm which
minimizes the makespan.

Corollary 4. makespan
Opt

= minκ,φκ maxP∈G∗
c(φκ) w(P)

Distributed Transactional Contention Management as the TSP 61

It is easy to show that finding the optimal schedule is NP-hard. For the one-
shot scheduling problem, where each node issues a single transaction, if τ0 = τ
for all transactions T0 ∈ T and D � τ , the problem becomes the classical
node coloring problem. Finding the optimal schedule is equivalent to finding the
chromatic number χ(Gc). As [10] shows, computing an optimal coloring, given
complete knowledge of the graph, is NP-hard, and computing an approximation

within the factor of χ(Gc)
log χ(Gc)

25 is also NP-hard.
If s = 1, i.e., there is only one object shared by all transactions, finding the

optimal schedule is equivalent to finding the traveling salesman problem (TSP)
path in Gd, i.e., the shortest hamiltonian path in Gd. When the cost metric
dij satisfies the triangle inequality, the resulting TSP is called the metric TSP,
and has been shown to be NP-complete by Karp [9]. If the cost metric is sym-
metric, Christofides [2] presented an algorithm approximating the metric TSP
within approximation ratio 3/2. If the cost metric is asymmetric, the best known
algorithm approximates the solution within approximation ratio O(logm) [8].

When each node generates a sequence of transactions dynamically, it is not
always optimal to schedule transactions according to a χ(Gc)-coloring. Since the
conflict graph evolves over time, an optimal schedule based on a static conflict
graph may lose potential parallelism in the future. In the dynamic ordering con-
flict graph, a temporarily-optimal scheduling does not imply that the resulting
longest weighted path is optimal.

2.2 Lower Bound

Our analysis shows that to compute an optimal schedule, even knowing all infor-
mation about the transactions in advance, is NP-hard. Thus, we design an online
algorithm which guarantees better performance than that can be obtained by
simple serialization of all transactions. Before designing the contention manager,
we need to know what performance bound an online contention manager could
provide in the best case. We first introduce the work conserving property [1]:

Definition 3. A scheduling algorithm is work conserving if it always runs a
maximal set of non-conflicting transactions.

In [1], Attiya et al. showed that, for multiprocessor STM, a deterministic
work conserving contention manager is Ω(s)-competitive, if the set of objects
requested by a transaction changes when the transaction restarts. We prove
that for DTM, the performance guarantee is even worse.

Theorem 5. For DTM, any online, work conserving deterministic contention

manager is Ω(max[s, s2

D
])-competitive, where D := D

minGd
dij

is the normalized

diameter of the cost graph Gd.

Proof. The proof uses s2 transactions with the same local execution duration τ .
A transaction is denoted by Tij , where 1≤i, j≤s. Each transaction Tij contains

62 B. Zhang, B. Ravindran, and R. Palmieri

a sequence of two operations {Ri,Wi}, which first reads from object oi and then
writes to oi. Each transaction Tij is issued by node vij at the same time, and
object oi is held by node vi1 when the system starts. For each i, we select a set
of nodes Vi := {vi1, vi2, . . . , vis} within the range of the diameter Di ≤ D

s .
Consider the optimal schedule Opt. Note that all transactions form an s× s

matrix, and transactions from the same row ({Ti1, Ti2, . . . , Tis} for 1≤i≤s) have
the same operations. Therefore, at the start of the execution, Opt selects one
transaction from each row, thus s transactions start to execute. Whenever Tij

commits, Opt selects one transaction from the rest of the transactions in row i
to execute. Hence, at any time, there are s transactions that run in parallel.

The order that Opt selects transactions from each row is crucial: Opt should
select transactions in the order such that the weight of the longest weighted path
in G∗

c(Opt) is optimal. Since transactions from different rows run in parallel,
we have: makespan

Opt
= s · τ + max1≤i≤s Tsp(Gd(oi)), where Gd(oi) denotes

the subgraph of Gd induced by s transactions requesting oi, and Tsp(Gd(oi))
denotes the length of the TSP path of Gd(oi), i.e., the shortest path that visits
each node exactly once in Tsp(Gd(oi)).

Now consider an online, work conserving deterministic contention manager A.
Being work conserving, it must select to execute a maximal independent set of
non-conflicting transactions. Since the first access of all transactions is a read,
the contention manager starts to execute all s2 transactions.

After the first read operation, for each row i, all transactions in row i at-
tempt to write oi, but only one of them can commit and the others will abort.
Otherwise, atomicity is violated, since inconsistent states of some transactions
may be accessed. When a transaction restarts, the adversary determines that
all transactions change to write to the same object, e.g., {Ri,W1}. Therefore,
the rest s2 − s transactions can only be executed sequentially after the first
s transactions execute in parallel and commit. Then we have: makespanA ≥
(s2 − s+ 1) · τ +minGd

Tsp(Gd(s
2 − s+ 1)), where Gd(s

2 − s+ 1) denotes the
subgraph of Gd induced by a subset of s2 − s+ 1 transactions.

Now, we can compute A’s competitive ratio. We have: makespanA

makespan
Opt

≥

max
[
(s2−s+1)·τ

s·τ ,
minGd

Tsp(Gd(s
2−s+1))

max1≤i≤s Tsp(Gd(oi))

]
≥ max[s

2−s+1
s ,

(s2−s+1)·minGd
dij

(s−1)·Ds
] =

Ω(max[s, s2

D
]). The theorem follows.

Theorem 5 shows that for DTM, an online, work conserving deterministic
contention manager cannot provide a similar performance guarantee compared
with multiprocessor STM. When the normalized network diameter is bounded
(i.e., D is a constant, where new nodes join the system without expanding the
diameter of the network), it can only provide an Ω(s2)-competitive ratio. In
the next section, we present an online randomized contention manager, which
needs partial information of transactions in advance, in order to provide a better
performance guarantee.

Distributed Transactional Contention Management as the TSP 63

3 Algorithm: Cutting

3.1 Description

We present the algorithm Cutting, a randomized scheduling algorithm based
on a partitioning constructed on the cost graph Gd. To partition the cost graph,
we first construct an approximate TSP path (ATSP path) in Gd AtspA(Gd) by
selecting an approximate TSP algorithm A. Specifically, A provides the approx-

imation ratio φA, such that for any graph G, AtspA(G)
Tsp(G) = O(φA). Note that if dij

satisfies the triangle inequality, the best known algorithm provides an O(logm)
approximation [8]; if dij is symmetric as well, a constant φA is achievable [2].
We assume that a transaction has partial knowledge in advance: a transaction
Ti knows its required set of objects oi after it starts. Therefore, a transaction
can send all its object requests immediately after it starts.

Based on the constructed ATSP pathAtspA, we define the (C,A) partitioning
on Gd, which divides Gd into O(C) partitions. A constructed partition P is a
subset of nodes, which satisfies either: 1) |P | = 1; or 2) for any pair of nodes
(vi, vj) ∈ P , dij ≤ AtspA

C .

Definition 4 ((C,A) partitioning). In the cost graph Gd, the (C,A) parti-
tioning P(C,A, v) divides m nodes into O(C) partitions in two phases.

Phase I. Randomly select a node v, and let node vj be the jth node (excluding
v) on the ATSP path AtspA(Gd) starting from v. Hence, AtspA(Gd) can be
represented by a sequence of nodes {v0, v1, . . . , vm−1}.
Phase II. Inside each partition Pt = {vk, vk+1, . . .}, each node vk is assigned a
partition index ψ(vj) = (j mod k), i.e., its index inside the partition.
1. Starting from v0, add v0 to P1, and set P1 as the current partition.

2. Check v1. If AtspA(Gd)[v
0, v1] ≤ AtspA(Gd)

C , where AtspA(Gd)[v
1, v2] is the

length of the part of AtspA(Gd) from v0 to v1, add v1 to P1. Else, add v1

to P2, and set P2 as the current partition.
3. Repeat Step 2 until all nodes are partitioned. For each node vk and the cur-

rent partition Pt, this process checks the length of AtspA(Gd)[v
j , vk], where

vj is the first element added to Pt. If AtspA(Gd)[v
j , vk] ≤ AtspA(Gd)

C , vk

is added to Pt. Else, vk is added to Pt+1, and Pt+1 is set as the current
partition.

The conflict resolution also has two phases. In the first phase,Cutting assigns
each transaction a partition index. When two transactions T1 (invoked by node
vj1) and T2 (invoked by node vj2) conflict, the algorithm checks: 1) whether
they are from the same partition Pt; 2) If so, whether ∃ integer ν ≥ 1 such

that �max{ψ(vj1),ψ(vj2)}
2ν � = min{ψ(vj1), ψ(vj2)}. Note that by checking these

two conditions, an underlying binary tree Bt(Pt) is constructed in Pt as follows:

64 B. Zhang, B. Ravindran, and R. Palmieri

1. Set vj0 as the root of Bt(Pt) (level 1), where ψ(vj0 = 0), i.e., the first node
added to Pt.

2. Node vj0 ’s left pointer points to vj0+1 and right pointer points to vj0+2.
Nodes vj0+1 and vj0+2 belong to level 2.

3. Repeat Step 2 by adding nodes sequentially to each level from left to right.
In the end, O(log2 m) levels are constructed.

Note that by satisfying these two conditions, the transaction with the smaller
partition index must be an ancestor of the other transaction in Bt(Pt). There-
fore, a transaction may conflict with at most O(log2 m) ancestors in this case.
Cutting resolves the conflict greedily so that the transaction with the smaller
partition index always aborts the other transaction.

In the second phase, each transaction selects an integer π ∈ [1,m] randomly
when it starts or restarts. If one transaction is not an ancestor of another transac-
tion, the transaction with the lower π proceeds and the other transaction aborts.
Whenever a transaction is aborted by a remote transaction, the requested object
is moved to the remote transaction immediately.

3.2 Analysis

We now study two efficiency measures of Cutting from the average-case per-
spective: the average response time (how long it takes for a transaction to commit
on average) and the average makespan (i.e., the expected value produced by the
randomization in the algorithm).

Lemma 6. A transaction T needs O
(
C log2 m logn

)
trials from the moment it

is invoked until it commits, on average.

Proof. We start from a transaction T invoked by the root node vψ ∈ Bt(Pt).
Since vψ is the root, T cannot be aborted by another ancestor in Bt(Pt). Hence,
T can only be aborted when it chooses a larger π than π′, which is the integer
chosen by a conflicting transaction T ′ invoked by node vψ

′ ∈ Pt′ . The probability
that for transaction T , no transaction T ′ ∈ NT selects the same random number
π′ = π is: Pr(�T ′ ∈ NT |π′ = π) =

∏
T ′∈NT

(1− 1
m) ≥ (1− 1

m)δ(T) ≥ (1− 1
m)m ≥

1
e . Note that δ(T) ≤ C ≤ m. On the other hand, the probability that π is at
least as small as π′ for any conflicting transaction T ′ is at least 1

(C+1) . Thus, the

probability that π is the smallest among all its neighbors is at least 1
e(C+1) .

We use the following Chernoff bound:

Lemma 7. Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤
i ≤ n, Pr(Xi = 1) = pi, where 0 ≤ pi ≤ 1. Then, for X =

∑n
i=1 Xi, μ = E[X] =∑n

i=1 pi, and any δ ∈ (0, 1], Pr(X < (1− δ)μ) < e−δ2μ/2.

By Lemma 7, if we conduct 16e(C + 1) lnn trials, each having a success proba-
bility 1

e(C+1) , then the probability that the number of successes X is less than

8 lnn becomes: Pr(X < 8 lnn) < e−2 lnn = 1
n2 .

Distributed Transactional Contention Management as the TSP 65

Now we examine the transaction T l invoked by node vψ
l ∈ Pt, where vψ

l

is
the left child of the root node vψ in Bt(Pt). When T l conflicts with T , it aborts
and holds off until T commits or aborts. Hence, T l can be aborted by T at most
16e(C+1) lnn times with probability 1− 1

n2 . On the other hand, T l needs at most
16e(C + 1) lnn to choose the smallest integer among all conflicting transactions
with probability 1− 1

n2 . Hence, in total, T l needs at most 32e(C + 1) lnn trials
with probability (1− 1

n2)
2 > (1 − 2

n2).

Therefore, by induction, the transaction TL invoked by a level-L node vψ
L

of
Bt(Pt) needs at most (1 + log2 L) log2 L · 8e(C + 1) lnn trials with probability

at least 1− (1+log2 L) log2 L
2n2 . Now, we can calculate the average number of trials:

E[# of trials a transaction needs to commit] = O
(
C log2 m logn

)
.

Since when the starting point of the ATSP path is randomly selected, the
probability that a transaction is located at level L is 1/2Lmax−L+1. The lemma
follows.

Lemma 8. The average response time of a transaction is O
(
C log2 m logn ·(τ+

AtspA

C)
)
.

Proof. From Lemma 6, each transaction needs O
(
C log2 m logn

)
trials, on av-

erage. We now study the duration of a trial, i.e., the time until a transaction
can select a new random number. Note that a transaction can only select a new
random number after it is aborted (locally or remotely). Hence, if a transac-
tion conflicts with a transaction in the same partition, the duration is at most
τ + AtspA

C ; if it conflicts with a transaction in another partition, the duration is
at most τ +D. Note that a transaction sends its requests of objects simultane-
ously once after it (re)starts. If a transaction conflicts with multiple transactions,
the first conflicting transaction it knows is the transaction closest to it. From
Lemma 6, a transaction can be aborted by transactions from other partitions by
at most 16e(C+1) lnn times. Hence, the expected commit time of a transaction
is O

(
C log2 m logn · (τ + AtspA

C)
)
. The lemma follows.

Theorem 9. The average-case competitive ratio of Cutting is
O
(
s · φA · log2 m log2 n

)
.

Proof. By following the Chernoff bound provided by Lemma 7 and Lemma 8,
we can prove that Cutting produces a schedule with average-case makespan
O
(
C log2 m logn · (τ + AtspA

C) + (N · log2 m log2 n · τ + AtspA)
)
, where N is

the maximum number of transactions issued by the same node. We then find
that makespan

Opt
≥ max1≤i≤s

(
τ · max[γi, N] + Tsp(Gd(oi))

)
, since γi trans-

actions concurrently conflict on object oi. Hence, at any given time, only one
of them can commit, and the object moves along a certain path to visit γi
transactions one after another. Then we have: makespan

Opt
≥ max1≤i≤s

(
τ ·

max[γi, N] + Tsp(Gd(oi))
)
≥ τ · max[

∑
1≤i≤s γi

s , N] +
∑

1≤i≤s Tsp(Gd(oi))

s . There-

fore, the competitive ratio of Cutting is:
makespan

Cutting

makespan
Opt

= s · log2 m log2 n ·
τ ·C+AtspA

τ ·
∑

1≤i≤s γi+
∑

1≤i≤s Tsp(Gd(oi))
. Note that C ≤

∑
1≤i≤s γi and

∑
1≤i≤s

Tsp(Gd(oi)) ≥ Tsp(Gd). The theorem follows.

66 B. Zhang, B. Ravindran, and R. Palmieri

4 Conclusions

Cutting provides an efficient average-case competitive ratio. This is the first
such result for the design of contention management algorithms for DTM. The
algorithm requires that each transaction be aware of its requested set of objects
when it starts. This is essential in our algorithms, since each transaction can send
requests to objects simultaneously after it starts. If we remove this restriction,
the original results do not hold, since a transaction can only send the request of
an object once after the previous operation is done. This increases the resulting
makespan by a factor of Ω(s).

Acknowledgement. This work is supported in part by US National Science
Foundation under grants CNS-1116190.

References

1. Attiya, H., Epstein, L., Shachnai, H., Tamir, T.: Transactional contention manage-
ment as a non-clairvoyant scheduling problem. In: PODC, pp. 308–315 (2006)

2. Christofides, N.: Worst case analysis of a new heuristic for the traveling sales-
man problem. Technical Report CS-93-13, G.S.I.A., Carnegie Mellon University,
Pittsburgh, USA (1976)

3. Diegues, N.L., Romano, P.: Bumper: Sheltering Transactions from Conflicts. In:
SRDS, pp. 185–194 (2013)

4. Diegues, N.L., Romano, P.: Time-warp: lightweight abort minimization in trans-
actional memory. In: PPOPP, pp. 167–178 (2014)

5. Guerraoui, R., Herlihy, M., Pochon, B.: Toward a theory of transactional contention
managers. In: PODC, pp. 258–264 (2005)

6. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks.
Distributed Computing 20(3), 195–208 (2007)

7. Hirve, S., Palmieri, R., Ravindran, B.: HiperTM: High Performance, Fault-Tolerant
Transactional Memory. In: Chatterjee, M., Cao, J.-N., Kothapalli, K., Rajsbaum,
S. (eds.) ICDCN 2014. LNCS, vol. 8314, pp. 181–196. Springer, Heidelberg (2014)

8. Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms
for asymmetric TSP by decomposing directed regular multigraphs. J. ACM 52,
602–626 (2005)

9. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103 (1972)

10. Khot, S.: Improved Inaproximability Results for MaxClique, Chromatic Number
and Approximate Graph Coloring. In: FOCS, pp. 600–609 (2001)

11. Kim, J., Palmieri, R., Ravindran, B.: Enhancing Concurrency in Distributed Trans-
actional Memory through Commutativity. In: Wolf, F., Mohr, B., an Mey, D. (eds.)
Euro-Par 2013. LNCS, vol. 8097, pp. 150–161. Springer, Heidelberg (2013)

12. Palmieri, R., Quaglia, F., Romano, P.: OSARE: Opportunistic Speculation in Ac-
tively REplicated Transactional Systems. In: SRDS, pp. 59–64 (2011)

13. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: An Optimal
Speculative Transactional Replication Protocol. In: ISPA, pp. 449–457 (2010)

Distributed Transactional Contention Management as the TSP 67

14. Romano, P., Palmieri, R., Quaglia, F., Carvalho, N., Rodrigues, L.: Brief announce-
ment: on speculative replication of transactional systems. In: SPAA, pp. 69–71
(2010)

15. Saad, M.M., Ravindran, B.: HyFlow: a high performance distributed software
transactional memory framework. In: HPDC, pp. 265–266 (2011)

16. Schneider, J., Wattenhofer, R.: Bounds on Contention Management Algorithms. In:
Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 441–451.
Springer, Heidelberg (2009)

17. Sharma, G., Estrade, B., Busch, C.: Window-Based Greedy Contention Manage-
ment for Transactional Memory. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 64–78. Springer, Heidelberg (2010)

18. Shavit, N., Touitou, D.: Software Transactional Memory. In: PODC, pp. 204–213
(1995)

19. Siek, K., Wojciechowski, P.T.: Brief announcement: towards a fully-articulated
pessimistic distributed transactional memory. In: SPAA, pp. 111–114 (2013)

20. Turcu, A., Ravindran, B., Palmieri, R.: Hyflow2: a high performance distributed
transactional memory framework in scala. In: PPPJ, pp. 79–88 (2013)

21. Zhang, B., Ravindran, B.: Dynamic analysis of the relay cache-coherence protocol
for distributed transactional memory. In: IPDPS, pp. 1–11 (2010)

The Complexity Gap between Consensus

and Safe-Consensus

(Extended Abstract)�

Rodolfo Conde and Sergio Rajsbaum

Instituto de Matemáticas, Universidad Nacional Autónoma de México
Ciudad Universitaria, México D.F. 04510, México

aragorn@ciencias.unam.mx,
rajsbaum@im.unam.mx

Abstract. In the consensus task each process proposes a value, and
all correct processes have to decide the same value. In addition, validity
requires that the decided value is a proposed value. Afek, Gafni and
Lieber (DISC’09) introduced the safe-consensus task, by weakening the
validity requirement: if the first process to invoke the task returns before
any other process invokes it, then it outputs its input; otherwise, when
there is concurrency, the consensus output can be arbitrary, not even
the input of any process. Surprisingly, they showed that safe-consensus
is equivalent to consensus, in a system where any number of processes
can crash (e.g., wait-free).

We show that safe-consensus is nevertheless a much weaker communi-
cation primitive, in the sense that any wait-free implementation of con-
sensus requires

(
n
2

)
safe-consensus black-boxes, and this bound is tight.

The lower bound proof uses connectivity arguments based on subgraphs
of Johnson graphs. For the upper bound protocol that we present, we in-
troduce the g-2coalitions-consensus task, which may be of independent
interest. We work in an iterated model of computation, where the pro-
cesses repeatedly: write their information to a (fresh) shared array, invoke
safe-consensus boxes and snapshot the contents of the shared array.

Keywords: Consensus, safe-consensus, coalition, Johnson graph, con-
nectivity, distributed algorithms, lower bounds, wait-free computing, it-
erated models.

1 Introduction

The ability to agree on a common decision is key to distributed computing. The
most widely studied agreement abstraction is consensus. In the consensus task
each process proposes a value, and all correct processes have to decide the same
value. In addition, validity requires that the decided value is a proposed value.

Herlihy’s seminal paper [21] examined the power of different synchronization
primitives for wait-free computation, e.g., when computation completes in a finite

� Partially supported by PAPIIT-UNAM IN107714.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 68–82, 2014.
c© Springer International Publishing Switzerland 2014

The Complexity Gap between Consensus and Safe-Consensus 69

number of steps by a process, regardless of how fast or slow other processes run,
and even if some of them halt permanently. He showed that consensus is a
universal primitive, in the sense that a solution to consensus (with read/write
registers) can be used to implement any synchronization primitive in a wait-free
manner. Also, consensus cannot be wait-free implemented from read/write re-
gisters alone [17,26]; indeed, all modern shared-memory multiprocessors provide
some form of universal primitive.

Afek, Gafni and Lieber [2] introduced safe-consensus, which seemed to be a
synchronization primitive much weaker than consensus. The validity requirement
becomes: if the first process to invoke the task returns before any other process
invokes it, then it outputs its input; otherwise, when there is concurrency, the
consensus output can be arbitrary, not even the input of any process. In any
case, all processes must agree on the same output value. Trivially, consensus
implements safe-consensus. Surprisingly, they proved that the converse is also
true, by presenting a wait-free implementation of consensus using safe-consensus
black-boxes and read/write registers. Why is it then, that safe-consensus seems
a much weaker synchronization primitive?

Our Results. We show that while consensus and safe-consensus are wait-free
equivalent, any wait-free implementation of consensus for n processes requires(
n
2

)
safe-consensus black-boxes, and this bound is tight.

Our main result is the lower bound. It uses connectivity arguments based
on subgraphs of Johnson graphs, and an intricate combinatorial and bivalency
argument, that yields a detailed bound on how many safe-consensus objects
of each type (fan-in) are used by the implementation protocol. For the upper
bound, we present a simple protocol, based on the new g-2coalitions-consensus
task, which may be of independent interest.

We work in an iterated model of computation [28], where the processes re-
peatedly: write their information to a (fresh) shared array, invoke (fresh) safe-
consensus boxes and snapshot the contents of the shared array.

Related Work. Distributed computing theory has been concerned from early
on with understanding the relative power of synchronization primitives. The
wait-free context is the basis to study other failure models e.g. [7], and there is
a characterization of the wait-free, read/write solvable tasks [25]. For instance,
the weakening of consensus, set agreement, where n processes may agree on at
most n − 1 different input values, is still not wait-free solvable [8,25,31] with
read/write registers only. The renaming task where n processes have to agree
on at most 2n− 1 names has also been studied in detail e.g. [4,11,12,13,14].

Iterated models e.g. [10,23,24,28,29,30] facilitate impossibility results, and (al-
though more restrictive) facilitate the analysis of protocols [19]. We follow in this
paper the approach of [20] that used an iterated model to prove the separation
result that set agreement can implement renaming but not vice-versa, and expect
our result can be extended to a general model using simulations, as was done
in [18] for that separation result. For an overview of the use of topology to study
computability, including the use of iterated models and simulations see [22].

70 R. Conde and S. Rajsbaum

Afek, Gafni and Lieber [2] presented a wait-free protocol that implements
consensus using

(
n
2

)
safe-consensus black-boxes (and read/write registers). Since

our implementation uses the weaker, iterated form of shared-memory, it is easier
to prove correct. Safe-consensus was used in [2] to show that the g-tight-group-
renaming task [3] is as powerful as g-consensus.

The idea of the classical consensus impossibility result [17,26] is (roughly
speaking) that the executions of a protocol in such a system can be represented
by a graph which is always connected. The connectivity invariance has been
proved in many papers using the critical state argument introduced in [17], or
sometimes using a layered analysis as in [27]. Connectivity can be used also to
prove time lower bounds e.g. [5,16,27]. We extend here the layered analysis to
prove a lower bound on the number of objects needed to implement consensus.

In a previous work [15] we had already studied an iterated model extended
with the power of safe-consensus. However, that model had the restriction that in
each iteration, all processes invoke the same safe-consensus object. We showed
that set agreement can be implemented, but not consensus. The imposibility
proof uses much simpler connectivity arguments than those of this paper.

The paper is organized as follows. Section 2 describes the model of computa-
tion. Section 3 contains the protocol that solves n-process consensus using

(
n
2

)
safe-consensus boxes. In Section 4, we present the lower bound proof for three
processes. It illustrates some of the main ideas of the general case. For lack of
space the general case, as well as some proofs have been deferred to the full
version of the paper.

2 Model and Task Definitions

Our model is an extension of the standard iterated version [10] of the usual
read/write shared memory model e.g. [6]. There are n � 2 processes Π =
{p1, . . . , pn}, which execute in an asynchronous wait-free setting, i.e., any num-
ber of processes may crash.

A one-shot snapshot object S is a shared memory array which provides two
atomic operations:

– S.update(v): when called by process pj, it writes the value v to the register
S [j].

– S.scan(): returns a copy of the whole shared memory array S.

Each operation of S can be used by a process at most once. It is proven in
[1,9] that snapshot objects can be wait-free implemented using only read/write
shared memory registers.

The Iterated Model. In this model, the processes can use two kinds of com-
munication media. The first is a shared memory that is structured as an infinite
array SM [i] (i � 0) of snapshot objects; the second medium is an infinite array
T [i] of shared objects. The processes communicate between them through the

The Complexity Gap between Consensus and Safe-Consensus 71

snapshot objects and the shared objects of T, in an asynchronous and round-
based pattern.

The general form of the protocols in the iterated model is given in the pseu-
docode of Figure 1. All the variables r, sm, val, input and dec are local to process
pi and only when we analyze a protocol, we add a subindex i to a variable to
specify it is local to pi. Initially, r is zero and sm is assigned the contents of
the readonly variable input, which contains the input value for process pi; all
other variables are initialized to ⊥. In each round, pi increments by one the
loop counter r, accesses the current shared memory array SM [r], writing all the
information it has stored in sm and val (full information) and then pi decides
which shared object it is going to invoke by executing a deterministic function h
that returns an index l, then pi invokes the shared object T [l] with some value
v. Then, pi takes a snapshot of the shared array, and finally, pi checks if dec is
equal to ⊥, if so, it executes a deterministic function δ to determine if it may
decide a valid output value or ⊥. Notice that in each round of a protocol, each
process invokes at most one shared object of the array T.

Definition of Consensus and Safe-Consensus Tasks. The tasks of interest
in this paper are the consensus and safe-consensus [2] tasks.

Consensus. Every process starts with some initial input value taken from the
set {0, 1} and must output a value such that:

– Termination: Each process must eventually output some value.
– Agreement: All processes output the same value.
– Validity: If some process outputs v, then v is the initial input of some process.

Safe-consensus. Every process starts with some initial input value taken from
a set I and must output a value such that Termination and Agreement are
satisfied, and:

– Safe-Validity: If a process pi starts executing the task and outputs before any
other process starts executing the task, then its decision is its own proposed
input value. Otherwise, if two or more processes access the safe-consensus
task concurrently, then any decision value is valid.

The safe-consensus task [2] is the result of weakening the validity condition
of consensus.

From now on, we work exclusively in the iterated model, where the shared
objects invoked by the processes solve safe-consensus. We assume that the input
values that the processes feed to the safe-consensus objects are their own ids
(without loss of generality).

3 Solving Consensus with Safe-Consensus

In this section, we argue that there exists an iterated protocol that solves the
consensus task using precisely

(
n
2

)
safe-consensus objects. The complete specifi-

cation of such protocol will be included in the full version of the paper.

72 R. Conde and S. Rajsbaum

(1) init r ← 0; sm ← input; dec ← ⊥; val ← ⊥;

(2) loop forever
(3) r ← r + 1;
(4) SM [r] .update(sm, val);
(5) val ← T [h(〈r, id, sm, val〉)] .exec(v);
(6) sm ← SM [r] .scan();

(7) if (dec = ⊥) then
(8) dec ← δ(sm, val);
(9) end if
(10) end loop

Fig. 1. General form of a protocol in the iterated model

A simple way to describe the protocol that solves consensus is by seeing it as
a protocol in which the processes use a set of

(
n
2

)
shared objects which represent

an intermediate task which can be implemented using one snapshot object and
one safe-consensus object. This task is our new g-2coalitions-consensus task. It
can be defined (roughly) as follows:

2Coalitions-consensus. We have g processes p1, . . . , pg and each one starts with
some initial input value of the form x = 〈v1, v2〉, where vi ∈ I ∪ {⊥} such that
v1 �= ⊥ or v2 �= ⊥. Let x.left denote the value v1 and x.right the value v2. if
x1, . . . , xg are the input values of all processes, then it must hold that for all i, j
such that xi.left �= ⊥ and xj .left �= ⊥, then xi.left = xj .left. A similar rule
must hold if xi.right �= ⊥ and xj .right �= ⊥. Also, there must exists a unique
process with input value 〈v,⊥〉 with v �= ⊥ and process pg must be the only
process with input value xg = 〈⊥, v′〉, where v′ �= ⊥. Each process must output
a value such that Termination and Agreement are satisfied, and:

– 2coalitions-Validity: If some process outputs v, then there must exists a
process pj with input xj such that xj = 〈v, u〉 or xj = 〈u, v〉 with v ∈ I.

Using the task g-2coalitions-consensus, the protocol can be described graphically
as shown in Figure 2, for the case of n = 4. In each round of the protocol, some
processes invoke a 2coalitions-consensus object, represented by the symbol 2CCi.
In round one, p1 and p2 invoke the object 2CC1 with input values 〈v1,⊥〉 and
〈⊥, v2〉 respectively, (where vi is the initial input value of process pi) and the
consensus output u1 of 2CC1 is stored by p1 and p2 in some local variables. In
round two, p2 and p3 invoke the 2CC2 object with inputs 〈v2,⊥〉 and 〈⊥, v3〉
respectively and they keep the output value u2 in local variables. Round three
is executed by p3 and p4 in a similar way, to obtain the consensus value u3 from
the 2coalition-consensus object 2CC3. At the beginning of round four, p1, p2 and
p3 gather the values u1, u2 obtained from the objects 2CC1 and 2CC2 to invoke
the 2CC4 2coalition-consensus object with the input values 〈u1,⊥〉, 〈u1, u2〉 and

The Complexity Gap between Consensus and Safe-Consensus 73

〈⊥, u2〉 respectively (Notice that p2 uses a tuple with both values u1 and u2)
and they obtain a consensus value u4. Similar actions are taken by the processes
p2, p3 and p4 in round five with the shared object 2CC5 and the values u2, u3 to
compute an unique value u5. Finally, in round six, all processes invoke the last
shared object 2CC6, with the respective input tuples

〈u4,⊥〉, 〈u4, u5〉, 〈u4, u5〉, 〈⊥, u5〉,

and the shared object returns to all processes a unique output value u, which is
the decided output value of all processes, thus this is the final consensus of the
processes.

2CC1 2CC2 2CC3

2CC4 2CC5

2CC6

p1 p2 p2 p3 p3 p4

Fig. 2. The structure of the 4-consensus protocol using 2coalitions-consensus tasks

The protocol of Figure 3 implements g-2coalitions-consensus. Each process pi
receives as input a tuple with values satisfying the properties of the 2coalitions-
consensus task and then in lines 3-5, pi writes its input tuple in shared memory
using the snapshot object SM ; invokes the safe-consensus object with its id as
input, storing the unique output value u of the shared object in the local variable
val and finally, pi takes a snapshot of the memory. Later, what happens in Lines
6-10 depends on the output value u of the safe-consensus object. If u = g, then by
the Safe-Validity property, either pg invoked the object or at least two processes
invoked the safe-consensus object concurrently and as there is only one process
with input tuple 〈v,⊥〉, pi will find an index j with sm [j] .right �= ⊥ in line 7,
assign this value to dec and in line 11 pi decides. On the other hand, if u �= g, then
again by the Safe-Validity condition of the safe-consensus task, either process
pu is running and invoked the safe-consensus object or two or more processes
invoked concurrently the shared object and because all processes with id not
equal to g have input tuple 〈z, y〉 with z �= ⊥, it is guaranteed that pi can find
an index j with sm [j] .left �= ⊥ and assign this value to dec to finally execute
line 11 to decide its output value. All processes decide the same value because
of the properties of the input tuples of the 2coalitions-consensus task and the
Agreement property of the safe-consensus task.

Theorem 1. There exists an iterated protocol that solves the consensus task for
n processes using

(
n
2

)
safe-consensus objects.

74 R. Conde and S. Rajsbaum

(1) procedure g-2coalitions-consensus(v1, v2)
(2) begin
(3) SM.update(〈v1, v2〉);
(4) val ← safe-consensus.exec(id);
(5) sm ← SM.scan();
(6) if val = g then
(7) dec ← choose any sm [j] .right �= ⊥;
(8) else
(9) dec ← choose any sm [j] .left �= ⊥;
(10) end if
(11) decide dec;
(12) end

Fig. 3. A g-2coalitions-consensus protocol with one safe-consensus object

The proof of Theorem 1 and the correctness proof of the 2coalitions-consensus
protocol of Figure 3 are given in the full version of the paper.

4 The Lower Bound

Our main result is a matching lower bound on the number of safe-consensus
objects needed to solve consensus. For lack of space, we present here only the
case of three processes, and defer the general case to the full version of the paper.

Further Model Terminology. We need some additional definitions. Let Π be
a set of n processes, and A a protocol in the iterated model with safe-consensus
objects (see Figure 1). A local state si of a process pi ∈ Π is defined by the
contents of its local variables. An initial local state of pi is a local state in which
all its local variables are set to ⊥, except the inputi variable, which contains the
input of pi. An output local state is a local state in which the local variable dec
contains a non-⊥ value.

For any n � 1, define n = {1, . . . , n} and for m ∈ n, let Vn,m = {c ⊆ n |
|c| = m}. Given the protocol A and an execution, we define for each m � n
the set ΓA(n,m) ⊆ 2n as follows: b = {i1, . . . , im} ∈ ΓA(n,m) if and only if
in some iteration of the protocol A, the processes pi1 , . . . , pim invoke the same
safe-consensus object. For example, if m = 3 and c = {i, j, k} ∈ ΓA(n, 3), then
in at least one round, processes pi, pj and pk invoke a safe-consensus object. If
in other iteration these processes invoke together another safe-consensus object,
then these two invocations are represented by the same set c ∈ ΓA(n, 3). On the
other hand, if d = {i, j, l} /∈ ΓA(n, 3), then there does not exist an execution
of A in which only the three processes pi, pj and pl invoke a safe-consensus
shared object. For the consensus protocol of Section 3, we have that for n = 4,
ΓA(4, 2) = {{1, 2}, {2, 3}, {3, 4}}, ΓA(4, 3) = {{1, 2, 3}, {2, 3, 4}} and ΓA(4, 4) =
{{1, 2, 3, 4}}. A set b ∈ ΓA(n,m) is called a m-box or simply a box. For notation

The Complexity Gap between Consensus and Safe-Consensus 75

consistency an element d ∈ ΓA(n, 1) is called a trivial box, it represents a safe-
consensus object invoked only by one process, which of course does not give
any additional information to the process. A trivial box is used to model a
process that does not invoke a safe-consensus object in a round. Let ΓA(n) =⋃n

m=2 ΓA(n,m), νA(n,m) = |ΓA(n,m)| and νA(n) =
∑n

m=2 νA(n,m).
Our lower bound says that any iterated consensus protocol A using safe-con-

sensus, must satisfy the inequality νA(n) �
(
n
2

)
for all n � 2. Moreover, A also

satisfies the inequalities νA(n,m) > n−m for all n � 2 and 2 � m � n.
An event is performed by a process pi, which applies one of the following

actions: an update (W), a scan (R), or an invocation to a safe-consensus (S)
object. Any of these operations may be preceded/followed by some local compu-
tation. It is convenient to consider events performed concurrently. If pi1 , . . . , pik
are processes, then we denote the fact that pi1 , . . . , pik execute concurrently the
event E by E(X) where X = {i1, . . . , ik}, and E may be W, R or S. A round
schedule is a finite sequence of the form

E1(X1), . . . ,Er(Xr),

that encodes the way in which processes with ids in the set X1∪· · ·∪Xr take the
steps represented by the events E1, . . . ,Er. For example, in the round schedule

W(1, 3), S(1, 3),R(1, 3),W(2), S(2),R(2),

processes p1, p3 perform an update, invoke safe-consensus (not necessarily the
same object) and execute scan, each one concurrently and in the given order;
after that, p2 executes solo the same events in the same order.

A global state (at the end of an iteration) is a vector1 S = 〈s1, . . . , sn;SM ;
b1, . . . , bq; o1, . . . , oq〉, where si is the local state of process pi, SM is the state of
the shared memory, b1, . . . , bq ∈ ΓA(n)∪ ΓA(n, 1) are the boxes that specify the
way in which the processes invoked the safe-consensus shared objects to enter the
local states si’s and for j = 1, . . . , q, oj is the output value of the safe-consensus
shared object represented by the box bj. An initial state is a global state in which
every local state is an initial local state, all registers in the shared memory are
set to ⊥, the set of boxes is empty and the set of output values of shared objects
is empty. A decision state is a global state in which all local states are output
states. A global state Q is a successor of the global state S if and only if there
is an execution of A starting from the state S, and after executing A a finite
number of rounds, the global state is Q. If π is any round schedule and S is a
global state, the successor of S obtained by running A (starting in the state S)
one iteration with the round schedule π is denoted by S · π. When referring to a
global state S, we usually omit the word global and simply refer to S as a state.

Two states S, P are said to be adjacent if there exists a non-empty subset
X ⊆ n such that all processes with ids in X have the same local state in both
S and P . That is, for each i ∈ X , pi cannot distinguish between S and P . We

1 Although the elements b1, . . . , bq, o1, . . . , oq can be obtained from the local states
s1, . . . , sn, it is convenient to write them explicitly in the definition of S.

76 R. Conde and S. Rajsbaum

denote this by S
X∼ P . Clearly, two adjacent states belong to the same iteration.

S and P are connected, if we can find a path of states p : S = P1 ∼ · · · ∼ Pr = P ,
such that for all j with 1 � j � r − 1, Pj and Pj+1 are adjacent.

For disjoint sets A1, . . . , Aq ⊂ n, the round schedule ξ(A1, . . . , Aq, Y) is:

W(A1), S(A1),R(A1), . . . ,W(Aq), S(Aq),R(Aq),W(Y), S(Y),R(Y), (1)

where Y = n − (
⋃q

i=1 Ai). Sometimes, if there is no confusion, we omit the set
Y and just write ξ(A1, . . . , Aq). For any state S and u � 0, define

S · ξu(A1, . . . , Aq) =

{
S if u = 0,

(S · ξu−1(A1, . . . , Aq)) · ξ(A1, . . . , Aq) otherwise.

I.e. S · ξu(A1, . . . , Aq) is the state that we obtain after we run the protocol
A (starting from S) u rounds with the round schedule ξ(A1, . . . , Aq) in each
iteration.

The Connectivity of Iterated Protocols with Safe-Consensus. We recall
some classical definitions regarding consensus protocols: If S is a state, we say
that S is v-valent if there is an execution starting from S, where a process
outputs v. S is univalent if in every execution starting from S, processes output
the same value. If S is not univalent, then S is bivalent. By definition, any state
where all processes have the same input v is v-univalent.

Roughly, a typical consensus impossibility proof shows that a protocol A
cannot solve consensus because there exist one execution in which processes
decide a consensus value v, and a second execution where the consensus output
of the processes is v′, with v �= v′, such that the global states of these executions
are connected [15,17,25,26]. Any protocol that solves consensus, must be able to
prevent the existence of such paths of connected states.

Lemma 1. Consider a protocol that satisfies the agreement and termination
properties of consensus. Let I, J be any two initial states. If for all rounds r � 0,
Ir, Jr are connected successor states of I and J respectively, then I and J are
v-valent for the same value v.

Thus, any protocol that has two initial states, one 0-univalent and one 1-
univalent, and satisfies Lemma 1, cannot solve consensus.

Our main result is the following.

Theorem 2. If A is an iterated protocol for n-consensus using safe-consensus
objects, then for every m ∈ {2, . . . , n}, νA(n,m) > n−m.

To prove the theorem by contradiction, suppose that A solves consensus and
for some m0 ∈ {2, . . . , n}, it is true that νA(n,m0) � n−m0, i.e., at most n−m0

subsets of processes of size m0 can invoke safe-consensus shared objects in the
protocol A.

The Complexity Gap between Consensus and Safe-Consensus 77

The Lower Bound for 3-process Consensus Protocols. We show here
that if A is a protocol which solves consensus for three processes, then A must
satisfy the inequalities νA(3,m) > 3 −m for m ∈ {2, 3}. We investigate what
happens if A does not satisfy the given inequalities for some m0. There are two
cases to consider.

Case m0 = 2. Assume that A is such that νA(3, 2) � 3− 2 = 1, that is, at most
two fixed processes can invoke together safe-consensus shared objects. We use a
simple combinatorial result.

Lemma 2. Let U ⊂ Vn,2 with |U | � n − 2. Then there exists a partition n =
A ∪B such that

(∀b ∈ U)(b ⊆ A or b ⊆ B). (2)

The previous result can be proven using subgraphs of Johnson graphs. Lemma
2 will be used to prove Lemma 5, which is a structural result that we use to
construct a bivalency argument to show the lower bound in the case of m0 = 2
in the proof of Theorem 2.

Lemma 3. Let S be a state of A in some round r � 0 and n = A∪B a partition
of n such that

(∀b ∈ ΓA(3, 2))(b ⊆ A or b ⊆ B). (3)

Then there exists a path p : S · ξ(A) B∼ S · ξ(3) A∼ S · ξ(B) of connected states in
round r + 1 of A.

Proof. To build the path p, it is enough to show that there exists the possibility
that the output values of the safe-consensus shared objects invoked by the pro-
cesses are the same in the three states S · ξ(A), S · ξ(3) and S · ξ(B). We have
cases, according to the way in which the processes invoke the safe-consensus
objects in round r + 1.

Case a). If each process invokes solo a safe-consensus object, then by the Safe-
Validity property of safe-consensus, each process receives its own id as output
value from the shared object it invokes, so that all processes see the same
output values from the safe-consensus objects in the states S · ξ(A), S · ξ(3)
and S · ξ(B).
Case b). Suppose that processes pi, pj invoke a safe-consensus object and pk
invokes solo another safe-consensus object. This fact is represented by the
2-box b1 = {i, j} and the trivial box b2 = {k}. By the Safe-Validity property
of safe-consensus, pk always receives as output value from the shared object
represented by b2 its own id, thus pk sees the same safe-consensus value in the
three states. Now, as b1 ∈ ΓA(3, 2), by Equation (3), we know that b1 ⊆ A
or b1 ⊆ B, so that in each state of p, processes pi, pj invoke concurrently the
safe-consensus object represented by b1 and by the Safe-Validity property,
the returned value of the safe-consensus can be arbitrary. Thus there exists
executions of A in which we can make the safe-consensus object represented
by b1 output the same value in the three states S · ξ(A), S · ξ(3) and S · ξ(B).

78 R. Conde and S. Rajsbaum

Case c). Now suppose that all three processes invoke the same safe-consensus
object, which is represented by the 3-box b = 3. Because 3 = A ∪ B and
A ∩B = ∅, it must be true that |b ∩ A| = 2 or |b ∩B| = 2. Without loss of
generality, assume that |b∩A| = 2, then |b∩B| = 1 and by the Safe-Validity
property, the output value of the shared object represented by b must be k
in the state S · ξ(B), and in the states S · ξ(A), S · ξ(3), the output value can
be arbitrary (because in these two states, at least two processes are invoking
concurrently the safe-consensus object represented by b). Therefore there
exists executions of A in which the output value of the safe-consensus object
is k in the three states S · ξ(A), S · ξ(3) and S · ξ(B). It follows that the path
p exists.

Lemma 4. Suppose that for the protocol A there exist a partition n = A ∪ B

satisfying Equation 3 and a sequence p : S0
X1∼ · · · Xl∼ Sl of connected states in

round r � 0 of A, such that Xi = A or Xi = B for all i ∈ {1, . . . , l}. Then in

round r + 1 of A there exists a path q : Q0
Y1∼ · · · Ys∼ Qs of connected states and

the following properties hold:

I) Each state Qk is of the form Qk = Sj · ξ(X), where X = A or X = B;
II) (∀j ∈ {1, . . . , s})(Yj = A or Yj = B).

Proof. To find the path q satisfying I) and II), we use induction on l. In the

base case l = 1, p : S0
X1∼ S1 with X1 = A or X1 = B. It is easy to see that

the path S0 · ξ(X1)
X1∼ S1 · ξ(X1) fulfills conditions I), II). For the induction

hypothesis, suppose that for the path S0
X1∼ · · · Xl′∼ Sl′ with 1 � l′ < l, we have

build the path q′ : Q1
Y1∼ · · · Ys′∼ Qs′ satisfying I) and II) of the conclusion of the

Lemma. We now show how to connect Qs′ with a successor state of Sl′+1. Let
Xl′+1 be the set of processes that cannot distinguish between Sl′ and Sl′+1. By
the induction hypothesis, Qs′ = Sl′ · ξ(X), where X = A or X = B. We have
cases.

Case X = Xl′+1. In this case we use the small path Sl′ · ξ(X)
X∼ Sl′+1 · ξ(X).

CaseX �= Xl′+1. Without loss of generality, assume that X = A andXl′+1 =

B. We apply Lemma 3 to obtain the path Sl′ · ξ(A) B∼ Sl′ · ξ(3) A∼ Sl′ · ξ(B).

Combining this path with the path Sl′ · ξ(B)
B∼ Sl′+1 · ξ(B), we are done.

We have by induction the sequence of connected states Q1, . . . , Qs from the
sequence S1, . . . , Sl satisfying the required properties, and the result follows.

Lemma 5. If A is an iterated protocol for three processes using safe-consensus
objects with νA(3, 2) � 1 and I is an initial state in A, then there exists a
partition of the set 3 = A ∪ B such that for all u � 1, the states I · ξu(A) and
I · ξu(B) are connected.

Proof. We can apply Lemma 2 to the set ΓA(3, 2) ⊂ V3,2 to find the partition of
3 and then we use induction combined with Lemma 4. We omit the details.

The Complexity Gap between Consensus and Safe-Consensus 79

Case m0 = 3. The last case to consider is when the three processes cannot
invoke the same safe-consensus shared object together. To prove this case, we
need one structural result, regarding paths of connected states in an iterated
protocol. With this result, we can build a bivalency argument to prove the lower
bound for the case of m0 = 3 in the proof of Theorem 2.

Lemma 6. Suppose that A is a protocol with safe-consensus objects for three
processes such that νA(3, 3) = 0. If S,Q are two initial states connected by a
path q0 : S ∼ · · · ∼ Q, then for all u � 0, there exist successor states Su, Qu of
S and Q respectively, in round u of A, such that Su and Qu are connected.

Proof. Let A be a protocol for three processes with νA(3, 3) = 0. We use induc-
tion on the round number u. For the base case u = 0, by hypothesis we have the
path q0 which fulfills the conclusion of the lemma.

For the induction hypothesis, assume that for u � 0, we have the path

qu : S0
X1∼ · · · Xq∼ Sq, where S

u = S0 and Qu = Sq. To build the path qu+1 : S
u+1

∼ · · · ∼ Qu+1, connecting Su+1 and Qu+1, successor states of Su and Qu re-
spectively, we proceed by induction on q. In the base case q = 1, we have that

qu is the path S0
X1∼ S1, here we easily build the path S0 · ξ(X1)

X1∼ S1 · ξ(X1).
Suppose that for 1 � l < q, we have build the path q′ : R1 ∼ · · · ∼ Rs, where
R1 is a successor state of S1 and Rs = Sl · ξ(X) is a successor states of Sl. We
now wish to connect Rs (a successor state of Sl) with a successor state of Sl+1.
Let Xl+1 be the set of processes which cannot distinguish between Sl and Sl+1.
As νA(3, 3) = 0, In any execution of A, the three processes cannot invoke the
same safe-consensus shared object, thus in round u + 1 of A, they must invoke
the safe-consensus objects in one of the following two possibilities:

– Each process invokes a safe-consensus object solo.
– Two processes invoke a safe-consensus object and the third process invokes

solo another shared object.

If the processes invoke three separate safe-consensus objects, then we build the
following path from Rs = Sl · ξ(X) to Sl+1 · ξ(Xl+1)

Sl · ξ(X)
3−X∼ Sl · ξ(3)

3−Xl+1∼ Sl · ξ(Xl+1)
Xl+1∼ Sl+1 · ξ(Xl+1). (4)

As each process sees its own id as the output value of the safe-consensus object
it invokes, then the only way that a process can distinguish between two states,
is by means of the contents of the shared memory. Therefore the path given in
Equation (4) exists.

In case that two processes invoke a safe-consensus object, represented by the
2-box b ∈ ΓA(3, 2) and the other process invokes solo an object represented by
the trivial box c, then we build a path from Rs = Sl · ξ(X) to Sl+1 · ξ(Xl+1) as
follows: First notice that the two states Sl ·ξ(X) and Sl ·ξ(3) are indistinguishable
for the processes with ids in the set 3−X , this is because we can find executions
of A in which the safe-consensus values of the objects represented by b and c are
the same in the two previous states (Safe-Validity), proving this is an easy case

80 R. Conde and S. Rajsbaum

analysis. Now, we need to connect the state Sl · ξ(3) with the state Sl · ξ(Xl+1).
We have subcases on the size of the set Xl+1.

Case |Xl+1| = 1. If Xl+1 = c, then we have that Sl · ξ(3) b∼ Sl · ξ(Xl+1), be-
cause by the Safe-Validity property of safe-consensus, we can find executions
of A in which the output value of the safe-consensus object represented by
b is the same in the states Sl · ξ(3) and Sl · ξ(Xl+1), thus all processes with
ids in b cannot distinguish between these two states. On the other hand, if
Xl+1 �= c, then Xl+1 ⊂ b and we have the path Sl · ξ(3) c∼ Sl · ξ(Xl+1).
Case |Xl+1| = 2. If Xl+1 = b, then we claim that, as in the last part of the

previous case, Sl · ξ(3) c∼ Sl · ξ(Xl+1). When Xl+1 �= b, it must be true that
Xl+1 = {j} ∪ c, where j ∈ b. The path that we need to build here is

Sl · ξ(3) c∼ Sl · ξ({j}) b∼ Sl · ξ({j}, c) c∼ Sl · ξ({j} ∪ c).

The arguments to prove that this path exists, are very similar to previous
arguments, using the Safe-Validity property of the safe-consensus task. This
finishes the cases to connect the states Sl · ξ(3) and Sl · ξ(Xl+1).

Finally, we connect the states Sl ·ξ(Xl+1) and Sl+1 ·ξ(Xl+1) with the small path

Sl ·ξ(Xl+1)
Xl+1∼ Sl+1 ·ξ(Xl+1). Thus, we have connected the state Rs = Sl ·ξ(X)

with a successor state of Sl+1 and this completes the proof of the induction step.
By induction on q, we have build the path qu+1 from the path qu, satisfying the
conclusion of the lemma.

Therefore we have proven that given the path qu, connecting the states Su

and Qu, we can build a new path qu+1, connecting successor states of Su and
Qu respectively, so that by induction on u, the result is valid for all u � 0. This
finishes the proof.

To complete the proof of Theorem 2, we use all the previous results as follows.

Proof of Theorem 2. (Case n = 3) Assume that there is some m0 ∈ {2, 3} such
that νA(3,m0) � 3 −m0. Let O,U be the initial states in which all processes
have as input values 0s and 1s respectively. We now find successor states of O
and U in each round r � 0, which are connected. We have two cases:

Case m0 = 2. By Lemma 5, there exists a partition of 3 = A ∪B such that
for any state S and any r � 0, S · ξr(A) and S · ξr(B) are connected. Let OU
be the initial state in which all processes with ids in A have as input value
0s and all processes with ids in B have as input values 1s. Then for all r � 0

O · ξr(A) A∼ OU · ξr(A) and OU · ξr(B)
B∼ U · ξr(B)

and by Lemma 5, the states OU · ξr(A) and OU · ξr(B) are connected. Thus,
for any r, we can connect the states Or = O · ξr(A) and U r = U · ξr(B).
Case m0 = 3. It is known that any two initial states for consensus are
connected [17], so that we can connect O and U with a sequence q of initial
states of A, By Lemma 6, for each round r � 0 of A, there exist successor
states Or , U r of O and U respectively, such that Or and U r are connected.

The Complexity Gap between Consensus and Safe-Consensus 81

In this way, we have connected successor states of O and U in each round of
the protocol A. Now, O is a 0-valent, initial state, which is connected to the
initial state U , so that we can apply Lemma 1 to conclude that U is 0-valent.
But this contradicts the fact that U is a 1-valent state, so we have reached a
contradiction. Therefore νA(3,m) > 3−m for m = 2, 3.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Afek, Y., Gafni, E., Lieber, O.: Tight group renaming on groups of size g is equiva-
lent to g-consensus. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 111–126.
Springer, Heidelberg (2009)

3. Afek, Y., Gamzu, I., Levy, I., Merritt, M., Taubenfeld, G.: Group renaming. In:
Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 58–72.
Springer, Heidelberg (2008)

4. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an Asyn-
chronous Environment. Journal of the ACM (July 1990)

5. Attiya, H., Dwork, C., Lynch, N., Stockmeyer, L.: Bounds on the time to reach
agreement in the presence of timing uncertainty. J. ACM 41, 122–152 (1994),
http://dx.doi.org/10.1145/174644.174649

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

7. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The bg distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

8. Borowsky, E., Gafni, E.: Generalized flp impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993: Proceedings of the Twenty-fifth Annual
ACM Symposium on Theory of Computing, pp. 91–100. ACM, New York (1993)

9. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC
1993: Proceedings of the Twelfth Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 41–51. ACM, New York (1993)

10. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of
wait-free computation (extended abstract). In: PODC 1997: Proceedings of the
Sixteenth Annual ACM Symposium on Principles of Distributed Computing, pp.
189–198. ACM, New York (1997)

11. Castañeda, A., Herlihy, M., Rajsbaum, S.: An equivariance theorem with applica-
tions to renaming. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp.
133–144. Springer, Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-29344-3_12

12. Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds
for renaming. In: Proceedings of the Twenty-seventh ACM Symposium on Principls
of Distributed Computing, PODC 2008, pp. 295–304. ACM, New York (2008),
http://doi.acm.org/10.1145/1400751.1400791

13. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
The upper bound. J. ACM 59(1), 3:1–3:49 (2012),
http://doi.acm.org/10.1145/2108242.2108245

14. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: An introduction. Computer Science Review 5(3), 229–251 (2011),
http://www.sciencedirect.com/science/article/pii/S1574013711000116

http://dx.doi.org/10.1145/174644.174649
http://dx.doi.org/10.1007/978-3-642-29344-3_12
http://doi.acm.org/10.1145/1400751.1400791
http://doi.acm.org/10.1145/2108242.2108245
http://www.sciencedirect.com/science/article/pii/S1574013711000116

82 R. Conde and S. Rajsbaum

15. Conde, R., Rajsbaum, S.: An introduction to the topological theory of distributed
computing with safe-consensus. Electronic Notes in Theoretical Computer Sci-
ence 283, 29–51 (2012), http://www.sciencedirect.com/science/article/
pii/S1571066112000059, proceedings of the workshop on Geometric and Topolo-
gical Methods in Computer Science (GETCO)

16. Dwork, C., Moses, Y.: Knowledge and common knowledge in a byzantine en-
vironment: Crash failures. Information and Computation 88(2), 156–186 (1990),
http://www.sciencedirect.com/science/article/pii/0890540190900149

17. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

18. Gafni, E., Rajsbaum, S.: Distributed programming with tasks. In: Lu, C., Masuzawa,
T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 205–218. Springer, Hei-
delberg (2010), http://dx.doi.org/10.1007/978-3-642-17653-1_17

19. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb,
J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer,
Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-16023-3_30

20. Gafni, E., Rajsbaum, S., Herlihy, M.: Subconsensus tasks: Renaming is weaker
than set agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

21. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991), http://dx.doi.org/10.1145/114005.102808

22. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann (2013), http://store.elsevier.com/
Distributed-Computing-Through-Combinatorial-Topology/Maurice-Herlihy/

isbn-9780124045781/

23. Herlihy, M., Rajsbaum, S.: The topology of shared-memory adversaries. In: PODC
2010: Proceeding of the 29th ACM Symposium on Principles of Distributed Com-
puting, pp. 105–113. ACM, New York (2010)

24. Herlihy, M., Rajsbaum, S.: The topology of distributed adversaries. Distributed
Computing 26(3), 173–192 (2013),
http://dx.doi.org/10.1007/s00446-013-0189-9

25. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

26. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes. In: Preparata, F.P. (ed.) Parallel and Distributed
Computing, Advances in Computing Research, pp. 163–183. JAI Press, Greenwich
(1987)

27. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4),
989–1021 (2002)

28. Rajsbaum, S.: Iterated shared memory models. In: López-Ortiz, A. (ed.) LATIN
2010. LNCS, vol. 6034, pp. 407–416. Springer, Heidelberg (2010)

29. Rajsbaum, S., Raynal, M., Travers, C.: An impossibility about failure detectors in
the iterated immediate snapshot model. Inf. Process. Lett. 108(3), 160–164 (2008)

30. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot
model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497.
Springer, Heidelberg (2008)

31. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

http://www.sciencedirect.com/science/article/pii/S1571066112000059
http://www.sciencedirect.com/science/article/pii/S1571066112000059
http://www.sciencedirect.com/science/article/pii/0890540190900149
http://dx.doi.org/10.1007/978-3-642-17653-1_17
http://dx.doi.org/10.1007/978-3-642-16023-3_30
http://dx.doi.org/10.1145/114005.102808
http://store.elsevier.com/Distributed-Computing-Through-Combinatorial-Topology/Maurice-Herlihy/isbn-9780124045781/
http://store.elsevier.com/Distributed-Computing-Through-Combinatorial-Topology/Maurice-Herlihy/isbn-9780124045781/
http://store.elsevier.com/Distributed-Computing-Through-Combinatorial-Topology/Maurice-Herlihy/isbn-9780124045781/
http://dx.doi.org/10.1007/s00446-013-0189-9

The Simultaneous Number-in-Hand

Communication Model for Networks:
Private Coins, Public Coins and Determinism�

Florent Becker1, Pedro Montealegre1, Ivan Rapaport2,3, and Ioan Todinca1

1 Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, Orléans, France
2 Departamento de Ingenieŕıa Matemática, Univ. de Chile, Chile

3 Centro de Modelamiento Matemático (UMI 2807 CNRS), Univ. de Chile, Chile

Abstract. We study the multiparty communication model where play-
ers are the nodes of a network and each of these players knows his/her
own identifier together with the identifiers of his/her neighbors. The play-
ers simultaneously send a unique message to a referee who must decide
a graph property. The goal of this article is to separate, from the point
of view of message size complexity, three different settings: determinis-
tic protocols, randomized protocols with private coins and randomized
protocols with public coins. For this purpose we introduce the boolean
function Twins. This boolean function returns 1 if and only if there are
two nodes with the same neighborhood.

1 Introduction

In the number-in-hand multiparty communication model there are k players.
Each of these k players receives an n-bit input string xi and they all need to col-
laborate in order to compute some function f(x1, . . . , xk). Despite its simplicity,
the case k > 2 started to be studied very recently [1, 2, 4, 6–8, 13, 14].

There are different communication modes for the number-in-hand model. In
this paper we focus on the simultaneous message communication mode, in which
all players simultaneously send a unique message to a referee. The referee collects
the messages and computes the function f . The computational power of both the
players and the referee is unlimited. When designing a protocol for function f ,
the goal is to minimize the size of the longest message generated by the protocol.
This minimum, usually depending on n, is called the message size complexity of
f . Typical questions in communication complexity consist in designing protocols
with small messages, and proving lower bounds on the size of such messages.

Several authors considered the case where the data distributed among the
players is a graph [1, 4, 13, 14]. Informally, each player knows a set of edges of the
graph and together they must decide a graph property, e.g., connectivity. Again

� This work has been partially supported by CONICYT via Basal in Applied Math-
ematics (I.R.), Núcleo Milenio Información y Coordinación en Redes ICM/FI P10-
024F (I.R.) and Fondecyt 1130061 (I.R.)

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 83–95, 2014.
c© Springer International Publishing Switzerland 2014

84 F. Becker et al.

we can observe two different settings. In one of them, the edges are distributed
among the players in an adversarial way [1, 14]. In this work, following [1, 4], we
consider the setting where each player corresponds to a node of the graph, and
thus each player knows the identifier of this node together with the identifiers of
its neighbors, represented as an n-bits vector (in the vector xi of player i, the bit
number j is set to 1 if and only if the nodes i and j are adjacent). For the sake of
simplicity we assume that the graph has n nodes numbered from 1 to n, hence
there are k = n players, and we call this model number-in-hand for networks.

For many natural functions the messages are much shorter when randomiza-
tion is allowed [12]. In the randomized setting, there are significant differences
between the communication complexities of protocols using public coins (shared
by all players and the referee) and the more restrictive setting where each player
has his own, private coin. We emphasize that in the number-in-hand communi-
cation model for networks, each edge is “known” by two players, thus we have
some shared information. Not surprisingly, as pointed out in [14], this model is
stronger than the one where edges are distributed in an adversarial way among
players.

Related Work

The number-in-hand model with simultaneous messages and k = 2 players.
The case of two players is not new and it has been intensively studied. Clear
separations have been proved between deterministic, private coins and public
coins protocols in this case. For instance, the message size complexity of the
EQ function, which simply tests whether the two n-bit inputs are equal, is Θ(n)
for deterministic protocols [12], O(1) for randomized protocols with public coins
with constant one-sided error [3], and Θ(

√
n) for randomized protocols with

private coins and constant one-sided error [3] (see Section 2 for details). More
generally, Babai and Kimmel [3] proved that for any function f its randomized
message size complexity, for private coins protocols, is at least the square root of
its deterministic message size complexity. Chakrabarti et al. [5] proved that, for
some family of functions, the gap between deterministic and randomized message
size complexity with private coins is smaller that the square root.

The number-in-hand communication model for networks.
For deterministic protocols, Becker et al. [4] show that graphs of bounded de-
generacy can be completely reconstructed by the referee using messages of size
O(log n), and several natural problems like deciding whether the graph has a
triangle, or if its diameter is at most 3, have message size complexity of Θ(n).
For randomized protocols with public coins, Ahn, Guha and McGregor [1, 2] in-
troduced a beautiful and powerful technique for graph sketching. The technique
works both for streaming models and for the number-in-hand for networks, and
allows to solve Connectivity using messages of size O(log2 n). The protocols
have two-sided, O(1/nc) error, for any constant c > 0.

Our Results. In this paper we separate the deterministic, the randomized with
private coins and the randomizedwith public coins settings of the number-in-hand

The Simultaneous Number-in-Hand Communication Model for Networks 85

for networks communication model. The separations are made using problem
Twins and some variants. The boolean function Twins(G) returns 1 if and only
if graph G has two twins (that is, two nodes having the same neighborhood). We
also consider functionTwinx(G), where x is the identifier of a node, and the result
is 1 if and only if there is some other node having the same neighborhood as x.

We prove that the deterministic message size complexity of Twins andTwinx

is Θ(n). Also, both functions can be computed by randomized protocols with
public coins and message size O(log n). These protocols, based on the classical
fingerprint technique, have one-sided error O(1/nc) for any constant c > 0.
Observe that the situation for private coins is very different from the case of the
number-in-hand model with two players, where the gap between private coins
and determinism is at most the square root.

In order to separate the private and public coins settings we use a boolean
function called Translated-Twins (see Section 2 for details). We prove that
the message size complexity of this function in the private coins setting is Ω(

√
n),

while it is O(log n) in the public coins setting. The main results of this paper
are summarized in Table 1.

Twins Twinx Translated-Twins

Deterministic Θ(n) Θ(n) Θ(n)
Randomized private-coins O(

√
n log n) O(log n) Ω(

√
n), O(

√
n log n)

Randomized public-coins O(log n) O(log n) O(log n)

There are several natural problems that cannot be solved with randomized
protocols using o(n) bits. In the last part of this paper (Theorem 5) we sketch
how the arguments of [4], for proving negative results on deterministic proto-
cols, can be extended to the randomized setting. More precisely, we prove that
the randomized public coin message size complexity of the boolean functions
Triangle(G) (that outputs 1 if and only if G has a triangle) and Diam3(G)
(that outputs 1 if and only if G has diameter at most 3) is Ω(n).

2 Preliminaries

Number-in-Hand. The number-in-hand communication model is defined as
follows. Let f be a function having as input k boolean vectors of length n.
There are k players {p1, . . . , pk} who wish to compute the value of f on input
(x1, . . . , xk) ∈ ({0, 1}n)k. Player pi only sees the input xi, and also knows his
own number i. We only consider here the simultaneous messages communication
mode, in which all the k players simultaneously send a message to a referee. After
that, the referee (another player who sees none of the inputs) announces the value
f(x1, . . . , xk) using only the information contained in the k messages.

A deterministic protocol P for function f describes the algorithms of the
players (for constructing the messages) and of the referee (for retrieving the final
result) that correctly computes f on all inputs. An ε-error randomized protocol

86 F. Becker et al.

P for f is a protocol in which every player and the referee are allowed to use a
sequence of random bits, and for all (x1, . . . , xk) ∈ ({0, 1}n)k the referee outputs
f(x1, . . . , xk) with probability at least 1− ε. For boolean functions f we define
a one-sided ε-error randomized protocol in the same way, with exception that
for all (x1, . . . , xk) ∈ ({0, 1}n)k such that f(x1, . . . , xk) = 1, the referee always
outputs 1.

We distinguish between two sub-cases of randomized protocols: (i) the private-
coin setting, in which each player, including the referee, flips private coins and
(ii) the public-coin setting, where the coins are shared between players, but the
referee can still have his own private coins.

The cost of a protocol P , denoted C(P), is the length of the longest message
sent to the referee. The deterministic message size complexity, denoted Cdet(f),
is the minimum cost of any deterministic protocol computing f . Analogously,
we denote Cpriv

ε (f), Cpub
ε (f), as the message size complexity for ε-error public

and private protocols, respectively.

Number-in-Hand for Networks. Number-in-hand for networks is a partic-
ular case of number-in-hand where each party is a node of an n-vertex graph
with vertices numbered from 1 to n. Therefore, in this model, k = n, player pi
corresponds to the node i and the inputs x1, . . . , xn correspond to the rows of
the adjacency matrix of some simple undirected graph G of size n. Hence, the
input of player (node) i is the characteristic function of the neighborhood NG(i)
(i.e. j ∈ NG(i) if and only if ij ∈ E(G)).

All our graphs are undirected, so for any pair i, j of nodes, the bit number i of
player j equals the bit number j of player i. In full words, each edge of the graph
is known by the two players corresponding to its end-nodes. All our protocols
use Ω(log n) bits. We assume, w.l.o.g., that each node sends its own number in
the message transmitted to the referee.

Known Results. Let us recall some classical results of the number-in-hand
model with two players. Babai and Kimmel [3] have shown that the order of
magnitude of the private-coins randomized message size complexity of any func-
tion f is at least the square root of the deterministic message size complexity of f .
They also characterize completely the function: EQ : {0, 1}n×{0, 1}n → {0, 1},
where EQ(x, y) = 1 iff x = y.

Proposition 1 ([3]). Consider the number-in-hand model with two players and
a constant ε > 0. The function EQ on two n-bit boolean vectors has the fol-
lowing message size complexities: Cdet(EQ) = n, Cpriv

ε (EQ) = Θ(
√
n) and

Cpub
ε (EQ) = O(1). For any boolean function f , Cpriv

ε (f) = Ω(
√
Cdet(f)).

We also use the following result of Chakrabarti et al. [5] for private coins
protocol; the deterministic part is a matter of exercise.

Proposition 2 ([5]). Consider the boolean function OREQ that takes as input
two boolean n × n matrices, and the output is 1 if and only if there is some
1 ≤ i ≤ n such that the i-th lines of the two matrices are equal. Then, for any
ε < 1/2, Cpriv

ε (OREQ) = Ω(n
√
n). Also, Cdet(OREQ) = Θ(n2).

The Simultaneous Number-in-Hand Communication Model for Networks 87

The Problems. We now come back to the number-in-hand for networks model.
In this framework we shall study three boolean functions on graphs.

– Twins(G) outputs 1 if and only if G has two vertices u and v with the same
neighborhood, i.e., such that N(u) = N(v).

– Twinsx(G) is a “pointed” version of previous function. Its output is 1 if and
only if there is a vertex y such that N(y) = N(x).

– Translated-Twins is defined on input graphs G of size 2n, labeled from 1
to 2n. Its output is 1 if and only if G has a vertex i such that, for any vertex
j, j ∈ N(i) ⇐⇒ j + n ∈ N(i + n). In other words, the output is 1 if and
only if there exists i such that N(i) + n = N(i+ n).

For reductions we also use the function Reconstruction(G), whose output
is G itself, i.e., the adjacency matrix of G. Note that if a deterministic protocol
computes Reconstruction on the family of n-vertex graphs Gn, then such
protocol must generate messages of size at least log(|G|)/n (see also [4]).

3 Deterministic Protocols

Theorem 1. The deterministic message size complexity of functions Twins,
Twinx and Translated-Twins is Θ(n).

The upper bounds of O(n) are trivial so we only need to prove the lower
bounds. For the first two problems, we use the following reduction.

Lemma 1. Assume that there is a deterministic protocol solving Twins (resp.
Twins2n+1) on 2n+ 1-node graphs using messages of size g(n). Then one can
solve Reconstruction on n-node graphs using messages of size 2g(n).

Proof. Let G be an arbitrary n-nodes graph, i be an integer between 1 and n
and S be a subset of {1, . . . , n} not containing i. Denote by H(i, S) the graph
on 2n+ 1 nodes obtained as follows (see Figure 1):

1. H [{1, . . . , n}] = G.
2. For each n + 1 ≤ j ≤ 2n, its unique neighbor with identifier at most n is

j − n.
3. Node 2n+ 1 is adjacent exactly to the nodes of S and to i+ n.

Claim. We claim that Twins(H(i, S)) (resp. Twins2n+1(H(i, S)) is true if and
only if NG(i) = S.

Clearly, if NG(i) = S then node i is a twin of 2n+ 1 in graph H . Conversely,
we prove that if H(i, S) has two twins u and v then one of them is 2n + 1.
This comes from the fact that the edges between {1, . . . , n} and {n+1, . . . , 2n}
in H(i, S) form a matching, so no two nodes of {1, . . . , 2n} may be twins. Now
assume that 2n+1 has a twin u. Since NH(i,S)(2n+1)∩{n+1, . . . , 2n} = {i+n},
the only possibility is that u = i. Eventually, i and 2n+ 1 are twins if and only
if NG(i) = S, which proves our claim.

88 F. Becker et al.

Now assume that we have a distributed protocol for Twins (or Twins2n+1)
on graphs with 2n + 1 nodes (actually it suffices to consider graphs from the
family H described above). We construct an algorithm for Reconstruction

on an arbitrary n-nodes graph G.
The players construct their messages as follows. Each node i sends the message

mi that it would send in the Twins protocol if it had neighborhood NG(i) ∪
{i + n} and the message m+

i that it would send in the same protocol with
neighborhood NG(i) ∪ {i+ n, 2n+ 1}. That makes messages of size 2g(n).

The referee needs to retrieve the neighborhood NG(i) for each i, from the
set of messages. For each i and each subset S of {1, . . . , n} not containing i,
we simulate the behavior of the referee for Twins on graph H(i, S). For this
purpose, for each j ≤ n we use messagemj if j /∈ S and messagem+

j if j ∈ S. The
messages for nodes k > n can be constructed directly by the referee. Note that
Twins(H(i, S)) is true iff NG(i) = S, thus we can reconstructNG(i). Eventually,
this allows to solve Reconstruction on graph G. The same arguments work
of we replace the Twins protocol by Twins2n+1. �

1

2

3

4

G 5

6

7

8

9

Fig. 1. H(4, S), when S = {2, 3}

Remark 1. Since problem Reconstruction on n-node graphs requires mes-
sages of size Ω(n), we conclude that any deterministic protocol for either Twins

or Twins2n+1 also requires messages of size Ω(n).

For problem Translated-Twins, we provide a reduction from OREQ (see
Proposition 2 in Section 2). It will be used both for deterministic and randomized
protocols with private coins.

The Simultaneous Number-in-Hand Communication Model for Networks 89

1

2

3

4

5

6

16

17

18

x =

⎛
⎝ 1 1 0

0 1 0
0 1 1

⎞
⎠

10

11

12

13

14

15

7

8

9

y =

⎛
⎝ 0 1 0

1 0 1
0 1 1

⎞
⎠

Fig. 2. Examples of graphs G1
x (top) and G2

y (bottom), for a given input (x, y). This
is a yes instance since x3 = y3.

Lemma 2. Assume that there is a protocol solving Translated-Twins for
6n-node graphs using messages of size g(n), in any of our three settings. Then
there is a protocol for function OREQ, in the same setting, using messages of
size 3ng(n).

Proof. Let x and y be two n× n boolean matrices. We construct a graph Gx,y

with 6n nodes such that Translated-Twins(Gx,y) = OREQ(x, y).
The graph G is formed by two connected components G1

x and G2
y of 3n nodes

each, encoding the two matrices as follows (see Figure 2 for an example).
G1

x has 3n nodes numbered from 1 to 2n and from 5n + 1 to 6n. For any
i, j ∈ {1, . . . , n} we put an edge between node i and node j + n if and only if
xi,j = 1. Then for any i ∈ {1, . . . , n} we put an edge between node i+n and node
i+4n. In other words, the node subsets {1, . . . , n} and {n+1, . . . , 2n} induce a
bipartite graph representing matrix x, and the node subsets {n+1, . . . , 2n} and
{5n+ 1, . . . , 6n} induce a perfect matching.

The construction of G2
y, with nodes numbered from 2n+1 to 5n is similar. For

any i, j ∈ {1, . . . , n} we put an edge between node i+3n and node j+4n if and
only if yi,j = 1. Also, for any i ∈ {1, . . . , n}, we put an edge between node 4n+ i
and node 2n+ i. Thus the node subsets {3n+ 1, . . . , 4n} and {4n+ 1, . . . , 5n}
form a bipartite graph corresponding to matrix y. The subsets {4n+ 1, . . . , 5n}
and {2n+ 1, . . . , 3n} induce a matching.

We claim that Translated-Twins(Gx,y) = OREQ(x, y). Assume that
OREQ(x, y) = 1. There is an index i such that line number i in x equals line
number i in y. Then, by construction, the neighborhood of node i+ 3n in Gx,y

is the neighborhood of node i, translated by an additive term 3n.
Conversely, assume that there is some node u ∈ {1, . . . , 3n} such that the

neighborhood of u is the translated neighborhood of u + 3n. By construction,
the only possibility is that u ≤ n (because of the numberings of the matchings

90 F. Becker et al.

the other nodes cannot have translated twins), thus line number u is the same
in the two matrices.

To achieve the proof of our lemma, assume that we have a protocol for
Translated-Twins for graphs with 3n nodes, with g(n) bits per message.
We design a protocol for OREQ. Recall that for OREQ, each player has a ma-
trix, say x for the first one and y for the second one. The first player constructs
graph Gx,0 = (G1

x, G
2
0), the second constructs G0,y = (G1

0, G
2
y) (here 0 denotes

the n × n boolean matrix whose elements are all 0). The first player sends the
3n messages corresponding to the nodes of G1

x in the Translated-Twins pro-
tocol for graph Gx,0. The second player sends the 3n messages corresponding
to the nodes of G2

y in protocol Translated-Twins for G0,y. The referee col-
lects these 6n messages; observe that they are exactly those sent by protocol
Translated-Twins for the graph Gx,y. He applies the same algorithm as the
referee of Translated-Twins on these messages. By the claim above, its out-
put is Translated-Twins(Gx,y), thus OREQ(x, y). Note that the messages
used here are of size O(3ng(n)) and that our arguments hold for any type of
protocol. �

This achieves the proof of Theorem 1.

4 Randomized Protocols

Theorem 2. For any constant c > 0, Twins, Twinsx and Translated-

Twins can be solved by randomized protocols with public coins using messages
of size O(log n) and 1/nc one-sided error. Problem Twinsx can also be solved
by a randomized protocol with private coins using messages of size O(log n) and
1/nc one-sided error.

Proof. Let nc+3 < p ≤ 2nc+3 be a prime number. A random t ∈ Zp is chosen
uniformly at random using O(log(n)) public random bits. Given an n-bits vector
a = (a1, . . . , an), consider the polynomial Pa = a1+a2X+a3X

2+ . . . anX
n−1 in

Zp[X] and let FP (a, t) = Pa(t). FP (a, t) is sometimes called the “fingerprint” of
vector a. Clearly two equal vectors have equal fingerprints, and, more important,
for any two different vectors a and b, the probability that FP (a, t) = FP (b, t) is
at most 1/nc+2 (because the polynomial Pa − Pb has at most n roots and t was
chosen uniformly at random, thus the probability that t is a root of Pa − Pb is
at most 1/nc+2, see e.g., [11]).

Let xi be the input vector of player (node) number i, i.e., the characteristic
function of its neighborhood N(i). A protocol for Twins consists in each node
sending the messagemi = FP (xi, t). The referee outputs 1 if and only ifmi = mj

for some pair i �= j. A protocol for Twinsx send the same messages, but this
time the referee checks whether mx = mi for some i �= x. The protocol for
Translated-Twins on n-node graphs is slightly different. If a node i ≤ n/2
has a neighbor j > n/2, it sends a special “no” message specifying that it cannot
be a candidate for having a translated twin. Otherwise, let y1i be the n/2-bits
vector formed by the n/2 first bits of xi. Thus y

1
i is the characteristic vector of

The Simultaneous Number-in-Hand Communication Model for Networks 91

N(i)∩ {1, . . . , n/2}. Player i sends the message mi = FP (y1i , t). Symmetrically,
for nodes labelled i > n/2, if i has some neighbor j ≤ n/2 it sends the “no”
message. Otherwise, let y2i be the n/2-bits vector formed by the last n/2 bits of
xi. Hence y2i corresponds to N(i) ∩ {n/2, . . . , n}, “translated” by −n/2. Player
i sends the message mi = FP (y2i , t). Then the referee returns 1 if mi = mi+n/2

for some i ≤ n/2.
Clearly, for protocol Twins (resp. Twinsx, Translated-Twins), if the in-

put graph is a yes-instance then the protocol outputs 1. The probability that
Twins answers 1 on a no-instance is the probability that FP (mi, t) = FP (mj , t)
for two nodes i and j with different neighborhoods. For each fixed pair of nodes
this probability is at most 1/nc+2, so altogether the probability of a wrong answer
is at most 1/nc. With similar arguments for Twinsx and Translated-Twins

the probability of a wrong answer is at most 1/nc+1, since the referee makes n
tests and each may be a false positive with probability at most 1/nc+2.

For Twinsx with private coins, each node i sends a bit stating if it sees x,
a number ti chosen uniformly at random in the interval nc+2 < p ≤ 2nc+2 and
also FP (xi, ti). The referee retrieves the neighborhood of node x (which was sent
bit by bit by all the others) and then, for each i �= x, it constructs FP (xx, ti)
and compares it to FP (xi, ti). If the values are equal for some i, the referee
outputs 1, otherwise it outputs 0. Again any yes-instance will answer 1, and the
probability that a no-instance (wrongly) answers 1 is at most 1/nc. �

The fact that Translated-Twins requires Ω(
√
n) bits per node for any pri-

vate coins, ε-error randomized protocol follows directly by Lemma 2 and Propo-
sition 2.

Theorem 3. For any ε < 1/2, Cpriv
ε (Translated-Twins) = Ω(

√
n).

Theorems 2 and 3 show that problem Translated-Twins separates the
private coins and the public coins protocols.

In order to complete the table of the Introduction, we also observe that prob-
lems Twinsx and Translated-Twins can be solved by randomized private
coins protocols using O(√n logn) bits.

Theorem 4. For any c > 0, there is a randomized private coins protocol for
Twins and Translated-Twins using messages of size O(

√
n logn) and having

1/nc one-sided error.

Proof. Babai and Kimmel in [3] propose a private coins protocol with 1/3 one
sided error and O(

√
n) communication cost for EQn, in the number-in-hand

model with two players (see Proposition 1). Let us call this protocol P0. As the
authors point out, this protocol is symmetrical, in the sense that both players
compute the same function on their own input. We define the protocol P as one
obtained by simulating (c + 2) log3 n calls to protocol P0. More formally, in P
each player creates (c + 2) log3 n times the message that it would create in P0,
using at each time independent tosses of private coins. The referee answers 1 if
and only if the referee of P0 would have answered 1 on each of the (c+2) log3 n

92 F. Becker et al.

pairs of messages. Therefore P is a private coin randomized protocol for EQn

with one sided error smaller than 1/nc+2, and cost O(
√
n logn).

A one sided private coin randomized protocol P ′ for Twins is one where each
node plays the role of Alice in P taking as an input the characteristic function of
its neighborhood, and then the referee simulates the role of the referee in P for
each pair of messages. Similarily, a protocol P ′′ for Translated-Twins works
as follows: each node i sends “no” in the same cases described in the proof of
Theorem 2, and otherwise it simulates the role of Alice on input y1i formed by
the first n/2 bits of xi, if i ≤ n/2 or on input y2i formed by the n/2 last bits of
xi if i > n/2, where xi is the characteristic function of N(i). The referee then
simulates the referee of P on the messages of i and i+n every time none of them
say “no”.

Since P has just one sided error, if Twins (resp. Translated-Twins) is
true, P ′ (resp. P ′′) will always accept. On the other hand, if Twins (resp.
Translated-Twins) is false, then the probability that P ′ (resp. P ′′) accepts
is the probability that P accepts for at least one pair of vertices, and then the
error of P ′ (resp. P ′′) is at most n2 times (resp. n times) the error of P . We
obtain that P ′ and P ′′ have at most 1/nc one sided error, and communication
cost O(

√
n logn). �

Consider the boolean function Triangle(G) that outputs 1 if and only if G
has a triangle, and the function Diam3(G), that outputs 1 if and only if G has
diameter at most 3. In [4] is shown that the deterministic message sizes of these
problems are lower-bounded by Ω(n), using a reduction fromReconstruction.
However, as seen in Theorem 1, a reduction from Reconstruction does not
imply lower-bounds on the message sizes of randomized protocols.

In the following theorem, we extend the techniques in [4] to reduce the prob-
lems Triangle(G) and Diam3(G) from Index, showing that the message sizes
of randomized protocols for these problems are also of size Ω(n).

Theorem 5. For any ε < 1/2, any public coins randomized protocol computing
Triangle(G) (resp. Diam3(G)) with ε two-sided error uses messages of size
Ω(n).

Proof. Consider the Index function in the model number-in-hand with two play-
ers: the first player, say Alice, has as input an m-bits boolean vector x and the
second player, Bob, has an integer q, 1 ≤ i ≤ m. Then Index(x, q) = xq , the
qth coordinate of Alice’s vector. We will use the fact that for any ε < 1/2, any
public coins randomized protocol for Index requires Ω(m) bits (see, e.g., [9, 10]
for a proof). We may assume w.l.o.g. that m = n2.

In [4], Becker et al. show that for the deterministic communication cost for
Triangle and Diam3 is Θ(n), by showing that if there is a protocol P of cost
c for Triangle or Diam3, then there is a protocol for Reconstruction in
bipartite graphs of cost 2c. We slightly modify their proof to obtain a reduction
from Index.

The Simultaneous Number-in-Hand Communication Model for Networks 93

Let ε < 1/2, and P be a ε-error randomized public coins protocol for Tri-

angles on n-nodes graphs, using c(n) bits. We give a protocol for Index using
2n · c(2n+ 1) bits.

Let x be an m = n2-bits vector. Let Hx be the bipartite graph with vertex
set {1, . . . , 2n}, such that for any 1 ≤ k, l ≤ n, if x(k−1)n+l = 1 then Hx has an
edge between nodes k and l+n. Consider the family of graphs Hx(i, j) obtained
from Hx by adding a node 2n+1 whose neighbors are nodes i and j+n (for any
1 ≤ i, j ≤ n). Observe that Hx(i, j) has a triangle if and only if x(i−1)n+j = 1,
in which case the triangle is formed by the nodes {i, j + n, 2n+ 1}. To simplify
the notation we also define the graph Hx(0, 0) obtained from Hx by adding an
isolated node 2n+ 1.

1

2

3

4

5

6

7

x = (1 1 0 1 0 1 0 0 1)
q = 9

Fig. 3. An illustration of Hx(3, 6) when x = (1, 1, 0, 1, 0, 1, 0, 0, 1) and q = 9

The protocol for Index is as follows. Bob sends its input q, which only costs
O(log n) bits. Alice constructs the family of graphs Hx(i, j), for all pairs 1 ≤
i, j ≤ n and for (i, j) = (0, 0). Any node k ≤ 2n has exactly two possible of
neighborhoods, depending whether it is adjacent to 2n + 1 or not. For each
k ≤ 2n, Alice creates the message m+(k) that the protocol for Triangle would
send for node k in the graph Hx(k, 1) (if k ≤ n) or in the graph H(1, k − n) (if
k > n). It also creates the message m−(k) that Triangle would construct for
node k in the graph Hx(0, 0). In full words, m−(k) corresponds to the case when
the neighborhood of k is the same as in Hx, and m+(k) to the case when this
neighborhood is the neighborhood in Hx, plus node 2n+1. Then Alice sends, for
each k, 1 ≤ k ≤ 2n, the pair of messages (m−(k),m+(k)). Therefore Alice uses
2n · c(2n+1) bits. It remains to explain how the referee retrieves the bit xq. Let
i, j such that q = (i− 1)n+ j. Observe that xq = 1 if and only if graph Hx(i, j)
has a triangle, therefore the referee must simulate the behavior of the referee for
Triangle on Hx(i, j). For this purpose, the referee computes the message that
node 2n + 1 would have sent on this graph (it only depends on i and j) and
observes that protocol P on Hx(i, j) would have sent message m+(i), m+(j+n)
and m−(k) for any k ≤ 2n different from i and j. Therefore the referee can give
the same output as P on Hx(i, j), that is it outputs bit xq. The protocol for
Index will have ε error and will use 2n · c(2n + 1) bits. Thus P requires Ω(n)
bits.

94 F. Becker et al.

The proof for Diam3 is based on a similar reduction. Let Dx(i, j) be the graph
obtained from Hx by adding three nodes : node 2n+ 1 seeing all nodes k ≤ 2n,
node 2n + 2 seeing i and node 2n + 3 seeing j + n. Graph Dx(0, 0) is similar
with the difference that nodes 2n + 2 and 2n + 3. Observe (see also [4]) that
Dx(i, j) has diameter 3 if and only if x(i−1)n+j = 1. The rest of the proof follows
as before. �

5 Open Problems

The first natural challenge is to determine the message size complexity of func-
tion Twins for randomized protocols with private coins. Using the techniques
of Babai and Kimmel [3] for EQ, one can prove that Twins can be solved
by a one-sided, bounded error protocol with private coins and messages of size
O(
√
n logn). We believe that the message size complexity of Twins for private

coins protocols is Ω(
√
n).

More surprisingly, to the best of our knowledge, the message size complexity
of Connectivity is wide open. Recall that, in the randomized, public coins
setting, there exists a protocol using O(log2 n) bits, due to Ahn, Guha and
McGregor [1]. Can this upper bound be improved to O(log n)? For randomized
protocols with private coins and/or for deterministic protocols, can one prove a
lower bound of Ω(nc) for some constant c < 1?

References

1. Ahn, K.J., Guha, S., McGregor, A.: Analyzing graph structure via linear measure-
ments. In: Proc. of the 23rd Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2012, pp. 459–467 (2012)

2. Ahn, K.J., Guha, S., McGregor, A.: Graph sketches: Sparsification, spanners, and
subgraphs. In: Proc. of the 31st Symposium on Principles of Database Systems,
PODS 2012, pp. 5–14 (2012)

3. Babai, L., Kimmel, P.G.: Randomized simultaneous messages: Solution of a prob-
lem of Yao in communication complexity. In: Proc. of the 12th Annual IEEE
Conference on Computational Complexity, pp. 239–246 (1997)

4. Becker, F., Matamala, M., Nisse, N., Rapaport, I., Suchan, K., Todinca, I.: Adding
a referee to an interconnection network: What can(not) be computed in one round.
In: Proc. of the 25th IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS 2011, pp. 508–514 (2011)

5. Chakrabarti, A., Shi, Y., Wirth, A., Yao, A.: Informational complexity and the
direct sum problem for simultaneous message complexity. In: Proc. of the 42nd
IEEE Symposium on Foundations of Computer Science, FOCS 2001, pp. 270–278
(2001)

6. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed
task allocation. In: Proc. of the 2012 ACM Symposium on Principles of Distributed
Computing, PODC 2012, pp. 67–76 (2012)

7. Gronemeier, A.: Asymptotically optimal lower bounds on the NIH-multi-party in-
formation complexity of the AND-function and disjointness. In: Proc. of the 26th
International Symposium on Theoretical Aspects of Computer Science, STACS
2009, pp. 505–516 (2009)

The Simultaneous Number-in-Hand Communication Model for Networks 95

8. Jayram, T.S.: Hellinger strikes back: A note on the multi-party information com-
plexity of AND. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and
RANDOM 2009. LNCS, vol. 5687, pp. 562–573. Springer, Heidelberg (2009)

9. Kremer, I., Nisan, N., Ron, D.: On randomized one-round communication com-
plexity. Computational Complexity 8, 21–49 (1999)

10. Kremer, I., Nisan, N., Ron, D.: Errata for: ”on randomized one-round communi-
cation complexity”. Computational Complexity 10, 314–315 (2001)

11. Kushilevitz, E.: Communication complexity. Advances in Computers 44, 331–360
(1997)

12. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press, New York (1997)

13. Phillips, J.M., Verbin, E., Zhang, Q.: Lower bounds for number-in-hand multiparty
communication complexity, made easy. In: Proceedings of the 23rd Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 486–501 (2012)

14. Woodruff, D.P., Zhang, Q.: When distributed computation is communication ex-
pensive. In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 16–30. Springer, Hei-
delberg (2013)

Approximation of the Degree-Constrained

Minimum Spanning Hierarchies

Miklós Molnár, Sylvain Durand, and Massinissa Merabet

University Montpellier 2, Laboratory LIRMM UMR 5506,
CC477, 161 rue Ada,

34095 Montpellier Cedex 5, France
{miklos.molnar,sylvain.durand,massinissa.merabet}@lirmm.fr

Abstract. Degree-constrained spanning problems are well known and
are mainly used to solve capacity constrained routing problems. The
degree-constrained spanning tree problems are NP-hard and computing
the minimum cost spanning tree is not approximable. Often, applications
(such as some degree-constrained communications) do not need trees as
solutions. Recently, a more flexible, connected, graph related structure
called hierarchy was proposed to span a set of vertices under constraints.
This structure permits a new formulation of some degree-constrained
spanning problems. In this paper we show that although the newly for-
mulated problem is still NP-hard, it is approximable with a constant
ratio. In the worst case, this ratio is bounded by 3/2. We provide a sim-
ple heuristic and prove its approximation ratio is the best possible for
any algorithm based on a minimum spanning tree.

Keywords: Graph theory, Networks, Degree-Constrained Spanning
Problem, Spanning Hierarchy, Approximation.

1 Introduction

Solving spanning problems in a cost efficient manner is important in several
domains. For instance, implementing a minimum cost communication network
or solving the routing in micro-circuits are classic examples for optimal spanning
problems. Often in graphs, a given set of vertices should be spanned by the
minimum cost structure. In the literature, solutions are mainly considered to be
sub-graphs. For example, the structure which spans all the vertices in a graph
with minimum cost is a minimum spanning tree (MST).

In some practical cases, different additional constraints are imposed. Various
constrained spanning problems have been analyzed in graphs (cf. some examples
in [1,2,3]). Here we are interested in the degree-constrained spanning problem.
In this constrained spanning problem, a positive integer value d(v) is assigned to
each vertex v ∈ V of an undirected graph G = (V,E). This value represents the
maximum degree of the vertex in the spanning structure (usually in a tree). This
degree is potentially different from the degree dG(v) of v in G. Note that only
values 0 < d(v) ≤ dG(v) need to be considered for realistic cases. This degree
bound can express two different facts:

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 96–107, 2014.
c© Springer International Publishing Switzerland 2014

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 97

1. the vertex has a global ”budget” to connect neighbor vertices (this budget
approach can be found in [4])

2. because of its limited instantaneous ”capacity”, the vertex can perform a
given action (a branching) for each of its visit only for a limited number of
neighbor vertices.

The first case corresponds to the degree-constrained spanning tree problem. It
has been formulated in [5] and has been extensively studied. For a long time,
it is known that it is not always possible to span the vertices using trees with
respect of the degree constraints. Moreover, negative results are also known on
the approximability of the degree-constrained spanning tree problems [4].

In our paper we suppose that the degree bound expresses the limited capacity
of the vertex for each visit (case 2). Moreover, we suppose that the limit is the
same constant value, valid for all vertices in the graph.

For communications, the connectivity of the routes is inevitable but these
routes can correspond to non-simple graph-related structures as walks, trails,
etc. To span a set of vertices in a connected manner, a non-simple, tree-based
structure has been proposed [6]. This structure, called hierarchy, is obtained
by a homomorphic mapping of vertices between a tree and an arbitrary graph
(cf. Section 3). A new formulation of degree-constrained problems is possible
and profitable for some applications if the constraints concern each visit of the
vertices. To solve these problems, it was demonstrated that
a) it is possible to span the vertices of the graph with respect of the degree
bounds even if spanning trees satisfying the constraints do not exist
b) in some cases, a spanning hierarchy with lower cost can be found even if
spanning trees respecting the constraints exist [7].

One possible application domain of the spanning hierarchies is the broad-
cast in all-optical WDM networks where the splitting capacity of the vertices
is limited (for example in [8]). To solve the optical routing problem under the
degree constraints, a set of light trees (abusively called light forest) is usually
proposed. Let us notice that in the literature not only tree-based solutions can
be found. In [9], a special walk (a light-trail) is computed to cover the vertices
without branching. The spanning hierarchies give a good alternative to find effi-
cient spanning structures generalizing walks when branching are allowed. In this
paper we demonstrate that the optimum of the degree bounded spanning hierar-
chy problem can be approximated. We propose a simple and efficient algorithm
providing a good approximation of the optimal value.

In Section 2, we propose a quick presentation of the well-known degree-
constrained spanning tree problem. After the related definitions, the degree con-
strained minimum spanning hierarchy problem and its complexity are presented
in Section 3. The algorithm proposed in Section 5 uses the result of Section 4 to
span stars and computes polynomially a spanning hierarchy respecting a given
degree bound. The proposed algorithm guarantees a constant approximation
ratio. The presentation is closed by discussions on the performances of the algo-
rithm and on some perspectives.

98 M. Molnár, S. Durand, and M. Merabet

2 Related Works

The Degree-Constrained Minimum Spanning Tree DCMST problem was firstly
introduced and investigated in [5] (it is also briefly mentioned in [10]). Let us
suppose that the maximal degree of any vertices in the spanning tree must be
at most B ≥ 2. The authors justified the fact that this problem is NP-hard by
stating that solving the DCMST problem with the degree bound B equal to two
is equivalent to solve the minimum Hamiltonian path problem. Otherwise, by
reducing the DCMST problem to an equivalent symmetric traveling salesman
problem (TSP), Garey and Johnson [11] showed that this problem is NP-hard
for any fixed constant 2 ≤ B ≤ |V − 1|. Ravi showed that approximate the
DCMST problem within a constant factor of the cost of the optimal tree is NP-
hard [12]. In unweighted graphs, Furer and Raghavachari [13] gave an elegant
algorithm that returns a spanning tree in which the degree of each vertex is at
most B+1, or returns a witness certifying that the degree bounds are infeasible.
Goemans proved in [14] that this result can be generalized to weighted graphs. In
polynomial time, we can find a spanning tree of maximum degree at most B+1
whose cost is no more than the cost of a minimum cost tree with maximum degree
at mostB. Note that these results are formulated for homogeneous degree bound.
When the degree bounds depend on the vertices, Goemans proved that one can
find in polynomial time a spanning tree of maximum degree at most B+2 whose
cost is no more than the cost of a minimum cost tree with maximum degree at
most B. The best result was presented by Singh and Lau in [15]. Their algorithm
computes a spanning tree of minimum cost which violates the degree upper-
bounds by at most one. Since it is not possible to obtain any approximation
algorithm for the original problem, insisting on the satisfaction of all the degree
upper bounds, this result is the best possible.

To solve spanning problems with different constraints, the hierarchy concept
was proposed in [6].

3 Problem Definition

Our objective is to find a minimum cost spanning structure without the hypoth-
esis that this structure must be a sub-graph. For instance, it may be an arbitrary
route connecting vertices.

Let G = (V,E) be an undirected connected graph with vertex set V and
edge set E. The graph G is valuated by a strictly positive cost c(e) associated to
every edge e ∈ E. We are searching for routes in this graph. We suppose that the
logical scheme of a route (the adjacency relation of nodes, vertices in the route,
the succession of operations, etc.) is given by a connected graph F = (W,D). For
instance, F can be a path (a sequence of adjacent vertices and edges), it can be
a cycle (if the vertices and operations have to be repeated in a cyclical manner),
or an other graph. The association between the logical route F and the physical
topology G can be given by a homomorphic mapping h and this ”structure” can
then be given by a triplet (F, h,G). Trivially, the resulting structure (route) is not

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 99

necessarily a sub-graph in G. For instance, a walk or a traversal are connected
routes, which may contain vertices and edges in G several times.

Definition 1 (Hierarchy). If F is a tree, the connected structure defined by
H = (F, h,G) is called a hierarchy (cf. an example in Figure 1).

F G

a

a

b

b

c

c

ee f

f1

f2

g

g

i

i

j

j

k

k

Fig. 1. Homomorphic mapping of vertices to define a hierarchy

To formulate the optimal spanning problem under capacity-like constraints,
some simple definitions are needed. The cost of a structure H = (F, h,G) is the
sum of the costs of the edges used in H : c(H) =

∑
e′∈D c(e), where e ∈ E is the

edge associated with e′ ∈ D.
If an edge in G is used several times (it is associated to several edges in F),

its cost is summarized several times. Since a hierarchy H in a graph G is given
by a triplet (F, h,G), and F is a tree, we talk about a leaf of the hierarchy when
the concerned vertex is a leaf in F . Similarly, we talk about internal vertices
concerning the non-leaf vertices in F . Several vertices of F may correspond to
the same vertex v of G. These different occurrences will be labeled v1, v2, . . . if
needed.

Our analysis deals with the minimum cost spanning problem of a graph G,
where a positive integer B is given to bound the degree of vertices in the op-
timal route.1 That is, the degree of each vertex in F (and not in G) is limited
by B. Trivially, in interesting cases 2 ≤ B < maxv∈V dG(v). The minimum cost,
connected structure spanning the vertex set of G and respecting the degree con-
straints is always a hierarchy. With these considerations, we define our spanning
problem as follows.

Definition 2 (Degree Constrained Minimum Spanning Hierarchy prob-
lem). Given a connected graph G = (V,E), a cost c(e) for each e ∈ E and an
integer B ≥ 2, the problem consists in finding a hierarchy H = (F, h,G) where
h is a homomorphism from a tree F = (W,D) to G = (V,E) such that:

– Each vertex v ∈ V is associated with at least one vertex v′ ∈W .
– The degree constraints are respected in F : dF (v

′) ≤ B, ∀v′ ∈W .
– The cost c(H) is minimal.

1 In DCMST problems, the degree bound expresses the overall capacity or budget of
a vertex, but in our problem this bound corresponds to the maximal degree of each
occurrence of the vertex in the spanning structure.

100 M. Molnár, S. Durand, and M. Merabet

In the following, we will call the optimal solution ”Degree Constrained Mini-
mum Spanning Hierarchy” abbreviated by DCMSH.

Lemma 1. For any degree bound B ≥ 2 , the DCMSH problem always has a
solution.

Proof. A traversal is a particular spanning hierarchy, in which the degree of each
vertex occurrence is at most 2. Since a connected graph always has traversals,
there are always hierarchies spanning the graph and respecting any degree con-
straint B ≥ 2.

The problem of the degree constrained minimum spanning hierarchy is NP-hard
as it is demonstrated in the following.

Lemma 2. If among all the Minimum Spanning Trees (MST) of a graph G
there exists one satisfying the degree constraint, it is an optimal solution for the
DCMSH problem and all the optimal solutions are trees in G.

Proof. Obvious. The minimum cost spanning structure to connect all the vertices
without any constraint is the MST, which is connected and does not contain any
redundancy. So if one of the MSTs, for instance a tree T ∗ respects the degree
constraint, it is optimal for the spanning problem and also for the DCMSH
problem.

Now suppose that an optimal hierarchy H = (T, h,G) exists and it is not a
tree in G. Because the MST T ∗ is an optimal solution of our problem, the cost
c(H) of the optimal hierarchy must be the same that the cost c(T ∗) of the MST
solution. Trivially, the cost of a hierarchy is greater than or equal to the cost of
its image in G: c(I) ≤ c(H), where I is the image (the sub-graph generated by
H in G). Then, it contains at least a cycle in G (a duplicated edge is considered
as a cycle). I covers the vertex set V . Two possibilities can arise.
1. I is a tree and its cost is lower bounded by the cost of the MST: c(T ∗) ≤ c(I).
In this case, there is at least one duplicated edge in H (remember that H is not
a simple tree) and c(I) < c(H). Finally: c(T ∗) < c(H) and consequently H can
not be optimal.
2. I is not a tree. By eliminating some redundancies with non-zero length, a
tree T ′ spanning V is obtained. Trivially, c(T ′) < c(I) and c(I) < c(H). Finally:
c(T ∗) ≤ c(T ′) < c(H).

Remark 1: The cost of the MST is therefore a lower bound for the DCMSH
problem.
Remark 2: The result is not true if we only consider the spanning trees (and not
the MSTs) satisfying the degree constraint.

Theorem 1. The DCMSH problem is NP-hard for all B ≥ 2.

Proof. Let G = (V,E) be a graph with c(e) = 1, ∀e ∈ E. Let G′ = (V ′, E′) be
the graph obtained by adding B − 2 leaves connected by edges of cost 1 to each

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 101

vertex of V . In G′, |V ′| = |V |+ |V |(B − 2) = (B − 1)|V |. Any spanning tree of
G′ has a cost equal to (B − 1)|V | − 1. There is a degree-constrained spanning
hierarchy of cost (B − 1)|V | − 1 in G′ if and only if there is a Hamiltonian path
in G (remember, that the Hamiltonian path contains |V | − 1 edges).

Suppose that there is a degree-constrained spanning hierarchy H = (T, h,G′)
of cost (B − 1)|V | − 1 in G′. Regarding its cost, H is a tree of G′. If we remove
all the (B − 2)|V | vertices of V ′ \V from H , we obtain a connected subgraph in
which all vertices have a degree lower or equal to two, which is a Hamiltonian
path of G.

Reciprocally, adding B− 2 leaves to each vertices of a Hamiltonian path of G
gives a tree satisfying the degree constraint, which is a DCMSH in G′ because
of Lemma 2.

Since the problem is NP-hard, guaranteed approximation algorithms are inter-
esting to solve it in practical cases. To obtain an approximation of the DCMSH
in an arbitrary connected graph, our approach is based on two elements:

– We consider the MST of the graph (which cost is a lower bound for every
spanning hierarchy) as a start point.

– We decompose this tree into a set of connected stars. Each star is spanned by
hierarchies with guarantee of cost and with respect to the degree constraint.

4 Degree Constrained Span of a Star with Hierarchies

Let Sk be a star with k edges, c its central vertex, and c(Sk) the sum of its edges
costs. Suppose that B < k. Then the minimum spanning hierarchy respecting the
degree constraint contains several times the central vertex. Some leaves may also
be duplicated. Since all edges of Sk must appear at least once in the hierarchy
to ensure the spanning of all vertices, the computation of the DCMSH in a star
is equivalent to the minimization of the length of the duplicated edges.

In the following, we propose a simple hierarchy computation to span stars with
respect to the degree constraint B. The proposed algorithm does not guarantee
the optimality of the hierarchy spanning the star, but it is enough to guarantee
a good approximation ratio.

In our proposition, when edge duplications are needed, the less cost edges
are used in an increasing order of edge costs. Moreover, these selected edges are
duplicated at most once. Formally, let us make a partition of the edges of the star
as follows. Let us create �k/(B−1)�+1 sets in the partition. Each set, except one
(the last), contains B−1 edges (if k mod (B−1) = 0, the last edge set is empty).
The �k/(B−1)� less cost edges are distributed in the partition: each of them is in
a separated set (if the last edge set is empty, there is no less cost edge in this set).
Each edge set corresponds to a ”sub-star”, which respects the degree constraint
(with at most B − 1 edges). To obtain a connected hierarchy HSk

spanning all
the leaves, the sub-stars should be connected by the duplication of some edges.
The less cost edge of each set is duplicated to make these connections. The

102 M. Molnár, S. Durand, and M. Merabet

central vertex is present in the final hierarchy as many times as there are sets in
the partition. So, each central vertex occurrence respects the degree constraint
B and the obtained structure is a hierarchy. Figure 2 illustrates the spanning
hierarchy for B = 4 with k mod (B − 1) = 0 (the interest of the last occurrence
of vertex c will be justified in the following).

v1
v1

v2

v2
v3

v3

v4
v4

v5

v5

v6

v6

v7

v7

v8

v8

v9

v9c

c1

c2

c3

c4

Fig. 2. Spanning hierarchy of a star computed by the proposed heuristic

Lemma 3. The spanning hierarchy HSk
computed by the proposed algorithm

contains Nc = �k/(B − 1)� + 1 times the central vertex c s.t. each occurrence
respects the degree constraint. If Nc ≥ 2, the first and the last occurrences have
a degree strictly lower than B. The cost ratio r = c(HSk

)/c(S) is bounded by
B/(B − 1).

Proof. By construction, each occurrence of c in HSk
have a degree at most B.

In each sub-star of the partition, there is an occurrence of c and the number
of exclusively spanned leaves is at most equal to B − 12. It is B − 1 for all
occurrences of c except eventually one (the last occurrence has not obligatory
B− 1 adjacent vertices). There are at most �k/(B− 1)� duplicated edges. Let D
be the set of these duplicated edges. By choosing the less cost edges to duplicate,
the cost of the duplicated part c(D) =

∑
e∈D(c(e)) of the star is limited by

c(D) ≤ �k/(B − 1)�
k

c(S) ≤ k/(B − 1)

k
c(S) =

1

B − 1
c(S)

An upper bound of the cost ratio is given by:

r =
c(HS)

c(S)
=

c(S) + c(D)

c(S)
≤ B

B − 1

Remark: If Nc = 1 (case of k < B − 1), the central vertex has a degree strictly
lower than B − 1.

The spanning hierarchyHSk
corresponds to a caterpillar (tree in which all the

vertices are within distance 1 of a central path), each vertex in this central path

2 A leave is spanned exclusively, if it belong to only one sub-star of the partition.

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 103

has a degree at most B. Moreover, it ensures that the central vertex occurrences
in the first and in the last sub-stars have a degree less than B (if there is only
one star, deg(c) < B − 1, cf. Remark).

5 An Approximation Algorithm for the DCMSH Problem

Since the cost of an MST gives a lower bound for the DCMSH problem, up-
per bounds for approximation algorithm can be computed regarding the MST
instead of the optimal spanning hierarchy. In the following, we propose an ap-
proximation algorithm based on a decomposition of the MST in the graph.

5.1 A Star Decomposition of the MST

The MST, can be decomposed into a set of stars in the following way. Let
T = (VT , ET) be an MST with |VT | > 2 and v1 an arbitrary vertex in T . Then v1
can be considered as the central vertex of a star S1. Some neighbor vertices of v1
in S1 are leaves in T while some others may be branching vertices. The branching
vertices can be considered as central vertices of following stars. Recursively, the
entire tree can be covered by stars which are edge disjoint. Figure 3 illustrates
the decomposition.

v1

v2 v3
v4 v5

v6S1

S2
S3

S4

S5

S6

Fig. 3. A star decomposition of a tree

Since the stars are edge disjoint and cover all edges of T , trivially: c(T) =∑k
i=1 c(Si), where Si, i = 1, . . . , k indicate the stars in the decomposition.

5.2 The Proposed Algorithm to Approximate the DCMSH

To compute an approximation of the DCMSH in a given graph, we propose the
following algorithm.

1. Compute an MST of the graph.
2. Decompose this MST using stars S1, S2, ..., Sk.
3. For each star Si, compute a spanning hierarchy Hi as proposed in the pre-

vious section.

104 M. Molnár, S. Durand, and M. Merabet

4. ”Re-connect” the spanning sub-hierarchies Hi to form a connected spanning
hierarchy HA. A connection is needed, if a leaf in a star coincides with
the central vertex of another one. For example, between two neighbor sub-
hierarchies spanning stars Si and Sj , a leaf of Si corresponds to the central
vertex in Sj. In Hi, the leaves of Si are not duplicated and have a degree 1 or
2. Let us indicate by li a leaf in Si, which corresponds to the central vertex
cj of Sj associated to a vertex vk in the original graph. Remember that cj
can be repeated in Hj but in this case its first occurrence has a degree B−1.
(a) If li has a degree 1 in Hi, it can be aggregated with the first occurrence

of cj in Hj and only one vertex can represent this vertex in the final
hierarchy (this vertex in HA corresponding to vk respects the degree
constraint B). It is the case of the vertex v3 in our figure.

(b) If li has a degree 2 in Hi (it is not a leaf), the connection can be made
as follows.
(b.a) If the corresponding central vertex cj has only one occurrence inHj ,
than this occurrence is of degree strictly less than B − 1. Consequently,
li and cj can be aggregated in the final hierarchy and the aggregated
vertex respects the degree constraint (cf. vertex v2 in the figure).
(b.b) If there are several occurrences of cj in Hj , the first and the last
occurrences have a degree at most B − 1 and the two adjacent edges of
li can be attached to these two occurrences without the violation of the
degree constraint by the different vertices (li can be duplicated and each
occurrence of li can be aggregated by one occurrence of cj with degree
less than B in Hj).

5. The hierarchy HA can contain useless return edges (edges returning to a
central vertex occurrence of a star s.t. the degree of this occurrence is equal
to one). The useless edges can be deleted.

Theorem 2. The previous algorithm offers an R ≤ B
B−1 approximation of the

optimal solution.

Proof. The algorithm is based on a decomposition of the MST T ∗ into a set
of edge disjoint stars. Let c(Si) be the cost of the star Si, i = 1, . . . , k in the

decomposition. Trivially c(T ∗) =
∑k

i=1 c(Si).
Using the result of Lemma 3, the obtained spanning hierarchy length is

bounded by

c(H) =
k∑

i=1

c(HSi) ≤
k∑

i=1

B

B − 1
c(Si) =

B

B − 1
c(T ∗)

The approximation ratio is immediately.

R =
c(H)

c(H∗)
≤ c(H)

c(T ∗)
≤ B

B − 1

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 105

Remark 1: If deg(c) < B for all vertices c ∈ VT∗ , then the algorithm returns
the MST, which is the optimum in this case.

Remark 2: If B = 2, the algorithm performs a deep-first search type traversal
in the MST.

Moreover, we propose to discuss the fact that our computation is not directly
related to the optimal spanning hierarchy but to the MST of the graph.

5.3 Discussion about the Heuristic

Since the proposed algorithm only uses the edges of an MST, the resulting hi-
erarchy may be of poor quality for small values of B but the following theorem
shows that its cost is the best which can be obtained when computing based on
an MST.

. . .

y

x1

x2

x3

x4

x5 x6

x7

x8

xn−1

xn

1

1

1
1

1+ε

1+ε

1+ε 1+ε

Fig. 4. A wheel graph used in Theorem 3

Theorem 3. No constant approximation ratio lower than B/(B − 1) can be
achieved for any heuristic only based on an MST.

Proof. Let G = (V,E) be a wheel graph with a central vertex y (see Figure 4).
Suppose that c(y, xi) = 1 for i = 1, ..., n, c(xi, xi+1) = 1 + ε for i = 1, ..., n− 1,
and c(xn, x1) = 1 + ε.

Trivially, the path P = (y, x1, x2, x3, ..., xn−1, xn) is a spanning hierarchy of
G, which respects the degree constraint for any B ≥ 1 and with a cost c(P) =
1 + (n− 1)(1 + ε).

The Minimum Spanning Tree of G is the star S of center y with n leaves. Let
H∗ = (T ∗, h∗, S) be an optimal hierarchy spanning the star S and respecting
the degree constraint.

In T ∗, there can be only one occurrence of every vertex corresponding to a
leaf of S. If a leaf xi of S has at least two occurrences in T ∗

– If one of them is a leaf of T ∗, it can be removed from T ∗ leading to a hierarchy
spanning the same set of vertices with a smaller cost.

– Else, all occurrences are internal vertices of T ∗. Let x1
i and x2

i be two oc-

currences. Let xj be a leaf of T ∗ and T ∗′
be the tree constructed from T ∗

by deleting the leaf xj and replacing the label x1
i by xj . Since all the neigh-

bors of x1
i in T ∗ are occurrences of y, there still exists a homomorphism h∗′

between T ∗′
and S leading to the same contradiction.

106 M. Molnár, S. Durand, and M. Merabet

So, T ∗ is a particular bipartite graph where the partition of the vertices can be
made as follows: one vertex set with the ny occurrences of y and the other with
the n vertices corresponding to the leaves of S. Since T ∗ is a tree, its number of
edges is equal to its number of vertices minus 1. Consequently, c(H∗) = n+ny−1.
Any occurrence of y has at most B neighbors in T ∗. So the number of edges of
H∗ is at most ny ∗B and we have n+ ny − 1 ≤ ny ∗B which implies n−1

B−1 ≤ ny.

The cost of H∗ is then at least c(H∗) ≥ n+ n−1
B−1 − 1 = B(n−1)

B−1 .
Hence, the approximation ratio of any heuristic only based on an MST is

greater or equal to c(H∗)
c(P) =

B(n−1)
B−1

1+(n−1)(1+ε) and (n−1)
1+(n−1)(1+ε) can be as close to 1

as wanted for n large enough and ε small enough.

When the computation of the spanning hierarchy is not based on the MST,
more interesting results can be obtained. For example, let the minimum Hamil-
tonian walk problem (case of) rapidly be reviewed. When B = 2, our approx-
imation ratio is equal to 2, which is the worth case. Nevertheless, in this case,
the problem is equivalent to find a minimum hamiltonian path in the metrical
closure of G. It can thus be approximated with a ratio of 3/2 using for example
the remarks of [16].

6 Conclusion

In this paper, we consider the problem of finding a minimum cost spanning
structure when the degree of the vertices is bounded by an integer B. When this
bound is due to a limited capacity each time the vertex is visited, the optimal
structure is a hierarchy. We show that the problem is still NP-hard, but we
provide an approximation algorithm to compute a degree constrained minimum
spanning hierarchy with a ratio B/(B − 1). Since the problem is equivalent to
find a minimum hamiltonian path when B = 2, a ratio of 3/2 can always be
assured. We also proved that the proposed approximation is the best possible
with a heuristic based only on a minimum spanning tree. Future work will consist
in an improvement of the ratio and showing that the problem is APX-complete
(or to find a PTAS).

References

1. Papadimitriou, C.H., Yannakakis, M.: The Complexity of Restricted Minimum
Spanning Tree Problems (Extended Abstract). In: Maurer, H.A. (ed.) ICALP 1979.
LNCS, vol. 71, pp. 460–470. Springer, Heidelberg (1979)

2. Cieslik, D.: The vertex degrees of minimum spanning trees. European Journal of
Operational Research 125, 278–282 (2000)

3. Ruzika, S., Hamacher, H.W.: A Survey on Multiple Objective Minimum Spanning
Tree Problems. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics. LNCS,
vol. 5515, pp. 104–116. Springer, Heidelberg (2009)

Approximation of the Degree-Constrained Minimum Spanning Hierarchies 107

4. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Approxi-
mation algorithms for degree-constrained minimum-cost network-design problems.
Algorithmica 31, 58–78 (2001)

5. Deo, N., Hakimi, S.: The shortest generalized Hamiltonian tree. In: Sixth Annual
Allerton Conference, pp. 879–888 (1968)

6. Molnár, M.: Hierarchies to Solve Constrained Connected Spanning Problems. Tech-
nical Report 11029, LIRMM (2011)

7. Merabet, M., Durand, S., Molnar, M.: Exact solution for bounded degree con-
nected spanning problems. Technical Report 12027, Laboratoire d’Informatique de
Robotique et de Microélectronique de Montpellier - LIRMM (2012)

8. Zhou, Y., Poo, G.S.: Optical multicast over wavelength-routed wdm networks: A
survey. Optical Switching and Networking 2, 176–197 (2005)

9. Ali, M., Deogun, J.: Cost-effective implementation of multicasting in wavelength-
routed networks. IEEE J. Lightwave Technol., Special Issue on Optical Net-
works 18, 1628–1638 (2000)

10. Obruca, A.K.: Spanning tree manipulation and the travelling salesman problem.
The Computer Journal 10, 374–377 (1968)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Ravi, R., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Hunt III, H.B.: Many birds
with one stone: multi-objective approximation algorithms. In: Proceedings of the
Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp.
438–447. ACM, New York (1993)

13. Fürer, M., Raghavachari, B.: Approximating the minimum degree spanning tree
to within one from the optimal degree. In: Proceedings of the Third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 1992, pp. 317–324. Society for
Industrial and Applied Mathematics, Philadelphia (1992)

14. Goemans, M.: Minimum bounded degree spanning trees. In: 47th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2006, pp. 273–282 (2006)

15. Singh, M., Lau, L.C.: Approximating minimum bounded degree spanning trees to
within one of optimal. In: STOC 2007: Proceedings of the Thirty-ninth Annual
ACM Symposium on Theory of Computing, pp. 661–670. ACM, New York (2007)

16. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: Some paths are more difficult
than cycles. Oper. Res. Lett. 10, 291–295 (1991)

Secluded Path via Shortest Path�

Matthew P. Johnson1,2, Ou Liu2, and George Rabanca2

1 Department of Math and Computer Science, Lehman College, Cuny
2 PhD Program in Computer Science, The Graduate Center, Cuny

Abstract. We provide several new algorithmic results for the secluded
path problem, specifically approximation and optimality results for the
static algorithm of [3,5], and an extension (h-Memory) of it based on de
Bruijn graphs, when applied to bounded degree graphs and some other
special graph classes which can model wireless communication and line-of-
sight settings. Our primary result is that h-Memory is a PTAS for degree-

Δ unweighted, undirected graphs, providing a
⌈√

Δ+1
h+1

⌉
-approximation in

time O(n log n); in particular, 0-Memory (i.e., static) provides a
√
Δ+ 1-

approximation (i.e., ε =
√
Δ + 1 − 1), tightening the previous analysis of

this algorithm, and Δ-Memory is optimal (i.e., ε = 0), and is faster than
the known optimal algorithm for this setting [3].

We also show that 0-Memory and 1-Memory give constant approxi-
mations for unit-disk graphs and planar graphs, and that an extension of
h-Memory solves many other tessellation graphs. Finally, we prove that
the problem is NP-hard on node-weighted graphs of degree 3.

1 Introduction

Let the neighborhood N [P] of a path P be the set of all nodes within distance
at most 1 from some node on the path. Equivalently (for paths of length greater
than 1), this is the union of the neighborhoods of all the nodes on the path. The
secluded path problem be defined as follows: given a graph on n nodes and two
specified nodes s and t, find a path from s to t of minimum size neighborhood.

Earlier work showed the problem is very hard to approximate in general and
gave some approximation results where the factor typically was not constant but
depended on parameters of the graph. Recently, an optimal dynamic program-
ming algorithm [3] was given for the (unweighted, undirected) setting where the
degree is bounded by a constant Δ, with a running time of O(n2). The DP
sub-instances represent being at a node and implicitly “remembering” the Δ

� Research was sponsored by the Army Research Laboratory and was accomplished
under Cooperative Agreement Number W911NF-09-2-0053. The views and conclu-
sions contained in this document are those of the authors and should not be inter-
preted as representing the official policies, either expressed or implied, of the Army
Research Laboratory or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any
copyright notation here on.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 108–120, 2014.
c© Springer International Publishing Switzerland 2014

Secluded Path via Shortest Path 109

previous nodes you have visited. If Δ is not treated as a constant, however, then
the O(ΔΔ) previous node sequences yield a running time of O(ΔΔ · n2).

Consider the situation whereΔ is fixed, but is large enough that the O(ΔΔ·n2)
running time is prohibitive. If the ΔΔ factor comes from “remembering” Δ pre-
vious steps, then a natural question is whether remembering a smaller number of
steps would give us some approximation guarantee. That is, despite the constant-
Δ problem being polynomial solvable, because of the sort of polynomial it is,
there may nonetheless be value in a PTAS. In this paper we provide such a
PTAS, providing the usual tradeoff between approximation guarantee and run-
ning time, except in this case providing a (1+ ε)-approximation for ε ≥ 0 rather
than ε > 0.

Our algorithm constructs de Bruijn subgraphs [4] based on the input graph
G and on a memory parameter h. Each node in the constructed graph Gh corre-
sponds to a length-h (or, for nodes close to the source, length≤ h) walk within
G. That is, these fixed-length walks in G are interpreted as “k-mers” on symbols
V generating an h-dimensional de Bruijn subgraph, or equivalently, as a graphic
representation of the memory’s configuration space.

Intuitively, many of our arguments in this paper take the following form. We
wish to optimize for some function cost(·), but this is hard. Instead we optimize
for some alternative function cost′(·), which is easy. Although cost′(·) may differ
from cost(·) on many inputs (i.e., it may be inaccurate), it will match cost(·) on
optimal solutions, or nearly matches it on optimal solutions, or nearly match it
on some optimal solutions, and so by optimally solving according to cost′(·) we
will find a good solution under cost(·).

We also apply this algorithm (and extensions) to certain special graph classes
that correspond to two application settings. The first is wireless communication,
where nodes of the graph correspond to unit disks located in the plane and two
nodes share an edge if their disks intersect. For problem instances in which the
nodes may occur at arbitrary locations in the plane the corresponding graph
class is that of unit disk graphs. Alternatively, nodes may be placed in a regular
arrangement, corresponding to a grid graph. A natural family of such graphs
is yielded by considering tilings or tessellations of the plane, which partition
the area of the plane into (regular) polygons. In this case, each tile can be
interpreted as the unit disk kissing the tile’s corners, in which case tiles share
and edge iff the corresponding disks overlap. (This graph is the dual graph of
the tessellation interpreted as a planar graph drawing.) Two fundamental types
of tessellations are a) regular or Platonic and b) semiregular of Archimedean
(see [7,2]). There are three Platonic tessellations: those whose tiles are triangles,
squares, and hexagons. A relaxation of the technical geometric definition of such
tilings yields the 8 Archimedean tilings, each of which consist of two types of
tiles. The resulting disk graph will then have disks of two sizes.

A second application setting is the movement through city streets. Suppose
we can travel along streets from intersection to intersection, there is an observer
at each intersection, and that when we are at an intersection we are visible to
the observers at the next intersection for each adjoining street. That is visibility

110 M.P. Johnson, O. Liu, and G. Rabanca

is determined by line of sight between intersections, where the city blocks are
obstacles and when there are multiple collinear intersections, each is visible only
to its neighboring intersections. This setting is modeled by planar graphs, where
intersections become nodes, streets become edges, and city blocks become faces.
Note that the (non-dual) graph of a tessellation is a special case of planar graphs
that can be interpreted in this way.

Related Work. The problem considered in this paper, recently introduced by
[3], is a variation of the classical shortest path. In the standard version of this
problem, a cost measure is associated with edges, e.g., representing length and
the task is to identify a shortest path form s to t. The cost of the path is a linear
sum of its constituent edges.

In this problem, the cost is on the nodes “seeing” the message rather than on
the edges. Selecting an edge (u, v) means that u will transmit to v, but also to
its entire neighborhood. The deeper difference, therefore, is that we pay not just
for the nodes constituent to the path itself but for neighboring nodes as well,
which results in the total cost being a nonlinear function of the chosen nodes’
transmission costs.

Chechik et al. [3] gave a number of negative and positive results, including the
following. They showed, by reduction fromRed-Blue Set Cover [1,13], the problem
is strongly inapproximable on unweighted undirected graphs with unbounded de-
gree (more specifically, is hard to approximate with ratio O(2log

1−ε n), where n is
the number of nodes in the graphG, assumingNP �⊆ DTIME

(
npoly logn

)
). Con-

versely, they showed that the static algorithm gives a (
√
Δ+ 3)-approximation.

They showed that the problem is NP-hard already on node-weighted graphs of
degree 4 graphs and directed graphs of degree 3;1 for the unweighted undirected
setting with any constant maximum degree Δ, they gave a polynomial-time
(albeit exponential in Δ) optimal dynamic programming algorithm. They also
gave a result implying a 6-approximation for planar graphs as a special case,
and noted without proof that a 3-approximation can be obtained. (We provide
a proof here for completeness.)

A variant of the problem was also recently introduced as the Thinnest Path
Problem [6], which involves hypergraphs and subsumes the secluded path prob-
lem. They gave a

√
n
2 -approximation result for the static algorithm (see Sec.

2) applied to the hypergraph setting and a 19-approximation analysis of this
algorithm for the case of unit-disk graphs.

Finally, turning to geometric settings, similarly motivated problems have been
studied in the networking and sensor networks communities, where sensors are
often modeled as unit disks. For example, the Maximal Breach Path problem [12]
is defined in the context of traversing a region of the plane that contains sensor
nodes at predetermined points, and its objective is to maximize the minimum
distance between the points on the path and the the sensor nodes.

Similarly motivated problems have been studied in the context of path plan-
ning in AI “stealth” path planning problems, in which the task is to find a
minimum “visibility” path from source to destination, have been considered in

1 Degree 4 is stated but the construction in fact requires only degree 3.

Secluded Path via Shortest Path 111

[8,10,11]. Although the motivation is similar, such problems are technically quite
different from the graph-based problems studied here; nonetheless, our unit-disk
and planar settings can be viewed as simplified, stylized version of their geomet-
ric settings, where visibility may typically be defined in terms of line-of-sight.
Finally, a dual problem studied extensively is barrier coverage, i.e., the (deter-
ministic or stochastic) placement of sensors in order to make it difficult for an
adversary to cross the region unseen (see [9] and the references therein).

Contributions. Our main result is a PTAS for Δ-degree unweighted undirected

graphs, which provides a
⌈√

Δ+1
h+1

⌉
-approximation, where h is the memory pa-

rameter, and its two special cases. First, when ε = 0 it provides an optimal
solution in O(n logn) time, faster than the known O(n2) optimal algorithm of
[3] for this setting (treating h and Δ as constants for both), and with a much
simpler analysis. Second, when ε =

√
Δ+ 1 − 1, the algorithm collapses to the

static algorithm, which we show provides a
√
Δ+ 1 approximation, which is a

tighter than the known analysis of [3] for this algorithm.
Our other positive results are show: 1) static is an 8-approximation for unit-

disk graphs, improving on the 19-approximation analysis of [5] for this case, and
1-Memory is a 4-approximation; 2) 1-Memory is a 2-approximation algorithm
for (directed) planar graphs (omitted from this version); and 3) (1,6)-Memory
is optimal for the hexagon grid graph, and (2,12)-Memory is optimal for the
square grid graph (both node-weighted); various other tessellation graphs can
be solved similarly (omitted). Finally, we prove that the problem is NP-hard on
node-weighted graphs of degree 3, improving on the known degree-4 hardness
result [3].

2 Preliminaries

Definition 1. For a path P in the given graph G = (V,E), let v ∈ P indicate
that v is a node on the path. Let N [P] =

⋃
v∈P N [vi], where N [v] indicates

the neighborhood of v. Let cost(P) = |N [P]| denote the cost of P , P ∗ indicate
an optimal path, and cost0(P) =

∑
v∈P (deg(v) − 1) be the static cost of P .

Observe that cost(P) ≤ cost0(P). Let the static graph G0 = (V0, E0) be a directed
weighted graph where V0 = V and for each {u, v} ∈ E there exist (u, v), (v, u) ∈
E′ with weights deg(u)− 1 and deg(v) − 1, respectively.

We adopt the convention that a path P from s to t is treated as a path from s
to some neighbor of t, so that every node on the path transmits. Thus t ∈ N [P]
but t /∈ P . We call nodes that transmit (i.e., nodes on the path) transmitters,
we call other nodes nontransmitters or non-path nodes; and we call nodes that
receive, i.e., nodes in N [P], receivers. Notice that N [P] includes P itself (unless
P is a single node), so all transmitters are also receivers. The input graph is
assumed to be undirected with unweighted edges and nodes, unless otherwise
stated. The extended graphs we construct will be directed and edge-weighted.
We use OPT and ALG throughout to represent the cost of an optimal solution
and the cost of the (current) algorithm’s solution, respectively. Without loss

112 M.P. Johnson, O. Liu, and G. Rabanca

of generality, we ignore the cost of the source node (trivially) receiving when
convenient.

Definition 2. A path Q is shifted successor of a path P if P = (v1, v2, ..., vh)
and Q = (v2, v3, ..., vh, u), for some node u.

To motivate the algorithm used in this paper, consider the incremental costs
of each edge ei added, sequentially, to a partial path P . Let ei = (vi, vi+1),
with vertex indices renumbered accordingly, and let Pi indicate the subpath
e1, e2, ..., ei of P . Then the cost of e1 is 1+deg(v1) and for each subsequent edge
ei it is the number of vi’s neighbors being encountered for the first time, i.e.,
|N [vi]−N [Pi−1]|.

Given a graph G, consider the graph G′ constructed as follows: for each node
vi of G, introduced a “column” of O(n!) nodes, corresponding to the different
possible histories of vi (i.e., simple paths from the source to vi). For each edge
(vi, vj) of G, we introduce in G′ two collections of directed edges. First, we

introduce edges of the form vai → va
′

j for all possible histories for vi and vj that
are consistent in the sense that a indicates a simple path from s to a neighbor
of vi and a′ indicates that extended to vi, i.e., to a neighbor of vj . Similarly, for

edges vaj → va
′

i . The cost of edge vai → vbj is set to |N [vi]−N [P a
i−1]|. Also, add to

G′ a new source node and destination node, connected with cost 1 (respectively,
0) edges to all the nodes of the source (respectively, destination) column.

By construction, we have that 1) each node vai in G′ corresponds to a simple
path in G from source to node vi, and 2) the cost of each edge vai → vbj of G′

corresponds to the the secluded cost of the transmission of node vi in G after
reaching it by taking subpath a from source to vi. Thus we state:

Observation 1. For each path P in G there will be a corresponding path P ′

in G′ whose cost (i.e., sum of edge weights) equals P ’s secluded cost, and vice
versa.

Of course, the graph G′ constructed above is larger than G by a factor of
O(n!). We will find that for several graph classes, we can restrict ourselves to
a constant-size memory h, and hence ensure that our expanded graph is only
a constant factor (specifically, O(Δh)) larger than the original. That is, each
node v in G now maps to a column of O(Δh) nodes in Gh. Each of these nodes
corresponds to some possible length-h subpath reaching a neighbor of v (or
shorter subpath reaching vi in the case of v near to the source, or a null path if
it is the source (see Fig. 3.2). Directed edges in Gh now correspond to “recent
history” of length ≤ h and a shifted successor of it, rather than a monotonic
extension as above. The graph Gh can equivalently be viewed as a subgraph of
a certain h-dimensional de Bruijn graph whose “symbols” are the nodes of G.

We now observe that computing the cost of vai → va
′

j on only some of the
preceding nodes can only increase the cost:

Observation 2. The cost of a path in Gh can be only greater than the cost of
the corresponding path in G′, and thus also the secluded cost of the corresponding
path in G.

Secluded Path via Shortest Path 113

Algorithm 1. Static (0-Memory)

1. for each edge (u, v) do
2. euv ← deg(u)− 1
3. end for
4. run Dijkstra on the graph with edge weights {euv}

Algorithm 2. h-Memory

1. given the input graph, construct the h-dimensional De Bruijn graph Gh, as de-
scribed in the text

2. run Dijkstra on Gh

We note that in both an optimal solution and in the path returned by Static
and h-Memory, each transmitter will be adjacent to its successor and/or prede-
cessor but to no other nodes on the path, since otherwise a shortcut would have
produced a shorter path. Call a path with no potential shortcuts minimal. By
definition of the edge costs, in Gh we are charged for a non-source node when it
receives the transmission from its predecessor on the path. A path in Gh costs
more than the corresponding path in G when a nontransmitting or non-path
node receives multiple times.

3 Δ-Degree Graphs

3.1 Static

We begin by proving an approximation guarantee for the memoryless static
algorithm, when run on graphs of maximum degree Δ. The proof in this section
is a warmup for Sec. 3.3 and is omitted from this version.

Theorem 1. 0-Memory (i.e., static) gives a
√
Δ+ 1-approximation on Δ-degree

unweighted undirected graphs.

3.2 Δ-Memory

Now we consider another extreme, i.e., the h-Memory algorithm with h = Δ.
We will use dP (a, b) to indicate the distance on the path P between a, b ∈ P ,
which we define as the number of edges separating them on P , i.e., the length
of subpath P [a, b].

We will first prove a lemma, slightly strengthening a lemma of [3], which gave
a similar result for Δ + 1. It tells us there exist optimal solutions in which the
length of the subpath between two nodes with a common neighbor is bounded
by Δ.

Lemma 1. There exists an optimal solution P ∗ in which, if N [u] ∩ N [v] �= ∅
for u, v ∈ P ∗, we have dP∗(u, v) ≤ Δ.

114 M.P. Johnson, O. Liu, and G. Rabanca

c

a b d e

cb

cd

cc

ab

aa

bc

bd

ba

bb

dc

db

dc

dd

ed

ee

Fig. 1. Construction of the 1-Memory graph G1 for a simple input graph G. In this
example, all bb’s outgoing edges are given cost 3, ba’s are given cost 2, and bc’s and
bd’s are given cost 1.

Proof. Suppose two nodes u0, uk on a (possibly optimal) path P share a neighbor
x /∈ P . Let dP (u0, uk) = k, and name the intermediate nodes so that this subpath
consists of the nodes u0, u1, ..., uk−1, uk. Let δ be the degree of x, and let P ′ a
modification of P that replaces the subpath P [u0, uk] with the subpath u0, x, uk.

Let us now consider the costs of these two paths. First we examine the cost
of P ′. When u0 transmits, u1 and x receive; when x transmits, uk and x’s other
δ − 2 neighbors (ignoring u0) receive; when uk transmits, uk−1 receives, for a
total of δ+2 receivers. (We ignore without loss of generality any other neighbors
of u0 and uk, which will receive from both P ′ and P .)

Now consider P [u0, uk]. Its cost is k for nodes u1, ..., uk plus 1 for x, plus any
other neighbors those nodes may have, for a total of cost(P [u0, uk]) ≥ k + 1. If
k ≥ δ + 1 then

cost(P [u0, uk]) ≥ k + 1 ≥ δ + 2 = cost(u0, x, uk)

and so if P is optimal then P ′ is too. Otherwise, k < δ + 1, and indeed
dP∗(u0, uk) = k ≤ δ ≤ Δ. �

We are now ready to prove the theorem. It shows that while Δ-Memory over-
estimates some paths’ costs—even some optimal paths’ costs—it optimally com-
putes the costs of a least some optimal path, and so it will find one.

Theorem 2. Δ-Memory (for any constant Δ) is an O(n logn)-time optimal
algorithm for unweighted undirected degree-Δ graphs.

Proof. Let cost(P) indicate the secluded cost of a path P in the input graph G,
and let costh(P) indicate the static cost of the corresponding path in Gh.

The lemma tells us that there is always an optimal solution P ∗ in which the
cost of vi’s transmission is determined by (aside from vi’s neighborhood) not
the entire subpath from source to vi but only the last Δ nodes visited prior
to reaching vi. Thus the cost of the corresponding path in Gh will equal the
secluded cost of P ∗:

cost(OPT) = costh(OPT) (1)

Secluded Path via Shortest Path 115

√
Δ

√
Δ

u1 ui ui+1 us

Q

s t

x

Fig. 2. Approximation guarantee of h-Memory

Obs. 2, however, told us that the cost of a path in Gh (for any h, and so in par-
ticular for GΔ) can only be greater than the secluded cost of the corresponding
path in G.

Then we have:

cost(ALG) ≤ costΔ(ALG) ≤ costΔ(OPT) = cost(OPT)

The first inequality follows from Obs. 2, the second inequality from the fact
that the algorithm chooses a path of optimal cΔ(·) cost, and the equality from
Eq. 1.

Since deg(G) = Δ, the number of length≤Δ subpaths to any node of G is
O(ΔΔ). With Δ constant, the size of GΔ only a constant larger than G, i.e.,
|VΔ| = O(|V |) and |EΔ| = O(|E|). Since |E| = O(|V |) (because Δ is constant),
Dijkstra can be run on GΔ in time O(n logn). �

3.3 h-Memory for 0 ≤ h ≤ Δ

Finally, we generalize the two previous results for for values of the memory pa-
rameter h ranging from 0 to Δ, using an extension of the argument for Theorem
1.

Theorem 3. h-Memory (for any constant Δ) gives a
⌈√

Δ+1
h+1

⌉
-approximation

on unweighted undirected Δ-degree graphs in O(n logn) time.

Proof. Let costh(P) indicate the cost of a path P from the point of view of
h-Memory: the cost when node vi ∈ P transmits is the number of neighbors
receiving who did not receive in the previous h transmissions, i.e., |N(vi) −
∪i−1
j=i−hN(vj)|.
We show that an optimal path P ∗ can be converted into a pathQ of costh(Q) ≤⌈√
Δ+1
h+1

⌉
· cost(P ∗). The existence of such a path Q establishes that ALG ≤⌈√

Δ+1
h+1

⌉
· OPT .

Initialize Q to P ∗ and let all nodes of the graph be unmarked (see Fig. 3.3).
Consider a node x not on Q. Say that nodes u1, ..., us on Q are h-separated
neighbors of x, i.e., they are all in N(x) but for each 2 ≤ i ≤ s, the h nodes

116 M.P. Johnson, O. Liu, and G. Rabanca

preceding ui on Q are not in N(x). That is, between each successive pair of x’s
neighbors on Q there are at least h nodes on Q that are not neighbors of x.

Now say that a node x not on Q is bad if it has more than
⌈√

Δ+1
h+1

⌉
unmarked

h-separated neighbors on Q, say, u1, ..., us. Let the length of x be dQ(u1, us). Say
that x is worst if has maximum length among all bad nodes.

Now we iteratively modify Q by repeatedly doing the following: choose a worst
node x with unmarked h-separated neighbors u1, ..., us on Q. Then we replace
the subpath Q[u1, us] with the subpath (u1, x, us), and we mark x.

Now we examine the final value of costh(Q).
Consider a move that adds a node x to the path. This occurs when x has

s >
⌈√

Δ+1
h+1

⌉
neighbors on Q. We now examine how this move changes the

cost of Q. Prior to the move, the nodes succQ(u1), ..., us and x all receive (due
to the transmission of u1, ..., predQ(us)). Recall that u1, ..., us are h-separated,
with at least h nodes in between each successive pair ui, ui+1, and so |[u1, us]| ≥
(s− 1) · (h+ 1) + 1. Therefore the transmissions of u1, ..., predQ(us) contribute

at least (s− 1) · (h+ 1) ≥
√

Δ+1
h+1 · (h+ 1) =

√
(Δ+ 1) · (h+ 1) to cost(Q).

After the move, the transmission of x (to nodes u2, .., us and possibly others)
is of costh at most Δ− 1. In addition, there is costh 1 each for succQ(u1) and x
to both receive from u1. Altogether, the modified path incurs an h-memory cost
of at most Δ + 1 due to the transmitters u1, x, replacing the true cost s of the
nodes they replace.

Thus we charge Δ + 1 to the substring P ∗[u1us−1], which is less than
Δ+1√

(Δ+1)·(h+1)
=
√

Δ+1
h+1 times the cost of that substring’s transmissions.

Now consider neighbors y of Q that we never make such moves based on, i.e.,

nodes y that are neighbors of at most
⌈√

Δ+1
h+1

⌉
unmarked h-separated nodes

on Q. We pay at most
⌈√

Δ+1
h+1

⌉
in h-memory cost for each such node due to

transmissions of unmarked nodes, rather than the true cost of 1. Thus the h-

memory cost of Q is at most
⌈√

Δ+1
h+1

⌉
times the true cost of P ∗.

Since h is bounded by the constant Δ, the number of length-h subpaths is
O(Δh), and so the running time is again O(n logn). �

Finally, we observe that for any ε ≥ 0, setting2 e = �ε� and h = Δ+1
(1+e)2 − 1

yields
⌈√

Δ+1
h+1

⌉
=
√

Δ+1
h+1 = 1 + e ≤ 1 + ε. The second equality is obtained by

algebra, and the first equality holds because 1 + e is an integer. In terms of Δ
and ε, the running time is O(ΔΔ/(1+ε)2n · log(ΔΔ/(1+ε)2n)). Thus we conclude:

Corollary 1. h-Memory (for any constant Δ) is a PTAS for the the secluded
path problem on unweighted undirected Δ-degree graphs.

2 e = 0 when ε < 1.

Secluded Path via Shortest Path 117

vi

u1

u2

u3

u4

u5
u′
1

u′
2

u′
3

u′
4

u′
5

(a) 8-approximation.

vi

u1

u′
1

u2

u′
2 u3

u′
3

u4

u′
4

u∗

(b) Factor-8 instance.

Fig. 3. 8-approximation of Static on unit disk graphs

4 Unit-Disk Graphs

We begin by proving a lemma showing that the cost of every (minimal) secluded
path in G is inflated by a factor of a most 8 in G0. Thus there will exist a path
in G0 of length at most 8 times the optimal secluded path cost, which therefore
upper-bounds the cost of the solution returned by the algorithm.

Lemma 2. In the case of a minimal solution, a nontransmitter receives at most
8 times.

Proof. To obtain the bound, first recall that a unit disk can have at most 5
mutually disjoint neighbors, say u1, ..., u5 (see Fig. 3(a)). Therefore there can be
at most 10 transmitting neighbors of v lying on a minimal subpath.

Consider the (minimal) subpaths P10 = (u1, u
′
1, ..., u2, u

′
2, ..., u3, u

′
3, ..., u4, u

′
4,

..., u5, u
′
5) and P9, with the latter the same except with u1 omitted (assume u′

5 is
not the destination), in the instance of Fig. 3(a). First v has no other neighbors.
Then P10 costs more (at least 20: each transmission by one of v’s 10 neighbors
transmits to v and has cost at least 2) than the subpath P ′ = (u1, v, u

′
5) does

(as low as 2+9+2=13, with v being paid for only once), and so P10 cannot be a
subpath of a shortest path. (Similarly for P9, with costs 18 versus 12.) In order
to be charged for vi more than once (i.e., in order for it not to lie on the shortest
path), having vi transmit must be prohibitively expensive, i.e., it must have
additional neighbors who do not receive the message when path P transmits,
co-located at, say, node u∗.

If v does have any additional neighbors, they each would necessarily receive the
transmission, at least once, from the nodes of P10 (or P9), since the minimality
property implies that these disks occupy an arc sweeping out greater than 5/6
of v’s, and so there is no space for another disk to intersect v but not P9.

Combined with the minimality property, the constraint that the path’s disks
not intersect with u∗ limits its number to 8 (see Figs. 3(a) and 3(b)). �

Proposition 1. Static provides an 8-approximation when run on node-weighted
UDGs.

118 M.P. Johnson, O. Liu, and G. Rabanca

s t

x1

x̄2

x̄3

x′
1

x2

x̄4

x1 x′
1

x̄1 x̄′
1

∞x1 x′
1

Fig. 4. Hardness reduction

Proof.

cost(ALG) ≤ cost0(ALG) ≤ cost0(OPT) ≤ 8 · cost(OPT)

The inequalities follow from 1) Obs. 2, 2) the fact that the algorithm returns
a path of minimum cost0(·), and 3) the lemma. �

An example in which the factor-8 approximation obtains is shown in Fig. 3(b).
Here u1, u

′
1, ..., u4, u

′
4 are individual nodes; vi indicates n co-located nodes (for

some large n), and u∗ indicates n2 co-located nodes.

Proposition 2. 1-Memory provides a 4-approximation when run on node-
weighted UDGs.

Proof. The proof proceeds very similarly to the proof of Proposition 1, this
time showing that we pay for each nontransmitter at most 4 times. Because
of the 1-Memory property, in the instance of Figs. 3(a) and 3(b), path P10 =
(u1, u

′
1, ..., u2, u

′
2, ..., u3, u

′
3, ..., u4, u

′
4, ..., u5, u

′
5) would be charged for node vi only

once. Arrangements such the one shown in Fig. 3(a) can be extended to paths P ′

in which vi receives from the transmissions of multiple noncontiguous subpaths.
We will then be charged for vi once for each such maximal subpath. Recall that a
unit disk can intersect with at most 5 independent unit disks, meaning at most 5
such subpaths. As before, the fact that vi is not chosen to transmit means there
must be a neighbor of vi to avoid, which reduces the worst-case total to 4. �

5 NP-Hardness

Proposition 3. The secluded path problem is NP-hard on node-weighted of de-
gree 3.

Proof. We reduce from the special case of 3-SAT in which each literal appears
at most twice. We create a graph in which the optimal secluded path cost equals
2n if the formula is satisfiable and is more otherwise (see Fig. 4). For each clause
we add a clause gadget, in which the path splits into three length-2 subpaths,

Secluded Path via Shortest Path 119

corresponding to the literals of a clause, which then merge back together. (The
first clause gadget from the left in the example shown in the figure is for (x1 ∨
x̄2 ∨ x̄3).) Each clause gadget’s “literal nodes” (xi) have a neighbor of weight 1
(xi or x

′
i). Those neighbors have very heavy neighbors themselves, so that they

cannot be part of any shortest path. The cost of all other vertices in the graph
is 0. A clause gadget thus forces a good solution path to choose one of three
alternatives corresponding to the clause’s three literals.

To prevent an optimal solution path from visiting both xi and x̄i, we add
variable gadgets at the end of the construction (one variable gadget is shown
in the figure). Each (for variable xi) forces a solution path to make one of two
choices for a variable, which means paying 2 nodes neighboring xi, x

′
i (xi and x′

i)
or those neighboring x̄i, x̄

′
i (x̄i and x̄′

i). Thus the variable gadgets by themselves
therefore give a cost a total of 2n Thus a path will cost more than 2n iff it
corresponds to a non-satisfying assignment.

6 Discussion

Several of the results in this paper used a lemma that on an optimal solution
path two nodes with a common neighbor cannot be too far apart, which per-
mitted the use of de Bruijn graphs to implement enough memory to correctly
represent transmission costs using edge costs. In a similar spirit, the unit-disk
approximation result depended on showing that there cannot be too many nodes
on an optimal path sharing a neighbor. In all cases, we could then obtain good
results computing shortest paths.

The itchiest open problem is proving the problem to be easy or hard on planar
and/or unit-disk graphs. Note that the triangular grid graph, whose status is also
open, is a special case of both the planar and unit-disk graphs. It appears that
positive results for these settings will require fundamentally different techniques.

References

1. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover
problem. In: SODA, pp. 345–353 (2000)

2. Chavey, D.: Tilings by regular polygons: A catalog of tilings. Computers & Math-
ematics with Applications 17(1-3), 147–165 (1989)

3. Chechik, S., Johnson, M.P., Parter, M., Peleg, D.: Secluded connectivity problems.
In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 301–312.
Springer, Heidelberg (2013)

4. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49(49), 758–764 (1946)

5. Gao, J., Zhao, Q., Swami, A.: The thinnest path problem for secure communica-
tions: A directed hypergraph approach. In: Allerton Conference on Communica-
tions, Control, and Computing (2012)

6. Gao, J., Zhao, Q., Swami, A.: The thinnest path problem for secure communica-
tions: A directed hypergraph approach. In: Allerton Conference on Communication,
Control, and Computing, pp. 847–852 (2012)

120 M.P. Johnson, O. Liu, and G. Rabanca

7. Grunbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Com-
pany (1987)

8. Johansson, A., Dell’Acqua, P.: Knowledge-based probability maps for covert
pathfinding. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS,
vol. 6459, pp. 339–350. Springer, Heidelberg (2010)

9. Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless
sensor networks. In: MobiHoc, pp. 411–420 (2008)

10. Marzouqi, M., Jarvis, R.: New visibility-based path-planning approach for covert
robotic navigation. Robotica 24(6), 759–773 (2006)

11. Marzouqi, M.A., Jarvis, R.A.: Robotic covert path planning: A survey. In: RAM,
pp. 77–82 (2011)

12. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage
problems in wireless ad-hoc sensor networks. In: INFOCOM, pp. 1380–1387 (2001)

13. Peleg, D.: Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discrete Algorithms 5(1), 55–64 (2007)

Distributed Approximation
of Minimum Routing Cost Trees

Alexandra Hochuli1, Stephan Holzer2,∗, and Roger Wattenhofer1

1 ETH Zurich, 8092 Zurich, Switzerland
{hochulia,wattenhofer}@ethz.ch

2 MIT, Cambridge, MA 02139, USA
holzer@mit.edu

Abstract. We study the NP-hard problem of approximating a Mini-
mum Routing Cost Spanning Tree in the message passing model with
limited bandwidth (CONGEST model). In this problem one tries to find
a spanning tree of a graph G over n nodes that minimizes the sum of
distances between all pairs of nodes. In the considered model every node
can transmit a different (but short) message to each of its neighbors in
each synchronous round. We provide a randomized (2+ε)-approximation
with runtime O(D+ log n

ε
) for unweighted graphs. Here, D is the diame-

ter of G. This improves over both, the (expected) approximation factor
O(log n) and the runtime O(D log2 n) stated in [13].

Due to stating our results in a very general way, we also derive an
(optimal) runtime of O(D) when considering O(log n)-approximations
as in [13]. In addition we derive a deterministic 2-approximation.

1 Introduction

A major goal in network design is to minimize the cost of communication be-
tween any two vertices in a network while maintaining only a substructure of the
network. Despite the fact that a tree is the sparsest substructure of a network it
can be surprisingly close to the optimal solution. Every network contains a tree
whose total cost of communication between all pairs of nodes is only a factor
two worse than the communication cost when all edges in the graph are allowed
to be used!

The problem of finding trees that provide a low routing cost is studied since
the early days of computing in the 1960s [18] and is known to be NP-hard [12]
on weighted and unweighted graphs1. These days networks of computers and
electric devices are omnipresent and trees offer easy and fast implementations
for applications. In addition, trees serve as the basis for control structures as well
∗ Corresponding author. Part of this work was done at ETH Zurich. At MIT the author

was supported by the following grants: AFOSR Contract Number FA9550-13-1-0042,
NSF Award 0939370-CCF, NSF Award CCF-1217506, NSF Award number CCF-AF-
0937274.

1 Even for seemingly simpler versions than those which we study the problem remains
NP-hard [23].

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 121–136, 2014.
c© Springer International Publishing Switzerland 2014

122 A. Hochuli, S. Holzer, and R. Wattenhofer

as for information gathering/aggregation and information dissemination. This
explains why routing trees are computed and used by wide spread protocols
such as the IEEE 802.1D standard [3]. When bridging [19] is used in Local
Area Networks (LAN) and Personal Area Networks (PAN), a spanning tree is
computed to define the (overlay) network topology. Finding such a tree with
low routing cost is crucial. As [3] demonstrates, current implementations do not
perform well under the aspect of optimizing the routing costs and there is the
need to find better and faster solutions. The nature of this problem and growth of
wired and wireless networks calls for fast and good distributed implementations.

In this paper we present new approaches for distributed approximation of a
Minimum Routing Cost Spanning Tree (MRCT) while extending previous work
for approximation of those. By doing so we improve both, the round complex-
ity and the approximation factor of the best known (randomized) result in a
distributed setting for unweighted graphs. Our main contribution is an algo-
rithm that computes a

(
2− 2

n +min
{

logn
D , α(n,D)

})
-approximation in time

O
(
D + logn

α(n,D)

)
w.h.p.2. Previously, the best known distributed approximation

for MRCT [13] (on weighted graphs) achieved an (expected) approximation-ratio
of O(log n) using randomness. The bound on the runtime of the algorithm of [13]
is O(n log2 n) in the worst case – even when the network is fully connected (a
clique). For unweighted graphs, the authors of [13] specify this runtime to be
O(D log2 n). The distributed algorithms we present in this paper are for un-
weighted graphs as well3 and compared to the (expected) approximation-ratio
O(log n) of [13] we essentially obtain a (guaranteed) approximation-ratio 2+ε in
time O(D+ logn

ε) w.h.p.. This follows from choosing α(n,D) = ε for an arbitrary
small ε > 0. When choosing α(n,D) = logn, we obtain the same approximation
ratio as in [13] in time O(D). To be general, we leave the choice of α(n,D) to
the reader depending on the application.

Besides this randomized solution we present a deterministic algorithm running
in linear time O(n) achieving an approximation-ratio of 2.

2 Model and Basic Definitions

Our network is represented by an undirected graph G = (V,E). Nodes V corre-
spond to processors, computers or routers. Two nodes are connected by an edge
from set E if they can communicate directly with each other. We denote the num-
ber of nodes of a graph by n, and the number of its edges by m. Furthermore we
assume that each node has a unique ID in the range of {1, . . . , 2O(logn)}, i.e. each
node can be represented by O (logn) bits. Nodes initially have no knowledge of
the graph G, other than their immediate neighborhood.

We consider a synchronous communication model, where every node can send
B bits of information over all its adjacent edges in one synchronous round of
2 A more precise statement can be found in Theorem 3. This Theorem also considers

a generalized version of MRCT.
3 They extend to graphs with certain realistic weight-functions.

Distributed Approximation of Minimum Routing Cost Trees 123

communication. We also consider a modified model, where time is partitioned
into synchronized slots, but a message might receive a delay when traversing an
edge. This delay might not be uniform but fixed for each edge. In principle it is
allowed that in each round a node can send different messages of size B to each of
its neighbors and likewise receive different messages from each of its neighbors.
Typically we use B = O (logn) bits, which allows us to send a constant number of
node or edge IDs per message. Since communication cost usually dominates the
cost of local computation, local computation is considered to be negligible. For
B = O (logn) this message passing model is known as CONGEST model [15].
We are interested in the number of rounds that a distributed algorithm needs to
solve some problem. This is the time complexity of the algorithm.

To be more formal, we are interested in evaluating a function g : Gn → S,
where Gn is the set of all graphs over n vertices and S is e.g. {0, 1}, N or Gn,
and define distributed round complexity as follows:

Definition 1 (Distributed round complexity). Let A be the set of dis-
tributed deterministic algorithms that evaluate a function g on the underlying
graph G over n nodes (representing the network). Denote by Rdc (A (G)) the dis-
tributed round complexity (indicated by dc) representing the number of rounds
that an algorithm A ∈ A needs in order to compute g (G). We define Rdc (g) =
minA∈A maxG∈Gn Rdc (A (G)) to be the smallest amount of rounds/time slots
any algorithm needs in order to compute g.

We denote by Rdc−rand
ε (g) the randomized round complexity of g when the

algorithms have access to randomness and compute the desired output with an
error probability smaller than ε. By w.h.p. (with high probability) we denote a
success probability larger than 1− 1/n.

The unweighted shortest path in G between two nodes u and v is a path
with minimum number of edges among all (u, v)-paths. Denote by dG (u, v) the
unweighted distance between two nodes u and v in G which is the length of an
unweighted shortest (u, v)-path in G. We also say u and v are dG(u, v) hops apart.
By ωG : E → N we denote a graph’s weight function and by ωG(e) the weight
of an edge in G. By ωG(u, v) := min{P |P is (u,v)-path in G}

∑
e is edge in P ωG(e) we

define the weighted distance between two nodes u and v, that is the weight of a
shortest weighted path in a graph G connecting u and v4.

The time-bounds of our algorithms as well as those of previous algorithms
depend on the diameter of a graph. We also use the eccentricity of a node.

Definition 2 (Eccentricity, diameter). The weighted eccentricity eccωG (u)
in G of a node u is the largest weighted distance to any other node in the
graph, that is eccωG (u) := maxv∈V ωG (u, v). The weighted diameter Dω (G) :=
maxu∈V eccωG(u) := maxu,v∈V ωG (u, v) of a graph G is the maximum weighted
distance between any two nodes of the graph. The unweighted diameter (or hop
4 Note that in the context of MRCT, ω often corresponds to the cost of an edge. In the

literature the routing cost between any node u and v in a given spanning tree T of
G is usually denoted by cT (u, v), while in generalized versions of MRCT, the weight
of an edge can be different from the cost. In this paper we use ωT (u, v) = cT (u, v).

124 A. Hochuli, S. Holzer, and R. Wattenhofer

diameter) Dh (G) := maxu,v∈V min{P |P is (u,v)-path} |P | of a graph G is the max-
imum number of hops between any two nodes of the graph. Here |P | indicates
the number of edges on path P .

We often write Dω and Dh instead of Dω(G) and Dh(G) when we refer to the
diameter of a graph G in context. Observe that Dh = Dω for unweighted graphs.

Finally, we define the problems that we study.

Definition 3 (S-Minimum Routing Cost Tree (S-MRCT)). Let S be a
subset of the vertices V in G. The S-routing cost of a subgraph H is defined as
RCS (H) :=

∑
u,v∈S ωH (u, v) and denotes the routing cost of H with respect to

S. An S-MRCT is a subgraph T of G that is a tree, contains all nodes S and
has minimum S-routing cost RCS (T) among all spanning trees of T .

This is a generalization of the MRCT problem [22]. According to this definition
V -MRCT (i.e. S = V) and MRCT of [22] are equivalent. Therefore all results
are valid for the classical MRCT problem when choosing S := V .

In this paper we consider approximation algorithms for these problems. Given
an optimization problem P , denote by OPT the cost of the optimal solution for
P and by SOLA the cost of the solution of an algorithm A for P . We say A is
ρ-approximative for P if OPT ≤ SOLA ≤ ρ ·OPT for any input.

Fact 1 The eccentricity of any node is a good approximation of the diameter.
For any node u ∈ V we know that eccωG (u) ≤ Dω (G) ≤ 2 · eccωG (u).

3 Our Results

In Section 8 we prove the following two theorems.

Theorem 2. In the CONGEST model, the deterministic algorithm proposed in
Section 8 needs time O (|S|+Dω) to compute a (2− 2/|S|)-approximation for
S-MRCT when using either uniform weights for all edges or a weight function
ω(e) that reflects the delay/edge traversal time of edge e.

Theorem 3. Let α(n,Dω) be some function in n and Dω. The randomized algo-
rithm proposed in Section 8 computes w.h.p. a

(
2− 2

|S| +min
{

log n
Dω

, α(n,Dω)
})

-

approximation for S-MRCT in the CONGEST model in time O
(
Dω + logn

α(n,Dω)

)
when using either uniform weights for all edges or a weight function ω(e) that
reflects the delay/edge traversal time of edge e.

We emphasize that the analysis of [20] yields a 2-approximation when com-
pared to the routing cost in the original graph5 and that we modify this analysis.
5 Note that most other approximation algorithms are with respect to the routing cost

of a minimal routing cost tree of the graph. In the full version of this paper [8] we
provide an example that shows that sometimes even no subgraph with o(n2) edges
exists that yields better approximations to the routing cost in the original graph
than the trees presented here. From this we conclude that algorithms that compare
their result only to the routing cost of the minimum routing cost tree do not always
yield better results than those presented here.

Distributed Approximation of Minimum Routing Cost Trees 125

4 Related Work

Minimum Routing Cost Trees are also known as uniform Minimum Communi-
cation Cost Spanning Trees [16,17] and shortest Total Path Length Spanning
Trees [21]. Furthermore the MRCT problem is a special case of the Optimal
Network Problem, first studied in the 1960s by [18] and later by [6]. In [20]
Wong presented heuristics and approximations to the Optimal Network Prob-
lem with a restriction that makes the problem similar to the MRCT problem
and obtained a 2-approximation. In [12] it is shown that this restricted version,
which Wong studied on unweighted graphs, is NP-hard as well. It seems that
earlier the authors of [11] formulated a similar problem under the name ”Opti-
mum communication spanning tree" where in addition to costs on edges, we are
given a requirement-value ru,v for each pair of vertices that needs to be taken
into account when computing the routing cost. In this setting one wants to find
a tree T such that

∑
u,v∈V ru,vdT (u, v) is minimized. In [22] it is argued that

for metric graphs, the results by [1,2,4] yield a O(log n log logn)-approximation
to this problem. Using a result presented in [7], this can be improved to be an
O(log n)-approximation. In [13] it is shown how to implement this result in a dis-
tributed setting. They state their result depending on the shortest path diameter
Dsp(G) := maxu,v∈V {|P | |P is a shortest weighted (u, v)-path} of a graph. This
diameter represents the maximum number of hops of any shortest weighted path
between any two nodes of the graph. The authors of [13] obtain a randomized
approximation of the MRCT with expected approximation-ratioO(log n) in time
O
(
Dsp · log2 (n)

)
. Observe that this might be only a O(n log2 n)-approximation

even in a graph with Dh = 1 and Dsp = n− 1, such as a clique where all edges
have weight n except n− 1 edges of weight 1 forming a line as a subgraph.6 In
our distributed setting we know that it is hard to approximate an MRCT due
to Theorem 4.

Theorem 4 (Version of Theorem 5.1. of [5]). For any polynomial func-
tion α (n), numbers p, B ≥ 1, and n ∈ {22p+1pB, 32p+1pB, . . .}, there exists
a constant ε > 0 such that in the CONGEST model any distributed α(n)-
approximation algorithm for the MRCT problem whose error probability is smaller

than ε requires Ω
((

n
pB

) 1
2−

1
2(2p+1)

)
time on some Θ (n)-vertex graph of diameter

2p+ 2.

For certain realistic weight-functions our randomized algorithm breaks this
Ω(
√
n + D)-time lower bound. This is no contradiction, as the construction

of [5] heavily relies on being able to choose highly different weights, which might
not always appear in practice: in current LAN/PAN networks, weights (delays)
usually differ only by a small factor. In case the weights are indeed the delay-
times, the runtime of our algorithm just depends on the maximal delay that
occurs between any two nodes in the network. Observe that also the runtime of
the algorithm of [13] stated for arbitrary weight functions does not contradict this

6 According to [22] it is NP-hard to find an MRCT in a clique.

126 A. Hochuli, S. Holzer, and R. Wattenhofer

approximation lower bound. The algorithm’s runtime depends on the shortest
path diameter Dsp, which is Θ(

√
n+D) in the worst case graphs provided in [5].

Finally we want to point out that for weighted graphs it might be possible to
combine the recent result of [14] with the techniques developed in this paper.
This might improve over the approximation factor of [13] for weighted graphs
while getting a better runtime in some cases.

Related work in the non-distributed setting includes [22], where a PTAS to
find the MRCT of a weighted undirected graph is presented. It is shown how to
compute a (1 + 2/(k + 1))-approximation for any k ≥ 1 in time O

(
n2k
)
. Details

on the limits of transferring this PTAS into our distributed setting can be found
in the full version of this paper [8]. In [8] we also summarize further related
work in other models (non-distributed and parallel) that deal with the MRCT
problem as well as the related problem of computing low stretch spanning trees.

5 Trees That 2-Approximate the Routing Cost

The main structure we need in this section are shortest path trees:

Definition 4 (Shortest path tree). A shortest path tree (SP-tree) rooted in
a node v, is a tree that connects any node u to the root v by a shortest path in
G. In unweighted graphs, this is simply a breadth first-search tree.

Previously it was known due to Wong [20], Theorem 3, that there is an SP-
tree, which 2-approximates the routing cost of an MRCT. We restate this result
by using an insight stated in Wong’s analysis such that this tree not only 2-
approximates the routing cost RCV (T) of an MRCT T of G (which is a V -
MRCT) as Wong stated it, but even yields a 2-approximation of the routing cost
RCV (G) when using shortest paths in the network G itself. Thus, on average
the distances between two pairs in the tree are only a factor 2 worse than the
distances in G.

The algorithm that corresponds to Wong’s analysis computes and evaluates
n SP-trees, one for each node in V . We show, that for the S-MRCT problem
it is sufficient to consider only those shortest path trees rooted in nodes of S.
At the same time, a slightly more careful analysis yields a slightly improved
approximation factor of 2 − 2/|S|, which is of interest for small sets S. Before
we start, we define a useful measure for the analysis.

Definition 5 (Single source routing cost). By SSRCS (v) :=
∑

u∈S ωG (v, u)
we denote the sum of the single source routing costs from node v to every other node
in S by using edges in G.

Note that for simplicity we defined an SP-tree to contain all nodes of V . However,
one could also consider the subtree where all leaves are nodes in S. The measures
RCS and SSRCS would not change, as any additional edges are never used by
any shortest paths and thus do not contribute to the S-routing cost of the tree.
Such a tree can easily be obtained from the tree we compute.

Distributed Approximation of Minimum Routing Cost Trees 127

Theorem 5. Let |S| be at least 2. In weighted graphs, the SP-tree Tv rooted in a
node v with minimal single source routing cost SSRCS(v) = minu∈S SSRCS(u)
over all SP-trees rooted in nodes of S is a (2− 2/|S|)-approximation to the S-
routing cost RCS(G) in G.

Corollary 1. In weighted graphs, an SP-tree with minimum routing cost over
all SP-trees rooted in nodes of S is a (2− 2/|S|)-approximation to an S-MRCT.

The proof of this theorem uses and modifies the ideas of the proof of Theorem
3 in [20]. The following proof is an adapted version of this proof.

Proof. Let v be the node for which the SP-tree Tv has minimal single source rout-
ing cost with respect to S among all SP-trees, that is v := argminv∈V SSRCS (v).

The cost of connecting a node u �= v to all other nodes in S using edges in Tv

is upper bounded by (|S| − 2) ·ωG (v, u)+SSRCS (v). This essentially describes
the cost of connecting u to each other node by a path via the root v and using
edges in Tv. Therefore the total routing cost RCS (Tv) for S using the network
Tv can be bounded by

RCS (Tv) ≤ SSRCS (v) +
∑

v �=u∈S

((|S| − 2) · ωG (v, u) + SSRCS (v)) .

As |S| ≥ 2, this can be further transformed and bounded to be

= |S| · SSRCS (v) + (|S| − 2)
∑
u∈S

ωG (v, u)

= |S| · SSRCS (v) + (|S| − 2) · SSRCS (v)

= (2 − 2/|S|) · |S| · SSRCS (v)

≤ (2 − 2/|S|) ·
∑
u∈S

SSRCS (u) .

Where the last bound follows, as SSRCS (v) is minimal among all SSRC(u)
for u ∈ S. Since

∑
u∈V SSRCS (u) is the same as RCS (G), we obtain that

RCS (Tv) ≤ 2RCS (G). �

6 Considering few Randomly Chosen SP-Trees Is Almost
as Good

We show that when investigating a small subset of all SP-trees chosen uniformly
at random, with high probability one of these trees is a good approximation as
well.

Lemma 1. Let β(n,D) be a positive function in n and D and define γ :=⌈
2−2/|S|
β(n,D)

⌉
+ 1. Assume S ⊆ V is of size at least γ lnn. Let S′ in turn be a sub-

set of S chosen uniformly at random among all subsets of S of size γ lnn. Let
v ∈ S′ be a node such that SSRCS(v) = minu∈S′ SSRCS(u). Then RCS(Tv) ≤
(2− 2/|S|+ β(n,D))RCS(G).

128 A. Hochuli, S. Holzer, and R. Wattenhofer

Proof. For simplicity, without loss of generality we assume that |S| is a multiple
of γ. Denote by v1, . . . , v|S| the nodes in S such that SSRCS(v1) ≤ SSRCS(v2) ≤
· · · ≤ SSRCS(v|S|). That is they are ordered corresponding to their single source
routing costs. We say a node v is good, if the corresponding SP-tree Tv is among
the 1/γ-fraction of the SP-trees with lowest single source routing cost7 . There-
fore v is good if SSRCS(v) ≤ SSRCS(v|S|/γ) with respect to the above order of
the trees.

First we prove that w.h.p. set S′ contains a good node. Second we prove, that
the corresponding SP-tree yields the desired approximation ratio.

1) Probability analysis: We know that Prv∈S [v is good] = 1/γ. Furthermore
each node v ∈ S is included in set S′ independent of the other nodes. Therefore
we can conclude that the probability that at least one of the nodes v in S′ is

good is 1−
(
1− 1

γ

)|S′|
= 1−

(
1− 1

γ

)γ lnn

> 1− 1/n and thus high.
2) Approximation-ratio analysis: Let vi be a good node. As in the proof

of Theorem 5 we know that RCS(Tvi) ≤ (2 − 2/|S|) · |S| · SSRCS(vi)..As
RCS(G) =

∑
u∈S SSRCS(u) and vi is good, we can conclude that SSRCS(vi) ≤

1
(1−1/γ)·|S| ·RCS(G) as there are at most (1−1/γ)|S| nodes vj with SSRCS(vj) ≥
SSRCS(vi). Equality is approached in the worst case, where j := |S|/γ and
SSRCS(vj) = 0 for each j < i and SSRCS(vi) = SSRCS(vj) for all j ≥ i.

Combined with Bound (6) it follows that RCS(Tvi) ≤
2−2/|S|
1−1/γ ·RCS(G). Due

to the choice of γ we conclude the statement of the Lemma.

7 How to Compute the Routing Cost of Many SP-Trees
in Parallel

In Theorem 5 (and Lemma 1) we demonstrated that an SP-tree Tv with minimum
single source routing cost yields a 2-approximation for RCS(G). The single source
routing cost of a tree can be computed by computing distances between the root
of a tree and nodes in S. However, instead of finding an SP-tree with smallest
single source routing cost the literature usually considers finding an SP-tree with
smallest routing cost. This is done e.g. in [20]. The reason for this is that the
bound in the proof of Lemma 5 is not sharp when using the single source routing
cost. To see this, we recall that while obtaining the bound, one approximates the
distance between two nodes in the tree by adding up their distance to the root.
Thus the bound considers the single source routing cost of an SP-tree. Compared
to this, the routing cost takes the actual distance of the two nodes in an SP-tree
into account. An explicit example for a graph that contains a node u such that
RCS(Tu) < RCS(Tv), where Tv has minimum single source routing cost is given
in the full version of this paper [8]. Like in [20] we focus on this more powerful
version of finding a tree of small routing cost.

7 Due to the choice of γ :=
⌈

2−2/|S|
β(n,D)

⌉
+1 a good tree is among the nβ(n,D) cheapest

trees.

Distributed Approximation of Minimum Routing Cost Trees 129

Lemma 2. Let S := {v1, . . . , v|S|} be a subset8 S ⊆ V of all nodes of a graph.
Then we can compute the values RCS(Tv1), . . . , RCS(Tv|S|) in time O(Dω + |S|)
when using either uniform weights for all edges or a weight function implied by
the delay/edge traversal time.

The proof of this lemma can be found at the end of this section. First, we
describe our algorithm that is used to prove this lemma. In Part 1 of this al-
gorithm we start by computing SP-trees Tv for each v ∈ S. A pseudocode for
this algorithm can be found as Algorithm 7.1. Part 2 deals with computing the
routing cost of a single tree and is described later in this section.

We start by noting that for the weight functions we consider an SP-tree is just
a Breath First Search tree (BFS-tree). This part is essentially the same as in the
S-SP algorithm of [10] extended to edge-weights derived from the delays to send
a message. We also store some additional data that is used later in Algorithm 7.2
to compute routing costs but was not needed for the S-SP computation in [10].
In Algorithm 7.2, for each node v ∈ S an SP-tree Tv is constructed using what
we call delayed breadth first search (DBFS). By DBFS we think of a breadth
first search, where traversing edge (u, u′) takes ωG(u, u

′) time slots. In the end
each node u in the graph knows ωG (u, v). In addition each node u knows for
each v ∈ S its parent in the corresponding tree Tv. Furthermore node u knows
at what time the DBFS, that computed Tv, sent its message to u via u’s parent.
During Algorithm 7.2, these timestamps are used to compute the routing cost
of all these trees in time O (|S|+Dω).

Remark 1. Compared to Algorithm S-SP presented in [10] we added Lines 2, 6
and 26 in Algorithm 7.1 and extended the algorithm to certain delay functions
as mentioned above (the proof in [10] can be naturally extended to those.) By
doing so, we can store in τ [v] the time when a message of the computation of
tree Tv was received the first time (via edge parent_in_Tv). In the end, ωu[v]
stores the distance ωG (v, u) to v and parent_in_Tv indicates the first edge of
a (u, v)-path witnessing this.

Despite its similarity to algorithm S-SP in [10], we describe Algorithm 7.1 in
more detail for completeness. For the simplicity of the writeup, we refer to u
not only as a node, we use u to refer to u’s ID as well. Each node u stores δ (u)
sets Li, one for each of the δ (u) neighbors u1, . . . , uδ(u) of u, and the sets L and
Ldelay to keep track of which messages were received, transmitted or need to be
delayed. At the beginning, if u ∈ S, all these sets contain just u, else they are
empty (Lines 1–7). Set Ldelay is always initialized to be empty. Furthermore u
maintains an array ωu that eventually stores at position v (indicated by ωu[v])
the distance ωG (u, v) to node v. Initially ωu[v] is set to infinity for all v and is
updated as soon as the distance is known (Line 27). In each node u, array τ stores
at position v the time when a message of the computation of tree Tv was received
the first time in u. At any time, set L contains all node IDs corresponding to
8 Note that S used here can be e.g. S as in Section 5 or the smaller set S′ as in

Section 6.

130 A. Hochuli, S. Holzer, and R. Wattenhofer

Algorithm 7.1. Computing SSRCS(v) for each v ∈ S Part 1 (executed by node u)
1: L := ∅; ωu := {0, 0, . . . , 0}; Ldelay := ∅;
2: τ := {∞,∞, . . . ,∞} // **new**
3: if u ∈ S then
4: L := {u};
5: ωu (u) := 0;
6: τ (u) := 0; // **new**
7: end if
8: L1, . . . , Lδ(u) := L;
9: if u equals 1 then

10: compute D′
ω := ecc(u); //** According to Fact 1, Dω is smaller than 2 ·D′

ω.
11: broadcast D′

ω ;
12: else
13: wait until D′

ω was received;
14: end if
15: //** Compute S shortest path trees
16: for t = 1, . . . , |S|+ 2 ·D′

ω do
17: for i = 1, . . . , δ (u) do

18: (li, ωi) :=

⎧⎪⎨
⎪⎩

⊥ : if Li \ ∩Ldelay = ∅
argmin {v ∈ Li \ Ldelay |
τ [v] + ωG(u, v) ≥ t} : else

19: end for
20: within one time slot:

if l1 �= ⊥ then send (l1, ωu[l1] + ωG (u, u1)) to neighbor u1;
receive (r1, ω1) from u1;
...
if lδ(u) �= ⊥ then send

(
lδ(u), ωu[lδ(u)] + ωG

(
u, lδ(u)

))
to neighbor uδ(u);

receive
(
rδ(u), ωδ(u)

)
from uδ(u);

21: R := {ri|ri < li and i ∈ 1 . . . δ(u)} \ L

22: s :=

{
∞ if Ldelay = ∅
min(Ldelay) else

23: if s ≤ min(R) and s < ∞ then
24: Ldelay := Ldelay \ {s};
25: end if
26: for i = 1, . . . , δ (u) do
27: if ri < li then
28: //** Tli ’s message is delayed due to Tri .
29: if ri /∈ L then
30: τ [ri] := t; // **new**
31: ωu[ri] = ωi;
32: L := L ∪ {ri}, L1 := L1 ∪ {ri}, L2 := L2 ∪ {ri},

. . . Li−1 := Li−1 ∪ {ri}, Li+1 := Li+1 ∪ {ri}, . . . Lδ(u) := Lδ(u) ∪ {ri};
33: if min(R) < ri or s < ri then
34: Ldelay = Ldelay ∪ {ri}
35: end if
36: parent_in_Tri := neighbor i;
37: end if
38: else
39: Li := Li \ {li}; //** Tli ’s message was successfully sent to neighbor i.
40: end if
41: end for
42: end for

Distributed Approximation of Minimum Routing Cost Trees 131

the tree computations (where each node with a stored ID is the root initiating
the computation of such a tree) that already reached u until now. The set Ldelay

contains all root IDs that reached v until time t but are marked to be delayed
before forwarded. This ensures that we indeed compute BFS-trees.

Set Li contains all IDs of L except those that could be forwarded successfully
to neighbor ui in the past. We say an ID li is forwarded successfully to neighbor
ui, if ui is not sending a smaller ID ri to u at the same time.

To compute the trees in Algorithm 7.1, the unique node with ID 1 computes
D′

ω and thus a 2-approximation to the distance-diameter Dω. This value is sub-
sequently broadcast to the network (Lines 8–12). Then the computation of the
|S| trees starts and runs for |S|+2D′

ω time steps. Lines 14–17 make sure that at
any time the smallest ID, that is not marked to be delayed and was not already
forwarded successfully to neighbor ui is sent to ui together with the length of
the shortest (v, ui)-path that contains u. In Line 18 we define the set R of all
IDs that are received successfully in this time slot for the first time. This set is
then used to decide whether to remove an ID s from Ldelay in Lines 20 and 21,
since all IDs that cause a delay to s are transmitted successfully by now. ID s is
computed in Line 20. ID s is the smallest element of Ldelay and is removed from
Ldelay if no other ID smaller than s was received successfully for the first time
in this timeslot.

If a node ID ri was received successful for the first time (verified in Lines 23
and 25), we update τ [ri] and ωu[ri], add ri to the according lists (Lines 28–30)
and remember who u’s parent is in Tri (Line 31). In case the ID v was received
the first time from several neighbors, the algorithm as we stated it chooses the
edge with lowest index i. On the other hand if we did not successfully receive
a message from neighbor ui but sent successfully a message to neighbor ui, the
transmitted ID is removed from Li (Line 33).

Lemma 3. Algorithm 7.1 computes an SP-tree Tv for each v ∈ S in time
O(|S|+Dω).

Proof. This is essentially Theorem 6.1. in [9] stated for Algorithm 7.1 instead of
Algorithm S-SP of [9]. Those parts of the two algorithms which contribute to
the runtime and correctness are equivalent.

Now Part 2 of our algorithm calculates the routing cost of each tree Tv in
parallel in time O(Dω + |S|). A pseudocode of this algorithm is stated in Algo-
rithm 7.2.

To compute the routing cost of a tree, we look at each edge e in each tree
Tv and compute the number of (v, w)-paths in Tv that contain the edge e, for
v, w ∈ S. The sum of these numbers for each edge in a tree is the tree’s routing
cost. Given a tree T , for each edge e in T , the edge partitions the tree into
two trees (when e was removed). To be more precise, denote by we, w

′
e the two

vertices to which e is incident. Edge e partitions the vertices of T into two
subsets, which we call Z1

e and Z2
e defined by:

Z1
e (T) := {w ∈ S|e is contained in the unique (we, w)-path in T }

Z2
e (T) := {w ∈ S|e is contained in the unique (w′

e, w)-path in T }

132 A. Hochuli, S. Holzer, and R. Wattenhofer

We observe that edge e occurs in all |Z2
e (T) | paths from any node v ∈ Z1

e (T)
to any node w ∈ Z2

e (T). Note that the total number of paths in which e occurs
is |Z1

e (T) | · |Z2
e (T) |. This fact is later used to compute RCS (T).

Algorithm 7.2. Computing RCS(Tv) for each v ∈ S alternative Part 2 (executed by
node u)
1: rcS := {∞, . . . ,∞}; //** is updated during the runtime of the algorithm.
2: if u ∈ S then
3: z := {1, . . . , 1}; //** is updated during the runtime of the algorithm.
4: else
5: z := {0, . . . , 0};
6: end if
7: for t = 1, . . . , |S|+ 2D′

ω do
8: within one time slot:

For each v ∈ L such that t = |S|+ 2 ·D′
ω − τ [v] send (v, rcS[v], z[v]) to

parent_in_Tv;
receive (v1, r1, z1) from neighbor u1; //** r1 equals rcS (Tv1 , u1),

//** z1 equals Z1
(u,u1)

(Tv1)
receive (v2, r2, z2) from neighbor u2; //** r2 equals rcS (Tv2 , u2),

//** z2 equals Z1
(u,u2)

(Tv2)

...
receive

(
vδ(u), rδ(u), zδ(u)

)
from uδ(u); //** rδ(u) equals rcS

(
Tvδ(u)

, uδ(u)

)
,

//** zδ(u) equals Z1

(u,uδ(u))

(
Tvδ(u)

)
9: for i = 1, . . . , δ (u) do

10: if vi �= ⊥ then
11: rcS[vi] := rcS [vi] + ri + 2ωG (u, v) · zi · (|S| − zi);
12: z[v] := z[v] + zi;
13: end if
14: end for
15: end for
16: //** Now rcS[u] equals RCS (Tu) in case that u ∈ S. Else it is ∞ and was never

modified.

Lemma 4. For a tree T , the routing cost RCS(T) can be restated as RCS(T) =
2 ·
∑

e∈T |Z1
e (T)| · |Z2

e (T)| · ωG(e).

The proof of this lemma can be found in the full version of this paper [8].
To formulate the definition of RCS(T) in this way helps us to argue that we

can compute RCS(T) recursively in a bottom-up fashion for any T . To do so,
we consider trees to be oriented such that we use the notion of child/parent.

Definition 6 (Subtree, partial routing cost). Given a tree T , for each node
u in an oriented tree T , we define T |u to be the subtree of T rooted in u con-
taining all descendants of u in T . Denote by Vv the vertices in T |v. Given

Distributed Approximation of Minimum Routing Cost Trees 133

node u, denote by rcS (T, u) the part of the routing cost RCS (T) that is due
to the edges in T |u. We define rcS(T, u) in a recusive way. In case that T |u con-
sists of only one node, T |u contains no edges that could contribute to rcS (T, u)
and we set rcS (T, u) := 0. In case that T |u contains more than one node,
we denote the children of u in T by u1, . . . , uδ(u)−1 and define rcS (T, u) :=∑δ(u)−1

i=1 rcS (T, ui) + 2 ·
∑δ(u)−1

i=1 ωG (u, ui) · |Z1
(u,ui)

(T) | · |Z2
(u,ui)

(T) |.

Note that rcS(T, u) is a measure with respect to the routing cost in T and
thus different from RCS(T |u). Besides RCS(T |u) being undefined when T |u does
not contain all nodes in S, RCS(T |u) would take only routing cost within T |u
into account.

We now formally prove that rcS (T, u) essentially describes the contribution
of edges in subtree T |u to the total routing cost and conclude:

Lemma 5. Let T be a tree rooted in node r. Then RCS(T) = rcS(T, r).

The proof of this lemma can be found in the full version of this paper [8].
Using this insight we are able to compute RCS (Tv) for all v ∈ S in parallel

recursively in a bottom-up fashion. This is by computing rcS (Tv, u) for each
u based on aggregating rcS (Tv, uj) for each of u’s children. For each v ∈ S
these computations of RCS (Tv) run in parallel. A schedule on how to do these
bottom-up computations in time O (|S|+Dω) is provided by using the inverted
entries of τ .

In more detail each node u computes for each v ∈ S the costs rcS(Tv, u) (stored
in rcS [v]) of its subtree of Tv as well as the number of nodes in Tv|u (stored in
z[v] and sends this information to its parent in Tv. When we computed Tv in
Algorithm 7.1, we connected u via edge parent_in_Tv to Tv at time τ [v]. To
avoid congestion we send information from u to its parent in Tv only at time
t = |S|+ 2D′

ω − τ [v] (Line 7). Note that this schedule differs from the one that
is implied by the computation of the trees in the sense that now only edges in
the tree are used, while more edges were scheduled while building the trees. The
edges used now in time slot t = |S|+2D′

ω − τ [v] are a subset of those scheduled
at time t = |S|+ 2D′

ω − τ [v] while constructing the trees, such that there is no
congestion from this modification.

At the same time as u sends, u receives messages from its neighbors. E.g.
neighbor ui might send rcS(Tv′ , ui) and Z1

(u,ui)
(Tv′) for another node v′. In

Lines 8 − 11 node u updates its memory depending on the received values. In
the end the node with ID 1 computes v := argminv∈V RCS (Tv) via aggregation
using T1. Node 1 informs the network that tree Tv is a 2-approximation to an
S-MRCT.

Theorem 6. The algorithm presented in this section computes all |S| values
RCS(Tv) for each node v ∈ S in time O(|S|+Dω).

Proof. Runtime: The construction of the |S| trees in Algorithm 7.1 takes at
most O (|S|+Dω) rounds as stated in Lemma 3. To forward/compute the costs
from the leaves to the roots v ∈ S in Algorithm 7.2 takes |S| + 2D′

ω since we

134 A. Hochuli, S. Holzer, and R. Wattenhofer

just use the schedule τ of this length computed in Algorithm 7.1. Thus the total
time used is O (|S|+Dω).

Correctness: We consider time slot |S|+ 2D′
ω − τ [v]. If u is a leaf of Tv, it

sends (v, 0, 1) to its parent in Tv in case u ∈ S, else it sends (v, 0, 0), which is
correct. In case u is not a leaf, each child ui has sent rcS (Tv, ui) (stored in ri) as
well as Z1

(u,ui)
(Tv) (stored in zi) to u at an earlier point in time. This is true as

time-stamp τ [v] stored in ui is always larger than time-stamp τ [v] stored in u, as
ui is a child of u. Each time u received some of these values from its children in
Tv, it updated its memory according to Lemma 5 (Lines 8−11 of Algorithm 7.2),
leading to sending the correct values rcS (Tv, u) and Z1

(parent_in_Tv ,u)
(Tv) to its

parent in Tv at time |S|+2D′
ω−τ [v]. Thus in any case u sends the correct values.

We conclude that each node v ∈ S has computed rcS(Tv, v) = RCS(Tv) after
Algorithm 7.2 has finished.

8 Proofs of Main Results

We put the tools of the previous sections together and prove the Theorems of
Section 1.

Proof. (of Theorem 2). First, Algorithms 7.1 and 7.2 are used to compute RCS(v)
for each v ∈ S. For each such node v, the value RCS(v) is stored in node v itself.
A leader node (e.g. with lowest ID, which can be found in time O(Dω)) computes
u := argminv∈V RCS(v) via aggregation using Tl, where l is the leader node. As
stated in Theorem 5 the tree Tu is a (2− 2/|S|)-approximation of a S-MRCT.
The leader node informs the network that tree Tu is a (2− 2/|S|)-approximation
to an S-MRCT. The runtime follows from Lemma 2 and the fact, that to deter-
mine u by aggregating the corresponding minimum and to broadcast u can be
done in time O(Dω).

Proof. (of Theorem 3). First we select a subset S′ ⊆ S of the size stated in
Lemma 1. Each node joins a set S′′ with probability c · s/n, where s is the
(desired) size of S′ stated in Lemma 1 and c a constant depending on a Chernoff
bound used now. Using such a Chernoff Bound, w.h.p. S′′ is of size c · s or some
constant c ≥ 1. Now all IDs of nodes in S′′ are sent to the leader who selects
and broadcasts a subset S′ of the desired size among the IDs of S′′.

From now on the algorithm works exactly as in the proof of Theorem 2,
except that the algorithm is run on S′ instead of S (it computes and aggregates
each RCS(v) for v ∈ S′ instead of S). As stated in Lemma 1, a tree Tu is
found that is a (2− 2/|S|+ β(n,D))-approximation of an S-MRCT. The leader
node informs the network that tree Tu is a (2− 2/|S|+ β(n,D))-approximation
to an S-MRCT. Choosing β(n,D) := min

{
logn
D , α(n,D)

}
yields the desired

approximation ratio of 2−2/|S|+min
{

logn
D , α(n,D)

}
, as stated in the Theorem.

Distributed Approximation of Minimum Routing Cost Trees 135

Runtime analysis: As s =
(⌈

2−2/|S|
β(n,D)

⌉
+ 1
)
·lnn, selecting a set S′′ and deriving

S′ can be done w.h.p. in time

O(D + s) = O
(
D +

(⌈
2− 2/|S|
β(n,D)

⌉
+ 1

)
· lnn

)
= O

(
D +

logn

β(n,D)

)
,

which is O
(
D + logn

α(n,D)

)
due to the choice of β. The same runtime follows from

Lemma 2 for computing the single source routing costs for all v ∈ S′. Combined
with the fact that the aggregation and broadcast of u can be done in time O(D),
the stated result is obtained.

Acknowledgment. We would like to thank Benjamin Dissler and Mohsen
Ghaffari for helpful discussions and insights.

References

1. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic ap-
plications. In: Proceedings of the 37th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 1996, Burlington, Vermont, USA, October 14-16, pp.
184–193 (1996)

2. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: Vitter, J.S.
(ed.) Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC 1998, Dallas, Texas, USA, May 23-26, pp. 161–168 (1998)

3. Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost
spanning trees. Computer Networks 52(17), 3229–3247 (2008)

4. Charikar, M., Chekuri, C., Goel, A., Guha, S.: Rounding via trees: deterministic
approximation algorithms for group steiner trees and k-median. In: Vitter, J.S.
(ed.) Proceedings of the 30th Annual ACM Symposium on Theory of Computing,
STOC 1998, Dallas, Texas, USA, May 23-26, pp. 114–123 (1998)

5. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM Journal on Computing 41(5), 1235–1265 (2012)

6. Dionne, R., Florian, M.: Exact and approximate algorithms for optimal network
design. Networks 9(1), 37–59 (1979)

7. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary
metrics by tree metrics. In: Larmore, L.L., Goemans, M.X. (eds.) Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, San
Diego, California, USA, June 9-11, pp. 448–455 (2003)

8. Hochuli, A., Holzer, S., Wattenhofer, R.: Distributed approximation of minimum
routing cost trees. Computing Research Repository CoRR, abs/1406.1244 (2014),
http://arxiv.org/abs/1406.1244

9. Holzer, S., Peleg, D., Roditty, L., Tal, E., Wattenhofer, R.: Optimal distributed all
pairs shortest paths and applications (2014), http://www.dcg.ethz.ch/
˜stholzer/APSP-full.pdf, preliminary full version of two merged papers to be
submitted to a journal). New versions available on request

http://arxiv.org/abs/1406.1244
http://www.dcg.ethz.ch/~{}stholzer/APSP-full.pdf
http://www.dcg.ethz.ch/~{}stholzer/APSP-full.pdf

136 A. Hochuli, S. Holzer, and R. Wattenhofer

10. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and appli-
cations. In: Kowalski, D., Panconesi, A. (eds.) Proceedings of the 31st Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC
2012, Funchal, Madeira, Portugal, July 16-18, pp. 355–364 (2012)

11. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Comput-
ing 3(3), 188–195 (1974)

12. Johnson, D.S., Lenstra, J.K., Rinnooy Kan, A.H.G.: The complexity of the network
design problem. Networks 8(4), 279–285 (1978)

13. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. In: Bazzi, R.A., Patt-
Shamir, B. (eds.) Proceedings of the 27th Annual ACM SIGACT-SIGOPS Sym-
posium on Principles of Distributed Computing, PODC 2008, Toronto, Ontario,
August 18-21, pp. 263–272 (2008)

14. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
To appear in: Proceedings of the 46th Annual ACM Symposium on Theory of
Computing, STOC 2014, New York, USA, May 31-June 3 (2014)

15. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

16. Peleg, D.: Low stretch spanning trees. In: Diks, K., Rytter, W. (eds.) MFCS 2002.
LNCS, vol. 2420, pp. 68–80. Springer, Heidelberg (2002)

17. Reshef, E.: Approximating minimum communication cost spanning trees and re-
lated problems. Master’s thesis, Weizmann Institute of Science, Rehovot, Israel
(1999)

18. Scott, A.J.: The optimal network problem: Some computational procedures. Trans-
portation Research 3(2), 201–210 (1969)

19. Wikipedia. Bridging (networking) (April 28, 2014),
http://en.wikipedia.org/wiki/Bridging_(networking)

20. Wong, R.T.: Worst-case analysis of network design problem heuristics. SIAM Jour-
nal of Algebraic Discrete Methods 1(1), 51–63 (1980)

21. Wu, B.Y., Chao, K.-M., Tang, C.Y.: Approximation algorithms for the shortest
total path length spanning tree problem. Discrete Applied Mathematics 105(1),
273–289 (2000)

22. Wu, B.Y., Lancia, G., Bafna, V., Chao, K.-M., Ravi, R., Tang, C.Y.: A polynomial-
time approximation scheme for minimum routing cost spanning trees. SIAM Jour-
nal on Computing 29(3), 761–778 (1999)

23. Wu, B.Y.: A polynomial time approximation scheme for the two-source minimum
routing cost spanning trees. Journal of Algorithms 44(2), 359–378 (2002)

http://en.wikipedia.org/wiki/Bridging_(networ king)

Randomized Lower Bound

for Distributed Spanning-Tree Verification�

Taisuke Izumi

Graduate School of Engineering, Nagoya Institute of Technology, Japan
t-izumi@nitech.ac.jp

Abstract. The distributed verification is the problem of deciding
whether the subgraph induced by an input edge set L has a desired prop-
erty (e.g., spanning trees, connectivity, cycle containment, and so on) or
not. In this paper, we consider the lower bounds for the distributed verifi-
cation of spanning trees and Hamiltonian paths. While the original work
of the distributed verification by Das Sarma et al. [1] has shown their
Ω̃(

√
n)-round lower bounds, that result is applied only for determinis-

tic algorithms. Recently, their randomized lower bounds are proved by
Elkin et al. [3], but the proof strategy is quite complicated. The primary
contribution of this paper is that the same randomizied lower bounds
are obtained by a simple and elementary reduction from the well-known
two-party communication complexity of the set-disjointness function. We
also show a tight lower bound for the verification problem of low-diameter
spanning trees. By a simple modification of our proof, we can show that
the randomized Ω(min{

√
n/ log n, h})-round lower bound holds for the

verification of spanning trees with diameter h. This result implies that
the naive approach (i.e., the breadth-first search along the edges in L) is
the best possible for the verification of low-diameter spanning trees.

1 Introduction

The problem of the distributed verification is stated as follows: The distributed
system is a (weighted or unweighted) network G = (V,E), and we have a subset
L of E as the input of the problem. A graph property P , such as spanning trees,
connectivity, cycle containment, and so on, is also given. The distributed veri-
fication algorithm must decide whether the graph G(L) induced by L has the
property P or not (that is, the value of P (G(L))) as fast as possible. A trivial and
universal solution for the problem is to aggregate all information about L and
decide P (G(L)) in centralized ways. If the communication bandwidth of each
link is not bounded, this approach gives an optimal-time algorithm with O(D)
rounds, where D is the diameter of G. However the assumption of so rich band-
width is far from real systems, and thus the challenge of the verification problem
is to solve it in the environment with limited bandwidth. Theoretically, such
environments are called as the CONGEST model, where processes work under

� This work is supported in part by KAKENHI No.25106507 and No.25289114.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 137–148, 2014.
c© Springer International Publishing Switzerland 2014

138 T. Izumi

the round-based synchrony, and each link can transfer O(log n)-bit messages per
one round. An importance of distributed verification problems is that they clev-
erly capture the difficulty of several graph problems in the CONGEST model,
e.g., minimum spanning tree, st-shortest path, and diameter. A lot of hardness
results for such global problems are presented as the corollaries of complexity
analyses for the distributed verification. In addition, the verification problem
itself is of interest to application sides. For example, the verification of spanning
trees, which is the problem we consider in this paper, can be used for the failure
detection of broadcast trees and routing tables.

In this paper, we focus on the distributed verification of spanning trees and
Hamiltonian paths. More precisely, we consider the lower bound for Hamilto-
nian paths because its lower bound also deduces the bound for spanning trees
by the existence of a simple reduction scheme. The paper initiating verification
problems [1] gives a general framework to obtain the lower bounds for veri-
fication problems based on the reduction from the two-party communication
complexity by Yao [19]. The two-party communication complexity is a theory
to reveal the amount of communication to compute a global function whose in-
puts are distributed among two players. The reduction framework in [1] induces
Ω(
√
n/ logn + D)-round lower bounds for many verification problems, which

includes both Hamiltonian paths and spanning trees. However, while most of
them are obtained from the two-party communication complexity for the set-
disjointness function, the verification of Hamiltonian paths and Spanning trees is
reduced from that for the equality function. It is well-known that the communica-
tion complexity for the N -bit two-party equality is Ω(N) bits only for determin-
istic protocols, but Θ(logN) bits for randomized protocols. Since Θ(logN)-bit
complexity does not suffice to lead lower bounds for verification problems, the
lower bounds for the spanning-tree and Hamiltonian-path verification derived
in [1] hold only for deterministic algorithms. Recently, Elkin et al. [3] proved
that the same lower bounds hold for the randomized cases in relation to the
context of the quantum distributed computing. Since O(

√
n log∗ n+D) rounds

suffices to verify spanning trees deterministically (which is easily deduced from
the result for the minimum-spanning tree construction by Garay et al. [5]), their
result implies that randomization does not help so much to achieve the faster
verification of spanning trees and Hamiltonian paths.

Our primary contribution is to give an elementary proof of the same ran-
domized lower bound. As we mentioned above, the proof by Elkin et al. [3] is
based on some unconventional computational models, and quite complicated. In
contrast, our proof is built on the standard framework in [1]. The core of our
proof is to provide a new reduction from the two-party set-disjointness to the
verification of Hamiltonian paths and spanning trees. Compared with the proofs
in prior work, our reduction is extremely simple and the gadget size is small,
and thus the asymptotic bound derived by our reduction has a better coefficient.
We also show a tight lower bound for the verification problem of low-diameter
spanning trees, which verifies the property of “spanning tree with diameter less
than h” for any given h. By a simple modification of our proof, we can show that

Randomized Lower Bound for Distributed Spanning-Tree Verification 139

Ω(min{√n/ logn, h})-round lower bound for the verification of spanning trees
with diameter h. This result implies that the naive algorithm, performing the
breadth-first search along the edges in L, is the best possible for verifying the
spanning trees of diameter o(

√
n/ logn).

The paper is organized as follows: In Section 2 we state the related work.
Section 3 provides the notations and definitions used in the paper. The main
result is shown in Section 4. We present a discussion for the case of low-diameter
spanning trees in Section 5. Finally the paper is concluded in Section 6.

2 Related Work

The paper by Das Sarma et al. [1] is the first one explicitly considering the dis-
tributed verification problem, which has given a general framework to lead lower
bounds and approximation hardness for a vast class of problems. It is used in sev-
eral following papers to obtain the complexity for a number of graph problems:
Weighted/unweighted diameter and all-pair shortest paths [16,7,10,11], minimum
cuts [6,13], distance sketches [10], weighted single-source shortest paths
[10,13], fast random walks [14], and so on. For most of those problems Ω̃(

√
n)-

round lower bounds are obtained, and some of themhave nearly-tight upper-bound
results, which are also considered in the papers cited above. The verification of
minimum-spanning trees is also considered by Kor et al. [9].

While the framework by Das Sarma et al. [1] pointed out a general rela-
tionship interconnecting the communication complexity theory and distributed
complexity theory, the construction of worst-case instances used in the frame-
work is much inspired by the earlier papers leading the time lower bound for the
distributed MST construction [17,12,2].

Since it is inherently difficult to lead ω(
√
n)-round lower bounds using the

same strategy, an approach proving much powerful lower bound is also con-
sidered. The paper by Frischknecht et al. [4] provided a construction of hard
instances which can potentially induce ω(

√
n)-round lower bounds, and proved

that the time lower bound for the exact computation of the unweighted diameter
is Ω(n/ logn).

3 Preliminaries

3.1 Round-Based Distributed Systems

Adistributed system consists ofn nodes interconnectedwith communication links.
We model it by a undirected graph G = (V,E), where V = {v0, v1, · · · , vn−1} is
the set of nodes, and E ⊆ V × V is the set of links (edges). The diameter of G is
denoted by D, and the set of edges incident to vi is denoted by Ii. Executions of
the system proceedwith a sequence of consecutive rounds. In each round, each pro-
cess sends a (possibly different) message to each neighbor, and within the round,
all messages are received. After receiving its messages, the process performs local
computation. Throughout this paper, we restrict the number of bits transmittable

140 T. Izumi

through any communication link per one round to O(log n) bits. This is known as
the CONGEST model.

We assume an initial knowledge for the value of n. This assumption is not
essential because it is easily realized by a standard aggregation algorithm (e.g.,
see [15]), which incurs only O(D) extra rounds.

3.2 Distributed Verification Problems

Let P be a predicate defined over all undirected graphs. We assume that an
input label is assigned to each edge in G. Let l : E → {0, 1} be the labeling
function. We define the set L of edges as L = {e | l(e) = 1}, and define G(L)
as the subgraph of G induced by L. The verification problem for predicate P is
to determine whether P (G(L)) is true or not for any labeling function l. More
precisely, each process vi initially knows the set of edges L ∩ Ii, as the input,
and after the run of the algorithm it must output the value of P (G(L)).

A concrete problem of the distributed verification is specified by its predicate
P . In this paper we consider the spanning-tree verification problem, (the corre-
sponding predicate is denoted by Pstree) and the Hamiltonian-path verification
problem (denoted by PHam). That is, Pstree(G) (resp. PHam(G)) is true if and
only if G is a tree (resp. path) of n nodes. In what follows, we often refer to each
verification problem as the corresponding predicate.

It is known that PHam is not easier than Pstree . The following theorem has
been proved:

Theorem 1 (Das Sarma et al.[1]). If some (randomized or deterministic)
algorithm can solve Pstree within t rounds, there exists an algorithm solving PHam

within t+O(D) rounds.

This theorem implies that we only have to concentrate the lower bound for
PHam and the upper bound for Pstree , which directly induces the lower bound
for Pstree and the upper bound for PHam .

4 Randomized Lower Bounds for PHam

4.1 Two-Party Communication Complexity

The communication complexity theory is first introduced by Yao [19]. Roughly
speaking, it is the theory to reveal the amount of communications to compute a
global function whose inputs are distributed over the network. The most success-
ful scenario in the communication complexity theory is the two-party communi-
cation complexity, where two players, called Alice and Bob, have N -bit strings
a = (a0, a1, · · · , aN−1) and b = (b0, b1, · · · , bN−1) respectively and compute a
global function f : {0, 1}N × {0, 1}N → {0, 1}. The communication complexity
of a two-party protocol is the number of one-bit messages exchanged by the
protocol for the worst case input (if the protocol is randomized, it is defined as
the expected number at the worst-case input). One of the most useful problems
in the communication complexity theory is the set-disjointness, which is defined
as follows:

Randomized Lower Bound for Distributed Spanning-Tree Verification 141

Definition 1. The N -bit set-disjointness function disjN : {0, 1}N × {0, 1}N →
{0, 1} is defined as follows:

disjN (a,b) =

{
1 if ∃i ∈ [0, N − 1] : ai = bi = 1,
0 otherwise

For this problem, the following theorem is known.

Theorem 2 (Kalyanasundaram and Schnitger, Razborov [8,18]). The
communication complexity of the N -bit set-disjointness problem is Ω(N).

To obtain the lower bounds, this paper uses a variation of the two-party
computation problem in distributed settings. We assume that Alice and Bob are
placed at two nodes in a network of n nodes, and have N -bit strings a and b,
respectively. It is also assumed that each node in the network (including ones
other than Alice and Bob) knows everything (i.e., the complete knowledge of
the network topology) except for the N -bit strings held by Alice and Bob. Then
all nodes must work cooperatively for outputting the value of f(a,b) as fast
as possible. In what follows, we call this problem setting the networked two-
party computation (and the networked set-disjointness problem if f = disjN).
Note that the measurement of the networked two-party computation is not the
amount of communication, but the number of rounds.

Obviously the time complexity of networked two-party computation prob-
lems relies on the target function f and the topology of the network. The core
of the reduction from the networked set-disjointness problem to the distributed
verification is the existence of a class of graphs which well transforms the com-
munication lower bound for the N -bit set-disjointness into the time lower bound
for its networked version [1]. The next subsection we look at the construction of
those graphs. For simplicity of the argument, throughout the paper, we assume
that N is a power of 2, i.e., N = 2p for some nonnegative integer p. Note that
the assumption is not essential and it is not difficult to remove it by considering
a slightly larger instance of the original N -bit instance. That is, we consider
2q-bit instances instead of N -bit ones, where q is the minimum integer satisfying
2q ≥ N . this modification does not change the asymptotic complexity we show
below.

4.2 Graph Construction

The construction shown in this subsection almost follows the result by Das Sarma
et al. [1]. Let Γ (N) be the graph we construct. It is built by the following steps:

1. We first prepare 4N paths of lengthN , each of which is denoted by Pi (0 ≤ i ≤
4N − 1). The nodes constituting Pi are identified by v(i,0), v(i,1), · · · , v(i,N−1)

from left to right.We further prepare a node v(4N,0). Edges (v(i,0), v(i+1,0)) and
(v(i,0), v(i+2,0)) are added for any i ∈ [0, 4N − 2]. Edges (v(i,N−1), v(i+1,N−1))
and (v(i,N−1), v(i+2,N−1)) are added for any i ∈ [0, 4N − 3].

142 T. Izumi

Fig. 1. An example of AT (8)

Fig. 2. The Hamiltonian path in AT (8)

2. Construct a spacial structure referred asAT (N). The base structure ofAT(N)
is a complete binary tree with N leaves. The nodes in the tree are labeled by
u0, u1, · · ·u2N−1 in the DFS order where right children always precede to the
left. We further augment several paths to make the tree have the Hamiltonian
path whose visiting order follows the node indices. Let h and h′ be the height
of ui and ui+1 in the tree, a path of length |h− h′|+ 1 is augmented between
ui and ui+1 if they are not adjacent to each other. Finally, we give an alias to
each leaf node. We refer leaf nodes as u′

0, u
′
1, · · · , u′

N−1 from left to right. An
example of AT(8) is shown in Figure 1, where the dotted lines and gray nodes
constitute the paths augmented to the complete binary tree. The Hamiltonian
path from u0 to u2N−1 is presented in Figure 2.

3. Add edges (u′
i, v(j,i)) for any i ∈ [0, N − 1] and j ∈ [0, 4N − 1].

4. Put Alice and Bob at u′
0 and u′

(N−1).

The whole construction is illustrated in Figure 3. Note that the number n of
nodes in Γ (N) is Θ(N2), and its diameter is D = O(log n). For this graph, we
can show the following theorem.

Theorem 3 (Das Sarma et al. [1]). For any algorithm solving the networked
N -bit set-disjointness in Γ (N) with high probability, its worst-case running time
is Ω(N/ logN +D) (= Ω(

√
n/ logn+D)) rounds.

While the graph used in this paper is a slightly modified version of the original
construction in [1], the theorem above is proved in the almost same way. So we
just quote it without the proof.

Randomized Lower Bound for Distributed Spanning-Tree Verification 143

���

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

length

pa
th

s

Alice

���

���

Bob

Fig. 3. Construction of Γ (N) and a simulation of imaginary nodes

4.3 Reduction

In this subsection we show a reduction from the networkedN -bit set disjointness
to PHam incurring a constant number of extra rounds. Combining this reduc-
tion with Theorem 3, we obtain the Ω(

√
n/ logn)-round lower bound for PHam .

Precisely we prove the following lemma.

Lemma 1. If PHam is solvable within r rounds with high probability, then the
networked N -bit set-disjointness problem in Γ (N) is solvable within r+1 rounds
with high probability.

Proof. Let A be an algorithm solving PHam within r expected rounds. The core
of the proof is that any instance (a,b) of the networked N -bit set-disjointness
is encoded into some instance L of PHam such that L constitutes a Hamilto-
nian path if and only if (a,b) is disjoint. Let L(a,b) is the instance for PHam

corresponding to the set-disjointness instance (a,b). The instance L(a,b) is con-
structed as follows:

1. L(a,b) contains all the edges constituting the Hamiltonian path of AT (N) in
Γ (N) and edge (u′

0, v(0,0)).
2. For any i ∈ [0, 4N − 1], all edges in Pi are included in L(a,b).
3. If a[i] = 0 (i ∈ [0, N − 1]), we add edges (v(4i+1,0), v(4i+2,0)) and

(v(4i+3,0), v(4(i+1),0)). Otherwise, we add edges (v(4i+1,0), v(4i+3,0)) and
(v(4i+2,0), v(4(i+1),0)) (Figure 4(a)).

144 T. Izumi

4. If b[i] = 0 (i ∈ [0, N − 1]), we add edges (v(4i,N−1), v(4i+1,N−1)) and
(v(4i+2,N−1), v(4i+3,N−1)). Otherwise, we add edges (v(4i+1,0), v(4i+3,0)) and
(v(4i+2,4(i+1))) (Figure 4(b)).

Let Γi(N) = (Vi, Ei) be the subgraph induced by v(4(i+1),0) and the nodes in
P4i, P4i+1, P4i+2, and P4i+3. It is not difficult to check that L(a,b) ∩ Ei is a
Hamiltonian path of Γi(N) if and only if either a[i] = 0 or b[i] = 0 holds
(see Figure 5). Thus, if a and b are disjoint, then La,b is a Hamiltonian path
(which passes through u0, u

′
0, v(0,0), v(4,0), v(8,0), · · · v(4N,0)). The final step of the

reduction is to solve the networked N -bit set disjointness problem using A.
At the first round, the node corresponding to Alice (i.e., u′

0) sends the value
a[i] to the processes v(4i,0), v(4i+1,0), v(4i+2,0), v(4i+3,0), and v(4(i+1),0) for each
i ∈ [0, N − 1]. Similarly, the node corresponding to Bob (i.e., u′

N−1) sends the
value b[i] to the processes v(4i,N−1), v(4i+1,N−1), v(4i+2,N−1), and v(4i+3,N−1)

for each i ∈ [0, N − 1]. Then all processes construct the instance La,b: The
processes v0,0, v1,0, · · · , v4N,0 and v0,N−1, v1,N−1, · · · , v4N−1,0 can respectively
identify the incident edges in La,b by the messages from Alice and Bob, and all
other processes can identify them locally. From round two, the system runs the
algorithm A solving the verification of PHam . It terminates by round r + 1 in
expectation, and the verification result decides the disjointness of a and b. �

Consequently we have the main theorem below:

Theorem 4. For any (possibly randomized) algorithm solving the networked N -
bit set-disjointness in Γ (N) with high probability, its worst-case running time is
Ω(N/ logn+D) (= Ω(

√
n/ logn+D)) rounds.

5 Verifying Low-Diameter Spanning Trees

The verification problem of low-diameter spanning trees P h
stree is defined by the

property which is true if L constitutes the spanning tree with diameter less than
or equal to h. In this section, a simple modification of the proof in Section 4
gives a Ω(min{

√
n/ logn, h})-round (randomized) lower bound for P h

stree .
Assume that h is a power of 2. Then, we consider a graph Γ h(N) for h ≤ N ,

which is almost same as Γ (N) but the only difference is that (1) the length of
Pi for each i ∈ [0, 4N − 1] is h, and (2) AT (N) is replaced by a complete binary
tree with h leaves (referred as T (N)). Then, we have the following corollary:

Corollary 1. For any algorithm solving the networked N -bit set-disjointness in
Γ h(N) with high probability, its worst-case running time is min{Ω(N/ logn), h}
rounds.

The proof of the corollary is done in the same way as Theorem 3: We also
show the lemma below, which is an analogy of Lemma 1:

Lemma 2. If P
(8h+8)
stree is solvable within r rounds with high probability, then the

networked N -bit set-disjointness problem in Γ (N) is solvable within r+1 rounds
with high probability.

Randomized Lower Bound for Distributed Spanning-Tree Verification 145

(a) Encoding at Alice

(b) Encoding at Bob

value 0 value 1

value 0 value 1

Fig. 4. The encoding of each bit at Alice and Bob

Proof. Except for the construction of L(a,b), the proof almost follows the one
for Lemma 1. The difference in the construction of L(a,b) is the three points
mentioned below:

– Exclude edge (u′
0, v(0,0)).

– All edges in T (N) are contained in L(a,b).
– Instead of the step 3 in the construction of L(a,b), we encode the value a[i]

as follows: If a[0] = 0 (i ∈ [0, N − 1]), we add edges (v(4i+1,0), v(4i+2,0)) and
(v(4i+3,0), u

′
0). Otherwise, we add edges (v(4i+1,0), v(4i+3,0)) and (v(4i+2,0, u

′
0).

Note that the encoding of b follows the original one.

The construction is illustrated in Figure 6 Letting Γ h
i (N) = (Vi, Ei) be the

subgraph induced by u′
0 and the nodes in P4i, P4i+1, P4i+2, and P4i+3, L(a,b) ∩

Ei constitutes a cycle-free spanning subgraph of Γ h
i (N) with diameter 4h + 4.

Since Γ h
0 (N), Γ h

1 (N), · · · , Γ h
N−1(N) are all connected only at the node u′

0, La,b

constitutes a spanning tree of diameter 8h + 8 if and only if (a,b) is disjoint
(note that for the part of T (N) the graph induced by L(a,b) is always a tree with
height log h). �

By the corollary and the lemma above, we lead the following theorem:

146 T. Izumi

� � � �

� � � �

Fig. 5. Four possible cases for one-bit set-disjointness

�
�
�

Alice (All edges are included in) Bob

�

�

�

�

�

�

length

Fig. 6. The construction of Γ h(N) and L(a,b) for low-diameter spanning tree verifica-
tion

Theorem 5. For any randomized algorithm solving P h
stree for any h ≤ n, its

worst-case running time is Ω(min{
√
n/ logn, h}) rounds.

Randomized Lower Bound for Distributed Spanning-Tree Verification 147

6 Concluding Remarks

In this paper, we have shown a new elementary proof of Ω(
√
n/ logn+D)-round

randomized lower bound for the spanning-tree verification problem. We have also
shown Ω(min{

√
n/ logn, h})-round lower bound for the verification problem of

low-diameter spanning trees, that is, verifying the property of “spanning tree
with diameter less than h” for any given h. This result implies that the naive
BFS-based algorithm is optimal for verifying the spanning trees of diameter
o(
√
n/ logn).

Acknowledgement. The author thank to the anonymous reviewer for pointing
out the work by Elkin et al. [3].

References

1. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: Proc. of the 43rd Annual ACM Symposium on Theory of Com-
puting, pp. 363–372 (2011)

2. Elkin, M.: An unconditional lower bound on the hardness of approximation of
distributed minimum spanning tree problem. In: Proc. the 30th ACM Symposium
on Theory of Computing (STOC), pp. 331–340 (2004)

3. Elkin, M., Klauck, H., Nanongkai, D., Pandurangan, G.: Quantum distributed
network computing: Lower bounds and techniques. In: Proc. of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC (2014)

4. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-
ameter in sublinear time. In: Proc. of the 23rd Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 1150–1162 (2012)

5. Garay, J.A., Kutten, S., Peleg, D.: A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing 27(1), 302–316
(1998)

6. Ghaffari, M., Kuhn, F.: Distributed minimum cut approximation. In: Afek, Y. (ed.)
DISC 2013. LNCS, vol. 8205, pp. 1–15. Springer, Heidelberg (2013)

7. Holzer, S., Wattenhofer, R.: Optimal distributed all pairs shortest paths and ap-
plications. In: Proc. of the 2012 ACM Symposium on Principles of Distributed
Computing (PODC), pp. 355–364 (2012)

8. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

9. Kor, L., Korman, A., Peleg, D.: Tight bounds for distributed minimum-weight
spanning tree verification. Theory of Computing Systems 53(2), 318–340 (2013)

10. Lenzen, C., Patt-Shamir, B.: Fast routing table construction using small messages:
Extended abstract. In: Proc. of the 45th Annual ACM Symposium on Theory of
Computing (STOC), pp. 381–390 (2013)

11. Lenzen, C., Peleg, D.: Efficient distributed source detection with limited band-
width. In: Proc. of the 2013 ACM Symposium on Principles of Distributed Com-
puting (PODC), pp. 375–382 (2013)

12. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed mst for constant diameter
graphs. Distributed Computing 18(6), 453–460 (2006)

148 T. Izumi

13. Nanongkai, D.: Distributed approximation algorithms for weighted shortest paths.
In: Proc. of the 46th ACM Symposium on Theory of Computing (STOC) (2014)

14. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower
bound on distributed random walk computation. In: Proc. of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC),
pp. 257–266 (2011)

15. Peleg, D.: Distributed Computing: A Locality-sensitive Approach. Society for In-
dustrial and Applied Mathematics (2000)

16. Peleg, D., Roditty, L., Tal, E.: Distributed algorithms for network diameter and
girth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 660–672. Springer, Heidelberg (2012)

17. Peleg, D., Rubinovich, V.: A near-tight lower bound on the time complexity of
distributed minimum-weight spanning tree construction. SIAM Journal on Com-
puting 30(5), 1427–1442 (2000)

18. Razborov, A.A.: On the distributional complexity of disjointness. Theoretical Com-
puter Science 106(2), 385–390 (1992)

19. Yao, A.C.-C.: Some complexity questions related to distributive computing (pre-
liminary report). In: Proc. of the 11th Annual ACM Symposium on Theory of
Computing (STOC), pp. 209–213 (1979)

Lessons from the Congested Clique Applied
to MapReduce�

James W. Hegeman and Sriram V. Pemmaraju

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
{james-hegeman,sriram-pemmaraju}@uiowa.edu

Abstract. The main results of this paper are (I) a simulation algorithm which,
under quite general constraints, transforms algorithms running on the Congested
Clique into algorithms running in the MapReduce model, and (II) a distributed
O(Δ)-coloring algorithm running on the Congested Clique which has an expected
running time ofO(1) rounds, ifΔ ≥ Θ(log4 n); andO(log log log n) rounds oth-
erwise. Applying the simulation theorem to the Congested Clique O(Δ)-coloring
algorithm yields an O(1)-round O(Δ)-coloring algorithm in the MapReduce
model.

Our simulation algorithm illustrates a natural correspondence between per-
node bandwidth in the Congested Clique model and memory per machine in the
MapReduce model. In the Congested Clique (and more generally, any network in
the CONGEST model), the major impediment to constructing fast algorithms is
the O(log n) restriction on message sizes. Similarly, in the MapReduce model,
the combined restrictions on memory per machine and total system memory have
a dominant effect on algorithm design. In showing a fairly general simulation
algorithm, we highlight the similarities and differences between these models.

1 Introduction

The CONGEST model of distributed computation is a synchronous, message-passing
model in which the amount of information that a node can transmit along an inci-
dent edge in one round is restricted to O(logn) bits [15]. As the name suggests, the
CONGEST model focuses on congestion as an obstacle to distributed computation.
Recently, a fair amount of research activity has focused on the design of distributed
algorithms in the CONGEST model assuming that the underlying communication net-
work is a clique [2,5,12,14]. Working with such a Congested Clique model completely
removes from the picture obstacles that might be due to nodes having to acquire in-
formation from distant nodes (since any two nodes are neighbors), thus allowing us to
focus on the problem of congestion alone. Making this setting intriguing is also the
fact that no non-trivial lower bounds for computation on a Congested Clique have been
proved. In fact, in a recent paper, Lenzen [12] showed how to do load-balancing deter-
ministically so as to route up to n2 messages (each of size O(log n)) in O(1) rounds

� This work is supported in part by National Science Foundation grant CCF 1318166.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 149–164, 2014.
© Springer International Publishing Switzerland 2014

150 J.W. Hegeman and S.V. Pemmaraju

in the Congested Clique setting, provided each node is the source of at most n mes-
sages and the sink for at most n messages. Thus a large volume of information can
be moved around the network very quickly and any lower-bound approach in the Con-
gested Clique setting will have to work around Lenzen’s routing-protocol result. While
Lotker et al. [13] mention overlay networks as a possible practical application of dis-
tributed computation on a Congested Clique, as of now, research on this model is largely
driven by a theoretical interest in exploring the limits imposed by congestion.

MapReduce [4] is a tremendously popular parallel-programming framework that has
become the tool of choice for large-scale data analytics at many companies such as
Amazon, Facebook, Google, Yahoo!, etc., as well as at many universities. While the
actual time-efficiency of a particular MapReduce-like implementation will depend on
many low-level technical details, Karloff et al. [9] have attempted to formalize key con-
straints of this framework to propose a MapReduce model and an associated MapRe-
duce complexity class (MRC). Informally speaking, a problem belongs to MRC if
it can be solved in the MapReduce framework using: (i) a number of machines that is
substantially sublinear in the input size, i.e., O(n1−ε) for constant ε > 0, (ii) memory
per machine that is substantially sublinear in the input size, (iii) O(poly(logn)) number
of map-shuffle-reduce rounds, and (iv) polynomial-time local computation at each ma-
chine in each round. Specifically, a problem is said to be inMRCi if it can be solved
in O(logi n) map-shuffle-reduce rounds, while maintaining the other constraints men-
tioned above. Karloff et al. [9] show that minimum spanning tree (MST) is inMRC0
(i.e., MST requires O(1) map-shuffle-reduce rounds) on non-sparse instances. Follow-
ing up on this, Lattanzi et al. [11] show that other problems such as maximal matching
(with which the distributed computing community is very familiar) are also inMRC0
(again, for non-sparse instances). We give a more-detailed description of the MapRe-
duce model in Section 1.1.

The volume of communication that occurs in a Shuffle step can be quite substantial
and provides a strong incentive to design algorithms in the MapReduce framework that
use very few map-shuffle-reduce steps. As motivation for their approach (which they
call filtering) to designing MapReduce algorithms, Lattanzi et al. [11] mention that past
attempts to “shoehorn message-passing style algorithms into the framework” have led
to inefficient algorithms. While this may be true for distributed message-passing al-
gorithms in general, we show in this paper that algorithms designed in the Congested
Clique model provide many lessons on how to design algorithms in the MapReduce
model. We illustrate this by first designing an expected-O(1)-round algorithm for com-
puting a O(Δ)-coloring for a given n-node graph with maximum degree Δ ≥ log4 n in
the Congested Clique model. We then simulate this algorithm in the MapReduce model
and obtain a corresponding algorithm that uses a constant number of map-shuffle-
reduce rounds to compute an O(Δ)-coloring of the given graph. While both of these
results are new, what we wish to emphasize in this paper is the simulation of Congested
Clique algorithms in the MapReduce model. Our simulation can also be used to obtain
efficient MapReduce-model algorithms for other problems such as 2-ruling sets [2] for
which an expected-O(log logn)-round algorithm on a Congested Clique was recently
developed.

Lessons from the Congested Clique Applied to MapReduce 151

1.1 Models

The Congested Clique Model. The Congested Clique is a variation on the more general
CONGEST model. The underlying communication network is a size-n clique, i.e.,
every pair of nodes can directly communicate with each other. Computation proceeds
in synchronous rounds and in each round a node (i) receives all messages sent to it
in the previous round; (ii) performs unlimited local computation; and then (iii) sends
a, possibly distinct, message of size O(log n) to each other node in the network. We
assume that nodes have distinct IDs that can each be represented in O(log n) bits. We
call this the Congested Clique model.

Our focus in this paper is graph problems and we assume that the input is a graph
G that is a spanning subgraph of the communication network. Initially, each node in
the network knows who its neighbors are in G. Thus knowledge of G is distributed
among the nodes of the network, with each node having a particular local view of G.
Note that G can be quite dense (e.g., have Ω(n2) edges) and therefore any reasonably
fast algorithm for the problem will have to be “truly” distributed in the sense that it
cannot simply rely on shipping off the problem description to a single node for local
computation.

The MapReduce Model. Our description of the MapReduce model borrows heavily
from the work of Karloff et al. [9] and Lattanzi et al. [11]. Introduced by Karloff et
al. [9], the MapReduce model is an abstraction of the popular MapReduce framework
[4] implemented at Google and also in the popular Hadoop open-source project by
Apache.

The basic unit of information in the MapReduce model is a (key, value)-pair. At a
high level, computation in this model can be viewed as the application of a sequence
of functions, each taking as input a collection of (key, value)-pairs and producing as
output a new collection of (key, value)-pairs. MapReduce computation proceeds in
rounds, with each round composed of a map phase, followed by a shuffle phase, fol-
lowed by a reduce phase. In the map phase, (key, value) pairs are processed individ-
ually and the output of this phases is a collection of (key, value)-pairs. In the shuffle
phase, these (key, value)-pairs are “routed” so that all (key, value)-pairs with the same
key end up together. In the last phase, namely the reduce phase, each key and all asso-
ciated values are processed together. We next describe each of the three phases in more
detail.

– The computation in the Map phase of round i is performed by a collection of map-
pers, one per (key, value) pair. In other words, each mapper takes a (key, value)
pair and outputs a collection of (key, value) pairs. Since each mapper works on
an individual (key, value) pair and the computation is entirely “stateless” (i.e., not
dependent on any stored information from previous computation), the mappers can
be arbitrarily distributed among machines. In the MapReduce model, keys and val-
ues are restricted to the word size of the system, which is Θ(log n). Because of this
restriction, a mapper takes as input only a constant number of words.

– In the Shuffle phase of round i, which runs concurrently with the Map phase (as
possible), key-value pairs emitted by the mappers are moved from the machine
that produced them to the machine which will run the reducer for which they are

152 J.W. Hegeman and S.V. Pemmaraju

destined; i.e., a key-value pair (k, v) emitted by a mapper is physically moved to the
machine which will run the reducer responsible for key k in round i. The Shuffle
phase is implemented entirely by the underlying MapReduce framework and we
generally ignore the Shuffle phase and treat data movement from one machine to
another as a part of the Map phase.

– In the Reduce phase of round i, reducers operate on the collected key-value pairs
sent to them; a reducer is a function taking as input a pair (k, {vk,j}j), where
the first element is a key k and the second is a multiset of values {vk,j}j which
comprises all of the values contained in key-value pairs emitted by mappers during
round i and having key k. Reducers emit a multiset of key-value pairs {(k, vk,l)}l,
where the key k in each pair is the same as the key k of the input.

For our purposes, the concepts of a machine and a reducer are interchangeable, because
reducers are allowed to be “as large” as a single machine on which they compute.

The MapReduce model of Karloff et al. [9] tries to make explicit three key resource
constraints on the MapReduce system. Suppose that the problem input has size n (note
that this is not referring to the input size of a particular reducer or mapper). We assume,
as do Karloff et al. [9] and Lattanzi et al. [11], that memory is measured in O(log n)-
bit-sized words.

1. Key-sizes and value-sizes are restricted to a Θ(1) multiple of the word size of the
system. Because of this restriction, a mapper takes as input only a constant number
of words.

2. Both mappers and reducers are restricted to using space consisting of O(n1−ε)
words of memory, and time which is polynomial in n.

3. The number of machines, or equivalently, the number of reducers, is restricted to
O(n1−ε).

Given these constraints, the goal is to design MapReduce algorithms that run in very
few – preferably constant – number of rounds. For further details on the justifications
for these constraints, see [9].

Since our focus is graph algorithms, we can restate the above constraints more specif-
ically in terms of graph size. Suppose that an n-node graph G = (V,E) is the input.
Following Lattanzi et al. [11], we assume that each machine in the MapReduce system
has memory η = n1+ε for ε ≥ 0. Since n1+ε needs to be “substantially” sublinear in
the input size, we assume that the number of edges m of G is Ω(n1+c) for c > ε. Thus
the MapReduce results in this paper are for non-sparse graphs.

1.2 Contributions

The main contribution of this paper is to show that fast algorithms in the Congested
Clique model can be translated via a simulation theorem into fast algorithms in the
MapReduce framework. As a case study, we design a fast graph-coloring algorithm
running in the Congested Clique model and then apply the simulation theorem to this
algorithm and obtain a fast MapReduce algorithm. Specifically, given an n-node graph
G with maximum degreeΔ ≥ log4 n, we show how to compute an O(Δ)-coloring of G
in expected O(1) rounds in the Congested Clique model. We also present an algorithm

Lessons from the Congested Clique Applied to MapReduce 153

for small Δ; for Δ < log4 n we present an algorithm that computes a Δ+1 coloring in
O(log log logn) rounds with high probability on a Congested Clique. The implication
of this result to the MapReduce model (via the simulation theorem) is that for any n-
node graph with Ω(n1+c) edges, for constant c > 0, there is a MapReduce algorithm
that runs in O(1) map-shuffle-reduce rounds using n1+ε memory per machine, for 0 ≤
ε < c and nc−ε machines. Note that the even when using n memory per machine and
nc machines the algorithm still takes O(1) rounds. This is in contrast to examples in
Lattanzi et al. [11] such as maximal matching which require O(log n) rounds if the
memory per machine is n.

The coloring algorithms in both models are new and faster than any known in the
respective models, as far as we know. However, the bigger point of this paper is the
connection between models that are studied in somewhat different communities.

1.3 Related Work

The earliest interesting algorithm in the Congested Clique model is an O(log logn)-
round deterministic algorithm to compute a minimum spanning tree, due to Lotker et
al. [13]. Gehweiler et al. [7] presented a random O(1)-round algorithm in the Con-
gested Clique model that produced a constant-factor approximation algorithm for the
uniform metric facility location problem. Berns et al. [2,3] considered the more-general
non-uniform metric facility location in the Congested Clique model and presented a
constant-factor approximation running in expected O(log logn) rounds. Berns et al. re-
duce the metric facility location problem to the problem of computing a 2-ruling set
of a spanning subgraph of the underlying communication network and show how to
solve this in O(log logn) rounds in expectation. In 2013, Lenzen presented a routing
protocol to solve a problem called an Information Distribution Task [12]. The setup for
this problem is that each node i ∈ V is given a set of n′ ≤ n messages, each of size
O(log n), {m1

i ,m
2
i , . . . ,m

n′

i }, with destinations d(mj
i) ∈ V , j ∈ {1, 2, . . . , n′}. Mes-

sages are globally lexicographically ordered by their source i, destination d(mj
i), and

j. Each node is also the destination of at most n messages. Lenzen’s routing protocol
solves the Information Distribution Task in O(1) rounds.

Our main sources of reference on the MapReduce model and for graph algorithms
in this model are the work of Karloff et al. [9] and Lattanzi et al. [11] respectively.
Besides these, the work of Ene et al. [6] on algorithms for clustering in MapReduce
model and the work of Kumar et al. [10] on greedy algorithms in the MapReduce model
are relevant.

2 Coloring on the Congested Clique

In this section we present an algorithm, running in the Congested Clique model, that
takes an n-node graph G with maximum degree Δ and computes an O(Δ)-coloring
in expected O(log log logn) rounds. In fact, for high-degree graphs, i.e., when Δ ≥
log4 n, our algorithm computes an O(Δ)-coloring in O(1) rounds. This algorithm,
which we call Algorithm HIGHDEGCOL, is the main contribution of this section. For
graphs with maximum degree less than log4 n we appeal to an already-known coloring

154 J.W. Hegeman and S.V. Pemmaraju

algorithm that computes a (Δ + 1) coloring in O(logΔ) rounds and then modify its
implementation so that it runs in O(log log logn) rounds on a Congested Clique.

We first give an overview of Algorithm HIGHDEGCOL. The reader is advised to
follow the pseudocode given in Algorithm 1 as they read the following. The algorithm
repeatedly performs a simple random trial until a favorable event occurs. Each trial
is independent of previous trials. The key step of Algorithm HIGHDEGCOL is that
each node picks a color group k from the set {1, 2, . . . , �Δ/ logn�} independently and
uniformly at random (Step 4). We show (in Lemma 1) that the expected number of
edges in the graph Gk induced by nodes in color group k is at most O(n log2 n

Δ). Of
course, some of the color groups may induce far more edges and so we define a good
color group as one that has at most n edges. The measure of whether the random trial
has succeeded is the number of good color groups. If most of the color groups are good,
i.e., if at most 2 logn color groups are not good then the random trial has succeeded and
we break out of the loop. We then transmit each graph induced by a good color group to
a distinct node in constant rounds using Lenzen’s routing scheme [12] (Step 11). Note
that this is possible because every good color group induces a graph that requires O(n)
words of information to completely describe. Every node that receives a graph induced
by a good color group locally computes a proper coloring of the graph using one more
color than the maximum degree of the graph it receives (Step 12). Furthermore, every
such coloring in an iteration employs a distinct palette of colors. Since there are very
few color groups that are not good, we are able to show that the residual graph induced
by nodes not in good color groups has O(n) edges. As a result, the residual graph can
be communicated in its entirety to a single node for local processing. This completes
the coloring of all nodes in the graph.

We now analyze Algorithm HIGHDEGCOL and show that (i) it terminates in
expected-O(1) rounds and (ii) it uses O(Δ) colors. Subsequently, we discuss an
O(log log logn) algorithm to deal with the small Δ case.

Lemma 1. For each k, the expected number of edges in Gk is n log2 n
2Δ .

Proof: Consider edge {u, v} in G. The probability that both u and v choose color

group k is at most logn
Δ · logn

Δ = log2 n
Δ2 . Since G has at most 1

2Δ ·n edges, the expected

number of edges in Gk is at most n log2 n
2Δ . �

Lemma 2. The expected number of color-group graphs Gk having more than n edges
is at most logn.

Proof: By Lemma 1 and Markov’s inequality, the probability that color group k has
more than n edges is at most n log2 n

2Δ·n = log2 n
2Δ . Since there are �Δ/ logn� groups, the

expected number of Gk having more than n edges is bounded above by 2 Δ
logn ·

log2 n
2Δ =

logn. �

Lemma 3. With high probability, every color group has 5n logn
Δ nodes.

Proof: The number of color groups is �Δ/ logn�. Thus, for any k, the expected number
of nodes in Gk , denoted |V (Gk)|, is at most n· logn

Δ . An application of a Chernoff bound

Lessons from the Congested Clique Applied to MapReduce 155

Algorithm 1. HIGHDEGCOL

Input: An n-node graph G = (V,E), of maximum degree Δ
Output: A proper node-coloring of G using O(Δ) colors

1. Each node u in G computes and broadcasts its degree to every other node v in G.
2. If Δ ≤ log4 n then use Algorithm LOWDEGCOL instead.
3. while true do
4. Each node u chooses a color group k from the set {1, 2, . . . ,
Δ/ log n�} independently

and uniformly at random.
5. Let Gk be the subgraph of G induced by nodes of color group k.
6. Each node u sends its choice of color group to all neighbors in G.
7. Each node u computes its degree within its own color-group graph Gku and sends its

color group and degree within color group to node 1.
8. Node 1, knowing the partition of G into color groups and also knowing the degree of

every node u (u ∈ Gk) within the induced subgraph Gk, can compute the number
of edges in Gk for each k. Thus node 1 can determine which color-group graphs Gk

are good, i.e., have at most n edges.
9. If at most 2 log n color-group graphs are not good, node 1 broadcasts a “break”

message to all nodes causing them to break out of loop;
endwhile

10. Node 1 informs every node u in a good group of the fact that u’s color group is good
11. Using Lenzen’s routing protocol, distribute all information about all good color-group

graphs Gk to distinct nodes of G.
12. For each good Gk, the recipient of Gk computes a coloring of Gk using Δ(Gk) + 1 colors.

The color palette used for each Gk is distinct.
13. The residual graph G of uncolored nodes has size O(n) with high probability, and can thus

be transmitted to a single node (for local proper coloring) in O(1) rounds.
14. Each node that locally colors a subgraph informs each node in the subgraph the color it has

been assigned.

then gives, for each k,

P

(
|V (Gk)| > 5n · logn

Δ

)
≤ 2−5n· log n

Δ < 2−5 log n =
1

n5

Taking the union over all k completes the proof. �

Lemma 4. With high probability, no node u in G has more than 5 logn neighbors in
any color group.

Proof: Node u has maximum degreeΔ, so for any k, the expected number of neighbors
of u which choose color group k is bounded above by logn. Therefore, applying a
Chernoff bound gives

P (|N(u) ∩Gk| > 5 logn) ≤ 2−5 logn =
1

n5

Taking the union over all k and u shows that, with probability at least 1 − 1
n3 , the

assertion of the lemma holds. �

156 J.W. Hegeman and S.V. Pemmaraju

Lemma 5. The residual graph G, induced by groups that are good, has O(n) edges,
with high probability.

Proof: The residual graph G is a graph induced by at most 2 logn color groups, since
the algorithm is designed to terminate only when it has performed a trial resulting in at
most 2 logn groups that are not good. With high probability, no node u in G has more
than 5 logn neighbors in any of the (at most) 2 logn color groups that make up G, so
therefore with high probability no node u has degree greater than 10 log2 n in G. Since
G has at most (2 logn) · 5n logn

Δ nodes with high probability, it follows that the number
of edges in G is at most

(2 logn) · 5n logn

Δ
· 10 log2 n =

100n log4 n

Δ

which is O(n) when Δ ≥ log4 n. �

Lemma 6. Algorithm HIGHDEGCOL runs in a constant number of rounds, in expecta-
tion.

Proof: By Lemma 2 and Markov’s inequality, the expected number of color-group par-
titioning attempts required before the number of “bad” color groups (i.e., color groups
whose induced graphs Gk contain more than n edges) is less than or equal to 2 logn is
two. It is easy to verify that each iteration of the while-true loop requires O(1) rounds
of communication.

When Δ ≥ log4 n, the residual graph G is of size O(n) with high probability, and
can thus be communicated in its entirety to a single node in O(1) rounds. That single
node can then color G deterministically using Δ+1 colors and then inform every node
of G of its determined color in one further round. �

Lemma 7. Algorithm HIGHDEGCOL uses O(Δ) colors.

Proof: A palette of size O(log n) colors suffices for each good color group because
we showed in Lemma 4 that with high probability the maximum degree in any color
group is 5 logn. Since there are a total of �Δ/ logn� color groups and we use a distinct
palette of size O(log n) for each good color group, we use a total of O(Δ) colors for
the good color groups. The residual graph induced by not-good color groups is colored
in the last step and it requires an additional O(Δ) colors. �

Coloring low-degree graphs. Now we describe an algorithm that we call LOWDEGCOL

that, given an n-node graph G with maximum degree Δ, computes a proper (Δ +
1)-coloring with high probability in O(log log log n) rounds in the Congested Clique
model. The first phase of the algorithm is the simple, natural, randomized coloring
algorithm first analyzed by Johannson [8] and more recently by Barenboim et al. [1].
Each node u starts with a color palette Cu = {1, 2, . . . , Δ + 1}. In each iteration,
each as-yet uncolored node u makes a tentative color choice c(u) ∈ Cu by picking a
color from Cu independently and uniformly at random. If no node in u’s neighborhood
picks color c(u) then u colors itself c(u) and c(u) is deleted from the palettes of all

Lessons from the Congested Clique Applied to MapReduce 157

neighbors of u. Otherwise, u remains uncolored and participates in the next iteration of
the algorithm.

Barenboim et al. [1] show (as part of the proof of Theorem 5.1) that if the above al-
gorithm is run for O(logΔ) iterations, then with high probability the uncolored nodes
induce connected components of size O(poly(log n)). Since we are considering a situa-
tion in which Δ < log4 n, this translates to using O(log logn) iterations to reach a state
with small connected components. Once all connected components become polyloga-
rithmic in size, then things become quite easy and in the second phase of our algorithm,
each connected component is shipped off to a single node to be colored locally. Since
each connected component has O(poly(logn)) edges, this phase can be completed in
O(1) rounds.

The first phase in the above described algorithm takes O(log logn) rounds with high
probability. But, notice that this algorithm uses only the edges of G – the graph being
colored – for communication. By utilizing the entire bandwidth of the underlying clique
communication network, it is possible to speed up this algorithm significantly. The
trick to doing this is to gather, at each node u, all information needed by node u to
execute the algorithm locally. Since we are interested in running O(logΔ) iterations
of the algorithm, the information needed by each node u is all the color choices made
in O(logΔ) iterations by all nodes within O(logΔ) hops in G from u. There are at
most ΔO(logΔ) nodes with O(logΔ) hops from u. Also, each node picks a color from
{1, 2, . . . , Δ + 1} and thus the O(logΔ) color choices can be encoded in O(log2 Δ)
bits. Since Δ < log4 n, ΔO(logΔ) = o(n) and O(log2 Δ) = O(log n). Thus each node
u needs to gather a single word of information each from o(n) nodes. This could be done
in O(1) rounds using Lenzen’s routing protocol [12] except for the fact that the nodes
do not know hop distances in G and therefore do not know which nodes to exchange
information with. However, we can leverage the fact that Δ < log4 n and use a “ball
growing” algorithm running in O(log log logn) rounds to gather relevant information
at each node u. More specifically, suppose that at some point in the algorithm, each
node u knows all relevant information about all nodes within t hops from it. Then, by
using Lenzen’s routing protocol, each node can learn all relevant information about all
nodes within 2t hops from it in O(1) additional rounds. Since Δ < log4 n and t =
O(log logn) the pre-conditions for applying Lenzen’s routing protocol are satisfied.
Also, since t = O(log logn), the algorithm terminates in O(log log logn) rounds. This
discussion leads to the following theorem.

Lemma 8. Given an n-node graph G with maximum degree Δ ≤ log4 n, Algorithm
LOWDEGCOL computes a proper (Δ + 1)-coloring in O(log log logn) rounds in the
Congested Clique model.

Combining Lemmas 6 and 7 along with Lemma 8 gives the following theorem.

Theorem 1. Given an n-vertex input graph G = (V,E) with maximum degree Δ ≥
log4 n, Algorithm HIGHDEGCOL computes an O(Δ)-coloring in O(1) rounds (in ex-
pectation) in the Congested Clique model. For arbitrary Δ, an O(Δ)-coloring can be
computed in O(log log logn) rounds in expectation in the Congested Clique model.

158 J.W. Hegeman and S.V. Pemmaraju

3 MapReduce Algorithms from Congested Clique Algorithms

In this section, we prove a simulation theorem establishing that Congested Clique al-
gorithms (with fairly weak restrictions) can be efficiently implemented in the MapRe-
duce model. The simulation ensures that a Congested Clique algorithm running in T
rounds can be implemented in O(T) rounds (more precisely, 3 · T + O(1) rounds) in
the MapReduce model, if certain communication and “memory” conditions are met.
The technical details of this simulation are conceptually straightforward, but the details
are a bit intricate.

We will now precisely define restrictions that we need to place on Congested Clique
algorithms in order for the simulation theorem to go through. We assume that each node
in the Congested Clique possesses a word-addressable memory whose words are in-
dexed by the natural numbers. For an algorithmACC running in the Congested Clique,
let I(j)u ⊂ N be the set of memory addresses used by node u during the local computa-
tion in round j (not including the sending and receipt of messages).

After local computation in each round, each node in the Congested Clique may send
(or not send) a distinct message of size O(log n) to each other node in the network.
In defining notation, we make a special distinction for the case where a node u sends
in the same message to every other node v in a particular round; i.e., node u sends a
broadcast message. The reason for this distinction is that broadcasts can be handled
more efficiently on the receiving end in the MapReduce framework than can distinct
messages sent by u. Let m(j)

u,v denote a message sent by node u to node v in round j

and let D(j)
u ⊆ V be the set of destinations of messages sent by node u in round j. Let

M
(j)
u = {m(j)

u,v : v ∈ D
(j)
u ⊂ V } be the set of messages sent by node u in round j of

algorithm ACC , except let M (j)
u = ∅ if u has chosen to broadcast a message b

(j)
u in

round j. Similarly, let M
(j)

u = {m(j)
v,u : u ∈ D

(j)
v and v is not broadcasting in round j}

be the set of messages received by node u in round j, except that we exclude messages
b
(j)
v from nodes v that have chosen to broadcast in round j. We say that ACC , running

on an n-node Congested Clique, is (K,N)-lightweight if

(i) for each round j (in the Congested Clique),
∑

u∈V (|M
(j)

u |+ |I
(j)
u |) = O(K);

(ii) there exists a constant C such that for each round j and for each node u, I(j)u ⊆
{1, 2, . . . , �C ·N�}; and

(iii) each node u performs only polynomial-time local computation in each round.

In plain language: no node uses more than O(N) memory for local computation during
a round; the total amount of memory that all nodes use and the total volume of messages
nodes receive in any round is bounded by O(K). Regarding condition (iii), traditional
models of distributed computation such as the CONGEST and LOCAL models allow
nodes to perform arbitrary local computation (e.g., taking exponential time), but since
the MapReduce model requires mappers and reducers to run in polynomial time, we
need this extra restriction.

Theorem 2. Let ε, c satisfy 0 ≤ ε ≤ c, and let G = (V,E) be a graph on n ver-
tices having O(n1+c) edges. If ACC is a (n1+c, n1+ε)-lightweight Congested Clique-
model algorithm running on input G in T rounds, thenACC can be implemented in the

Lessons from the Congested Clique Applied to MapReduce 159

MapReduce model with nr = nc−ε machines and mr = Θ(n1+ε) (words of) memory
per machine such that the implementation runs in O(T) Map-Shuffle-Reduce rounds on
G.

Proof: The simulation that will prove the above theorem contains two stages: the Ini-
tialization stage and the Simulation stage. In the Initialization stage, the input to the
MapReduce system is transformed from the assumed format (an unordered list of edges
and vertices of G) into a format in which each piece of information, be it an edge, node,
or something else, that is associated with a node of G is gathered at a single machine.
After this gathering of associated information has been completed, the MapReduce sys-
tem can emulate the execution of the Congested Clique algorithm.

Initialization. stage. Input (in this case, the graph G) in the MapReduce model is as-
sumed to be presented as an unordered sequence of tuples of the form (∅, u), where
u is a vertex of G, or (∅, (u, v)), where (u, v) is an edge of G. The goal of the Ini-
tialization stage is to partition the input G among the nr reducers such that each re-
ducer r receives a subset Pr ⊆ V and all edges Er incident on nodes in Pr such
that |Pr| + |Er| is bounded above by O(n1+ε). This stage can be seen as consisting
of two tasks: (i) every reducer r learns the degree degG(u) of every node u in G and
(ii) every reducer computes a partition (the same one) given by the partition function
F0 : V −→ {1, 2, . . . , nr}, defined by

F0(x) =

⎧⎪⎨⎪⎩
1, if x = 1

F0(x− 1), if
∑

v∈L(x) degG(v) ≤ n1+ε,

F0(x− 1) + 1, otherwise

Here L(x) = {j < x : F0(j) = F0(x − 1)}. All nodes in the same group in the
partition are mapped to the same value by F0. Since the degree of each node is bounded
above by n, it is easy to see that for any r ∈ {1, 2, . . . , nr}, F−1

0 (r) is a subset of
nodes of G such that |F−1

0 (r)| +
∑

u∈F−1
0 (r) degG(u) is O(n1+ε). Each of the two

tasks mentioned above can be implemented in a (small) constant number of MapReduce
rounds as follows.

In Map Phase 1, each node and each edge in the input is mapped to a reducer chosen
uniformly at random. With high probability each reducer receives O(n1+ε) nodes and
edges. Let Er be the edges received by reducer r. Each reducer r computes a “partial
degree” du,r of each node u with respect to Er, i.e., the number of edges in Er incident
on u. In Map Phase 2, each dr,u is mapped to reducer u mod nr. (Here u refers to a
numeric ID and therefore u mod nr reduces this ID to the space {0, 1, . . . , nr − 1}.)
Since there are nr = nc−ε reducers, there are a total of O(n1+c−ε) dr,u values and thus
each reducer is the destination of O(n) such values. Each reducer r then aggregates
the partial degrees that it receives into degG(u) values; note that all partial degrees
associated with a node u are sent to the same reducer. In Map Phase 3, each node degree
is mapped to each reducer. Then each reducer r, knowing all node degrees, computes
the partition function F0 defined above. In Map Phase 4, which is the final phase of the
Initialization stage, nodes and edges are mapped to reducers according to the partition
function F0.

160 J.W. Hegeman and S.V. Pemmaraju

Simulation. stage. At a high level, a Reduce phase serves as the “local computation”
phase of the Congested Clique simulation, whereas a Map phase (together with the
subsequent shuffle phase) serves as the “communication” phase of the simulation. How-
ever, there is, in general, a constant-factor slow-down because it may be that the sending
and receiving of messages inACC could cause the subset of nodes assigned to a reducer
to aggregate more than O(n1+ε) memory, necessitating a re-partitioning of the nodes
among the reducers so as not to violate the memory-per-machine constraint.

Recall that I(i)u denotes the set of memory addresses used by a node u in round i of
ACC . Let h(i)

u,j be the value of word j ∈ I
(i)
u in the memory of node u after node u has

completed local computation in round i of ACC , but before messages have been sent
and received in this round. For i > 0, define a tuple set

H(i)
u = {(Fi(u), (u, i, h

(i)
u,j)) : j ∈ I(i)u }

where Fi(·) is the partition function used in round i. Like F0, defined in the Initial-
ization stage, Fi partitions G into nr groups, one per reducer, so that reducer memory
constraints are not violated in round i. The collection of tuples H(i−1)

u is a representa-
tion, in the MapReduce key-value format, of the information necessary to simulate the
computations of node u in round i of the Congested Clique algorithm ACC . The use
of Fi(u) as the key in each of the tuples in H(i)

u ensures that all information needed
to simulate a local computation at u in ACC goes to the same reducer. Additionally,
note that the inclusion of the identifier of u with the values allows the words from u’s
memory to be reassembled and distinguished from information associated with other
nodes v ∈ F−1

i (u). We assume thatH(0)
u is the information in tuple format that node u

has initially about graph G. In other words, H(0)
u = {(F0(u), u)} ∪ {(F0(u), (u, v)) :

v is a neighbor of u}.
Once an initial partition function F0(·) has been computed and the initial collec-

tions H(0)
u have been assembled the main goals of our simulation algorithm are to (i)

provide a mechanism for transforming H(i−1)
u into H(i)

u during the reduce phase of a
MapReduce round; and (ii) provide a means of transmitting messages to reducers of a
subsequent round (corresponding to messages transmitted in the Congested Clique at
the end of each round). Since we assume messages to be sent and received after local
computation has occurred during a Congested Clique round,M(i)

u can be determined

fromH(i)
u ; in turn,H(i)

u is a function ofH(i−1)
u andM(i−1)

u .
We describe the details of the simulation of a single round (round i) of a Congested

Clique algorithm ACC below. Let j = 3i − 1. Round i of ACC is simulated by three
MapReduce rounds (a total of six Map or Reduce phases) – Reduce j − 1, Map j,
Reduce j, Map j + 1, Reduce j + 1, and Map j + 2. We assume inductively that as
input to Reduce phase j − 1 below, each reducer receives, in addition to data tuples,
O(n) metadata tuples containing a description of a partition function Fi−1(·) such that

for each r,
∑

u∈Pr
(|H(i−1)

u |+ |M(i−1)

u |) = O(n1+ε), where Pr = F−1
i−1(r).

– Reduce phase j−1: In Reduce phase j−1, a reducer r receives input consisting of

H(i−1)
u together withM(i−1)

u for each u ∈ Pr; for each such u, reducer r performs
the following steps:

Lessons from the Congested Clique Applied to MapReduce 161

(i) Reducer r simulates the local computation of Round i of ACC at u.

(ii) Reducer r computes H(i)
u from H(i−1)

u and M(i−1)

u , but does not yet output

any tuples of H(i)
u ; rather, reducer r outputs only a tuple (r, u, su) containing

the size of the information su = |H(i)
u |.

(iii) Reducer r computesM(i)
u fromH(i)

u , but again, does not output any elements
ofM(i)

u . Reducer r then computes, for each v ∈ V , the aggregate count cr,v
of messages emanating from nodes in Pr and destined for v, and outputs the
tuple (r, v, cr,v).

(iv) Reducer r outputs the exact same tuples it received as input,H(i−1)
u andM(i−1)

u .
– Map phase j: Before message tuples can be generated and aggregated (as a col-

lection M
(i)

u at reducer F (u)) a rebalancing of the nodes to reducers must be
performed to ensure that the reducer-memory constraint is not violated. In Map

phase j, a mapper forwards tuples from either a H(i−1)
u or aM(i−1)

u through un-
changed. However, for each tuple of the form (r, u, cr,u), a mapper outputs the
tuple (u mod nr, u, cr,u). In addition, for each tuple of the form (r, u, su), a map-
per outputs nr tuples (r′, u, su) – one for each reducer r′ – so that every reducer

can know the future size ofH(i)
u .

– Reduce phase j: In Reduce phase j, a reducer r receives as input nearly the exact
same input (and output) of reducer r in the previous MapReduce round – the union

of H(i−1)
u andM(i−1)

u for each u ∈ Pr – except that instead of receiving tuples of
the form (r, u, cr,u) for each u ∈ V , reducer r receives all partial message counts
for the subset of vertices u for which u mod nr = r; as well, each reducer receives
n tuples of the form (r, u, su) describing the amount of memory required by node
u in round i of ACC . Reducer r aggregates tuples of the form (u mod nr, u, cr,u)

and outputs (r, u, |M (i)

u |), since |M (i)

u | is precisely the sum of the partial message
counts cr,u. (Notice that a reducer r receivesO(n) such tuples.) Reducer r forwards
all other tuples through unchanged to the next MapReduce round.

– Map phase j + 1: In Map phase j + 1, a mapper continues to forward all tuples
through unchanged to Reduce phase j + 1, except that for each tuple of the form

(r, u, |M (i)

u |), a mapper outputs nr tuples (r′, u, |M (i)

u |) – one for each reducer r′.
In this way, each reducer in Reducer phase j + 1 can come to know all n message
counts for each node u ∈ V .

– Reduce phase j + 1: In Reduce phase j + 1, each reducer receives all n message
counts (for each node u ∈ V) in addition to the sizes su of the state needed by each
node u in round i of ACC . Each reducer thus has enough information to determine
the next partition function Fi : V −→ {1, . . . , nr}, defined by

Fi(x) =

⎧⎪⎨⎪⎩
1, if x = 1

Fi(x− 1), if
∑

v∈L(x)(sv + |M
(i)

v |) ≤ n1+ε,

Fi(x− 1) + 1, otherwise

Here L(x) = {v | v < x and Fi(v) = Fi(x − 1)}. After determination of the new
partition function Fi, reducers are now able to successfully output the “packaged

162 J.W. Hegeman and S.V. Pemmaraju

memory”H(i)
u of round i of ACC , as well as the new messages m(i)

u,v sent in round
i, because the new partition function Fi is specifically designed to correctly load-
balance these tuple sets across the reducers while satisfying the memory constraint.
Therefore:
(i) Reducer r now simulates the local computation at each u ∈ Pr and thus outputs

the setH(i)
u (which can be computed fromH(i−1)

u andM(i−1)

u). It is important
to recall here that because mappers operate on key-value pairs one at a time
in the MapReduce model, there is no restriction on the size of the output from
any reducer r in any MapReduce round (other than that it be polynomial). [9]
Therefore, a reducer r may output (and thus free-up its memory) each tuple set
H(i)

u as it is created (as reducer r processes the nodes in Pr one at a time), and
so there is no concern about reducer r attempting to maintain in memory all sets
H(i)

u for u ∈ Pr at once. Note that H(i)
u , as generated by a reducer r, should

contain tuples of the form (r, Fi(u), u, h
(i)
u,l) so that mappers in MapReduce

round j+2 can correctly deliverH(i)
u to reducer Fi(u). Recall that h(i)

u,l denotes
the contents of the word with address l in node u’s memory at the end of local
computation in round i.

(ii) As a reducer r processes, and simulates the computation at, each node u ∈
Pr one at a time, generating H(i)

u , reducer r also uses H(i)
u to generate the

messages M (i)
u to be sent by node u in round i ofACC . Reducer r encapsulates

M
(i)
u in the tuple setM(i)

u and outputs it alongside H(i)
u before moving on to

the next node in Pr. As withH(i)
u , tuples inM(i)

u should initially be generated
by a reducer r in the form (r, Fi(v), u, v,m

(i)
u,v) so that mappers in MapReduce

round j + 2 can correctly deliver the setM(i)

v to reducer Fi(v).
(iii) Lastly regarding the simulation procedure, whenever a node u ∈ Pr being

simulated broadcasts a message b(i)u , reducer r outputs the tuple (r, u, b(i)u).
(iv) After simulation of each node u ∈ Pr is complete, reducer r also outputs a

description of the new partition function Fi.
– Map j+2: In Map phase j+2, a mapper simply transforms the key in a data tuple

as appropriate: for each tuple (r, Fi(u), u, h
(i)
u,l), a mapper simply emits the tuple

(Fi(u), u, h
(i)
u,l); for each tuple (r, Fi(v), u, v,m

(i)
u,v), a mapper simply emits the

tuple (Fi(v), u, v,m
(i)
u,v). The exception to this is that tuples (r, u, b(i)u) containing

broadcast messages are expanded: for each, a mapper emits nr tuples (r′, u, b(i)u) –
one for each reducer r′ – so that every reducer in Reducer phase j + 2 receives a
single copy of each message broadcast during round i of ACC .

– Tuples carrying metadata describing the (new) partition function Fi are forwarded
unchanged, because there already exists one copy of each such metadata tuple for
each reducer, and there need be only one such copy per reducer as well. After Map

phase j+2, tuples from the setsH(i)
u andM(i)

u have been emitted with keys Fi(u),

and for each broadcast message b
(i)
u , one tuple containing a copy of b(i)u has been

emitted for each reducer as well; thus, in Reduce phase j + 2, simulation of round
i+ 1 of algorithmACC can begin.

Lessons from the Congested Clique Applied to MapReduce 163

It remains to comment on the memory-per-machine constraint which must be sat-
isfied during each MapReduce round. Observe that, inductively, for each r, the sum∑

u∈Pr
(|H(i−1)

u |+ |M(i−1)

u |) = O(n1+ε). These data tuples are forwarded unchanged
until Reduce phase j + 1, in which the new partition function Fi(·) for the next round

of simulation is computed, and then collectively H(i−1)
u andM(i−1)

u are transformed
into H(i)

u andM(i)
u . By construction of the partition functions Fi−1 and Fi, and by the

assumption thatACC is a (n1+c, n1+ε)-lightweight algorithm, it follows that these data
tuples are never present on any reducer a number that exceeds Θ(n1+ε). Secondly, it
should be mentioned that because broadcast messages are not duplicated at any reducer
r, no reducer will ever receive more than n = O(n1+ε) tuples containing broadcast
messages. Thirdly, tuples containing state or message counts are never present in a num-
ber exceeding n at any reducer, and partial message counts are explicitly load-balanced
so that only O(n) such information is passed to a single reducer as well. Finally, meta-
data tuples describing a partition function never exceed Θ(n) on any reducer because
the domain of each partition function has size n. �

4 Coloring in the MapReduce Framework

Using the simulation theorem of Section 3, we can simulate Algorithm HIGHDEGCOL

in the MapReduce model and thereby achieve an O(Δ)-coloring MapReduce algorithm
running in expected-O(1) rounds. As in Lattanzi et al. [11], we consider graphs with
Ω(n1+c) edges, c > 0.

Theorem 3. When the input graph G has Ω(n1+c) edges, and 0 ≤ ε < c, there ex-
ists an O(Δ)-coloring algorithm running in the MapReduce model with Θ(nc−ε) ma-
chines and Θ(n1+ε) memory per machine, and having an expected running time of
O(1) rounds.

Proof: It is easy to examine the lines of code in Algorithm HIGHDEGCOL to ascertain
that the total amount of non-broadcast communication in any round in bounded above
by O(n1+c). Specifically, the total non-broadcast communication corresponding to only
two lines of code – Lines 6 and 11 – can be as high as Θ(n1+c). For all other lines of
code, the volume of total non-broadcast communication is bounded by O(n). Similarly,
it is easy to examine the lines of code in Algorithm HIGHDEGCOL to verify that the
total memory (in words) used by all nodes for their local computations in any one
round is bounded above by O(n1+c). Finally, it is also easy to verify that the maximum
amount of memory used by a node in any round of computation is O(n).

Thus, Algorithm HIGHDEGCOL is an (n1+c, n)-lightweight algorithm on a Con-
gested Clique and applying the Simulation Theorem (Theorem 1) to this algorithm
yields the claimed result. �
It is worth emphasizing that the result holds even when ε = 0; in other words, even
when the per machine memory is O(n), the algorithm can compute an O(Δ)-coloring
in O(1) rounds. This is in contrast with the results in Lattanzi et al. [11], where O(1)-
round algorithms were obtained (e.g., for maximal matching) with n1+ε per machine
memory, only when ε > 0. In their work, setting ε = 0 (i.e., using Θ(n) memory per
machine) resulted in O(log n) round algorithms.

164 J.W. Hegeman and S.V. Pemmaraju

References

1. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry
breaking. In: Proc. of IEEE FOCS (2012)

2. Berns, A., Hegeman, J., Pemmaraju, S.V.: Super-Fast Distributed Algorithms for Metric Fa-
cility Location. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part II. LNCS, vol. 7392, pp. 428–439. Springer, Heidelberg (2012)

3. Berns, A., Hegeman, J., Pemmaraju, S.V.: Super-Fast Distributed Algorithms for Metric Fa-
cility Location. CoRR, abs/1308.2473 (August 2013)

4. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

5. Dolev, D., Lenzen, C., Peled, S.: “Tri, tri again”: Finding triangles and small subgraphs in
a distributed setting. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 195–209.
Springer, Heidelberg (2012)

6. Ene, A., Im, S., Moseley, B.: Fast clustering using mapreduce. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
2011, pp. 681–689. ACM, New York (2011)

7. Gehweiler, J., Lammersen, C., Sohler, C.: A Distributed O(1)-approximation Algorithm for
the Uniform Facility Location Problem. In: Proceedings of the Eighteenth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA 2006, pp. 237–243.
ACM, New York (2006)

8. Johansson, Ö.: Simple distributed (δ + 1)-coloring of graphs. Inf. Process. Lett. 70(5), 229–
232 (1999)

9. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce. In: Proceed-
ings of the Twenty-first Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pp. 938–948. Society for Industrial and Applied Mathematics, Philadelphia (2010)

10. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in mapreduce
and streaming. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2013, pp. 1–10. ACM, New York (2013)

11. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: A method for solving graph
problems in mapreduce. In: Proceedings of the Twenty-third Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2011, pp. 85–94. ACM, New York
(2011)

12. Lenzen, C.: Optimal Deterministic Routing and Sorting on the Congested Clique. In: Pro-
ceedings of the 2013 ACM Symposium on Principles of Distributed Computing, PODC
2013, pp. 42–50 (2013)

13. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for Constant Diameter Graphs. Dis-
tributed Computing 18(6), 453–460 (2006)

14. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting: Extended ab-
stract. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC 2011, pp. 249–256. ACM, New York (2011)

15. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach, vol. 5. Society for Indus-
trial Mathematics (2000)

Oblivious Rendezvous

in Cognitive Radio Networks

Zhaoquan Gu1, Qiang-Sheng Hua1,
Yuexuan Wang2, and Francis Chi Moon Lau2

1 Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, P.R. China

2 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong, P.R. China

Abstract. Rendezvous is a fundamental process in the operation of a
Cognitive Radio Network (CRN), through which a secondary user can
establish a link to communicate with its neighbors on the same frequency
band (channel). The licensed spectrum is divided into N non-overlapping
channels, and most previous works assume all users have the same label
for the same channel. This implies some degree of centralized coordina-
tion which might be impractical in distributed systems such as a CRN.
Thus we propose Oblivious Rendezvous where the users may have differ-
ent labels for the same frequency band.

In this paper, we study the oblivious rendezvous problem for M users
(ORP-M for short) in a multihop network with diameterD. We first focus
on the rendezvous process between two users (ORP-2) and then extend the
derived algorithms to ORP-M. Specifically, we give anΩ(N2) lower bound
for ORP-2, and propose two deterministic distributed algorithms solving
ORP-2. The first one is the ID Hopping (IDH) algorithm which generates
a fixed length sequence and guarantees rendezvous in O(N max{N,M})
time slots; it meets the lower bound when M = O(N). The second one is
theMulti-Step Hopping (MSH) algorithm which guarantees rendezvous in
O(N2 logN M) time slots by combing ID scaling and hopping with differ-
ent steps; it meets the lower bound if M can be bounded by a polynomial
function ofN , which is true of large scale networks. The two algorithms are
also applicable to non-oblivious rendezvous and the performance is com-
parable to the state-of-the-art results. Then we extend the algorithms to
ORP-M with bounded rendezvous time by increasing the diameterD by a
factor.

1 Introduction

1.1 Rendezvous and Oblivious Rendezvous

Cognitive Radio Network (CRN) is attracting more and more attention in both
academia and industry, which was proposed to solve the spectrum scarcity prob-
lem [1]. A CRN consists of primary users (PUs) which own the licensed spectrum
and secondary users (SUs) which can sense and access the portion of the licensed

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 165–179, 2014.
c© Springer International Publishing Switzerland 2014

166 Z. Gu et al.

spectrum left unused by the PUs. Unless otherwise specified, ‘user’ in this paper
refers to SU.

There have been many interesting works in the CRN community tackling
such problems as neighbor discovery [10, 27], broadcasting [16, 25], data gath-
ering [7], and routing [15]. All these works assume one fundamental process in
the operation of a CRN, called rendezvous, which establishes a link on some
frequency band (channel) needed for communication between two or more users.
One can imagine that the licensed spectrum is divided into N non-overlapping
channels; each user can sense a channel, and if it is not occupied by any PU,
it is an available channel. For the convenience of our derivations, a CRN over
time is time-slotted and each user can access an available channel in each time
slot. Practical rendezvous processes consist of many detailed steps, such as bea-
coning and handshaking. In this paper, we focus on the step of multiple users
meeting on the same available channel: we say that rendezvous between users
is achieved if they can access the same available channel in the same time slot.
We give distributed algorithms for rendezvous. Time to Rendezvous (TTR) is
used to measure these rendezvous algorithms, which is the time for the users to
(achieve) rendezvous on a common channel.

Previous works use either a central controller (such as a base station) or
a Common Control Channel (CCC) [18, 22] to simplify the process. However,
such centralization could lead to a bottleneck in practical situations when the
number of users increases, is vulnerable to adversary attacks, and is not flexible.
Therefore, many blind rendezvous algorithms have been proposed, where the
word ‘blind’ refers to non-reliance on any central controller or CCC [8,9, 12, 13,
20,21,23,26]. They construct sequences based on the channels’ labels (some also
use the users’ identifiers) and let users hop on the frequency bands according
to the sequences. Obviously, all these blind algorithms assume that the users
see the same labels for these licensed frequency bands (channels). These labels
represent global knowledge that must be communicated, somehow, to all the
participating users. This may imply that there must exist some centralized entity
that maintains and disseminates the knowledge.

To do away with the assumption of existing blind rendezous solutions that
there is a common set of labels shared by all users, we propose the oblivious
rendezvous problem where different users may have different labels for the li-
censed channels. Technically, each user can only assign (local) labels to those
sensed available channels and attempt rendezvous based on such local informa-
tion. Correspondingly, we refer to those other schemes where the users share the
same labels for the frequency bands as non-oblivious rendezvous.

The oblivious rendezvous problem poses several challenges. First of all, be-
cause each user may have different labels for the channels, traditional methods
based on a common set of channel labels cannot be applied at all. Second, each
user can join the network at any time slot, and thus the algorithm needs to
guarantee the rendezvous asynchronously. Third, as the users do not have each
other’s information until they achieve rendezvous and establish a common link
for communication, symmetric algorithms are preferred, which means that all

Oblivious Rendezvous in Cognitive Radio Networks 167

Table 1. MTTR Comparison for Two Users’ Scenario

Algorithms Non-Oblivious Rendezvous Oblivious Rendezvous

Jump-Stay [21] 3NP 2 + 3P = O(N3) −
CRSEQ [23] P (3P − 1) = O(N2) −
DRDS [12] 3P 2 + 2P = O(N2) −

Hop-and-Wait [9] O(N2logM) −
MMC [26] ETTR = O(N2) ETTR = O(N2)

IDH (this paper) O(N max{N,M}) O(N max{N,M})
MSH (this paper) O(N2logNM) O(N2logNM)

Remarks: 1) “−” means the method is not applicable to oblivious rendezvous; 2)
ETTR means expected time to rendezvous (note: MMC cannot guarantee bounded
time rendezvous); 3) P is the smallest prime number P > N , P = O(N).

users should execute the same algorithm. Finally, for scenarios with many users
in a large area, two users may not be connected directly, and so multihop com-
munication needs to be considered. In this paper, we present algorithms that
address all these issues.

1.2 Related Work

Non-oblivious rendezvous algorithms assume all users share the same labeling for
the licensed channels. There are commonly three types of these algorithms: cen-
tralized algorithms, decentralized algorithms based on Common Control Channel
(CCC), and blind rendezvous algorithms.

Centralized algorithms assume that a central controller or a CCC exists during
the rendezvous process, which substantially simplifies the problem [18, 22]. For
practical deployment, however, the central controller or the CCC could become
a bottleneck and is vulnerable to adversary attacks. There are some decentral-
ized algorithms based on establishing local CCCs through which each user can
communicate with their neighbors [17, 19]. However, these algorithms incur too
much overhead in establishing and maintaining local CCCs.

Blind rendezvous algorithms without CCC have been attractive to many re-
searchers. Several state-of-the-art results are listed in Table 1; they construct
a fixed length sequence for each user to hop through. Generated Orthogonal
Sequence (GOS) [11] is a pioneering work which generates an N(N + 1)-length
sequence based on random permutation of {1, 2, . . . , N}. However, it assumes
that all channels are available to the users. Quorum-based Channel Hopping
(QCH) [4,5] is based on a quorum system for synchronous users. Asynchronous
QCH [6] can work even when two users start in different time slots, but it is only
applicable to two available channels.

Channel Rendezvous Sequence (CRSEQ) [23], Jump-Stay (JS) [21] and Dis-
joint Relaxed Difference Set (DRDS) [12] are three representative efficient blind
rendezvous algorithms. CRSEQ picks the smallest prime P > N and generates
the sequence with P periods, each period containing 3P − 1 numbers based on

168 Z. Gu et al.

the triangle number (triangle number means Ti = i(i+1)
2 , for any i ∈ [1, N];

see [23] for details) and the modular operation. Jump-Stay uses the same idea
by picking the prime number P and it generates the sequence with P periods,
where each period contains two jump frames and one stay frame and each frame
is P in length. DRDS is a new method we proposed in [12], through constructing
a disjoint relaxed difference set and transforming it into a CH sequence of length
3P 2; two users can achieve rendezvous in O(N2) time slots.

All these works construct the same sequence for all users, which we call global
sequence. Correspondingly, there are several works constructing different se-
quences for the users, which we call local sequences [13]. Hop-and-Wait (HW) [9]
makes use of each user’s ID to construct a sequence of length 3P 2 logm, where
m is the size of the network. Local sequences based blind rendezvous algorithms
have been presented in some recent works [8,13], which favor the scenario where
each user’s available channels are just a small fraction of all the available chan-
nels. However, their worst case rendezvous time could still be O(N2 log logN)
and O(N2) respectively.

Oblivious rendezvous assumes that different users have different labels for the
licensed channels, which obviates the need to establish, maintain and communi-
cate a global set of labels. Nearly all previous algorithms cannot be applied to
oblivious rendezvous. To our knowledge, Modified Modular Clock (MMC) [26]
is the only one that may work and achieve oblivious rendezvous for two users.
MMC firstly counts the number of available channels (n) and picks a prime num-
ber n ≤ P ≤ 2n randomly. Then the user generates a sequence based on P . It is
claimed that using MMC, two users can achieve rendezvous within O(N2) time
slots with high probability. However, it cannot guarantee bounded rendezvous.
As a step forward, this paper offers deterministic distributed algorithms for
bounded oblivious rendezvous.

1.3 Our Contributions

In this paper, we initiate the study of oblivious rendezvous in Cognitive Radio
Networks. In this problem, each user has a distinct identifier (ID) within the
range [1,M] where M is the number of number of secondary users. First, we
derive an Ω(N2) rendezvous lower bound for any two asynchronous users by
introducing the Adversary Assignment Graph, where N is the number of all
licensed channels. Then, two deterministic distributed algorithms for the obliv-
ious rendezvous problem for 2 users (ORP-2) are proposed, which subsequently
serve as the building block for the cases with more users in a multihop network.
The first algorithm is called ID hopping (IDH) which generates a sequence of N
frames and each frame consists of 2P elements (P is the smallest prime larger
than both N and M). We show that each user can repeat accessing the chan-
nels by the sequence and rendezvous is guaranteed in O(N max{N,M}) time
slots. The other one, called Multi-Step Hopping (MSH), is more complicated
as it aims at a shorter sequence; it scales the user’s ID and then hops among
the channels with different steps (scaled values). MSH guarantees rendezvous in
O(N2 logN M) time slots, which is much better than IDH, especially when the

Oblivious Rendezvous in Cognitive Radio Networks 169

network size is large. These upper bounds match the presented lower bound if
M = O(N) for the IDH algorithm and M = N c (c can be an arbitrary large
constant) for the MSH algorithm. We then extend these algorithms to the mul-
tiuser multihop networks with bounded time to rendezvous. Finally, we compare
our algorithms with the state-of-the-art rendezvous algorithms through extensive
simulations (details are in the full version [14]) which also validate our theoretical
analyses.

2 Model and Problem Definitions

2.1 System Model

We consider a multihop Cognitive Radio Network (CRN) with M users (SUs)
who coexist with some PUs, and the network diameter is D 1. Each user has
a distinct identifer (ID) I ∈ [1,M]. Suppose the licensed spectrum owned by
the PUs is divided into N(N ≥ 1) non-overlapping channels where each channel
represents certain frequency band (e.g., 470− 478 MHz in the TV white space).
Each user is equipped with cognitive radios to sense the spectrum for available
channels, where a channel is available if it is not occupied by any nearby PUs.

Through spectrum sensing, each user can obtain a set of available channels
(frequency bands), and all previous blind rendezvous algorithms assume the la-
bels of all these channels are known to all the users. We have already pointed
out in the above some possible disadvantages of imposing a common set of
labels. We propose the oblivious rendezvous problem where each user labels
the sensed channels locally and attempts rendezvous with such local informa-
tion. More specifically, we rewrite the available channel set for user a as Ca =
{ca(1), ca(2), . . . , ca(na)} (similarly for user b, as Cb = {cb(1), cb(2), . . . , cb(nb)})
where na = |Ca|, nb = |Cb|. Channel ca(i) ∈ Ca or cb(i) ∈ Cb represents a certain
frequency band (channel), where i is a local label in these two users, respectively,
but note that ca(i) and cb(i) may or may not be the same frequency band (Fig.
1 is an example).

Time is divided into slots of equal length of 2t, where t is the time duration for
establishing a link for communication. According to IEEE 802.22 [24], t = 10ms
and thus each time slot has a duration of 20ms. Then we can consider the system
slot-aligned because an overlap of t for link establishment exists even if the start
times of different users are not aligned.

In each time slot, the user can access an available channel and attempt ren-
dezvous with its potential neighbors. We use Time to Rendezvous (TTR) to
denote the number of time slots it takes for users to achieve rendezvous once all
users have begun the process. Since all users are physically dispersed and the
wake-up time of each user may be different, the rendezvous algorithm should
be designed to be applicable to both synchronous and asynchronous users. In
this paper, we use Maximum Time to Rendezvous (MTTR) as a measure for
the worst possible situation for the algorithms and we say rendezvous can be
guaranteed if MTTR is bounded.

1 The minimum number of hops between any two users is no larger than D.

170 Z. Gu et al.

0Time_a 0 1 2 3 04 5 6 7

0Sequence 1 2 1 2 01 2 1 2

Channel

0Sequence 1 2 3 4 01 2 3

Channel

0-

0-

0ca(1) ca(2) ca(1) ca(2) 0ca(1) ca(2) ca(1) ca(2)

0cb(1) cb(2) cb(3) cb(4) 0cb(1) cb(2) cb(3)

4

1

4

ca(1)

cb(4)

user a

user b

9

1

4

ca(1)

cb(4)

(a) δ = 1

0Time_a 0 1 2 3 04 5 6 7

0Sequence 1 2 1 2 01 2 1 2

Channel

0Sequence 1 2 3 4 01 2 3

Channel

0-

0-

0ca(1) ca(2) ca(1) ca(2) 0ca(1) ca(2) ca(1) ca(2)

0cb(1) cb(2) cb(3) cb(4) 0cb(1) cb(2) cb(3)

user a

user b

9

1

ca(1)

-

-

(b) δ = 2

Fig. 1. An example of ORP-2 for different δ values

2.2 Problem Definition

We define the Oblivious Rendezvous Problem (ORP) as follows:
ORP-M: Given a multihop CRN with M users, denote the available channel

set for user i as Ci and its ID as Ii. Let G = ∩iCi, and G �= ∅. Design a strategy
for the users such that they are guaranteed to hop onto the same channel in the
same time slot, no matter when they begin their attempts.

In order to tackle the above problem, we first focus on designing deterministic
distributed algorithms for two users’ (out of the M users) rendezvous (ORP-2),
and then extend these algorithms to the multiuser multihop scenario (ORP-M)
(cf. Section 5).

ORP-2: Given available channel set C and ID set I, design an algorithm over
time slots t : f(t) ∈ [1, |C|] such that for any two users a and b with Ca, Cb,
Ca ∩ Cb �= ∅, Ia, Ib ∈ [1,M], Ia �= Ib, and ∀δ ≥ 0:

∃T s.t. ca(fa(T + δ)) = cb(fb(T)) ∈ Ca ∩ Cb.

where fa(T) (or fb(T)) represents the the output when user a (or b) runs the
algorithm.

The TTR value is T and user b starts the process δ time slots later than user
a. The MTTR value of algorithm f is MTTRf = max∀δT . The goal is to find
an algorithm f with bounded MTTR and which guarantees rendezvous.

Remark 1. If user b starts the rendezvous process earlier than user a, set δ < 0
in the description of ORP-2 and TTR = T + δ.

Fig. 1 shows an example of ORP-2. Suppose user a has two available chan-
nels, Ca = {ca(1), ca(2)} and user b has four, Cb = {cb(1), cb(2), cb(3), cb(4)}.
However, only one common channel exists between them, which is ca(1) = cb(4).
Consider a simple algorithm: each user accesses the channels by repeating the
sequence {1, 2, . . . , n} where n is the number of available channels. Thus user
a repeats accessing the channels {ca(1), ca(2), ca(1), ca(2), . . .} until rendezvous,
and similarly for user b. For the asynchronous scenario, supposing that user b
starts the attempt δ = 1 time slot later, rendezvous is achieved as depicted
in Fig. 1(a) at time slot 4 since ca(1) = cb(4). However, it is easy to see that
the above simple algorithm cannot guarantee rendezvous for all scenarios such
as when δ = 2, as in Fig. 1(b). Our goal is to design deterministic distributed
algorithms with bounded MTTR value for all δ values.

Oblivious Rendezvous in Cognitive Radio Networks 171

3 Lower Bound for ORP-2

Theorem 1. For any deterministic distributed algorithm solving ORP-2, there
exist Ca, Cb, Ca ∩ Cb �= ∅ such that the MTTR value is Ω(N2).

Proof. For any deterministic distributed algorithm F on the basis of C, I : f �→
[1, n] (n = |C|), suppose users a and b have different IDs Ia �= Ib and let |Ca| =
|Cb| = �N/2�, |Ca ∩ Cb| = 1. Equivalently, denote the only common channel
between the users as c∗ and there exists 1 ≤ i, j ≤ �N/2� such that ca(i) =
cb(j) = c∗.

user a

user b

1 2 3 n-1 n

1 2 3 n-1 n

t0 t1t2 t3 t4

Fig. 2. Adversary Assignment Graph

We introduce the Adversary Assignment Graph (AAG), as in Fig. 2. There are
two rows of nodes in the graph and the number of nodes in each row is n = �N/2�.
The upper row represents user a’s local labels of the available channels with
indices {1, 2, . . . , n} and the bottom row represents user b’s labels. Let at, bt be
the outputs of the algorithm in time slot t, respectively, thus:

at = f(a1, a2, . . . , at−1, n, Ia)

bt = f(b1, b2, . . . , bt−1, n, Ib)

Without loss of generality, suppose user b begins δ slots later; accordingly, we
connect node at+δ in the upper row with bt in the other row with an edge having
the label t (if the two nodes are already connected, then we just update the label
on the edge). For example, (1, 1) is connected in t0 as depicted in Fig. 2 and
(2, n), (1, 2), (3, 1), (n, n− 1) are also connected.

Supposing there exists an adversary who can assign licensed channels from
the set U = {u1, u2, . . . , uN} to Ca and Cb, rendezvous will not be achieved if
the common channel c∗ in the upper row is not connected to c∗ in the lower row.
Since the inputs to the algorithm F are fixed (for example, the inputs for user a
are Ia and |Ca|), the lower bound of MTTR is the smallest T such that (c∗, c∗)
is connected in every adversary assignment.

Let δa be the smallest degree of the upper nodes. If δa < n, the adversary
can find a node i in the upper row and j in the lower row such that (i, j) is
not connected, and then assigns c∗ to them, which implies that rendezvous is
not achieved. (Then it is easy to assign the other non-intersecting channels to

172 Z. Gu et al.

other nodes.) We can verify that δa < n exists if T < n2 and thus the lower
bound of MTTR is n2 = Ω(N2). Thus such Ca and Cb can be constructed by
the adversary, which implies MTTR = Ω(N2). �

4 Algorithms for ORP-2

In this section, we propose two deterministic distributed algorithms for ORP-2,
which can meet the lower bound under certain conditions. The first one is based
on the channel hopping method where the hopping step is based directly on the
ID. The second method scales the user’s ID and hops among the channels using
different values.

4.1 ID Hopping Rendezvous

Alg. 1 generates a sequence of length T = 2NP̂ , which is composed of N frames
and each frame contains 2P̂ elements, where P̂ is the smallest prime number
larger than both N and M . For the i-th frame (0 ≤ i < N), the 2P̂ elements are
constructed as follows (Lines 5–6): set i + 1 to the 0-th element and (i + j · I)
mod P̂ + 1 to the j-th element. This procedure can be thought of as picking
numbers from a cycle with labels {0, 1, · · · , P̂ − 1}, where the first one (the 0-th
element) is i+1 and the second one is I steps later under the modular operation.
We refer to this number as the hopping step and I is the hopping step in Alg. 1.
Since only n available channels exist, elements in [n+1, P̂] are mapped to [1, n]
to accelerate the process, as in Line 7.

Algorithm 1. ID Hopping Algorithm

1: Find the smallest prime P̂ such that P̂ > max{N,M};
2: T := 2NP̂ , t := 0, n = |C|;
3: while Not rendezvous do
4: t′ := t mod T ;
5: x := � t′

2P̂
�, y := t′ mod 2P̂ ;

6: z = (x+ yI) mod P̂ + 1;
7: z′ = (z − 1) mod n+ 1, access channel c(z′) in C;
8: t := t+ 1;
9: end while

For users a and b, the available channel sets are Ca, Cb and their IDs are
Ia, Ib respectively. Denote the sequences generated in Alg. 1 (before mapping) as
Sa = {a0, a1, . . . , aT−1} and Sb = {b0, b1, . . . , bT−1} where T = 2NP̂ . Without
loss of generality, suppose user b is δ ≥ 0 time slots later than user a:

Lemma 1. Consider sequences Sa, Sb: ∀δ ≥ 0 and ∀i, j ∈ [1, P̂]; there exists
t < T such that:

a(δ+t) mod T = i and bt = j.

Oblivious Rendezvous in Cognitive Radio Networks 173

Proof. The users repeat the generated sequence every T time slots, and thus we
only need to consider 0 ≤ δ < T . Let x1 = � δ

2P̂
�, y1 = δ mod 2P̂ . Two situations

are analyzed on the basis of y1:
Case 1: 0 ≤ y1 < P̂ . Consider t = x2 · 2P̂ + y2, 0 ≤ x2 < N, 0 ≤ y2 < P̂ . Let

x2 + y2Ib + 1 ≡ j mod P̂ , and thus:

y2 = (j − x2 − 1)I−1
b mod P̂ . (1)

Here I−1
b (IbI

−1
b ≡ 1 mod P̂) exists because Ib and P̂ are co-primes. We enu-

merate x2 from 0 to N − 1; y2 can be computed from Eq. (1) and we de-
note the value as yh2 when x2 = h. Then these N values comprise the set
Y = {y02, y12 , . . . , yN−1

2 }, and denote the set of corresponding time slots as

TB = {t0, t1, . . . , tN−1} where th = h · 2P̂ + yh2 .
It is clear that ∀th ∈ TB, 0 ≤ h < N , th < T and bth = j. Let TA =

{t′0, t′1, . . . , t′N−1} where t′h = (th + δ) mod T . Then we show that there exists
g ∈ [0, N) such that at′g = i. Considering any two time slots t′g, t

′
h ∈ TA where

user a accesses different channels:

at′g = (x1 + g) + (y1 + yg2)Ia mod P̂ + 1

at′h = (x1 + h) + (y1 + yh2)Ia mod P̂ + 1

Plugging in the expression of yg2 , y
h
2 as in Eq. (1), we can derive:

at′g − at′h ≡ (g − h)(IaI
−1
B − 1) �= 0 mod P̂ .

Here Ia �= Ib, Ia, Ib < P̂ implies IaI
−1
b �= 1. So at′g �= at′

h
. As |TA| = |TB| = N ,

there are N different values for the N time slots in TB, and thus there exists t′g
such that at′g = i, which concludes the lemma.

Case 2: P̂ ≤ y1 < 2P̂ . Consider t = x2 · 2P̂ + y2 where 0 ≤ x2 < N and
P̂ ≤ b2 < 2P̂ . Using the same technique as in Case 1, we can find t < T such
that a(δ+t) mod T = i and bt = j. Thus the lemma holds. �

Theorem 2. Alg. 1 guarantees rendezvous between two asynchronous users of
ORP-2 in MTTR = 2NP̂ time slots, where P̂ ≤ 2max{N,M}.

Proof. Since Ca ∩ Cb �= ∅, and supposing channel c∗ ∈ Ca ∩ Cb, there exists i ∈
[1, na] and j ∈ [1, nb] such that ai = c∗ and bj = c∗, where na = |Ca|, nb = |Cb|.
Without loss of generality, and supposing user b is δ time slots later than user
a, from Lemma 1, there exists t < T such that they both access channel c∗, and
thus rendezvous can be guaranteed in T = 2NP̂ time slots no matter when they
start the process. �

Remark 2. P is shown to be P̂ ≤ 2max{M,N}2, and thus MTTR =
O(N max(N,M)). If M = O(N) in Alg. 1, MTTR = O(N2), which meets
the lower bound.
2 Bertrand-Chebyshev Theorem : ∀k > 1, at least one prime p exists such that k < p <
2k.

174 Z. Gu et al.

4.2 Multi-Step Channel Hopping Rendezvous

Alg. 1 works well whenM = O(N). However, when the number of users increases,
this algorithm becomes inefficient (for example, when M = N3). The reason is
that the user’s ID is used as the hopping step and it enlarges the TTR when
M is large. Therefore, we propose a new algorithm which is more efficient for
large scale networks, by combining two techniques: ID scaling and hopping with
different steps.

Algorithm 2. ID Scale Function

1: Input: I ;
2: Output: d = {d(1), d(2), . . . , d(l)};
3: l := �logN M� + 1, i := 1, cur(0) := I ;
4: while i ≤ l do
5: d(i) := cur(i− 1) mod N + 1;
6: cur(i) := �cur(i− 1)/N�
7: i := i+ 1;
8: end while

As shown in Alg. 2, the ID is scaled to �logN M�+1 bits and each bit ranges
from 1 to N3. For example, for N = 8,M = 100, I = 30, the scaled values are
d = {7, 4, 1}. The scale function plays a key role in the rendezvous algorithm
design and the scaled values are used as the hopping steps in Alg. 3.

Algorithm 3. Multi-Step Channel Hopping Algorithm

1: Find the smallest prime P such that P > N ;
2: T := 2NP , t := 0, n = |C|, l := �logN M�+ 1;
3: Invoke Alg. 2 on the user’s ID and get the output d = {d(1), d(2), . . . , d(l)};
4: while Not rendezvous do
5: if t < T then
6: z := �t/2P � + 1;
7: else
8: t′ := (t− T) mod (2lT);
9: x := �t′/2T �+ 1, y := t′ mod 2T ;
10: y1 := y mod (2P), y2 := (�y/(2P)� mod N + 1;
11: z := (y2 + y1 · d(x)− 1) mod P + 1;
12: end if
13: z′ := (z − 1) mod n+ 1, access channel c(z′) in C;
14: t := t+ 1;
15: end while

Alg. 3 can be thought of as generating two types of sequences. The first one is
a Scale Sequence (SS) which is composed of 0 and repetitions of l scaled values

3 Here, ‘bit’ does not mean 0 or 1, but represents a value in [1, N].

Oblivious Rendezvous in Cognitive Radio Networks 175

(since two users can start the rendezvous process asynchronously, bit 0 is added
as a special flag to represent the start of the user):

SS = {0, d(1), d(2) . . . , d(l)︸ ︷︷ ︸
l

, d(1), d(2), . . . , d(l)︸ ︷︷ ︸
l

,}

The other one is a Channel Hopping Sequence which is composed of different
frames based on SS, as shown in Fig. 3. There areN+1 different types of frames,
F (0), F (1), . . . , F (N), and each type of frame is composed of N segments. For
example, F (i) has N segments and each segment contains 2P elements. The 0-th
element of the j-th segment is j and the k-th element is (j + ki− 1) mod P + 1
(the construction of each segment of F (i) can be seen as accessing channel in
[1, P] by hopping i steps). For example, F (0) and F (1) are constructed as follows:

F (0) = 1, 1, . . . , 1︸ ︷︷ ︸
2P

, 2, 2, . . . , 2︸ ︷︷ ︸
2P

, . . . , N,N, . . . , N︸ ︷︷ ︸
2P

F (1) = 1, 2, . . . , P︸ ︷︷ ︸
2P

, 2, 3, . . . , P, 1︸ ︷︷ ︸
2P

, . . . , N,N + 1, . . . , N − 1︸ ︷︷ ︸
2P

As shown in Fig. 3, the first element 0 is special because it does not appear in
other positions of SS and it corresponds to F (0) once, while the other elements
in SS correspond to each type of frames twice.

Fig. 3. Construction of Channel Hopping Sequence

Supposing users a and b run Alg. 3 with their local information (Ca, Ia)
and (Cb, Ib) where Ca ∩ Cb �= ∅, Ia �= Ib, let na = |Ca|, nb = |Cb|, denote
da = {da(1), da(2), . . . , da(l)}, db = {db(1), db(2), . . . , db(l)} as the outputs of ID
Scale function, denote SSa, SSb as the scale sequences (as constructed above),
and denote Sa = {a0, a1, . . . , at, . . .}, Sb = {b0, b1, . . . , bt, . . .} as the Channel
Hopping Sequences. Without loss of generality, suppose user b starts the process
δ ≥ 0 time slots later than user a. we have the following Lemmas 2, 3 and 4.
Due to the lack of space, the proofs are included only in the full version [14].

Lemma 2. Consider SSa, SSb: ∀δ′ ∈ Z, there exists i ≥ 0, i+ δ′ ≥ 0 such that:

SSa(i) �= SSb(i+ δ)

176 Z. Gu et al.

Lemma 3. Consider Sa, Sb; for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
0 ≤ δ < T ,

∃t ≤ 2lT s.t. a(δ+t) = i and bt = j.

Lemma 4. Consider Sa, Sb, for any pair (i, j) where 1 ≤ i ≤ na, 1 ≤ j ≤ nb, if
δ ≥ T ,

∃t ≤ T s.t. a(δ+t) = i and bt = j.

Theorem 3. Alg. 3 guarantees rendezvous between two asynchronous users of
ORP-2 in MTTR = 4lNP = O(N2 logN M) time slots, where P ≤ 2N .

Proof. As assumed, G = Ca ∩ Cb �= ∅, supposing c∗ ∈ G and there exists
1 ≤ i ≤ na, 1 ≤ j ≤ nb such that ca(i) = c∗, cb(j) = c∗. Without loss of
generality, suppose user b starts the process δ time slots later. If δ < T , from
Lemma 3, rendezvous is guaranteed in 2lT time slots; if δ ≥ T , rendezvous is
guaranteed in T time slots. Thus MTTR ≤ 2lT = 4lNP = O(N2 logN M). �

Generally speaking, if M is (bounded by) a polynomial function of the total
number of licensed channels N , the length of scaled bits is a constant and two
users can be guaranteed to rendezvous in O(N2) time slots, which meets the
lower bound of ORP-2. Moreover, this result is also comparable to even state-
of-the-art non-oblivious rendezvous algorithms as shown in Table 1.

5 Algorithm for ORP-M

The algorithms for ORP-2 can be smoothly extended to handle ORP-M. We use
the basic idea in [9,12,21]: once every two users achieve rendezvous on a common
channel successfully, they can exchange their information over the channel and
the local information such as the user’s ID and the labels for the frequency
bands (channels) can be synchronized. Therefore, they would generate the same
sequence afterwards. We extend Alg. 3 to the multiuser multihop scenario as an
example.

Algorithm 4. Algorithm for Multiuser Multihop Scenario

1: while Not terminated do
2: Run Alg. 3 with local information (I,C);
3: if Rendezvous with user - (I ′, C′) then
4: I := min(I, I ′);
5: C := C ∩ C′;
6: Synchronize labels for the channels as the user with smaller ID;
7: end if
8: end while

In Alg. 4, the user runs Alg. 3 with local information (I, C). Once rendezvous
is achieved with another user with (I ′, C′), they exchange their information and
three operations are executed:

Oblivious Rendezvous in Cognitive Radio Networks 177

– Change I to be the smaller value between I, I ′;
– Change C to be the intersection of C and C′;
– Synchronize the labels for the available channels with the user with smaller

I value such that ∀i ∈ [1, |C|], c(i) = c′(i).

After these three steps, the local information of the two users are the same and
they access the channels with the same sequence until rendezvous with others.
Supposing that the network diameter of the CRN in ORP-M is D, the MTTR
value can be guaranteed as in Theorem 4 (pleas refer to [14] for the proof).

Theorem 4. Alg. 4 guarantees that all users can achieve rendezvous inMTTR =
4lNPD = O(N2D logN M) time slots, where D is the diameter of the CRN.

6 Oblivious Rendezvous Applications

Oblivious rendezvous is not only practical in a Cognitive Radio Network (CRN),
but also suitable for several other (theoretical) problems. For example, the tele-
phone coordination problem [2]: there are n telephones in each of two rooms,
where the telephones are connected pairwisely by some unknown rules. Each
room has a player who can pick up one telephone and say ‘hello’ in each time
slot until they hear each other. They do not have any common labels of the tele-
phones by which they can coordinate, and the aim is to minimize the time slots
required for the players to meet. This problem only considers two synchronous
users and each has exactly n telephones. In our settings, once each user is as-
signed a distinct identifier, a deterministic algorithm for this problem can be
designed even for asynchronous users and some of these telephones are broken.
Another problem is rendezvous search on the graph [3], where different users are
placed on the graph and they attempt to meet each other as quickly as possible.
Our oblivious rendezvous problem is a little different as we can consider the
users in the CRN being restricted to walk in a given clique (the set of available
channels), and thus the time to rendezvous can be easily extended. For other
more general rendezvous search problems, the method in this paper could be
used as a basis for their study.

7 Conclusion

We introduce the oblivious rendezvous problem which is believed to be more
practical in constructing Cognitive Radio Networks. In contrast to existing, non-
oblivious rendezvous problem, the users in our setting have different labels for
the licensed frequency bands (channels), and we derive rendezvous algorithms
that is based on each user’s local information.

For oblivious rendezvous, we first derive an Ω(N2) rendezvous time lower
bound. Then we propose two deterministic distributed algorithms: the ID Hop-
ping (IDH) algorithm which can achieve rendezvous between two users in
O(N max(M,N)) time slots, where M is number of users in the network; and

178 Z. Gu et al.

the Multi-Step channel Hopping (MSH) algorithm which guarantees oblivious
rendezvous in O(N2 logN M) time slots. The IDH algorithm works efficiently
when M is small, while the MSH algorithm performs much better for larger M ,
which implies large scale networks with many users. The upper bounds of two al-
gorithms match the presented lower bound if M = O(N) for the IDH algorithm
and if M = N c (c is a constant) for the MSH algorithm. Third, we extend these
two algorithms to multiuser multihop networks. We have conducted extensive
simulations for both two-user rendezvous and multihop multiusers rendezvous
using our algorithms (details in the full version [14]).

Although our algorithms are designed for oblivious rendezvous, the simula-
tion results show that they are comparable to the state-of-the-art non-oblivious
rendezvous algorithms and they even perform much better under some circum-
stances. For oblivious rendezvous, our two proposed algorithms also outperform
the MMC algorithm, and the MSH algorithm performs the best as the number
of rendezvous users increases.

N,M are the number of licensed channels and users in the network respec-
tively; one future direction is to design fully distributed rendezvous algorithms
without knowing these values. We also want to explore randomized distributed
algorithms which can achieve bounded rendezvous time with high probability.

Acknowledgement. We thank the anonymous reviewers for their very helpful
comments which helped improve the presentation of this paper. This work was
supported in part by the National Basic Research Program of China Grant
2011CBA00300, 2011CBA00301, the National Natural Science Foundation of
China Grant 61103186, 61033001, 61361136003, Hong Kong RGC-GRF grant
714311, and the Shu Shengman Special Research Fund.

References

1. Akyildiz, I., Lee, W., Vuran, M., Mohanty, S.: NeXt Generation/Dynamic Spec-
trum Access/Cognitive Radio Wireless Networks: A Survey. Computer Net-
works 50(13), 2127–2159 (2006)

2. Alpern, S., Pikounis, M.: The Telephone Coordination Game. Game Theory
Appl. 5, 1–10 (2000)

3. Anderson, E.J., Weber, R.R.: The Rendezvous Problem on Discrete locations. Jour-
nal of Applied Probability 28, 839–851 (1990)

4. Bian, K., Park, J.-M., Chen, R.: A Quorum-Based Framework for Establishing
Control Channels in Dynamic Spectrum Access Networks. In: Mobicom (2009)

5. Bian, K., Park, J.-M.: Asynchronous Channel Hopping for Establishing Rendezvous
in Cognitive Radio Networks. In: IEEE INFOCOM (2011)

6. Bian, K., Park, J.-M.: Maximizing Rendezvous Diversity in Rendezvous Protocols
for Decentralized Cognitive Radio Networks. IEEE Transactions on Mobile Com-
puting 12(7), 1294–1307 (2013)

7. Cai, Z., Ji, S., He, J., Bourgeois, A.G.: Optimal Distributed Data Collection for
Asynchronous Cognitive Radio Networks. In: ICDCS (2012)

8. Chen, S., Russell, A., Samanta, A., Sundaram, R.: Deterministic Blind Rendezvous
in Cognitive Radio Networks. In: ICDCS (2014)

Oblivious Rendezvous in Cognitive Radio Networks 179

9. Chuang, I., Wu, H.-Y., Lee, K.-R., Kuo, Y.-H.: Alternate Hop-and-Wait Channel
Rendezvous Method for Cognitive Radio Networks. In: INFOCOM (2013)

10. Dai, Y., Wu, J., Xin, C.: Virtual Backbone Construction for Cognitive Radio Net-
works without Common Control Channel. In: INFOCOM (2013)

11. DaSilva, L., Guerreiro, I.: Sequence-Based Rendezvous for Dynamic Spectrum Ac-
cess. In: DySPAN (2008)

12. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Nearly Optimal Asynchronous Blind
Rendezvous Algorithm for Cognitive Radio Networks. In: SECON (2013)

13. Gu, Z., Hua, Q.-S., Dai, W.: Local Sequence Based Rendezvous Algorithms for
Cognitive Radio Networks. In: SECON (2014)

14. Gu, Z., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Oblivious Rendezvous in Cognitive
Radio Networks, http://i.cs.hku.hk/~qshua/sirocco2014full.pdf

15. Huang, X., Lu, D., Li, P., Fang, Y.: Coolest Path: Spectrum Mobility Aware Rout-
ing Metrics in Cognitive Ad Hoc Networks. In: ICDCS (2011)

16. Ji, S., Beyah, R., Cai, Z.: Minimum-Latency Broadcast Scheduling for Cognitive
Radio Networks. In: SECON (2013)

17. Jia, J., Zhang, Q., Shen, X.: HC-MAC: A Hardware-Constrained Cognitive MAC
for Efficient Spectrum Management. IEEE Journal on Selected Areas in Commu-
nications 26(1), 106–117 (2008)

18. Kondareddy, Y., Agrawal, P., Sivalingam, K.: Cognitive Radio Network Setup with-
out a Common Control Channel. In: MILCOM (2008)

19. Lazos, L., Liu, S., Krunz, M.: Spectrum Opportunity-Based Control Channel As-
signment in Cognitive Radio Networks. In: SECON (2009)

20. Lin, Z., Liu, H., Chu, X., Leung, Y.-W.: Enhanced Jump-Stay Rendezvous Algo-
rithm for Cognitive Radio Networks. IEEE Communications Letters 17(9), 1742–
1745 (2013)

21. Liu, H., Lin, Z., Chu, X., Leung, Y.-W.: Jump-Stay Rendezvous Algorithm for
Cognitive Radio Networks. IEEE Transactions on Parallel and Distributed Sys-
tems 23(10), 1867–1881 (2012)

22. Perez-Romero, J., Salient, O., Agusti, R., Giupponi, L.: A Novel On-Demand Cog-
nitive Pilot Channel enabling Dynamic Spectrum Allocation. In: DySPAN (2007)

23. Shin, J., Yang, D., Kim, C.: A Channel Rendezvous Scheme for Cognitive Radio
Networks. IEEE Communications Letters 14(10), 954–956 (2010)

24. Stevenson, C.R., Chouinard, G., Lei, Z., Hu, W., Shellhammer, S.J., Caldwell, W.:
IEEE 802.22: The First Cognitive RadioWireless Regional Area Network Standard.
IEEE Communications Magazine 47(1), 130–138 (2009)

25. Song, J., Xie, J., Wang, X.: A Novel unified Analytical Model for Broadcast Proto-
cols in Multihop Cognitive Radio Ad Hoc Networks. IEEE Transaction on Mobile
Computing (2013)

26. Theis, N.C., Thomas, R.W., DaSilva, L.A.: Rendezvous for Cognitive Radios. IEEE
Transactions on Mobile Computing 10(2), 216–227 (2011)

27. Zhang, D., He, T., Ye, F., Ganti, R., Lei, H.: EQS: Neighbor Discovery and Ren-
dezvous Maintenance with Extended Quorum System for Mobile Sensing Applica-
tions. In: ICDCS (2012)

http://i.cs.hku.hk/~qshua/sirocco2014full.pdf

Local Broadcasting with Arbitrary Transmission

Power in the SINR Model

Fabian Fuchs and Dorothea Wagner

Karlsruhe Institute for Technology
Karlsruhe, Germany

{fabian.fuchs,dorothea.wagner}@kit.edu

Abstract. In the light of energy conservation and the expansion of
existing networks, wireless networks face the challenge of nodes with het-
erogeneous transmission power. However, formore realistic models of wire-
less communication only few algorithmic results are known. In this paper
we consider nodes with arbitrary, possibly variable, transmission power in
the so-called physical or SINR model. Our first result is a bound on the
probabilistic interference fromall simultaneously transmittingnodes on re-
ceivers. This result implies that current local broadcasting algorithms can
be generalized to the case of non-uniform transmission power with minor
changes. The algorithms run inO(Γ 2Δ log n) time slots if the maximal de-
greeΔ is known, andO((Δ+logn)Γ 2 log n) otherwise, whereΓ is the ratio
between the maximal and the minimal transmission range. The broad ap-
plicability of our result on bounding the interference is further highlighted,
by generalizing a distributed coloring algorithm to this setting.

1 Introduction

One of the most fundamental problems in wireless ad hoc networks is to enable
efficient communication between neighboring nodes. This problem recently re-
ceived increasing attention among the distributed algorithm community, as more
refined models of wireless communication became established in algorithms re-
search. Among these models, the so-called physical or signal-to-interference-and-
noise (SINR) model is most prominent and promising, due to its common use in
the engineering literature. However, so far most algorithmic work in the SINR
model is restricted to the case of uniform transmission power. In this case, local
broadcasting [7,16,18,6] provides initial communication by enabling each node to
transmit one message such that all intended receivers (i.e., neighbors) are able
to decode the message.

In this work we consider the problem of local broadcasting in the SINR model
under arbitrary transmission power assignment, i.e., each node has its individual,
possibly variable, transmission power. We are the first to consider this setting
from an algorithmic perspective. While some distributed node coloring algo-
rithms do consider the transmission power to be variable [2,17], they still increase
the transmission power synchronously and thus effectively operate on an uniform
power network. The sole line of research that leverages non-uniform transmission

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 180–193, 2014.
c© Springer International Publishing Switzerland 2014

Local Broadcasting with Arbitrary Transmission Power 181

power is on link scheduling and capacity maximization [8,10]. However, there,
each node is usually considered to be either transmitter or receiver. If a node
has multiple roles it might have to adapt its transmission power frequently. On
the other hand, the effects of heterogeneous transmission power are considered
in simulation-based studies for example in [5,14], while the case of unidirectional
communication links, which are a result of heterogeneous transmission powers,
is studied even more frequently [19,15].

We assume the harsh environment of an wireless ad hoc network just after
deployment. In particular, we consider multi-hop networks, where the nodes do
initially not have any information about whether other nodes are awake, have
already started the algorithm or in which phase of the algorithm they are. The
only knowledge they may have is an upper bound on the number of neighbors,
and a rough bound on the total number of nodes in the network. Note that our
model does not assume a collision detection mechanism. Additionally to this
harsh model, we also considered some recent ideas regarding practical matters
of algorithms for wireless networks by Kuhn et. al. [1]. They promoted the use of
lower and upper bounds for important network parameters such as α, β and N
(cf. Section 2). This is an important step towards practicability of the algorithms
as upper and lower bounds to these values are well-represented in the literature,
however, exact values vary depending on the network environment.

1.1 Contributions

We are the first to consider arbitrary transmission powers in the SINR model.
Our main contribution provides an abstract method for bounding the interfer-
ence in these networks. We prove that transmissions are feasible based on the
sum of local transmission probabilities. This result is widely applicable, as veri-
fying that the sum of local transmission probabilities is bounded as required is
relatively simple. By applying this result to known results on local broadcasting
we are able to generalize current local broadcasting algorithms to our setting.
The algorithms run in O(Γ 2Δ log n) time slots if the maximal degree Δ is known
and O((Δ + logn)Γ 2 logn) time slots otherwise, where Γ is the ratio between
the maximal and the minimal transmission range. Thus, they match the runtime
of the algorithms for uniform transmission power as Γ = 1 in this case. Addi-
tionally we discuss the case of variable transmission power in Section 4.2, which
achieves similar bounds, but allows nodes to change the transmission power in
each time slot instead of fixing it for each round of local broadcasting. The ap-
plicability of our result on bounding the interference is further emphasized by
a brief description of how a well-known coloring algorithm can be generalized
to arbitrary transmission power networks. Note that the algorithms are fully
operational under asynchronous node wake-up and sleep.

1.2 Related Work

The study of local broadcasting, and interference in general, has only recently
emerged. Especially in classical distributed message passing models such as

182 F. Fuchs and D. Wagner

LOCAL or CONGEST [13], the transmission of a message to neighbors is guar-
anteed. However, this is not the case for wireless networks. Hence interference
in general and local broadcasting in particular must be considered in the more
realistic SINR model of interference. Goussevskaia et. al. [6] were the first to
present local broadcasting algorithms in the SINR model. Their first algorithm
assumes an upper boundΔ on the number of neighbors to be known by the nodes
and solves local broadcasting with high probability in O(Δ log n) time, while the
second algorithm does not assume this knowledge and requires O(Δ log3 n) time.
The second algorithm has subsequently been improved by Yu et. al. to run in
O(Δ log2 n) [18], and again to O(Δ log n + log2 n) [16]. This bound has been
matched by Halldórsson and Mitra in [7] using a more robust algorithm, along
with an algorithm that leverages carrier sensing to achieve a time complexity of
O(Δ + logn). For related work regarding distributed node coloring, we refer to
the full version [4].

2 Preliminaries

We consider a wireless network consisting of n nodes, that are placed arbitrarily
on the Euclidean plane. We assume that all nodes in the network know their ID
and an upper bound ñ on n, with ñ ≤ nc for some constant c ≥ 1. As the upper
bound influences our results only by a constant factor we usually write n even
though only ñ may be known by the nodes. Also, we assume that nodes know
lower and upper bounds on the transmission power or the transmission ranges.
This assumption is realistic, as lower bounds for reasonable minimal transmission
ranges can be computed while upper bounds (for specified frequencies) are often
regulated by public authorities.

In the geometric SINR model a transmission from node v to node w is suc-
cessful iff the SINR condition holds:

Pv

dist(v,w)α∑
u∈I

Pu

dist(u,w)α +N
≥ β (1)

where Pv (Pu) denotes the transmission power of node v (u), α is the attenuation
coefficient, which depends on the environment and characterizes how fast the
signal fades. The SINR-threshold β ≥ 1 is a hardware-defined constant, N is
the environmental noise and I is the set of nodes transmitting simultaneously
with v. As introduced in [1] and motivated by the hardness of determining exact
network parameters we restrict our nodes knowledge to upper and lower bounds
of the values α, β and N and denote them by e.g. α and ᾱ for the minimal and
maximal values.

Based on the SINR constraints, we define the maximum transmission range of
a node v to be R̄v = (Pv

N̄β̄
)1/ᾱ. Note that this is maximal under the restriction

that this range can be reached regardless of the actual network parameters α, β,
N. The global maximum transmission range in the network is denoted by R̄, the
minimum range by R and the ratio between R̄ and R by Γ = R̄

R . Due to the SINR

Local Broadcasting with Arbitrary Transmission Power 183

constraints, a node v cannot reach another node w which is located at the maxi-
mum transmission range of v, as soon v transmits simultaneously with any other
node in the network. As having only one simultaneous transmission in the network
is not desired, we use a parameter δ > 1 to determine the distance up to which the
nodes messages should be received. We call this distance the broadcasting range
Rv = (Pv

δN̄β̄
)1/α and the region within this range from v the broadcasting region

Bv. We denote the maximum number of nodes within the transmission range R̄v

of any v as Δ. This is an upper bound on the number of nodes reachable from v,
since the broadcasting range Rv is fully contained in the transmission range. Note
that Δ is known by the nodes only if stated with the corresponding algorithms.
We define the proximity region around v as the area closer than 3R̄ to v. Note that
even though we use time slots in our analysis, we do not require a global clock or
synchronized time slots in our algorithm. Decent local clocks are sufficient, while
time slots are only required in the analysis.

Roadmap: In the following section we bound the probabilistic interference of
nodes outside the proximity region based on the sum of transmission probabil-
ities from within each transmission region. In Section 4 we apply this result to
previous results on local broadcasting and thereby transfer current algorithms
to the more general model. The applicability of our results is highlighted in
Section 5, as we consider the problem of distributed node coloring and general-
ize a well-known algorithm from the case of uniform transmission powers. We
conclude this paper in Section 6 with some final remarks.

3 Bounding the Interference

In contrast to other models for interference in wireless communication such as the
protocol model, the SINR model captures the global aspect of interference and
reflects that even interference from far-away nodes can add up to a level that
prevents the reception of transmissions from relatively close nodes. To ensure
that a given transmission can be decoded by all nodes within the broadcasting
range, one usually proves that reception within a certain time interval is success-
ful with high probability (w.h.p.—with probability at least 1− 1

nc for a constant
c > 1). Such a proof can be split in two parts

1. The probability that a node transmits within a proximity region around a
sender is constant

2. Let P2high(v) be the event that the interference from all nodes outside of the
proximity region of v on nodes in the broadcasting region of v is too high.
Show that P2high(v) has constant probability.

We shall follow this scheme by considering the transmission of an arbitrary node
and proving that both conditions hold with constant probability in each time
slot, and hence a local broadcast is successful with high probability.

In order to make the result general and applicable to many different set-
tings, we make only one very general assumption. Namely we assume the sum of

184 F. Fuchs and D. Wagner

transmission probabilities from within a broadcasting region to be bounded by a
constant. It is very common to require algorithms in the SINR model to ensure
this, which allows us to apply the analysis from this section in the following
Sections 4 and 5 to generalize algorithms designed for the uniform transmission
power case to the more general case considered in this paper.

Definition 1. Given a network of n nodes with at most Δ nodes in each trans-
mission region. Let γ be the upper bound on the sum of transmission probabilities
from within one transmission region.

Let the upper bound on the sum of transmission probabilities from within each
transmission region be

γ :=
(δ − 1)

120β̄Γ 2
∑n

i=1
1

iᾱ−1

. (2)

Note that this bound can be realized, for example by requiring nodes to transmit
with probability γ/Δ. Another option is the so-called slow-start technique, cf.
Section 4.1. The constant is of the stated form, mainly to bound the interference
from all other nodes in the network in the proof of Theorem 4. It holds that
γ ≤ 11. Let us now prove a bound on the probability that a close-by node
transmits, which is also required for the main theorem of this section.

Lemma 2. Given an arbitrary node v. The probability that no node in the prox-
imity region of v transmits in a given time slot is at least 1/4.

Proof. Let 3R̄(v) denote the set of nodes that are closer to v than 3R̄ in this
argument. This is the set of nodes in the proximity region of v. The probability
that a node in 3R̄(v) transmits in a single time slots is

P 3R̄(v)
none ≥

∏
u∈3R̄(v)

(1− pu) ≥
(
1

4

)∑
u∈3R̄(v) pu

≥
(
1

4

)49Γ 2·γ
≥
(
1

4

)
,

where the second inequality holds due to a fact used in the proof of Lemma
4.2 in [9]. The third inequality due to a simple geometric argument about the
number of independent nodes within distance 3R̄ of v and the bound on the
sum of transmission probabilities from within each transmission region. The last
inequality holds since 49Γ 2 · γ < 1.

Let us now consider nodes that are not in the proximity region of the trans-
mitting node. In order to bound the interference originating from these nodes,
we use rings around the transmitting node and bound the probabilistic interfer-
ence from within each ring. Note that although our definition of the proximity
region and rings differ, similar arguments are made, for example, in [7,6].

1 This may not be true for a large δ. Thus for δ > 2 we use γ := 1

120β̄Γ2
∑n

i=1
1

iᾱ−1
.

Local Broadcasting with Arbitrary Transmission Power 185

Definition 3. For a node v, the ring Cv
i , i ≥ 0, is defined as the set of nodes

with distance at least (i + 1) · R̄ and at most (i + 2) · R̄. For a ring Cv
i , the

extended ring Cv
i+ is defined as the set of nodes with distance at least i · R̄ and

at most (i+ 3) · R̄.
Note that for a ring Cv

i , the extended ring Cv
i+ is defined such that the nodes in

the transmission region of an arbitrary node w ∈ Cv
i are contained in Cv

i+. If it
is clear to which node v the rings refer, we write Ci and Ci+ for brevity.

Theorem 4. Let the sum of transmission probabilities from each transmission
region be upper bounded by γ. Given a node v, the probabilistic interference from
nodes outside the proximity region of v is upper bounded by (δ − 1)N .

Proof. Let us first bound the interference from a single ring Ci. By a simple
geometric argument it holds that the maximal number of independent nodes in

the extended ring Ci+ is at most (6i+9)R̄
2
/R2. By combining this number with

the sum of transmission probabilities from within each broadcasting region, we
can bound the interference from the nodes in Ci. As each node in the ring Ci has
distance greater than i · R̄ from any node in Bv, it follows that the probabilistic
interference on any node u ∈ Bv is at most

ΨCi ≤
∑

w∈Ci+

pwPw

(iR̄)ᾱ
≤ 4(6i+ 9)R̄

2
γβ̄N̄

R2iᾱ
·
(
R̄

R̄

)ᾱ

≤ 60γβ̄N̄

iᾱ−1
·
(
R

R̄

)2

.

The second inequality holds since at most (6i+9)R̄
2
/R2 independent nodes are

in Ci+, from each broadcasting region around such an independent node the

sum of transmission probabilities is at most γ, and by Pw ≤ β̄N̄R̄
ᾱ
. The last

inequality simplifies the fraction and holds since i > 1. Summing over all rings
it follows

Ψw �∈3R̄(v) ≤
∞∑
i=2

ΨCi ≤ 60γβ̄N̄Γ 2
n∑

i=1

1

iᾱ−1
≤ (δ − 1)N̄

2
,

where the second inequality holds by inserting the bound on ΨCi and the fact
that there are at most n non-empty rings. The last inequality follows from the
upper bound on γ, stated in Equation 2.

4 Local Broadcasting

In the previous section we have shown how to bound the probabilistic interference
from nodes outside of the proximity region based on an upper bound on the
sum of transmission probabilities from within each transmission region. Such
bounds are known for many algorithms in the case of uniform transmission
power, and hence we can plug our results into a large body of related work,
and transfer results with minimal additional efforts to the case of arbitrary but
fixed transmission power. In the following section we briefly state our results
regarding local broadcasting along with proof sketches as required. In Section
4.2 we discuss our results regarding variable transmission power.

186 F. Fuchs and D. Wagner

4.1 Arbitrary But Fixed Transmission Power

The current results on local broadcasting with the knowledge of Δ are based on
transmitting with a fixed probability in the order of 1/Δ for a sufficient number
of time slots in O(Δ log n), while results that do not assume the maximal degree
Δ to be known are usually based on a so-called slow-start mechanism.

With Knowledge of the Maximal Degree Δ. Let us first consider the
case, in which each node knowns the maximal degree Δ. Using the result on
local broadcasting by Goussevskaia, Moscibroda and Wattenhofer [6], it is easy
to show that local broadcasting can be realized in O(Γ 2Δ logn) time slots by
simply adapting the transmission probability to our requirements.

Theorem 5. Let the transmission probability of each node be p = γ/Δ, and
c > 1 an arbitrary constant. A node v that transmits with probability p for
8c/p logn = O(Γ 2Δ logn) time slots successfully transmits to its neighbors whp.

Proof. Since the transmission probability is chosen such that the sum of trans-
mission probabilities from within each proximity range is at most γ, we can di-
rectly apply Theorem 4. Using the theorem, combined with the standard Markov
inequality, the probability that the interference from nodes outside of the prox-
imity region is too high (i.e., higher than (δ − 1)N̄) is less than 1/2. Lemma 2
states that the probability that no node within the proximity range of a node
transmits is greater than 1

4 . Combining both probabilities with the transmission
probability of p implies that the probability of a successful broadcast is at least
p/8 in each time slot. Thus transmitting for 8c/p logn time slots results in a
successful local broadcast with probability at least 1− 1

nc . A detailed proof can
be found in the full version [4].

Without Knowledge of Δ. Let us now consider the case that the nodes are
not given a bound on the maximum degree Δ. In contrast to the previous algo-
rithm for local broadcasting, the “optimal” transmission probability is initially
unknown.

In order to create local broadcasting algorithms for this model, a slow start
mechanism can be used [7,16,18,6]. In such a mechanism each node starts with a
very low transmission probability in the range of O(1/n) and doubles the prob-
ability until a certain number of transmissions are received, and the probability
is reset to a smaller value. With such a mechanism, local broadcasting in the
(uniform-powered) SINR model can be achieved in O(Δ logn + log2 n) [7,16].
Although different forms of the slow start mechanisms are used they reset the
transmission probabilities such that the sum of transmission probabilities in each
transmission region can be upper bounded by a constant.

Let us now consider the algorithm of Halldórsson and Mitra, described in
[7]. We can adapt the algorithm so that local broadcasting provably works with
high probability in the more general model considered in this paper. This can
be done by modifying the maximal transmission probability to be γ/16 instead

Local Broadcasting with Arbitrary Transmission Power 187

of 1/16, which can be done by simply changing Line 7 of Algorithm 1 in [7] from
py ← min{ 1

16 , 2py} to py ← min{ γ
16 , 2py}. This minimal adaptation allows us

to bound the sum of transmission probabilities similar to how it is done in the
original paper.

Lemma 6. Let N be a network with arbitrary transmission power assignment,
asynchronous node wake-up and let all nodes execute Algorithm 1 from [7] with
maximal transmission probability be set to γ/16. Then the sum of transmission
probabilities from within each proximity region is upper bounded by γ.

By combining this result with Theorem 4, Lemma 2, and a similar argumenta-
tion as in the previous section, the transmission is successful at least once with
high probability. The correctness of the algorithm follows with the original argu-
mentation in [7]. Using the modified Algorithm 1 from [7], we get for the more
general case of arbitrary transmission power assignment

Theorem 7. There exists an algorithm for which the following holds whp: Each
node v successfully performs a local broadcast within O((Δ + logn)Γ 2 log n).

Remark: Note that the local broadcasting algorithm by Yu et. al. [16] has the
same runtime guarantees as the algorithm by Halldórsson and Mitra [7], but was
proposed slightly earlier. However, their algorithm cannot be transfered to the
case of arbitrary transmission power as it heavily relies on bidirectional com-
munication to operate. Specifically, their algorithm computes an MIS, acquires
information about dominated nodes and then assigns transmission intervals to
the dominated nodes. Thus, it requires (at least) significant changes to generalize
it to networks of arbitrary transmission power.

4.2 Variable Transmission Power

For local broadcasting, the transmission power is required to be fixed for at least
one full round of local broadcasting. In this section, we consider a more general
setting and allow the nodes to change the transmission power for each time slot.
As it is not initially clear which nodes should be considered as intended receivers
in such a setting, our result states the achieved broadcasting range, based on
the number of times certain transmission power levels were exceeded within the
considered time interval. Note that we assumeΔ to be known to the nodes in this
section. We shall now briefly discuss the notation required in this section. We
consider the time slots in one interval (1, . . . , t). For multiple time intervals that
are not continuous, a transmission power of 0 can be added to fill the gaps. Let
{0 = P[0]

v ,P[1]
v , . . . ,P[k]

v } the set of transmission powers used by v (plus 0), such

that P[j]
v < P[j+1]

v for j = 0, 1, . . . , k − 1. We denote the number of time slots,

v used a transmission power of at least P[j]
v by Tj . Let R

[j]
v be the broadcasting

range corresponding to P[j]
v .

Theorem 8. Let all the nodes in the network transmit with probability at most
p = γ/Δ and a variable transmission power between R and R̄. Let v be an arbi-
trary node that transmits with variable transmission powers during the interval

188 F. Fuchs and D. Wagner

(1, . . . , t). For j maximal such that Tj > 8c/p logn, all nodes closer to v than

R[j]
v received v’s message whp for an arbitrary constant c > 1.

Proof. Let j be maximal such that Tj > 8c/p logn. It holds that v transmits with

probability p and transmission power at least P[j]
v in at least 8c/p logn time slots.

Let us consider such a time slot i. As the sum of transmission probabilities from
within each proximity range is obviously bounded by at most γ, we can apply our
method to bound the interference. It holds due to Theorem 4 and Lemma 2 that
a message transmitted by v in time slot i is received by nodes closer to v than
R[j]

v with probability at least 1/8. Combined with the transmission probability
p and considered over 8c/p logn time slots, this results in a success probability
of at least 1 − 1

nc with an argumentation similar to the that in the proof of
Theorem 5 in the full version [4].

5 Distributed Node Coloring

We shall demonstrate the applicability of our results to existing algorithmic
results in the uniform SINR model in this section. Therefore we consider a dis-
tributed node coloring algorithm[2], and briefly show how this algorithm can be
transfered to the case of arbitrary transmission powers. Distributed node col-
oring is a fundamental problem in wireless networks, as a node coloring can be
used to compute a schedule of transmissions by assigning each color to a different
time slot. Thus, efficient transmissions based on a time-division-multiple-access
(TDMA) schedule can be reduced to a node coloring. The algorithm we con-
sider computes a node coloring that ensures that two nodes with the same color
cannot communicate directly. This does not necessarily result in a transmission
schedule that is feasible in the SINR model, however, one can use additional
techniques like those described in [2] or [3] to transform such a node coloring
to a local broadcasting schedule that is feasible in the SINR model. Let us now
define some notation required for the coloring problem. For two nodes v, u ∈ V
we say that there is a communication link from v to u if u is in the broadcasting
region of v. We say that there is a unidirectional communication link from v to
u if there is a communication link from v to u, but not from u to v. In this case
v dominates u. If both communication links are available we say that it is bidi-
rectional. We call two nodes u and v independent if there is no communication
link between u and v. Accordingly, a set is independent if each two nodes in the
set are mutually independent. A node coloring is valid if each color forms an
independent set.

Before stating the algorithms, we shall briefly characterize the communication
graph implied by arbitrary transmission powers in the SINR model. Obviously,
it is still based on a disk graph, but, not a unit disk graph as in the uniform case.
Additionally, there are two main characteristics that are introduced by directed
communication links and are relevant for graph-based algorithms in this setting.
First, unidirectional communication links can form long directed paths. This is
formalized in the following definition.

Local Broadcasting with Arbitrary Transmission Power 189

Definition 9. Given a network N and the induced communication graph G =
(V,E). Let G′ be the graph that remains after deleting all bidirectional edges from
G. The longest directed path in the network is defined as the longest simple path
in G′. We denote the length of the longest directed path in a network by �.

Second, these directed paths cannot form a directed circuit. This holds since in
any circle in the communication graph, there must be a bidirectional commu-
nication link. Consider a directed path consisting of the nodes (v1, . . . , v�). It
holds that the transmission range decreases monotonically, i.e., R̄vi ≥ R̄vi+1 for
i = 1, . . . , �− 1. If a node vi can be reached from vj with i ≤ j, there must be a
bidirectional communication link as vi reaches vj as well due to R̄vi ≥ R̄vj .

5.1 The MW-Coloring Algorithm

The algorithm we adapted to the case of arbitrary transmission power is based
on the coloring algorithm by Moscibroda and Wattenhofer [12,11], originally
designed for unstructured radio networks. Derbel and Talbi [2] modified the
algorithm to fit the case of uniform transmission powers in the SINR model.
The original MW-coloring algorithm starts with an initial leader election. Af-
terwards, each non-leader node queries a nearby leader for a block of colors. As
neighbors may query different leaders, they may end up with the same color.
Hence a final competition for colors within such a block ensures valid colors be-
tween neighbors. In order to generalize the algorithm for the case of non-uniform
transmission power, we must modify both the transmission probabilities and the
algorithm itself to handle issues introduced by directional communication links.
Although the communication between the nodes can be easily adapted by slightly
modifying the transmission probabilities, the algorithm itself depends on unidi-
rectional communication in a nontrivial way. Due to space restrictions, we briefly
introduce the algorithm and show that our results on bounding the interference
and thus enabling successful communication can be applied easily. A more thor-
ough description of the algorithm along with the analysis of the correctness can
be found in the full version of this paper [4].

Algorithm Description. Let us now describe an execution of the algorithm at
node v, which is also depicted in Figure 1. As the MW-coloring algorithm requires
bidirectional communication, v startswith an initial neighborhood learning,which
allows v to know whether it is dominated or not. Once all nodes that dominate v
are colored, v enters a wait and listen phase, which is long enough so that v knows
the current status of all other nodes that are awake and are able to communicate
to v. Afterwards, if there is a leader w to which bidirectional communication is
possible, v enters the request state, and requests a color from w. After w answers
the request by assigning the first color j of a block of colors, v tries to verify the
assigned color j. If this is not successful, v increases j by one and retries. Note that
this can happen only a constant number of times. Once v is successful, it announces
its success so that neighboring nodes know that v colors itself with color j. On
the other hand, if there is no leader that can communicate bidirectionally with

190 F. Fuchs and D. Wagner

Neighbor-
hood
learning

Wake-up
Wait &
Listen

dominated Compete
for Leader

Request
color

Announce
color

Compete
for Color i

Colored

lost competition
i = i+ 1

lost
competition

≥ 1 leader
reachable

no leader
reachable

Fig. 1. State diagram of the MW-coloring algorithm

v, v tries to compete for the leader status. If this is not successful, v enters the
request state and proceeds as above, as there must be a leader with bidirectional
communication available now. If v is successful in becoming leader, it selects a free
leader color and announces its choice so that all neighbors of v are informed. After
the announcement phase, v is a leader and will only periodically transmit its color
and serve color requests as they arrive.

Transmissions Are Successful. Although the transmission probabilities of
leader and non-leader nodes are different in the algorithm, we shall show in
this section, that we can easily adapt the transmission probabilities used in the
algorithm such that communication is successful in the general case of arbitrary
transmission powers. In order to apply the bound on the interference shown
in Section 3, we need to prove that the sum of transmission probabilities from
within each transmission region is at most γ.

As leader nodes need to serve up to Δ color requests, they are allowed to
transmit with a probability that is a Δ factor higher than the transmission
probability of non-leader nodes. In order to fit the requirements of communi-
cation with arbitrary transmission powers, let the transmission probability for
non-leader nodes be ps = γ/(2Δ), and the transmission probability for leader
nodes be pl = γ/(18Γ 2). Due to space restrictions, we the proof of the following
lemma. A proof is given in the full version [4].

Lemma 10. Let v be an arbitrary leader node. Then there are at most 9Γ 2 other
leader nodes in the transmission range of v.

The lemma follows from the fact that two nodes that can communicate bidi-
rectionally will not both become leaders. Thus, disks of size R/2 around each
leader node in v’s neighborhood would not intersect. Hence there can be at most
(R̄+R/2)2

(R/2)2 ≤ 9Γ 2 leader nodes in a maximal transmission range. We shall now

prove the bound on the transmission probabilities.

Lemma 11. Let leader nodes send with probability pl and non-leader nodes with
probability ps, then the sum of transmission probabilities from within each trans-
mission region is upper bounded by γ.

Proof. Let us consider an arbitrary node v and sum over the transmission prob-
abilities from within v’s transmission region∑

w∈Bv

pw ≤ 9Γ 2pl +Δps ≤ γ

Local Broadcasting with Arbitrary Transmission Power 191

This holds as at most 9Γ 2 leader nodes from each transmission region may
transmit with probability pl due to Lemma 10, while at most Δ other nodes in
v’s neighborhood transmit with probability at most ps.

The corollary follows from the lemma along with the argumentation for The-
orem 5. It shows that the limited number of leader nodes are able to commu-
nicate to their neighbors in O(logn) time slots, while non-leader nodes require
O(Δ log n) time slots. Overall it implies that all transmissions in the algorithm
are successful w.h.p.

Corollary 12. A message transmitted by an arbitrary node with probability pl
(ps) for 8c/pl logn (8c/ps logn) time slots reaches its intended receivers w.h.p.

This shows that communication is successful with high probability even in
this more general case. Combined with the algorithmic changes and the refined
analysis in the full version of this paper [4], the modified MW-coloring algorithm
computes a coloring with O(Γ 2Δ) colors such that each color forms an indepen-
dent set in O((Δ + �)Γ 4Δ logn) time slots. This highlights the applicability
of our method to bound the interference in networks of nodes with arbitrary
transmission powers.

6 Conclussion

In this paper we have proven a bound on the interference in wireless ad hoc
networks with arbitrary transmission power assignments. We believe that this
generic result will be of use in many algorithms designed for such networks.
We have shown that local broadcasting can be transfered to the general case of
arbitrary transmission powers with minor efforts due to this result. Additionally,
we considered variable transmission power, which allows each node to change its
transmission power in each time slot. To highlight the applicability of our results
on communication in networks with arbitrary transmission power, we presented
a distributed node coloring algorithm that is fully adapted to characteristics of
directed communication networks such as unidirectional communication links.
For future directions, we would like to investigate, whether the dependence on
the neighborhood learning algorithm is required and whether the dependence on
Γ could be decreased.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) within the Research Training Group GRK 1194 ”Self-organizing
Sensor-Actuator Networks”.

References

1. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Broadcast in the ad hoc SINR model.
In: Afek, Y. (ed.) DISC 2013. LNCS, vol. 8205, pp. 358–372. Springer, Heidelberg
(2013),
http://dx.doi.org/10.1007/978-3-642-41527-2_25

http://dx.doi.org/10.1007/978-3-642-41527-2_25

192 F. Fuchs and D. Wagner

2. Derbel, B., Talbi, E.G.: Distributed Node Coloring in the SINR Model. In: Proc.
30th Internat. Conf. on Distributed Computing Systems (ICDCS 2010), pp. 708–
717. IEEE Computer Society (2010)

3. Fuchs, F., Wagner, D.: On Local Broadcasting Schedules and CONGEST Algo-
rithms in the SINR Model. In: Flocchini, P., Gao, J., Kranakis, E., Meyer auf der
Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 170–184. Springer,
Heidelberg (2014)

4. Fuchs, F., Wagner, D.: Arbitrary transmission power in the SINR model: Local
broadcasting, coloring and mis. CoRR abs/1402.4994 (2014)

5. Fujii, T., Takahashi, T., Bandai, T., Udagawa, T., Sasase, T.: An efficient MAC
protocol in wireless ad-hoc networks with heterogeneous power nodes. In: 5th Inter-
nat. Symp. Wireless Personal Multimedia Communications (WPMC 2002), vol. 2,
pp. 776–780. IEEE (2002)

6. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local Broadcasting in the
Physical Interference Model. In: Proc. 5th ACM Internat. Workshop on Founda-
tions of Mobile Computing (DialM-POMC 2008), pp. 35–44. ACM Press (2008)

7. Halldórsson, M.M., Mitra, P.: Towards Tight Bounds for Local Broadcasting. In:
Proc. 8th ACM Internat. Workshop on Foundations of Mobile Computing (FOMC
2012). ACM Press (July 2012)

8. Halldórsson, M.M., Mitra, P.: Wireless connectivity and capacity. In: Proc. 23rd
Ann. ACM-SIAM Symp. Discrete Algorithms (SODA 2012), pp. 516–526. SIAM
(2012), http://dl.acm.org/citation.cfm?id=2095116.2095160

9. Jurdziński, T., Stachowiak, G.: Probabilistic algorithms for the wakeup problem
in single-hop radio networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS,
vol. 2518, pp. 535–549. Springer, Heidelberg (2002)

10. Kesselheim, T., Vöcking, B.: Distributed contention resolution in wireless networks.
In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 163–
178. Springer, Heidelberg (2010),
http://dl.acm.org/citation.cfm?id=1888781.1888803

11. Moscibroda, T., Wattenhofer, M.: Coloring Unstructured Radio Networks. J. Distr.
Comp. 21(4), 271–284 (2008)

12. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: Proc
17th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA 2005),
pp. 39–48. ACM (2005)

13. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial Mathematics (2000)

14. Poojary, N., Krishnamurthy, S.V., Dao, S.: Medium access control in a network
of ad hoc mobile nodes with heterogeneous power capabilities. In: IEEE Internat.
Conf. on Communications (ICC 2001), vol. 3, pp. 872–877. IEEE (2001)

15. Wang, G., Turgut, D., Bölöni, L., Ji, Y., Marinescu, D.C.: A MAC layer protocol
for wireless networks with asymmetric links. Ad Hoc Networks 6(3), 424–440 (2008)

16. Yu, D., Hua, Q.S., Wang, Y., Lau, F.C.M.: An O(log n) Distributed Approximation
Algorithm for Local Broadcasting in UnstructuredWireless Networks. In: Proc. 8th
Internat. Conf. on Distributed Computing in Sensor Systems (DCOSS 2012), pp.
132–139. IEEE Computer Society (2012)

http://dl.acm.org/citation.cfm?id=2095116.2095160
http://dl.acm.org/citation.cfm?id=1888781.1888803

Local Broadcasting with Arbitrary Transmission Power 193

17. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed (Δ + 1)-Coloring in the
Physical Model. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSEN-
SORS 2011. LNCS, vol. 7111, pp. 145–160. Springer, Heidelberg (2012)

18. Yu, D., Wang, Y., Hua, Q.S., Lau, F.C.M.: Distributed Local Broadcasting Algo-
rithms in the Physical Interference Model. In: Proc. 7th Internat. Conf. on Dis-
tributed Computing in Sensor Systems (DCOSS 2011), pp. 1–8. IEEE Computer
Society (2011)

19. Zuhairi, M., Zafar, H., Harle, D.: On-demand routing with unidirectional link using
path loss estimation technique. In: Proc. Wireless Telecommunications Symposium
(WTS 2012), pp. 1–7 (2012)

Continuous Aggregation

in Dynamic Ad-Hoc Networks�

Sebastian Abshoff and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Computer Science Department,
University of Paderborn, Fürstenallee 11, 33102 Paderborn, Germany

{abshoff,fmadh}@hni.upb.de

Abstract. We study a scenario in which n nodes of a mobile ad-hoc
network continuously collect data. Their task is to repeatedly update
aggregated information about the data, e.g., the maximum, the sum, or
the full information about all data received by all nodes at a given time
step. This aggregated information has to be disseminated to all nodes.

We propose two performance measures for distributed algorithms for
these tasks: The delay is the maximum time needed until the aggregated
information about the data measured at some time is output at all nodes.
We assume that a node can broadcast information proportional to a
constant number of data items per round. A too large communication
volume needed for producing an output can lead to the effect that the
delay grows unboundedly over time. Thus, we have to cope with the
restriction that outputs are computed not for all but only for a fraction
of rounds. We refer to this fraction as the output rate of the algorithm.

Our main technical contributions are trade-offs between delay and
output rate for aggregation problems under the assumption of T -stable
dynamics in the mobile ad-hoc network: The network is always connected
and is stable for time intervals of length T ≥ c ·MIS(n) where MIS(n) is
the time needed to compute a maximal independent set. For the maxi-
mum function, we are able to show that we can achieve an output rate
of Ω(T/(n · MIS(n))) with delay O(n · MIS(n)). For the sum, we show
that it is possible to achieve an output rate of Ω(T 5/2/(n2 · MIS(n)3))
with delay O(n2 ·MIS(n)2/T 3/2) if T = O(n2/3 ·MIS(n)2/3), and if T =
Ω(n2/3 ·MIS(n)2/3), we can achieve an output rate of Ω(T/(n ·MIS(n)2))
with delay O(n ·MIS(n)).

Keywords: Dynamic Networks, Aggregation, Token Dissemination.

1 Introduction

There are various devices that communicate wirelessly with each other and ob-
serve their environment. For example, many smartphones are able to commu-
nicate with close-by smartphones via technologies such as Bluetooth, WiFi, or

� This work was partially supported by the German Research Foundation (DFG)
within the Priority Program “Algorithms for Big Data” (SPP 1736), by the EU
within FET project MULTIPLEX under contract no. 317532, and the International
Graduate School “Dynamic Intelligent Systems”.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 194–209, 2014.
c© Springer International Publishing Switzerland 2014

Continuous Aggregation in Dynamic Ad-Hoc Networks 195

Near Field Communication. In addition, these smartphones are equipped with
more and more sensors nowadays, e.g. accelerometers, magnetometers, gyro-
scopic, light, temperature, pressure, and humidity sensors to name only a few.
In this paper, we consider a scenario where these devices have to form an ad-hoc
network to process the huge amount of data collected by their sensors. The links
in such a network are unstable and they change over time, and thus, the network
is dynamic – especially, if the nodes are mobile. We are interested in providing
all nodes of the network with aggregated information about their sensor data.

We model the ad-hoc network as a T -stable dynamic network, which is con-
trolled by an adaptive adversary (as introduced by Haeupler and Karger [7]).
This adversary is able to change all edges of the network every T rounds, but is
restricted to give a connected network. The set of nodes is fixed and nodes have
unique IDs. A message of O(log n) bits sent by some node in some round r is
delivered to all its neighbors in the graph of the following round r + 1.

In this adversarial model, we study two aggregation problems: the extremum
problem (e.g., the maximum) and the summation problem (e.g., the sum). Here,
the nodes are given inputs (e.g., integers) and they have to compute a function
of all inputs of the network. While both problems can be solved with existing al-
gorithms for dissemination problems, which allow for full reconstruction of each
input, we show that they can be solved faster with algorithms that aggregate
information within the process. For this purpose, we exploit certain properties
of the binary operations used to define the problems. For speeding up the sum-
mation, we make use of the commutativity and associativity, and we exploit the
additional idempotence of the extremum which makes the problem simpler.

Our main focus lies on continuous versions of these problems where nodes
receive a new input in each round and have to compute a function of all inputs
for a single round. Here, we refer to the delay of an algorithm as the maximum
number of rounds between the round when inputs arrive at all nodes and the
round the last node outputs the result of the function of these inputs. We are
interested in algorithms that have a high output rate, i.e., algorithms that output
as many results for different rounds at all nodes as possible. One way to continu-
ously produce outputs is to start the execution of the non-continuous algorithm,
output one result and restart the execution of the algorithm again to produce
the next result. However, we show how to use a pipelining technique to increase
this trivial output rate but only slightly increase the delay.

1.1 Our Contribution

In static networks, all three (non-continuous) problems can be solved in a linear
number of rounds (cf. Section 4). The continuous variants of the extremum and
summation problem can be solved with constant output rate, and the continuous
dissemination problem with rate Ω

(
1
n

)
while all delays remain linear. Note that

these results are asymptotically tight in static networks.
For 1-stable dynamic networks, we show that the (non-continuous) extremum

problem still can be solved in a linear number of rounds (cf. Section 5). To
solve the other problems, we assume T ≥ c · MIS(n) where c is a sufficiently

196 S. Abshoff and F. Meyer auf der Heide

large constant and MIS(n) is the number of rounds required to compute a
maximal independent set in a graph with n nodes (note that there are some
restrictions under which this maximal independent set must be computed, cf.
Section 5.1). Compared to the (non-continuous) dissemination problem, we are
able to solve the (non-continuous) summation problem T

MIS(n) times faster if

T = O(
√
n ·MIS(n)), and if T = Ω(

√
n ·MIS(n)), this problem can be solved

in a linear number of rounds. For the continuous extremum and summation
problem, we prove non-trivial output rates, i.e., output rates that are higher
than these obtained by executing the non-continuous algorithms over and over
again. For the continuous extremum problem, we thereby increase the delay only
slightly. If T = O(n2/3 MIS(n)2/3), we can achieve the same delay and a slightly
smaller output rate for the continuous summation problem compared to the ex-
tremum problem. Besides these deterministic results (cf. Table 1), we show in
the corresponding sections how randomization helps to improve these results.

Table 1. Overview about the deterministic results shown in this paper

(a) Static Networks.

Extremum Summation Dissemination

non-continuous

Running Time: O(n) O(n) O(n)

continuous

Delay: O(n) O(n) O(n)

Output Rate: Ω(1) Ω(1) Ω
(
1
n

)

(b) T -Stable Dynamic Networks with T ≥ c ·MIS(n).

Extremum Summation Dissemination

non-continuous

Running Time:

if T = O(
√

n ·MIS(n)) O(n)
O

(
n2·MIS(n)

T2

)
O

(
n2

T

)
if T = Ω(

√
n ·MIS(n)) O(n)

continuous

Delay:

if T = O(n2/3 MIS(n)2/3) O(n ·MIS(n))
O

(
n2·MIS(n)2

T3/2

)
O

(
n2

T

)
if T = Ω(n2/3 MIS(n)2/3) O(n ·MIS(n))

Output Rate:

if T = O(n2/3 MIS(n)2/3)
Ω

(
T

n·MIS(n)

) Ω
(

T5/2

n2·MIS(n)3

)
Ω(T

n2)
if T = Ω(n2/3 MIS(n)2/3) Ω

(
T

n·MIS(n)2

)

Continuous Aggregation in Dynamic Ad-Hoc Networks 197

2 Models and Problems

We adapt the dynamic network model from Haeupler and Karger [7]: A dynamic
network is a dynamic graph Gr, which consists of a fixed set of n nodes. Each
node has a unique ID that can be encoded with O(log n) bits. Time proceeds in
discrete, synchronous rounds. An adaptive adversary chooses a set of undirected
edges Er defining the graph Gr = (V,Er) for round r. This adversary is only
restricted to choose a connected graph in each round. In each round r, each node
can send a message of Θ(log n) bits, which is delivered to all neighbors in the
graphGr+1 in the following round r+1. The computational power of each node is
unbounded. A dynamic network is called T -stable if the adversary is restricted to
change the network only once every T rounds. We assume throughout the paper
that T ≤ n. Furthermore, we assume that the nodes know both values T and
n. Note that T -stability is a stronger assumption than T -interval connectivity
that has been proposed by Kuhn et al. [12] because T -interval connectivity only
requires a stable spanning subgraph for T rounds.

We study the following three (non-continuous) aggregation problems.

Problem 1 (Extremum). Let (S,+) be a commutative and idempotent semi-
group and let the elements of S be representable with O(log n) bits. Each
node i in the network receives as input an element xi ∈ S. Let f be de-
fined by f(x1, x2, . . . , xn) :=

∑n
i=1 xi. All nodes of the network have to output

f(x1, x2, . . . , xn).

Problem 2 (Summation). Let (S,+) be a commutative semigroup and let the
elements of S be representable with O(logn) bits. Each node i in the network
receives as input an element xi ∈ S. Let f be defined by f(x1, x2, . . . , xn) :=∑n

i=1 xi. All nodes of the network have to output f(x1, x2, . . . , xn).

Problem 3 (Dissemination). Let S be a structure representable with O(log n)
bits. Each node i in the network receives as input an element xi ∈ S called
token. All nodes of the network have to output x1, x2, . . . , xn.

In addition to that, we solve continuous versions of these problems where f has
not to be computed only once but several times for different inputs.

Problems 4/5/6 (Continuous Extremum/Summation/Dissemination). Define f
and (S,+) as in the corresponding extremum/summation/dissemination prob-
lem. In each round r, each node i in the network receives as input an element
xi,r ∈ S. For a subset of rounds R ⊆ N (defined by the algorithm) and each
r′ ∈ R, all nodes have to output f(x1,r′ , x2,r′ , . . . , xn,r′).

For example, consider S to be a subset of N of size polynomial in n. Then,
computing the sum is a summation problem whereas computing the maximum or
the minimum of all inputs is an extremum problem. The dissemination problem
is also known as the all-to-all token dissemination problem [12].

Note that solving these problems for one round, in general, requires more
than just one round. Although it is possible to produce the result for each round

198 S. Abshoff and F. Meyer auf der Heide

r ∈ N, it could take longer and longer: Let T be the number of rounds required
to produce one output. Then, it is possible to output the result of round r in
round r ·T by running the algorithm for each round one by one. Since we intend
to run our algorithms for a long time, this is not a feasible approach and we do
not want the number of rounds to produce one output to depend on the round
when the computation is started.

Instead, we would like our algorithms to drop some rounds and produce out-
puts without this dependence. Intuitively, a good algorithm that continuously
gives results produces as many results as possible and requires few rounds per
output. This is captured by the following two definitions.

Definition 1 (Output Rate). The output rate of an algorithm is defined as

lim
r→∞

#results up to round r

r
.

Definition 2 (Delay). The delay of an algorithm is defined as the maximum
number of rounds between the round when inputs arrive and the round the func-
tion of these inputs is output by all nodes.

3 Related Work

For static networks, one knows that many problems such as computing the max-
imum, sum, parity, or majority can be solved in linear time in a graph by first
computing a spanning tree (see, e.g., Awerbuch [3]). More specifically, if D is
the diameter of the graph, all these functions can be computed in O(D) rounds.
Beyond that, more complicated problems have been studied, e.g., selection prob-
lems [11] or the problem of computing the mode (most frequent element) [10].

The dynamic network model was introduced by Kuhn et al. [12]. In contrast
to the model we use, they assumed that the number of nodes in the network is
not known beforehand. In their setting, they studied two problems, the token
dissemination and the counting problem. In the token dissemination problem,
each node receives as input a token that has to be disseminated to all nodes
such that in the end all nodes know all tokens. In the counting problem, the
nodes have to determine the exact number of nodes in the network. They solved
both problems with so-called token forwarding algorithms that are only allowed
to store and forward tokens. Especially, these algorithms are not allowed to
annotate or combine tokens or to send any other message except the empty
message. For T -interval connected dynamic networks, they gave a deterministic
O(n(n+ k)/T) algorithm. This algorithm can also be used to solve the counting
problem in O(n2/T) rounds. If n is known, k tokens can be disseminated in
O(nk/T + n) rounds. On the negative side, they showed that a subclass of
knowledge-based token-forwarding algorithms needs Ω(nk/T) rounds for solving
the token dissemination problem. In addition to that, they showed that even a
centralized deterministic token-forwarding algorithm needs Ω(n log k) rounds.

In a subsequent paper, the lower bound by Kuhn et al. was improved by Dutta
et al. [6]. They showed that any randomized (even centralized) token-forwarding

Continuous Aggregation in Dynamic Ad-Hoc Networks 199

algorithm requires Ω(nk/ logn + n) rounds. Furthermore, they gave an algo-
rithm that can solve the k-token dissemination problem in O((n+ k) logn log k)
rounds w.h.p. in the presence of a weakly-adaptive adversary. For the offline
case, they developed two randomized and centralized algorithms where one gives
an O(n,min{k logn}) schedule w.h.p. and the other gives an O((n + k) logn2)
schedule w.h.p. if each node is allowed to send one token along each edge in each
round. Haeupler and Kuhn [8] proved lower bounds when each node is allowed
to send b ≤ k tokens per round or when the nodes have to collect a δ-fraction of
the tokens only. Their results are applicable for T -interval connected dynamic
networks and dynamic networks that are c-vertex connected in each round.

Abshoff et al. [1] adapted the model by Kuhn et al. and restricted the adver-
sary in a geometric setting. Here, each node has a position in the Euclidean plane
and is moved by the adversary with maximum velocity vmax. The nodes are able
to reach all nodes within distance R > 1 and the adversary must keep the unit
disk graph w.r.t. radius 1 connected. The k-token dissemination problem can be
solved in O(n ·k ·min{vmax, R} ·R−2) rounds. In a different paper, Abshoff et al.
[2] established a relation between counting and token dissemination by showing
that a special token dissemination problem is at most as hard as counting the
number of nodes in a directed variant of dynamic networks.

Haeupler and Karger [7] applied network coding techniques to the domain of
dynamic networks. Their algorithm solves the token dissemination problem in
O(n2/ logn) rounds w.h.p. when both the message size and token size have length
Θ(log n) bits. With T -stability, they achieve a T 2 speedup. In the deterministic

case, they can solve k-token dissemination in O
(

1√
lognT

· n ·min{k, n
T }+ n

)
·

2O(
√
log n) rounds. In the randomized case, they can solve k-token dissemination

in O
(
min{nkT 2 + T 2n log2 n, nk log n

T 2 + Tn log2 n, n2 logn
T 2 + n logn}

)
rounds.

Cornejo et al. [5] studied a different aggregation problem where tokens have to
be gathered at a minimum number of nodes. On the one hand, they proved that
there is no algorithm with a good competitive ratio compared to an optimal
offline algorithm. On the other hand, under the assumption that every node
interacts with at least a p-fraction of the nodes, they give an algorithm that
aggregates the tokens to a logarithmic number of nodes with high probability.

Mosk-Aoyama and Shah [15] showed how so-called separable functions can be
approximated with a gossiping algorithm based on exponential random variables.
Their techniques can also be applied in dynamic networks as Kuhn et al. [12]
showed for approximate counting.

A main building block of this paper is the construction of maximal indepen-
dent sets (MIS). The distributed algorithm by Luby [14] computes an MIS in
expected O(log n) rounds. It can also be shown that the number of rounds is
O(log n) w.h.p. [9,4]. The best known distributed deterministic algorithm by

Panconesi and Srinivasan [16] computes an MIS in 2O(
√
logn) rounds. In growth-

bounded graphs, Schneider and Wattenhofer [17] showed how to deterministi-
cally create an MIS in O(log∗ n) communication rounds. This is asymptotically
optimal as Linial [13] gave a corresponding Ω(log∗ n) lower bound.

200 S. Abshoff and F. Meyer auf der Heide

4 Static Networks

For the sake of a simpler presentation of the algorithms for T -stable dynamic
networks, we shortly discuss how the problems can be solved in static networks.

The extremum problem can be solved in n − 1 rounds: Each node i initially
broadcasts its input xi. In every other round up to round n − 1, each node i
takes its incoming messages m1, . . . ,ml and broadcasts

∑l
j=1 mj + xi. In round

n− 1,
∑l

j=1 mj + xi = f(x1, . . . , xn) since all inputs must be contained in this
sum and multiplicities cancel out due to the idempotence of the semigroup.

To solve the summation problem, we can first find the node with the smallest
ID in n−1 rounds (this is an extremum problem). Then, in further n−1 rounds,
we can build up a shortest path tree rooted at the node with the smallest ID.
Along this tree, starting from the leaves up to the root, we can sum up the inputs
and finally broadcast the result back from the root to all elements. We thereby
guarantee that each summand is only considered once.

Finally, to solve the dissemination problem, we can build up a tree as for the
summation problem. Then, each node in the tree sends a token it has not yet
sent upwards to the root of the tree in each round. After that the tokens are
sent one after the other from the root to the leaves.

Proposition 1. In static networks, the extremum, the summation, and the dis-
semination problem can be solved in O(n) rounds.

We could have used the algorithm that solves the dissemination problem to
solve the extremum and the summation problem. However, we chose the afore-
mentioned algorithms since they are similar to those we will use to solve these
problems in their continuous versions in dynamic networks.

To continuously solve both the extremum and the summation problem, we
build up a tree as before and apply a pipelining technique. The leaves of the tree
start sending their inputs from the first round upwards. In the next round, the
leaves start sending their inputs from the second round upwards and so on until
round n. The nodes with distance l to the leaves within the tree in round r sum
up the incoming messages from the level below and add their input from round
r− l if r− l > 0. Then, after n rounds, the results for round 1 to n are sent one
after the other from the root to the leaves. This gives n outputs in O(n) rounds.
Since the best possible output rate is 1 and the delay cannot be better than the
diameter of the network, we get the following result.

Proposition 2. In static networks, the continuous extremum problem and the
continuous summation problem can be solved with delay O(n) and output rate
Ω(1). The delay and the output rate are asymptotically optimal.

For the dissemination problem, we cannot achieve better delays and output
rates than these we get if we just solve the non-continuous version over and over
again. The delay is bounded by the diameter of the network. For the output
rate, consider |S| = n, a line of n nodes and the edge e with �n2 � nodes on the
left an �n2 � nodes on the right. If the output rate was ω(1n), then ω(rn) outputs

Continuous Aggregation in Dynamic Ad-Hoc Networks 201

must have been computed up to round r. We know that at most O(r · logn)
bits could have passed e from the left to the right. These bits separate up to

nO(r) instances. However, there are
(|S|
n/2

)ω(r/n)
= nω(r) possibilities to choose

the tokens on the left side. Hence, at least one output must be wrong.

Proposition 3. In static networks, the continuous dissemination problem can
be solved with delay O(n) and output rate Ω

(
1
n

)
. The delay and the output rate

are asymptotically optimal.

5 T -stable Dynamic Networks

We now show how to solve the problems in T -stable dynamic networks. First,
we introduce a graph patching technique.

5.1 Graph Patching in T -stable Dynamic Networks

In this section, we show how a T -stable dynamic network can be partitioned
into patches such that aggregation is possible. This partitioning will help speed-
ing up the summation problem, the continuous extremum, and the continuous
summation problem. The following patching idea is adapted from Haeupler and
Karger [7].

Definition 3 (D-Patch, D-Patching). A D-patch of a graph G = (V,E) is
a rooted tree in G that spans at least D

2 nodes and has depth at most D
2 . A D-

patching of a graph is a set of D-patches such that the sets of the nodes of all
D-patches give a disjoint partition of V .

Such a D-patching of G can be distributedly computed by

1. finding a set of nodes in G that form a maximal independent set (MIS) in
GD, i.e., the Dth power1 of G,

2. computing breadth-first trees rooted in each node of the MIS, where each
non-MIS node is assigned to its closest MIS node.

Existing distributed MIS algorithms can be adapted for this approach. Let
MIS(n) be the number of rounds necessary to compute an MIS in a graph with
n nodes. If an MIS algorithm running in GD is simulated in G, one needs to
take care that one edge in GD corresponds to a path of length up to D in G.
Therefore, an MIS algorithm is slowed down by a factor of D. In addition to
that, it is also important to consider the congestion in the nodes of G caused
by paths that overlap during simulation. If an MIS algorithm can be modified
appropriately, a D-patching can be computed in O(MIS(n) ·D) rounds.

Proposition 4. [7,14,9,4] A graph G can be partitioned into D-patches of size
Ω(D) in O(log(n) ·D) rounds w.h.p. with Luby’s randomized MIS algorithm.

1 GD = (V,ED) with ED = {{u, v}|∃path between u, v ∈ V of length ≤ D in G}.

202 S. Abshoff and F. Meyer auf der Heide

Proposition 5. [7,16] A graph G can be partitioned intoD-patches of size Ω(D)

in O(2O(
√
log n) ·D) rounds with Panconesi and Srinivasan’s deterministic MIS

algorithm.

We would like to add that a patching can be computed faster in growth-bounded
graphs.

Proposition 6. A growth-bounded graph G can be partitioned into D-patches
of size Ω(D) in O(log∗(n) ·D) rounds with Schneider and Wattenhofer’s deter-
ministic MIS algorithm.

Proof. The algorithm by Schneider and Wattenhofer [17] can be modified such
that it can be executed in our setting: In each competition and whenever the
states are updated, each competitor is interested in the competitor u in its
neighborhood that has the minimum result rj−1

u among all its neighbors. In
addition to that, the nodes only need to know whether there exists a competitor,
a ruler, or a dominator in their neighborhood. Therefore, each node only needs
to flood the minimum result of a competitor, whether there exists a ruler, and
whether there exists a dominator for D rounds. �

5.2 Non-Continuous Extremum

Despite the presence of an adaptive adversary, the extremum problem can be
solved without the need for a graph patching. This is a tight result since even
in a static network the extremum problem cannot be solved faster.

Theorem 1. In 1-stable dynamic networks, the extremum problem can be solved
in O(n) rounds.

Proof. The algorithm that solves the extremum problem in dynamic networks
is the same as the algorithm used for static networks. Each node i initially
broadcasts its input xi. In every other round up to round n − 1, each node i
takes all its incoming messages m1, . . . ,ml and broadcasts

∑l
j=1 mj + xi. In

round n− 1, the sum
∑l

j=1 mj +xi is equal to f(x1, . . . , xn) because it contains
all inputs (each node causally influenced each other node after n−1 rounds [12])
and multiplicities cancel out due to the idempotence of the semigroup. �

5.3 Non-Continuous Summation

Theorem 2. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the summation problem can be solved in

– O
(

n2·MIS(n)
T 2

)
rounds if T = O(

√
n ·MIS(n)) and

– O(n) rounds if T = Ω(
√

n ·MIS(n)).

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

Continuous Aggregation in Dynamic Ad-Hoc Networks 203

1. Compute a D-patching.
2. In each patch, compute the sum of all inputs of the nodes in the patch.
3. Disseminate all partial sums of the patches to all nodes and sum them up.

If c is large enough and D is chosen properly, then we can do the first and the
second step in at most T rounds. Since each patch has size at least D

2 nodes, we

have at most 2n
D = O

(
n·MIS(n)

T

)
partial sums left. To disseminate them in the

third step, we can use the token dissemination algorithm by Kuhn et al. [12] for
T -interval connected dynamic networks. Thus, we solve the summation problem

in O
(

n2·MIS(n)
T 2 + n

)
rounds. �

Corollary 1. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the summation problem can be solved in

– O
(

n2

T 2 · 2c·
√
logn
)
rounds if T = O

(√
n ·
√
2
c·
√
logn
)

and

– O(n) rounds if T = Ω

(√
n ·
√
2
c·
√
logn
)
.

Randomization allows us to speed up this computation if we use Luby’s algo-
rithm to compute the patching and Haeupler and Karger’s randomized network
coding algorithm for dissemination.

Theorem 3. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the summation problem can be solved within the number of
rounds as listed in Table 2a.

Proof. Let D =
1
2T

L+1 . Then, we need at most D · L ≤ 1
2T rounds to compute

a D-patching and have further D ≤ 1
2T rounds to sum up all values in each

patch. Now, we can use the randomized network coding algorithm by Haeupler
and Karger [7] for dissemination. It needs

O
(
min{nk

T 2
+ T 2n log2 n,

nk logn

T 2
+ Tn log2 n,

n2 logn

T 2
+ n logn}

)
rounds to disseminate k tokens with high probability. For different ranges of T ,
we need the following number of rounds with high probability.

1. O
(

n2 logn
T 3

)
if T = O(n1/5 log−1/5 n)

2. O(T 2n log2 n) if Ω(n1/5 log−1/5 n) = T = O(n1/5)

3. O
(

n2 log2 n
T 3

)
if Ω(n1/5) = T = O(n1/4)

4. O(Tn log2 n) if Ω(n1/4) = T = O(n1/3 log−1/3 n)

5. O
(

n2 logn
T 2

)
if Ω(n1/3 log−1/3 n) = T = O(n1/2)

6. O(n logn) if Ω(n1/2) = T

204 S. Abshoff and F. Meyer auf der Heide

Note that the number of rounds in the second and fourth range increase with T .
However, a T -stable dynamic network is also T

l -stable for any l > 1. Therefore,
we can replace T by the lower bound of the range.

1. O
(

n2 logn
T 3

)
if T = O(n1/5 log−1/5 n)

2. O(n7/5 log8/5 n) if Ω(n1/5 log−1/5 n) = T = O(n1/5 logn2/15)

3. O
(

n2 log2 n
T 3

)
if Ω(n1/5 logn2/15) = T = O(n1/4)

4. O(n5/4 log2 n) if Ω(n1/4) = T = O(n3/8 log−1/2 n)

5. O
(

n2 logn
T 2

)
if Ω(n3/8 log−1/2 n) = T = O(n1/2)

6. O(n logn) if Ω(n1/2) = T

This gives the results for the non-continuous summation in Table 2a. �

Table 2. Summation in T -Stable Dynamic Networks with T ≥ L

(a) (Non-Continuous) Summation.

Running Time Range for T

O
(

n2 log n
T3

)
w.h.p. if L ≤ T = O(n1/5 log−1/5 n)

O(n7/5 log8/5 n) w.h.p. if Ω(n1/5 log−1/5 n) = T = O(n1/5 log n2/15)

O
(

n2 log2 n
T3

)
w.h.p. if Ω(n1/5 log n2/15) = T = O(n1/4)

O(n5/4 log2 n) w.h.p. if Ω(n1/4) = T = O(n3/8 log−1/2 n)

O
(

n2 log n
T2

)
w.h.p. if Ω(n3/8 log−1/2 n) = T = O(n1/2)

O(n log n) w.h.p. if Ω(n1/2) = T ≤ n

(b) Continuous Summation.

Delay Output Rate Range for T

O
(

n2

T2

)
w.h.p. Ω

(
T3

n2

)
w.h.p. if L ≤ T = O(n1/4 log−1/2 n)

O(n3/2 log n) w.h.p. Ω
(

T

n3/2 log n

)
w.h.p. if Ω(n1/4 log−1/2 n) = T = O(n1/4)

O
(

n2 log n
T2

)
w.h.p. Ω

(
T3

n2 log n

)
w.h.p. if Ω(n1/4) = T = O(n1/2)

O(n log n) w.h.p. Ω
(

T
n log n

)
w.h.p. if Ω(n1/2) = T ≤ n

Continuous Aggregation in Dynamic Ad-Hoc Networks 205

5.4 Continuous Extremum

Theorem 4. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the continuous extremum problem can be solved with delay O(n ·
MIS(n)) and output rate Ω

(
T

n·MIS(n)2

)
.

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

1. Each node i ∈ V initializes yi,r,0 with xi,r for r = 1, . . . , D.

2. For j = 1, . . . , 2n
D phases of T rounds do:

(a) Compute a D-patching.

(b) Each node i in each patch P , computes yi,r,j as the sum of yi′,r,j−1 for
all nodes i′ from P and all adjacent patches of P for r = 1, . . . , D.

3. Each node i ∈ V returns yi,r, 2nD for r = 1, . . . , D.

If c is large enough and D is chosen properly, we can do a) and b) in a stable
phase of T rounds. Consider any input xi,r . We say a patch P knows xi,r iff xi,r

is contained in any yi′,r,j for i
′ ∈ P . If there is a patch P that does not know xi,r

at the beginning a phase, then there is a patch P ∗ that does not know xi,r at the
beginning of the phase but knows xi,r at the end of the phase. Thus, at least D

2
nodes learn about xi,r in each phase until all nodes know xi,r. We can conclude
that after 2n

D phases all inputs xi,r are contained in all yi′,r, 2nD . Therefore, after
2n
D · T = O(n ·MIS(n)) rounds, we have generated D outputs which gives the
claimed delay and the output rate. �

Corollary 2. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the continuous extremum problem can be solved with delay O(n ·
2c·

√
log n) and output rate Ω

(
T

n·2c·
√

log n

)
.

Again, randomization allows us to speed up this computation.

Theorem 5. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the continuous extremum problem can be solved with high

probability with output rate Ω
(

T
n logn

)
and delay O(n logn).

Proof. Let D =
1
9T

L+1 . Then, we need at most D ·L ≤ 1
2T rounds to compute a D-

patching and have further 9D ≤ 1
2T rounds to do the computations in the patch

as we do in the proof of Theorem 4. If we repeat this n
D times, then, w.h.p., we

still have at least n
D validD-patchings. Therefore, w.h.p., after n

D ·T = O(n log n)
rounds, we can generate D outputs which gives the claimed delay and output
rate. �

206 S. Abshoff and F. Meyer auf der Heide

5.5 Continuous Summation

Theorem 6. In T -stable dynamic networks with T ≥ c·MIS(n) for a sufficiently
large constant c, the continuous summation problem can be solved with delay

– O
(

n2·MIS(n)2

T 3/2

)
if T = O(n2/3 ·MIS(n)2/3) and

– O(n ·MIS(n)) if T = Ω(n2/3 ·MIS(n)2/3)

and output rate

– Ω
(

T 5/2

n2·MIS(n)3

)
if T = O(n2/3 ·MIS(n)2/3) and

– Ω
(

T
n·MIS(n)2

)
if T = Ω(n2/3 ·MIS(n)2/3).

Proof. Consider the following algorithm for which we choose D = Θ
(

T
MIS(n)

)
.

1. Compute a D-patching.
2. In each patch, compute D

2 sums of all inputs of the nodes in the patch of D
2

rounds.
3. Disseminate all partial sums of the patches to all nodes and sum them up.

If c is large enough and D is chosen properly, then we can do the first and
the second step in at most T rounds. Since each patch has size at least D

2 , we
have at most n partial sums left. Now, we use the network coding algorithm
by Haeupler and Karger [7]. This algorithm is able to disseminate k ≤ n to-

kens in O
(
(n·MIS(n)√

T
·min{k ·

√
logn, n

T }+ n) ·MIS(n)
)

rounds. Thus, we can

disseminate all up to n partial sums in O
(
(n

2·MIS(n)

T 3/2 + n) ·MIS(n)
)
rounds. If

T = O(n2/3 ·MIS(n)2/3), we thereby generate D
2 outputs in O

(
T + n2·MIS(n)2

T 3/2

)
rounds and achieve an output rate of Ω

(
T 5/2

n2·MIS(n)3

)
. If T = Ω(n2/3 ·MIS(n)2/3),

we are able to generate D
2 outputs in O(n·MIS(n)) rounds and achieve an output

rate of Ω
(

T
n·MIS(n)2

)
. �

Corollary 3. In T -stable dynamic networks with T ≥ 2c·
√
logn for a sufficiently

large constant c, the continuous summation problem can be solved with delay

– O
(

n2·22c·
√

log n

T 3/2

)
if T = O

(
n2/3 · 2c· 23 ·

√
logn
)
and

– O
(
n · 2c·

√
logn
)
if T = Ω

(
n2/3 · 2c· 23 ·

√
log n
)

and output rate

– Ω
(

T 5/2

n2·23c·
√

log n

)
if T = O

(
n2/3 · 2c· 23 ·

√
log n
)
and

– Ω
(

T
2c·

√
log n

)
if T = Ω

(
n2/3 · 2c·23 ·

√
logn
)
.

Continuous Aggregation in Dynamic Ad-Hoc Networks 207

Again, we can use Luby’s algorithm to compute the patching and Haeupler
and Karger’s randomized network coding algorithm for dissemination.

Theorem 7. Let L be the number of rounds Luby’s algorithm needs to compute
a maximal independent set with high probability. Then, in T -stable dynamic net-
works with T ≥ L, the continuous summation problem can be solved with the
output rates and delays as listed in Table 2b.

Proof. Let D =
1
2T

L+1 . Then, we need at most D ·L ≤ 1
2T rounds to compute a D-

patching and have further 2D ≤ 1
2T rounds to do the computations in the patch

as we do in the proof of Theorem 6. Now, we can use the randomized network
coding algorithm by Haeupler and Karger [7] for dissemination. It needs

O
(
min{nk

T 2
+ T 2n log2 n,

nk logn

T 2
+ Tn log2 n,

n2 logn

T 2
+ n logn}

)
rounds to disseminate k tokens with high probability. For different ranges of T
and k = n, we need the following number of rounds with high probability.

1. O
(

n2

T 2

)
if T = O(n1/4 log−1/2 n)

2. O(T 2n log2 n) if Ω(n1/4 log−1/2 n) = T = O(n1/4 log−1/4 n)

3. O
(

n2 logn
T 2

)
if Ω(n1/4 log−1/4 n) = T = O(n1/2)

4. O(n logn) if Ω(n1/2) = T

Note that the number of rounds in the second range increases with T . However,
a T -stable dynamic network is also T

l -stable for any l > 1. Therefore, we can
replace T by the lower bound of the range.

1. O
(

n2

T 2

)
if T = O(n1/4 log−1/2 n)

2. O(n3/2 logn) if Ω(n1/4 log−1/2 n) = T = O(n1/4)

3. O
(

n2 logn
T 2

)
if Ω(n1/4) = T = O(n1/2)

4. O(n logn) if Ω(n1/2) = T

This gives the results for the continuous summation in Table 2b. �

6 Geometric Dynamic Networks

In the geometric dynamic network model by Abshoff et al. [1], nodes have po-
sitions in the Euclidean plane and the adversary is allowed to move the nodes
with maximum velocity vmax. Furthermore, the adversary must keep the unit
disk graph w.r.t. radius 1 connected in each round and the nodes are able to
reach all nodes within communication range R > 1. This special class of dynamic

networks is
⌊

R−1
2·vmax

⌋
+ 1-interval connected because a node within distance 1

can increase its distance by at most 2vmax. If in addition to that R ≥ 2, then

208 S. Abshoff and F. Meyer auf der Heide

the communication graph contains a spanning Θ(R)-connected subgraph that
is stable for Θ(R · v−1

max) rounds. If nodes know their positions (e.g., by using
GPS) or if they at least have the ability to sense the distances to their neigh-
bors, then they are able to determine the stable subgraphs and the algorithms
presented in this paper can be applied. For the MIS computation, we can use
the algorithm by Schneider and Wattenhofer [17] since the stable subgraphs are
growth-bounded. This yields improved results for geometric dynamic networks
with MIS(n) = O(log∗ n) and T = Θ(R · v−1

max).

7 Conclusion and Future Prospects

We showed that both extremum and summation problems can be solved faster
than dissemination problems in T -stable dynamic networks by exploiting proper-
ties such as commutativity, associativity, and idempotence. Especially, the idem-
potence seems to make the extremum problem a lot simpler. Future work could
focus on new problems that have different properties and allow for aggregation.
It would also be interesting to see if similar techniques could be applied to other
dynamic models such as T -interval stable dynamic networks where only a con-
nected subgraph must be stable for T rounds. Furthermore, we would like to
investigate lower bounds for these problems. In case of the summation problem,
this could lead to a non-trivial lower bound for the counting problem (if n is not
known beforehand) since the counting problem can be reduced to a summation
problem where each node starts with a 1 as input.

References

1. Abshoff, S., Benter, M., Cord-Landwehr, A., Malatyali, M., Meyer auf der Heide,
F.: Token dissemination in geometric dynamic networks. In: Flocchini, P., Gao,
J., Kranakis, E., Meyer auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS,
vol. 8243, pp. 22–34. Springer, Heidelberg (2014)

2. Abshoff, S., Benter, M., Malatyali, M., Meyer auf der Heide, F.: On two-party
communication through dynamic networks. In: Baldoni, R., Nisse, N., van Steen,
M. (eds.) OPODIS 2013. LNCS, vol. 8304, pp. 11–22. Springer, Heidelberg (2013)

3. Awerbuch, B.: Optimal distributed algorithms for minimum weight spanning tree,
counting, leader election and related problems (detailed summary). In: Aho, A.V.
(ed.) STOC, pp. 230–240. ACM (1987)

4. Chaudhuri, S., Dubhashi, D.P.: Probabilistic recurrence relations revisited. Theor.
Comput. Sci. 181(1), 45–56 (1997)

5. Cornejo, A., Gilbert, S., Newport, C.C.: Aggregation in dynamic networks. In:
Kowalski, D., Panconesi, A. (eds.) PODC, pp. 195–204. ACM (2012)

6. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On the complexity
of information spreading in dynamic networks. In: Khanna, S. (ed.) SODA, pp.
717–736. SIAM (2013)

7. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: Gavoille, C., Fraigniaud, P. (eds.) PODC, pp. 381–390.
ACM (2011)

Continuous Aggregation in Dynamic Ad-Hoc Networks 209

8. Haeupler, B., Kuhn, F.: Lower bounds on information dissemination in dynamic
networks. In: Aguilera, M.K. (ed.) DISC 2012. LNCS, vol. 7611, pp. 166–180.
Springer, Heidelberg (2012)

9. Karp, R.M.: Probabilistic recurrence relations. J. ACM 41(6), 1136–1150 (1994)
10. Kuhn, F., Locher, T., Schmid, S.: Distributed computation of the mode. In: Bazzi,

R.A., Patt-Shamir, B. (eds.) PODC, pp. 15–24. ACM (2008)
11. Kuhn, F., Locher, T., Wattenhofer, R.: Tight bounds for distributed selection. In:

Gibbons, P.B., Scheideler, C. (eds.) SPAA, pp. 145–153. ACM (2007)
12. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-

works. In: Schulman, L.J. (ed.) STOC, pp. 513–522. ACM (2010)
13. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–

201 (1992)
14. Luby, M.: A simple parallel algorithm for the maximal independent set problem.

SIAM J. Comput. 15(4), 1036–1053 (1986)
15. Mosk-Aoyama, D., Shah, D.: Computing separable functions via gossip. In: Rup-

pert, E., Malkhi, D. (eds.) PODC, pp. 113–122. ACM (2006)
16. Panconesi, A., Srinivasan, A.: Improved distributed algorithms for coloring and

network decomposition problems. In: Kosaraju, S.R., Fellows, M., Wigderson, A.,
Ellis, J.A. (eds.) STOC, pp. 581–592. ACM (1992)

17. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set al-
gorithm for growth-bounded graphs. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC,
pp. 35–44. ACM (2008)

Network Creation Games
with Traceroute-Based Strategies�

Davide Bilò1, Luciano Gualà2, Stefano Leucci3, and Guido Proietti3,4

1 Dipartimento di Scienze Umanistiche e Sociali, Università di Sassari, Italy
2 Dipartimento di Ingegneria dell’Impresa, Università di Roma “Tor Vergata”, Italy

3 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Italy

4 Istituto di Analisi dei Sistemi ed Informatica, CNR, Rome, Italy
davide.bilo@uniss.it, guala@mat.uniroma2.it,
{stefano.leucci,guido.proietti}@univaq.it

Abstract. Network creation games model the autonomous formation of
an interconnected system of selfish users. In particular, when the network
will serve as a digital communication infrastructure, each user is identi-
fied by a node of the network, and contributes to the build-up process
by strategically balancing between her building cost (i.e., the number of
links she personally activates in the network) and her usage cost (i.e.,
some function of the distance in the sought network to the other play-
ers). When the corresponding game is analyzed, the generally adopted
assumption is that players have a common and complete information
about the evolving network topology, which is quite unrealistic though,
due to the massive size this may have in practice. In this paper, we thus
relax this assumption, by instead letting the players have only a partial
knowledge of the network. To this respect, we make use of three popular
traceroute-based knowledge models used in network discovering (i.e., the
activity of reconstructing the topology of an unknown network through
queries at its nodes), namely: (i) distance vector, (ii) shortest-path tree
view, and (iii) layered view. For all these models, we provide exhaustive
answers to the canonical algorithmic game theoretic questions: conver-
gence, computational complexity for a player of selecting a best response,
and tight bounds to the price of anarchy, all of them computed w.r.t. a
suitable (and unifying) equilibrium concept.

Keywords: Network Creation Games, Local-Knowledge Equilibrium,
Convergence Dynamics, Price of Anarchy.

1 Introduction

The spontaneous construction of large-scale communication networks, such as ad-
hoc wireless networks or the Internet, involves the interaction of many competing
� This work was partially supported by the Research Grant PRIN 2010 “ARS Tech-

noMedia”, funded by the Italian Ministry of Education, University, and Research.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 210–223, 2014.
c© Springer International Publishing Switzerland 2014

Network Creation Games with Traceroute-Based Strategies 211

and selfish entities. Thus, in this elusive strategic setting, it naturally arises the
problem of understanding the process of an ex-novo creation of a network. More
formally, we are given a set of n nodes of a graph, each occupied by a player
which is willing to connect to all the other players. This can be realized by each
player either by connecting directly to another player through the costly and
unilateral activation of a corresponding link (i.e., an edge of the graph), or by
using also links which were activated by other players, along a shortest path in
the graph. In this latter case, however, it cannot be disregarded the fact that the
relative communication performances may decay, as lengthy paths may induce
large delays. Thus, the challenging analysis of the player’s trade-off between her
building cost (i.e., the number of network links she personally activates) and her
usage cost (i.e., some function of the distance in the network from the other
players) results in the corresponding study of a communication network creation
game, a.k.a. network connection game (simply NCG in the following).

The standard model for NCGs. The universally accepted model for a NCG is
that developed by Fabrikant et al. [9]. There, the activation of each link has a
fixed real cost α > 0, and the usage cost for each player is given by the sum of
distances to all the players. More formally, this game, which we call SumNCG,
is as follows: We are given a set of n players, say V , where the strategy space
of player u ∈ V is the power set 2V \{u}. Given a combination of strategies
σ = (σu)u∈V , let G(σ) denote the underlying undirected graph whose node set
is V , and whose edge set is E(σ) = {(u, v) : u ∈ V ∧ v ∈ σu}. If no confusion
arises, we will use G to denote G(σ). Then, the cost incurred by player u in σ is

Cu(σ) = α · |σu| +
∑

v∈V

dG(σ)(u, v) (1)

where dG(σ)(u, v) is the distance between u and v in G(σ). Correspondingly,
the social cost is given by the sum of all players’ costs. When a player takes
an action (i.e., activates a subset of incident edges), she aims to keep this cost
as low as possible. Thus, a Nash Equilibrium1 (NE) for the game is a strategy
profile σ̄ such that for every player u and every strategy σu, we have that Cu(σ̄) ≤
Cu(σ̄−u, σu).2 If we characterize the space of NE in terms of the Price of Anarchy
(PoA), i.e., the ratio between the social cost of the costlier NE to the optimal
(centralized) social cost, then it has been shown this is constant for all values of
α except for n1−ε ≤ α ≤ 65 n, for any ε ≥ 1/ log n (see [14,15]). Moreover, very
recently, in [10] it was proven that for all constant non-integral α ≥ 2, the PoA
is bounded by 1 + o(1).

A first natural variant of SumNCG was introduced in [7], where the authors
redefined the player cost function as follows

Cu(σ) = α · |σu| + max{dG(σ)(u, v) : v ∈ V }. (2)

1 In this paper, we only focus on pure strategies Nash equilibria.
2 The strategy vector (σ−u, σ′

u) is defined from σ by replacing component σu with σ′
u.

212 D. Bilò et al.

This variant, named MaxNCG, received further attention in [15], where the
authors improved the PoA of the game on the whole range of values of α,
obtaining in this case that the PoA is constant for all values of α except for
129 > α = ω(1/

√
n).

Other models for NCGs. Several variants of these two basic models have been
defined, each one of them aiming to better characterize some specific aspect of the
network creation process. They range from limiting the modification a player can
do on her current strategy (see [1,13,16]), to budgeting either the number of edges
a player can activate or her eccentricity (see [12,8,6]), and finally to constraining
to a host graph the set of activable links (see [4]). Generally speaking, in all the
above models the obtained results on the PoA are asymptotically worse than
those we get in the two basic models, and we refer the reader to the cited papers
for the actual bounds.

Observe that all these models, except for those given in [13,16], share with the
basic model a severe restriction, namely the NP-hardness for a player to select
a best-response strategy. Besides that, they also all assume that players have
a common and complete information about the ongoing network. While this is
feasible for small-size instances of the game, this becomes unrealistic for large-
size networks. This is rather problematic, given the growing size of the inputs
in the practice. Moreover, quite paradoxically, the full-knowledge assumption
is not simplifying at all: it makes it computationally unfeasible for a player to
select a best-response strategy, as said before, or even to check whether she is
actually in a NE! To address these delicate issues, very recently in [5] it has
been then introduced a new model which limits a player’s full knowledge of the
network structure up to a given radius k from herself, without even knowing
the size n of the network (in distributed computing terminology, the system is
uniform). In such a setting, the authors provided a comprehensive set of upper
and lower bounds to the Price of Anarchy (PoA) for the entire range of values of
k, as computed w.r.t. to a new suitable equilibrium concept. More precisely, the
authors observed that a player has a partial (defective) view of the network, and
thus before taking a step, she has to evaluate whether such a choice is convenient
in every realizable network which is compatible with her current view. Then, let
σu be the strategy played by player u, and define Σ|σu to be the set of strategy
profiles σ = (σ−u, σu) of the players such that the network G(σ) is realizable
according to player u’s view. Let

Δ(σu, σ′
u) = max

σ∈Σ|σu

{Cu(σ−u, σ′
u) − Cu(σ)} (3)

denote the worst possible cost difference u would have in switching from σu to
σ′

u. Then, the Local Knowledge Equilibrium (LKE) is defined as a strategy profile
σ̄ such that for every player u and every strategy σu, we have Δ(σ̄u, σu) ≥ 0.
Notice that our equilibrium concept is actually weaker than the classical NE
concept as we have that every NE is also a LKE.

Our new local-view models for NCGs. In this paper, we move ahead along the
direction of studying new NCG models with limited players’ information. To

Network Creation Games with Traceroute-Based Strategies 213

this aim, we consider the most qualified local-knowledge models adopted in the
field of network discovery (see [2,3]), i.e., the problem of fully identifying a large
unknown network (i.e., all its edges and all its non-edges) through a minimum
number of queries at its nodes (where the response to a query is exactly the
information that the node can return according to the selected local-knowledge
model). More precisely, we consider the following traceroute-based view models,
which all find a motivation in the practice of probing the map of a network by
tracing the route of packets:3

(M1) Distance vector : besides her incident edges, each player knows only the
distances in G(σ) to all the other players (notice this is the minimal knowl-
edge that a player must have in order to know her current cost);

(M2) Shortest-Path Tree (SPT) view: each player knows the set of edges be-
longing to a given SPT of G(σ) rooted at herself;

(M3) Layered view: each player knows the set of edges belonging to all the SPTs
of G(σ) rooted at herself.

Notice in all these models a player has a partial (defective) view of the network,
and therefore the LKE fits perfectly as solution concept. However, differently
from the model provided in [5], we now have that a player is fully aware of
her actual cost, which in all the three models is completely defined by the set
of distances to all the other nodes (in other words, Cu(σ) is constant for all
σ ∈ Σ|σu). For all the models we consider the iterated version of the game and
we study the convergence of improving and best-response dynamics. In doing
this, we assume that the players other than being myopic are also oblivious,
namely at each time they only argue about the current view, without taking
care of previous views. Moreover, we study the players’ tension between the
degree of knowledge and the computational feasibility of selecting a best-response
strategy. Finally, we characterize the space of equilibria with respect to the social
optimum through the study of upper and lower bounds to the PoA. Our results
are summarized in Table 1.

The paper is organized as follows: in Section 2 we focus on convergence issues,
while in Section 3 we analyze the computational complexity of finding a best-
response. Finally, in Section 4 we study the PoA. All the sections are structured
in subsections, according to the various view models.

2 Convergence

2.1 Model M1

Observe that in M1, besides her adjacent edges, a player u can only infer the
existence of all the edges (x, y) such that dG(u, y) = dG(u, x) + 1 and x is
the unique vertex having distance dG(u, x) from u. Thus, if u has two or more
3 According to the spirit of the game, we assume that in all the models, the players

initially sit on a connected network.

214 D. Bilò et al.

Table 1. Summary of our results (and open problems). In the first column, convergence
(and divergence) are reported w.r.t. either improving or best-response dynamics (IRD
and BRD, resp.). In the second column, we report the time complexity of selecting a
best-response strategy.

Convergence Best-response complexity PoA

M1 Sum: Yes (∀ improving
response dynamics (IRD))
Max: Yes (∀ IRD)

Sum: Open
Max: Polynomial

Sum: Θ(min{1 + α, n})
Max: Θ(n) if α = Ω(1)

Θ(1 + αn) if α = O(1)

M2 Sum: No (∃ best response
dynamics (BRD) cycle)
Max: No (∃ BRD cycle)

Sum: Polynomial
Max: Polynomial

Sum: Θ(min{1 + α, n})
Max: Θ(n) if α = Ω(1)

Θ(1 + αn) if α = O(1)

M3 Sum: No (∃ BRD cycle)
Max: No (∃ BRD cycle)

Sum: NP-hard
Max: NP-hard

Sum: Θ(min{1 + α, n})
Max: Θ(n) if α = Ω(1)

Θ(1 + αn) if 1
n−1 ≤ α = O(1)

adjacent vertices, swapping (i.e., replacing an owned edge with another one) any
of her edges is not a plausible action since this might disconnect the network.
This implies the following:

Lemma 1. In both SumNCG and MaxNCG in M1, the only players who can
swap edges have degree 1 (and own the incident edge).

Theorem 1. Any improving response dynamics for SumNCG in M1 converges
to an equilibrium.

Proof. Notice that, in any configuration of strategies, no edge can be removed.4
As the maximum number of edges is bounded we only need to show that the
dynamic restricted to swap-only moves converges.

Let G be the actual network and u be a player who modifies her strategy
from σu to σ′

u (where |σu| = |σ′
u|) thus improving her cost (in the worst-case).

Call G′ the resulting network and notice that the usage cost of u in G′ must be
less than her usage cost in G. We now define Φ(G) =

∑
x∈V

∑
v∈V dG(x, v), and

show that whenever an improving move is made the value of Φ decreases. As the
domain of Φ is finite this suffices to prove the claim.

By Lemma 1, u must have degree 1 in G, hence:

Φ(G) − Φ(G′) =
∑

x∈V

∑

v∈V

dG(x, v) −
∑

x∈V

∑

v∈V

dG′(x, v)

=
∑

x∈V \{u}

∑

v∈V \{u}
dG(x, v)+2

∑

v∈V

dG(u, v)−
∑

x∈V \{u}

∑

v∈V \{u}
dG′(x, v)−2

∑

v∈V

dG′(u, v)

= 2

(
∑

v∈V

dG(u, v) −
∑

v∈V

dG′(u, v)

)
> 0.

4 Except edges owned by both endpoints, which could arise in the starting network.

Network Creation Games with Traceroute-Based Strategies 215

where we used the fact that dG(x, v) = dG′(x, v) for every x, v ∈ V \ {u}, as u
has degree 1 in both G and G′. ��

Concerning MaxNCG, the following can be proven:

Theorem 2. Any improving response dynamics for MaxNCG in M1 converges
to an equilibrium.

Proof. As for SumNCG, we only need to show that the dynamic restricted to
swap-only moves converges. We use an approach similar to that in [11]. Given
a profile of strategies, consider the associated graph G and the n-dimensional
vector εG of the eccentricities of the vertices in G. Now sort the elements of
the vector in decreasing order. We claim that a function that maps each profile
of strategies to such a vector can only decrease after an improving response
(comparisons are done in lexicographic order).

By Lemma 1, only players having degree 1 can move. Let u be a player who
modifies her strategy in such a way that the corresponding graph changes from
G to G′. As u has not removed any edge besides the swap, εG(u) > εG′(u) must
hold.

Let εH(x) denote the eccentricity of a vertex x ∈ V (H) in the graph H . To
prove the claim we show that, when u changes her strategy, if another player
x increases her eccentricity as a consequence, then εG′(x) < εG′(u). Indeed,
suppose εG(x) < εG′(x); as u was a vertex having degree 1 in G, the same holds
in G′, and we must have εG′(x) = dG′(x, u) ≤ εG′(u). This ends the proof. ��

2.2 Models M2 and M3

In this section we show that the best-response dynamics might not converge
in M2 and M3. In particular, we will exhibit cycles of best responses in both
models for both SumNCG and MaxNCG. Notice that in some cases, a best-
response strategy of a player will contain a subset of factitious moves that are
only instrumental to generate the sought cycle. We conjecture that these moves
could be completely avoided by means of more complicated examples. Remember
that all the graphs are undirected, that is, an edge can be used in both directions,
regardless of the player who bought it. In our figures, however, some edges might
be drawn as directed with the arrow exiting from the buyer. The vertex that is
changing her strategy is highlighted in dark grey while the edges of her current
view are shown in bold.

Theorem 3. Both SumNCG and MaxNCG in M2 admit best-response cycles.

Proof. Regarding MaxNCG, consider the sequence shown in Figure 1 for α ≥ 6.
From graph (a) to (d) each player changes her current strategy with an improving
best response. The latter graph is isomorphic to the first one: vertex a in graph
(d) is playing the role of vertex b in graph (a) and vice-versa. Therefore, by
repeating a very similar best-response dynamics starting from the graph (d) the
players will reach again the configuration (a), hence the cycle.

Regarding SumNCG, Figure 2 shows a cycle of best responses for α ≥ 6. ��

216 D. Bilò et al.

a

b c

a

b c

a

b c

a

b c

(a) (b)

(d)(c)

Fig. 1. Cycle of best responses for MaxNCG in M2 for α ≥ 6

(a) (b)

(c) (d)

Fig. 2. Cycle of best responses for SumNCG in M2 for α ≥ 6

We also have:

Theorem 4. Both SumNCG and MaxNCG in M3 admit best-response cycles.

Proof. Regarding SumNCG, a best-response cycle is shown in Figure 3 for α =
15. Notice that the graph in (a) is isomorphic to the graph in (d) where vertex
c plays the role of vertex a and vice-versa.

Regarding MaxNCG, Figure 4 shows a cycle of best responses for α = 2 − ε
for a small value of ε > 0. ��

Network Creation Games with Traceroute-Based Strategies 217

a c

b

a c

b

a c

b

a c

b

(a) (b)

(c) (d)

Fig. 3. Cycle of best responses for SumNCG in M3 for α = 15

a

b

a

b

a

b

a

b

(a) (b)

(d)(c)

Fig. 4. Cycle of best responses for MaxNCG in M3 for α = 2 − ε

3 Complexity of Computing a Best Response

In this section we consider the complexity of computing a best-response strategy.
Concerning M1 we prove that a best response can be computed in polynomial
time only for MaxNCG, while for SumNCG, for which we conjecture that the
same holds, the problem remains open. Regarding M2, we show that situation is
more favorable, in that a best response strategy can be computed in polynomial

218 D. Bilò et al.

time for both SumNCG and MaxNCG. This contrasts with the results for M3
where the problem will be shown to be hard for both SumNCG and MaxNCG.

3.1 Model M1

We start by describing a dynamic programming algorithm that computes a best
response of a player in polynomial time for MaxNCG in M1. For the rest of the
proof, we fix a player u, we denote by
 the eccentricity of player u in G(σ), we
denote by G the set of graphs which are compatible with the view of player u in σ,
and we denote by G′ the set of graphs in G each of which is deprived of the edges
incident to u in σ. Furthermore, for every i = 0, . . . ,
, we denote by Li the set of
all vertices whose distance from u is equal to i. Let X and Y be two subsets of V .
For a fixed graph G on V , we denote by dG(X, Y) = maxy∈Y minx∈X dG(x, y),
and we denote by δ(X, Y) = maxG∈G′ dG(X, Y).

The dynamic programming algorithm exploits the structural properties of the
worst possible graph and best-response strategies as highlighted in the following
lemmas.

Lemma 2. Let L′
i � Li and y ∈ Lj, with i, j > 0. If there exists an index

0 < t ≤ min{i, j} such that |Lt| = 1, then let h be the maximum index such that
0 < h ≤ min{i, j} and |Lh| = 1; otherwise, let h =⊥. We have that

δ(L′
i, y) =

{
j + i − 2h if h
=⊥;
+∞ otherwise.

Proof. First, we prove the claim for h
=⊥. Let z be the unique vertex in Lh. It
is easy to see that δ(L′

i, y) ≤ j + i − 2h as every graph G ∈ G′ contains a path
of length i − h from z to every vertex in Li, and a path of length j − h from z
to y. To complete the proof, let G ∈ G be any tree such that the least common
ancestor of every vertex in L′

i and y is the unique vertex in Lh (observe that
such a tree always exists). Clearly, dG(x, y) = j + i − 2h for every x ∈ L′

i, and
thus δ(x, y) ≥ dG(x, y) = i + i − 2h.

Now, we prove the claim for h =⊥. Let G ∈ G′ be any disconnected graph
such that the vertices of Li are all contained in the same connected component
of G, say G′, while y is contained in a connected component of G different from
G′ (observe that such a graph always exists). Clearly, δ(L′

i, y) = ∞. ��
Lemma 3. Let y ∈ Lj, with j > 0. If there exists an index 0 < t ≤ j such that
|Lt| = 1, then let h be the maximum index such that 0 < h ≤ j and |Lh| = 1;
otherwise, let h =⊥. For every i = 1, . . . ,
, we have that

δ(Li, y) =

⎧
⎪⎨

⎪⎩

j − i if i ≤ j;
j + i − 2h if h
=⊥ and i > j;
+∞ otherwise.

Proof. We already proved the case h =⊥ and i > j in the proof of Lemma 2. If
i ≤ j, then dG(Li, y) = j − i for every graph G′ ∈ G. If i > j, then let G ∈ G be

Network Creation Games with Traceroute-Based Strategies 219

any tree such that the least common ancestor of x and y is the unique vertex in
Lh. Clearly for every x ∈ Li, dG(x, y) = j + i − 2h, and thus δ(x, y) = j + i − 2h.

��

Let S = {v ∈ L1 : u ∈ σv} be the set of players who have bought an edge
towards u in σ. We have the following:

Lemma 4. There exists a best-response strategy σ∗
u such that, for every i =

2, . . . ,
, either Li∩σ∗
u = ∅ or Li ⊆ σ∗

u. Moreover either |L1| = 1 or L1 ⊆ (σ∗
u ∪S)

(or both).

Proof. First of all notice that if |L1| ≥ 2 and L1
⊆ (σ∗
u ∪ S) then there exists

a network G ∈ G such that, when u changes her strategy from σ to σ∗, the
resulting networks is disconnected. This contradicts the fact that σ∗ is a best
response. Now, let f be a function such that f(σ′

u) = |{i ∈ {1, . . . ,
} s.t. σ′
u ∩

Li
= ∅ and Li
⊆ σ′
u}|, for any strategy σ′

u. Let σ′
u be any strategy such that

f(σ′
u) > 0. We prove the claim by showing that there exists a strategy σ′′

u such
that Δ(σu, σ′

u) ≥ Δ(σu, σ′′
u) and f(σ′′

u) < f(σ′
u). Let i be an index such that

neither Li ∩ σ′
u = ∅ nor Li ⊆ σ′

u (such an index always exists as f(σ′
u) > 0).

Let L′
i := Li ∩ σ′

u and let σ′′
u := σ′

u \ L′
i. We modify σ′′

u as follows. Let j be the
maximum index such that 0 < j < i and |Lj| = 1, if any. If such a j exists,
then add Lj to σ′′

u. Clearly, f(σ′′
u) < f(σ′

u) as well as |σ′′
u| ≤ |σ′

u|. Furthermore,
from Lemma 2 and Lemma 3, we have that δ(Lj , V) ≤ δ(L′

i, V). Therefore,
δ(σ′′

u, V) ≤ δ(σ′
u, V) and thus, for every G ∈ G:

Cu((σ−u, σ′′
u), G) = α · |σ′′

u| + δ(σ′′
u, V) ≤ α · |σ′

u| + δ(σ′
u, V) = Cu((σ−u, σ′

u), G),

i.e., Δ(σu, σ′
u) ≥ Δ(σu, σ′′

u). ��

We are now ready to prove the following:

Theorem 5. The best response of a player in M1 can be computed in polynomial
time for MaxNCG.

Proof. The following dynamic programming algorithm computes a best-response
strategy of the form described in Lemma 4. For every i = 0, . . . ,
 and every
η = 0, . . . , n − 2, we define A[i, η] as the size of a minimum-size set of vertices X
such that Li ⊆ X and δ

(
X,

⋃
h=1,...,i Lh

) ≤ η − 2. Intuitively, A[i, η] represents
the cost of a cheapest strategy that allows the player u to have all vertices in⋃

h=1,...,i Lh at a distance of at most η + 1 from it by buying only the |X | edges
towards all vertices in X . However, A[i, η] restricts the player u to buy edges
only towards sets X such that Li ⊆ X ⊆ ⋃

h=1,...,i Lh.
With a little abuse of notation, we assume that L0 = ∅. For each pair of values

i and η, we denote by g(i, η) the minimum index such that 0 ≤ g(i, η) ≤ i and
δ(Lg(i,η) ∪Li,

⋃
h=g(i,η),...,i Lh) ≤ η. The cost of a best-response strategy is equal

to
1 + min

η=0,...,n−2
{η + α · min

max{1,g(,η)}≤j≤	
A[j, η]}.

220 D. Bilò et al.

Clearly, for every η = 0, . . . , n − 1, A[0, η] = 0 while A[1, η] = |σu ∩ L1|, as
the edges connecting u with the vertices in L1 \ σu have already been bought
by other players. Furthermore, it is easy to see that, for every i = 1, . . . ,
 and
every η = 0, . . . , n − 2, A[i, η] can be computed efficiently as follows

A[i, η] = |Li| + min
g(i,η)≤j<i

A[j, η].

Once the cost of an optimal strategy has been computed, it is easy to construct
the strategy itself by proceeding backwards. ��

3.2 Model M2

We prove the following:
Theorem 6. The best response of a player in M2 can be computed in polynomial
time for both SumNCG and MaxNCG.
Proof. Let u be a player, let σu be her current strategy, and let T (u) be the SPT
(rooted at u) currently seen by u. We will describe a polynomial-time dynamic
programming algorithm that computes a best response for u. For MaxNCG and
SumNCG, this algorithm will need to solve (a variant of) the k-center and the
k-median problem on trees, respectively. Recall that in the k-center (resp., k-
median) problem, we are given a graph H and we want to select a set S ⊆ V (H)
of exactly k vertices such that the maximum (resp., average) distance from each
node in V (H) to a closest node in S is minimized.

If we remove u from T (u), the tree will split into a forest F containing a num-
ber h of trees. We will refer to those trees by T1, . . . , Th, and to the corresponding
roots by r1, . . . , rh. W.l.o.g., let us assume that T1, . . . , Tz are exactly the trees
such that u owns the edge (u, ri), i = 1, . . . , z, while edges (u, ri), i = z+1, . . . , h,
are owned by ri.

We define A[i, k] with i ≤ z and 0 ≤ k < n to be the measure of an optimal
solution to the k-center (resp., k-median) problem on Ti. In a similar manner, we
define A[i, k] with z < i ≤ h and 0 ≤ k < n to be the measure of an optimal
solution to the ri-constrained k-center (resp., k-median) problem on Ti, i.e., that in
which we constrain the solution to include the vertex ri. In both cases, we consider
the measure to be +∞ when there is no feasible solution (i.e., k ≥ |V (Ti)|). It is
well known that all these problems can be solved in polynomial time on trees.

We now consider all the ways of selecting a subset of j vertices as centers
(resp., medians) for solving the k-center (resp., k-median) problem on the first i
trees, and let B[i, j] be the minimum cost that we obtain. Since B[1, j] = A[1, j],
it follows that, for i > 1, we can efficiently compute B[i, j] as follows: for the
k-center problem we have

B[i, j] = min
1≤t≤j−i+1

max {A[i, t], B[i − 1, j − t]} ,

while for the k-median problem we have

B[i, j] = min
1≤t≤j−i+1

{A[i, t] + B[i − 1, j − t]} .

Network Creation Games with Traceroute-Based Strategies 221

In order to determine the best response for u, we notice that the values 1 +
B[h, j] (resp., n − 1 + B[h, j]), for every possible j ≥ h − z, are exactly the
best usage costs that u can attain if she wants to buy exactly j − (h − z) edges
(indeed, h − z edges are adjacent to ri, i = z + 1, . . . , h, and they are already
owned by ri). Therefore, a best response for u can be found (in polynomial time)
by computing the following

arg min
h−z≤j<n

{B[h, j] + α(j − h + z)} ,

and by proceeding backwards on the values of B[i, j]. Finally, the edges to be
activated by u can be found by looking at the optimal solution of the corre-
sponding k-center (resp., k-median) problem. ��

3.3 Model M3

As far as model M3 is concerned, the problem of computing a best response is
NP-hard for both SumNCG and MaxNCG, as shown by the following results:

Theorem 7. Computing a best response for a player in M3 for SumNCG is
NP-hard.

Sketch of proof. The proof is a simple modification of the reduction from the
Minimum Dominating Set problem (MDSP) shown in [9]. Consider a bipartite
graph G and an additional player u that is buying all the edges towards the
vertices on one side of the bipartition. Notice that the view of u contains all
the edges of G. As shown in [9], a best response of u for 1 < α < 2 is that of
buying the edges towards a minimum dominating set of G. The claim follows as
the MDSP remains NP-hard even on bipartite graphs. ��
Theorem 8. Computing a best response for a player in M3 for MaxNCG is
NP-hard.

Sketch of proof. The proof is similar to the one shown for Theorem 7 by starting
from the reduction given in [15].

4 Price of Anarchy

As far as the PoA is concerned, models M1, M2 and M3 are equivalent, as the
following two results show.

Theorem 9. The PoA for SumNCG in M1, M2, and M3 is Θ(min{1+α, n})
for every α.

Proof. First of all, observe that for every actual network and for every player u,
the set of networks that are compatible with the view of u can only shrink when
we move from M1 to M2 to M3. This implies that the PoA in M1 can only be
greater than the PoA in M2 which, in turn, can only be greater than the PoA

222 D. Bilò et al.

in M3, hence it suffices to prove an upper bound on M1 and a lower bound on
M3.

Concerning the lower bound, notice that the complete graph is an equilibrium
in M3 as the view of each player is a star (and no player can remove any edge).
The social cost of the complete graph is at least Ω(αn2 + n2), while the social
cost of a star is O(αn + n2). Thus, the PoA is Ω(min{n, 1 + α}).

Concerning the upper bound, we first prove an upper bound of O(1 +
√

α) on
the diameter of an equilibrium graph. Indeed, consider a player u with eccen-
tricity D ≥ 4, and let v be a vertex such that d(u, v) = D. The player u knows
that by buying (u, v) then she can decrease the distances of at least D

4 vertices
on the path between u and v by at least 3

4D − 1
4D − 1 = 1

2D − 1, hence she
would save Ω(D2). Notice that this reasoning does not require for u to know the
actual path towards v. As u has not bought the edge (u, v) we conclude that
α = Ω(D2), so D = O(1 +

√
α).

We can now bound the PoA as follows:

O

(
αn2 + n2(1 +

√
α)

αn + n2

)
= O(min{n, 1 + α}).

��
Theorem 10. The PoA for MaxNCG in M1, M2, and M3 is Θ(n) for α =
Ω(1), and Θ(1 + αn) if α = O(1).

Proof. As shown in the proof of Theorem 9 it suffices to prove an upper bound
on M1 and a lower bound on M3.

As far as the lower bound is concerned, we consider again the complete graph.
We already argued that it is an equilibrium and the same arguments also hold
for MaxNCG; moreover, its social cost is Ω(αn2 + n), while the cost of a star is
O(αn + n). We thus obtain PoA = Ω

(
αn2+n
αn+n

)
, which is Ω(n) when α = Ω(1),

and Ω(1 + αn) otherwise.
Concerning the upper bound, we first prove an upper bound of O(1 + αn) on

the diameter of an equilibrium graph. Indeed, consider a player u with eccen-
tricity D ≥ 4, and let η be the number of vertices at distance roughly D/2. If u
buys an edge towards each of these vertices, then her eccentricity decreases by
at least Ω(D). Since we are in an equilibrium, we have that αn ≥ αη = Ω(D).
We then have PoA = O(αn2+n+n2)

Ω(αn+n) , which gives the bounds of the claim. ��

Acknowledgements. The authors wish to thank the anonymous referees for
their insightful and useful comments.

References

1. Alon, N., Demaine, E.D., Hajiaghayi, M., Leighton, T.: Basic network creation
games. In: Proc. of the 22nd ACM Symp. on Parallelism in Algorithms and Archi-
tectures (SPAA 2010), pp. 106–113. ACM Press (2010)

Network Creation Games with Traceroute-Based Strategies 223

2. Bampas, E., Bilò, D., Drovandi, G., Gualà, L., Klasing, R., Proietti, G.: Net-
work verification via routing table queries. In: Kosowski, A., Yamashita, M. (eds.)
SIROCCO 2011. LNCS, vol. 6796, pp. 270–281. Springer, Heidelberg (2011)

3. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffman, M., Mihalák, M.,
Ram, S.: Network discovery and verification. IEEE Journal on Selected Areas in
Communications 24(12), 2168–2181 (2006)

4. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: The max-distance network creation
game on general host graphs. In: Goldberg, P.W. (ed.) WINE 2012. LNCS,
vol. 7695, pp. 392–405. Springer, Heidelberg (2012)

5. Bilò, D., Gualà, L., Leucci, S., Proietti, G.: Locality-based network creation games.
In: Proc. of the 26th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA 2014), pp. 277–286. ACM Press (2014)

6. Bilò, D., Gualà, L., Proietti, G.: Bounded-distance network creation games. In:
Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 72–85. Springer, Heidelberg
(2012)

7. Demaine, E.D., Hajiaghayi, M., Mahini, H., Zadimoghaddam, M.: The price of
anarchy in network creation games. In: Proc. of the 36th Annual ACM Symp.
on Principles of Distributed Computing (PODC 2007), pp. 292–298. ACM Press
(2007)

8. Ehsani, S., Fazli, M., Mehrabian, A., Sadeghabad, S.S., Saghafian, M., Shokat-
fadaee, S., Safari, M.: On a bounded budget network creation game. In: Proc.
of the 23rd ACM Symp. on Parallelism in Algorithms and Architectures (SPAA
2011), pp. 207–214. ACM Press (2011)

9. Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a
network creation game. In: Proc. of the 22nd Symp. on Principles of Distributed
Computing (PODC 2003), pp. 347–351. ACM Press (2003)

10. Graham, R., Hamilton, L., Levavi, A., Loh, P.-S.: Anarchy is free in network cre-
ation. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013. LNCS,
vol. 8305, pp. 220–231. Springer, Heidelberg (2013)

11. Kawald, B., Lenzner, P.: On dynamics in selfish network creation. In: Proc. of the
25th ACM Symp. on Parallelism in Algorithms and Architectures (SPAA 2013),
pp. 83–92. ACM Press (2013)

12. Laoutaris, N., Poplawski, L.J., Rajaraman, R., Sundaram, R., Teng, S.-H.:
Bounded budget connection (BBC) games or how to make friends and influence
people, on a budget. In: Proc. of the 27th ACM Symp. on Principles of Distributed
Computing (PODC 2008), pp. 165–174. ACM Press (2008)

13. Lenzner, P.: Greedy selfish network creation. In: Goldberg, P.W. (ed.) WINE 2012.
LNCS, vol. 7695, pp. 142–155. Springer, Heidelberg (2012)

14. Mamageishvili, A., Mihalák, M., Müller, D.: Tree Nash equilibria in the network
creation game. In: Bonato, A., Mitzenmacher, M., Prałat, P. (eds.) WAW 2013.
LNCS, vol. 8305, pp. 118–129. Springer, Heidelberg (2013)

15. Mihalák, M., Schlegel, J.C.: The price of anarchy in network creation games is
(mostly) constant. In: Kontogiannis, S., Koutsoupias, E., Spirakis, P.G. (eds.)
SAGT 2010. LNCS, vol. 6386, pp. 276–287. Springer, Heidelberg (2010)

16. Mihalák, M., Schlegel, J.C.: Asymmetric swap-equilibrium: A unifying equilibrium
concept for network creation games. In: Rovan, B., Sassone, V., Widmayer, P.
(eds.) MFCS 2012. LNCS, vol. 7464, pp. 693–704. Springer, Heidelberg (2012)

Patrolling by Robots Equipped with Visibility�

Jurek Czyzowicz1, Evangelos Kranakis2, Dominik Pajak3, and Najmeh Taleb2

1 Département d’informatique, Université du Québec en Outaouais, Gatineau, Canada
2 School of Computer Science, Carleton University, Ottawa, Canada

3 LaBRI, Inria Bordeaux Sud-Ouest, France

Abstract. We study the problem of mobile robots with distinct visibility ranges
patrolling a curve. Assume a set of k mobile robots (patrolmen) a1,a2, · · · ,ak
walking along a unit-length curve in any of the two directions, not exceeding
their maximal speeds. Every robot ai has a range of visibility ri, representing
the distance from its current position at which the robot can see in each direc-
tion along the curve. The goal of the patrolling problem is to find the perpetual
movement of the robots minimizing the maximal time when a point of the curve
remains unseen by any robot.

We give the optimal patrolling algorithms for the case of close curve environ-
ment (known as the boundary patrolling problem in the robotics literature) and
open curve (fence patrolling), when all robots have the same maximal speed. We
briefly discuss the case of distinct speeds, showing that the boundary patrolling
problem for robots with distinct visibility ranges is essentially different than the
case of point visibility robots. We also give the optimal algorithm for fence pa-
trolling by two robots with distinct speeds and visibility ranges.

For the case when the environment in which the robots operate is a general
graph, we show that the patrolling problem for robots with distinct visibility
ranges is NP-hard, while it is known that the same problem for point-visibility
robots has been known to have a polynomial-time solution.

Keywords: Cycle, Graph, Mobile Robots, Patrolling, Segment, Speed, Visibil-
ity.

1 Introduction

A set of k mobile robots a1,a2, · · ·ak, each one able to observe some neighborhood of
its current position, has to protect (patrol) a given region. For this purpose the robots
move perpetually around the region in order to see each point of their environment as
often as possible. In this paper we study robots, moving with speeds not exceeding a
certain maximal velocity, inside a uni-dimensional region represented by a unit segment
or a unit-length cycle. The objective of this paper is to design algorithms producing the
movements of the robots which minimize the time interval when some points of the
environment remain unseen by all robots, taken over all points of the given domain
being patrolled.

� This work was partially supported by NSERC grants. D. Pajak was supported by LaBRI project
”mobilité junior” and LIRCO.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 224–234, 2014.
c© Springer International Publishing Switzerland 2014

Patrolling by Robots Equipped with Visibility 225

1.1 Preliminaries and Notation

Each robot ai is equipped with visibility allowing it to see its environment within its
visibility radius ri in both directions from its current position. The visibility ranges of
all robots may be different. During the movement of the set of robots, at each time t
a point p of the environment is called protected if it is seen by at least one robot. In
other words, if robot ai protects point p at time t the distance of the robot ai from p at
time t must be at most equal to ri. Given a perpetual movement of all robots produced
by some patrolling algorithm, by the idle time of point p we mean the smallest value
I(p), such that in every time interval [t, t + I(p)] point p is protected by some robot.
By the idle time of such an algorithm we mean the maximal value of I(p) taken over
all points of the environment. Throughout the paper we will assume that ∑k

i=1 2ri < 1,
since otherwise agents could constantly observe the environment without need to move.

1.2 Related Work

Patrolling has been intensely studied in the last decade by the robotics community (cf.
[3,17,18]). It is defined as the act of monitoring consisting in traveling around an envi-
ronment in order to protect or supervise it. Patrolling is useful, e.g., to identify humans
or objects of interest that need to be rescued from a disaster. Network administrators use
patrolling by mobile robots to determine web pages which must be indexed by search
engines or to detect network deficiencies.

Earlier work on patrolling was mainly experimental and studying heuristic methods
(cf. [14,12] though [6] brings up a theoretical analysis of the methods of patrolling. The
two basic strategies to patrolling discussed in [6] are cyclic strategy and the partition
strategy. In a cyclic approach, a cycle inside the environment is identified and the robots
walk around this cycle in the same direction. In the partition approach the environment
is divided into subregions (which may be sometimes overlapping) that are assigned to
different robots. [6] was first to introduce the notion of idleness, which has been most
often used to measure the performance of patrolling. Several other issues related to the
patrolling problem were also studied, e.g. coordination and cooperation of multi-agent
teams ([2,15,16]), dynamically changing environments or robot teams ([18,19]) dealing
with adversarial environments ([1,4]) and many others.

Recently several interesting algorithmic issues related to patrolling were investi-
gated. The ant-like mobile agents were used by [20] to realize an interesting distributed
strategy attaining patrolling by agents traversing an Eulerian cycle of an input graph,
while [10] used ant-like agents to partition the graph to patrol among them.

The optimality of the fundamental partition strategy (in the case of fence patrolling)
and the cyclic strategy (for boundary patrolling) has been proven for robot teams hav-
ing the same maximal speed and for small sets of robots with distinct maximal speeds
(cf. [8,13]). However, for distinct-speed sets of robots, both these strategies have been
proven sub-optimal for boundary patrolling by at least three robots, [8], and fence pa-
trolling by at least six robots, [13]. [5] presented examples with several other non-
standard strategies for fence and boundary patrolling.

Same-speed robots were used in [7] for fence and boundary patrolling where some
neutral regions may be left unprotected and in [9], where an optimal patrolling algo-
rithm for graphs is proposed.

226 J. Czyzowicz et al.

[13] also considered weighted patrolmen, i.e. such that any point p could be left
unvisited for a time equal to the weight of the robot which was last to visit p. To the best
of our knowledge, patrolmen equipped with visibility have not studied in the scientific
literature before.

1.3 Outline and Results of the Paper

In Section 2 we show that a version of the cyclic strategy is optimal for boundary pa-
trolling. In Section 3 we prove that the partition strategy achieves the optimal idle time
for fence patrolling. To this end we show that any patrolling algorithm using robots
equipped with visibility may be converted to a strategy for robots without visibility
achieving at least the same idle time on a fence shortened by twice the sum of all
robots’ visibility radii. This could suggest that the patrolling problem for robots with
visibility is equivalent to patrolling with zero-visibility robots considered elsewhere.
However the hardness of the problem for general graphs shown in Section 4, in view of
the polynomial solution from [9] contradicts this supposition. In Sections 2.2 and 3.2 we
discuss the cases of two robots with distinct speeds and visibility radii. In Section 3.2
we show that it is possible to extend the proof of optimality of the partition strategy
(cf. [8,13]) on the case of two visibility-equipped, distinct-speed robots. However the
example from Section 2.2 shows that for the circle patrolling with two distinct-speed
robots the cyclic strategy from [8] is no longer optimal when the robots are equipped
with visibility. This is another evidence that patrolling with visibility-equipped robots
presents new challenges, even for the case of robots with the same maximal speed. All
missing proofs will appear in the full version of the paper.

2 Circle Patrolling

In this section we investigate patrolling of a circle. First we give the optimal patrolling
for the case of any number of robots with identical speeds. In the second subsection we
give the optimal algorithm for the case of two robots with distinct speeds. The case of
three or more robots remains open.

2.1 Equal Speeds

We start by considering the case of agents with equal speeds. We will assume that the
maximum speed of each agent is equal to 1. Recall that 1 is also the length of the
environment i.e., we consider unit circles and unit intervals.

Proposition 1. Algorithm A1 achieves the idle time T =
1−∑k

i=1 2ri
k .

Theorem 1. Any patrolling algorithm for k robots with speeds v1, . . . ,vk and visibilities

r1, . . . rk, patrolling unit circle achieves idle time at least Iopt ≥ 1−∑k
i=1 2ri

∑k
i=1 vi

.

Proof. Consider any algorithm A and its idle time IA. Take any moment of time t. Re-
gardless of the positions of the robots, the total length of the subset of the circle being

Patrolling by Robots Equipped with Visibility 227

Algorithm A1 [for k robots with the same speed and different visibility to patrol a circle]

1. If ∑k
i=1 2ri < 1, place the robots a1,a2...ak such that the distance between robots i and i+1 is

equal to 1−∑k
i=1 2ri
k +ri+ri+1 around the circle in the counterclockwise direction and distance

between robots k and 1 is 1−∑k
i=1 2ri
k + rk + r1 in the counterclockwise direction.

2. For each i = 1, . . . ,k robot ai moves perpetually counterclockwise around the circle at max-
imum possible speed 1.

within the radius of visibility of some robot is at most ∑k
i=1 2ri. Thus the total length

of points not being observed at time t is 1−∑k
i=1 2ri. Denote this set of not observed

points at time t by U . Take the interval of time

J =

[
t, t +

1−∑k
i=1 2ri

∑k
i=1 vi

− ε
]
,

for any ε > 0. The interval has length
1−∑k

i=1 2ri

∑k
i=1 vi

− ε thus the set of all points from set U

patrolled by the robot i within interval J has length at most vi
1−∑k

i=1 2ri

∑k
i=1 vi

− viε. Thus the

set of all points from set U patrolled by all robots within interval J has total length at
most

k

∑
i=1

vi
1−∑k

i=1 2ri

∑k
i=1 vi

−
k

∑
i=1

viε = 1−
k

∑
i=1

2ri−
k

∑
i=1

viε = |U |−
k

∑
i=1

viε < |U |.

Since within interval J robots are unable to patrol all points from set U thus the idle
time of algorithm A is bounded from below by the length of the interval J

IA ≥ |J|=
1−∑k

i=1 2ri

∑k
i=1 vi

− ε.

Therefore the claim of the theorem is obtained by passing to the limit ε→ 0.

Corollary 1. Algorithm A1 achieves an optimal idle time in the case of robots with
equal speeds and possibly different visibilities.

2.2 Different Speeds

In the case of equal speeds our results are the same as for the problem without visibility
on a circle of length 1−∑k

i=1 2ri. It turns out that this is not the case any more for the
case of different speeds. Consider the optimal algorithm for two robots without visibil-
ities with speeds v1 > v2. It is either an algorithm where both robots are at antipodal
positions and move with the slower speed v2 or it is an algorithm where the faster robot
goes around the circle with his maximum speed v1 and the movement of the slower
robot irrelevant. It was proven in [8] that the idle time of such algorithm is optimal. But

228 J. Czyzowicz et al.

in our problem in the case of different visibilities in some cases neither of these algo-
rithms is optimal. In particular, when one robot is very fast with small visibility radius,
while the other robot is slow but it has a large visibility radius, the partition strategy,
when both robots zigzag, protecting two interior-disjoint segments of the circle, such
strategy may give a better idle time bound that those obtained by the two algorithms
mentioned above. It is easy to verify that this is the case for v1 = 5, r1 = 1/12, v2 = 1
and r2 = 1/3.

3 Segment Patrolling

In this section we investigate patrolling of a segment. First we give the optimal pa-
trolling for the case of any number of robots with identical speeds. In the second sub-
section we give the optimal algorithm for the case of two robots with distinct speeds.

3.1 Equal Speeds

Proposition 2. If ∑k
i=1 2ri < 1 then patrolling algorithm A2 achieves idle time T =

2
1−∑k

i=1 2ri
k .

Algorithm A2 [for k robots with the same speed and different visibility to patrol a segment]

1. If ∑k
i=1 2ri < 1, partition the unit segment into k segments, such that the length of the i-th

segment si equals 1−∑k
i=1 2ri
k +2ri.

2. For each i = 1, ...,k place robot ai at the center of the segment si.
3. For each i = 1, ...,k robot ai moves perpetually at maximal speed and changes its direction

when being at distance ri from an endpoint of si.

We want to prove optimality of the algorithm A2. For any patrolling algorithm Avis

with visibility, operating on a segment of length 1 we will construct an algorithm Avis

with no visibility, working on a segment of length 1−∑k
i=1 2ri. The construction will

ensure that the idle time of Avis is bigger than or equal to the idle time of Avis . Then,
since it is straightforward to show the optimal algorithm for robots with the same speed
and no visibility, we will obtain a desired lower bound.

Take any algorithm Avis for k robots with different visibilities r1,r2, . . . ,rk and the
same speed 1 working on the line segment of length 1. Assume that ∑k

i=1 2ri < 1. Denote
by Avis

i (t) the position of robot i in time t. Define functions Li(t) = Avis
i (t)− ri and

Ri(t) = Avis
i (t)+ ri for any robot i and time t. Function Li(t) denotes the leftmost point

visible to robot i in time t, except the case when robot i is too close to the left endpoint 0.
Similarly, function Ri(t) denotes the rightmost point visible to robot i in time t, except
the case when robot i is too close to the right endpoint 1.

Patrolling by Robots Equipped with Visibility 229

Definition of mobile intervals. A mobile interval is a pair of functions 〈L(t),R(t)〉 de-
noting its left and right endpoints respectively. The first step of our construction is the
definition of a set of mobile intervals on the line. The goal of the construction is to
obtain a dynamic process such that at any moment of time the union of all mobile inter-
vals covers all points that are visible to all robots. We will require that mobile intervals
move with speed not exceeding 1 and total length of the intervals is always equal to
∑k

i=1 2ri. If at some time t for all i ∈ {1,2, . . . ,k}, the length of the set of points visible
to a robot i is equal to 2ri, (no robot is too close to the endpoint) and all sets of visible
points are disjoint (the visibility regions of two robots are always interior-disjoint), then
mobile intervals will simply have k intervals with lengths equal to areas of visibilities.
However, for such time moments t when the areas of visibilities of the robots are over-
lapping then the mobile intervals at time t will cover some points that are not being
observed by any robot. Now we will present an algorithm that determines the positions
of mobile intervals depending on the positions of robots in the algorithm Avis at any
time moment t.

Procedure 1. Construction of mobile intervals
1: J← {〈Li(t),Ri(t),1〉, i ∈ 1,2, . . .k} � initially intervals are equal to areas of visibilities
2: while there exists 〈L,R,h〉 ∈ J such that L < 0 do � if left endpoint is beyond the point 0
3: J← J \{〈L,R,h〉}∪{〈0,R−L,h〉} � move the interval to the right
4: end while
5: while there exists 〈L,R,h〉 ∈ J such that R > 1 do � if right endpoint is beyond the point 1
6: J← J \{〈L,R,h〉}∪{〈1− (R−L),1,h〉} � move the interval to the left
7: end while
8: while there exist 〈L,R,h〉,〈L′,R′,h′〉 ∈ J such that L < L′ ≤ R do � overlapping intervals
9: j← 〈L,R+R′ −L′,h+h′〉 � merge the pair into one long interval

10: if R+R′ −L′ > 1 then � if the new interval would go beyond the endpoint
11: j← 〈1− (R−L)− (R′ −L′),1,h+h′〉 � move it to the left
12: end if
13: J← (J \{〈L,R,h〉,〈L′,R′,h′〉})∪{ j} � replace the pair with newly constructed interval
14: end while
15: J(t)←{ j1, j2, . . . , jl}← sort set J according to left endpoints of the intervals
16: return J(t)

If t is the real variable denoting time then J(t) is a dynamic process in which the
mobile intervals are moving on the interval [0,1]. In the following lemma we prove
some properties of this process.

Lemma 1. At any time moment t, the sequence of intervals J(t) returned by the Proce-
dure 1 satisfy

(1) the intervals from J(t) cover all points visible to the robots in the algorithm Avis at
time t,

(2) the intervals from J(t) are interior-disjoint and have total length equal to ∑k
i=1 2ri,

(3) the velocity of any interval j ∈ J(t) is either equal to velocity of some robot a or it
is equal to 0.

230 J. Czyzowicz et al.

Thus any mobile interval either moves with the same speed and direction as some robot,
or merges with other interval or splits into multiple intervals.

Based on the positions of the intervals we can define positions of the robots in algo-
rithm Avis at any step t.

Definition of the algorithm Avis . Take any time moment t. Based on the positions
of robots in the algorithm Avis at this moment we construct the mobile intervals J(t).
Consider the output of the Procedure 1, namely the set J(t) = { j1, j2, . . . , jl}. Each ji
is a tuple ji = 〈Li,Ri,hi〉, where Li is the left endpoint, Ri is the right endpoint and
hi is the number of robots whose areas of visibilities are being covered by interval ji.
Recall that J(t) is sorted thus L1 < R1 < L2 < R2 < · · · < Ll < Rl . To obtain positions
of the robots in Avis we intuitively cut the terrain that is covered by the mobile intervals
(see Figure 1). The amount of terrain that is left is 1−∑k

i=1 2ri. Define points p1 = L1,

p1 p2 p3

Fig. 1. Positions of robots in the algorithm Avis

pi = Li−∑i−1
j=1(R j−Lj) for i = 2,3, . . . , l as the total length of all points to the left of

point Li not covered by any mobile interval. Points pi will be positions of the robots
in the algorithm Avis . Number of robots located at the point pi will be equal to hi.
Let si = ∑i

j=1 h j for i = 1,2, . . . , l. Positions of robots in algorithm Avis are defined as
follows.

Avis
a (t) = p1 for a = 1,2, . . . ,s1

Avis
a (t) = p2 for a = s1 + 1,s1 + 2, . . . ,s2

...

Avis
a (t) = pl for a = sl−1 + 1,sl−1 + 2, . . . ,sl

This completes the construction of algorithm Avis . We want to prove that algorithm
Avis has idle time not bigger than Avis. First we need to show that robots in the algorithm
Avis move with speeds not exceeding 1.

Lemma 2. For any time moment t and robot ai

(1) Avis
i (t) ∈ [0,1−∑k

i=1 2ri] ,
(2) speed of robot ai is at most 1,
(3) the trajectory followed by robot ai is continuous.

Patrolling by Robots Equipped with Visibility 231

Lemma 2 shows that algorithm Avis is a correct patrolling algorithm for segment of
length 1−∑k

i=1 2ri and robots with the same speed 1. Now we need to show that the
transformation does not increase the idle time.

Lemma 3. The idle time of algorithm Avis is not larger that the idle time of algorithm
Avis.

Theorem 2. The optimal traversal algorithm for k robots with the same speed and

different visibility, patrolling unit segment S= [0,1] achieves idle time Iopt = 2
1−∑k

i=1 2ri
k .

3.2 Different Speeds

Proposition 3. Traversal algorithm A3 achieves idle time T = 2 1−2(r1+r2)
v1+v2

.

Algorithm A3 [for 2 robots with different speed and visibility to patrol a segment]

1. Partition the unit segment into 2 segments, such that the length of the i-th segment si equals
vi(1−2(r1+r2))

v1+v2
+2ri .

2. For each i = 1, 2 place robot ai at the center of the segment si.
3. For each i = 1, 2 robot ai moves perpetually at maximal speed and changes its direction when

being at distance ri from an endpoint of si.

We prove below that the algorithm A3 is optimal.

Theorem 3. The optimal traversal algorithm for two robots with different speed and
visibility, patrolling unit segment S = [0,1] achieves idle time Iopt = 2 1−2(r1+r2)

v1+v2
.

Proof. We suppose, by contradiction, that there exists an algorithm A with an idle time
of IA = T − ε for some ε > 0. Without loss of generality, we may assume that v1 ≤ v2.
Observe that a1 must see one of the endpoints (0,1). By symmetry suppose that a1

sees endpoint 0 at some time t1. Let L1 = r1, R1 = r1 +
1−2(r1+r2)

v1+v2
v1, L2 = 1− r2−

1−2(r1+r2)
v1+v2

v2, R2 = 1− r2, and B = R1 + r1 = L2− r2. At time t1, a1 is within [0, L1].
Considering the speed of a1,

v1
T − ε

2
+ r1 < |B− 0|

and a1 cannot see B within time [t1− T−ε
2 , t1 + T−ε

2]. So, a2 has to see B at some time
t2. We will show that neither a2 nor a1 can see 1 within [t2− T−ε

2 , t2 + T−ε
2]. Consider-

ing the speed of a2, v2
T−ε

2 + r2 < |B− 1| and a2 cannot see 1 within the time interval[
t2− T−ε

2 , t2 + T−ε
2

]
. Now, we show that a1 cannot see 1 neither. Since |t1− t2| < T

2 ,
the rightmost point p at which a1 can be at time t2 is p < L1 +

T
2 v1. We show that from

the moment when a1 sees point p, it is not possible for a1 to see 1 within time T−ε
2 , this

would prove that in interval [t2− T−ε
2 , t2 + T−ε

2], a1 cannot see 1. The rightmost point q

232 J. Czyzowicz et al.

that a1 can visit within time t2 + T−ε
2 is q < p+ T−ε

2 v1. Hence, the rightmost point that
a1 can see within time t2 + T−ε

2 is

q+ r1 < L1 +
T
2

v1 +
T − ε

2
v1 = L1 +Tv1−

ε
2

v1,

which proves the theorem.

4 Hardness Results

Let us recall the definition of the PARTITION problem.

Instance: Finite set A and size s(a) ∈ Z+ for each a ∈ A.
Question: Is there a subset A′ ⊂ A such that ∑a∈A′ s(a) = ∑a∈A\A′ s(a)?

The PARTITION problem remains NP-complete even if we require that |A′|= |A|/2 [11].
We will refer to the PARTITION problem with this additional condition as RESTRICTED
PARTITION problem.

Theorem 4. For some graphs the problem of deciding, for any set of robots a1,a2, . . . ,ak

with equal speeds and different visibilities, whether there exists a patrolling algorithm
with idle time 0 is NP-hard.

When the idle time is strictly positive the construction of the example showing NP-
hardness is more involved.

Theorem 5. For any fixed I and for some graphs the problem of deciding, for any set
of robots a1,a2, . . . ,ak with equal speeds and different visibilities, whether there exists
a patrolling algorithm with idle time at most I is NP-hard.

Proof. Fix any I. Assume that there exists a polynomial algorithm deciding for any set
of robots whether it is possible to patrol a graph obtaining idle time at most I. We want
to show that it would imply existence of a polynomial algorithm for the RESTRICTED
PARTITION problem.

Let a multiset of integers S= {x1,x2, . . . ,x2k} be an instance from the RESTRICTED
PARTITION problem. We construct an instance of patrolling problem consisting of
2k+ 1 robots in the following way. Let the radius of visibility ri of i-th robot be ri =
I/4∑2k

j=1 xi for i = 1,2, . . . ,2k and let the radius of visibility of (2k+ 1)-st robot (call it
a∗) be r2k+1 = I. We take the following graph H (see Figure 2). The length of interval
AB is I/2, the length of each interval AAi is I for i = 1,2, . . .k+ 1, the length of each
interval BBi is I for i = 1,2, . . .k+ 1 and the radius of each circle is k/2+ I/4. We ask
if such collection of robots can patrol graph H with idle time at most I.

We will argue that the answer can be yes if and only if the RESTRICTED PARTI-
TION problem has a solution. First observe that the robot a∗ has to walk perpetually
between nodes A and B. Note that a robot has to visit node A at least once in every
interval of time of length I. If it does not visit A in some interval of length I then in
this interval some of the nodes A1,A2, . . .Ak+1 will not be patrolled by any robot. Since
the distance between two nodes Ai,A j (i �= j) is 2I thus any robot different from a∗

Patrolling by Robots Equipped with Visibility 233

A B

A1

A2

A3

Ak+1

B1

B2

B3

Bk+1

I

I/2

Fig. 2. Graph H

can patrol at most one node among A1,A2, . . .Ak+1 in time I. And since we have k+ 1
nodes Ai then a∗ has to visit node A once every I time steps. Since the same applies
to B, robot a∗ has to perpetually walk between A and B. To patrol circles we have to
use the remaining robots. First note that, if during some time interval of size I k− 1 or
less robots will be on one of the circles then the idle time must be larger than I. It is
because k− 1 robots can patrol in time I intervals of total length at most (k− 1)I+ I/2
(because I/2 is an upper bound on the total length of the visibilities) which is less than
the length of the circle. Therefore, idle time I will be achieved if and only if the two
sums of diameters of visibilities of groups assigned to both circles are the same. But
this corresponds exactly to the solution of the RESTRICTED PARTITION problem.

5 Conclusion

In this paper we investigated the problem of mobile robots with visibility patrolling a
curve. We gave optimal patrolling algorithms for the case of boundary patrolling and
fence patrolling when all robots have the same maximal speed and discussed briefly the
case of distinct speeds, thus showing that the boundary patrolling problem for robots
with distinct visibility ranges is entirely different than the case of point visibility robots.
We also give the optimal algorithm for fence patrolling by two robots with distinct
speeds and visibility ranges. If the underlying domain in which the robots operate is a
general graph, then the patrolling problem for robots with distinct visibility ranges is
shown to be NP-hard; this contrasts sharply with point-visibility robots which has been
known to have a polynomial-time solution [9].

There are several open problems but the most interesting class of problems seems
to be related to the analysis of approximation as well as online and offline patrolling
algorithms for robots with distinct visibilities and/or speeds.

References

1. Agmon, N.: On events in multi-robot patrol in adversarial environments. In: AAMAS, pp.
591–598 (2010)

2. Agmon, N., Fok, C.-L., Emaliah, Y., Stone, P., Julien, C., Vishwanath, S.: On coordination
in practical multi-robot patrol. In: ICRA, pp. 650–656 (2012)

234 J. Czyzowicz et al.

3. Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., Chevaleyre,
Y.: Recent advances on multi-agent patrolling. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA
2004. LNCS (LNAI), vol. 3171, pp. 474–483. Springer, Heidelberg (2004)

4. Amigoni, F., Basilico, N., Gatti, N.: Finding the optimal strategies for robotic patrolling with
adversaries in topologically-represented environments. In: ICRA, pp. 819–824 (2009)

5. Chen, K., Dumitrescu, A., Ghosh, A.: On fence patrolling by mobile agents. In: CCCG
(2013)

6. Chevaleyre, Y.: Theoretical analysis of the multi-agent patrolling problem. In: IAT, pp. 302–
308 (2004)

7. Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Krizanc, D., Mar-
tin, R., Ponce, O.M.: Optimal patrolling of fragmented boundaries. In: SPAA, pp. 241–250
(2013)

8. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by mobile
agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

9. Czyzowicz, J., Gasieniec, L., Kosowski, A., Kranakis, E., Pajak, D.: Optimal patrolling by
mobile agents in arbitrary continuous graphs (in preparation, 2014)

10. Elor, Y., Bruckstein, A.M.: Autonomous multi-agent cycle based patrolling. In: Dorigo, M.,
et al. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 119–130. Springer, Heidelberg (2010)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York (1990)

12. Hazon, N., Kaminka, G.A.: On redundancy, efficiency, and robustness in coverage for multi-
ple robots. Robotics and Autonomous Systems 56(12), 1102–1114 (2008)

13. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct speeds. In:
Chao, K.-M., Hsu, T.-s., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 598–608.
Springer, Heidelberg (2012)

14. Machado, A., Ramalho, G., Zucker, J.-D., Drogoul, A.: Multi-agent patrolling: An empirical
analysis of alternative architectures. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.)
MABS 2002. LNCS (LNAI), vol. 2581, pp. 155–170. Springer, Heidelberg (2003)

15. Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative patrolling via weighted tours: Perfor-
mance analysis and distributed algorithms. IEEE Transactions on Robotics 28(5), 1181–1188
(2012)

16. Pasqualetti, F., Franchi, A., Bullo, F.: On cooperative patrolling: Optimal trajectories, com-
plexity analysis, and approximation algorithms. IEEE Transactions on Robotics 28(3), 592–
606 (2012)

17. Portugal, D., Rocha, R.: A survey on multi-robot patrolling algorithms. In: Camarinha-
Matos, L.M. (ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 139–146. Springer, Heidelberg
(2011)

18. Portugal, D., Rocha, R.P.: Multi-robot patrolling algorithms: examining performance and
scalability. Advanced Robotics 27(5), 325–336 (2013)

19. Smith, S.L., Schwager, M., Rus, D.: Persistent robotic tasks: Monitoring and sweeping in
changing environments. IEEE Transactions on Robotics 28(2), 410–426 (2012)

20. Yanovski, V., Wagner, I.A., Bruckstein, A.M.: A distributed ant algorithm for efficiently
patrolling a network. Algorithmica 37(3), 165–186 (2003)

Distributed Barrier Coverage with Relocatable Sensors�

Mohsen Eftekhari1, Paola Flocchini2, Lata Narayanan1,
Jaroslav Opatrny1, and Nicola Santoro3

1 Dept. of Comp. Science and Soft. Eng., Concordia University, Montréal, Canada
m eftek@encs.concordia.ca, {lata,opatrny}@cs.concordia.ca

2 School of El. Eng. and Computer Science, University of Ottawa, Ottawa, Canada
flocchin@site.uottawa.ca

3 School of Computer Science, Carleton University, Ottawa, Canada
santoro@scs.carleton.ca

Abstract. A wireless sensor can detect the presence of an intruder in its sensing
range, and is said to cover the portion of a given barrier that intersects with its
sensing range. Barrier coverage is achieved by a set of sensors if every point on
the barrier is covered by some sensor in the set. Assuming n identical, anony-
mous, and relocatable sensors are placed initially at arbitrary positions on a line
segment barrier, we are interested in the following question: under what circum-
stances can they independently make decisions and movements in order to reach
final positions whereby they collectively cover the barrier? We assume each sen-
sor repeatedly executes Look-Compute-Move cycles: it looks to find the positions
of sensors in its visibility range, it computes its next position, and then moves to
the calculated position. We consider only oblivious or memoryless sensors with
sensing range r and visibility range 2r and assume that sensors can move at most
distance r along the barrier in a move. Under these assumptions, it was shown
recently that if the sensors are fully synchronized, then there exists an algorithm
for barrier coverage even if sensors are unoriented, that is, they do not distinguish
between left and right [7]. In this paper, we prove that orientation is critical to
being able to solve the problem if we relax the assumption of tight synchroniza-
tion. We show that if sensors are unoriented, then barrier coverage is unsolvable
even in the semi-synchronous setting. In contrast, if sensors agree on a global ori-
entation, then we give an algorithm for barrier coverage, even in the completely
asynchronous setting. Finally, we extend the result of [4] and show that conver-
gence to barrier coverage by unoriented sensors in the semi-synchronous model
is possible with bounded visibility range 2r+ρ (for arbitrarily small ρ > 0) and
bounded mobility range r.

Keywords: sensor networks, barrier coverage, distributed algorithms.

1 Introduction

1.1 The Problem

A wireless sensor network consists of several sensors, each equipped with a sensing
module. Among the many applications of sensor networks (e.g., [15]), the establishment

� Research supported by NSERC, Canada.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 235–249, 2014.
c© Springer International Publishing Switzerland 2014

236 M. Eftekhari et al.

of barrier coverage has an important place, and it has been studied intensively in the
literature; it guarantees that any intruder attempting to cross the perimeter of a protected
region (e.g., crossing an international border) is detected by one or more of the sensors
(e.g., see [1, 2, 5, 6, 11, 16, 18]). By protecting the access to the region, barrier coverage
provides a less expensive alternative to a complete coverage of the region (e.g., [18]).
A barrier can be modelled as a line segment of length L ∈ Z covering the interval [0,L]
on the x-axis; sensors are deployed along the barrier. Intruders may traverse the line
segment at any point; an intruder is detected only if it is within the sensing range r of at
least one sensor. The barrier is covered if no intruder can cross the line segment without
being detected. Clearly, at least n̄ = � L

2r � sensors are needed, where r is the sensing
range.

Barrier coverage, in the case of static sensors, can be achieved by careful (i.e., non
ad hoc) deterministic deployment of n̄ sensors, but this could be unfeasible in some
situations. Alternatively, a large number N ' n̄ of sensors can be randomly deployed,
but barrier coverage can only be probabilistically guaranteed [11–13]. Finally, in ad
hoc deployment of sensors, the sensors are initially located at arbitrary positions on the
line. In sensor networks composed of relocatable sensors, every sensor has a movement
module that enables the sensor to move along the barrier. Hence, although initially they
are located at arbitrary positions on the line without providing barrier coverage, they
may move to new points on the line so that the entire barrier is covered (e.g., [3, 5–
7, 17]). In this paper we study the problem of barrier coverage with relocatable sensors.

The centralized version of the problem has been studied and solutions proposed,
focusing on minimizing some cost measures (e.g., traveled distances) [3, 5, 6, 14]. In
these centralized solutions, the algorithm knows the initial positions of all sensors, and
uses this information to determine the final positions that the sensors should occupy; no-
tice that n̄ sensors suffice for a centrally directed relocation of sensors. However, in the
context of sensor networks deployed in an ad hoc manner, typically there is no central
control or authority, and no global knowledge of the locations of the sensors is avail-
able. Indeed, the sensors might not even know the total number of sensors deployed, or
the length of the barrier. Thus every sensor must make decisions on whether and where
to move, based only on local information in an autonomous and decentralized way.

In order to develop a solution protocol for a distributed setting, it is first of all
necessary to model such a setting. Following the approach used in the research on au-
tonomous mobile robots (e.g., [10]), sensors are modelled as mobile computational en-
tities. The entities are anonymous and identical, have no centralized coordination, have
a sensing range as well as a visibility1 range: their decisions are made solely based on
their observations of their surroundings. Each entity alternates activity with inactivity.
When becoming active, it executes a Look-Compute-Move operational cycle and then
becomes inactive. In a cycle, an entity determines the positions of the other entities in its
visibility range (Look); then it computes its own next position (Compute); and finally it
moves to this new position (Move). In the cases of sensor networks, the visibility range
v is limited [9]; we assume v = 2r, which is the minimum visibility radius necessary
for sensors to determine local gaps in coverage. The movements of the sensors are said

1 Combined with mobility, it provides stigmergic communication between sensors within range.

Distributed Barrier Coverage with Relocatable Sensors 237

to be bounded if there is a maximum distance they can move in each cycle, and rigid if
they are not interrupted (e.g., by an adversary).

Depending on the assumptions on the activation schedule and the duration of the
cycles, three main settings are identified. In the fully-synchronous setting (FSYNC),
all sensors are activated simultaneously, and each cycle is instantaneous. The semi-
synchronous setting (SSYNC) is like the fully synchronous one except that each activa-
tion might involve only a subset of the sensors; activations are fair: each sensor will be
activated infinitely often. In the asynchronous setting (ASYNC), no assumption is made
on timing of activation, other than fairness, nor on the duration of each computation and
movement, other than it is finite.

The first distributed algorithmic investigation of the barrier coverage problem has
been recently presented for the discrete line [7], solving the problem in the fully syn-
chronous setting, FSYNC. Interestingly, it is shown that the sensors can be totally obliv-
ious, that is, at the beginning of a cycle, a sensor does not (need to) have any recollection
of previous operations and computations. Furthermore, the sensors are completely un-
oriented; they have no concept of left and right. Finally the algorithm terminates for any
n≥ n̄, hence even with the minimal number used by centralized solutions.

Notice that when L/2r is an integer and n = n̄, the barrier coverage problem is equiv-
alent to the uniform deployment problem (studied for lines and circles, see [4, 8, 9]) on
a line segment, which requires the oblivious sensors to move to equidistant positions
between the borders of the segment. This problem has been studied on a line [4] as-
suming that a sensor can always see the sensors that are closest to it, regardless of their
distance, and it always reaches its destination, regardless of its distance; in other words,
both visibility and movements are a priori unbounded. Under these assumptions, an
SSYNC distributed protocol that converges with rigid movements to uniform covering
(and thus to barrier coverage) was given in [4]. However, equidistant positions are not
required for barrier coverage when n > L/2r.

1.2 Main Contributions

In this paper we first of all investigate under what conditions n̄ oblivious sensors can
actually achieve barrier coverage in the complex semi-synchronous and asynchronous
settings, without requiring unbounded visibility or mobility range.

We prove that a crucial factor for solvability of the barrier coverage problem is
whether the network is oriented or unoriented. In an oriented network, each sensor has
a notion of “left-right”, and this notion is globally consistent; in a unoriented network,
sensors have no “left-right” direction.

In particular, we prove that the problem is unsolvable by n̄ oblivious sensors in
SSYNC (and thus ASYNC) if the network is unoriented. The result holds even if all
movements are rigid. On the other hand, we prove that, if the network is oriented, the
problem is solvable even in ASYNC and even if movements are not rigid (i.e., they can
be interrupted by an adversary). The proof is constructive: we present an ASYNC pro-
tocol that allows any n ≥ n̄ oblivious sensors to achieve barrier coverage within finite
time and terminate, even if movements are non-rigid. In other words, we show that, with
orientation, it is possible to achieve barrier coverage in a totally local and decentralized
way, asynchronously, obliviously, and with movements interruptible by an adversary;

238 M. Eftekhari et al.

furthermore, this is achievable with the same number of sensors of the optimal totally
centralized solution with global knowledge of all parameters.

We also show that allowing a slightly larger visibility range (e.g., v= 2r+ρ for an ar-
bitrary small ρ), n̄ unoriented and oblivious sensors can converge with rigid movements
to barrier coverage in SSYNC, extending the result of [4] to fixed limited visibility and
bounded movements.

2 Model and Notation

We model the barrier with a line segment of length L ∈ Z covering the interval [0,L] on
the x-axis. A sensor network consists of a set of n sensors {s1,s2, . . . ,sn} located on the
segment.

A sensor is modelled as a computational entity capable of moving along the segment;
it is equipped with a sensing module and a visibility module. A sensor can sense an
intruder if and only if it lies within the sensor’s sensing range; it can see another sensor
if and only if it it lies within the sensor’s visibility range. In this paper, we assume that
all sensors have the same sensing range r and the same visibility range v.

Sensors are autonomous, anonymous and identical (i.e., without central authority,
distinct markers or identifiers); they all execute the same algorithm. Sensors are said to
be oriented if and only if all sensors agree on a global left and right; they are called
unoriented if they do not have a sense of left and right.

Let st
i denote sensor si at time t located at xt

i . We assume that for every sensor r ≤
x0

i ≤ L− r, and that for i �= j, we have x0
i �= x0

j . For convenience, we assume that x0
1 <

x0
2 · · ·< x0

n. We emphasize that while these names and positions of sensors facilitate our
proofs, they are not known to any of the sensors. In addition, we assume there are two
special sensors s0 and sn+1 that are immobile, and are always located at −r and L+ r;
while these special sensors do not require any sensing capabilities or visibility, the other
sensors in the network cannot distinguish these special sensors from any other sensors;
the entire set of sensors is denoted by S = {s0,s1, . . . ,sn,sn+1}.

The sensors can be active or inactive. When active, a sensor performs a Look-
Compute-Move cycle of operations: the sensor first observes the portion of the segment
within its visibility range obtaining a snapshot of the positions of the sensors in its range
at that time (Look); using the snapshot as an input, the sensor then executes the algo-
rithm to determine a destination point (Compute); finally, the sensor moves towards the
computed destination, if different from the current location (Move). After that, it be-
comes inactive and stays idle until the next activation. Sensors are oblivious: when a
sensor becomes active, it does not remember any information from previous cycles.

A move is said to be non-rigid if it may be stopped by an adversary before the sensor
reaches its destination; the only constraint on the adversary is that, if interrupted before
reaching its destination, a robot moves at least a minimum distance δ > 0 (otherwise,
no destination can ever be reached). If no such an adversary exists, the moves are said
to be rigid.

A sensor can detect the presence of an intruder in its sensing range r, and is said
to cover the portion of the segment within its sensing range; therefore the coverage
length of a sensor is 2r. Barrier coverage is achieved if every point on the segment

Distributed Barrier Coverage with Relocatable Sensors 239

is covered by some sensor. An overlap is a maximal interval on [0,L] such that every
point in the interval is within the sensing range of more than one sensor. A coverage
gap is a maximal interval of the segment where no point is within the sensing range of
any sensor. We say that ε-approximate barrier coverage is achieved if the length of any
coverage gap is ≤ ε.

The goal of an algorithm for barrier coverage is to move sensors to final positions
so that the entire barrier is covered. Observe that if 2rn > L, then the final positions are
not necessarily equidistant. We say an algorithm A for barrier coverage terminates on
input S at time t if and only if when running A on S, no sensor in S moves at any time
t ′ ≥ t. We say that algorithm A solves the barrier coverage problem if there is a time t
at which the algorithm terminates on any input S and barrier coverage is achieved. We
say an algorithm A converges to barrier coverage on input S if and only if for any ε > 0
there is a time t such that at any time t ′ ≥ t the size of any coverage gap is at most ε.
We say that algorithm A solves the ε-approximate barrier coverage problem for ε > 0
if and only if it converges on any input S.

Unless specified otherwise we assume v= 2r, which is the minimum visibility radius
necessary for sensors to determine local gaps in coverage. More precisely, sensor st

i is
able to see all other sensors located in [xt

i−2r,xt
i +2r]. For convenience, we say st

i sees
st

j on its right if and only if 0 < xt
j − xt

i ≤ 2r and st
i sees st

k on its left if and only if
0 < xt

i− xt
k ≤ 2r. Observe that a sensor is able to detect when its sensing area overlaps

with another sensor’s sensing area.
Note that in our figures, each sensor is represented by a rectangle which shows the

interval that the sensor covers on the line barrier. Also for convenience, two sensors
whose coverage lengths overlap are placed at different levels in the illustration; however
in our assumptions, all sensors have circular sensing area and are initially placed on the
barrier and can only move on the barrier.

3 Impossibility without Orientation

In this section we consider the case where sensors are unoriented. We show that there
is no algorithm for barrier coverage in the SSYNC model with n̄ sensors.

We give an adversary argument, by creating input arrangements and activation sched-
ules that force any algorithm in the SSYNC model to either not terminate, or terminate
without coverage. All movements will be assumed to be rigid; a sensor can always reach
the destination it has computed. We focus on three types of sensors (see Figure 1): (a)
sensors that have an overlap on one side, and a gap on the other side, (b) sensors that
are attached to the next sensor on one side and a gap on the other side and (c) sen-
sors that have an overlap on one side and are attached to the next sensor on the other
side. Any algorithm for barrier coverage must specify rules for movement in each of
these situations. Note that with 2r visibility range, sensors can only determine whether
there exists a gap with a neighboring sensor but cannot determine anything about the
length of such a gap. Thus, the magnitude of the movement of a sensor can only be
a function of an overlap, if any, with a neighboring sensor, and cannot be a function
of the length of an adjacent gap. We show that there exist arrangements and activation
schedules for the sensors that defeat all possible combinations of these rules.

240 M. Eftekhari et al.

si
si si+1si−1 si−1

(a) (b)

si
si+1si−1

(c)

si+1

Fig. 1. The three types of sensors under consideration

First we study the behavior of a sensor si with 1≤ i≤ n that has an overlap of e with
the sensor on its left, and has a gap on its right, as in Figure 1(a). We show that such
a sensor must move right; if the gap is at least as big as the overlap, the sensor must
eventually move so as to exactly remove the overlap, and if the gap is smaller than the
overlap, the sensor must move at least enough distance to remove the gap.

e g
s1

Fig. 2. Arrangement for proof of Lemma 1; n = 1

Lemma 1. Consider an algorithm A for barrier coverage in SSYNC model and a sen-
sor st

i with dist(st
i−1,s

t
i) = 2r− e and dist(st

i ,s
t
i+1) = 2r+ g, with e,g > 0. If si−1 and

si+1 are deactivated and only si is activated, there exists a time step t ′ > t such that:

(a) xt′
i = xt

i + e if g≥ e and
(b) xt

i + g≤ xt′
i ≤ xt

i + e if g < e.

Proof. First we observe that the sensor si must eventually move at least distance min(g,e)
to the right. If not, the algorithm A does not terminate with barrier coverage on the ar-
rangement shown in Figure 2, since s1 is the only sensor that can move in the arrange-
ment. Next we show that xt′

i ≤ xt
i +e for some t ′> t. For the sake of contradiction, assume

that there is a value of overlap e, such that according to A , sensor si moves more than
e; that is si moves e+ a to the right, with a > 0. Then we can construct an activation
schedule such that A never terminates on the input shown in Figure 3. Choose n= �a/e�.
A single sensor is activated in each step. Starting with configuration C1, the sensors sn

to s1 are activated in consecutive steps, yielding configurations C2,C3, . . .Cn+1 in turn,
and then the sequence of activations is reversed. It is easy to verify that at the end of
the activation schedule, the initial arrangement C1 is obtained again. The schedule can
be repeated ad infinitum, forcing non-termination of the algorithm. It follows that in the
case when g≥ e, whatever the overlap e with si−1, we can force si to move exactly e to
the right.

Next we consider the behavior of a sensor si that is attached to its neighbor on its
left, and has a gap on its right as in Figure 1(b). We activate si and keep si−1 and si+1

deactivated. If si moves left, it creates an overlap with si−1 and by Lemma 1(a), it will
eventually move to the right to remove that overlap, and return to the same position.
Alternatively, si may not move at all, or may move to the right. If it moves to the right,

Distributed Barrier Coverage with Relocatable Sensors 241

· · ·

e a
s1

sn−1
sn

· · ·s1 sn

· · ·s1

...

C1

C2

Cn+1

sn−1

sn−1
sn

Fig. 3. Arrangement for proof of Lemma 1; n = �a/e�

since it does not know the distance of the gap with si+1 and has no overlap with si−1, it
can only move a fixed constant distance, say b. The lemma below is a consequence of
the preceding discussion.

Lemma 2. Let A be an algorithm for barrier coverage and si be a sensor with
dist(st

i−1,s
t
i) = 2r and dist(st

i ,s
t
i+1) > 2r. If si−1 and si+1 are both kept deactivated

and si is activated, there exists a time t ′ > t such that xt′
i = xt

i + h with h≥ 0.

Finally, we consider the behavior of a sensor si that has an overlap e with si−1 and
is attached to sensor si+1, as shown in Figure 1(c). As before, we activate only si and
keep both si−1 and si+1 deactivated. If si moves left, it creates a gap with si+1. By
Lemma 1(b), si must eventually move right, either returning to its initial position, or
moving further right. If it moves right by more than the value of the overlap, then it
creates a gap to its left, and once again by Lemma 1(b) , it must move back left until
the gap is removed. If for all values of the overlap, si makes a move to the right that
does not eliminate the overlap, then we show below that the algorithm cannot achieve
barrier coverage, leading to the conclusion that there must exist some value of overlap
such that such a sensor will either not move, or move to exactly eliminate the overlap.

Lemma 3. Consider an algorithm A for barrier coverage. There exists an overlap c
with 0< c< 2r such that for any sensor si with dist(st

i−1,s
t
i)= 2r−c and dist(st

i ,s
t
i+1)=

2r, if si is the only one of {si,si−1,si+1} to be activated, there exists a time step t ′ > t
such that either xt′

i = xt
i + c (si moves right to exactly eliminate the overlap) or xt′

i = xt
i

(si returns to the same position).

Proof. Assume the contrary. By the discussion preceding the lemma, we can conclude
that for any overlap e, there exists a time step t ′ such that xt′

i = xt
i + d with 0 < d <

e. Consider the arrangement of sensors shown in Figure 4. We first activate s1 until
it moves distance d to the right. By assumption, there remains an overlap of e− d
between s0 and s1, and now there is an overlap of d between s1 and s2. We now keep s1

deactivated, and activate s2. Lemma 1 implies that sensor s2 eventually moves exactly
d to the right and eliminates the overlap completely. Observe that at this point, the
arrangement repeats with only a different value of overlap. The new value of the overlap
between s0 and s1 is strictly greater than zero and and the distance between s1 and s2

242 M. Eftekhari et al.

is exactly 2r. This activation schedule can be repeated ad infinitum, and algorithm A
never terminates with barrier coverage.

s1
s2

e
e

Fig. 4. Arrangement for proof of Lemma 3; n = 2

We proceed to prove our main result:

Theorem 1. Let s1,s2, . . . ,sn be n sensors with sensing range r initially placed at ar-
bitrary positions on a line segment. If the sensors are unoriented and have visibility
radius 2r, there is no algorithm for barrier coverage in the SSYNC model.

Proof. Consider the arrangement of sensors shown in Figure 5 with c chosen as in
Lemma 3. If the value of h as specified in Lemma 2 is zero, then choose b= c, otherwise,
choose b= h, and fix n= 1+2�b/c�. We create an activation schedule with three phases
with a different set of sensors being activated in each phase, such that the sensors return
to arrangement C1 at the end of each phase. At each phase we only activate a subset of
sensors and all other sensors are kept deactivated. We first activate only the sensor s1. By
Lemma 2, there is a future time step when either s1 is in the same position (if h = 0), or
it moves distance b to the left to yield arrangement C2. In the second case, since sensors
are unoriented, it will subsequently return to arrangement C1. In the second phase, we
activate only the sensors {s3,s5, . . . ,sn}. By Lemma 3, there is a future time when either
these sensors return to arrangementC1, or they have moved right by a distance c to reach
arrangement C3. In the second case, they will eventually return to arrangement C1. In
the third phase, we activate only the set of sensors {s2,s4, . . . ,sn−1}. Using the same
logic, they will return to arrangement C1, possibly via arrangement C4. Observe that all
sensors have been activated at least once during the schedule. By repeating the above
schedule ad infinitum, we can force sensors to repeatedly return to the arrangement C1,
thus completing the proof.

Since an adversary in the ASYNC model has at least the power it has in the SSYNC
model, obviously the impossibility result also holds for the ASYNC model.

4 Possibility with Orientation

In this section, we present and analyze an algorithm, ORIENTED SENSORS for barrier
coverage by any n ≥ n̄ oblivious oriented sensors in the ASYNC model; that is, all
sensors agree on left and right, but are completely asynchronous.

We proceed to prove the correctness of algorithm ORIENTED SENSORS. A collision
occurs if two distinct sensors move to exactly the same position. Since sensors are iden-
tical and anonymous, from the time a collision of two sensors happens, they cannot be

Distributed Barrier Coverage with Relocatable Sensors 243

· · ·
cb

s1C1

s1C2

sn
sn−1

s1C3

s1C1

s1C4

s1C1

· · ·

· · ·

· · ·

· · ·

· · ·

s2

s2

s2

s2

s2

s2

sn

sn

sn

sn

sn

sn−1

sn−1

sn−1

sn−1

sn−1

· · ·s1C1
sn

sn−1s2

s3

s3

s3

s3

s3

s3

s3

Fig. 5. Arrangement for proof of Theorem 1; n = 1+2�b/c�

Algorithm 1. ORIENTED SENSORS

Algorithm for sensor si ∈ S
ε≤ r is a fixed positive (arbitrarily small) constant
if si−1 is not visible to si (there is a gap to its left) then

si moves distance r to the left.
else

a := 2r−dist(si−1,si) (amount of overlap with previous sensor’s range)
if dist(si,si+1)≥ 2r (no overlap from right) and a > 0 then

si moves distance min(r− ε,a) to its right.
else

do nothing
end if

end if

244 M. Eftekhari et al.

distinguished and will behave exactly the same if they have the same activation sched-
ule. Therefore a collision is fatal for a barrier coverage algorithm, and must be avoided
by the algorithm designer. This is precisely the reason that we restrict the distance of a
move to the right to r− ε, while sensors move distance r when moving to the left. We
show below that the algorithm above is collision-free and order-preserving.

Lemma 4. Algorithm ORIENTED SENSORS is a collision-free and order-preserving
protocol.

Proof. Consider a sensor s that is at position x and performs a Look at time t1 and the
corresponding Move to the left at time t2. We claim that no sensor s′ that is at a position
x′ < x (to the left of s) at time t1 can compute or perform a Move resulting in a collision
or an order reversal with s at any time between t1 and t2. Since s computes a Move to
the left at time t1, it must be that x′ < x−2r, and furthermore, s will move to a position
≥ x− r at time t2. Now, consider the last Move performed by s′ at a time ≤ t1. Observe
that the sensor s′ must have been at position x′ as a result of this Move. Consider the
subsequent Look performed by s′ at time t3. If the Move computed as a result of this
Look is a move to the right, the next position of s′ is≤ x′+r−ε< x−r. Any subsequent
Look performed by s′ will compute a move to the right if and only if the position of s′

is ≤ x− 2r and the computed destination must always be < x− r. Thus no collision or
order reversal can result. Any moves to the left from the positions reachable by s′ can
clearly not cause collisions or order reversals.

Next we show that no sensor s′ that is at a position x′ > x (to the right of s) at time t1
can compute or perform a Move resulting in a collision or order reversal with s at any
time between t1 and t2. Clearly, if x′ > x+ r, any move to the left can only bring it to a
position > x. Suppose x < x′ ≤ x+ r. If s′ performs a Look after time t1, then it can see
s in its visibility range and therefore would not perform a Move to the left. So s′ must
have performed a Look at a time t3 < t1. For s′ to have computed a move to the left,
the position of s at time t3 must have been < x′ − 2r. As argued above, s cannot have
subsequently arrived at position x at time t1.

A similar argument shows that for a sensor s that is at position x and performs a Look
at time t1 and the corresponding Move to the right at time t2, neither a sensor on its left
nor a sensor on its right can compute a move resulting in a collision or order reversal
with s.

Next we show that there is a time after which no sensors will move left, and after
this time, the sensors provide contiguous coverage of some part of the barrier including
the sensor s0.

Lemma 5. For every sensor si ∈ S−{sn+1} there is a time ti such that si never moves
left at any time after ti. Furthermore, there is no coverage gap between s0 and si at any
time after ti.

Proof. We prove the claim inductively. Clearly it is true for s0. Suppose there is a time
ti such that si never moves left at any time after ti, and there is no gap between s0 and si

at any time after ti. Consider any Look of si+1 after time ti. If there is a gap between si

and si+1, then si+1 will move at least δ towards si. Let ti+1 be the time of the first Look
of si+1 after time ti when there is no gap between si and si+1. If there is an overlap with

Distributed Barrier Coverage with Relocatable Sensors 245

si, then si+1 will move right, but observe that this Move can never create a gap between
si and si+1 since si does not move left by the inductive assumption, and si+1 moves right
by at most the amount of the overlap. It follows that after time ti+1, the sensor si+1 will
never move left, and furthermore, there is no gap in coverage between s0 and si+1.

After time tn, then, none of the sensors moves left, and furthermore there is no cov-
erage gap between s0 and sn. The next two lemmas show that after this time, a sensor
moves right under some circumstances, but can only move a finite number of times.

Lemma 6. Assume si and si+1 have an overlap of e at some time after tn. Then for any
j with i+ 1 ≤ j ≤ n, if the sensors si+1 to s j are in attached position, and there is no
overlap between s j and s j+1, then sensor s j will eventually move at least min(δ,e) to
the right.

Proof. Let t > tn be a time when si+1 performs a Look and si and si+1 have an overlap of
e. Clearly si+1 will move right in the corresponding Move, creating an overlap between
si+1 and si+2. Inductively it can be seen that when s j−1 moves to the right, it creates an
overlap with s j , causing s j to move at least min(δ,e) to the right.

Lemma 7. Every sensor makes a finite number of moves to the right after time tn.

Proof. We give an inductive proof. Clearly this is true for sensor s0. Suppose sensor si

has an overlap of e with sensor si−1 at time tn. Observe that si−1 cannot move until and
unless this overlap is removed. Since every time si moves to the right, it reduces this
overlap by at least min(e,δ), it is clear that si can make at most �e/δ�moves to the right.
If these moves remove the overlap, then si may move again only if si−1 subsequently
moves to the right and creates an overlap with si. Assuming inductively that si−1 makes
a finite number of moves to the right, we conclude that sensor si moves to the right a
finite number of times.

The above lemmas lead to the following theorem:

Theorem 2. Let s1,s2, . . . ,sn be n ≥ n̄ sensors with sensing range r initially placed at
arbitrary positions on a line segment. If the sensors have the same orientation and visi-
bility radius of 2r, Algorithm ORIENTED SENSORS always terminates with the barrier
fully covered in the ASYNC model.

Proof. Lemma 5 assures that after time tn, no sensor moves left, and there is no coverage
gap between sensors s0 and sn. It follows from Lemma 7 that there is a time, say t ′ > tn,
after which no sensor will move right. However, if there is a gap between sn and sn+1

at time t ′, since there are enough sensors to cover the barrier, there must be an overlap
between two sensors si and si+1 for some 0 ≤ i < n. But Lemma 6 implies that the
sensor sn must eventually move to the right, a contradiction. It follows that after time t ′,
there is no gap between sn and sn+1 and therefore no gap between any sensors in S, that
is, Algorithm ORIENTED SENSORS terminates with barrier coverage.

246 M. Eftekhari et al.

5 On Visibility and Convergence

We have seen that, without orientation, barrier coverage with n̄ sensors is impossible
even in SSYNC (Theorem 1). Observe that the impossibility proof holds when the visi-
bility range is precisely 2r. So the question naturally arises of what happens in SSYNC
if the visibility range is larger.

It is known that in SSYNC, it is possible for n̄ sensors to converge with rigid move-
ments to equidistant positions if a sensor can always see the sensors that are closest to it,
regardless of their distance (thus without a priori restrictions on the visibility range) and
it can move to destination regardless of its distance (thus without a priori restrictions on
the mobility range) [4]. In our setting these conditions do not hold. In this section, we
show how that result can be extended to our setting. In fact, we prove that n̄ oblivious
sensors can converge with rigid movements to barrier coverage in SSYNC if v = 2r+ρ,
where ρ is an arbitrarily small positive constant; furthermore they can do so with rigid
movements of length at most r.

Consider Algorithm CONVERGENT COVERAGE shown below; it operates by first
removing all visibility gaps within finite time, and then behaving as the algorithm of
[4].

Algorithm 2. CONVERGENT COVERAGE

Algorithm for sensor si ∈ S
if only one sensor s j ∈ {si+1,si−1} is visible to si and d = dist(si,s j)< 2r then

si moves distance 2r−d
2 + ρ

2 away from s j.
else

if both si+1,si−1 are visible. then
if d1 = dist(si−1,si)< d2 = dist(si+1,si)
(resp. d1 = dist(si+1,si)< d2 = dist(si−1,si)) then

si moves d2−d1
2 toward si+1 (resp. toward si−1).

end if
end if

end if

Lemma 8. If s j ∈ {si+1,si−1} is in the visibility range of si at time t, for any time t ′ > t,
s j is still in the visibility range of si.

Proof. According to the algorithm, a movement is performed by si in a cycle only in
two situations:
Case 1: Only one sensor s j is visible to si and d = dist(si,s j) < 2r. The worst case is
when also s j is activated in this cycle and it sees only si. In this case, both sensors move
at most 2r−d

2 + ρ
2 away from each other. After the movement we have that dist(si,s j)

has become: dist(si,s j) = 2(2r−d
2 + ρ

2)+d = 2r+ρ. So, sensors si and s j are still within
visibility.
Case 2: Both si+1 and si−1 are visible to si. Let, without loss of generality, d1 =
dist(s j,si) < d2 = dist(sk,si) where si,sk ∈ {si−1,si+1}. The worst case is when s j is

Distributed Barrier Coverage with Relocatable Sensors 247

also activated and it does not see the other neighbouring sensor. In this case si moves at
most d2−d1

2 toward sk, and s j moves at most 2r−d
2 + ρ

2 away from si. After the movement,
we have that dist(si,s j) has increased as follows:

dist(si,s j) =
d2− d1

2
+ d1 +

2r− d
2

+
ρ
2
=

d2

2
+ r+ρ < 2r+ρ

So, sensors si and s j are still within visibility.

Lemma 9. Within finite time there will be no visibility gaps.

Proof. By Lemma 8, visibility is never lost once gained. Consider the visibility gaps.
After each activation of a sensor next to a visibility gap, the size of that visibility gap
is reduced by at least ρ

2 . As a consequence, within a finite number of activations, all
visibility gaps will be eliminated and all sensors will be within visibility to their neigh-
bours.

Lemma 10. If at time t there are no visibility gaps, within finite time all coverage gaps
will be of size at most ε, for any ε > 0.

Proof. If there are no visibility gaps at time t then, by Lemma 8, for all t ′ ≥ t there
will be no visibility gaps. Hence at all times t ′ ≥ t each sensor si when active sees its
two neighbours si−1 and si+1; furthermore, since the distance between two neighbours
is at most 2r, the computed destination of a robot is at at most at distance r. Notice that
at this point the algorithm behaves exactly as the protocol of [4]. Since the conditions
for its correct behaviour, visibility of neighbours and reaching destination are met, the
lemma follows.

By Lemmas 9 and 10, and by the definition of approximate barrier coverage, the
claimed result immediately follows:

Theorem 3. Let s1,s2, . . . ,sn be n sensors with sensing range r initially placed at arbi-
trary positions on a line segment. If the sensors have no orientation and visibility radius
2r+ρ, there is an algorithm for ε-approximate barrier coverage in SSYNC with rigid
movements of length at most r.

6 Conclusions

The results of this paper provide a first insight into the nature of the complexity and
computability of distributed barrier coverage problems. Not surprisingly, it poses many
new research questions. Here are some of them.

We have shown that barrier coverage is unsolvable in SSYNC with n̄ unoriented sen-
sors, but solvable in ASYNC with oriented sensors. Oriented sensors have a globally
consistent sense of “left-right” while unoriented sensors have no sense of “left-right”.
Hence the first immediate question is whether something weaker than global consis-
tency would suffice. More precisely, if each sensor has a local orientation (i.e. a private
sense of ”left-right”) but there is no global consistency, is barrier coverage possible, at
least in SSYNC? Is it impossible, at least in ASYNC?

248 M. Eftekhari et al.

Even in the presence of local orientation, solutions that work for unoriented sensors
are desirable because they can tolerate the class of faults called dynamic compasses:
a sensor is provided with a private sense of “left-right”, but this might change at each
cycle (e.g., [19]). The open problem is to determine conditions which would make cov-
erage possible under such conditions, at least in SSYNC. In particular, observing that
the impossibility is established for n̄ unoriented sensors, a relevant open question is
what happens if n > n̄ sensors are available ? Would barrier coverage become possible
in SSYNC ?

For SSYNC we have shown that ε-approximate coverage is possible if v > 2r: is it
possible to achieve the same result with v = 2r ? In the case of unoriented sensors, no
positive result exists in ASYNC. Is a higher visibility range sufficient for ε-approximate
coverage in ASYNC ?

References

1. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and
connectivity in thin strips of finite length. In: Proceedings of MobiCom 2007, pp. 75–86
(2007)

2. Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal move-
ment of mobile sensors for barrier coverage of a planar region. Theoretical Computer Sci-
ence 410(52), 5515–5528 (2009)

3. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor move-
ment for barrier coverage of a linear domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012.
LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012)

4. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems. Theoretical
Computer Science 399, 71–82 (2008)

5. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Sta-
cho, L., Urrutia, J., Yazdani, M.: On minimizing the maximum sensor movement for barrier
coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW
2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009)

6. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny, J., Sta-
cho, L., Urrutia, J., Yazdani, M.: On minimizing the sum of sensor movements for barrier
coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS,
vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

7. Eftekhari, M., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S.: Distributed
algorithms for barrier coverage using relocatable sensors. In: Proceedings of PODC 2013,
pp. 383–392 (2013)

8. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a ring. Theo-
retical Computer Science 402(1), 67–80 (2008)

9. Flocchini, P., Prencipe, G., Santoro, N.: Computing by Mobile Robotic Sensors. In: ch. 21
[15] (2011)

10. Flocchini, P., Prencipe, G., Santoro, N.: Distributed Computing by Oblivious Mobile Robots.
Morgan & Claypool (2012)

11. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of
MobiCom 2005, pp. 284–298 (2005)

12. Li, L., Zhang, B., Shen, X., Zheng, J., Yao, Z.: A study on the weak barrier coverage problem
in wireless sensor networks. Computer Networks 55, 711–721 (2011)

13. Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless sensor net-
works. In: Proceedings of MobiHoc 2008, pp. 411–419 (2008)

Distributed Barrier Coverage with Relocatable Sensors 249

14. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on
line barriers. In: Proceedings of WCNC, pp. 1464–1469 (2011)

15. Nikoletseas, S., Rolim, J. (eds.): Theoretical Aspects of Distributed Computing in Sensor
Networks. Springer (2011)

16. Saipulla, A., Westphal, C., Liu, B., Wang, J.: Barrier coverage of line-based deployed wire-
less sensor networks. In: Proceedings of IEEE INFOCOM 2009, pp. 127–135 (2009)

17. Shen, C., Cheng, W., Liao, X., Peng, S.: Barrier coverage with mobile sensors. In: Proceed-
ings of I-SPAN 2008, pp. 99–104 (2008)

18. Wang, B.: Coverage Control in Sensor Networks. Springer (2010)
19. Yamamoto, K., Izumi, T., Katayama, Y., Inuzuka, N., Wada, K.: The optimal tolerance of

uniform observation error for mobile robot convergence. Theoretical Computer Science 444,
77–86 (2012)

Exploration of Constantly Connected Dynamic

Graphs Based on Cactuses�

David Ilcinkas, Ralf Klasing, and Ahmed Mouhamadou Wade

LaBRI, CNRS and Bordeaux University
{ilcinkas,klasing,wade}@labri.fr

Abstract. We study the problem of exploration by a mobile entity
(agent) of a class of dynamic networks, namely constantly connected dy-
namic graphs. This problem has already been studied in the case where
the agent knows the dynamics of the graph and the underlying graph is a
ring of n vertices [5]. In this paper, we consider the same problem and we
suppose that the underlying graph is a cactus graph (a connected graph
in which any two simple cycles have at most one vertex in common).
We propose an algorithm that allows the agent to explore these dynamic
graphs in at most 2O(

√
log n)n time units. We show that the lower bound

of the algorithm is 2Ω(
√

log n)n time units.

Keywords: Exploration, Dynamic graphs, Mobile agent, Connectivity
over time.

1 Introduction

Exploration of a graph by a mobile agent (physical or software) is the task that
the mobile agent, starting at a vertex of the graph, visits all vertices at least
once. In practice, many concrete systems can be modeled by graphs. This is
what makes the use of graphs very versatile. For example, graphs can be used
to model pipeline systems, underground tunnels, roads networks, etc. In this
case, the exploration is performed by a mobile robot. Graphs can also be used
to model more abstract environments such as computer networks. In this case,
the mobile entities used to explore these environments are software agents, that
is to say a program running in the environment.

This fundamental problem in distributed computing by mobile agents has
been extensively studied since the seminal paper by Claude Shannon [12]. How-
ever, the majority of the work concerns static graphs, while new generations of
interconnected environments tend to be extremely dynamic. To take into account
the dynamism of these extreme environments, for a decade, researchers have be-
gun to model these dynamic environments with dynamic graphs. Several models
have been developed. The interested reader may find in [2] a comprehensive
overview of the different models and studies of dynamic graphs (see also [7]).

� Partially supported by the ANR project DISPLEXITY (ANR-11-BS02-014). This
study has been carried out in the frame of “the Investments for the future” Pro-
gramme IdEx Bordeaux – CPU (ANR-10-IDEX-03-02).

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 250–262, 2014.
c© Springer International Publishing Switzerland 2014

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 251

One of the first models developed, and also one of the most classic, is the
model of evolving graphs [4]. For simplicity, given a static graph G, called un-
derlying graph, an evolving graph G based on G is a (possibly infinite) sequence
of (spanning but not necessarily connected) subgraphs of G (see Section 2 for the
precise definitions). This model is particularly suited for modeling synchronous
dynamic networks.

In this paper, we study the problem of exploration of dynamic graphs consid-
ering the model of constantly connected evolving graphs. An evolving graph G
is called constantly connected if each graph Gi which composes it is connected.
This class of graphs was used in [10] to study the problem of information dissem-
ination. In 2010, Kuhn, Lynch and Oshman [6] generalize this class of dynamic
graphs by introducing the notion of T -interval-connectivity. Roughly speaking,
given an integer T ≥ 1, a dynamic graph is T -interval-connected if for any
window of T time units, there is a connected spanning subgraph that is sta-
ble throughout the period. (The notion of constant connectivity is equivalent
to the notion of 1-interval-connectivity.) This new concept, which captures the
connection stability over time, allows to derive interesting results: the T -interval-
connectivity allows a savings of a factor about Θ(T) on the number of messages
necessary and sufficient to achieve a complete exchange of information between
all vertices [3,6].

It turns out that the problem of exploration is much more complex in dynamic
graphs than in static graphs. Indeed, let us consider for example the scenario
where the dynamic graph is known. The worst-case exploration time of n-node
static graphs is clearly in Θ(n) (worst case 2n−3). On the other hand, the worst-
case exploration time of n-node (1-interval-connected) dynamic graphs remains
largely unknown. No lower bound better than the static bound is known, while
the best known upper bound is quadratic, and follows directly from the fact that
the temporal diameter of these graphs is bounded by n.

The problem of exploration of constantly connected dynamic graphs has al-
ready been studied in the case where the underlying graph of the dynamic graph
is a ring of n vertices [5]. That article shows that if the agent knows the dynam-
ics of the graph, 2n − 3 units of time are necessary and sufficient to solve the
problem. The goal of this paper is to extend these results to larger families of
underlying graphs. Unfortunately, the problem turns out to be much more diffi-
cult than it seems. We will see that proving that any dynamic graph based on
a tree of cycles (a cactus) can be explored in time O(n) is already a challenging
problem. The difficulty of the exploration problem in general dynamic graphs is
further underlined by the fact that the exploration problem for static graphs is
the well-known Graph TSP problem (see e.g. [8,9,11]), which is already APX

hard in general graphs.

Our results. At a first instance, we will give two exploration methods that are
efficient for exploring a very large set of constantly connected dynamic graphs
based on a cactus, when the agent knows the dynamics of the graph. We will
then combine these two exploration methods. We show that the combination
of the two methods yields an algorithm that explores all constantly connected

252 D. Ilcinkas, R. Klasing, and A.M. Wade

dynamic graphs based on a cactus of n vertices in 2O(
√
logn)n time units, and

we derive a lower bound of 2Ω(
√
log n)n time units for the algorithm.

2 Preliminaries

This section provides precise definitions of the concepts and models discussed
informally earlier. We also give some previous results from the literature on the
problem studied.

Definition 1 (Dynamic graph). A dynamic graph is a pair G = (V, E), where
V is a static set of n vertices, and E is a function which maps to every integer
i ≥ 0 a set E(i) of undirected edges on V .

Definition 2 (Underlying graph). Given a dynamic graph G = (V, E), the
static graph G = (V,

⋃∞
i=0 E(i)) is called the underlying graph of G. Conversely,

the dynamic graph G is said to be based on the static graph G.

In this paper, we consider dynamic graphs based on a cactus of size n. We
also assume that the agent knows the dynamics of the graph, that is to say, the
times of appearance and disappearance of the edges of the dynamic graph.

Definition 3 (Constant connectivity). A dynamic graph is called constantly
connected if for any integer i, the static graph Gi = (V, E(i)) is connected.

Definition 4 (Cactus). A cactus is a graph G = (V,E) in which two connected
cycles have at most one vertex in common (see Figure 1).

Fig. 1. Example of a cactus

A mobile entity, called agent, operates on these dynamic graphs. The agent
can traverse at most one edge per time unit. It may also stay at the current node
(typically to wait for an incident edge to appear). We say that an agent explores
the dynamic graph if and only if it visits all the nodes.

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 253

Theorem 1. [5] For every integer n ≥ 3 and for every constantly connected
dynamic graph based on a ring with n vertices, there exists an agent (algorithm),
Explore-ring, capable of exploring this dynamic graph in at most 2n− 3 time
units, when the agent knows the dynamics of the graph.

Theorem 2. [6] For every constantly connected dynamic graph on n vertices,
at most n− 1 time units are sufficient for an agent to go from any vertex to any
other vertex in the graph, when the agent knows the dynamics of the graph.

Corollary 1. For every constantly connected dynamic graph on n vertices, there
exists an agent (algorithm) capable of exploring this dynamic graph in O(n2) time
units, when the agent knows the dynamics of the graph.

To give a simpler analysis of our algorithms, we consider the tree representa-
tion of a cactus given in [1].

For any given cactus, the set of all vertices V is partitioned into three subsets
of vertices. Call C-vertices the vertices of degree 2 that belong to one and only
one cycle, G-vertices the vertices that do not belong to any cycle, and H-vertices
the other vertices (which belong to at least one cycle and have a degree ≥ 3)
which we also call attachment vertices.

A subtree is a connected set consisting of H-vertices and G-vertices. A subtree
is calledmaximal if the sets ofH-vertices andG-vertices that it consists of cannot
be extended. A graft is a maximal subtree that does not contain two H-vertices
belonging to the same cycle. Finally, a block is a graft or a cycle.

It is not difficult to see that a cactus is formed by a set of blocks attached via
H-vertices (see Figure 2.(a)).

(a) (b)

H3

G2H2C1H1G1

H6
C5

C1

G2

C2

C3 C4

G3

G1

H2H1

H3

C4

H4

H5
H4

C3

C5H6G3H5C2

Fig. 2. Tree representation of a cactus

If we add an edge between the blocks and the H-vertices, we obtain the
tree TG = (VG, EG) such that each element of VG is a block or an H-vertex.
Figure 2.(b) gives the tree representation of the cactus shown in Figure 1. We
say that a cactus is rooted if the tree that represents it is rooted.

254 D. Ilcinkas, R. Klasing, and A.M. Wade

Given that constantly connected dynamic graphs based on trees (or grafts)
are static, in this paper we consider cactuses that only consist of cycles and H-
vertices. In the following, we will assume that the cactus is rooted at the block
where the agent starts exploration. If the agent starts on an H-vertex, one of
the blocks attached to the H-vertex will be the starting block.

In this paper, we use the classical formalism of static trees. We will talk about
degree, child, parent, height or depth of a block.

3 Chain Method

In this section, we give a simple algorithm inspired by DFS to explore constantly
connected dynamic graphs based on a cactus of n vertices. The principle of the
algorithm is very simple. If the agent enters a ring it has not visited yet, it visits
it using the algorithm Explore-ring for exploring dynamic graphs based on
the ring (see Theorem 1), then passes to the point of attachment of its closest
unexplored child and explores it recursively. If all its children have already been
explored and there is a ring not yet explored, then it goes to its parent.

Algorithm 1. Chain-method()

1. while not all vertices have been visited do
2. if the current ring is not yet explored then
3. Explore-ring (current ring)
4. end if
5. if there is a child not yet explored then
6. Go-to-the-attachment-vertex (with this child)
7. else
8. Go-to-the-attachment-vertex (with the parent)
9. end if

10. end while

Theorem 3. For any integer n ≥ 3, and for any constantly connected dynamic
graph based on a cactus of n vertices, there is an agent, executing the algorithm
Chain-method, able to explore this dynamic graph in at most

∑k
i=1((di+2)ni−

(di + 3)) time units, where ni is the size of the ring i, di its degree, and k the
number of rings of the cactus.

Proof. An agent executing the algorithm Chain-method pays on each ring Rni

of the cactus at most 2ni − 3 units of time to explore it (see Theorem 1). To
switch to the point of attachment of a child or the parent (if it has one), ni − 1
time units are sufficient (see Theorem 2). As the degree of a block is equal to the
number of incident edges, then on each ring Rni of the cactus, the agent pays at
most (di+2)ni− (di+3) units of time. The cactus is composed of k rings, hence

the agent pays at most
∑k

i=1((di + 2)ni − (di + 3)) units of time to explore the
dynamic graph. �

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 255

Note that if the degree of each ring is constant, then the time to explore
the dynamic graph using the Chain-method is in O(n), where n is the size of
the cactus. Figure 3 presents a cactus of size n in which exploration using the
Chain-method takes time Ω(n2). Indeed, any algorithm exploring this graph
has to explore the Ω(n) attached cycles of length 3. However, when the Chain-

method is used, the adversary may choose the dynamicity of the graph such
that changing from one attached cycle to another takes time Ω(n), hence the
overall exploration time is Ω(n2).

n

3

Fig. 3. Difficult graph for the Chain-method

4 Star Method

Because the exploration method that we gave earlier is not effective for explor-
ing constantly connected dynamic graphs based on cactuses with rings of large
degree, this section provides an exploration technique to overcome this.

The algorithm we give here uses a similar technique as the exploration algo-
rithm for dynamic graphs based on the ring. Assume that the agent starts explor-
ing from some vertex of some constantly connected dynamic graph G based on a
cactus C of n vertices. From the starting point, the agent explores the starting
ring. The major difference with the exploration algorithm for dynamic graphs
based on the ring is that when an agent arrives at a vertex where an unexplored
subtree is attached, it explores the subtree recursively and then it returns to
the point of attachment and continues its exploration. However, when returning
to the point of attachment, the problem is that the agent cannot continue the
exploration according to the basic exploration algorithm on the starting ring, as
the dynamicity has changed on the ring.

In order to cope with this dynamicity problem, we need to refine the approach
appropriately. We take into account the time needed to recursively explore the
sub-cactuses by introducing the following transformation of G into another dy-
namic graph G′, based on a ring Rn′ of larger size n′. The dynamic graph G′ is

256 D. Ilcinkas, R. Klasing, and A.M. Wade

constructed as follows. We retain the starting ring of C and the dynamics of the
graph G based on this part. We replace every H-vertex of C with two C-vertices
by adding a static path of length equal to twice the recursive cost of exploring
the subtree attached to the H-vertex. Thus, we obtain a constantly connected
dynamic graph based on a ring of size n′ (see Figure 4). The dynamic graph G′
is constantly connected because we retained the dynamics of the subgraph of G
based on the starting ring of C, which respects the constant connectivity.

2f (C2)

2f (C3)

n1 n1

2f (C1)C1

C2

C3

H3

H2

H1

Fig. 4. Correspondence between the dynamic graph based on C and the dynamic graph
based on Rn′

Theorem 4. For any integer n ≥ 3 and for any constantly connected dynamic
graph based on a cactus C, there is an agent (algorithm) capable to explore this

dynamic graph in at most
∑k

i=1 2
pi(3ni− 3) time units, where pi is the depth of

the ring i in the rooted tree, ni is the size of the ring i in the rooted tree, k the
number of rings of the cactus, and n =

∑k
i=1 ni − k + 1 the number of vertices

of the cactus.

Proof. For some n ≥ 3, let C be a cactus with n vertices and let G be a con-
stantly connected dynamic graph based on C. Let us first determine the size
of the dynamic graph G′ based on Rn′ which is obtained from G by the above
construction.

Suppose that C is rooted at the starting block. By construction, the size n′

of G′ is the sum of the size of the root ring plus the sum of twice the costs of
the recursive exploration of the sub-cactuses that are attached, using the Star-
method.

Denote by f(C) the cost of exploring any constantly connected dynamic graph
based on the cactus C using the Star-method. If C is reduced to a ring of size n,
then f(C) = 3n−4, because to explore a ring of size n and return to the starting
vertex, an agent executing the algorithm Explore-ring needs at most 3n− 4

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 257

time units. Otherwise let n1 be the size of the root ring, and let C1, C2, . . . , C�

be the sub-cactuses attached to the root, then we have

f(C) = 3(n1 − 1) + 2

�∑
i=1

f(Ci). (1)

In order to obtain the recursive cost (1), we use the following algorithm for
exploring a dynamic ring. For a constantly connected dynamic graph based on
a ring RN , one virtually deploys one agent on each vertex of the ring RN , using
N − 1 time units. The virtual agents then move in clockwise direction along
the ring whenever they can. As there are N agents and in each round, only one
agent can be held up by the adversary, after N − 1 rounds there is one (virtual)
agent that has never been held up, hence this agent explores the ring in N − 1
additional time units. This agent is chosen as the actual exploration algorithm.

We consider a slightly modified version of this algorithm to explore the trans-
formed dynamic graph G′. Instead of allocating n′− 1 time units for the deploy-
ment phase, we assume that n1 − 1 time units are sufficient. Now let Agent B
be the virtual agent that is never held up in G′. We define the Agent A following
the Star-method as follows.

First Agent A uses n1 − 1 time units to reach the starting node v of Agent
B. If v is not a node of the starting ring, then Agent A goes to the attachment
node in C corresponding to the static subpath containing v.

Now, whenever the (virtual) Agent B stays on a subpath P corresponding
to some sub-cactus Ci for at least f(Ci) consecutive time units, Agent A uses
this time to recursively explore the sub-cactus Ci. If, after completing this explo-
ration, Agent B is still lying on P , then Agent A simply waits on the attachment
node. Whenever Agent B lies on the part corresponding to the starting ring (that
is outside of the added subpaths), Agent A behaves exactly as Agent B. This

part of the exploration of G takes at most (n1 − 1) + 2
∑�

i=1 f(Ci) time units.
After that, Agent A returns to its starting position. This takes at most n1− 1

time units.
Solving recurrence (1), we obtain the bound announced in the theorem. �

If the height of the rooted tree of the cactus is constant, then the time to
explore the dynamic graph using the Star-method is O(n) time units, where n
is the size of the cactus. Figure 5 presents a cactus of size n in which explo-
ration using the Star-method takes time 2Ω(n)n. Indeed, when using the Star-
method, from the starting point, the agent explores the starting cycle. When
it reaches the rightmost vertex of the starting cycle, it explores the sub-cactus
attached to the right recursively. However, the time allocated by the Star-

method to do so corresponds to twice the exploration time of the sub-cactus.
Hence, recursively, each additional cycle of length 4 will introduce an additional
factor of 2 in the cost. As the number of cycles of length 4 is Ω(n) and the cycle
of length n/2 to the right needs exploration time Ω(n), the overall exploration
time is 2Ω(n)n.

258 D. Ilcinkas, R. Klasing, and A.M. Wade

Starting point

n
2

Fig. 5. Difficult graph for the Star-method

5 Mixed Method

Note that if the agent is on a block that has a subtree attached to it, then
the extra cost of exploring the block plus the subtree is equal to the block size
minus one if the agent uses the Chain-method, and it is equal to the cost
of exploring the subtree if the agent uses the Star-method. Because none of
the two methods presented above alone allows to have a bound of O(n) without
further assumptions, in this section we introduce a combination of both methods,
that is to say, on some blocks the agent will use the Star-method to explore,
and on the remaining blocks it will use the Chain-method. The use of the two
methods is as follows. If the agent is on a block that has no child, then it uses
the ring exploration algorithm. Otherwise, on a block and a given subtree, in
order to choose its method of exploration, the agent will compare the cost of
exploring the subtree with the block size. If the block size is greater than the
cost of exploring the subtree, then the agent uses the Star-method to explore
the block and the subtree, otherwise it uses the Chain-method to explore them.
In the following, we call this exploration algorithm Mixed-method.

5.1 Upper Bound for the Algorithm Mixed-Method

In this section, we give an upper bound on the complexity of the algorithm
Mixed-method.

Theorem 5. An agent executing the algorithm Mixed-method needs at most
2 ·22

√
logn ·n time units to explore any constantly connected dynamic graph based

on a cactus of n vertices.

Proof. Fix an arbitrary constantly connected dynamic graph based on a cac-
tus C of n vertices. In order to study the exploration used by the Mixed-

method, we will discuss another algorithm, denoted Explore-cactus, which
is less efficient but easier to analyze. The upper bound obtained for this less ef-
ficient algorithm will also give us a valid upper bound for the Mixed-method.
Given a parent ring Rn1 in the cactus, let C1, . . . , C� be its sub-cactus children.
The Mixed-method chooses for each child the best of the Star-method and
the Chain-method in terms of the time for exploring the sub-cactus and the

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 259

size of the parent. The algorithm Explore-cactus itself chooses the method
to be used according to the criteria below. Assume without loss of generality
that the sub-cactuses C1, . . . , C� are ranked in descending order of their num-
ber of vertices. The algorithm Explore-cactus chooses the Chain-method

for the sub-cactuses C1, . . . , Cc−1, and the Star-method for the sub-cactuses
Cc, . . . , C�, where c = 2

√
logn. According to the ordering of the sub-cactuses, the

number of vertices of each sub-cactus Cc, . . . , C� cannot exceed a fraction 1/c
of the total number of vertices of the cactus rooted at the parent Rn1 . There-
fore, a ring cannot have more than logc n ancestors (potentially including itself)
for which the Star-method was chosen. In summary, the total time used by
the algorithm Explore-cactus on the dynamic graph based on C is at most
2logc n(c− 1 + 3)n ≤ 2 · 22

√
log nn by definition of c. This concludes the proof of

the theorem. �

5.2 Lower Bound for the Algorithm Mixed-Method

It turns out that the algorithm Mixed-method does not explore all constantly
connected dynamic graphs based on a cactus of size n in O(n) time units. We
have the following theorem to prove it.

Theorem 6. There is a constantly connected dynamic graph based on a cactus
of n vertices such that the exploration of the dynamic graph by an agent executing
the algorithm Mixed-method takes at least 1/2 · 2

√
log n · n time units.

Proof. Let h be an arbitrary even integer. Let d = 2h+1. Consider a cactus based
on a rooted complete d-ary tree of height h, that is to say all internal vertices have
exactly d children and all of whose leaves are at distance h from the root (i.e. at

depth h). For p between 0 and h, let fh(p) = d(2d+ 3)h−p −
∑h−p−1

i=0 (2d + 3)i.
Any internal vertex of depth p is a ring of size fh(p + 1) + 1. The leaves are
cycles of size d+4

3 (which is an integer by definition of h). For any cycle, the
points in common with the parent cycle and with each of the d child cycles, if
they exist, are all different (see Figure 6). Let th(p) be the time that algorithm
Mixed-method uses on a sub-cactus rooted at a cycle of depth p ≤ h. We now
prove that for any p ≤ h, we have th(p) = fh(p). The proof is by induction on
(h− p). By Theorem 1, for p = h, we have th(h) = 3 d+4

3 − 4 = d = fh(h). Fix p
such that 1 ≤ p ≤ h and suppose by induction hypothesis that th(p) = fh(p). At
a cycle of depth p− 1, for each of its children, the two methods are equivalent.
Hence, the time used by the algorithm Mixed-method will be th(p − 1) =
2 (fh(p) + 1 + d · th(p)) − 3 + fh(p) + 1 − 1. After simplification, and using the
induction hypothesis, we obtain th(p− 1) = (2d+3)fh(p)− 1, which is equal to
fh(p − 1). This concludes the proof by induction. Hence, the total exploration
time of the cactus by the algorithm Mixed-method is fh(0). We now compute
a lower bound on fh(0). We have

260 D. Ilcinkas, R. Klasing, and A.M. Wade

fh(0) = d(2d+ 3)h −
h−1∑
i=0

(2d+ 3)i

= d(2d+ 3)h − (2d+ 3)h − 1

2d+ 2

≥ d− 1

2d+ 2
· (2d+ 3)h

≥ 2d2 · (2d+ 3)h−1

≥ 2h · dh+1

≥ d

2
· dh+1

We now calculate the total number n of vertices of the cactus. According to
the definition of the cactus, we have n =

∑h−1
p=0 (d

p · fh(p+ 1)) + dh · d+4
3 + 1.

d

fh(1) + 1

fh(2) + 1

fh(h− 1) + 1fh(h− 1) + 1

fh(h) + 1 fh(h) + 1
fh(h) + 1 fh(h) + 1

d + 4

3

d d

d

d d
d + 4

3

d + 4

3

d + 4

3

d

Fig. 6. Lower bound for the Mixed-method

Exploration of Constantly Connected Dynamic Graphs Based on Cactuses 261

Therefore,

n ≤
h−1∑
p=0

(
dp · d(2d+ 3)h−p−1

)
+ dh+1/3

≤ d(2d+ 3)h−1
h−1∑
p=0

(d/(2d+ 3))p + dh+1/3

≤ 2d(2d+ 3)h−1 + dh+1/3

≤ (2d)h(1 + 3/(2d))h−1 + dh+1/3

≤ dh+1/2 · 4/3 + dh+1/3

≤ dh+1.

From this, we deduce that d ≥ 2
√
log n. Combining all these bounds, we obtain

fh(0) ≥ 1/2 · 2
√
logn · n, which concludes the proof. �

6 Conclusion

In this paper, we studied the time complexity for exploring constantly connected
dynamic graphs based on cactuses, under the assumption that the agent knows
the dynamics of the graph. We gave an exploration algorithm for dynamic graphs
that we called Mixed-method, and we have shown that for exploring the whole
class of constantly connected dynamic graphs based on cactuses of n vertices,
with this algorithm, 2Θ(

√
logn) ·n units of time are necessary and sufficient. This

study opens several perspectives.
In the short term, it would be interesting to find a new method in order to

obtain a better upper bound on the exploration time of dynamic graphs based
on cactuses. At a second stage, an interesting question to investigate would
be if T -interval-connectivity (for T > 1) allows to save a significant factor in
the exploration time of the cactuses. A natural further objective is to extend
the family of underlying graphs. Note that the families of underlying graphs
considered so far (ring and cactuses) have the property that at most one edge
can be absent at a given time in every bi-connected component. Studying families
of underlying graphs that do not possess this property seems to be a challenging
problem.

A more general objective is to establish whether there is an agent which knows
the dynamics of the graph and which is able to explore all T -interval-connected
dynamic graphs where the underlying graph has m edges in time O(m), or even
o(m). A further perspective is to consider the exploration problem of T -interval-
connected dynamic graphs using more than one agent, assuming standard models
of communication between the agents. The objective would be to study whether
dynamic graph exploration can be performed more efficiently by using more than
one agent. Finally, the computational complexity of the exploration problem for
dynamic graphs is largely unknown. As noted in the Introduction, the explo-
ration problem for static graphs is already APX hard in general graphs, hence

262 D. Ilcinkas, R. Klasing, and A.M. Wade

the exploration problem for dynamic graphs is at least APX hard in general
graphs. However, it is not known whether this non-approximability result for
dynamic graphs is tight, and whether efficient approximation algorithms for the
exploration problem in dynamic graphs can be derived.

References

1. Burkard, R., Krarup, J.: A Linear Algorithm for the Pos/Neg-Weighted 1-Median
Problem on a Cactus. Computing 60(3), 193–216 (1998)

2. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems 27(5) (2012)

3. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z.: Information spreading in
dynamic networks. CoRR, abs/1112.0384 (2011)

4. Ferreira, A.: Building a Reference Combinatorial Model for Dynamic Networks:
Initial Results in Evolving Graphs. INRIA, RR-5041 (2003)

5. Ilcinkas, D., Wade, A.M.: Exploration of the T-Interval-Connected Dynamic
Graphs: The Case of the Ring. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO
2013. LNCS, vol. 8179, pp. 13–23. Springer, Heidelberg (2013)

6. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: 42nd ACM Symposium on Theory of Computing (STOC), pp. 513–522
(2010)

7. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT
News 42(1), 82–96 (2011)

8. Mömke, T., Svensson, O.: Approximating Graphic TSP by Matchings. In: 52nd
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 560–569
(2011)

9. Mucha, M.: 13/9-approximation for Graphic TSP. In: 29th Int. Symposium on
Theoretical Aspects of Computer Science (STACS), pp. 30–41 (2012)

10. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: DIALM-POMC, pp. 104–110 (2005)

11. Sebö, A., Vygen, J.: Shorter Tours by Nicer Ears: 7/5-approximation for graphic
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combi-
natorica (to appear)

12. Shannon, C.E.: Presentation of a maze-solving machine. In: 8th Conf. of the Josiah
Macy Jr. Found (Cybernetics), pp. 173–180 (1951)

How Many Ants Does It Take to Find the Food?

Yuval Emek1, Tobias Langner2, David Stolz2,
Jara Uitto2, and Roger Wattenhofer2

1 Technion, Israel
2 ETH Zürich, Switzerland

Abstract. Consider the Ants Nearby Treasure Search (ANTS) problem,
where n mobile agents, initially placed at the origin of an infinite grid,
collaboratively search for an adversarially hidden treasure. The agents
are controlled by deterministic/randomized finite or pushdown automata
and are able to communicate with each other through constant-size mes-
sages. We show that the minimum number of agents required to solve
the ANTS problem crucially depends on the computational capabilities
of the agents as well as the timing parameters of the execution environ-
ment. We give lower and upper bounds for different scenarios.

1 Introduction

Recent research on understanding the behavior of insect colonies from a dis-
tributed computing perspective has mainly focused on questions like “How long
does it take a large collection of ants to locate a food source?” [1, 2] or “How
do the computational capabilities of a single ant within this collection affect the
time until the food source is found?” [3–5].

In this paper, we take a computability point of view and, instead of focusing on
large numbers of agents and on the time required to find a food source, analyze
the minimum number of agents that is required to locate a food source within
(expected) finite time. More precisely, we show that the minimally required
number of agents crucially depends on the model assumptions, i.e., whether each
agent is controlled by a finite automaton (FA) or a pushdown automaton (PDA),
whether it has access to random bits or not, and whether the environment is
synchronous or asynchronous.1 For most combinations of the aforementioned
characteristics, we establish lower and upper bounds on the number of agents
required to locate the food. Our bounds are tight in most cases. We essentially
present two different families of algorithms – rectangle/spiral and geometric
searches – which are inspired by results of Emek et al. [1]. The main contributions
of this paper, however, are the lower bounds for two deterministic FA- and one
deterministic PDA-agent presented in sections 4.1 and 5.1, respectively. Table 1
at the end of the paper gives a complete picture of our findings.
1 Notice the striking resemblance to the problem of finding the number of people

needed to change a light bulb: For people, the answer usually depends on nationality
and profession while for ants, it depends on timing and computational power.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 263–278, 2014.
c© Springer International Publishing Switzerland 2014

264 Y. Emek et al.

As border cases of our findings, we point out that in an asynchronous setting
four agents are sufficient to solve the problem when their computational capabil-
ities are most restricted, i.e., they are controlled by deterministic FAs. If we allow
access to random bits and grant the agents slightly more computational power
– a PDA – already one single agent can solve the problem. Note that neither of
these results require the full computational power of a Turing machine.

We do not claim that our considerations are particularly relevant from a
biological perspective – an ant hive generally consists of significantly more than
four ants. However, our results show that powerful computational capabilities
can be traded for primitive means of communication while still being able to
solve complex problems – even for small number of agents.

Related Work. Our work is inspired by Feinerman et al. who proposed a
problem called ants nearby treasure search (ANTS), where n ants, or agents,
are searching the plane [2, 3]. The agents are controlled by Turing machines
and are not allowed to communicate with each other after leaving the origin.
Assuming a knowledge of a constant approximation of n, the agents are able to
locate the treasure in time O(D+D2/n) where D is the distance to the treasure.
Furthermore, Feinerman et al. observe a matching lower bound and prove that
this lower bound cannot be matched without some knowledge of n.

There are two fundamental differences between the model studied by Feiner-
man et al. and our models. First, our agents are operated by finite automata or
pushdown automata. The stronger computational model provided by Turing ma-
chines enables individual agents to accomplish tasks way beyond our capabilities,
such as performing spiral searches and remembering the execution history. In a
recent related work, Lenzen et al. study the effects that bounding the memory of
the agents and the range of available probabilities have on the runtime [5]. Sec-
ond, our agents are allowed to communicate outside the origin, yet only through
constant-size messages – a model which was also studied by Emek et al. [1].

The general concept of graph exploration is widely studied in computer sci-
ence. Typically, given a graph, the task is to visit all nodes by walking along the
edges [6–10]. It is well-known that random walks allow a single agent to visit all
nodes of a finite undirected graph in expected polynomial time [11]. Note that
there are infinite graphs, such as a grid, where the expected time for a random
walk to reach any designated node is infinite. Our problem can also be seen as a
variant of the game of cops and robbers, where the robber remains dormant [12].

The classic example of a treasure finding problem is the cow-path problem.
The task in the cow-path problem is to find a treasure on a line as quickly
as possible. This task can be solved with a constant competitive ratio with a
deterministic algorithm. The optimal algorithm for the 2-dimensional version is
a simple spiral search [13]. The problem has also been studied in a multi-agent
setting by López-Ortiz and Sweet [14].

Also finite automata searching a graph have been studied earlier [4]. Other
work considering distributed computing by finite automata includes for example
population protocols [15, 16]. Recently, a new general model of computation in
graphs was introduced, where the nodes are controlled by finite automata instead

How Many Ants Does It Take to Find the Food? 265

of Turing machines [17]. The main connection to our work is that we use an
equivalent communication model.

Model. We consider a variant of [2]’s ANTS problem, where a set of mobile
agents search the infinite grid for an adversarially hidden treasure. Our model is
an adapted version of the model used in a paper by Emek et al. [1]. Each agent
is controlled either by a finite automaton or by a pushdown automaton, both
either deterministic or randomized, with a common sense of direction and can
communicate only with agents sharing the same grid cell.

More formally, consider n mobile agents that explore Z2. In the beginning
of the execution, all agents are positioned in the same grid cell referred to
as the origin (say, the cell with coordinates (0, 0) ∈ Z2). In contrast to prior
work, we do not assume that the agents can distinguish between the origin and
the other cells.2 We denote the cells with either x or y-coordinate being 0 as
north/east/south/west-axis, depending on their location.

The distance dist(c, c′) between two grid cells c = (x, y) and c′ = (x′, y′) in
Z2 is defined with respect to the
1 norm (a.k.a. Manhattan distance), that is,
|x − x′| + |y − y′|. Two cells are called neighbors if the distance between them is
1. In each step of the execution, agent a positioned in cell (x, y) ∈ Z2 can either
move to one of the four neighboring cells (x, y +1), (x, y −1), (x+1, y), (x−1, y),
or stay put in cell (x, y). The former four position transitions are denoted by
the corresponding cardinal directions N, E, S, W , whereas the latter (stationary)
position transition is denoted by P (standing for “stay put”). We point out that
the agents have a common sense of orientation, i.e., the cardinal directions are
aligned with the corresponding grid axes for every agent in every cell.

In an asynchronous environment, each agent’s execution progresses in discrete
(asynchronous) steps indexed by the non-negative integers and we denote the
time at which agent a completes step i > 0 by ta(i) > 0. Following common
practice, we assume that the time stamps ta(i) are determined by the policy
ψ of an adversary that knows the protocol but is oblivious to its random bits,
whereas the agents do not have any sense of time. A synchronous environment
corresponds to the special case where ta(i) = i for all agents a and all i > 0.

The communication and computational capabilities of the agents are limited.
Specifically, in our model, an agent a positioned in cell c ∈ Z2 can communicate
with all other agents positioned in cell c at the same time. This communication is
limited though: agent a merely senses for each state q of its (finite or pushdown)
automaton, whether there exists at least one agent a′
= a in cell c whose current
state is q. Notice that this communication scheme is a special case of the one-
two-many communication scheme introduced in [17] with bounding parameter
b = 1.

Since we only consider instances with a constant number of agents, we allow
each agent to run a different individual protocol. This is modeled by assigning
2 The motivation behind this is that, in contrast to previous work, we consider constant

numbers of agents. While models with large numbers can spare one agent to mark
the origin without affecting their upper bounds, our upper bounds actually increase
(by one) if such behavior is required. Consequently, we consider the weaker variant.

266 Y. Emek et al.

to each agent an individual initial state in the respective automaton (note that
this is only relevant in the deterministic case as otherwise coin flips can be used
to separate agents). The protocol is controlled by either a finite automaton or
a pushdown automaton. We shall first explain the semantics of the former and
then explain the additional capabilities of the latter.
FA-protocol. When an agent employs an FA-protocol, it has a constant mem-
ory and thus, in general, cannot store coordinates in Z2. Formally, the agent’s
protocol is captured by the 3-tuple Π = 〈Q, sa

0, δ〉, where Q is the finite set of
states, sa

0 ∈ Q is the initial state of agent a, and δ : Q × 2Q → 2Q×{N,S,E,W,P }

is the transition function. To allow the agents to perform different tasks also in
the absence of randomization, each agent a has a unique start state sa

0 in which
it resides at time 0. Suppose that at time ta(i), agent a is in state q ∈ Q and
positioned in cell c ∈ Z2. Then, the state q′ ∈ Q of agent a at time ta(i + 1) and
its corresponding movement τ ∈ {N, S, E, W, P } are dictated based on the tran-
sition function δ by picking the tuple (q′, τ) uniformly at random from δ(q, Qa),
where Qa ⊆ Q contains state p ∈ Q if and only if there exists some (at least
one) agent a′
= a such that a′ is in state p and positioned in cell c at time ta(i).
A FA-protocol is deterministic if each step is deterministic, i.e., |δ(q, Qa)| ≤ 1
for all q ∈ Q and Qa ⊆ Q. For simplicity, we assume that while Qa (input to δ)
is determined based on the status of cell c at time ta(i), the actual application
of the transition function δ occurs instantaneously at the end of the step, i.e.,
agent a is considered to be in state q and positioned in cell c throughout the
time interval [ta(i), ta(i + 1)).
PDA-protocol. When an agent employs a PDA-protocol, it is controlled by a
pushdown automaton with an infinite stack. The communication and movement
model remains the same. The only addition is that in each step, an agent reads
and removes the top-most symbol from the stack (“pop”) – if the stack is empty,
the agent reads the special symbol ε and the stack remains unchanged – and then
adds a finite amount of symbols to the top of the stack (“push”). The symbol
read from the stack serves as additional input to the agent. Formally, the agents’
protocol is captured by the 4-tuple Π = 〈Q, sa

0, Γ, δ〉, where Q is the finite set of
states, sa

0 ∈ Q is the initial state of agent a, Γ is the finite stack alphabet, and
δ : Q × 2Q × Γ ∪ {ε} → 2Q×Γ ∗×{N,E,S,W,P } is the transition function. Suppose
that at time ta(i), agent a is in state q ∈ Q, positioned in cell c ∈ Z2, and the
top-most symbol on the stack is γ ∈ Γ ∪{ε}. Then, the state q′ ∈ Q of agent a at
time ta(i+1), the word α ∈ Γ ∗ to be written to the stack, and the corresponding
movement τ ∈ {N, E, S, W, P } are dictated based on the transition function δ by
picking the tuple (q′, α, τ) uniformly at random from δ(q, γ, Qa), where Qa ⊆ Q
is defined as in an FA-protocol.
Problem setting. We consider two different variants of the problem, where the
goal in both is to locate an adversarially hidden treasure, i.e., to bring at least
one agent to the cell in which the treasure is positioned while the distance of the
treasure from the origin is denoted by D. In async-ANTS, the problem is to find
the treasure in an arbitrary asynchronous environment while in the sync-ANTS
problem the agents operate in a synchronous environment. A FA/PDA-protocol

How Many Ants Does It Take to Find the Food? 267

P is effective if it allows the agents to locate the treasure in finite time if P is
deterministic, or if the agents locate the treasure in expected finite time if P is
randomized.

Preliminaries. For our deliberations we require a sequence of definitions. Let
A be the set of agents. We denote by EP

a (t) the cells that an agent a employing
protocol P has visited until time t and furthermore EP(t) =

⋃
a∈A EP

a (t). In the
context of the sync-ANTS problem, we take the liberty to write EP

a (i) for a (then
global) step i as shorthand for EP

a (ta(i)) and analogous for EP(i). We omit P in
the previous expressions if the considered protocol is clear from the context.

2 Four Agents

The goal of this section is to solve the async-ANTS problem without using ran-
domization. We provide a simple protocol for four FA-agents that uses three of
the four agents as landmarks for the fourth agent. The fourth agent discovers
the whole grid in a spiraling fashion with increasing distance to the origin.

We begin by giving an informal description of the protocol. The landmark
agents, referred to as Guides, position themselves in a triangle around the origin
and after getting a signal from the searching agent, called the Explorer, move
step by step further away from the origin. The Explorer moves to the Guides one
by one signaling them to expand the triangle. This way the Explorer is able to
guarantee that it can always reach one Guide after meeting another by simply
walking a (possibly diagonal) straight line, even after the Guides are within a
super-constant distance from each other and the origin.

All three Guides have specific roles and therefore we give them task-specific
names: NorthGuide, WestGuide and EastGuide. The agents execute the follow-
ing protocol, which is illustrated in Figure 1. The protocol is initialized by the
NorthGuide moving once north, the WestGuide moving once west and the East-
Guide moving once east. After the Explorer notices that the origin is empty, it
moves once north.

NorthGuide. When the NorthGuide meets a WaitingExplorer it moves once north.

WestGuide. When the WestGuide meets a WaitingExplorer it moves once west
and becomes a MovingWestGuide. The MovingWestGuide first moves once west
and then once south and becomes a WestGuide again.

EastGuide. When the EastGuide meets a WaitingExplorer it moves once south
and becomes a MovingEastGuide. The MovingEastGuide moves twice east and
becomes again an EastGuide.

Explorer. The Explorer continuously performs triangle searches in increasing
distances. It continuously moves into a given direction, starting with south-west
(by alternatingly moving south and west). When the Explorer meets a WestGuide,

268 Y. Emek et al.

N

O

E

1

22

3

4

3

W

X

Fig. 1. Four agents are discovering the grid and currently are performing a triangle
search in distance 3. The origin is denoted by a gray square, the Explorer (X) by a red
circle and the NorthGuide (N), WestGuide (W) and EastGuide (E) by black circles labeled
with the corresponding initial letters. The numbers indicate the order of movements,
i.e., moves along the arrow labeled with i are performed only after the moves along
the arrow labeled with i − 1 are finished. The dashed red line indicates the path of the
Explorer in distance 2.

it changes its moving direction to east and becomes a WaitingExplorer. When
it meets an EastGuide, it changes the direction to north-west and becomes a
WaitingExplorer. Finally, when the Explorer meets a NorthGuide, it changes its
moving direction to south-west (alternates between west and south) and becomes
a WaitingExplorer. Notice that the Explorer meets the NorthGuide in the starting
position of the triangle search in the next distance. Whenever the Explorer meets
a MovingWestGuide or a MovingEastGuide in cell c, it waits until c is empty before
continuing to move.

WaitingExplorer. When the WaitingExplorer resides in a cell that does not con-
tain an EastGuide, a NorthGuide, or a WestGuide, it becomes an Explorer and
continues moving.

We index the triangle searches by their distances, i.e., if the Explorer meets the
NorthGuide in cell (0, i) and starts moving south-west, we index the correspond-
ing triangle search by index i and denote it by TSi. A triangle search in distance
i starts when the Explorer leaves cell (0, i) by moving west and ends when the
Explorer meets a NorthGuide. Furthermore, we say that TSi works correctly, if
the Explorer meets the WestGuide only in cell (−2i + 1, −i + 1), the EastGuide
only in cell (2i − 1, −i + 1) and the NorthGuide only in cell (0, i + 1) during TSi.

Lemma 1. (Proof deferred to full version) Every triangle search works correctly.

How Many Ants Does It Take to Find the Food? 269

To show that the treasure eventually gets discovered, we need two more auxiliary
observations. First, we show that every cell in distance d is discovered latest
during TSd+1. Second, we show that each triangle search finishes within finite
time. We call the set of cells along which the Explorer moves during TSi the path
of rectangle search i.

Observation 2. (Proof deferred to full version) Every cell c within distance d
to the origin is discovered latest during TSd+1.

Observation 3. (Proof deferred to full version) Every triangle search ends
within finite time.

We can now combine the results from this section. Let D be the distance to the
treasure. By Observation 2, the treasure is found latest during TSD+1. As the
duration of each search is finite by Observation 3 and by Lemma 1 each triangle
is eventually searched, we get the following theorem.

Theorem 1. There exists an effective deterministic FA-protocol for async-ANTS
for n = 4.

3 Three Agents

3.1 Deterministic Protocol for sync-ANTS

In this section, we first show that we can get rid of one of the FA-agents by
giving the agents a common notion of time. In other words, if we assume that
the execution of the algorithm is synchronous, three agents suffice to discover
the treasure. Our goal is to prove the following theorem.

Theorem 2. There exists an effective deterministic FA-protocol for sync-ANTS
for n = 3.

The idea of the three-agent protocol is similar to the protocol from Section 2.
Again, one of the agents, the Explorer, performs the actual searching and the two
other agents work as Guides. The task of one of the Guides, called OriginGuide,
is simply to stand still and mark the origin throughout the execution. The task
of the other Guide is to tell the Explorer when it hits an axis. On the first round
of the execution, the Explorer and the other Guide move one step north to cell
(0, 1) and then start the execution of the following protocol.

Explorer. The Explorer repeatedly performs rectangle searches in increasing dis-
tances. It starts the first rectangle search in distance 1 by diagonally moving
south-west, i.e., alternating between moving west and south. When it meets a
Guide, it alters its movement direction by 90◦ counter-clockwise. At the end of
a complete rectangle (i.e., when meeting a Guide again at the starting point), it
moves one step outwards starting a new rectangle search with a larger distance.
During a rectangle search in distance d, the Explorer discovers all cells that have
distance d to the origin.

270 Y. Emek et al.

G

G

G

G

G

O

X

Fig. 2. Three agents can discover the entire
grid under a synchronous environment. The
dashed circles indicate the locations where
the Explorer (X) meets the Guide (G). The
OriginGuide (O) marks the origin.

X

G

2

1

4

3

O

Fig. 3. Three agents are performing
a geometric search on the north-west
quarter plane. Moves along the black
arrows are executed by both the Ex-
plorer (X) and the Guide (G) while
the OriginGuide (O) states at the ori-
gin. Moves along the red arrows are
executed only by the Explorer.

Guide. The Guide starts by moving towards the OriginGuide that marks the
origin. When it meets the OriginGuide, it alters its direction by 90◦ clockwise
and moves outwards. When it meets the Explorer, it turns around and moves
inwards towards the OriginGuide. The Guide also moves one step north with the
Explorer when they meet in the end of searching a rectangle and starts walking
towards the OriginGuide afterwards.
The execution of our protocol is illustrated in Figure 2. To prove Theorem 2, we
only need to show that every time the Explorer enters a cell on an axis, it meets a
Guide. To see why this is sufficient, consider any cell c on the plane with distance
d to the origin. Then c is searched (latest) during rectangle search in distance d.
Therefore, assuming that each rectangle search is performed correctly, the whole
plane is eventually discovered.

It is fairly easy to see that the Explorer and the Guide never fail to meet.
Consider round r when the Explorer and a Guide meet on an axis during rectangle
search in distance d. Then the distance that both of them have to move until the
next meeting point is 2d. Since both agents move exactly once per round, the
claim follows. Note that the assumption of a synchronous environment is crucial
here.

3.2 Randomized Protocol for async-ANTS

We now show that if we are not restricted to deterministic state machines but al-
low randomization, we can find the treasure under an asynchronous environment

How Many Ants Does It Take to Find the Food? 271

with only 3 FA-agents. The fundamental idea behind our randomized protocol
is that the agents use a fair coin to determine which cells to discover.

Again, we have two Guides and one Explorer and the task of one of the agents,
the OriginGuide, is to simply stay in the origin. The Explorer performs the actual
searching and starts by uniformly at random choosing either (north, east), (east,
south), (south, west) or (west, north), i.e., it randomly chooses a quarter plane.
Then, the Explorer performs a geometric search on that quarter plane.

Consider the case of choosing (east, south) as the quarter-plane (the search in
the other quarter-planes works analogously). The Guide and the Explorer execute
the following protocols.

Explorer. The Explorer starts by moving once east. Then on every step the
Explorer tosses a fair coin and if it shows heads, it moves east. When the coin
shows tail, the Explorer stops and becomes a WaitingExplorer until its cell is
occupied by a WaitingGuide. When the WaitingGuide appears, the WaitingExplorer
moves one cell south, becomes an Explorer, and continues tossing coins but now
moves one cell south every time the coin shows head instead of east. When the
coin shows tails, the Explorer turns back, i.e., starts moving north. After the
Explorer reaches a cell with a WaitingGuide, it stops and moves west (until it
reaches an OriginGuide) whenever its cell contains no WaitingGuide.

Guide. The Guide moves east on every step if its cell is not occupied by an
Explorer. When it meets a WaitingExplorer, it turns into a WaitingGuide. When
the WaitingGuide meets an Explorer, it becomes a Guide again and moves west
whenever its cell is not occupied by an Explorer until it meets an OriginGuide.

After all the agents reach the origin, they restart the process. The protocol is
illustrated in Figure 3. It is easy to see that each geometric search has a finite
duration with probability 1 since the Explorer throws a finite number of heads in
every search with probability 1. Assume that the number of heads is finite. Then
the Explorer becomes a WaitingExplorer in finite time. After the Explorer becomes
a WaitingExplorer, the Guide moves towards the cell of the WaitingExplorer in
every step and therefore reaches it in finite time. Similarly, the Explorer returns
to the WaitingGuide in finite time and they both reach the OriginGuide in finite
time.

Theorem 3. There exists an effective randomized FA-protocol for async-ANTS
for n = 3.

Proof. Assume that the treasure is located in cell c = (x, y) in the north-east
quarter plane with D = x + y. Let us index the geometric searches, i.e., the
iterations of the algorithm, by the positive integers. Clearly, the protocol is
defined so that if the treasure is found in search i, then search j > i is not
needed, however, for the sake of the analysis, we assume that the agents keep
performing the searches indefinitely and bound the time until the treasure is
found – let T be the random variable that captures this time. Given this view,
we know that search i is independent of all searches other than i.

272 Y. Emek et al.

Let Ai be the event that the Explorer finds the treasure in search i. This
happens if it chooses the right quarter plane, throws heads exactly x − 1 times
before throwing tails once and then throws heads y − 1 times. Hence, Pr(Ai) =
1
4 · 2−(x−1) · 1

2 · 2−(y−1) = 2−(D+1). Let Bi = ¬A1 ∧ · · · ¬Ai−1 ∧ Ai be the event
that the treasure is found in search i and not in any search j < i. We rely on
the following equations that hold for every i ≥ 1 and 1 ≤ j < i:

(1) Pr(Ai) = 2−(D+1)

(2) Pr(Bi) = (1 − 2−(D+1))i−12−(D+1)

(3) E[Li | Bi] = E[Li | Ai] = O(D)
(4) E[Lj | Bi] = E[Lj | ¬Aj] = O(1)

Therefore,

E[T] =
∞∑

i=1
E[T | Bi] · Pr(Bi)

=
∞∑

i=1

(i−1∑

j=1
E[Lj | Bi] + E[Li | Bi]

)
· (1 − 2−(D+1))i−12−(D+1)

=
∞∑

i=1
(O(i) + O(D)) · (1 − 2−(D+1))i−12−(D+1)

= 2−(D+1) ·
∞∑

i=1
O(i) · (1 − 2−(D+1))i−1

+ O(D) · 2−(D+1) ·
∞∑

i=1
(1 − 2−(D+1))i−1

= 2−(D+1) · O(22D) + O(D) · 2−(D+1) · 2D+1 = O(2D) . ��

4 Two Agents

Our goals in this section are to show, on the negative side, that two deterministic
FA-agents cannot solve sync-ANTS, and, on the positive side, that one determin-
istic FA-agent together with one deterministic PDA-agent can solve sync-ANTS.

4.1 No Deterministic FA-Protocol

We start off with proving the first result. Before doing so, we define the notion
of a band in Z2. A band is the discrete version of a fat line in Euclidean space,
i.e., the set of cells that have at most a certain distance from a line.

Definition. A band B = (s, m, e), s = (xs, ys) ∈ Z2 with slope m = (mx, my) ∈
Z2 of extent e ∈ N>0 consists of all cells c for which there exists a point p =
(sx + λmx, sy + λmy) for some λ ∈ R such that ‖c − p‖1 ≤ e where ‖x‖1 denotes
the
1-norm of x.

How Many Ants Does It Take to Find the Food? 273

Observation 4. Let B be a finite set of bands with finite extent. Then Z2 \⋃
B∈B B
= ∅.

Proof. Assume for the sake of a contradiction that the bands in B cover Z2

completely. Let e∗ be the maximum extent of the bands in B. Consider a square
region S of Z2 with
2 cells for
 > 2|B|e∗ and a fixed band B = (s, m, e) ∈ B.
Assume wlog. that |mx| ≤ |my|. Observe that |B ∩ S| ≤
 · 2e∗ since S vertically
extends over
 cells and the horizontal width of B ∩ S is at most 2e∗. Let A =⋃

B∈B B and we get |A ∩ S| ≤ 2|B|e∗ ·
 <
2 = |S|. Thus, the bands in B do not
even cover the cells in S, a contradiction. ��
We denote by M(P) = (ti)i>0 the strictly increasing sequence of all points in
time when two agents meet during the execution of protocol P . An important
ingredient for the proof is the following lemma, which holds for an arbitrary
amount of agents.

Lemma 5. If P is an effective deterministic FA-protocol for sync-ANTS, then
|M(P)| = ∞.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol with finite |M(P)|. Thus, there exists a largest point in time t∗ =
max(M(P)) when two agents meet and after which no two agents meet anymore
and the number of cells explored until t∗ is finite. Consider now agent a and let q
be the state that has been entered by agent a twice after t∗ at the earliest time.
Let (ti)i>0 be the strictly increasing sequence of points in time after t∗ when
a enters state q and denote Ii = [ti, ti+1]. Observe that the behavior of a in
each interval Ii is identical, hence a will keep on repeating the same transitions
and movements as in I1 forever. Observe further that a can only move a finite
distance in each Ii as it has a finite length.

Consider the vector vi(a) = Ca(ti+1) − Ca(ti) describing the net-translation
of a during Ii and observe that by the above argument vi(a) = v1(a) for all
i > 0. There are two cases: If v1(a) = 0, then agent a explores only a constant
amount of cells for t → ∞. If v1(a)
= 0, then a exhibits a net-movement into
the direction of v1(a) in each Ii and since it only explores a constant amount
of cells in each Ii, agent a explores only cells in a band with finite width after
t∗. By Observation 4, the agents cannot explore all cells in Z2 and the claim
follows. ��
Theorem 4. There exists no effective deterministic FA-protocol for sync-ANTS
for n = 2.

Proof. Assume for the sake of contradiction that P is an effective deterministic
protocol for two agents a1 and a2. By Lemma 5 we know that |M(P)| = ∞.
Let Q1 and Q2 be the set of states of the two FAs controlling a1 and a2. We
denote by Q1(t) ∈ Q1 and Q2(t) ∈ Q2 the state of agent a1 and a2 at time t
and further Q(t) = (Q1(t), Q2(t)). Observe that since |M(P)| = ∞, there must
be a pair of states (q1, q2) ∈ Q1 × Q2 such that the sub-sequence T = (τi)i>0
of M(P) that consists of all τ ∈ M(P) such that Q(τ) = (q1, q2), is infinite.

274 Y. Emek et al.

We denote the intervals Ii = [τi, τi+1] and observe that a1 and a2 (individually)
perform exactly the same state transitions and movements in each interval Ii

(agent a1 and a2 might meet between τi and τi+1 in different states, but their
behavior is fully determined by their states at time τi). Thus, there is a fixed
vector v = Ca1(τi+1) − Ca1(τi) representing the translation of the meeting cell
of a1 and a2 during some Ii and furthermore a fixed constant ϑ > 0 such that
τi+1−τi = ϑ. Consequently, a1 and a2 can only explore cells in a band with finite
width after τ1. Since E(τ1) is finite, Observation 4 yields a contradiction. ��

4.2 Deterministic FA/PDA-Protocol for sync-ANTS

The second result of this section establishes that while two agents controlled
by a FA do not allow for an effective deterministic protocol for sync-ANTS, one
FA-agent and one PDA-agent do so.

The protocol is essentially an adapted version of the protocol from Section 3.1.
The Explorer behaves identically to Section 3.1 and performs rectangle searches
with increasing distances to the origin. The second PDA-agent replaces the two
Guides by walking along the axis in order to signal to the Explorer when the
search in a quarter-plane is complete and it should therefore alter its movement
direction. The trick here is that the Guide tracks its distance from the origin using
the stack. More precisely, the Guide pushes a symbol onto the stack whenever it
performs a movement outwards on one of the axes and pops one symbol from
the stack whenever it moves towards the origin. Using this trick, the Guide can
detect when it has arrived at the origin by verifying whether the stack is empty,
i.e., the read symbol is ε. Then the algorithm works as follows:

At time t = 0, the Guide and the Explorer both move one cell north (and
the Guide records this move on the stack). Whenever the two agents are located
together on the north-axis in cell (0, d), the Explorer starts a diagonal walk
towards south-west while the Guide moves south towards the origin until it arrives
there, which it can track using the stack. Upon arriving there, it moves west until
it meets the Explorer. As the length of the two (different) paths from cell (0, d)
to cell (−d, 0) is equal, both the Guide and the Explorer arrive in cell (0, −d) at
the same time. Now the Explorer changes its movement direction and the Guide
moves back to the origin after which it moves south to meet the Explorer on the
south axis in cell (0, −d). They repeat this process to meet on the west axis in
cell (d, 0) and on the north axis in cell (0, d). When the Explorer has completed
the rectangle search of level d by arriving at cell (0, d) again, it moves together
with the Guide to cell (0, d + 1) and the search of level d + 1 begins.

It is easy to see that the above algorithm guarantees that the Explorer meets
the Guide every time it crosses an axis and that therefore any level d is explored
in finite time.

Theorem 5. There exists an effective deterministic protocol for sync-ANTS for
n = 2 that uses one FA-protocol and one PDA-protocol.

How Many Ants Does It Take to Find the Food? 275

4.3 Deterministic PDA-Protocol for async-ANTS

Since two PDAs can simulate a Turing machine [18] by using both their stacks
to represent the infinite band of the Turing machine, it is not too surprising that
two PDAs allow for an effective deterministic protocol for async-ANTS. The two
agents a and b employ the following protocol: Both agents walk “hand-in-hand”,
i.e., have a distance of at most 1 at all times, and perform a spiral search with
increasing distances from the origin (cf. Section 3.1). At any time during the
execution, they maintain the invariant that the sum of the number of symbols
on both stacks equals their distance from the origin. They start from the cell
(0, 1) with the stack of agent a containing one symbol. When the two agents
start a spiral search from cell (0, i), agent a has i symbols on is stack. When
a and b walk south-west, agent a removes a symbol from its stack every other
step while agent b pushes one symbol to its stack every other step. When the
stack of agent a is empty, agent b’s stack contains i symbols and the agents
have arrived at the cell (−i, 0) on the west axis. Then they reverse their roles
and move together to the south, east, and again north axis in the same fashion
to finish the search in distance i. Thereafter, they move one cell north, push
one additional symbol to the stack to account for the increased distance and
start a new search in distance i + 1. It is easy to see that this protocol can be
implemented to work in an asynchronous environment and guarantees that the
two agents locate the treasure.

Theorem 6. There exists an effective deterministic PDA-protocol for async-
ANTS for n = 2.

5 One Agent

In this section we show that neither a single randomized FA-agent nor a single
deterministic PDA-agent can find the treasure in finite time while a randomized
PDA-agent is able to do so.

Theorem 7. (Proof deferred to full version) There exists no effective random-
ized FA-protocol for sync-ANTS for n = 1.

5.1 No Deterministic PDA-Protocol

Consider a single agent controlled by a deterministic PDA-protocol. We denote
by S(i) the size of the stack, i.e., the number of symbols on the stack (directly)
after step i and by C(i) = (q, γ) the tuple of the state q ∈ Q and the top-
most stack symbol γ ∈ Γ (directly) after step i. Let C = Q × Γ be the set of
all configurations and observe that |C| is constant. As the behavior of a PDA
is fully determined by its state and the top-most stack symbol, the following
observation is immediate.

Observation 6. Let 0 < i1 < i2 be two different steps with C(i1) = C(i2)
and let i2 be the smallest such index. If S(i) ≥ S(i1) for all i1 ≤ i ≤ i2, then
C(j) = C(j + k · (i2 − i1)) for all i1 ≤ j ≤ i2 and k ∈ N0.

276 Y. Emek et al.

step ii∞ imin i′ i′ +Δ

S(i)

Δ Δ

Fig. 4. The size S(i) of the stack varies for the different steps. All configurations entered
after step i∞ are entered infinitely often. The stack exhibits its minimal size after i∞
at step imin while C(imin) is entered again for the first time at time i′. Then the PDA
will keep repeating its behavior after imin with period Δ = i′ − imin.

Note that the observation also implies that the agent executes the identical
sequence of actions between step i1 and i2.

Observe that, since any protocol must be able to run for an arbitrary time, we
can partition the set C into the configurations Cf containing all configurations
that are entered finitely often and the configurations C∞ that are entered in-
finitely often during the execution of a given protocol. Observe that there exists
step i∞ such that C(i) ∈ C∞ for any step i > i∞. The following lemma essen-
tially states that after a certain step ir > i∞, the PDA will keep on repeating
its behavior with a finite period Δ (see Figure 4 for an illustration).

Lemma 7. There exists an index ir > i∞ and a period Δ ∈ N0 such that for
all steps i with ir ≤ i < ir + Δ we have C(i + k · Δ) = C(i) for all k ∈ N0.

Proof. Let smin ∈ N0 be the minimum stack size after i∞ and let imin be the
smallest index i > i∞ for which S(i) = smin. Let i′ > imin be the smallest step
such that C(i′) = C(imin). By definition of imin there exists no index i > imin
with S(i) < S(imin). Thus, imin and i′ satisfy the preconditions of Observation 6
and the claim follows for ir = imin and Δ = i′ − imin. ��
As the PDA keeps on repeating its behavior after step ir with constant period
Δ, the agent can only explore cells in a band of finite width after ir. As ir is
finite and thus E(ir) is also finite, Observation 4 implies the following theorem.

Theorem 8. There exists no effective deterministic PDA-protocol that for sync-
ANTS for n = 1.

5.2 Randomized PDA-Protocol for async-ANTS

The randomized protocol is an adapted version of the randomized FA-protocol
for three agents from Section 3.2. There, one agent repeatedly performs geometric
searches to a random cell in a geometrically distributed distance. It uses the two
other agents to find its way back to the origin in order to start the next iteration

How Many Ants Does It Take to Find the Food? 277

of the search. A single agent employing a randomized PDA-protocol can do the
same by using the stack to record its distance to the origin and thereby, it can
perform a geometric search and then return to the origin for the next iteration.
More precisely, the agent performs a geometric search as in Section 3.2 but
whenever moving north/east/south/west, it pushes N/E/S/W, respectively, to
the stack. When one geometric search ends, the agent can re-track its steps by
walking north/east/south/west when reading S/W/N/E, respectively, and ends
up at the origin when the stack is empty. Then, it can start the next iteration.
It is easy to see that the analysis from Section 3.2 applies identically.

Theorem 9. There exists an effective randomized PDA-protocol for async-ANTS
for n = 1.

Table 1. The symbol × indicates that the given combination does not allow for an
effective protocol while � states that there does exist an effective protocol. Empty cells
follow immediately from other entries while cells marked with ? represent open prob-
lems. The numbers in the superscript refer to the theorem establishing the respective
result.

Problem
FA PDA

sync async sync async
det rand det rand det rand det rand

One agent ×7 ×7 ×8 �9 ×8 �9

Two agents ×4 ? ×4 ? �5,6 �6

Three agents �2 �3 ? �3

Four agents �1

Conclusion

The variety of results of this paper are summarized in Table 1. While our find-
ings almost completely cover the landscape of problem configurations, Table 1
essentially shows two gaps, which, in our opinion, represent interesting open
problems: Can two agents controlled by a randomized FA solve the synchronous
or asynchronous version of the ANTS problem? Is there an effective FA-protocol
for async-ANTS for three agents when no random bits are available?

As a last remark, we point out that all our algorithms can be easily adapted
to guarantee that upon finding the treasure, the agents can locate the initial
starting cell and bring the treasure back to it with a constant multiplicative
overhead in terms of the runtime.

278 Y. Emek et al.

References

1. Emek, Y., Langner, T., Uitto, J., Wattenhofer, R.: Solving the ANTS Problem with
Asynchronous Finite State Machines. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014, Part II. LNCS, vol. 8573, pp. 471–482.
Springer, Heidelberg (2014)

2. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane Without Communication. In: Proceedings of the 31st ACM Symposium on
Principles of Distributed Computing (PODC), pp. 77–86 (2012)

3. Feinerman, O., Korman, A.: Memory Lower Bounds for Randomized Collaborative
Search and Implications for Biology. In: Aguilera, M.K. (ed.) DISC 2012. LNCS,
vol. 7611, pp. 61–75. Springer, Heidelberg (2012)

4. Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph Exploration by a
Finite Automaton. Theoretical Computer Science 345(2-3), 331–344 (2005)

5. Lenzen, C., Lynch, N., Newport, C., Radeva, T.: Trade-offs between Selection
Complexity and Performance when Searching the Plane without Communication.
In: Proceedings of the 33rd Symposium on Principles of Distributed Computing,
PODC (to appear, 2014)

6. Albers, S., Henzinger, M.: Exploring Unknown Environments. SIAM Journal on
Computing 29, 1164–1188 (2000)

7. Deng, X., Papadimitriou, C.: Exploring an Unknown Graph. Journal of Graph
Theory 32, 265–297 (1999)

8. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree Exploration with Little Mem-
ory. Journal of Algorithms 51, 38–63 (2004)

9. Panaite, P., Pelc, A.: Exploring Unknown Undirected Graphs. In: Proceedings of
the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 316–322
(1998)

10. Reingold, O.: Undirected Connectivity in Log-Space. Journal of the ACM
(JACM) 55, 17:1–17:24 (2008)

11. Aleliunas, R., Karp, R.M., Lipton, R.J., Lovasz, L., Rackoff, C.: Random Walks,
Universal Traversal Sequences, and the Complexity of Maze Problems. In: Proceed-
ings of the 20th Annual Symposium on Foundations of Computer Science (SFCS),
pp. 218–223 (1979)

12. Aigner, M., Fromme, M.: A Game of Cops and Robbers. Discrete Applied Mathe-
matics 8, 1–12 (1984)

13. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. In-
formation and Computation 106, 234–252 (1993)

14. López-Ortiz, A., Sweet, G.: Parallel Searching on a Lattice. In: Proceedings of
the 13th Canadian Conference on Computational Geometry (CCCG), pp. 125–128
(2001)

15. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
Networks of Passively Mobile Finite-State Sensors. Distributed Computing, 235–
253 (2006)

16. Aspnes, J., Ruppert, E.: An Introduction to Population Protocols. In: Garbinato,
B., Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile
Applications, pp. 97–120. Springer (2009)

17. Emek, Y., Wattenhofer, R.: Stone Age Distributed Computing. In: Proceedings
of the 32nd ACM Symposium on Principles of Distributed Computing (PODC)
(2013)

18. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

What Do We Need to Know to Elect
in Networks with Unknown Participants?

Jérémie Chalopin, Emmanuel Godard and Antoine Naudin�

LIF, Université Aix-Marseille and CNRS, France

Abstract. A network with unknown participants is a communication
network where the processes have very partial knowledge of the system.
Nodes do not know the full set of participating nodes and some nodes do
not even know the full set of nodes they can communicate directly with.
It is a “contact list” like network where the initial communication is pos-
sibly asymmetric and one can communicate with an unknown neighbour
only if one has been first contacted by this neighbour. This model is quite
natural and of important theoretical interest. It has also proved useful
for the study of bootstrapping mobile ad hoc networks. In this paper,
we investigate the classical Leader Election problem in general networks
with unknown participants.

We give the first necessary and sufficient condition on global knowl-
edge that nodes should be provided in order to solve Election problem.
Since Election problem is a useful benchmark in distributed computabil-
ity investigations, this result could lead to a complete characterisation
of what is solvable in networks with unknown participants.

Keywords: Distributed Algorithm, Message Passing, Leader Election,
Distributed Computability, Unknown Participants, Structural Knowledge.

1 Introduction

A Natural Model for Distributed Computations. Distributed systems are
pervasive and recently more and more interest has been in studying systems
that range from dynamic to highly dynamic. Surprisingly there have been few
studies of some models that are static but where the local connectivity evolves
in a light way during the computation. The following “contact list model” is a
fairly natural model related to the communication namespace necessitated by
distributed computing.

Consider a set of participants that communicate with phones. Initially, ev-
erybody knows a subset of the phone numbers of other people via its personal
contact list. It could even be not symmetric. Namely Alice could have the phone
number of Bob, whereas Bob would not know the one of Alice. In this situation,
Bob cannot call Alice, he does not even know that Alice is participating. Only
when Alice has first contacted Bob (and the phone number of Alice is registered
� Work partially supported by Macaron project (ANR JCJC 13-JS02-0002-01).

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 279–294, 2014.
© Springer International Publishing Switzerland 2014

280 J. Chalopin, E. Godard, and A. Naudin

by the phone of Bob), then Bob can possibly call Alice. In this setting, the con-
tact list (that is the set of neighbours) of Bob increases during the computation.
This is a fairly natural model that exhibit general and interesting properties :
connectivity is directed, adjacency is initially limited but increases over time,
this increase is not automatic and depends of the communications that take
place, everybody calling at its own pace. That is the system is asynchronous.

This model is natural and realistic, it is a slight variation of the model in-
troduced in [CSS04] to investigate the self-organized bootstrapping of mobile ad
hoc networks (MANETs). Conjointly with the fact that this model has not been
very much studied, such systems exhibit new interesting properties related to
the theory of distributed computability. We describe them more precisely later.
The Formal Model. The underlying communication graph is an arbitrary
undirected graph denoted by G. Nodes are endowed with identities, they com-
municate by messages. Their neighbours are addressed with port numbers but
this port numbering is not explicitly available to the nodes. Initially, a node can
send messages only to a (possibly strict) subset of its actual neighbours in G: its
contact list of neighbours, this defines the initial directed graph G0. This con-
tact list of neighbours will be extended whenever a message is received from an
”unknown” in-neighbour. Therefore, at the end of the computation, the possible
communication graph corresponds to G, as G is the undirected version of the
initial digraph G0. Note that the network is reliable but asynchronous: messages
are always delivered but they can have unpredictable delays. In particular, a
neighbour in G can be unpredictably long to appear in the contact list.
Solving the Leader Election Problem. We aim at a general distributed
computability study of this model. We therefore introduce partial global knowl-
edge in order to overcome the single sink condition of [CSS04] and we look for
necessary and sufficient knowledge to solve a given problem. The leader elec-
tion problem is a fundamental problem in distributed programming. It has also
proved to be a good benchmark for distributed computability characterisation
[YK89,YK96b,BCG+96,BV99,GM02,CGM08].
Our Results. In this paper, we give a simple characterisation of the partial
knowledge that enables to solve Election problem in networks with unknown par-
ticipants. From our results, it appears that in the unknown participants model,
the partial knowledge that a node can have initially about the structure of the
underlying network has a dramatic impact.

As a consequence, we prove that knowing the size of the network enables
to solve Election problem on every network whereas knowing only an upper
bound on the size is not enough. We also prove that knowing the number of sink
components in the initial graph is also a sufficient condition to solve it.
Related Work. The network with unknown participants model presented here
is a slight variation of a model that has been formally introduced and studied in
[CSS04]. In [CSS04], processes are endowed with a participant detector returning
a set of initial out-neighbours. Initial values from such a participant detector
determines the initial communication network G0. Moreover, the communication
networks end up being a complete graph by allowing direct communication as

What Do We Need to Know to Elect in Networks 281

soon as the network name of a node is learnt from a received message. In the
model of this paper, the communication graph G becomes at most the undirected
version of the initial graph G0, but, computability is equivalent. Indeed, it is
always possible to add a ”routing layer” to build an end-to-end communication
overlay in order to address a process which is not a neighbour. The meaning of
“knowledge” is also different. In [CSS04], it is meant to correspond to the initial
contact lists, that is G0 with our notations. In this paper “knowledge” denotes
the partial information that a node can have about the global structure.

In [CSS04], Cavin, Sasson and Schiper have investigated the Consensus Prob-
lem and showed a necessary and sufficient condition for computability of Con-
sensus. They do not assume any partial knowledge about the initial graph and
they show that the existence of at most one sink in the strongly connected com-
ponents of the initial graph is both necessary and sufficient in order to solve
Consensus. From a computability point of view, in this model, to the best of our
knowledge, only the solvability of the Consensus Problem has been considered so
far [CSS04]. Fault-tolerant versions of the Consensus problem were considered :
in [GT07], the precise link in the unknown participant model between synchrony
and fault-tolerance is given; in [ABFG08], byzantine faults are investigated; in
[GSAS12], an eventually strong failure detector is presented.

So only [CSS04] seems to consider reliable networks with unknown partic-
ipants. But going further in history, such studies for reliable communication
networks, but with a partial knowledge, were actually introduced by Angluin
[Ang80] in her seminal work for anonymous networks. The precise impact of
some specific knowledge on distributed computability in anonymous networks
has been thoroughly investigated by Yamashita and Kameda [YK96b,YK96a].
Boldi and Vigna have presented general computability results in [BV99].

We show here that, for Election problem, even without failure and with iden-
tities, there are still impossibility results. Our principal lemma used in proof for
impossibility is a ”Angluin’s like” lemma called Isolation Lemma. It is extended
to get a complete characterisation of which partial knowledge are sufficient and
necessary to solve Election problem. It seems very likely that it is possible to
leverage this lemma to get full computability results.

The problem of describing which arbitrary knowledge enables to solve the
Election Problem was introduced in [GM02], where it is solved for a specific
model. It has been solved for the standard message passing model in [CGM12].
These papers use quasi-simulation techniques introduced in [MMW97] but con-
trary to the model investigated in [YK96b,BV99,CGM12], it should be noted
that unknown participants networks are communication networks where the
difficulty arises from asynchrony and not from synchronous executions. It is
therefore a qualitatively different model where computability mostly relates to
termination detection and not to symmetry breaking.

The paper is organized as follows. First we present standard graph notation
that we will use to describe formally the unknown participant model. We first
present an algorithm that enables every node to compute the set of vertices one
can reach from this node in the initial digraph. We then present the general

282 J. Chalopin, E. Godard, and A. Naudin

Isolation Lemma and derive our necessary condition on knowledge. Building on
our first algorithm, we give an Election algorithm that proves that the necessary
condition is actually sufficient. We conclude with some applications of our main
theorem.

2 Graphs Properties and Reachable Vertices

Definitions are standard [RM00]. Let G be a directed graph (resp. undirected),
where V (G) is its set of vertices, and E(G) is its set of arcs denoted (u, v)
(resp. edges denoted {u, v}). A directed graph is called a digraph. We identify
undirected graphs with symmetric digraphs and use graph and digraph inter-
changeably. Let deg(v), the degree of the vertex v. We denote by pred(v) =
{u|(u, v) ∈ E(G)} (resp. next(v) = {w|(v, w) ∈ E(G)}) the set of predecessors
(resp. successors) of v. A directed path c (resp. an undirected path c) linking u
and v is a sequence of disjoint vertices {s1, ...sk} ⊆ V (G) where for all i < k,
(si, si+1) ∈ E(G) (resp. (si, si+1) ∈ E(G) or (si+1, si) ∈ E(G)), s1 = u and
sk = v. The length of a path c, denoted by |c|, is equal to the numbers of arcs
composing it and the directed distance d (resp. undirected distance d) between
vertices is the length of the smallest directed (resp. undirected) path in G be-
tween u and v. A strongly connected (resp. connected) digraph is a digraph where
the directed (resp. undirected) distance between any two vertices is always de-
fined. We will consider only connected digraphs. Any digraph can be decomposed
in strongly connected subgraphs (called components). A component that has no
successor is called a sink. A vertex v is reachable from u in G if there is a directed
path from u to v. We denote by ReachG(v), the set of vertices reachable from v
in G.
Remark 2.1. The following propositions are equivalent:

(i) G is strongly connected.
(ii) ∀v, v′ ∈ V, ReachG(v) = ReachG(v′)

(iii) ∀v, v′ ∈ V, v′ ∈ ReachG(v)
(iv) ∀v ∈ V, ReachG(v) = V

A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
A labelled graph G = (G, λ) is a graph G endowed with a labelling λ : V → Λ
on its vertices or edges where Λ, is the set of labels. Note that if H = (H, λH)
is a subgraph of G = (G, λG), then each node v ∈ V (H) has the same label in
H and in G.

A homomorphism ϕ from H to G is a function ϕ : V (H) → V (G) such that
for every (u, v) ∈ E(H), there is (ϕ(u), ϕ(v)) ∈ E(G). An isomorphism ϕ is a
bijective homomorphism such that ϕ−1 is a homomorphism. A homomorphism
(resp. isomorphism) ϕ from G = (G, λG) to H = (H, λH) is a homomorphism
(resp. isomorphism) from G to H such that for each v ∈ V (G), v and ϕ(v) have
the same label, i.e., λG(v) = λH(ϕ(v)).
Definition 2.2. A subgraph H of G is a subgraph closed by successors of G,
denoted by H �↓ G, if for every (u, v) ∈ E(G), if u ∈ V (H) then v ∈ V (H)
and (u, v) ∈ E(H).

What Do We Need to Know to Elect in Networks 283

u v w u v w

(a) v sends a message. w receives it. After
the reception, w can talk to v

u v w u v w

(b) u sends a message. v receives it. After
the reception, v can talk to both u and its
initial neighbour w

Fig. 1. Different executions for the same initial graph

This relation �↓ is extended for two arbitrary graphs H′ and G where H′

is isomorphic to a graph H and H �↓ G. Note that if H �↓ G then for every
v ∈ V (H), ReachH(v) = ReachG(v).

3 Model
The message passing model. A network is defined by a (possibly symmetric)
digraph G, where V (G) is the set of processes, and E(G) is the set of communi-
cation channels. Processes communicate by sending and receiving messages via
some ports. The communication channels linking ports between processes are
asynchronous but reliable and FIFO.
Processes identities. Each process v is endowed with a unique label, idG(v),
the identity of the process. We denote it by idv if the context permits it. As there
are several such labellings for a same graph (permutation, renaming), we consider
all of them using an injective function idG : V → N giving a unique identity to
every process. We denote by (G, idG) such a graph and let Gid be the set of all
connected graphs and their assignations of possible identities. For every family
of graphs F , we denote the family Fid = {(G, idG)|G ∈ F ∧ (G, idG) ∈ Gid}.
Port labelling. Each process v can address its different neighbours using a
bijective port numbering function δv : V → N giving a unique number to every
port of v. When v receives a message from a neighbour w, it receives the message
via the port δv(w). Since a process does not initially know all its neighbours,
processes have access to a local variable denoted by contacts containing the
port numbers corresponding to their known neighbours. We explain its usage
later. In order to ease notation, we consider a port labelling such that for all
neighbours u, v in G, the port δu(v) corresponding to the channel linking u to
v is denoted by idG(v), the identity of v. Therefore, contacts contains the
identities of known neighbours.
Graph labelling. The state of each process is represented by a label λ(v) as-
sociated to the corresponding vertex v ∈ V (G). Note that λ(v) initially contains
the identity of v and its known neighbours list contactsv cited above. Let
G = (G, λ), such a labelled graph. For all arcs (u, v) ∈ E(G), let B(u, v) be the
queue containing the messages in transit from u to v. Initially, B(u, v) is empty
for all arcs (u, v).

284 J. Chalopin, E. Godard, and A. Naudin

Distributed algorithm. We use the definition given by Tel in [Tel00] for dis-
tributed algorithms and executions. A distributed algorithm is a set of state
transition rules. Such transition rules are function of the current local state of
the system. In our setting, three kinds of transitions are possible for a process v:
it can modify its state, it can receive a message from a neighbour or it can send
a message to all its known neighbours. See Figure 1.

Let (λv , in, m) � (λ′
v, send, m′), denote a recursive relation on state transition

of a process v (the current state is function of the previous), with λv, the state
of v before transition and λ′

v, its state after, m and m′ are messages, in is the
incoming port number (or ⊥) and send is either ⊥ or all. When v modify its
state, in = send =⊥ and m = m′ =⊥; the state of v becomes λ′

v after this
transition. When v receives a message m sent by u, in = idu, send =⊥, m
=⊥
and m′ =⊥; the message m is in B(u, v) and v receives m via the port idu. If
idu is not known, v updates contactsv, the list of the neighbours it knows.
The state of v becomes λ′

v after this transition. When v sends a message m′, it
sends the same message to all its known neighbours using a primitive SendAll.
In this case, in =⊥, send = all, m =⊥ and m′
=⊥; the message m′ is added to
all queues B(v, w) such that idw ∈ contactsv, and the state of v becomes λ′

v

after this transition.
A distributed algorithm A in the message passing model is a set of algo-

rithms (Av)v∈V (G) distributed over the nodes of the network. A transition of the
algorithm is a transition of a process v according to its local algorithm Av.
Distributed algorithm execution representation. An execution ρ of a dis-
tributed algorithm A is a sequence of changes on vertices state. An execution is
represented by a sequence of couples [(λ0, B0), (λ1, B1), ..., (λn, Bn)]ρ where, at
step i, λi is the state of the system and Bi, the set of messages in transit. Let λi

v,
the state of vertex v at step i. The initial state λ0

v is the state of process v before
the execution. A transition from step i to step i+1 is performed by one and only
one process which executes a transition cited above in its local algorithm. This
transition leads to the next state of v: λi+1

v and Bi+1 and all other processes
keep the same state as in λi. Note that any asynchronous execution (including
the synchronous execution) can be represented this way.
Problem Specification. A specification of a problem has to describe the ex-
pected relations on the initial and final labelling of the graph where the problem
has to be solved. As processes have to take a decision or compute some val-
ues in order to address a problem, we use a dedicated label. Let outG(v) be
the label indicating the decision computed by a process v in G, denoted by
out(v) if the context permits. Note that a final labelling of a graph, denoted
by Gout = (G, λout) contains, for every process v, its final decision out(v) (⊥ if
the process has not decided any value). We define a specification as a relabelling
relation S between initial labelled graphs and final labelled graphs.
Execution and Algorithm Properties. An execution stabilises if there is a
step i0 where no process can progress in its local algorithm and no message is
in transit. In an execution, a process v decides if it eventually writes a value in
out and if it does it only once during the execution. An execution terminates if

What Do We Need to Know to Elect in Networks 285

it stabilises and if every process decides. An algorithm terminates on (G, λin)
with if every execution of the algorithm on (G, λin) terminates. In an execution
ρ that terminates, each process v has an output value outv
=⊥; in this case, we
say that outv is the final label of v in ρ.

Let S be the specification of a problem. An execution ρ of A in a graph
(G, λin) ∈ Gin satisfies the Correction Property if ρ terminates and (G, λout),
the final labelling computed by ρ satisfies (G, λin)S(G, λout). An algorithm A is
valid for a specification S in a graph (G, λin) ∈ Gin if every execution ρ satisfies
the Correction Property. We will say that A solves S on (G, λin) in such a case.
Knowledge and Family. As we will see, some problems need additional global
information or knowledge to be solved. This information about the underlying
network (e.g. a bound on the size of the system) is inserted in the initial label.
Consider a function κ that encodes an arbitrary knowledge. An algorithm A

solves S with knowledge κ, if for all G, A solves S on (G, κ(G)). Equivalently
we have that, for any α ∈ κ−1(Gid), there exists an algorithm Aα that solves S
on the family F = κ−1(α).

Solving a problem with partial knowledge is simply, for any possible value α of
knowledge, solving the problem within the family of networks whose knowledge
value is α. Considering arbitrary families of labelled graphs enables to represent
any initial knowledge: e.g. if the processes initially know the size n of the network,
then in the corresponding family F (n) , for each G ∈ F (n) and each v ∈ V (G),
n = |V (G)| is a component of the initial label of v.
Universal Algorithm. We say that an algorithm solving a specification on
all graphs of Gid is a universal algorithm. An algorithm is F−universal if the
algorithm solves S for all graphs of the family F . Abusively, We will say that an
algorithm A is F − universal if A is Fid − universal.

An algorithm is not universal when it is not correct for all graphs but it can
be F −universal. So, for every problem without a universal algorithm, we look
for the necessary and sufficient condition on the knowledge, i.e. on the family
F , such that the problem can be solved with a F − universal algorithm.

4 Cartography of Reachable Vertices

Reach or ”Cartography of Reachable Vertices Problem” is the problem con-
sisting, for every vertex v in the digraph G0, to compute a graph isomorphic
to subgraph induced by the network initially accessible from v. We denote by
G|Reach(v) such a subgraph of G0. This problem is investigated because its so-
lution will be used as the basis of our main Election Algorithm. Interestingly, it
also admits a universal algorithm (Algorithm 1).
Description of the algorithm. We first introduce the variables used by the al-
gorithm. Each process v initially knows idv, its identity and Succv = {idv′ | v′ ∈
next(v)}, the set of the ids of its neighbours in the network it initially knows.
These variables are not modified during the execution of the algorithm. Our al-
gorithm is a flooding algorithm where each node v eventually collects the value
of (idu, Succu) for every process u.

286 J. Chalopin, E. Godard, and A. Naudin

Algorithm 1. Reach Algorithm.
Output: out, Graph induced by Mv

1 I:(Initial Procedure) begin
2 Send <id, M> to all identities of vertices into contacts;

3 R:(Receiving a message <idu, Mu> from u:) begin
4 if idu /∈ contacts or Mu \ M �= ∅ then
5 M ← M ∪ Mu;
6 contacts ← contacts ∪ {idu} if idu /∈ contacts;
7 Send <id, M> to all identities of vertices into contacts;
8 if V iew(M) = Covered(M) ∧ out =⊥ then
9 out ← C(M)|Reach(idv);

Each process v has also a variable contactsv containing the list of the ids
of its neighbours it knows, either because it initially knows them, or because it
receives a message from them. Initially contactsv = Succv and contactsv

is updated each time v receives a message from a neighbour u such that idu /∈
contactsv. Finally, each process v has a mailbox Mv containing pairs of the
form (id, Succ). Intuitively, the mailbox contains all the information v has about
the network. Initially, Mv = {(idv, Succv)}. When a vertex v sends a message to
its neighbours, it always sends a message of the form < idv, Mv >, i.e., it sends
all the information it has on the network.

Our algorithm is a flooding algorithm described by two rules. Initially, each
process applies the rule I to send its initial mailbox (containing only (idv, Succv))
to all its neighbours. The rule R is executed whenever a process receives a mes-
sage < idu, Mu > from a neighbour u. If the received mailbox provides new
entries, then the process learns new information about the network and it up-
dates its mailbox. Moreover, if idu is not in contacts, then idu is added to
contacts. Then, if the process has learned new information (i.e., if its mail-
box or contacts has changed), it sends a copy of its new mailbox to all its
neighbours.
Computing a map from a mailbox. In order to explain the rule allowing a
process v to writes a value in outv, we need to first explain how to use the content
of a mailbox to construct a digraph similar to the network communication graph.
To do so, we define three functions: V iew, Covered and C as follows.
– Covered(M) = {idv|(idv, Succv) ∈ M}
– V iew(M) = {idv|∃(idu, Succu) ∈ M ∧ idv ∈ Succu} ∪ Covered(M)
– C(M) = (VC , EC) is a digraph such that VC = V iew(M) and

EC = {(id, id′) | (id, Succ) ∈ M and id′ ∈ Succ}
With those functions, we can prove that if Mv contains the list of successors

of every node in the network, the reconstructed graph is isomorphic to the initial
communication graph. By construction, the following lemma is proved.
Lemma 4.1. C ({(idv, Succv) | v ∈ V (G)}) � G

What Do We Need to Know to Elect in Networks 287

During the execution of the algorithm, as long as Covered(Mv)
= V iew(Mv),
v can detect that it has not yet received the initial information from all the
processes. When Covered(Mv) = V iew(Mv), v can reconstruct a graph from Mv

and it is possible that C(Mv) is isomorphic to G but it is not necessary. However,
we will show that in this case, G|Reach(v) �↓ C(Mv), and consequently, v can
compute G|Reach(v) by performing a depth-first traversal of C(Mv) from idv and v
can decide this value. Note that a mailbox can satisfy the constraint V iew(M) =
Covered(M) several times; this is due to the asynchrony of communications. We
will elaborate on this interesting property later.
Properties of the algorithm. In order to prove the termination property and
the correction of the algorithm, we start by some lemmas on the properties about
the content of the mailbox. First, since processes have unique identities, we get
the following lemma.
Lemma 4.2 (bounded content). For every step i and process v, C(M i

v) is a
subgraph of C ({(idv, Succv) | v ∈ V (G)}) .

The next lemma shows that there exists an increasing order on the mailbox
content during an execution.
Lemma 4.3. For every execution ρ of an algorithm, for every process v that
executes a transition at step i, M i

v ⊆ M i+1
v , contactsi

v ⊆ contactsi+1
v and v

sends a message if and only if M i
v ⊂ M i+1

v or contactsi
v ⊂ contactsi

v.

Proof. Processes update their local state only when a message is received. Let
m =< idu, Mu >, the message received by v from u at step i. If idu /∈ contactsi

v,
then idu is added to contactsi+1

v (line 6). So, contactsi
v ⊂ contactsi+1

v and
v sends messages to its neighbours. If Mu\M i

v
= ∅, then an update of M i
v is oper-

ated by v, and M i
v ⊂ M i+1

v . After this update (procedure R at line 5), v will send
messages to its neighbours. Otherwise, we get Mu ⊆ M i

v and idu ∈ contactsi
v.

Thus, v performs no action during this step.
By Lemma 4.2, the mailbox’s content can only take a finite number of values,

and by Lemma 4.3, it is increasing during any execution. Since, by Lemma 4.3,
messages are only sent when the content of a mailbox is modified, there is a step
i where the algorithm stabilises. We show in the next lemma that eventually
each process gathers all available information.
Lemma 4.4 (Reception). For all v, v′, there is a step i where (idv′ , Succv′) ∈
M i

v.

Proof. We prove this lemma by an induction hypothesis on d(v, v′). First, assume
that d(v, v′) = 1. Consider a step h ≤ i such that Mh

v = M i
v and Mh−1

v
= Mh
v .

At step h, v sends its mailbox Mh
v to its neighbourhood. We distinguish two

cases: either v knows v′ at step h or not.
Case 1: idv′ ∈ contactsh(idv). Since idv′ ∈ contactsh(idv), v sends a mes-
sage < idv, Mh

v > to v′ at step h. Since the channel are reliables, there exists a
step j > h where v′ receives < idv, Mh

v > and thus, M i
v = Mh

v ⊆ M j
v′ .

Case 2: idv′ /∈ contactsh(idv). Since idv′ /∈ contactsi(idv) and d(v, v′), idv ∈
contacts0(idv′). Since v′ applies eventually the rule I of the algorithm, and

288 J. Chalopin, E. Godard, and A. Naudin

since the channels are reliable, there is a step j > 0 where v receives a message
from v′. Since idv′ /∈ contactsh

v , it implies that j > h. Thus, M i
v = Mh

v ⊆ M j
v .

At step j, when v receives the message from v′, the algorithm ensures that v′ is
added to contactsv and that a message < idv, M j

v > is sent to all the known
neighbours of v including v’. By the previous case, there exists a step j′ such
that M j

v ⊆ M j′
v′ and since M i

v ⊆ M j
v , we are done.

Suppose now that d(v, v′) > 1. Let w be a neighbour of v such that d(w, v′) =
d(v, v′) − 1. From the case where d(v, v′) = 1, we know that there exists a step
j such that M i

v ⊆ M j
w. By induction hypothesis, there exists a step j′ such that

M j
w ⊆ M j′

v′ . So M i
v ⊆ M j′

v′ .
From Lemmas 4.3 and 4.4, there exists a step i such that for all v, v′,

(idv′ , Succv′) ∈ M i
v. Thus, the condition on line 8 is eventually satisfied for every

process, proving that every execution of the algorithm terminates. It remains to
prove that when v decides a value outv isomorphic to G|Reach(v).
Lemma 4.5 (Correction). For every process v, if V iew(Mv) = Covered(Mv)
then for every w ∈ ReachG(v), idw ∈ Covered(Mv). Consequently, C(Mv) �↓
G.

Proof. By contradiction, let w ∈ ReachG(v) be the closest process to v in
ReachG(v) such that idw /∈ Covered(Mv). Let w′ ∈ ReachG(v) be a prede-
cessor of w belonging to a shortest path from v to w. By the choice of w, idw′ ∈
Covered(Mv). Thus, idw ∈ Succw′, we get idw ∈ Covered(Mv) = V iew(Mv), a
contradiction.

Now, from Lemmas 4.4 and 4.5 which prove that every process v decides
G|Reach(v), we can give a first theorem on the computability of the Reach
Problem:

Theorem 1. There is an universal algorithm for Reach.

5 Isolation Lemma

In this section, we present an isolation lemma to prove impossibility results
caused by isolated executions in a subset of the network. As it has proved for
anonymous network to be the basis for all impossibility proofs [Ang80,Cha06],
the isolation lemma is presented like a lifting lemma. Initially, a process v knows
only its outgoing neighbourhood. Any other neighbour u of v cannot receive
a message from v before v received a message from u. If H �↓ G and if all
messages sent from processes in V (G)\V (H) to processes in V (H) are arbitrary
delayed (the communication is asynchronous), the processes of H are isolated
from the rest of the network and execute the algorithm as if they were only in
H , without discovering their neighbours outside H before deciding. If such an
execution terminates, isolated processes decide a final value for an execution in
H and not in G.

We introduce a new notation in order to represent an extended labelled graph
with messages in transit. Let H = (H, λH , BH) where (H, λH) is a labelled

What Do We Need to Know to Elect in Networks 289

graph and BH , its queues of messages. The relation �↓ is extended between
such graphs as follow, (H, λH , BH) �↓ (G, λG, BG) if (H, λH) �↓ (G, λG)
and for every (u, v) ∈ E(H), BH(u, v) = BG(u, v). First, we remark that by
isomorphism, a labelling of a graph G induces a labelling for every subgraph H
of G. Such initial labellings are independent of the algorithm used and satisfies
the relation �↓ between H and G.
Remark 5.1 (Initialisation). For every digraphs G and H such that H �↓
G, for every initial labelling λ0

G of G, there is a labelling λ0
H of H, such that

(H, λ0
H , ∅) �↓ (G, λ0

G, ∅).

Next, we prove that any step of an execution on a graph H can be executed
on every graph G satisfying H �↓ G.
Lemma 5.2 (One step of execution). For all H = (H, λH , BH) and G =
(G, λG, BG), if H �↓ G then every transition (λH , in, m) � (λ′

H , send, m′)
executed on H can be executed on G. The graphs H′ = (H ′, λ′

H , B′
H) and G′ =

(G′, λ′
G, B′

G) obtained after the transition satisfy H′ �↓ G′.

Proof. We prove this lemma by constructing a similar execution in H and G
which preserves the relation �↓. A step of the execution corresponds to a local
transition of a process v. If a process v sends a message m′ to its neighbours
in H , since for all v ∈ V (H), contactsH(v) = contactsG(v), v can send
the same message to the same nodes in G, and consequently, for all (v, v′) ∈
E(H), BG(v, v′) = BH(v, v′). Since v ends up in the same state in H and in G,
H′ �↓ G′. Suppose now that a message m ∈ BH(v′, v) is received from a process
v′ ∈ V (H) via a port in in H . Since (v′, v) ∈ E(H); BG(v′, v) = BH(v′, v) and
thus v can also receive the message m from v′ in G. Since m is removed from
both queues, BG(v′, v) = BH(v′, v). Note that v ends up in the same state in H
and in G. In particular, if v′ was not known by v, then v can now communicate
with v′ in H and in G. Consequently, (H ′, λ′

H , B′
H) �↓ (G′, λ′

G, B′
G).

For any graphs G and H such that H �↓ G, for any algorithm A and any
execution ρH on H, we can apply the previous lemma iteratively to construct
an execution ρG on G such that only the vertices in V (H) are active in ρG and
they behave exactly like in ρH . In such a case, we say that ρH is �↓ −lifted on
G. When considering executions that terminate, we get the following lemma.
Lemma 5.3 (Isolation Lemma). For all G,H such that H �↓ G, for every
execution ρH of any algorithm A on H which terminates, there is an execution
ρG of A on G such that ∀v ∈ V (H), outρH (v) = outρG (v).

6 Election Algorithm

In this section, we study the classical election problem, denoted by Elec: one and
only one process has to decide leader and all others should decide follower.

We prove that contrary to the classical model, even if nodes have identities,
it is not possible to solve Elec with a universal algorithm. Therefore, we give a
necessary and sufficient condition that determines which additional knowledge

290 J. Chalopin, E. Godard, and A. Naudin

enables to solve Elec. The impossibility proof uses a standard simulation tech-
nique, based on the Isolation Lemma. To show that it is a sufficient condition,
we show how processes can avoid �↓-lifted executions by delaying their decision
when they are provided some additional knowledge satisfying this condition.
A Necessary and Sufficient Condition. If we have isolated executions, we
might get more than one processes elected. So the condition on knowledge below
enables to somehow forbid disjoint isolated executions.
Definition 6.1 (CElec). A family of graphs F satisfies CElec if for every graphs
G,H1,H2 ∈ F such that H1,H2 �↓ G, we have V (H1) ∩ V (H2)
= ∅.

We first prove that CElec is necessary,

Lemma 6.2. If there is an F-universal algorithm solving Elec then F satisfies
CElec.

Proof. Let F a family of labelled graphs that does not satisfy CElec and A, a
F -universal algorithm solving Elec. There are three graphs H1, H2 and G in
F such that H1,H2 �↓ G and V (H1) ∩ V (H2) = ∅. We build an execution ρG

on G as follows: the Isolation Lemma can be applied for H1 and G, thus ρG can
begin by a �↓ −lifted execution on H1. Since A is F -universal and H1 ∈ F ,
there is one elected process v1. As H1 and H2 are vertex-disjoint and Isolation
Lemma can also be applied for H2 and G, we can extend ρG by taking a second
�↓ −lifted execution on H2. Since A is F -universal and H2 ∈ F , there is one
elected process v2 with v2
= v1 because V (H1) ∩ V (H2) = ∅. At this step, the
labelling of G is not valid for Elec because there are two elected vertices and
their decisions are final for the execution.

To prove that CElec is a sufficient condition, we propose a F -universal algo-
rithm for any family F satisfying CElec. The algorithm presented below is an
extension of Algorithm 1.
Description of the algorithm. In the algorithm, a process v does not only
broadcast Succv, but it also broadcasts the tuple (idv, Mv, statusv) where
statusv ∈ {leader, follower, ⊥} is the content of outv. In such a way, a
process u can detect whether v has been elected or not and it can learn what
v knows about the other processes. To do so, each process v has now a ”su-
per” mailbox, denoted Vv, containing tuples of the form (id, M, status). When
a process v sends a message to its neighbours, it always sends a message of the
form < idv,Vv > (i.e., it sends its super mailbox instead of its mailbox). This
structure gives, to processes, a view of the local states of the known processes.
In order to avoid some �↓ −lifted executions, we have to delay the decisions of
the processes for a sufficiently long period using an additional knowledge. Before
a process writes in out, it checks that the reconstructed graph is in F ; to do so,
we assume that each process knows the characteristic function χF of the family
F (the additional knowledge). When called on C(M), this function returns true
if C(M) ∈ F and false otherwise. To prevent two processes to be elected at the
same time, we add an additional condition related to the supermailbox of all
known processes at line 9. This condition ensures that two processes that want

What Do We Need to Know to Elect in Networks 291

Algorithm 2. A F -universal Election Algorithm
Input: χF , Characteristic function of F

1 I:(Initial Procedure) begin
2 SendAll <id,V> ;
3 R:(Receiving a message <idu,Vu> from u) begin
4 if idu /∈ contacts or Vu \ V �= ∅ then
5 M ← M ∪ ⋃

{Mw|∃(idw ,Mw,statusw)∈Vu} Mw;
6 V ← V ∪ Vu ∪ {(id, M, out)};
7 contacts ← contacts ∪ {idu} if idu /∈ contacts ;
8 if out =⊥ ∧χF (C(M)) ∧ V iew(M) = Covered(M) ∧ ∀idw ∈

V iew(M), ∃(idw, M, statusw) ∈ V then
9 if id = min{id′ | id′ ∈ V iew(M)} ∧ �(idw, Mw, leader) ∈ V then

10 out ← leader;
11 else
12 out ← follower;
13 V ← V ∪ {(id, M, out)};
14 if V or contacts have changed then
15 SendAll <id,V> ;

to decide leader have to actually know the state of each other. Changes be-
tween the previous and the next algorithm are the content of the messages (line
2), the manipulation of the new structure (lines 5 and 6) and the condition of
termination (lines 8 and 9) as seen above.
Properties of the algorithm. Consider an execution ρG of the algorithm on
G. Note that as in the previous algorithm Mv can only take a finite number of
values and can only increase during the execution of the algorithm. Consequently,
as before, there exists a step i where all processes have the same mailbox M =
{(idv, Succv) | v ∈ V (G)}.

The following lemma is immediate and ensures that for each process v, Vv

can only take a finite number of values.
Lemma 6.3. For every process v, for every step i, for every (idw, M, status) ∈
Vi

v, there is a step i′ ≤ i such that M i′
w = M and outi′

w = status.
Similarly as for mailboxes in the previous algorithm, we can show that for each

step i, Vi
v ⊆ Vi+1

v and v sends some messages at step i if and only if Vi
v � Vi+1

v .
Since for every v, the content of Vv is increasing and can only take a finite
number of values, the execution stabilises. An eventually, each process knows
the state of all other processes. The proof is similar to the proof of Lemma 4.4.

Lemma 6.4. For every processes v, v′, for every step i, there is a step i′ > i
such that (idv, M i

v, outi
v) ∈ Vi′

v′ .
Consequently, there exists a step where all processes have the same super-

mailbox. Note that in such a step, all processes have the same mailbox M =
{(idv, Succv) | v ∈ V (G)}, and for all v, w ∈ V (G), there exists (idv, M, status) ∈

292 J. Chalopin, E. Godard, and A. Naudin

Vw. Note that in this case, the condition on line 8 is satisfied and thus, eventually,
each process decides a value. Therefore, the execution terminates. It remains to
show that in each execution, there is always one and only one elected process.

Lemma 6.5. For every execution, there is at least one elected process.

Proof. Let idmin be the minimum identity present in the network and let v
be the unique process such that idv = idmin. Since every process eventually
decides, there is a step i where the state of v satisfies the condition on line 8.
We consider two cases. Either there exists some (idw, Mv, leader) ∈ Vi

v and
by Lemma 6.3, w has been elected and the lemma is proved. Or, there is no
(idw, Mv, leader) ∈ Vi

v and then v writes leader in out(v). In both cases,
there is always at least one elected process.

Lemma 6.6. For every execution ρ, there is at most one elected process.

Proof. Suppose that there are two processes u and v elected at step i and j in
an execution ρ. Wlog, we assume that i ≤ j. Let Hu = C(M i

u) and Hv = C(M j
v).

Since u and v are elected respectively at step i and j, V iew(M i
u) = Covered(M i

u),
Hu ∈ F , V iew(M j

v) = Covered(M j
v) and Hv ∈ F . Consequently, Hu �↓ G and

Hv �↓ G. Two cases are possible when u is elected at step i: either idv ∈
V iew(M i

u), or not.
Case 1: idv ∈ View(Mi

u). In this case, line 9 ensures that idu < idv. Moreover,
lines 8 and 9 and Lemma 6.3 ensure that there is a step h < i such that Mh

v =
M i

u and outh
v =⊥. Since idu ∈ V iew(M i

u) = V iew(Mh
v), and since Mv can

only increase during the execution (recall that h < i < j), idu ∈ V iew(M j
v).

Consequently, the condition on line 9 is not satisfied by the state of v at step j,
and v is not elected in this case.
Case 2: idv /∈ View(Mi

u). Since Hu �↓ G and Hv �↓ G and since F satisfies
CElec, there exists w such that idw ∈ V (Hu) ∩ V (Hv). By Lemma 6.3 and since
idw ∈ V (Hu), we know that there is a step i′ ≤ i where M i′

w = M i
u. Similarly, we

know there exists a step j′ ≤ j where M j′
w = M j

v . Note that idv /∈ V iew(M i′
w)

and that idv ∈ V iew(M j′
w). By Lemma 4.3, it implies that i′ < j′ and that

M i
u = M i′

w � M j′
w = M j

v . Therefore idu ∈ V iew(M j
v) and since v is elected

at step j, there is some (idu, M j
v , status) ∈ Vj

v. By Lemma 6.3, it implies that
there exists a step i′′ < j such that M i′′

u = M j
v and outi′′

u = status. Since
idv ∈ V iew(M i′′

u) and idv /∈ V iew(M i
u), Lemma 4.3 implies that i < i′′. Since

outi′′
u = outi+1

u = leader, (idu, M j
v , leader) ∈ Vj

v. Thus, the condition on line
9 is not satisfied by the state of v at step j, and v is not elected in this case.

Consequently, any execution of Algorithm 2 terminates and leads to one
elected process if F satisfies CElec. Together with Lemma 6.2, we get

Theorem 2. There is an F-universal algorithm for Elec if and only if F
satisfies CElec.

What Do We Need to Know to Elect in Networks 293

Applications. As first example, given n ∈ N, consider the family of graphs with
n vertices, denoted by G(n). As every strict subgraph H of a graph G ∈ G(n) has
strictly less than n vertices, H /∈ G(n) and G(n) trivially satisfies CElec. It is also
possible to directly design an Election algorithm by simply waiting until Covered
is of size n. Another, maybe less obvious, example where Elec is possible is the
family of graphs with n sink components, denoted by P(n). This family satisfies
CElec because every two subgraphs H, H ′ of a graph G ∈ P(n) have to share
the n sink components if they also belong to P(n). Thus, H and H ′ can not be
disjoint.

Note that in [CSS04], the authors consider only families that are closed by
�↓. Such families satisfy CElec if and only if their graphs have only one sink. In
this case, we obtain for Elec a ”one sink” condition similar to the one given in
[CSS04].

Families defined by having a bound on the size are also closed by �↓. The
corresponding families contains graphs with two sinks and it is therefore im-
possible to elect knowing a bound. An integer k is a tight bound for the size
of G if |V (G)| ≤ k < 2|V (G)|. Given k ∈ N, the family B(k) of graphs with a
tight bound k admits an Election algorithm because B(k) satisfies CElec. Indeed,
consider G,H,H′ ∈ B(k), k being a tight bound for H, H′, and G implies that
|V (H)| + |V (H ′)| > |V (G)|. So when H �↓ G,H′ �↓ G, we get H ∩ H′
= ∅.
This majority argument also applies to the family of graphs where a tight bound
is known for the number of sinks, so Elec is also solvable in this case.

One major consequence of Theorem 2 is that Elec cannot be solved on Gid,
and, furthermore, there is no maximum family, i.e. maximum knowledge, for
which Elec is solvable. Given any graph G with subgraphs H1,H2 such that
H1,H2 �↓ G, and V (H1) ∩ V (H2) = ∅, the families {G,H1} and {G,H2}
are incomparable and Elec is solvable on both, whereas this problem has no
solution on their union {G,H1,H2}.

7 Conclusion

We investigated the computability of Election problem in the unknown partici-
pants model introduced in [CSS04]. Our result gives a simple condition on the
partial knowledge that has to be provided to processes in order to solve this
problem. This condition extends and improves the previous results known for
the model of reliable unknown participants.

Before obtaining a general computability result, it is already possible to see
that some other problems can be investigated with the same tools. For example,
the k−Consensus can be solved with a similar algorithm. We do not give a
proof but the condition on knowledge would be to forbid more than k disjoint
�↓ −subgraphs having the same knowledge value as the whole graph.

An interesting open problem is to consider unknown participants in anony-
mous networks. The conditions given in this paper would remain true. But, from
[BV01], it is expected that additional conditions will be necessary to overcome
specific impossibilities related to anonymous networks.

294 J. Chalopin, E. Godard, and A. Naudin

References

ABFG08. Alchieri, E.A.P., Bessani, A.N., da Silva Fraga, J., Greve, F.: Byzantine
consensus with unknown participants. In: Baker, T.P., Bui, A., Tixeuil,
S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 22–40. Springer, Heidelberg
(2008)

Ang80. Angluin, D.: Local and global properties in networks of processors. In:
STOC, pp. 82–93 (1980)

BCG+96. Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J., Vigna, S.:
Symmetry breaking in anonymous networks: Characterizations. In: Proc.
4th Israeli Symp. on Theory of Computing and Systems, pp. 16–26 (1996)

BV99. Boldi, P., Vigna, S.: Computing anonymously with arbitrary knowledge. In:
PODC, pp. 181–188 (1999)

BV01. Boldi, P., Vigna, S.: An effective characterization of computability in anony-
mous networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, p. 33.
Springer, Heidelberg (2001)

CGM08. Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed
computability in anonymous networks. In: Taubenfeld, G. (ed.) DISC 2008.
LNCS, vol. 5218, pp. 47–62. Springer, Heidelberg (2008)

CGM12. Chalopin, J., Godard, E., Métivier, Y.: Election in partially anonymous net-
works with arbitrary knowledge in message passing systems. Distrib. Com-
put (2012)

Cha06. Chalopin, J.: Algorithmique distribue, calculs locaux et homorphismes de
graphes. PhD thesis, Universit Bordeaux 1 (2006)

CSS04. Cavin, D., Sasson, Y., Schiper, A.: Consensus with unknown participants
or fundamental self-organization. In: Nikolaidis, I., Barbeau, M., An, H.-C.
(eds.) ADHOC-NOW 2004. LNCS, vol. 3158, pp. 135–148. Springer, Hei-
delberg (2004)

GM02. Godard, E., Métivier, Y.: A characterization of families of graphs in which
election is possible (extended abstract). In: Nielsen, M., Engberg, U. (eds.)
FOSSACS 2002. LNCS, vol. 2303, p. 159. Springer, Heidelberg (2002)

GSAS12. Greve, F., Sens, P., Arantes, L., Simon, V.: Eventually strong failure detec-
tor with unknown membership. The Computer Journal 55(12), 1507–1524
(2012)

GT07. Greve, F., Tixeuil, S.: Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In: DSN 2007, pp. 82–91
(2007)

MMW97. Métivier, Y., Muscholl, A., Wacrenier, P.A.: About the local detection of
termination of local computations in graphs. In: SIROCCO (1997)

RM00. Rosen, K.H., Michaels, J.G.: Handbook of Discrete and Combinatorial
Mathematics (2000)

Tel00. Tel, G.: Introduction to Distributed Algorithms. Cambridge U.P (2000)
YK89. Yamashita, M., Kameda, T.: Electing a leader when processor identity num-

bers are not distinct. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989.
LNCS, vol. 392, pp. 303–314. Springer, Heidelberg (1989)

YK96a. Yamashita, M., Kameda, T.: Computing on anonymous networks. I. char-
acterizing the solvable cases. IEEE TPDS 7, 69–89 (1996)

YK96b. Yamashita, M., Kameda, T.: Computing on anonymous networks. II. deci-
sion and membership problems. IEEE TPDS 7, 90–96 (1996)

Rendezvous of Distance-Aware Mobile Agents
in Unknown Graphs�

Shantanu Das1, Dariusz Dereniowski2,
Adrian Kosowski3,4, and Przemysław Uznański1

1 LIF, Aix-Marseille University and CNRS, Marseille, France
2 Dept. of Algorithms and System Modeling, Gdańsk University of Technology,

Gdańsk, Poland
3 GANG Project, Inria Paris, France

4 LIAFA, Paris Diderot University and CNRS, France

Abstract. We study the problem of rendezvous of two mobile agents
starting at distinct locations in an unknown graph. The agents have dis-
tinct labels and walk in synchronous steps. However the graph is unla-
belled and the agents have no means of marking the nodes of the graph
and cannot communicate with or see each other until they meet at a
node. When the graph is very large we want the time to rendezvous to
be independent of the graph size and to depend only on the initial dis-
tance between the agents and some local parameters such as the degree
of the vertices, and the size of the agent’s label. It is well known that
even for simple graphs of degree Δ, the rendezvous time can be expo-
nential in Δ in the worst case. In this paper, we introduce a new version
of the rendezvous problem where the agents are equipped with a device
that measures its distance to the other agent after every step. We show
that these distance-aware agents are able to rendezvous in any unknown
graph, in time polynomial in all the local parameters such the degree
of the nodes, the initial distance D and the size of the smaller of the
two agent labels l = min(l1, l2). Our algorithm has a time complexity
of O(Δ(D + log l)) and we show an almost matching lower bound of
Ω(Δ(D + log l/ logΔ)) on the time complexity of any rendezvous algo-
rithm in our scenario. Further, this lower bound extends existing lower
bounds for the general rendezvous problem without distance awareness.

Keywords: Mobile Agent, Rendezvous, Synchronous, Anonymous Net-
works, Distance Oracle, Lower Bounds.

� This work was done when the second and the third author were visiting the LIF
laboratory in Marseille. Research partially supported by the Polish National Sci-
ence Center grant DEC-2011/02/A/ST6/00201, by the ANR project DISPLEXITY
(ANR-11-BS02-014) and by the ANR project MACARON (ANR-13-JS02-0002-01).
Dariusz Dereniowski was partially supported by a scholarship for outstanding young
researchers funded by the Polish Ministry of Science and Higher Education.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 295–310, 2014.
c© Springer International Publishing Switzerland 2014

296 S. Das et al.

1 Introduction

1.1 Overview

Suppose two friends travel to a distant land and arrive at a city where all road
signs are written in a language unknown to either of them. If the friends get
separated and can no longer communicate with each-other, how could the two
friends get together again without any help from a third person. This problem
of gathering two autonomous mobile agents, called the rendezvous problem has
been studied in many different contexts, for example for two ships lost in the
sea, two astronauts that land in separate parts of a planet and so on. Initial
studies on the problem were restricted to finding probabilistic strategies for
movement of the two agents that minimize the expected time to rendezvous (See
[1] for a survey of such results). In recent years, the deterministic version of the
problem has received a lot of attention especially by the distributed computing
community. The rendezvous problem for two agents moving along the edges of
a graph is a typical problem of symmetry breaking and it is a primitive for
distributed coordination among autonomous mobile robots. The solution to the
problem depends on the structure of the graph, the capabilities of the agents
and the initial knowledge available to the agents. In this paper, we consider
the problem for deterministic agents with local vision moving in an initially
unknown graph; the problem is solved when the two agents are simultaneously
located in the same vertex. We are interested in the worst case time complexity
for rendezvous. In general, rendezvous cannot always be solved deterministically
when the underlying graph is highly symmetric and the agents follow identical
strategies. A typical example is that of a ring network with unlabelled nodes
where the two agents are placed on opposite vertices on any diameter. In this
case, the distance between the two agents may never decrease if the agents use
identical strategies, moving left or right at the same time.

Known solutions to the rendezvous problem are based on one of the following
two approaches. The first type of solutions relies on finding a point of asymmetry
in the graph and meeting at a unique point of asymmetry (e.g. such a point of
asymmetry always exists in graphs where the nodes are labelled uniquely). The
second type of solutions assumes that the agents are provided with distinct labels
and thus, they can execute distinct strategies and ensure rendezvous. The former
type of results require the agents to traverse every edge of the graph in the worst
case and the time to rendezvous depends on the size of the graph. On the other
hand, the latter type of solutions allow the agents to rendezvous in graphs of
arbitrary size or even infinite graphs when the agents are located a finite distance
apart. It has been shown that rendezvous of agents with distinct labels can be
achieved in arbitrary finite graphs in time polynomial in the size of the graph
and the size of the smaller of the labels assigned to the agents both in the
synchronous case [17,20] and the asynchronous case [10]. For infinite graphs, the
only known results are for very specific graphs such as lines [19] or grids [3]. For
a Δ-dimensional infinite grid, the optimal time to rendezvous is Θ(DΔ) which
is already exponential in the maximum degree of the graph. In fact, in unknown

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 297

graphs of degree Δ, where the agents start a distance of D apart, an agent may
have to visit all vertices at a distance of D from its initial location. Since there
could be DΔ such vertices, the time cost of rendezvous would be exponential in
Δ, even if the agents have complete knowledge of the graph as well as the initial
distance between them. Thus the question is what additional capabilities would
enable the agents to rendezvous in polynomial time.

In this paper we are interested in designing the simplest mechanism that can
help the agents to rendezvous in a large (possibly infinite) graph in time poly-
nomial in the other parameters of the problem, e.g. the initial distance, the
maximum degree of the graph and the labels assigned to the agents. We achieve
this by equipping the agents with a device that can measure the distance to the
other agent in the graph after each step of the algorithm1. In fact, our algorithm
does not require knowledge of the exact distance between the agents, but instead
it is sufficient if the agent can detect whether the distance to the other agent
increased or decreased after each move. We assume time to be discretized into
rounds; in each round an agent can either traverse one edge of the graph or stay
at its current location, and at the end of each round the agent can determine
whether the distance to the other agent increased, decreased or remained un-
changed during this round. Note that the agents have no means of detecting the
direction leading to the other agent. We call agents equipped with the above de-
vice distance-aware agents. We show that distance-aware agents can rendezvous
in arbitrary graphs in time polynomial in the initial distance, in the degree of
the graph, and in the size of the smaller of the two agent labels.

1.2 Our Contributions

We show that two distance-aware agents, starting from an initial distance D
apart from each other in a connected graph with maximum degree Δ, can ren-
dezvous in time O(Δ·D+Δ· log l) rounds, where l = min(l1, l2) and l1 and l2 are
the labels of the agents. The proof is constructive and provides a deterministic
algorithm for the agent that takes as input the label of the agent. The algorithm
does not require any prior knowledge of the graph and works for any connected
graph. We also show that our algorithm is almost optimal by providing a lower
bound of Ω(Δ(D+ log l/ logΔ)) for rendezvous of distance-aware agents. Thus,
our algorithm is asymptotically optimal when the maximum degree Δ is not
extremely large.

The lower bound presented in this paper holds even for agents that can com-
pute the exact distance to each other at every step, while the algorithm requires
only the knowledge of changes in distance. Moreover, this lower bound extends
existing lower bounds for the general problem of rendezvous of labelled agents in
unknown graphs. In terms of the size of agent labels, the previous lower bound
(without distance awareness) was Ω(log l ·D) which already holds for the ring;

1 Such a device can be implemented in practice e.g. by emitting specific signals at
periodic intervals and measuring the intensity of the signal received from the other
device held by the other agent.

298 S. Das et al.

no generalizations of this lower bound to graphs of arbitrary degree have been
presented before. Our results show that the lower bound for rendezvous must be
at least Ω(log l(D +Δ/ logΔ)).

1.3 Related Work

This paper considers the deterministic version of rendezvous (for randomized
solutions see e.g. [1]). The problem of rendezvous of autonomous mobile agents
has been studied for agents moving in a discrete space i.e. a graph [18] or those
moving on a continuous space (e.g. two dimensional plane [11]). In the graph
setting, rendezvous of identical agents is possible only if the graph is asymmet-
ric or the agents are placed in asymmetric positions on the graph. There exists a
characterization of such instances (graphs and initial positions of agents) where
rendezvous is solvable [21]. If the agents are asynchronous, they can take advan-
tage of the asymmetry in their initial positions by marking their initial position
by a pebble [2,16]. On the other hand, if the agents have distinct labels then
rendezvous is possible in any graph and any starting positions, without the need
to mark nodes. The first deterministic synchronous rendezvous algorithm for
agents with distinct labels was presented by Dessmark et al. [9] and the time
complexity of the algorithm was O(n5

√
τ log l logn+n10 log2 n log l) for a graph

of n nodes, where τ is the delay in the starting time of the agents. Subsequent
studies [17,20] improved this result and removed the parameter τ from the time
complexity allowing for rendezvous in time polynomial in both n and log l. For
the asynchronous case, De Marco et al. [12] provided an algorithm for rendezvous
with a cost of O(D · log l) rounds, when the graph is known. For unknown ar-
bitrary graphs, Czyżowicz et al. [6] gave the first algorithm for asynchronous
rendezvous but the cost of this algorithm is at least exponential in the distance
D and the degree Δ of the graph. Recently, Dieudonné et al. [10] provided an
improvement over this result achieving asynchronous rendezvous in time poly-
nomial in n and log l. Rendezvous of agents starting from a finite distance D
in an infinite graph has been studied for the special cases when the graph is a
line [12,19] or a grid [3], assuming that the agents have a sense of orientation
and they know their own location in the labelled grid.

There have been several studies on the minimum capabilities needed by the
agents to solve rendezvous. For example, the minimum memory required by an
agent to solve rendezvous is known to be Θ(log n) for arbitrary graphs. Czyżow-
icz et al. [7] have provided a memory optimal algorithm for rendezvous, and
there are studies on the tradeoff between time and space requirements for ren-
dezvous [8]. In some papers, additional capacities are assumed for the agents
to overcome other limitations, e.g. global vision is assumed to overcome mem-
ory limitations [15] or the capability to mark nodes using tokens [16] or white-
boards [5] is often used to break symmetry. The model used in this paper can be
seen as a special case of the oracle model for computation [13] where the agent is
allowed to query an oracle that has global knowledge of the environment. How-
ever in our case, since the only queries are distance queries, the oracle can be
implemented without complete knowledge of the graph topology.

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 299

2 Model and Notations

We model the environment as an undirected connected (possibly infinite) graph
G(V,E). The nodes of V are unlabelled such that vertices of the same degree look
identical to any agent (i.e. the nodes are anonymous). At each node of the graph,
the edges incident to it are locally labelled, so that an agent arriving at a node can
distinguish among them2. We assume that edges incident to a node v are labelled
by distinct integers (called port numbers) from the set {1, 2, . . . , d(v)}, where
d(v) is the degree of node v. The degree of each node is finite and bounded by
the parameter Δ (which is unknown to the agent). For any two distinct vertices
u, v ∈ V , the distance between them, denoted by dist(u, v), is the number of
edges in any shortest path from u to v in G.

There are exactly two agents a1 and a2, and each agent ai has a distinct label
�(Ai) ∈ {0, 1, . . . , L − 1} for some integer L ≥ 1. An agent knows its own label
but not that of the other agent. The agents have no prior knowledge of the graph.
Each agent starts from a distinct node of the graph and moves along the edges
of the graph in synchronous steps following a deterministic algorithm. In other
words, time is discretized into regular intervals called rounds; in each round, an
agent at a node v can either move to an adjacent node of G or remain stationary
at v. If the agent moves to an adjacent node w, the agent becomes aware of the
port number of the edge through which it entered w. The agent has no means
of marking a node that it visits and the agents cannot communicate with each
other. An agent can see the other agent only when both agents are on the same
node (in particular the agents do not see each other if they cross on the same edge
from opposite directions). The two agents start the algorithm in the same round
(called round 0) and rendezvous is achieved in the earliest round T when the two
agents are at the same node. We denote by D the distance between the starting
locations of the agents.

Contrary to previous studies on rendezvous, we assume that the agent is
equipped with a device that measures the distance to the other agent. An agent at
a node v in round t can make a query to this device (modelled as a function call
distance()) which returns the value dist(v, u), where node u is the location of the
other agent in this round. In each round the agent can make one call to distance()
and depending on the value returned, the value of the agent’s label, the current
state of the agent, and the degree of the current node, the agent chooses a number
between 0 and d(v) and leaves the current node v through this port. We assume
that the port number 0 corresponds to a self-loop at node v and if the agent chooses
0 it remains at the same node v. In this paper we do not restrict the memory of an
agent in any way. Thus, the agent can memorize its complete history of moves up
to the current round and store this as its internal state.

3 Lower Bound for Distance-Aware Rendezvous

In this section we provide lower bounds on the rendezvous time for distance-
aware agents. Observe that a trivial lower bound is Ω(D) since at least one of
2 Such an assumption is necessary to allow the agent to navigate in the graph.

300 S. Das et al.

the two agents must traverse D/2 edges to achieve rendezvous. We could easily
obtain a better lower bound for graphs of degree Δ. The result below is folklore
and we include it only for completeness.

Lemma 1. Rendezvous of two agents that are initially at a distance of D apart
in an unknown graph of maximum degree Δ requires Ω(D · Δ) rounds in the
worst case.

Proof. Consider the caterpillar graph shown in Figure 1 obtained by taking a
line of D+1 nodes and replacing each node with a star of size Δ−1. Suppose that
the two agents start at the endpoints of the path of length D in this graph, as
shown. If an agent traverses an edge leading to one of the leaves, it has no other
option than to return and try another port. For any deterministic algorithm, an
adversary can assign the port numbers in such a way that the agent needs to
traverse all the Δ incident edges before it gets any closer to the other agent.
Thus after 2Δ − 1 rounds the agents can reduce the distance between them by
2. Using a repetition of this argument, the result follows.

Fig. 1. The two agents are located at the specially marked nodes at the two ends of
a Caterpillar graph

The above lower bound is independent of the agent’s labels. We now present
a bound which includes the parameter L which bounds the size of the set of
possible agent labels. It is known that rendezvous of two agents with distinct
labels requires Ω(logL) rounds [9]. However this lower bound is for the simplest
graph consisting of two nodes and a single edge connecting them. We provide
below a better lower bound for arbitrary graphs of maximum degree Δ.

Our method is constructive, i.e., given a deterministic rendezvous algorithm
A, we describe a graph and a procedure for the adversary to label the ports in
a graph and to choose starting positions that will keep the agents executing A
from meeting for the desired time period.

Definition 1. A k-clique-p-butterfly is a (k+3)-regular graph on (k×p) vertices
(denoted by v0,0, . . ., vk−1,p−1), constructed as follows:

– for each 0 ≤ j < p, we connect all pairs of vertices from v0,j , v1,j , . . . , vk−1,j

(so they form a k-vertex clique, named j-th clique),
– for any given 0 ≤ j, j′ < p, 0 ≤ i, i′ < k, we connect vi,j and vi′,j′ if

j′ = (j + 1) mod p and i′ ∈ {2i mod k, (2i+ 1) mod k}.

For two vertices, v from j-th clique and v′ from j′-th clique, we say that their
horizontal distance is min((j − j′) mod p, (j′ − j) mod p). By the properties of

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 301

j = 0 j = 1 j = D j = p− 1

Fig. 2. A k-clique-p-butterfly graph where the two agents are located at the marked
nodes at a distance D > log k

the butterfly-type interconnections between the cliques, we observe that, if for
two vertices the horizontal distance is at least log k, then their actual distance
in the graph is equal to the horizontal distance. See Figure 2 for an example of
a k-clique-p-butterfly graph where the agents are at a distance D > log k.

Theorem 1. For any odd k ≥ 3 and p ≥ 2 · �log k�, given a k-clique-p-butterfly
(denoted further as G), for any deterministic algorithm A, and integers L > 0
and D ≥ log k = log(Δ − 3), there exist labels 0 ≤ �(1), �(2) < L and a
port numbering of G such that if two agents with these labels start at two ver-
tices at distance D in this graph, they will remain at distance D for at least
Θ(Δ logL/ logΔ) steps.

Proof. The main idea of the proof is as follows. We will choose four special port
numbers that will be assigned in every vertex to the “bridge" edges connecting it
to an adjacent clique (two ports to advance to the next clique and two ports to
go backward). Note that moving inside the clique doesn’t change the distance to
the other agent. By carefully picking the agent labels, we will ensure that both
agents will choose the forward ports at the same rounds and the backward ports
also at the same rounds, thus they will maintain a constant distance between
themselves, for a sufficient amount of time and during this time period, any
queries to the distance oracle would be useless.

Before we proceed to prove the theorem, we need to fix some notation and
provide some basic lemmas. We will consider the k-clique-p-butterfly graphs with
a special type of port numbering where the ports on the two ends of each edge
always form one of the pairs of values: {1, Δ}, {2, Δ− 1}, . . . , {Δ/2, Δ/2 + 1}.
In other words, whenever an agent chooses to leave a node by port j, it arrives
at the adjacent node by port Δ+ 1− j. In a Δ-regular graph with such a port
numbering, an agent can never distinguish between any two vertices and it can
learn nothing new about the graph by traversing it. Thus, the algorithm A must
choose a predefined sequence of ports to follow during the first t > 0 rounds when
the distance between the agents remains D. For every 0 ≤ � < L we denote the
sequence of ports chosen by algorithm A (with input label �) by (P�(i))

i<t
i=0.

302 S. Das et al.

Lemma 2. There exist p1, p2, 0 < p1, p2 ≤ Δ/2, and a set L ⊂ {0, 1, . . . , L−1},
|L| ≥ L/2, such that for each � ∈ L, at most 8t/Δ elements of (P�(i))

i<t
i=0 are

equal to one of the four values {p1, p2, Δ+ 1− p1, Δ+ 1− p2} (in total).

Proof. In G, the port numbers on the edges are paired together as follows:
{1, Δ}, . . . , {Δ/2, Δ/2 + 1}. For each pair {p,Δ + 1 − p}, let Sp be the num-
ber of pairs (i, �), 0 ≤ i < t, 0 ≤ � < L, such that P�(i) ∈ {p,Δ+ 1 − p}. Since
S1 + S2 + · · · + SΔ/2 ≤ t · L, there must exist p1, p2 such that Sp1 + Sp2 ≤
t ·L · 2/(Δ/2)=t · L · 4/Δ. Thus, there must exist a subset L containing at least
half of the possible labels, such that for each � ∈ L, the number of i’s for which
P�(i) ∈ {p1, p2, Δ+ 1− p1, Δ+ 1− p2} is not greater than 2 · t·L·4/Δ

L = 8t/Δ.

Given the ports p1 and p2 as in the lemma above, the adversary can assign
the pairs of port numbers (p1, Δ + 1 − p1) and (p2, Δ + 1 − p2) to those edges
of G that connect two adjacent cliques, such that ports p1 and p2 will take an
agent forward to the next clique, ports Δ + 1 − p1 and Δ + 1 − p2 would take
an agent backward to the previous clique and any other port will keep an agent
within the same clique. We partition the set of port numbers into the subsets:

A = {p1, p2},
B = {Δ+ 1− p1, Δ+ 1− p2},
C = {0, 1, . . .Δ} \ (A ∪B).

Informally, the ports in A take an agent one step ahead, the ports in B take it
one step back, and the C ports keep it in the same clique.

Lemma 3. There exist 0 ≤ �(1) < �(2) < L such that ∀i ≤ � logL
2 logΔ� ·

Δ
8 ,

P�(1)(i) ∈ A iff P�(2)(i) ∈ A, and (1)

P�(1)(i) ∈ B iff P�(2)(i) ∈ B. (2)

Proof. Let t > 0 be the first round such that for i = t, either (1) or (2) does not
hold for any possible pair of labels �(1) and �(2) from the set {0, 1, . . . , L − 1}.
We will bound the value of t. Note that the sequence of ports (P�(i))

i<t
i=0 can

be written as a sequence of A,B and C’s. We choose the set of labels L from
Lemma 2 and for any � ∈ L, let us count the number of possible sequences
(P�(i))

i<t
i=0 which correspond to distinct words from the alphabet {A,B,C}; let

us denote this number as X . Recall that any such sequence can have at most
8t/Δ A-ports and B-ports in total (cf. Lemma 2). Assuming for the sake of
notation that T = 8t/Δ is an integer and using Stirling’s approximation, we get:

X =

�T�∑
i=0

(
t

i

)
· 2i ≤ 1 + T ·

(
t

T

)
· 2T ≤ 1 + T · (2t)T

(8t/Δ)!

≤ 1 + T ·
(

2t

8t/Δ · 1e

)T

= 1 + T
(e
4
Δ
)T

.

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 303

Since for any two labels in L the algorithm chooses distinct sequences, we have
L/2 ≤ |L| ≤ X , which gives us T ≥ � logL

2 logΔ� and thus t ≥ � logL
2 logΔ� ·

Δ
8 .

We now return to the proof of the Theorem 1. From Lemma 3, we know that
there exist two agents with labels �(1), �(2) such that these agents, when execut-
ing algorithm A, will use the ports going forward or backward simultaneously
during the first t = � logL

2 logΔ� ·
Δ
8 rounds. Since the distance in the graph is inde-

pendent of relative positions inside cliques (for D ≥ log k), the distance between
agents is maintained to be D for at least t = Θ(Δ logL/ logΔ) steps.

The results of this section provide a lower bound of Ω(Δ(D + logL/ logΔ))
rounds for rendezvous of distance-aware agents.

4 Upper Bound and Algorithm for Rendezvous

In this section we provide an algorithm that guarantees rendezvous of two
distance-aware agents in O(Δ(D + log l)) rounds. The algorithm is divided into
four procedures. For each procedure, first we provide some intuitions on its be-
havior, then we give its formal description in the form of pseudo-code. After the
descriptions of all procedures, the proof of correctness and analysis of rendezvous
time of the algorithm are given.

We start with a procedure TestPorts (see Algorithm 1), which attempts to
decrease the distance between the two agents. The input consists of a positive
integer δ and a bit b ∈ {0, 1}. Recall that the command distance() performs
the oracle query and provides the current distance from the other agent. We also
introduce a command move(x), where x is an integer, which behaves as follows. If
x ∈ {1, . . . , d(v)}, where v is the node currently occupied by the executing agent,
then move(x) forces the executing agent to move from v by taking port x, and
the value returned by the move(x) command is the entry port at the arrival node.
Otherwise, that is when x /∈ {1, . . . , d(v)}, the executing agent stays idle in the
given round, and move(x) returns 0. (We pass 0 as an argument to deliberately
make an agent idle.)

The interpretation of the input variable b is that whenever b = 0, then the
agent does not perform any movements during the execution of TestPorts. Note
that if b = 1, then move(i · b) forces an agent to move only if there exists an edge
with port i at v.

Suppose that, in the same round, both agents perform calls to procedure
TestPorts with input parameters δ1, b1 and δ2, b2, respectively. We will always
ensure that δ = δ1 = δ2. Informally, b1 = b2 = 1 implies that both agents
iteratively take ports 1, . . . , δ (skipping the ones not present at the current node),
ending the process if the distance between them decreases. Clearly, if b1 = b2 = 0,
then both agents just stay idle during the 2δ rounds and the procedure returns
failure. If b1 �= b2, then one agent stays idle while the other ‘tests ports’. If we
ensure that δ exceeds the degree of the node occupied by the agent that performs
the movements, then the procedure will return success whenever b1 �= b2.

304 S. Das et al.

Algorithm 1. Procedure TestPorts(δ, b)
Input: Two integers δ ≥ 1 and b ∈ {0, 1}.
Output: success if the distance between agents decreases in some round; failure

otherwise.
for i ← 1 to δ do

x ← distance()
p ← move(i · b)
y ← distance()
if y < x then

return success {When the distance to the other agent decreased.}
end if
move(p · b) {Going back along the same edge.}

end for
return failure {When the distance to the other agent never decreased.}

We now describe a procedure BoundDegreeswith input variable b ∈ {0, 1} (see
Algorithm 2). Informally speaking, for each 2l such that 2l < d(v), where v is the
node occupied at the beginning of the execution of the procedure, the executing
agent stays idle for 2l+1 rounds (this is achieved by the call to TestPorts(2l, 0).
This part is independent of b. Then, TestPorts(2�log2 d(v)�, b) is called. If b = 0,
then the agent stays idle for another 2�log2 d(v)�+1 rounds. If b = 1, then the agent
sequentially explores all ports at v (Note that the value of 2�log2 d(v)� exceeds
the degree of v). The above process is interrupted whenever the agents observe
that the distance between them decreased, and the procedure returns success
in that case.

Algorithm 2. Procedure BoundDegrees(b)
Input: An integer b ∈ {0, 1}.
Output: success or failure.

Let v be the currently occupied node.
for l ← 0 to
log2 d(v)� − 1 do

s ← TestPorts(2l, 0)
if s = success then

return success
end if

end for
s ← TestPorts(2�log2 d(v)�, b)
return s

The observation given below follows directly from the formulation of procedure
BoundDegrees.

Observation 1. Suppose that agent Ai occupies node vi, i ∈ {1, 2}, and executes
procedure BoundDegrees at the beginning of round r. If procedure TestPorts does
not return success in the first j iterations of BoundDegrees, then:

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 305

(i) Ai occupies vi at the end of the j-th iteration of BoundDegrees,
(ii) both agents end the execution of the j-th iteration in round r + 2j − 1.

Denote I0 = (0, 1] and Ij = (2j−1, 2j] for j ≥ 1. We say that two nodes u and
v are similar if there exists j ≥ 0 such that d(u) ∈ Ij and d(v) ∈ Ij .

Lemma 4. Let r be some integer. Suppose that agent Ai is present at vi, i ∈
{1, 2}, and calls in round r procedure BoundDegrees with input value bi. Then:

(i) for b1 = b2 = 1, if both calls to BoundDegrees return failure, then the
nodes v1 and v2 are similar, and

(ii) if b1 �= b2 and v1 and v2 are similar, then both calls to BoundDegrees
return success.

Proof. We first prove (ii). Suppose without loss of generality that b1 = 1 and
b2 = 0. Since the nodes v1 and v2 are similar, x = �log2 d(v1)� = �log2 d(v2)�
and therefore the executions of procedure BoundDegrees have the same number
of iterations of the ‘for’ loop. If, in one of those iterations, the execution of
procedure BoundDegrees ends, then (ii) holds and hence suppose that this is
not the case. Thus, the calls to TestPorts(2x, b1) and TestPorts(2x, b2) are
made by the agents. Moreover, by Observation 1, both calls are made in the
same round and when agent Ai is at vi, i ∈ {1, 2}. During these calls, A2 stays
idle during 2x+1 rounds (because b2 = 0) while A1 explores all ports at v1 during
the same 2x+1 rounds (because b1 = 1 and 2�log2 d(v1)� ≥ d(v1)). This guarantees
that the latter calls to TestPorts return success, which completes the proof of
(ii).

We now prove (i). Let b1 = b2 = 1. We argue that if the nodes v1 and v2
are not similar, then the call to BoundDegrees results in returning success.
Suppose without loss of generality that d(vi) ∈ Iji , i ∈ {1, 2}, where j1 < j2.
The number of iterations of the ‘for’ loop of procedure BoundDegrees executed
by Ai is �log2 d(vi)� = ji, i ∈ {1, 2}. Thus, by Observation 1(i), Ai occupies
vi at the end of j1-th iteration of BoundDegrees for each i ∈ {1, 2}. Moreover,
by Observation 1(ii), after finishing the execution of the ‘for’ loop, A1 calls
TestPorts(2j1 , b1) while A2 calls TestPorts(2j1 , 0) in the (j1 + 1)-st iteration
of the ‘for’ loop of BoundDegrees. Also, both of the above-mentioned calls to
TestPorts are made in the same round r′. By similar arguments as when proving
(ii), we obtain that condition (i) holds.

Note that if procedure BoundDegrees returns success, then the agents get
closer, and we can repeat the same process for at their current locations. How-
ever, for some nodes procedure BoundDegrees may return failure and then
procedure CompareLabels described below (see Algorithm 3) helps to break the
symmetry. Procedure CompareLabels uses the notion of extended labels. The
extended label ξ(�) of a label � is an integer whose j-th bit is defined as follows:

ξ(�)j =

⎧⎪⎨⎪⎩
��j/2�, for j ∈ {1, 3, 5, . . . , 2�log2 �� − 1},
1, for j = 2�log2 ��,
0, otherwise.

306 S. Das et al.

Algorithm 3. Procedure CompareLabels
Input: None.
Output: ξ(�)i such that i is distinguishing for the extended labels of the agents.

Let ξ(�) be the extended label of the executing agent.
for i ← 1 to
log2 ξ(�)� do

s ← BoundDegrees(ξ(�)i)
if s = success then

return ξ(�)i
end if

end for

The index j = 2�log2 �� is called the terminating bit of ξ(�) (this is the last bit
set to 1). Informally, the odd positions of the extended label are the the bits
of � while the even positions are all zeros, except for the terminating bit. We
say that an index i is distinguishing for two extended labels ξ(�) and ξ(�′) if
ξ(�)i �= ξ(�′)i.

Informally, procedure CompareLabels iterates over the bits of the extended
label of the executing agent in order to find an index i that is distinguishing
for the extended labels of the two agents. The construction of extended labels
guarantees that there exists a distinguishing index i not greater than the smaller
length of the two extended labels and hence BoundDegrees returns success at
the latest in the i-th iteration of the ‘for’ loop of procedure CompareLabels (the
formal proof is given later; we remark here that if we used the label instead of
the extended label, then the number of iterations of the ‘for loop’ would have to
be equal to the length of the greater label to ensure rendezvous).

We postpone the analysis of procedure CompareLabels (given in Lemma 5)
as it depends on the context at which it is called by the main procedure.

We finally describe the main procedure Rendezvous (see Algorithm 4). We

Algorithm 4. Procedure Rendezvous
s ← success
while rendezvous not achieved and s = success do

s ← BoundDegrees(1)
end while
b ← CompareLabels
while rendezvous not achieved do

BoundDegrees(b)
end while

start with its intuitive description. The first ‘while’ loop iteratively calls pro-
cedure BoundDegrees(1) as long as its execution gets the agents closer to each
other. If a call to BoundDegrees(1) does not achieve that, then (as we formally
prove later) the agents observed the same distance between each other while
both explored all ports at their respective locations. This is significant as both

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 307

agents learn that they occupy nodes whose degrees are in the same interval Ij
for some j ≥ 0. In other words, the agents learn an asymptotically tight upper
bound on both degrees. Then, procedure CompareLabels is called and uses the
above fact as well as the labels of the agents to break the symmetry that occurs
at the current agents’ nodes. Note that CompareLabels returns either 0 or 1 and
in this case different values are returned for both agents (see Lemma 5 below).
Thus, the agent whose execution of CompareLabels returned 0 stays idle from
now on. The other agents continues making calls to BoundDegrees(1) and since
each execution results in exploring all ports at the currently occupied node, each
execution gets the agent one step closer to the one that is idle. We also remark
that the respective calls to procedure BoundDegrees in the second ‘while’ loop
of CompareLabels are not necessarily ‘synced’, that is, the j-th of those calls can
be made in different rounds by the agents. This, however, is not important as
one of the agents stays idle and the other one performs appropriate movements.

Lemma 5 analyzes the only call to procedure CompareLabels made by proce-
dure Rendezvous. Then, Theorem 2 provides the upper bound on the rendezvous
time for distance-aware agents in arbitrary networks.

Lemma 5. Whenever procedure CompareLabels is called by both agents dur-
ing the execution of procedure Rendezvous, both agents finish the execution of
CompareLabels in the same round and the values returned by CompareLabels
are different for the two agents.

Proof. Since both agents call CompareLabels, none of the preceding calls to
procedure BoundDegrees returns success and the agents do not rendezvous
prior to the call to CompareLabels. By Observation 1 and a simple inductive
argument, the calls to procedure CompareLabels made by both agents end in
the same round r.

It remains to prove that the calls to CompareLabels return different values. By
Lemma 4(i), at the beginning of round r the agents A1 and A2 are, respectively,
at two similar nodes v1 and v2. Let j ≥ 0 be the minimum distinguishing index
for agents’ labels, i.e., ξ(�(A1))j �= ξ(�(A2))j and ξ(�(A1))j′ �= ξ(�(A2))j′ for
each 1 ≤ j′ < j. Such an index j exists because the labels of the agents are
different and hence the extended labels have a distinguishing index. Moreover,

j ≤ min {�log2 ξ(�(A1))�, �log2 ξ(�(A2))�} .

Indeed, if the two labels are of the same length, then the extended labels are
of the same length. If, on the other hand, the labels have different lengths,
then the terminating bits are at different positions, which in particular implies
that the terminating bit of the smaller label is at position that is distinguishing
for the two extended labels.

By assumption, Observation 1 and an inductive argument, Ai is at vi at the
beginning of the j′-th call to procedure BoundDegrees during the execution
of procedure CompareLabels, where j′ ≤ j. The last execution of procedure
BoundDegrees preceding the call to CompareLabels returns failure. Hence,

308 S. Das et al.

if ξ(�(A1))j′ = ξ(�(A2))j′ = 1, then the j′-th call to BoundDegrees returns
failure. Clearly, if ξ(�(A1))j′ = ξ(�(A2))j′ = 0, then the agents stay idle during
the j′-th call to procedure BoundDegrees which also implies that it returns
failure.

Thus, the above proves that the j-th call to procedure BoundDegrees takes
place during the execution of procedure CompareLabels and, by Lemma 4(ii), it
returns success for both agents. Thus, procedure CompareLabels returns the
respective bits of the extended label at position that is distinguishing, which
completes the proof.

Theorem 2. Suppose that agent Ai with label �(Ai) initially occupies node vi,
i ∈ {1, 2}. Procedure Rendezvous guarantees that A1 and A2 rendezvous within
O(Δ · (D +mini{log �(Ai)})) rounds where D = dist(v1, v2).

Proof. We first prove that the execution of procedure Rendezvous guarantees
rendezvous. If the agents rendezvous during the execution of the first ‘for’ loop,
then the claim follows and hence suppose that this is not the case. Denote by
bi the value of the variable b returned by the call to procedure CompareLabels
by agent Ai, i ∈ {1, 2}. By Lemma 5, b1 �= b2. Let without loss of generality,
b1 = 0 and b2 = 1. This implies that the agent A1 stays idle indefinitely. The
agent A2, during execution of procedure BoundDegrees(b2) called in the second
‘for’ loop of procedure Rendezvous, explores all ports of the currently occupied
node. Thus, the distance between agents decreases in some round which implies
that each such call to procedure BoundDegrees(b2) returns success. Thus, the
agents rendezvous eventually.

Now we analyze the rendezvous time. Each call to BoundDegrees takes O(Δ)
rounds. Moreover, each such call, except for at most one, made directly by
procedure Rendezvous ensures that the distance between the agents decreases.
This follows immediately for calls to BoundDegrees preceding the call to proce-
dure CompareLabels since those calls, possibly except for the last one, return
success. As for the remaining calls to BoundDegrees, the above claim is due to
the fact that the input values are different for both agents due to Lemma 5. Thus,
the total number of rounds due to all calls to BoundDegrees made directly by
procedure Rendezvous is O(Δ ·dist(v1, v2)). The number of iterations of the ‘for’
loop of procedure CompareLabels is O(min{log �(A1), log �(A2)}), each resulting
in O(Δ) rounds (the call to BoundDegrees).

5 Conclusions

This paper presented a new model for mobile agent computation by providing
the agents with the capability of measuring distances to each other (or detecting
changes in distances) at each step. We show that this simple mechanism allows us
to reduce the time to rendezvous from exponential to polynomial in the degree
of the graph. Assuming that such a distance measuring device is available to
the agents, one could ask what other problems can be solved more easily using
this additional capability. For example, the agents could use this mechanism for

Rendezvous of Distance-Aware Mobile Agents in Unknown Graphs 309

communication at distance by moving back and forth, when there are no other
means of communication. This opens up a new area of research which is worth
investigating.

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer (2003)
2. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.

Naval Research Logistics 48(8), 722–731 (2001)
3. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-

mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Hei-
delberg (2010)

4. Chalopin, J., Das, S., Santoro, N.: Rendezvous of Mobile Agents in Unknown
Graphs with Faulty Links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp.
108–122. Springer, Heidelberg (2007)

5. Chalopin, J., Das, S., Widmayer, P.: Rendezvous of Mobile Agents in Directed
Graphs. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 282–296. Springer, Heidelberg (2010)

6. Czyżowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. In: Proc. 21st Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 22–30 (2010)

7. Czyżowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: Log-space
rendezvous in arbitrary graphs. Distributed Computing 25, 165–178 (2012)

8. Czyżowicz, J., Kosowski, A., Pelc, A.: Time vs. space trade-offs for rendezvous in
trees. Distributed Computing 27(2), 95–109 (2014)

9. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

10. Dieudonné, Y., Pelc, A.: Vincent Villain. How to meet asynchronously at polyno-
mial cost. In: Proc 32nd Annual ACM Symposium on Principles of Distributed
Computing (PODC), pp. 92–99 (2013)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theoretical Computer Science 337(1-3), 147–168
(2005)

12. De Marco, G., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355(3),
315–326 (2006)

13. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: A new measure of difficulty for
communication problems. In: Proc. 25th Ann ACM Symposium on Principles of
Distributed Computing (PODC), pp. 179–187 (2006)

14. Fraigniaud, P., Pelc, A.: Deterministic Rendezvous in Trees with Little Memory.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Hei-
delberg (2008)

15. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theoretical Computer Science 390(1), 27–39 (2008)

16. Kranakis, E., Krizanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring. Morgan and Claypool Publishers (2010)

17. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399(1-2), 141–156 (2008)

310 S. Das et al.

18. Pelc, A.: Deterministic rendezvous in networks: A comprehensive survey. Net-
works 59, 331–347 (2012)

19. Stachowiak, G.: Asynchronous deterministic rendezvous on the line. In: Nielsen,
M., Kučera, A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.)
SOFSEM 2009. LNCS, vol. 5404, pp. 497–508. Springer, Heidelberg (2009)

20. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly
universal exploration sequences. In: Proc 18th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pp. 599–608 (2007)

21. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I–
Characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems 7(1), 69–89 (1996)

22. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Rendezvous of Heterogeneous Mobile Agents

in Edge-Weighted Networks�

Dariusz Dereniowski1, Ralf Klasing2, Adrian Kosowski3,4, and �Lukasz Kuszner1

1 Department of Algorithms and System Modeling,
Gdańsk University of Technology, Poland

2 LaBRI, CNRS and University of Bordeaux, France
3 GANG Project, Inria Paris, France

4 LIAFA, CNRS and Paris Diderot University, France

Abstract. We introduce a variant of the deterministic rendezvous prob-
lem for a pair of heterogeneous agents operating in an undirected graph,
which differ in the time they require to traverse particular edges of the
graph. Each agent knows the complete topology of the graph and the
initial positions of both agents. The agent also knows its own traversal
times for all of the edges of the graph, but is unaware of the correspond-
ing traversal times for the other agent. The goal of the agents is to meet
on an edge or a node of the graph. In this scenario, we study the time
required by the agents to meet, compared to the meeting time TOPT in
the offline scenario in which the agents have complete knowledge about
each others speed characteristics. When no additional assumptions are
made, we show that rendezvous in our model can be achieved after time
O(nTOPT) in a n-node graph, and that such time is essentially in some
cases the best possible. However, we prove that the rendezvous time
can be reduced to Θ(TOPT) when the agents are allowed to exchange
Θ(n) bits of information at the start of the rendezvous process. We then
show that under some natural assumption about the traversal times of
edges, the hardness of the heterogeneous rendezvous problem can be
substantially decreased, both in terms of time required for rendezvous
without communication, and the communication complexity of achieving
rendezvous in time Θ(TOPT).

1 Introduction

Solving computational tasks using teams of agents deployed in a network gives
rise to many problems of coordinating actions of multiple agents. Frequently, the
communication capabilities of agents are extremely limited, and the exchange

� Research partially supported by the Polish National Science Center grant DEC-
2011/02/A/ST6/00201 and by the ANR project DISPLEXITY (ANR-11-BS02-014).
This study has been carried out in the frame of the “Investments for the future”
Programme IdEx Bordeaux CPU (ANR-10-IDEX-03-02). Dariusz Dereniowski was
partially supported by a scholarship for outstanding young researchers funded by
the Polish Ministry of Science and Higher Education.

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 311–326, 2014.
c© Springer International Publishing Switzerland 2014

312 D. Dereniowski et al.

of large amounts of information between agents is only possible while they are
located at the same network node. In the rendezvous problem, two identical
mobile agents, initially located in two nodes of a network, move along links from
node to node, with the goal of occupying the same node at the same time. Such
a question has been studied in various models, contexts and applications [1].

In this paper we focus our attention on heterogeneous agents in networks,
where the time required by an agent to traverse an edge of the network depends
on the properties of the traversing agent. In the most general case we consider,
the traversal time associated with every edge and every agent operating in the
graph may be different. Scenarios in which traversal times depend on the agent
are easy to imagine in different contexts. In a geometric setting, one can consider
a road connection network, with agents corresponding to different types of vehi-
cles moving in an environment. One agent may represent a typical road vehicle
which performs very well on paved roads, but is unable to traverse other types
of terrain. By contrast, the other agent may be a specialized mobile unit, such as
a vehicle on caterpillars or an amphibious vehicle, which is able to traverse dif-
ferent types of terrain with equal ease, but without being capable of developing
a high speed. In a computer network setting, agents may correspond to soft-
ware agents with different structure, and the transmission times of agents along
links may depend on several parameters of the link being traversed (transmission
speed, transmission latency, ability to handle data compression, etc.).

In general, it may be the case that one agent traverses some links faster than
the other agent, but that it traverses other links more slowly. We will also analyze
more restricted cases, where we are given some a priori knowledge about the
structure of the problem. Specially, we will be interested in the case of ordered
agents, i.e., where we assume that one agent is always faster than the other one,
and the case of ordered edges, where we assume that if in a fixed pair of links,
one agent takes more time to traverse the first link, the same will also be true
for the other agent.

We study the rendezvous problem under the assumption that each agent
knows the complete topology of the graph and its traversal times for all edges,
but knows nothing about the traversal times or the initial location of the other
agent. In all of the considered cases, we will ask about the best possible time re-
quired to reach rendezvous, compared to that in the “offline scenario”, in which
each of the agents also has complete knowledge of the parameters of the other
agent. We will also study how this time can be reduced by allowing the agents
to communicate (exchange a certain number’ of bits at a distance) at the start
of the rendezvous process.

1.1 The Model and the Problem

Let us consider a simple graph G = (V,E) and its weight functions wA : E �→ N+

and wB : E �→ N+, where N+ is the set of positive integers. Let sA, sB ∈ V ,
sA �= sB, be two distinguished nodes of G – the agents’ A and B starting nodes.
We assume that initially an agent K ∈ {A,B} knows the graph G, sA, sB and
wK . Thus, A knows wA but it does not know wB, and B knows wB but it does

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 313

not now wA. We assume that the nodes of G have unique identifiers and that
G is given to each agent together with the identifiers. The latter in particular
implies that the agents have unique identifiers – they can ‘inherit’ the identifiers
of the nodes sA and sB. Also, the agents do not see each other unless they meet.

The weight functions indicate the time required for A and B to move along
edges. That is, given an edge e = {u, v}, an agent K ∈ {A,B} needs wK(e) units
of time to move along e (in any direction). We assume that both agents start
their computation at time 0 by exchanging messages. The time required to send
and to receive a message is negligible.

Once an agentK ∈ {A,B} is located at a node v, it can do one of the following
actions :

– the agent can wait t ∈ N+ units of time at v; after time t the agent will
decide on performing another action,

– the agent can start a movement from v to one of its neighbors u; in such case
the agent moves with the uniform speed from v to u along the edge {u, v}
and after wK({v, u}) units of time K arrives at u and then performs its next
action.

While an agent is performing its local computations preceding an action, it has
access to all messages sent by the other agent at time 0. We assume that the
time of agent’s computations preceding an action is negligible.

We say that A and B rendezvous at time t (or simply meet) if they share the
same location at time t,

– they both are located at the same node at time t, or

– K ∈ {A,B} started a movement from uK to vK at time tK < t, uA = vB ,
vA = uB, e = {uA, vA}, tK + wK(e) < t and t−tA

wA(e) = 1 − t−tB
wB(e) (infor-

mally speaking, the agents ‘pass’ each other on e as they start from opposite
endpoints of e), or

– K ∈ {A,B} started a movement from u to v at time tK < t, e = {u, v},
tK + wK(e) < t and t−tA

wA(e) = t−tB
wB(e) (informally speaking, both agents start

at the same endpoint but the one of them ‘catches up’ the other: tA < tB
and wA(e) > wB(e), or tA > tB and wA(e) < wB(e)).

Observe that the last case is not possible in an optimum offline solution, as
the agents could rendezvous earlier in the vertex u.
We are interested in the following problem:

Given two integers b and t, does there exist an algorithm whose execution by
A and B guarantees that the agents send to each other at time 0 messages
consisting of at most b bits in total, and A and B meet after time at most t?

Given an algorithm for the agents, we refer to the total number of bits sent
between the agents as the communication complexity of the algorithm. The ren-
dezvous time of an algorithm is the minimum time length t such that the agents
meet at time t as a result of the execution of the algorithm.

314 D. Dereniowski et al.

1.2 Related Work

The rendezvous problem has been thoroughly studied in the literature in different
contexts. In a general setting, the rendezvous problem was first mentioned in [26].
Authors investigating rendezvous (cf. [1] for an extensive survey) considered
either the geometric scenario (rendezvous in an interval of the real line, see,
e.g., [5, 6, 18], or in the plane, see, e.g., [2, 3]) or the graph scenario (see, e.g.,
[14, 17, 23]). A natural extension of the rendezvous problem is that of gathering
[16, 20, 24, 28], when more than two agents have to meet in one location.

Rendezvous in anonymous graphs. In the anonymous graph model, the agents
rely on local knowledge of the graph topology, only. Nodes have no unique iden-
tifiers, and maintain only a local labeling of outgoing edges (ports) leading to
their neighbors. When studying the feasibility and efficiency of deterministic ren-
dezvous in anonymous graphs, a key problem which needs to be resolved is that
of breaking symmetry. Without resorting to marking nodes, this can be achieved
by taking advantage of the different labels of agents [14, 23, 25]. Labeled agents
allowed to mark nodes using whiteboards were considered in [29]. Rendezvous of
labeled agents using variants of Universal Exploration Sequences was also inves-
tigated in [23,27] in the synchronous model, who showed that such meeting can
be achieved in time polynomial in the number of nodes of the graph and in the
length of the smaller of the labels of the agents. For the case of unlabeled agents,
rendezvous is not always feasible when the agents move in synchronous rounds
and are allowed only to meet on nodes. However, for any feasible starting con-
figuration, rendezvous of anonymous agents can be achieved in polynomial time,
and even more strongly, using only logarithmic memory space of the agent [12].
In the asynchronous scenario, it has recently been shown that agents can always
meet within a polynomial number of moves if they have unique labels [15]. For
the case of anonymous agents, the class of instances for which asynchronous ren-
dezvous is feasible is quite similar to that in the synchronous case, though under
the assumption that agents are also allowed to meet on edges (which appears
to be indispensable in the asynchronous scenario), certain configurations with a
mirror-type symmetry also turn out to be gatherable [19].

Location-aware rendezvous. The anonymous scenario may be sharply contrasted
with the case in which the agent has full knowledge of the map of the environ-
ment, and knows its position within it. Such assumption, partly fueled by the
availability and the expansion of the Global Positioning System (GPS), is some-
times called the location awareness of agents or nodes of the network. Thus, the
only unknown variable is the initial location of the other agent. In [4, 9] the au-
thors study the rendezvous problem of location-aware agents in the asynchronous
case. The authors of [9] introduced the concept of covering sequences that per-
mitted location aware agents to meet along the route of polynomial length in
the initial distance d between the agents for the case of multi-dimensional grids.
Their result was further advanced in [4], where the proposed algorithm provides
a route, leading to rendezvous, of length being only a polylogarithmic factor

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 315

away from the optimal rendezvous trajectory. The synchronous case of location-
aware rendezvous was studied in [8], who provided algorithms working in linear
time with respect to the initial distance d for trees and grids, also showing that
for general networks location-aware rendezvous carried a polylogarithmic time
overhead with respect to n, regardless of the initial distance d.

Problems for heterogeneous agents. Scenarios with agents having different capa-
bilities have been also studied. In [13] the authors considered multiple colliding
robots with different velocities traveling along a ring with a goal to determine
their initial positions and velocities. Mobile agents with different speeds were also
studied in the context of patrolling a boundary, see e.g. [11, 22]. In [10] agents
capable of traveling in two different modes that differ with maximal speeds were
considered in the context of searching a line segment. We also mention that
speed, although very natural, is not the only attribute that can be used to dif-
ferentiate the agents. For example, authors in [7] studied robots with different
ranges or, in other words, with different battery sizes limiting the distance that
a robot can travel.

1.3 Additional Notation

Let TK(u, v, w), K ∈ {A,B}, denote the minimum time required by agent K
to move from u to v in G with a weight function w. If w = wK , then we write
TK(u, v) in place of TK(u, v, wK), K ∈ {A,B}. In other words TK(u, v) is the
length of the shortest path from u to v in G with weight function wK , where the
length of a path composed of edges e1, . . . , el is

∑l
j=1 wK(ej). We use the symbol

TOPT(sA, sB) to denote the minimum time for rendezvous in the off-line setting
where agents that are initially placed on sA and sB know all parameters. We will
skip starting positions if it will not lead to confusion writing simply TOPT. Denote
also MK := max{wK(e)

∣∣ e ∈ E}, K ∈ {A,B}, and let M := max{MA,MB}.
All logarithms have base 2, i.e., we write for brevity log in place of log2.

The following lemma, informally speaking, implies that we do not have to
consider scenarios in which rendezvous occurs on edges, and by doing so we
restrict ourselves to solutions among which there exists one that is within a
constant factor from an optimal one. Let TRV(sA, sB, v) denote the minimum
time for rendezvous at v, that is, TRV(sA, sB, v) = max{TA(sA, v), TB(sB , v)}.
Let any node u that minimizes the TRV(sA, sB, u) be called a rendezvous node.

Lemma 1. For each graph G = (V,E) and for each sA, sB ∈ V , if u ∈ V is the
rendezvous node, then TRV(sA, sB, u) ≤ 2TOPT(sA, sB).

Proof. If the two agents can achieve rendezvous on a node in time TOPT(sA, sB),
then the lemma follows and hence we assume in the following that rendezvous
occurs on an edge. For K ∈ {A,B}, let vK be the last node visited by K prior
to rendezvous that the two agents achieve in time TOPT(sA, sB). Observe that
vA �= vB and e = {vA, vB} ∈ E.

316 D. Dereniowski et al.

In an optimum solution at least one of the agents traversed at least half of e,
so

2TOPT(sA, sB) ≥ min{TA(sA, vB), TB(sB , vA)}. (1)

Moreover, TA(sA, vB) > TB(sB, vB) and TB(sB , vA) > TA(sA, vA) , so

min{TA(sA, vB), TB(sB , vA)} = min{max{TA(sA, vB), TB(sB, vB)},
max{TB(sB, vA), TA(sA, vA)}} (2)

= min{TRV(sA, sB, vB), TRV(sA, sB, vA)}.

If u is a rendezvous node, then

min{TRV(sA, sB, vB), TRV(sA, sB, vA)} ≥ TRV(sA, sB, u).

This, together with (1) and (2), prove the lemma. �

1.4 Possible Restrictions on Weight Functions

Arbitrary weight functions might cause very bad performance of rendezvous
(see Theorems 2 and 7). Thus, beside the arbitrary case, we will be interested
in restricted cases, namely:

1. wA and wB are arbitrary functions,
2. ∀e1,e2∈E wA(e1) < wA(e2) ⇐⇒ wB(e1) < wB(e2),
3. ∀e∈E wA(e) ≤ wB(e) or ∀e∈E wB(e) ≤ wA(e).

Case 1 reflects the situation where both agents and edges are not related
in terms of time needed to move along them. Whenever two functions have the
property case 2, we will refer to the problem instance as the case of ordered edges.
Informally, in such scenario both agents obtain the same ordering of edges (up to
resolving ties) with respect to their weights. The last case reflects the situation
where one of the agents is always at least as fast as the other one. Instances with
this property are referred to as the cases of ordered agents.

1.5 Our Results

In this work we analyze the following two extreme scenarios. In the first scenario
(the middle column in Table 1) we consider the communication complexity of
algorithms that guarantee that rendezvous occurs in time Θ(TOPT) regardless
of the starting positions. In the second scenario (the third column) we provide
bounds on the rendezvous time in case when the agents send no messages to
each other.

2 Communication Complexity for Θ(TOPT) Time

In this section we determine upper and lower bounds for communication com-
plexity of algorithms that achieve rendezvous in asymptotically optimal time.
Section 2 is subdivided into three parts reflecting the three cases of weight func-
tions we consider.

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 317

Table 1. Summary of results (n is the number of nodes of the input graph)

communication complexity for
rendezvous in time Θ(TOPT)

rendezvous time in case
of no communication

Case 1: arbitrary O(n · (log log(M · n))) (Thm. 1)
Ω(n) (Thm. 2)

Θ(n · TOPT) (Thms 6, 7)

Case 2: ordered edges O(log logM + log2 n) (Thm. 3)
Ω(logn) (Thm. 4)

O(n · TOPT) (Thm. 6)
Ω(

√
n · TOPT) (Thm. 8)

Case 3: ordered agents none (Thm. 5) Θ(TOPT) (Thm. 5)

2.1 The Case of Arbitrary Functions

We start by giving an upper bound on communication complexity of asymp-
totically optimal rendezvous. Our method is constructive, i.e., we provide an
algorithm for the agents (see proof of Theorem 1). Then, (cf. Theorem 2) we
give the corresponding lower bound.

Theorem 1. There exists an algorithm that guarantees rendezvous in Θ(TOPT)
time and has communication complexity O(n(log log(M ·n))) for arbitrary func-
tions.

Proof. Let I0 = [0, 1], and for j > 0 let Ij = (2j−1, 2j]. Denote V = {v1, . . . , vn},
where the vertices are ordered according to their identifiers. We first formulate
an algorithm and then we prove that it has the required properties. We assume
that A is the executing agent and B is the other agent (the algorithm for B is
analogous).

1. For each j = 1, . . . , n (in this order) send to B the integer r(A, j) such that
TA(sA, vj) ∈ Ir(A,j).

2. After receiving the corresponding messages from B, construct T ′ : V �→ N+

such that

T ′(vj) := max{2r(A,j), 2r(B,j)}, j ∈ {1, . . . , n}.

3. Find a node vρ with minimum value of T ′(vρ). If more than one such node
vρ exists, then take vρ to be the one with minimum identifier.

4. Go to vρ along a shortest path and stop.

Note that both agents compute the same function T ′. This in particular im-
plies that the same vertex vρ, to which each agent goes, is selected by both
agents. Hence, the agents rendezvous at vρ. The transmission of r(K, j) requires
O(log log(M · n)) bits because r(K, j) = O(log(M · n)) for each K ∈ {A,B}
and j ∈ {1, . . . , n}. Thus, the communication complexity of the algorithm is
O(n log log(M · n)).

We now give an upper bound on the rendezvous time at vρ. By definition, for
each j ∈ {1, . . . , n} and for each K ∈ {A,B} we have

2r(K,j)−1 ≤ TK(sK , vj) ≤ 2r(K,j).

318 D. Dereniowski et al.

Thus, having in mind that TRV(sA, sB, v) = max{TA(sA, v), TB(sB, v)}, we ob-
tain:

1

2
T ′(vj) ≤ TRV(sA, sB, vj) ≤ T ′(vj), j ∈ {1, . . . , n}. (3)

Now, let u be a rendezvous node. By (3), the choice of index ρ, again by (3) and
by Lemma 1 we obtain

TRV(sA, sB, vρ) ≤ T ′(vρ) ≤ T ′(u) ≤ 2TRV(sA, sB, u) ≤ 4TOPT(sA, sB),

which completes the proof. �

Theorem 2. Each algorithm that guarantees rendezvous in time Θ(TOPT) has
communication complexity Ω(n) for some n-node graphs.

Proof. Let G be a class of graph such that each G ∈ G is a complete bipartite
graph K2,n with V = {sA, sB, v1, v2, . . . vn} and E = EA ∪ EB, where EK ={
{sK , vj}

∣∣ j ∈ {1, 2, . . . n}} , K ∈ {A,B}, and, for each K ∈ {A,B}, wK(e) =
X for each e ∈ E \ EK and wK(e) ∈ {1, X} for each e ∈ EK , where X is a
sufficiently big integer, e.g., X = n.

Note that for each G ∈ G, TOPT ∈ {1, X}. Moreover, TOPT = 1 if and only if
there exists an index j ∈ {1, . . . , n} such that wA({sA, vj}) = wB({sB, vj}) = 1.
A problem to find such an index j is equivalent to a known problem of set
intersection [21] and requires Ω(n) bits to be transmitted between A and B. �

2.2 The Case of Ordered Edges

Theorem 3. There exists an algorithm that guarantees rendezvous in Θ(TOPT)
time and has communication complexity O(log logM + log2 n) in case of mono-
tone edges.

Proof. Let I0 = [0, 1], and for j > 0 let Ij = (2j−1, 2j]. For K ∈ {A,B} and a
function wK : E �→ N+ let m(wK) be the maximum integer such that the removal
of all edges from G with weights greater than m(wK) disconnects G in such a
way that sA and sB belong to different connected components. For K ∈ {A,B}
and j ≥ 0, define rKj = |{e ∈ E

∣∣ wK(e) ∈ Ij}|.
We now give a statement of an algorithm with communication complexity

O(log logM+log2 n). Then, we prove that its execution by each agent guarantees
rendezvous in time Θ(TOPT).

1. Let A be the executing agent and let B be the other agent (the statement for
B is analogous). Send to B the index cA such thatm(wA) ∈ IcA (this requires
sending log cA ≤ log logm(wA) = O(log logM) bits). Set c := min{cA, cB}
(cB is in the corresponding message received from B).

2. Send to B the value of rAc and, for each j ∈ {1, . . . , �logn�} send to B the
values of rAc+j and rAc−j (this requires sending O(log2 n) bits in total).

3. Send to B the value of rA := rA0 +rA1 +· · ·+rAc−�log n�−1 (this requires sending

O(log n) bits).

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 319

4. After receiving the corresponding messages from B construct a weight func-
tion w̃B : E �→ N+ as follows. First, sort the edges so that wA(ej) ≤ wA(ej+1)
for each j ∈ {1, . . . , |E| − 1}. Denote

EB
0 = {e1, . . . , erB} and EB

∞ = E \ {e
∣∣ w̃B(e) ∈ I0 ∪ · · · ∪ Ic+�log n�}.

Then, w̃B(e) := 0 for each e ∈ EB
0 ; w̃B(e) = +∞ for each e ∈ EB

∞; and
for each edge e ∈ E \ (EB

0 ∪ EB
∞) set w̃B(e) := 2j

′−1 if e ∈ Ij′ (this can be
deduced from messages received from B).

5. Calculate the function w̃A (i.e., the function that B constructs based on the
information sent to B).

6. Find a node vρ ∈ V such that max{TA(sA, vρ, w̃A), TB(sB, vρ, w̃B)} is min-
imum. If more than one such node exists, then take vρ to be the one with
minimum identifier.

7. Go to vρ along a shortest path and stop.

Note that the communication complexity of the above algorithm is O(log logM+
log2 n). Also, both agents calculate w̃A and w̃B and hence the node vρ is the
same for both agents, which implies that the algorithm guarantees rendezvous.

Therefore, it remains to prove that

max{TA(sA, vρ), TB(sB, vρ)} = O(TOPT(sA, sB)).

Due to Lemma 1, it is enough to show that

max{TA(sA, vρ), TB(sB , vρ)} = O(TRV(sA, sB, u)), (4)

where u is a rendezvous node. For K ∈ {A,B} and x ∈ {u, vρ}, let P x
K be the

set of edges of a shortest path from sK to x in G with weight function wK and
let P̃ x

K be the set of edges of a shortest path from sK to x in G with weight
function w̃K . Note that (4) follows from

max
{
wA(P

vρ
A), wB(P

vρ
B)
}
= O (max{wA(P

u
A), wB(P

u
B)}) . (5)

Due to the lack of space we skip the proof of the latter equation1. �

Theorem 4. Each algorithm that guarantees rendezvous in time Θ(TOPT) has
communication complexity Ω(logn) for some n-node graphs in case of ordered
edges.

Proof. Let k be a positive integer. We first define a family of graphs G =
{G1, . . . , Gk}. Each graph in G has the same structure, namely, the vertices
sA and sB are connected with k node-disjoint paths but the graphs in G have
different weight functions associated with them. Each of those paths consists of
exactly k + 2 edges (see Figure 1).

Thus, each graph in G has k2+k+2 nodes andm = k2+2k edges. The edges are
denoted by e1, . . . , em. The location of each edge in G is shown in Figure 1, where

1 The complete proof can be found at http://hal.inria.fr/hal-01003010

http://hal.inria.fr/hal-01003010

320 D. Dereniowski et al.

� ���

�

�

�

�

� �

�

�

�

��

�� �

�� ��

� � ��

� � ��

�

�

�

�

�� �

� � �

� � �

� ��

� ��

� � �� �

sa sb

k2 + k + 1

k2 + k + 2

k2 + 2k − 1

k2 + 2k

1

k + 1

(k − 2)k + 1

(k − 1)k + 1

2

k + 2

(k − 2)k + 2

(k − 1)k + 2

k

2k

(k − 1)k

k2

k2 + k

k2 + k − 1

k2 + 2

k2 + 1

Fig. 1. The structure of the graphs in the proof of Theorems 4 and 8; the numbers
give ordering of edges with respect to agents’ weight functions

for improving the presentation we write i in place of ei for each i ∈ {1, . . . ,m}.
We will set the labels of the edges so that wK(e1) < · · · < wK(em) for each
K ∈ {A,B}. Now, for each graph in G, we put

wA(ei) := X + i for each i ∈ {1, . . . ,m},

where X = k4. For i ∈ {1, . . . ,m} and j ∈ {1, . . . , k}, we set the weight function
wB for Gj as follows:

wB(ei) :=

⎧⎪⎨⎪⎩
i, for i ≤ jk,

X + i, for jk < i ≤ k2 + k − j + 1,

kX + i, for k2 + k − j + 1 < i.

Note that wA(e1) < · · · < wB(em) and wB(e1) < · · · < wB(em) in each graph
Gj ∈ G which ensures that all problem instances are cases of ordered edges.

Let Gj ∈ G. Denote by H1, . . . , Hk the k edge-disjoint paths connecting sA
and sB, where Hj′ is the path containing the edge ek2+k+j′ incident to sA,
j′ ∈ {1, . . . , k}. We argue that if A and B rendezvous on a path Hj′ in time
at most kX/2, then j′ = j. First note that A is not able to reach any vertex
adjacent to sB in time kX/2. Also, j′ < j is not possible for otherwise B would
traverse one of the edges ek2+k−j+2, . . . , ek2+k, each of weight at least kX — a
contradiction. Now, suppose for a contradiction that j′ > j. Then, one of the
agents traverses at least half of the path Hj′ , i.e., it traverses at least k/2 + 1
of its edges. If this agent is A, then clearly rendezvous occurs not earlier than
(k/2+1)X — a contradiction. If this agent is B, then it does not traverse any of
the edges e1, . . . , ejk, since those belong to paths H1, . . . , Hj and we have j′ > j.
Hence, by the definition of wB , we also have rendezvous after more than kX/2
time units, which gives the required contradiction. We have proved that, in Hj ,
rendezvous is obtained before time kX/2 only if it occurs on the path Hj .

Observe that for n large enough it holds TOPT(sA, sB) < 2X for each Gj ∈ G.
To see that, let A traverse the edge ek2+k+j , and let B traverse the remain-
ing edges of Hj , i.e., e(j−1)k+1, e(j−1)k+2, . . . , e(j−1)k+k and ek2+k−j+1. We have
wA(ek2+k+j) = X +Θ(k2) and

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 321

wB(ek2+k−j+1) +

k∑
l=1

wB(e(j−1)k+l) = X + k2 + k − j + 1+

k∑
l=1

((j − 1)k + l)

= X +O(k3).

Since X = k4, we obtain that TOPT(sA, sB) < 2X for n large enough.
Suppose for a contradiction that there exists an algorithm A that guarantees

rendezvous in time Θ(TOPT) and has communication complexity o(logn). Let
C be such a constant that the rendezvous time guaranteed by A is bounded
by CTOPT. We will show that for n > C4, the algorithm A that sends at most
C2 logn bits, where C2 = 3

8 , cannot guarantee rendezvous in time CTOPT, which
will give the desired contradiction.

Note that in each algorithm, and thus in particular in A, if the agentA receives
the same message from B in two different graphs in G, then A must traverse the
same sequence of edges for both graphs.

The number of all possible messages that A might receive using C2 logn bits
is at most 2C2 logn. Observe that 2C2 logn < k

C . Indeed,

C2 =
3

8
=

logn3/4

2 logn
<

log(n/C)

2 logn
<

log(k/C)

logn

implies the required inequality. Thus, there must exist G′, a subset of G, with
at least C + 1 elements such that A traverses the same sequence of edges for all
graphs in G′.

To traverse an edge adjacent to sA from Hi, the agent A requires X + i > X
units of time. In order to traverse any of the remaining edges, A requires to
traverse back the mentioned edge first using X + i > X units of time again.
Hence, during CTOPT < 2CX time, A is able to traverse at most C edges
adjacent to sA. It implies that there must exist an index j such that Gj ∈ G′
and agent A does not traverse an edge from Hj adjacent to sA. It means that A
has not met B in time 2CX > CTOPT, a contradiction. �

2.3 The Case of Ordered Agents

Now we will present a general solution which achieves Θ(TOPT(sA, sB)) time
without communication for the case of ordered agents. This property allows us
to obtain our asymptotically tight bounds both for communication complexity
of optimal-time rendezvous and for optimal rendezvous time with no communi-
cation. We point out that, unlike in previous cases, the algorithms for the agents
are different, i.e., A and B perform different (asymmetric) actions. We assume
that the algorithm for the agent A (respectively, B) is executed by the agent
whose starting node has smaller (bigger, respectively) identifier. Note that, since
both agents know the graph and both starting nodes, they can correctly decide
on executing an algorithm.

322 D. Dereniowski et al.

Simple Algorithm Tasks of agent A:

1. wait TA(sA, sB) units of time,
2. go to sB along an arbitrarily chosen shortest path (according to the weight

function wA) from sA to sB, and return to sA along the same path and stop.

Tasks of agent B:

1. wait TB(sA, sB) units of time,
2. go to sA along an arbitrarily chosen shortest path (according to the weight

function wB) from sB to sA and stop.

Lemma 2. For the case of ordered agents, Simple Algorithm guarantees ren-
dezvous in time 6min{TA(sA, sB), TB(sA, sB)}.
Proof. For sure, A and B will eventually rendezvous, as both of them reach sA
and stay there. Let y be the time point at which the agents rendezvous. Let us
consider agent A. It might meet B while:

1. waiting TA(sA, sB) units of time at sA. In this case y = 2TB(sA, sB) ≤
TA(sA, sB).

2. moving towards sB or on the way back to sA. Clearly y ≤ 3TA(sA, sB). Also,
agent B at time point y is either at sB or is moving from sB to sA. Thus,
y ≤ 2TB(sA, sB).

3. arriving at sA, i.e., rendezvous occurs at sA at the moment when A returns
to sA. Clearly, y ≤ 3TA(sA, sB). As the agents have not met at sA before A
started moving, we have TA(sA, sB) ≤ 2TB(sA, sB). So, y ≤ 6TB(sA, sB).

4. waiting forB at sA after the path traversals. Clearly, y = 2TB(sA, sB). In this
case, as the agents have not met at sB, we have TB(sA, sB) ≤ 2TA(sA, sB).
So, y ≤ 4TA(sA, sB).

�
We remark that the constant 6 from Lemma 2 might be reduced to 2

√
2 + 3

if we would allow both agents A and B to wait a little longer in the initial state:√
2TA(sA, sB) and

√
2TB(sA, sB) respectively.

Lemma 3. In the case of ordered agents we have

min{TA(sA, sB), TB(sA, sB)} ≤ 2TOPT(sA, sB)

Proof. Suppose that both agents rendezvous at x after TOPT(sA, sB) units of
time. If rendezvous does not occur at a node, then with a slight abuse of notation
we write TK(u, x) to denote the time an agent K needs to go from a node u to x.
Suppose without loss of generality that A is a ‘faster’ agent, i.e., wA(e) ≤ wB(e)
for each edge e. This in particular implies that TA(sA, sB) ≥ TB(sA, sB) and
hence it remains to provide the upper bound on TA(sA, sB). Moreover, by first
using the triangle inequality we have TA(sA, sB) ≤ TA(sA, x) + TA(x, sB) ≤
TA(sA, x) + TB(x, sB) ≤ 2TOPT(sA, sB). �

Now, due to Lemmas 2 and 3, we are ready to conclude:

Theorem 5. In the case of ordered agents (case 3) there exists an algorithm
that guarantees rendezvous in time Θ(TOPT(sA, sB)) without performing any
communication. �

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 323

3 Rendezvous with No Communication

3.1 The Case of Arbitrary Functions

Theorem 6 below gives the upper bound on rendezvous time without communi-
cation. Then, Theorem 7 provides our lower bound for this case.

Theorem 6. There exists an algorithm that without performing any communi-
cation guarantees rendezvous in time O(n ·TOPT(sA, sB)), where n is the number
of nodes of the network.

Proof. We start by giving an algorithm. Its first step in an initialization and the
remaining steps form a loop. Denote V = {v1, . . . , vn}.

1. Let initially x := 1. Let K be the executing agent.
2. For each j ∈ {1, . . . , n} do:
2.1. If TK(sK , vj) ≤ x, then set x′ := TK(sK , vj) and go to vj along a shortest

path. Otherwise, set x′ := 0.
2.2. Wait x− x′ time units at the current node.
2.3. Return to sK along a shortest path. (This step is vacuous if x′ = 0.)
2.4. Wait x− x′ time units.

3. Set x := 2x and return to Step 2.

Let us introduce some notation regarding the above algorithm. We divide the
time into phases, where the p-th phase, p ≥ 0, consists of all time units in which
both agents were performing actions determined in Step 2 for x = 2p. Then, each
phase is further subdivided into stages, where the s-th stage, s ∈ {1, . . . , n}, of
the p-th phase consists of all time units in which both agents were performing
actions determined in Step 2 for x = 2p and j = s. Note that these definitions
are correct since both agents simultaneously start at time 0.

First observe, by a simple induction on the total number of stages, that at the
beginning of each stage each agent K ∈ {A,B} is present at sK . We now prove
that both agents are guaranteed to rendezvous at a rendezvous node v in the
p-th phase, where 2p ≥ max{TA(sA, v), TB(sB, v)}. Consider the s-th stage of
p-th phase such that vs = v. Since 2p ≥ max{TA(sA, v), TB(sB, v)}, both agents
reach v in at most 2p moves. Due to the waiting time of 2p−TK(sK , v) of agent
K ∈ {A,B} after reaching v, we obtain that both agents are present at v at the
end of the 2p-th time unit of the s-stage in the p-th phase. This completes the
proof of the correctness of our algorithm.

It remains to bound the time in which the agents rendezvous. The dura-
tion of the p-th phase is O(n2p). The total number of phases is at most P =
�logmax{TA(sA, v), TB(sB, v)}�. Thus, the agents rendezvous in time

O(n

P∑
p=1

2p) = O(n2P) = O (n ·max{TA(sA, v), TB(sB , v)}) .

Lemma 1 implies that the agents rendezvous in time O(n · TOPT(sA, sB)) as
required. �

324 D. Dereniowski et al.

Theorem 7. Any algorithm that without performing any communication guar-
antees rendezvous uses time Ω(n ·TOPT(sA, sB)), where n is the number of nodes
of the network.

Proof. Let us consider the complete bipartite graph G given in the proof of
Theorem 2 with V (G) = {sA, sB, v1, v2, . . . vn} and E = EA ∪ EB, where

EK =
{
{sK , vj}

∣∣ j ∈ {1, 2, . . . n}} , K ∈ {A,B}.

Let wA(e) = X for each e ∈ EB and wA({sA, vi}) = 1 for each e ∈ EA, where
X is some sufficiently big integer, sayX = n. We will now give a partial definition
of wB , starting with wB(e) = X for each e ∈ EA. This weight functions will be
constructed in such a way that rendezvous at time 1 is possible. Informally, we
will set only one edge in EB to have weight 1 for the agent B while the remaining
edges will have weight X . This is done by analyzing possible moves of the agent
A.

Now, we consider an arbitrary sequence of moves of agent A during the first
n time units. Clearly, after this time, agent A is not able to reach sB. There also
exists an edge {sA, vj} ∈ EA that agent A performed no move along it, i.e., A
did not visit vj . We set wB({sA, vj}) := 1 and wB({sA, vi}) := X for all i �= j.

It is easy to observe that TOPT(sA, sB) is equal to 1 and this time can be
achieved only by a meeting at vj . However, A and B did not rendezvous during
the first n time units. Thus, there exists no algorithm that guarantees rendezvous
in time o(n · TOPT(sA, sB)). �

3.2 Lower Bound for the Case of Ordered Edges without
Communication

Theorem 8. In the case of ordered edges, any algorithm that guarantees ren-
dezvous without performing any communication uses time Ω(

√
n·TOPT(sA, sB)),

where n is the number of nodes of the network.

Proof. We will use the same family of graphs G as constructed in the proof of
Theorem 4; see also Figure 1. Recall that if A and B rendezvous on a path Hj′

in time at most kX/2, then j′ = j and TOPT = O(X) for each Gj ∈ G.
Note that, the agent A has the same input for each graph in G since wA is the

same for all graphs in G. Thus, for any algorithm A, the agent A traverses the
same sequence of edges for each graph in G. Moreover, rendezvous time bounded
by kX/2 (see the proof of Theorem 4) implies that there exist edges adjacent to
sA that A does not traverse. In other words, there exists j ∈ {1, . . . , k} such that
A traverses no edge ofHj . Therefore, we obtain that A and B cannot rendezvous
in Gj in time less than kX/2. Since k = Θ(

√
n) and rendezvous can be achieved

in time O(X) for each graph in G the proof has been completed. �

4 Final Remarks

It seems that the most interesting and challenging among the analyzed cases
is the one of ordered edges without communication. There is still a substantial

Rendezvous of Heterogeneous Mobile Agents in Edge-Weighted Networks 325

gap between the lower and the upper bounds we have provided and we leave
it an interesting open question whether there exists an algorithm with a better
approximation ratio than that of O(nTOPT). It is also interesting if the upper
bound M on the weights of the edges affects the communication complexity for
arbitrary functions and the cases of ordered edges.

Another interesting research direction is to analyze scenarios in which we
allow agents to communicate at any time. To point out an advantage that the
agents may gain in such case, note that the agents can rendezvous very quickly
in graphs that we used for a lower bound in the proof of the Theorem 4. Indeed,
transmitting just one bit in the moment correlated with the index of the preferred
(optimal for rendezvous) path would help the agents to learn which path they
should follow.

References

1. Alpern, S., Gal, S.: The theory of search games and rendezvous. International Series
in Operations Research and Managment Science. Kluwer Academic Publishers,
Boston (2003)

2. Anderson, E., Fekete, S.: Asymmetric rendezvous on the plane. In: Proceedings of
14th Annual ACM Symposium on Computational Geometry (SoCG), pp. 365–373
(1998)

3. Anderson, E., Fekete, S.: Two-dimensional rendezvous search. Operations Re-
search 49(1), 107–118 (2001)

4. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Labourel, A.: Almost opti-
mal asynchronous rendezvous in infinite multidimensional grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Hei-
delberg (2010)

5. Baston, V., Gal, S.: Rendezvous on the line when the players’ initial distance
is given by an unknown probability distribution. SIAM Journal on Control and
Optimization 36(6), 1880–1889 (1998)

6. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points.
Naval Research Logistics 48(8), 722–731 (2001)

7. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by
energy-constrained mobile agents. In: Flocchini, P., Gao, J., Kranakis, E., Meyer
auf der Heide, F. (eds.) ALGOSENSORS 2013. LNCS, vol. 8243, pp. 111–122.
Springer, Heidelberg (2013)

8. Collins, A., Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Martin, R.: Synchronous
rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 447–459. Springer, Heidelberg (2011)

9. Collins, A., Czyzowicz, J., G ↪asieniec, L., Labourel, A.: Tell me where I am so I
can meet you sooner. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 502–514.
Springer, Heidelberg (2010)

10. Czyzowicz, J., Gasieniec, L., Georgiou, K., Kranakis, E., MacQuarrie, F.: The
beachcombers’ problem: Walking and searching with mobile robots. CoRR,
abs/1304.7693 (2013)

11. Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Kranakis, E.: Boundary patrolling by
mobile agents with distinct maximal speeds. In: Demetrescu, C., Halldórsson, M.M.
(eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

326 D. Dereniowski et al.

12. Czyzowicz, J., Kosowski, A., Pelc, A.: How to meet when you forget: log-space
rendezvous in arbitrary graphs. Distributed Computing 25(2), 165–178 (2012)

13. Czyzowicz, J., Kranakis, E., Pacheco, E.: Localization for a system of colliding
robots. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 508–519. Springer, Heidelberg (2013)

14. Dessmark, A., Fraigniaud, P., Kowalski, D.R., Pelc, A.: Deterministic rendezvous
in graphs. Algorithmica 46(1), 69–96 (2006)

15. Dieudonné, Y., Pelc, A., Villain, V.: How to meet asynchronously at polynomial
cost. CoRR, abs/1301.7119 (2013)

16. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1-3), 147–168 (2005)

17. Fraigniaud, P., Pelc, A.: Deterministic rendezvous in trees with little memory. In:
Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 242–256. Springer, Heidel-
berg (2008)

18. Gal, S.: Rendezvous search on the line. Operations Research 47(6), 974–976 (1999)
19. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary

graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS,
vol. 7109, pp. 421–434. Springer, Heidelberg (2011)

20. Israeli, A., Jalfon, M.: Token management schemes and random walks yield self-
stabilizing mutual exclusion. In: Dwork, C. (ed.) PODC, pp. 119–131. ACM (1990)

21. Kalyanasundaram, B., Schintger, G.: The probabilistic communication complexity
of set intersection. SIAM J. Discret. Math. 5(4), 545–557 (1992)

22. Kawamura, A., Kobayashi, Y.: Fence patrolling by mobile agents with distinct
speeds. In: Chao, K.-M., Hsu, T.-S., Lee, D.-T. (eds.) ISAAC 2012. LNCS,
vol. 7676, pp. 598–608. Springer, Heidelberg (2012)

23. Kowalski, D.R., Malinowski, A.: How to meet in anonymous network. Theoretical
Computer Science 399(1-2), 141–156 (2008)

24. Lim, W., Alpern, S.: Minimax rendezvous on the line. SIAM Journal on Control
and Optimization 34(5), 1650–1665 (1996)

25. Marco, G.D., Gargano, L., Kranakis, E., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. Theoretical Computer Science 355(3),
315–326 (2006)

26. Schelling, T.: The strategy of conflict. Oxford University Press, Oxford (1960)
27. Ta-Shma, A., Zwick, U.: Deterministic rendezvous, treasure hunts and strongly

universal exploration sequences. In: Proceedings of 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pp. 599–608 (2007)

28. Thomas, L.: Finding your kids when they are lost. Journal of the Operational
Research Society 43(6), 637–639 (1992)

29. Yu, X., Yung, M.: Agent rendezvous: A dynamic symmetry-breaking problem. In:
Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp.
610–621. Springer, Heidelberg (1996)

Move-Optimal Partial Gathering

of Mobile Agents in Asynchronous Trees

Masahiro Shibata, Fukuhito Ooshita, Hirotsugu Kakugawa,
and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University
{m-sibata,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. In this paper, we consider the partial gathering problem of
mobile agents in asynchronous tree networks. The partial gathering prob-
lem is a new generalization of the total gathering problem, which requires
that all the agents meet at the same node. The partial gathering prob-
lem requires, for given input g, that each agent should move to a node
and terminate so that at least g agents should meet at the same node.
The requirement for the partial gathering problem is weaker than that
for the (well-investigated) total gathering problem, and thus, we clarify
the difference on the move complexity between them. We assume that
n is the number of nodes and k is the number of agents. We propose
two algorithms to solve the partial gathering problem. First, we consider
the strong multiplicity detection and non-token model. In this model, we
show that agents require Ω(kn) total moves to solve the partial gathering
problem and we propose an algorithm to achieve the partial gathering in
O(kn) total moves. Second, we consider the weak multiplicity detection
and removable-token model. In this model, we propose an algorithm to
achieve the partial gathering in O(gn) total moves. It is known that the
partial gathering problem requires Ω(gn) total moves. Hence, the second
algorithm is asymptotically optimal in terms of total moves.

Keywords: distributed system, mobile agent, gathering problem, par-
tial gathering problem.

1 Introduction

1.1 Background and Our Contribution

A distributed system is a system that consists of a set of computers (nodes) and
communication links. In recent years, distributed systems have become large
and design of distributed systems has become complicated. As a way to design
efficient distributed systems, (mobile) agents have attracted a lot of attention
[1–5]. Agents can traverse the system and process tasks on each node, hence they
can simplify design of distributed systems.

The total gathering problem is a fundamental problem for agents’ cooperation
[1, 6–9]. The total gathering problem requires all agents to meet at a single node
in finite time. The total gathering problem is useful because, by meeting at a

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 327–342, 2014.
c© Springer International Publishing Switzerland 2014

328 M. Shibata et al.

single node, all agents can share information or synchronize behaviors among
them.

In this paper, we consider a variant of the gathering problem, called the partial
gathering problem [10]. The partial gathering problem does not always require
all agents to gather at a single node, but requires agents to gather partially at
several nodes. More precisely, we consider the problem which requires, for given
input g, that each agent should move to a node and terminate so that at least
g agents should meet at the same node. We define this problem as the g-partial
gathering problem. Clearly, if k/2 < g ≤ k holds, the g-partial gathering problem
is equal to the total gathering problem. If 2 ≤ g ≤ k/2 holds, the requirement
for the g-partial gathering problem is weaker than that for the total gathering
problem, and thus it seems possible to solve the g-partial gathering problem
with smaller total moves. In addition, the g-partial gathering problem is still
useful especially in large-scale networks. This is because, in the total gathering
problem, it requires high costs for all agents to meet at a single node. On the
other hand, the cost for at least g agnets to meet at several nodes is not as high
as the cost for all agents to meet at a single node. Moerover, agents can share
information and process tasks cooperatively among at least g agents.

The g-partial gathering problem in unidirectional ring networks is studied in
[10]. For distinct agents (i.e., agents have distinct IDs), the paper proposes a
deterministic algorithm to solve the g-partial gathering problem in O(gn) to-
tal moves without knowledge of k. For anonymous agents (i.e., agents have no
IDs), the paper proposes a randomized algorithm to solve the g-partial gathering
problem in O(n log k+gn) expected total moves. Since the total gathering prob-
lem requires Ω(kn) total moves, these results show that the g-partial gathering
problem can be solved in smaller total moves compared to the total gathering
problem. Moreover, since the g-partial gathering problem requires Ω(gn) total
moves if g ≥ 2, the paper showed that the deterministic algorithm is asymptot-
ically optimal in terms of total moves.

In this paper, we consider the g-partial gathering problem for asynchronous
tree networks for the case 2 ≤ g ≤ k/2. The contribution of this paper is summa-
rized in Table 1. We consider two multiplicity detection models and two token
models. First, we consider the case of the strong multiplicity detection and non-
token model, where in the strong multiplicity detection model each agent can
count the number of agents at the current node. In this case, we show that
agents require Ω(kn) total moves to solve the g-partial gathering problem. In
addition, we propose a deterministic algorithm to solve the g-partial gathering
problem in O(kn) total moves, that is, our algorithm is asymptotically optimal
in terms of the total moves. Second, we consider the case of the weak multiplicity
detection and removable-token model, where in the weak multiplicity detection
model each agent can detect whether another agent exists at the current node
or not but cannot count the exact number of agents. In this case, we propose a
deterministic algorithm to solve the g-partial gathering problem in O(gn) total
moves. This result shows that the total moves can be reduced by using tokens.
Since agents require Ω(gn) total moves to solve the g-partial gathering problem,

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 329

Table 1. Proposed algorithms in asynchronous trees

Model Algorithm 1 Algorithm 2

Multiplicity detection Strong Weak

Removable-token Not available Available

The total moves Θ(kn) Θ(gn)

this algorithm is also asymptotically optimal in terms of the total moves. Note
that, due to limitation of space, we omit discriptions of pseudocode and proofs
of lemmas and theorems.

1.2 Related Works

Many fundamental problems for cooperation of mobile agents have been studied
in literature. For example, the searching problem [2, 5, 11], the gossip problem
[3], the election problem [12], the map construction problem [4], and the total
gathering problem [1, 6–9] have been studied.

In particular, the total gathering problem has received a lot of attention and
has been extensively studied in many topologies, which include lines [13, 14],
trees [1, 3, 7–9, 15], tori [1, 16], arbitrary graphs [13, 17, 18] and rings [1, 3,
6, 13, 19]. The total gathering problem for trees has been extensively studied
because tree networks are utilized in a lot of applications. To solve the total
gathering problem, it is necessary to select exactly one gathering node, i.e., a
node where all agents meet. There are many ways to select the gathering node.
For example, in [1, 16, 19–22], agents leave marks (tokens) on their initial nodes
and select the gathering node based on every distance of neighboring tokens. In
[2, 11], agents have distinct IDs and select the gathering node based on the IDs.
In [6], agents can use random numbers and select the gathering node based on
IDs generated randomly. In [1, 3, 12], agents execute the leader agent election
and the elected leader decides the gathering node. In [7–9, 15, 17], agents explore
graphs and decide which node they meet at.

2 Preliminaries

2.1 Network and Agent Model

A tree network T is a tuple T = (V, L), where V is a set of nodes and L is
a set of communication links. We denote by n (= |V |) the number of nodes.
Let dv be the degree of v. We assume that each link l incident to v is uniquely
labeled at v from the set {0, 1, . . . , dv − 1}. We call this label port number.
Since each communication link connects to two nodes, it has two port numbers.
However, port numbering is local, that is, there is no coherence between two
port numbers. The path P (v0, vk) = (v0, v1, . . . , vk) with length k is a sequence
of nodes from v0 to vk such that {vi, vi+1} ∈ L (0 ≤ i < k) and vi �= vj if

330 M. Shibata et al.

i �= j. Note that, for any u, v ∈ V , P (u, v) is unique in a tree. The distance
from u to v, denoted by dist(u, v), is the length of the path from u to v. The
eccentricity r(u) of node u is the maximum distance from u to an arbitrary node,
i.e., r(u) = maxv∈V dist(u, v). The radius R of the network is the minimum
eccentricity in the network. A node with eccentricity R is called a center. We
use the following theorem about a center later [23].

Theorem 1. There exist one or two center nodes in a tree. If there exist two
center nodes, they are neighbors.

Let A = {a1, a2, . . . , ak} be a set of agents. We assume that each agent does
not know the number n of nodes and the number k of agents. We consider the
strong multiplicity detection model and the weak multiplicity detection model in
tree networks. In the strong multiplicity detection model, each agent can count
the number of agents at the current node. In the weak multiplicity detection
model, each agent can recognize whether another agent stays at the same node
or not, but cannot count the number of agents on its current node. However, in
both models, each agent cannot detect the states of agents at the current node.
Moreover, we consider the non-token model and the removable-token model. In
the non-token model, agents cannot mark the nodes or the edges in any way. In
the removable-token model, each agent initially has a token and can leave it on a
node, and agents can remove such tokens. We assume that agents are anonymous
(i.e., agents have no IDs) and execute a deterministic algorithm. We model an
agent as a finite automaton (S, δ, sinitial, sfinal). The first element S is the set
of all states of agents, which includes initial state sinitial and final state sfinal.
When an agent changes its state to sfinal, the agent terminates the algorithm.
The second element δ is the state transition function. In the strong multiplicity
detection and non-token model, δ is described as δ : S×MT ×N → S ×MT . In
the definition, set MT = {⊥, 0, 1, . . . , Δ − 1} represents the agent’s movement,
where Δ is the maximum degree of the tree. In the left side of δ, the value of
MT represents the port number of the current node that the agent observes in
visiting the current node (The value is ⊥ in the first activation). In the right side
of δ, the value of MT represents the port number through which the agent leaves
the current node to visit the next node. If the value is ⊥, the agent does not move
and stays at the current node. In addition, N represents the number of other
agents at the current node. In the weak multiplicity detection and removable-
token model, δ is described as δ : S ×MT × EXA × EXT → S × EXT ×MT .
In the definition, EXA = {0, 1} represents whether another agent stays at the
current node or not. The value 0 represents that no other agents stay at the
current node, and the value 1 represents that another agent stays at the current
node. In addition, in the left side of δ, EXT = {0, 1} represents whether a token
exists at the current node or not. The value 0 of EXT represents that there does
not exist a token at the current node, and the value 1 of EXT represents that
there exists a token at the current node. In the right side of δ, EXT = {0, 1}
represents whether an agent remove a token at the current node or not. If the
value of EXT in the left side is 1 and the value of EXT in the right side is
0, it means that an agent removes a token at the current node. Otherwise, it

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 331

means that an agent does not remove a token at the current node. Note that, in
both models, we assume that each agent is not imposed any restriction on the
memory.

2.2 System Configuration

In the non-token model, (global) configuration c is defined as a product of states
of agents and locations of agents. In the removable-token model, configuration c
is defined as a product of states of agents, states of nodes (tokens), and locations
of agents. Moreover, in the initial configuration c0, we assume that node vj has
a token if there exists an agent at vj , and vj does not have a token if there exists
no agent at vj . In both models, we assume that no pair of agents stay at the
same node in the initial configuration c0.

Let Ai be an arbitrary non-empty set of agents. When configuration ci changes

to ci+1 by a step of every agent in Ai, we denote the transition by ci
Ai−→

ci+1. In the both models, each aj ∈ Ai reaches some node (if aj exists in some
link), executes local computation, leaves the node or stays at the node as one
common atomic step. Concretely, in the strong multiplicity detection and non-
token model, each aj ∈ Ai reaches some node (if aj exists in some link), counts
the number of agents at the current node, executes local computation, decides
the port number, and moves to the node through the port number or stays at the
current node. In the weak multiplicity detection and the removable-token model,
each aj ∈ Ai reaches some node (if aj exists in some link), detects whether there
exists another agent at the current node or not, detects whether there exists a
token at the current node or not, executes local computation, decides whether
the aj removes the token or not (if any), decides the port number, and moves
to the node through the port number or stays at the current node. When aj
completes this series of events, we say that aj takes one step. If multiple agents
at the same node are included in Ai, the agents take steps in an arbitrary order.
When Ai = A holds for any i, all agents take steps. This model is called the
synchronous model. Otherwise, the model is called the asynchronous model. Note
that, in asynchronous model, the period that an agent takes a step is finite but
there is no assumption of the upper bound on the length of the period. Moreover,
agents move through a link in a FIFO manner, that is, when an agent ai leaves
vj after ah leaves vj through the same communication link as ah, then ai reaches
vi’s neighboring node vi′ after ah reaches vi′ . In addition, if ah reaches vj before
ai reaches vj through the same link as ah, ah takes a step before ai takes a step.

If sequence of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1 (i ≥ 0), E

is called an execution starting from c0. Execution E is infinite, or ends in final
configuration cfinal where every agent’s state is sfinal.

2.3 Partial Gathering Problem

The requirement of the partial gathering problem is that, for a given input g,
each agent should move to a node and terminate so that at least g agents should
meet at the node. Formally, we define the g-partial gathering problem as follows.

332 M. Shibata et al.

Definition 1. Execution E solves the g-partial gathering problem when the fol-
lowing conditions hold:

– Execution E is finite.
– In the final configuration, for any node vj such that there exist some agents

on vj, there exist at least g agents on vj.

From [10], agents require Ω(gn) total moves to solve the g-partial gathering
problem in unidirectional ring networks. This lower bound also holds for line
networks, hence we have the following theorem.

Theorem 2. The total moves required to solve the g-partial gathering problem
for tree networks are Ω(gn) if g ≥ 2.

3 Strong Multiplicity Detection and Non-Token Model

In this section, we consider a deterministic algorithm to solve the g-partial gath-
ering problem for the strong multiplicity detection and non-token model. First,
we have the following theorem.

Theorem 3. In the strong multiplicity detection and non-token model, agents
require Ω(kn) total moves to solve the g-partial gathering problem even if agents
know k.

Next, we propose a deterministic algorithm to solve the g-partial gathering
problem in O(kn) total moves for the strong multiplicity detection and non-token
model for the case g ≤ k/2. Remind that, in the strong multiplicity detection
model, each agent can count the number of agents at the current node. After
starting the algorithm, each agent performs a basic walk [7]. In the basic walk,
each agent ah leaves the initial node through the port 0. Later, when ah visits a
node vj through the port p, ah leaves vj through the port (p+ 1) mod dvj . In
the basic walk, each agent traverses the tree in the DFS-traversal. Hence, when
each agent visits nodes 2(n − 1) times, it visits the all nodes in the tree and
returns to the initial node. Note that, we assume that agents do not know the
number n of nodes. However, if an agent records the topology of the tree every
time it visits nodes, it can know the time when it returns to the initial node.

The idea of the algorithm is as follows: First, each agent performs the basic
walk until it obtains the whole topology of the tree. Next, each agent computes
a center node of the tree and moves there to meet other agents. If the tree has
exactly one center node, then each agent moves to the center node and terminates
the algorithm. If the tree has two center nodes, then each agent moves to one of
the center nodes so that at least g agents meet at each center node. Concretely,
agent ah first moves to the closer center node vj . If there exist at most g agents
at vj , including ah, then ah terminates the algorithm at vj . Otherwise, ah moves
to another center node vj′ and terminates the algorithm.

We have the following theorem.

Theorem 4. In the strong multiplicity detection and non-token modelC agents
solve the g-partial gathering problem in O(kn) total moves.

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 333

4 Weak Multiplicity Detection and Removable-Token
Model

In this section, we propose a deterministic algorithm to solve the g-partial gath-
ering problem for the weak multiplicity detection and removable-token model.
We show that our algorithm solves the g-partial gathering problem in O(gn) to-
tal moves. Remind that, in the removable-token model, each agent has a token.
In the initial configuration, each agent leaves a token at the initial node. We
define a token node (resp., a non-token node) as a node that has a token (resp.,
does not have a token). In addition, when an agent visits a token node, the agent
can remove the token.

The idea of the algorithm is similar to [10], but in [10], the network is a
unidirectional ring. In this section, we make agents perform the basic walk and
regard a tree network as a unidirectional ring network. Concretely, if agent ah
starts the basic walk at node v0 and continues it until ah visits nodes 2(n − 1)
times, then each communication link is passed twice and ah returns to v0. Thus,
when ah visits nodes v1, v2, . . . , v2(n−1) in this order, then we consider that ah
moves in the unidirectional ring network with 2(n− 1) nodes. Later, we call this
ring the virtual ring. In the virtual ring, we define the direction from vi to vi+1

as a forward direction, and the direction from vi+1 to vi as a backward direction.
Moreover, when ah visits a node vj through a port p from a node vj−1 in the
virtual ring, agents also use p as the port number at (vj−1, vj). For example,
let us consider a tree in Fig. 1(a). Agent ah performs the basic walk and visits
nodes a, b, c, b, d, b in this order. Then, the virtual ring of Fig. 1(a) is represented
in Fig. 1(b). Each number in Fig. 1(b) represents the port number through which
ah visits each node in the virtual ring. Next, we define a token node in a virtual
ring as follows. First, the initial token node in the tree network is also the token
node in the virtual ring. In addition, when agent ah visits a token node vj in
the tree, we define that ah visits a token node in the virtual ring if it visits vj
through the port (dvj − 1). In Fig. 1(a), if nodes a and b are token nodes, then
in Fig. 1(b), nodes a and b′′ are token nodes. By this definition, a token node
in the tree network is mapped to one token node in the virtual ring. Thus, by
performing the basic walk, we can assume that each agent moves in the same
virtual ring. Moreover, in the virtual ring, each agent also moves in a FIFO
manner, that is, when an agent ah leaves some node vj before another agent ai
leaves vj , ah takes a step before ai does it.

The algorithm consists of two parts. In the first part, agents execute the leader
agent election partway and elect some leader agents. In the second part, leader
agents instruct the other agents which node they meet at, and the other agents
move to the node by the instruction. In the following section, we explain the
algorithm by using a virtual ring.

4.1 The First Part: Leader Election

In the leader agent election, the states of agents are divided into the following
three types:

334 M. Shibata et al.

00
001 2

(b)

a
b cd

a b
b’

b’’
c d

0
0

10
2

0

(a)
Fig. 1. An example of the basic walk

– active: The agent is performing the leader agent election as a candidate of
leaders.

– inactive: The agent has dropped out from the candidate of leaders.
– leader: The agent has been elected as a leader.

The aim of the first part is similar to [10], that is, to elect some leaders and
satisfy the following three properties: 1) At least one agent is elected as a leader,
2) at most �k/g� agents are elected as leaders, and 3) in the virtual ring, there
exist at least g − 1 inactive agents between two leader agents.

At first, we explain the idea of the leader election in [10] to adopt it in this
paper. In [10], the network is a unidirectional ring, each agent is distinct, and
each node has a whiteboard. First, we explain the idea under the assumption that
the ring is bidirectional. Later, we apply the idea to the unidirectional ring. The
algorithm consists of several phases. In each phase, each active agent compares
its own ID with IDs of its forward and backward neighboring active agents.
More concretely, each active agent writes its ID on the whiteboard of its current
node, and then moves forward and backward to observe IDs of the forward and
backward active agents. If its own ID is the smallest among the three agents, the
agent remains active (as a candidate of leaders) in the next phase. Otherwise, the
agent drops out from the candidate of leaders and becomes inactive. Note that,
in each phase, neighboring active agents never remain as candidates of leaders.
Hence, at least half active agents become inactive and the number of inactive
agents between two active agents at least doubles in each phase. After executing
j phases, there exists at least 2j − 1 inactive agents between two active agents.
Thus, after executing �log g� phases, the following properties are satisfied: 1)
At least one agent remains as a candidate of leaders, 2) at most �k/g� agents
remain as candidates of leaders, and 3) the number of inactive agents between
two active agents is at least g− 1. Therefore, all remaining active agents become
leaders.

Next, we implement the above algorithm in asynchronous unidirectional rings.
In [10], agents use a traditional approach [24] to implement the above algorithm
in a unidirectional ring. Let us consider the behavior of active agent ah. In
unidirectional rings, ah cannot move backward and cannot observe the ID of

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 335

its backward active agent. Instead, ah moves forward until it observes IDs of
two active agents. Then, ah observes IDs of three successive active agents. We
assume ah observes id1, id2, id3 in this order. Note that id1 is the ID of ah.
Here this situation is similar to that the active agent with ID id2 observes id1
as its backward active agent and id3 as its forward active agent in bidirectional
rings. For this reason, ah behaves as if it would be an active agent with ID id2 in
bidirectional rings. That is, if id2 is the smallest among the three IDs, ah remains
active as a candidate of leaders. Otherwise, ah drops out from the candidate of
leaders and becomes inactive. This is the idea of the leader election in [10].

In the following, we explain the way to apply the above leader election [10] to
this paper. In [10], each agent is distinct and each node has whiteboard. However,
in this paper, we assume that each agent is anonymous and some nodes have
tokens. First, we explain the treatment about IDs. For explanation, let active
nodes be nodes where active agents start execution of each phase. In this section,
agents use virtual IDs in the virtual ring. Concretely, when agent ah moves from
an active node vj to vj ’s forward active node vj′ , ah observes port sequence
p1, p2, . . . pl, where pm is the port number through which ah visits the node by
the m-th movement after leaving vj . In this case, ah uses this port sequence
p1, p2, . . . pl as its virtual ID. For example, in Fig. 1(b), when ah moves from a to
b′′, ah observes the port numbers 0, 0, 1, 0, 2 in this order. Hence, ah uses 00102
as a virtual ID from a to b′′. Similarly, ah uses 0 as a virtual ID from b′′ to a.
Note that, multiple agents may have the same virtual IDs, and we explain the
behavior in this case later. Next, we explain the treatment about whiteboards.
In [10], each node has a whiteboard, while in this paper, each node is allowed to
have an only token. Fortunately, we can easily overcome this problem by using
virtual IDs. Concretely, each active agent ah moves until ah visits three active
nodes. Then, ah observes its own virtual ID, the virtual ID of ah’s forward active
agent ai, and the virtual ID of ai’s forward active agent aj . Thus, ah can obtain
three virtual IDs id1, id2, id3 without using whiteboards. Therefore, agents can
use the above approach [24], that is, ah behaves as if it would be an active agent
with ID id2 in bidirectional rings. In the rest of this paragraph, we explain how
agents detect active nodes. In the beginning of the algorithm, each agent starts
the algorithm at a token node and all token nodes are active nodes. After each
agent ah visits three active nodes, ah decides whether ah remains active or drops
out from the candidate of leaders at the active (token) node. If ah remains active,
then ah starts the next phase and leaves the active node. Thus, in some phase,
when some active agent ah visits a token node vj with no agent, ah knows that
ah visits an active node and the other nodes are not active nodes in the phase.

After observing three virtual IDs id1, id2, id3, each active agent ah compares
virtual IDs and decides whether ah remains active (as a candidate of leaders) in
the next phase or not. Different from [10], multiple agents may have the same
IDs. To treat this case, if id2 < min(id1, id3) or id2 = id3 < id1 holds, then
ah remains active as a candidate of leaders. Otherwise, ah becomes inactive
and drops out from the candidate of leaders. For example, let us consider the
initial configuration like Fig. 2(a). In the figure, black nodes are token nodes

336 M. Shibata et al.

(a)
00 0 0 0 0 011 1 1 1 1 1

01 01 01
1000101010(b)

0 0

Fig. 2. An example that agents observe the same port sequence

and the numbers near communication links are port numbers. The virtual ring
of Fig. 2(a) is represented in Fig. 2(b). For simplicity, we omit non-token nodes
in Fig. 2(b). The numbers in Fig. 2(b) are virtual IDs. Each agent ah continues
to move until ah visits three active nodes. By the movement, a1 observes three
virtual IDs (01,01,01), a2 observes three virtual IDs (01, 01, 1000101010), a3
observes three virtual IDs (01, 1000101010, 01), and a4 observes three virtual
IDs (1000101010,01,01) respectively. Thus, a4 remains as a candidate of leaders,
and a1, a2, and a3 drop out from the candidates of leaders. Note that, like Fig. 2,
if an agent observes the same virtual IDs three times, it drops out from the
candidate of leaders. This implies, if all active agents have the same virtual IDs,
all agents become inactive. However, we can show that, when there exist at
least three active agents, it does not happen that all active agents observe the
same virtual IDs. Moreover, if there are only one or two active agents in some
phase, then the agents notice the fact during the phase. In this case, the agents
immediately become leaders. By executing �log g� phases, agents complete the
leader agent election.

Pseudocode. The pseudocode to elect leaders is given in Algorithm 1. All
agents start the algorithm with active states. The pseudocode describes the
behavior of active agent ah, and vj represents the node where agent ah currently
stays. If agent ah becomes an inactive state or a leader state, ah immediately
moves to the next part and executes the algorithm for an inactive state or a
leader state in section 4.2. Agent ah uses variables id1, id2, and id3 to store
three virtual IDs. Variable phase stores the phase number of ah. In Algorithm
1, each active agent ah moves until ah observes three virtual IDs and decides
whether ah remains active as a candidate of leaders or not on the basis of virtual
IDs. Note that, since each agent moves in a FIFO manner, it does not happen
that some active agent passes another active agent in the virtual ring, and each
active agent correctly observes three neighboring virtual IDs in the phase. In
Algorithm 1, ah uses procedure NextActive(), by which ah moves to the next
active node and returns the port sequence as a virtual ID. The pseudocode of
NextActive() is described in Algorithm 2. Agent ah uses variable port to store a
virtual ID while moving, and ah uses variable move to store the number of nodes
it visits. Note that, if there exist only one or two active agents in some phase,

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 337

Algorithm 1. The behavior of active agent ah (vj is the current node of ah.)

Variables in Agent ah

int phase = 0;
int id1, id2, id3;
Main Routine of Agent ah

1: phase = phase+ 1
2: id1 = NextActive()
3: id2 = NextActive()
4: id3 = NextActive()
5: if there exist at most two active agents in the tree then
6: change its state to a leader state
7: end if
8: if (id2 < min(id1, id3))∨(id2 = id3 < id1) then
9: if (phase =
log g�) then
10: change its state to a leader state
11: else
12: return to line 1
13: end if
14: else
15: change its state to an inactive state
16: end if

then the agent moves around the virtual ring before getting three virtual IDs.
In this case, the active agent knows that there exist at most two active agents in
the phase and they become leaders. To do this, agents record the topology every
time they visit nodes, but we omit the description of this behavior in Algorithm
1 and Algorithm 2.

First, we show the following lemma to show that at least one agent remains
active or becomes a leader in each phase.

Lemma 1. When there exist at least three active agents, at least one agent has
a virtual ID different from another agent.

Next, we have the following lemmas about Algorithm 1.

Lemma 2. Algorithm 1 eventually terminates, and satisfies the following three
properties.

– There exists at least one leader agent.
– There exist at most �k/g� leader agents.
– In the virtual ring, there exist at least g − 1 inactive agents between two

leader agents.

Lemma 3. Algorithm 1 requires O(n log g) total moves.

4.2 The Second Part: Leaders’ Instruction and Agents’ Movement

In this section, we explain the second part, i.e., an algorithm to achieve the g-
partial gathering by using leaders elected by the algorithm in Section 4.1. Let

338 M. Shibata et al.

Algorithm 2. int NextActive() (vj is the current node of ah.)

Main Routine of Agent ah

array port[];
int move;
Main Routine of Agent ah

1: move = 0
2: leave vj through the port 0

// arrive at the forward node
3: let p be the port number through which ah visits vj
4: port[move] = p
5: move = move+ 1
6: while (there does not exist a token) ∨

(p �= dvj − 1) ∨ (there exists another agent) do
7: leave vj through the port (p+ 1) mod dvj

// arrive at the forward node
8: let p be the port number through which ah visits vj
9: port[move] = p
10: move = move+ 1
11: end while
12: return port[]

leader nodes (resp., inactive nodes) be the nodes where agents become leaders
(resp., inactive agents). Note that all leader nodes and inactive nodes are token
nodes. In this part, states of agents are divided into the following three types:

– leader: The agent instructs inactive agents where they should move.
– inactive: The agent waits for the leader’s instruction.
– moving: The agent moves to its gathering node.

We explain the idea of the algorithm in the virtual ring. The basic movement
is also similar to [10], that is, to divide agents into groups with at least g agents.
In [10], each node has a whiteboard, while in this paper, each node is allowed
to have an only token. In this section, agents achieve the g-partial gathering
by using removable tokens. Concretely, each leader agent ah moves to the next
leader node, and while moving ah repeats the following behavior: ah removes
tokens of inactive nodes g − 1 times consecutively and then ah does not remove
a token of the next inactive node. After that, agents move to token nodes and
meet at least g agents there.

First, we explain the behavior of leader agents. Whenever leader agent ah
visits an inactive node vj , it counts the number of inactive nodes that ah has
visited. If the number plus one is not a multiple of g, ah removes a token at
vj . Otherwise, ah does not remove the token and continues to move. Agent
ah continues this behavior until ah visits the next leader node vj′ . After that,
ah removes a token at vj′ . After completing this behavior, there exist at least
g− 1 inactive agents between two token nodes. Hence, agents solve the g-partial
gathering problem by going to the nearest token node (This is done by changing
their states to moving states). For example, let us consider the configuration like

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 339

Fig. 3. Partial gathering for removable-token model for the case g = 3 (a1 and a2 are
leaders, and black nodes are token nodes)

Fig. 3(a) (g = 3). We assume that a1 and a2 are leader agents and the other
agents are inactive agents. In Fig. 3(b), a1 visits the node v2 and a2 visits the
node v4 respectively. The numbers near nodes represent the number of inactive
nodes that a1 and a2 observed respectively. Agents a1 and a2 remove tokens at
v1 and v3, and do not remove tokens at v2 and v4 respectively. After that, a1 and
a2 continue this behavior until they visit the next leader nodes. At the leader
nodes, they remove the tokens (Fig. 3(c)).

When a token at vj is removed, an inactive agent at vj changes its state to
a moving state and starts to move. Concretely, each moving agent moves to the
nearest token node vj . Note that, since each agent moves in a FIFO manner, it
does not happen that a moving agent passes a leader agent and terminates at
some token node before the leader agent removes the token. After all agents com-
plete their own movements, the configuration changes from Fig. 3(c) to Fig. 3(d)
and agents can solve the g-partial gathering problem. Note that, since each agent
moves in the same virtual ring in a FIFO mannner, it does not happen that an
acitve agent executing the leader agent elaction passes a leader agent and that
a leader agent passes an active agent.

Pseudocode. In the following, we show the pseudocode of the algorithm. The
pseudocode of leader agents is described in Algorithm 3. Variable tCount is used
to count the number of inactive nodes ah visits. When ah visits a token node
vj with another agent, vj is an inactive node because an inactive agent becomes
inactive at a token node and agents move in a FIFO manner. Whenever each
leader agent ah visits an inactive node, ah increments the value of tCount. At
inactive node vj , ah removes a token at vj if tCount �= g − 1 and continues to
move otherwise. This means that, if a token is not removed at inactive node vj ,
at least g agents meet at vj . When ah removes a token at vj , an inactive agent
at vj changes its state to a moving state. When ah visits a token node vj′ with
no agents, vj′ is the next leader node. This is because agents at token nodes
are in leader or inactive states, and each inactive agent does not leave the token
node until the token is removed. When leader agent ah moves to the next leader
node vj′ , ah removes a token at vj′ and changes its state to a moving state.
In Algorithm 3, ah uses the procedure NextToken(), by which ah moves to the

340 M. Shibata et al.

Algorithm 3. The behavior of leader agent ah (vj is the current node of ah)

Variable in Agent ah

int tCount = 0;
Main Routine of Agent ah

1: NextToken()
2: while there exists another agent at vj do
3: //this is an inactive node
4: tCount = (tCount+ 1) mod g
5: if tCount �= g − 1 then
6: remove a token at vj
7: //an inactive agent at vj changes its state to a moving state
8: end if
9: NextToken()
10: end while
11: remove a token at vj
12: change its state to a moving state

Algorithm 4. void NextToken() (vj is the current node of ah.)

Main Routine of Agent ah

1: leave vj through the port 0
2: let p be the port number through which ah visits vj
3: while (there dose not exist a token) ∨ (p �= dvj − 1) do
4: leave vj through the port (p+ 1) mod dvj
5: let p be the port number through which ah visits vj
6: end while

next token node. The pseudocode of NextToken() is described in Algorithm 4. In
Algorithm 4, ah performs the basic walk until ah visits a token node vj through
the port (dvj − 1).

We omit the pseudocode of inactive agents due to limitation of space. Inactive
agent ah waits at vj until either a token at vj is removed or ah observes another
agent. If the token is removed, ah changes its state to a moving state. If ah
observes another agent, the agent is a moving agent and terminates the algorithm
at vj . This means vj is selected as a token node where at least g agents meet in
the end of the algorithm. Hence, ah terminates the algorithm at vj .

We also omit the pseudocode of moving agents due to limitation of the space.
In the virtual ring, each moving agent ah moves to the nearest token node by
using NextToken().

We have the following lemma about algorithms in Section 4.2.

Lemma 4. After the leader agent election, agents solve the g-partial gathering
problem in O(gn) total moves.

From Lemma 3 and Lemma 4, we have the following theorem.

Theorem 5. In the weak multiplicity detection and the removable-token model-
Cour algorithm solves the g-partial gathering problem in O(gn) total moves.

Move-Optimal Partial Gathering of Mobile Agents in Asynchronous Trees 341

5 Conclusion

In this paper, we proposed two move-optimal algorithms to solve the g-partial
gathering problem in asynchronous tree networks. First, in the strong multiplic-
ity detection and non-token model, we showed that agents require Ω(kn) total
moves to solve the g-partial gathering problem and proposed a deterministic al-
gorithm to solve the g-partial gathering problem in O(kn) total moves. Second,
in the weak multiplicity detection and removable-token model, we proposed a
deterministic algorithm to solve the g-partial gathering problem in O(gn) total
moves. As a future work, we want to consider the weak multiplicity detection
and non-token model. We conjecture that the g-partial gathering problem is not
solvable in this model. If the conjecture is correct, we can show that agents
require strong multiplicity detection or removable token to solve the g-partial
gathering problem. In particular, by using tokens, agents can solve the g-partial
gathering problem with smaller total moves compared to the total gathering
problem.

References

1. Kranakis, E., Krozanc, D., Markou, E.: The mobile agent rendezvous problem in
the ring, vol. 1. Morgan & Claypool Publishers (2010)

2. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

3. Suzuki, T., Izumi, T., Ooshita, F., Kakugawa, H., Masuzawa, T.: Move-optimal gos-
siping among mobile agents. Theoretical Computer Science 393(1), 90–101 (2008)

4. Chalopin, J., Das, S., Kosowski, A.: Constructing a map of an anonymous graph:
Applications of universal sequences. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.)
OPODIS 2010. LNCS, vol. 6490, pp. 119–134. Springer, Heidelberg (2010)

5. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: Proc. of SODA, pp. 585–594 (2007)

6. Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Randomized rendezvous
of mobile agents in anonymous unidirectional ring networks. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 303–314. Springer,
Heidelberg (2012)

7. Elouasbi, S., Pelc, A.: Time of anonymous rendezvous in trees: Determinism vs.
randomization. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS,
vol. 7355, pp. 291–302. Springer, Heidelberg (2012)

8. Baba, D., Izumi, T., Ooshita, H., Kakugawa, H., Masuzawa, T.: Linear time and
space gathering of anonymous mobile agents in asynchronous trees. Theoretical
Computer Science, 118–126 (2013)

9. Czyzowicz, J., Kosowski, A., Pelc, A.: Time vs. space trade-offs for rendezvous in
trees. In: Proc. of SPAA, pp. 1–10 (2012)

10. Shibata, M., Kawai, S., Ooshita, F., Kakugawa, H., Masuzawa, T.: Algorithms for
partial gathering of mobile agents in asynchronous rings. In: Baldoni, R., Floc-
chini, P., Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 254–268. Springer,
Heidelberg (2012)

11. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

342 M. Shibata et al.

12. Barriere, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and election of
mobile agents: impact of sense of direction. Theory of Computing Systems 40(2),
143–162 (2007)

13. De Marco, G., Gargano, L., Kranakis, E. ., Krizanc, D., Pelc, A., Vaccaro, U.: Asyn-
chronous deterministic rendezvous in graphs. In: Jedrzejowicz, J., Szepietowski, A.
(eds.) MFCS 2005. LNCS, vol. 3618, pp. 271–282. Springer, Heidelberg (2005)

14. Guilbault, S., Pelc, A.: Gathering asynchronous oblivious agents with restricted
vision in an infinite line. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-
Butucaru, M., Yamashita, M. (eds.) SSS 2013. LNCS, vol. 8255, pp. 296–310.
Springer, Heidelberg (2013)

15. Collins, A., Czyzowicz, J., G ↪asieniec, L., Kosowski, A., Martin, R.: Synchronous
rendezvous for location-aware agents. In: Peleg, D. (ed.) DISC 2011. LNCS,
vol. 6950, pp. 447–459. Springer, Heidelberg (2011)

16. Kranakis, E., Krizanc, D., Markou, E.: Mobile agent rendezvous in a synchronous
torus. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887,
pp. 653–664. Springer, Heidelberg (2006)

17. Guilbault, S., Pelc, A.: Asynchronous rendezvous of anonymous agents in arbitrary
graphs. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS,
vol. 7109, pp. 421–434. Springer, Heidelberg (2011)

18. Dieudonne, Y., Pelc, A., Peleg, D.: Gathering despite mischief. In: Proc. of SODA,
pp. 527–540 (2012)

19. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F.L., Santoro, N., Sawchuk, C.:
Mobile agents rendezvous when tokens fail. In: Kralovic, R., Sýkora, O. (eds.)
SIROCCO 2004. LNCS, vol. 3104, pp. 161–172. Springer, Heidelberg (2004)

20. G ↪asieniec, L., Kranakis, E., Krizanc, D., Zhang, X.: Optimal memory rendezvous
of anonymous mobile agents in a unidirectional ring. In: Wiedermann, J., Tel, G.,
Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp.
282–292. Springer, Heidelberg (2006)

21. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in
a ring. In: Proc. of ICDCS, pp. 592–599 (2003)

22. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple mo-
bile agent rendezvous in a ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS,
vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

23. Korach, E., Rotem, D., Santoro, N.: Distributed algorithms for finding centers and
medians in networks. TOPLAS 6(3), 380–401 (1984)

24. Peterson, G.L.: An O(n log n) unidirectional algorithm for the circular extrema
problem. TOPLAS 4(4), 758–762 (1982)

A Recursive Approach
to Multi-robot Exploration of Trees

Christian Ortolf and Christian Schindelhauer

University of Freiburg, Department of Computer Science, Computer Networks, Germany
{ortolf,schindel}@informatik.uni-freiburg.de

Abstract. The multi-robot exploration problem is to explore an unknown graph
of sizen and depth d with k robots starting from the same node. For known graphs
a traversal of all nodes takes at most O(d + n/k) steps. The ratio between the
time until cooperating robots explore an unknown graph and the optimal traversal
of a known graph is called the competitive exploration time ratio.

It is known that for any algorithm this ratio is at least Ω ((log k)/ log log k).
For k ≤ n robots the best algorithm known so far achieves a competitive time
ratio of O (k/log k).

Here, we improve this bound for trees with bounded depth or a minimum
number of robots. Starting from a simple O(d)-competitive algorithm, called
Yo-yo, we recursively improve it by the Yo-star algorithm, which for any 0 <
α < 1 transforms a g(d, k)-competitive algorithm into a O((g(dα, k) log k +
d1−α)(log k + log n))-competitive algorithm. So, we achieve a competitive

bound of O
(
2O(

√
(log d)(log log k))(log k)(log k + log n)

)
. This improves the

best known bounds for trees of depth d, whenever the number of robots is at

least k = 2ω(
√

(log d)(log log d)) and n = 2O(2
√

log d).

Keywords: competitive analysis, robot, collective graph exploration.

1 Introduction

Maintenance robots are nowadays common for households and every day life. One of
the most basic tasks such robotic lawn mowers, vacuum cleaners, and underwater clean-
ing robots is to explore a new environment. Besides the technical problem of localiza-
tion, orientation and communication it is not clear how to make use of the full potential
of the parallel exploration. This is the problem setting of multi-robot exploration.

The Model. The multi-robot exploration takes place on a labeled, connected, undirected
graph G = (V,E) with |V | = n and diameter d. In each round an algorithm has to
decide for each of the k robots which edge it traverses to a neighboring node. The
algorithm knows the positions of all robots and is not computationally restricted. The
goal is to visit all nodes of the graph as fast as possible at least once.

An offline algorithm has full knowledge of G, while an online algorithm can only use
the induced subgraph defined by the already visited nodes of V and their neighboring
nodes. The efficiency of an online algorithm is measured by comparing its run-time

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 343–354, 2014.
c© Springer International Publishing Switzerland 2014

344 C. Ortolf and C. Schindelhauer

against the asymptotically optimal offline algorithm. The maximum of the ratio between
the run-time of the online and the offline exploration time is called the competitive ratio
of an algorithm.

Our Results. In this paper we present two algorithms. The first, called Yo-yo, achieves
competitive ratio of 4d, while the second, called Yo*, recursively improves this bound

up to a ratio of O
(
2O(
√

(log d)(log log k))(log k)(log k + logn)
)

. This is an improve-

ment of the best known results for a minimum number of k = dc robots for c > 0 up to
a ratio of kε logn for any ε > 0.

Related Work. Exploration is a more than a century old problem (for a survey we
recommend [18]) closely related to the Traveling Salesman and the Hamiltonian cycle
problem. But most work on exploration only handles various cases concerning a single
robot.

For the single robot case asymptotically optimal exploration up to a factor of two is
possible with depth-first-search DFS. Using a map the exploration of a line or tree can
be improved by preventing double traversal of edges. Desmark et al. show in [8] various
competitive constants that can be gained depending on if an anchored, unanchored or
no map at all is available.

If graphs are not labeled, DFS cannot be directly used. M.A. Bender presents solu-
tions for this scenario in [3,4] using a pebble or a second robot for bookkeeping.

In 2006, Fraigniaud et al. consider the multi-robot exploration problem for trees
in [12]. They present an algorithm that with a run-time of O(k/ log k) is far apart
from their lower bound of Ω(2 + 1/k) and quite close the trivial upper bound of O(k)
achieved by executing a depth first search using a single robot. While the lower bound
is improved by Dynia et al. in [10] to Ω(log k

log log k) the upper bound still is the state of
the art and the exponential gap remains open between these two bounds.

Several restrictions for the exploration can improve the bounds. If algorithms are
restricted to greedy exploration an even stronger bound of Ω(k/ log k) is shown by
Higashikawa et al. [15].

For restricted graphs several better algorithms exist. Dynia et al. showed in [9]
a faster exploration for trees restricted by a density parameter p, enforcing a mini-
mum depth for any subtree depending on its size. For example trees embeddable in
p-dimensional grids could be explored with competitiveness of O(d1−1/p).

For 2-dimensional grids with only convex obstacles we improved the competitive
bound to O(log2 n) in [17]. Also note that despite this strong restrictions to a graph the
same lower bound of Ω(log k

log log k) as for trees holds.

In Brass et al.’s work an upper bound of O(nk + dk−1) [5] is shown, they implement
an algorithm that moves robots similar to the method of Fraigniaud et al. [12], but also
works on graphs using only a local communication model with bookkeeping devices.

Dereniowski et al. discuss in their work very large values of k. They show how many
more robots need to be invested to explore in asymptotically optimal time. They show
a minimum of k = dn1+ε for an ε > 0 robots to be necessary and improve with this the
trivial bound of O(nd) required to explore any graph in time d with flooding [7].

Exploration of Trees 345

Exploration of directed graphs is not discussed here. Competitive analysis done by
Albers et al. [1], Fleischer et al. [11], Papadimitriou et al. [6] and Förster et al. [13]
indicates this to be a harder problem than the undirected case.

Some works model the exploration geometrically, this is useful if robots have a sense
of sight enabling to see additional nodes before visiting them [14,16] or having to move
around corners to make everything visible in case of unlimited vision [2].

A constant factor offline approximation. A very basic observation is the constant factor
offline approximation presented in Algorithm 1, which establishes a constant approxi-
mation factor of four.

Algorithm 1. Offline 4-competitive multi-robot exploration of trees for robot j
1: Compute a cycle of length 2n using DFS covering the tree
2: Divide the cycle into k intervals of size at most
2n/k�
3: Go to the j-th interval
4: Traverse the interval

Lemma 1. Algorithm 1 needs at most d + �2n/k� robot moves and has a competitive
factor of four.

Proof. Every exploration algorithm needs at least max{�n/k�, d} steps. The number of
robot moves of Algorithm 1 is d+ �2n/k� ≤ 2max{d, �2n/k�} ≤ 4max{d, �n/k�}.
Hence, it is 4-competitive.

2 The Yo-yo Exploration

The basic idea of the Yo-yo exploration algorithm is to successively explore every set
of nodes in the tree with the same depth. After each exploration step all robots return to
the root and are perfectly rebalanced for the next exploration step. For most trees this
algorithm is not very efficient, since most of the time the robots commute between the
root and the leafs of the so far known sub-tree. We denote the number of nodes in depth
i by ni.

Algorithm 2. The Yo-yo Algorithm: 4d-competitive multi-robot exploration of a
tree

1: All robots start at the root of the tree
2: for i ← 2, . . . , d do
3: Partition all ni nodes in depth i into k subsets Vi,1, . . . , Vi,k with |Vi,j | ≤
ni

k
�.

4: for all j ← 1, . . . , k do in parallel
5: for all u ∈ Vi,j do
6: Move robot j to u
7: Move robot j to the root
8: end for
9: end for

10: end for

346 C. Ortolf and C. Schindelhauer

The main motivation of this algorithm is that the competitive ratio 4d only depends
on the depth d, which we can improve later on by a technique which does not work with
a competitive factor only depending on k. Note that for at least k = Ω(d log d) robots
Yo-yo is asymptotically at least as good as the best known algorithm of Fraigniaud et
al. [12].

Lemma 2. The Yo-yo algorithm needs at most d(d + 1) + 2dn/k rounds to explore a
graph with n nodes, depth d and k robots, and thus has a competitive exploration ratio
of at most 4d.

Proof. The success of the exploration algorithm follows by an easy induction over the
tree depth. For the number of rounds, note that in lines 6 and 7 each of the k robots
moves for 2i rounds in order to explore a node in Vi,j and return to the root. This is
repeated in the loop starting at line 5 for at most �ni/k� times. Therefore, the overall
number of rounds for the outer loop starting at line 2 is the following.

d∑
i=1

2i
⌈ni

k

⌉
≤

d∑
i=1

2i
(
1 +

ni

k

)

= d(d+ 1) +

d∑
i=1

2i
ni

k

≤ d(d+ 1) + 2d
n

k
,

Where we use
∑d

i=0 ni = n. Now, every exploration algorithm needs at least
max{d, �n/k�} ≥ 1

2 (d+ n/k) rounds. So, the competitive factor is at most

d(d + 1) + 2dn
k

max{d, �n/k�} ≤
2d2 + 2dn

k
1
2 (d+ n/k)

≤ 4d

�

3 The Yo* Algorithm

Starting from the Yo-yo algorithm (Algorithm 3) we use a recursive approach to im-
prove the efficiency of the exploration. To avoid the rebalancing step passing the root
in each step we divide the graph into the uppermost segment of depth c and b segments
of depth a such that d = ab + c which values are to be chosen later on, see Fig. 1. The
first segment will be explored by the base algorithm, e.g. the Yo-yo algorithm. One can
easily see that if the competitive ratio grows with the depth of the tree we can bound
the ratio with a smaller term now.

All deeper unexplored segments will be handled together with the last explored seg-
ment,see Fig. 2. These two segments form a forest of trees. If the number of trees is
greater than the number of robots, we can use DFS to efficiently explore them. How-
ever, the size of the trees can differ and therefore, we rebalance the robots if half of the
trees have been explored by DFS. The rebalancing costs at most d steps and this has to
be repeated at most logn times.

Exploration of Trees 347

If the number of trees has been reduced to be smaller than the number of robots, we
use the base algorithm and rebalance again, if half of the trees have been completely
explored. So, we have log k iterations for all the b segments.

unexplored

explored
by base

algorithm

to be
explored

unexplored

unexplored

c

a

a

a

Fig. 1. The first round of the Yo-star algorithm

explored

explored

to be
explored

unexplored

explored
by base

algorithm

explored
by base

algorithmexplored
by base

algorithm

R
c

a

a

a

Fig. 2. The principle of the Yo-star algorithm

Taking the Yo-yo algorithm and choosing segments of depth a = c = d
1
2 a back-on-

the-envelope calculation gives us a competitive ratio of O(d
1
2) for the first segment and

a ratio of O(d
1
2 (log n+ log k)) for all the other segments. So, after one iteration of the

Yo* algorithm we improve the depth-dependent factor in the ratio from d to d
1
2 . Now,

if we take this new algorithm as base algorithm and choose segments of size d
1
3 we

improve the ratio to d
1
3 . However, there is an overhead in the iteration, where constant

factors grow exponentially over the number of iterations and thus must be carefully
analyzed.

So, we assume we start from a g(d, k)(d+ n
k) time bounded algorithm and try to turn

it into a more efficient one using the Yo* algorithm. From g(d, k) we only know that it
is a monotone increasing function with respect to d and k, e.g. for the Yo-yo algorithm
we have g(d, k) = 4d.

Lemma 3. Given a g(d, k)(d + n
k)-time bounded base algorithm for a graph with un-

known number of nodes n, given depth d = ab+ c, a, b, c ∈ N, and k exploring robots,
then the Yo* algorithm can explore such a tree within the following number of rounds(

d+
n

k

)
(8g(2a, k) log k + g(c, k) + 2b(log k + logn) + 4 logn) .

Proof. We denote by n0 the number of nodes in depth at most c. By nj we denote the
number of nodes of the tree with depth in the interval [1 + c + (j − 1)a, c + ja]. By
definition

∑b
j=0 nj = |V |.

348 C. Ortolf and C. Schindelhauer

Algorithm 3. The Yo* algorithm using a base algorithm
1: All k robots start at the root of the tree
2: Explore the subtree of depth c with the base algorithm
3: for j ← 1, . . . , b do
4: R ← set of nodes in depth max{0, c+(j−2)a}, which are ancestors to at

least one unexplored succeeding node in depth [c+(j−1)a, c+ja]
5: while R �= ∅ do
6: if k ≤ |R| then

7: Equally partition all nodes in R into sets V1, . . . , Vk such that |Vi| ≤
⌈

|R|
k

⌉
8: for i ← 1, . . . , k do
9: Ti ← minimum tree connecting all unexplored nodes in depth

[c+ (j − 1)a, c+ ja] with an ancestor in Vi

10: end for
11: while less than k/2 subtrees of R are explored do
12: for all i ← 1, . . . , k do in parallel
13: Perform a DFS exploration step in Ti with robot i
14: end for
15: end while
16: else
17: for i ← 1, . . . , |R| do

18: Equally assign ki robots to node vi of R such that ki ∈
{⌊

k
|R|

⌋
,
⌈

k
|R|

⌉}
19: Ti ← minimum tree connecting all unexplored nodes in depth

[c+ (j − 1)a, c+ ja] with ancestor vi
20: end for
21: while less than k/2 subtrees of R are fully explored do
22: for all i ← 1, . . . , |R| do in parallel
23: Perform one step of the base exploration algorithm

on Ti with ki robots
24: end for
25: end while
26: end if
27: R ← set of nodes in depth max{0, c+(j−2)a}, which are ancestors to at

least one unexplored succeeding node in depth [c+(j−1)a, c+ja]
28: end while
29: end for

Exploration of Trees 349

We use the base algorithm to explore the first segment, which needs at most

t1 = g(c, k)
(
d+

n0

k

)
(1)

rounds.
In all other rounds we use the base algorithm several times when k > |R|. After each

iteration of the while-loop from lines 21-25 the number of |R| is reduced by a factor
of 2, which implies at most log k iterations. The variable ν = 1, . . . , log k counts the
iterations of this loop. Let Rj,ν be the variable R in the j-th loop and the ν-th iteration.
Let kj,ν be the smallest number of robots in this phase, i.e. kj,ν = �k/|Rj,ν |�.

The trees connecting all unexplored nodes with an ancestor node in Rj,ν are named
Tj,ν,i for i ∈ {1, . . . , |Rj,ν |}. Now define

nj,ν := median(|V (Tj,ν,i)| , i ∈ {1, . . . , |Rj,ν |})

where for even number m the median refers to the m/2-th largest element. Note that
the median implies that

nj,ν
|Rj,ν |
2
≤

|Rj,ν |∑
i=1

|V (Tj,ν,i)| ≤ nj−1 + nj

So, we can conclude that

log k∑
ν=1

nj,ν |Rj,ν | ≤ 2(nj + nj−1) log k .

The run-time of one invocation the base algorithm is by definition at most

g(2a, kj,ν)

(
2a+

⌈
nj,ν

kj,ν

⌉)

by design of the loop in line 21. Since kj,ν ≥ |Rj,ν | and nj,ν ≥ 1 we can use
⌈

x
�y�

⌉
≤

2x
y + 1 for x, y ≥ 1. ⌈

nj,ν

kj,ν

⌉
=

⌈
nj,ν

�k/|Rj,ν |�

⌉
≤ 2

nj,ν|Rj,ν |
k

+ 1

The run-time over all invocations of all these loops is therefore

t2 ≤
b∑

j=1

log k∑
ν=1

g(2a, kj,ν)(2a+ �nj,ν/kj,ν�)

350 C. Ortolf and C. Schindelhauer

≤ g(2a, k)

⎛⎝2ab log k + b log k + 2

b∑
j=1

log k∑
ν=1

nj,ν |Rj,ν |
k

⎞⎠
≤ g(2a, k)

⎛⎝2ab log k + b log k + 2

b∑
j=1

2(nj−1 + nj) log k

k

⎞⎠
≤ g(2a, k)

(
2(d− c) log k + b log k + 8

n

k
log k

)
≤
(
2d+ b+ 8

n

k

)
g(2a, k) log k .

It remains to count all rebalancing moves of the robots. It takes at most 2d steps to
reassign a robot to its new tree. For the case k > |R|, this iterates at most b log k times,
resulting in

t3 ≤ 2bd log k

steps.
Now we analyze the case k ≤ |R|. After each iteration of the loop of line 11 the

number of nodes in |R| is halved. Hence, the number of loops is bounded by log n. The
sum of all iterations of the loop 11 is bounded by 4(nj−1 + nj)/k rounds, since k/2
robots successfully explore the graph in parallel. So, summing over all j we get

t4 ≤
b∑

j=1

4(nj−1 + nj)

k
≤ 8

n

k
logn

for the DFS-exploration. Again we have to rearrange the robots between the trees which
costs at most

t5 ≤ 2bd logn

additional steps.
So, for c ≤ 2a and d ≥ 1 the cost is bounded by:

run-time = t1 + t2 + t3 + t4 + t5

≤ g(c, k)
(
d+

n0

k

)
+ g(2a, k)

(
2d+ b+ 8

n

k

)
log k

+ 2bd log k + 4
n

k
logn+ 2bd logn

≤ d

(
g(c, k) +

(
2 +

b

d

)
g(2a, k) log k

)
+

n

k
(g(c, k) + 8g(2a, k) log k + 4 logn) + 2db(log k + logn)

≤
(
d+

n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + logn) + 4 logn)

�

We use polynomials of d for a and b, which results in the following Lemma.

Exploration of Trees 351

Lemma 4. Given a g(d, k)(d + n
k)-time bounded base algorithm for a graph with un-

known number of nodes n, given depth d and k exploring robots, then the Yo* algorithm
provides a (d + n

k)(9g(2d
α, k) log k + 8d1−α(log k + logn))-time bounded robot ex-

ploration algorithm.

Proof. We choose a = �dα�, b = �d/a�, and c = n − ab. Note that c ≤ a and
b ≤ 2d1−α. From Lemma 3 it follows that the run-time of Yo* is the following:

time ≤
(
d+

n

k

)
(g(c, k) + 8g(2a, k) log k + 2b(log k + logn) + 4 logn)

≤
(
d+

n

k

) (
g(dα, k) + 8g(2dα, k) log k + 4d1−α(log k + logn) + 4 logn

)
≤
(
d+

n

k

) (
9g(2dα, k) log k + 8d1−α(log k + logn)

)
Starting from the 4d-competitive Yo-yo algorithm we choose α = 1

2 and obtain by

the last Lemma a O(d 1
2 (log k + logn))-competitive multi-robot exploration algorithm.

This algorithm can be also asymptotically improved by the same lemma. For this we
can choose α = 2

3 and get a O(d 1
3 (log k)(log k + logn)) algorithm. Of course this

process can be iterated using the following lemma.

Lemma 5. For k ≥ 2, c ≥ 4, β ∈ [0, 1], γ ≥ 0 and a base exploration algorithm with
a run-time of

(
d+ n

k

)
cdβ(log k)γ(log k + logn), the Yo-star algorithms can achieve

an exploration time bound of
(
d+ n

k

)
20c · dβ/(β+1)(log k)γ+1(log k + logn).

Proof. We choose α = 1
1+β such that αβ = 1 − α. This observation will be used for

the run-time of an iteration the Yo* algorithm.

time
d+ n

k

≤ 9g(2dα, k) log k + 8d1−α(log k + logn)

≤ 9c2βdαβ(log k)γ+1(log k + logn) + 8d1−α(log k + logn)

≤ 18cdβ/(β+1)(log k)γ+1(log k + logn) + 8dβ/(β+1)(log k + logn)

≤ 20cdβ/(β+1)(log k)γ+1(log k + logn) ,

where we use 2β ≤ 2 and 18c+ 8 ≤ 20c for c ≥ 4. �

Note that the iteration β �→ β/(β + 1) with starting point β = 1 results in the series
1, 12 ,

1
3 ,

1
4 , Let β1 := 1 and βi+1 := βi/(βi + 1). If βi =

1
i , then

βi+1 =
1
i

1
i + 1

=
1

i+ 1
.

So, after � iterations of the Yo-star algorithm, starting from the Yo-yo algorithm we
have the following ratio:

time
n
k + d

≤ 4 · 20�d 1
�+1 (log k)�(log k + logn) .

352 C. Ortolf and C. Schindelhauer

So far, we have assumed to know the depth. This is not necessary, since we use
exponential doubling to find it. This introduces an additional factor of log d which we
will take into account from now on. This competitive factor is only taken into account
once, since after a correct guess the recursive approach invokes the next exploration
algorithm with the correct depth value.

Theorem 1. The Yo-star multi-robot exploration algorithm with � iterations can ex-
plore an unknown tree with depth d and size n with a competitive ratio of at most

O
(
20�d

1
�+1 (log k)�(log k + logn)(log d)

)
.

Proof. Since the depth of tree is unknown we iteratively restart the Yo-star exploration
algorithm with an assumed depth of d′ = 1, 2, 4, An exploration is canceled if a
node with depth larger than d′ has been found, then the exploration starts from scratch.
In the final step the time for the exploration is therefore at most (assuming d′ = 2d− 1
in the worst case)(

2d− 1 +
n

k

)
4 · 20�(2d− 1)

1
�+1 (log k)�(log k + logn) .

Now 2d − 1 + n/k ≤ 2(d + n/k) and (2d − 1)
1

�+1 ≤ (2d)
1

�+1 ≤ 2d
1

�+1 results in an
additional factor of 4. It takes log d iterations until d′ ≥ d and therefore we have a total
run-time of at most

16
(
d+

n

k

)
· 20�d 1

�+1 (log k)�(log k + logn) log d

The competitive factor originates from the observation that the minimal time for offline
exploration is max{d, n/k} ≥ 1

2 (d+ n/k). �

This is the main result of this paper. What follows is a discussion of how many iter-
ations are necessary to achieve best possible asymptotical bounds. It turns out that the
relationship between the depth and the number of robots is crucial. If d = O((log k)c)
then already the Yo-yo algorithm provides a competitive ratio of O((log k)c). If the
depth is larger with respect to the number of robots, then Yo* provides better bounds.

Theorem 2. The Yo-star algorithm can achieve a competitive factor of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + logn)

for a k-multi-robot exploration of graphs of size n and depth d.

Proof. Again we test the depth of the tree by performing the � iterations of the Yo*
algorithm, where we double a depth parameter d′ every time we finde a node in depth
d′ + 1. Then, we relaunch the exploration. As the iteration depth of Yo* we choose

� =
⌈√

log d′

log log k

⌉
, because

(log k)� = 2

⌈√
log d′

log log k

⌉
log log k

≤ 2
√

(log d′)(log log k) log k

Exploration of Trees 353

Table 1. Competitive exploration time ratios for the Yo-yo and the Yo* algorithm

k d n competitive factor algorithm

2d
1/c

(log k)c 4(log k)c Yo-yo
dΩ(1) kO(1) ko(1) log n Yo*

dΩ(1) kO(1) 2d
o(1)

ko(1) Yo*

2
c2

4
(log k)2/ log log k kc(1+o(1)) log n Yo*

2ω(
√
log d log log d) 2O(2

√
log d)

ko(1) Yo*

22
O(

√
(log d)(log log k))

2O(
√

(log d) log log k) Yo*

and
d′2/(2�+1) ≤ 2(log d)

√
log log k/

√
log d = 2

√
(log d)(log log k)

Now
20�(log d′) ≤ 2

√
log d+log log d = 2o(1)

√
(log d)(log log k)

for large enough k. So, the only remaining relevant factor is log k+logn which implies
the result. �

This bound is not always smaller than the best known competitive ratio ofO(k/ logk).
Yet, for trees with depth d = 2(

1
4−ε) (log k)2

log log k , ε > 0 and size n = 2O(2
√

d), which includes
the interesting cases of d = O(kc) and n = 2d

o(1)

for any c > 0, the Yo-star algorithms
is currently the best available multi-robot exploration algorithm.

4 Conclusions

We discussed in this work the collaborative multi-robot exploration of trees. The al-
gorithms know the positions of all robots and are not restricted in computation. Until
now a wide gap was open between upper bound of O(k

log k) and the lower bound of

Ω(log k
log log k). While these bounds could not been improved for nearly a decade and the

only improvements have been happening on more restricted models, we finally were
able to present new upper borders for the collective tree exploration.

The first, rather simple, Yo-yo algorithm has a competitive ratios of 4d and improves
this bound for d = o(k/ log k) robots. If the number of robots is smaller, then our
Yo-star algorithm provides a new bound of

2(2+o(1))
√

(log d)(log log k)(log k)(log k + logn) .

This hard to understand bound needs some interpretation and one can be derived the
bounds for k ≤ n shown in Table 1 for any constant c > 0.

We presented in this work the first collaborative exploration for trees reaching sub-
polynomial competitive ratio of o(kε) for any constant ε > 0 and k < n, especially this
is the case for the Jellyfish tree with k = d and n/k = d, which is used to establish
the lower bound of O(log k/ log log k) [10]. This is an important step closing the gap
between the upper and lower bound. Future work will be dedicated to the multi-robot
exploration of general graphs using the Yo-yo and Yo* approach.

354 C. Ortolf and C. Schindelhauer

Acknowledgments. We are very grateful for the comments of the anonymous review-
ers pointing out numerous mistakes in the first version.

References

1. Albers, S., Henzinger, M.R.: Exploring Unknown Environments. SIAM Journal on Comput-
ing 29(4), 1164 (2000)

2. Albers, S., Kursawe, K., Schuierer, S.: Exploring unknown environments with obstacles. In:
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
1999, pp. 842–843. Society for Industrial and Applied Mathematics, Philadelphia (1999)

3. Bender, M.A.: The power of team exploration: Two robots can learn unlabeled directed
graphs. In: Proceedings of the Thirty Fifth Annual Symposium on Foundations of Computer
Science, pp. 75–85 (1994)

4. Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Explor-
ing and mapping directed graphs. Information and Computation 176(1), 1–21 (2002)

5. Brass, P., Cabrera-Mora, F., Gasparri, A., Xiao, J.: Multirobot tree and graph exploration.
IEEE Transactions on Robotics 27(4), 707–717 (2011)

6. Deng, X., Papadimitriou, C.: Exploring an unknown graph. In: Proceedings of the 31st An-
nual Symposium on Foundations of Computer Science, vol. 1, pp. 355–361 (October 1990)

7. Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph
exploration. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013,
Part II. LNCS, vol. 7966, pp. 520–532. Springer, Heidelberg (2013)

8. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput.
Sci. 326, 343–362 (2004)

9. Dynia, M., Kutyłowski, J., Meyer auf der Heide, F., Schindelhauer, C.: Smart robot teams
exploring sparse trees. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162,
pp. 327–338. Springer, Heidelberg (2006)

10. Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks,
S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007)

11. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Brodal, G.S.,
Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 11–22. Springer, Heidelberg (2005)

12. Fraigniaud, P., Ga̧sieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Netw. 48,
166–177 (2006)

13. Förster, K.-T., Wattenhofer, R.: Directed graph exploration. In: Baldoni, R., Flocchini, P.,
Binoy, R. (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 151–165. Springer, Heidelberg (2012)

14. Gabriely, Y., Rimon, E.: Competitive on-line coverage of grid environments by a mobile
robot. Comput. Geom. Theory Appl. 24(3), 197–224 (2003)

15. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.-I.: Online graph exploration al-
gorithms for cycles and trees by multiple searchers. Journal of Combinatorial Optimization,
1–16 (2012)

16. Kolenderska, A., Kosowski, A., Małafiejski, M., Żyliński, P.: An improved strategy for ex-
ploring a grid polygon. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS, vol. 5869,
pp. 222–236. Springer, Heidelberg (2010)

17. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular
obstacles. In: Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA 2012, pp. 27–36. ACM, New York (2012)

18. Rao, N.S.V., Kareti, S., Shi, W., Iyengar, S.S.: Robot navigation in unknown terrains: Intro-
ductory survey of non-heuristic algorithms. Technical Report ORNL/TM-12410:1–58, Oak
Ridge National Laboratory (July 1993)

Improved Periodic Data Retrieval
in Asynchronous Rings with a Faulty Host

Evangelos Bampas1,�, Nikos Leonardos2, Euripides Markou3,��,
Aris Pagourtzis4,���, and Matoula Petrolia5

1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
evangelos.bampas@labri.fr

2 Department of Informatics and Telecommunications,
National and Kapodistrian University of Athens, Greece

nikos.leonardos@gmail.com
3 Department of Computer Science and Biomedical Informatics,

University of Thessaly, Lamia, Greece
emarkou@ucg.gr

4 School of Electrical and Computer Engineering,
National Technical University of Athens, Greece

pagour@cs.ntua.gr
5 LINA, University of Nantes, France
stamatina.petrolia@univ-nantes.fr

Abstract. The exploration problem has been extensively studied in un-
safe networks containing malicious hosts of a highly harmful nature,
called black holes, which completely destroy mobile agents that visit
them. In a recent work, Královič and Miklík [SIROCCO 2010, LNCS
6058, pp. 157–167] considered various types of malicious host behavior
in the context of the Periodic Data Retrieval problem in asynchronous
ring networks with exactly one malicious host. In this problem, a team
of initially co-located agents must report data from all safe nodes of the
network to the homebase, infinitely often. The malicious host can choose
whether to kill visiting agents or allow them to pass through (gray hole).
In another variation of the model, the malicious host can, in addition,
alter its whiteboard contents in order to deceive visiting agents. The goal
is to design a protocol for Periodic Data Retrieval using as few agents as
possible.

In this paper, we present the first nontrivial lower bounds on the
number of agents for Periodic Data Retrieval in asynchronous ring net-
works. Specifically, we show that at least 4 agents are needed when the

� Partial support by the ANR project DISPLEXITY (ANR-11-BS02-014).
�� This research has been co-financed by the European Union (European Social Fund

— ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) —
Research Funding Program: THALIS-UOA (MIS 375891).

��� This research has been co-financed by the European Union (European Social Fund
– ESF) and Greek national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference Framework (NSRF) —
Research Funding Program: THALIS-NTUA (MIS 379414).

M. Halldórsson (Ed.): SIROCCO 2014, LNCS 8576, pp. 355–370, 2014.
c© Springer International Publishing Switzerland 2014

356 E. Bampas et al.

malicious host is a gray hole, and at least 5 agents are needed when
the malicious host whiteboard is unreliable. This improves the previous
lower bound of 3 in both cases and answers an open question posed in
the aforementioned paper.

On the positive side, we propose an optimal protocol for Periodic
Data Retrieval in asynchronous rings with a gray hole, which solves the
problem with only 4 agents. This improves the previous upper bound of 9
agents and settles the question of the optimal number of agents in the
gray-hole case. Finally, we propose a protocol with 7 agents when the
whiteboard of the malicious host is unreliable, significantly improving
the previously known upper bound of 27 agents. Along the way, we set
forth a detailed framework for studying networks with malicious hosts
of varying capabilities.

Keywords: periodic data retrieval, malicious host, gray hole, red hole,
unreliable whiteboard.

1 Introduction

In distributed mobile computing, one of the main issues is the security of both
the agents that explore a network and the hosts. Various methods of protecting
mobile agents against malicious nodes as well as of protecting hosts against
harmful agents have been proposed (see, e.g., [19] and references therein).

In particular, the exploration problem has been extensively studied in unsafe
networks which contain malicious hosts of a highly harmful nature, called black
holes. A black hole is a node which contains a stationary process destroying
all mobile agents visiting that node, without leaving any trace. In the Black
Hole Search problem (BHS in short) the goal for the agents is to locate the
black hole within finite time. More specifically, at least one agent has to survive
knowing all edges leading to the black hole. The problem has been introduced
by Dobrev, Flocchini, Prencipe, and Santoro in [7,10]. Since any agent visiting
a black hole vanishes without leaving any trace, the location of the black hole
must be deduced by some communication mechanism employed by the agents.
Four such mechanisms have been proposed in the literature: a) the whiteboard
model [5,9,10,2,16] in which there is a whiteboard at each node of the net-
work where the agents can leave messages, b) the pure token model [14,1] where
the agents carry tokens which they can leave at nodes, c) the enhanced token
model [6,11,23] in which the agents can leave tokens at nodes or edges, and d)
the time-out mechanism (only for synchronous networks) in which one agent
explores a new node and then, after a predetermined fixed time, informs another
agent who waits at a safe node [21].

In an asynchronous network, the number of nodes of the network must be
known to the agents, otherwise the problem is unsolvable [10]. If the graph
topology is unknown, at least Θ+1 agents are needed, where Θ is the maximum
node degree in the graph [9]. Furthermore, the network should be 2-connected.
It is also not possible to answer the question of whether a black hole exists in

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 357

the network. If the agents have a map of the network or at least a sense of
direction [17,18] and can use whiteboards, then two agents with memory suffice
to solve the problem. In asynchronous networks with dispersed agents (i.e., not
initially located at the same node), the problem has been investigated for the
ring topology [8,10] and for arbitrary networks [15,3] in the whiteboard model,
while in the enhanced token model it has been studied for rings [12,13] and
for some interconnected networks [23]. The problem has been also studied in
synchronous networks. For a survey on BHS the reader is referred to [21].

As already mentioned, a black hole is a particular type of malicious host with
a very simple behavior: killing every agent instantly without leaving any trace.
In reality, a host may have many more ways to harm the agents: it may introduce
fake agents, change the contents of the whiteboard, or even confuse agents by
directing them to ports different from the requested ones.

In [20,22], Královič and Miklík studied how the various capabilities of a mali-
cious host affect the solvability of exploration problems in asynchronous networks
with whiteboards. They first consider networks with a malicious host (called gray
hole) which can at any time choose whether to behave as a black-hole or as a
safe node. Since the malicious behavior may never appear, the agents might not
be able, in certain cases, to decide the location of the malicious host. Hence, they
introduce and study the so called Periodic Data Retrieval problem in which, on
each safe node of the network, an infinite sequence of data is generated over
time and these data have to be gathered in the homebase. The goal is to de-
sign a protocol for a team of initially co-located agents so that data from every
safe node are reported to the homebase, infinitely often, minimizing the total
number of agents used. One agent can solve the problem in networks without
malicious hosts, where the problem reduces to the Periodic Exploration problem
(e.g., see [4] and references therein) in which the goal is to minimize the number
of moves between two consecutive visits of a node. When the malicious host is
a black hole, the Periodic Data Retrieval and the Periodic Exploration problem
are solved by the same number of agents. As observed in [20], n− 1 agents are
sufficient for solving the Periodic Data Retrieval problem in any 2-connected
network of n nodes with one malicious host when the topology is known to the
agents: each of the n − 1 agents selects a different node of the network and
periodically visits all other nodes. The authors show that two agents are not
sufficient to solve the problem in a ring with a gray hole and they present a
protocol which solves the problem using 9 agents. They also consider a second
type of malicious host which behaves as a gray hole and, in addition, can alter
the contents of its whiteboard; they show that 27 agents are sufficient to solve
the Periodic Data Retrieval problem in a ring, under this type of malicious host.

Our contribution. In this paper, we study and refine the model of [20]. We
present the first nontrivial lower bounds on the number of agents for Periodic
Data Retrieval in asynchronous rings. Specifically, we show that at least 4 agents
are needed when the malicious host is a gray hole, and at least 5 agents are needed
when the malicious host whiteboard is unreliable. This improves the previous
lower bound of 3 agents in both cases and answers an open question posed

358 E. Bampas et al.

in [20]. On the positive side, we propose an optimal protocol for Periodic Data
Retrieval in asynchronous rings with a gray hole, which solves the problem with
only 4 agents. This improves the previous upper bound of 9 agents and settles
the question of the optimal number of agents in the gray-hole case. Finally, we
propose a protocol with 7 agents when the whiteboard of the malicious host
is unreliable, significantly improving the previously known upper bound of 27
agents. Along the way, we set forth a detailed framework for studying networks
with malicious hosts of varying capabilities.

In order to derive the lower bounds, we make extensive use of certain configu-
rations which the adversary can enforce in a benign execution (i.e., an execution
in which the malicious host obeys the protocol), in particular 2-traversals and
3-traversals (informally, configurations in which some agent traverses an edge
“with the intention” to eventually advance one or two more edges in the same
direction, respectively). We are then able to exploit the fact that we can think of
the adversary as not having to commit to a particular location of the malicious
host as long as the execution remains benign. For the upper bound in the case of
the gray hole, we use the well known cautious step technique, which is also em-
ployed in [20]. However, in our case the agent marks both nodes involved in the
cautious step, thus considerably reducing the number of agents that can enter
the same link from the opposite direction. When the malicious host whiteboard
is unreliable, we employ a natural extension of the cautious step, the cautious
double step.

Due to lack of space, all missing proofs, as well as the detailed pseudocode for
the proposed algorithms, are deferred to the full version of the paper.

2 Preliminaries

2.1 System Model

The agents operate in a ring network where each node contains one host (we
will use the terms “host” and “node” interchangeably). Each host is identified
by a unique label, and is connected to each of its two neighbors via labeled
communication ports. Each port is associated with two order-preserving queues:
one for incoming agents and a second one for outgoing agents. Additionally, each
host contains a whiteboard, i.e., a piece of memory that is shared among the
agents present in the node at any given time, and a queue of agents who are
waiting to acquire access to the whiteboard. Neighboring hosts are connected
via bidirected asynchronous FIFO links, forming an undirected graph G.

The agents are modeled as deterministic three-tape Turing machines: the first
tape serves as the private memory of the agent, the second tape holds the label
of the port to which the agent wishes to be transferred, and the third tape holds
a copy of the whiteboard of the current node, if the agent has acquired access to
the whiteboard. All agents are initially located on the same node of the network,
which we will call “the homebase.” Each agent possesses a distinct identifier and
knows the complete map of the network. The only way for agents to interact
with each other is through the whiteboards: they are not aware of the presence

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 359

of other agents on the same node or on the same link, and they cannot exchange
private messages.

Each host is responsible for removing agents from the front of its incoming
queue and executing them, i.e., advancing each agent’s state according to its
transition function until the agent requests to be transferred. We assume that
this happens in one atomic step, i.e., as soon as one agent A is removed from
the front of an incoming queue, no other agent in that node can execute a
transition before A executes its own first transition. The host is also responsible
for executing the agent that is at the front of the whiteboard queue. Finally,
the host is responsible for removing agents from the front of its outgoing queues
and transmitting them over the link to the neighboring node (the whiteboard
tape is not transmitted). The host has to perform these tasks while ensuring
that no queue is neglected for an infinite amount of time. Each host is capable of
executing multiple agents concurrently. The set of states of each agent contains
special states corresponding to the following actions:

1. Request the whiteboard lock (qreq): When an agent enters this state, it is
inserted in the whiteboard queue. We assume that this happens atomically,
i.e., any other agent who subsequently enters this state will be placed in
the whiteboard queue behind this agent. Its execution is suspended until
it reaches the front of the queue. When this happens, the host continues
to execute this agent (possibly concurrently with other agents who are not
accessing the whiteboard) without removing him from the whiteboard queue.
Simultaneously with the transition from qreq, the whiteboard of the node is
copied to the third tape of the agent.

2. Release the whiteboard lock (qrel): When an agent enters this state, its white-
board tape is copied back to the whiteboard of the node and the agent is
removed from the whiteboard queue.

3. Leave through a specified port (qport): When an agent enters this state, it is
atomically inserted in the outgoing queue of the port indicated on its second
tape. If the agent has not yet released the whiteboard lock, its whiteboard
tape is also copied back to the whiteboard of the node and the agent is
removed from the whiteboard queue.

Note that an agent actually traverses a link only when the source host decides
to remove it from the outgoing queue and transmit it to the target host. Link
traversal is not instantaneous. Its duration is determined by the adversary.

The system is asynchronous, meaning that any agent can be stalled for an ar-
bitrary but finite amount of time while executing any computation or traversing
any link. We assume that the system contains exactly one malicious host which
may deviate from the system specification in several ways:

Definition 1 (Malicious behavior from the malicious host). The mali-
cious host in the system may choose to:

1. Kill any agent which is stored in any of its queues or is being executed. In
this case, the agent disappears without leaving any trace, apart from what it
may have already written on the whiteboards.

360 E. Bampas et al.

2. Operate without fairness, i.e., it can neglect one or more of its queues forever.
3. Transmit an agent to a node different from the one that it requested to be

transmitted to, or it can transmit an agent without the agent asking for a
transmission, or misreport its own node label to agents requesting it.

4. Execute (resp. forward) any agent in the incoming or the whiteboard (resp.
outgoing) queues, without respecting the queue order.

5. Create and execute multiple copies of an agent at any stage.
6. Provide to each agent that requests access to the whiteboard an arbitrary

whiteboard tape, possibly erroneous or inconsistent with the whiteboard tapes
that it has provided to the other agents.

We classify the various types of malicious host behavior in order of increasing
power as follows:

Definition 2. The malicious host is called:

– 1-malicious or black hole if it kills every agent that appears in any of its
queues at every time t ≥ 0.

– 2-malicious if it kills every agent that appears in any of its queues or is being
executed at every time t ≥ t0, where t0 ≥ 0 is chosen by the adversary. Until
time t0, which may even be equal to +∞, it acts as a safe node.

– 3-malicious or gray hole if it can choose whether to deviate (or not) from
the protocol in the way described in item 1 of Definition 1 at any time t ≥ 0.

– 4-malicious if it can choose whether to deviate (or not) from the protocol in
any of the ways described in items 1-5 of Definition 1 at any time t ≥ 0.

– 5-malicious or red hole if it can choose whether to deviate (or not) from the
protocol in any of the ways described in items 1-6 of Definition 1 at any time
t ≥ 0.

The agents do not have any information on the location of the malicious host,
except from the fact that the homebase is safe.

2.2 Periodic Data Retrieval

We assume that every host in the system generates over time an infinite sequence
of data items, all of which have to eventually reach the homebase. The agents
operate in the network and their aim is to deliver the data from any safe node
to the homebase infinitely often. Once an agent has acquired a chunk of data
items from a host, the data may be stored at an intermediate node and possibly
read by another agent before reaching the homebase. This problem is known as
the Periodic Data Retrieval problem [20].

Definition 3. An instance of Periodic Data Retrieval is a tuple 〈G, λ,H, k, Ω,m〉,
whereG is an undirected graph, λ is a function that assigns labels to nodes and local
ports of the nodes, H ∈ V (G) is the homebase, k is a positive integer representing
the number of agents starting on the homebase, Ω ∈ V (G) \ {H} is the malicious
host, and m ∈ {1, 2, 3, 4, 5} is the maliciousness level of Ω as per Definition 2.

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 361

Definition 4. An execution of an algorithm on an instance is completely de-
termined by a sequence of choices made by the adversary. The adversary can
choose which agents are activated at any given time, the speed at which agents
are executed and the speed at which they perform each edge traversal, as well
as any malicious behavior on the part of the malicious host. An execution E ′
is a continuation of an execution E from time t0 if E ′ is identical to E up to
time t0. An execution is called benign if the malicious host exhibits no malicious
behavior.

During an execution, we will say that an agent is frozen, either on an edge or
at a node, if the adversary has decided to delay the actions of that agent. If an
agent is frozen at some time t, the adversary has to unfreeze it at some finite
time t′ > t.

Definition 5. Given an execution of an algorithm, a node v is said to be t-
reported if there exists a time t′ > t such that at time t′ the homebase whiteboard
contains all the data items that v has generated up to time t.

Definition 6. An algorithm A is (k,m)-correct if for every Periodic Data Re-
trieval instance I = 〈G, λ,H, k, Ω,m〉, for every execution E of A on I, for every
node v ∈ V (G) \ {Ω}, and for every time t, node v is t-reported.

Remark 1. A necessary condition for v to be t-reported is that there exist a
natural number r, a sequence of (not necessarily distinct) agents A0, . . . , Ar, a
sequence of nodes v0, . . . , vr, and an increasing sequence of times t0 < · · · < tr,
such that v0 is v, vr is the homebase, t ≤ t0, and, for each i, agent Ai visits
node vi at time ti and node vi+1 at time t′i, where ti < t′i < ti+1. If Ω is a red
hole, then in addition we must have that Ω �∈ {v0, . . . , vr}.

Propositions 1-3 follow directly from the definitions.

Proposition 1. Let A be any algorithm. Every execution of A on some in-
stance I = 〈G, λ,H, k, Ω,m〉 is also an execution of A on I ′ = 〈G, λ,H, k, Ω,m′〉,
where m′ ≥ m.

Proposition 2. If an algorithm is (k,m)-correct, then it is (k,m′)-correct for
all m′ ≤ m.

Proposition 3. Let A be any algorithm. Every benign execution of A on some
instance I = 〈G, λ,H, k, Ω,m〉, where m ≥ 2, is also a benign execution of A on
I ′ = 〈G, λ,H, k, Ω′, 2〉, for all Ω′ ∈ V (G) \ {H}.

3 Lower Bounds on the Number of Agents

In this section, we give lower bounds on the number of agents required to achieve
Periodic Data Retrieval in rings with gray holes (Section 3.1) and red holes
(Section 3.2). We give two more definitions before presenting the results. Let Cn

denote an undirected ring with n nodes.

362 E. Bampas et al.

Definition 7 (Waiting). Let E be an execution of an algorithm A on in-
stance I = 〈G, λ,H, k, Ω,m〉. Let W be a set of nodes that induces a connected
subgraph G(W) of G. We say that an agent A is waiting on W at time t0 under E
if the agent is in G(W) at time t0 and, under any continuation of E from t0 in
which agent A does not perceive any changes in the whiteboard contents of the
nodes in W (with respect to their contents at time t0) except for those made by
itself, agent A never leaves G(W).
When W = {v}, we will say that agent A is waiting on the node v. When
W = {u, v}, we will say that agent A is waiting on the edge (u, v).

Definition 8 (ε-traversal). Let E be an execution ofA onI = 〈Cn, λ,H, k, Ω,m〉
and let ε ≥ 1.We say that an agentA performs an ε-traversal fromnode v0 at time t0
under E if all of the following hold:

1. Nodes v0, v1, . . . , v� are successive on the ring and none of them is the home-
base.

2. At time t0, agent A traverses the edge (v0, v1).
3. At time t0, no other agent is located on nodes v1, . . . , v�−1 or their incident

edges.
4. Under any continuation of E from t0 in which agent A is not killed and the

only changes in the whiteboards of nodes v1, . . . , v�−1 (with respect to their
contents at time t0) that are observed by agent A until it reaches node v� are
the changes made by itself, agent A reaches node v� in finite time without
visiting node v0 in the meantime.

Note that a 1-traversal is simply a traversal of an edge that is not incident to
the homebase. A direct corollary of Definition 8 is the following:

Corollary 1. If there exists an execution E of A on I = 〈Cn, λ,H, k, Ω,m〉
such that properties 1–3 of Definition 8 hold and, in addition, there exists a
continuation of E from t0 such that agent A reaches node v� in finite time without
visiting node v0 in the meantime and no other agent traverses any of the edges
(v0, v1) and (v�−1, v�) from t0 up to the first time when agent A reaches node v�,
then agent A performs an ε-traversal from node v0 at time t0 under E.

3.1 Three Agents Are Not Enough for Gray Holes

The inexistence of (1, 3)-correct or (2, 3)-correct algorithms has already been
demonstrated in [20]. In this section, we show that no algorithm can be (3, 3)-
correct. We achieve this by proving that, if there existed a (3, 3)-correct algo-
rithm, then the adversary would be able to force one of the agents to perform
a 2-traversal (Lemma 1). However, we also prove that if any agent performs a
2-traversal while executing a (3, 3)-correct algorithm, then the adversary can
kill all three agents (Lemma 2). This establishes that a (3, 3)-correct algorithm
cannot exist.

Lemma 1. Let A be a (3, 3)-correct algorithm and let I = 〈Cn, λ,H, 3, Ω, 3〉
with n ≥ 6. There exists a benign execution of A on I under which some agent
performs a 2-traversal.

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 363

Lemma 2. Let A be a (3, 3)-correct algorithm and let I = 〈Cn, λ,H, 3, Ω, 3〉.
Under any benign execution of A on I, no agent can ever perform a 2-traversal.

By Lemmas 1 and 2, the existence of a (3, 3)-correct algorithm yields a con-
tradiction. Therefore, we have proved the following:

Theorem 1. There does not exist a (3, 3)-correct algorithm.

3.2 Four Agents Are Not Enough for Red Holes

In view of Proposition 2, the impossibility result in [20] together with Theo-
rem 1 imply that there do not exist (1, 5)-correct, (2, 5)-correct, or (3, 5)-correct
algorithms. In this section, we show that no algorithm can be (4, 5)-correct. To
this end, we first prove in Lemma 3 that, under any (4, 5)-correct algorithm, the
adversary can force some agent to perform a 3-traversal (in fact, this can even
be enforced under any (4, 3)-correct algorithm). Then, we derive a contradiction
by showing in Lemma 4 that if an agent performs a 3-traversal, then four agents
can die in the red hole and thus the algorithm cannot be (4, 5)-correct.

Lemma 3. Let A be a (4, 3)-correct algorithm and let I = 〈Cn, λ,H, 4, Ω, 3〉
with n ≥ 9. There exists a benign execution of A on I under which some agent
performs a 3-traversal.

Lemma 4. Let A be a (4, 5)-correct algorithm and let I = 〈Cn, λ,H, 4, Ω, 5〉.
Under any benign execution of A on I, no agent performs a 3-traversal.

By Lemmas 3 and 4 and Propositions 1 and 2, the existence of a (4, 5)-correct
algorithm yields a contradiction. Therefore, we have proved the following:

Theorem 2. There does not exist a (4, 5)-correct algorithm.

4 An Optimal Algorithm for Rings with a 4-Malicious
Host

In view of Theorem 1, no algorithm can achieve Periodic Data Retrieval on a
ring with a 4-malicious host using only three agents (in fact, not even on a ring
with a 3-malicious host). In this section, we present algorithm PDR_Rings_4-
malicious, which solves the problem in the presence of a 4-malicious host in a
ring, using an optimal number of four agents.

Remark 2. In order to simplify the presentation, we will not make explicit the
part of the algorithm that is responsible for picking up the data from nodes
and delivering it to the homebase or to an intermediate node to be picked up by
another agent. We assume that each agent, after getting access to the whiteboard
of any node, reads all the node data that has been generated from the node or
left there from other agents and also leaves a copy of the node data that it is
already carrying but is not present in the node. In the following, we will deal
explicitly only with the part of the algorithm that ensures that four agents are
sufficient to ensure Periodic Data Retrieval in the presence of a 4-malicious host.

364 E. Bampas et al.

Before presenting the algorithm, we outline the interface exposed by the nodes
to visiting agents:

– Each node exposes to the agents two functions: getNodeID() and
transfer(port). The former returns the ID of the current node (recall that
this may be misreported by Ω). The latter places the agent in the outgoing
queue of the port specified in its argument, releasing the whiteboard lock if
necessary.

– Additionally, each node exposes to the agents which it is executing the white-
board object WB , which has two members, WB .list and WB .flags , and two
methods, WB .access() and WB .release(). WB .access() requests the white-
board lock and thus results in the agent being placed in the whiteboard
queue. The agent remains inactive until it reaches the front of the queue.
At that point, it gains access to WB .list and WB .flags . WB .list contains
quadruples of the form 〈id, op, port, s〉, where id is an agent identifier, op
is one of the constants {ARR,DEP}, port is a port number, and s is a
non-negative integer. If op = ARR, the entry means that the agent with
the specified id arrived from the specified port after traversing s edges. If
op = DEP, the entry means that the agent with the specified id departed
from the specified port before traversing its (s+1)-st edge. WB .flags contains
pairs of the form 〈id, dir〉, where id is an agent identifier and dir ∈ {+,−}.
The meaning of an entry in WB .flags will become apparent when we describe
the algorithm.

While moving from node to node, agents perform several low-level operations
outlined below:

– When arriving at a node, the agent requests whiteboard access and, when
this is granted, it inserts a quadruple 〈id,ARR, p, s〉 into WB .list . The agent
releases the whiteboard lock just before it leaves the node, after inserting
a quadruple 〈id,DEP, p′, s〉 into WB .list . However, if the agent is granted
whiteboard access and it detects that some other agent has inserted its ARR-
quadruple but not the corresponding DEP-quadruple, it releases the white-
board lock without writing anything and requests whiteboard access de novo,
waiting for the other agent to conclude its computation on the node.

– Additionally, before leaving each node, the agent keeps a copy of WB .list .
When arriving at the destination node, after being granted whiteboard access
for the first time, the agent checks the following conditions and halts if any
of them is true: (a) The current node, as reported by getNodeID(), is not the
same as its intended destination node. (b) A DEP-quadruple by the agent
itself at its current step already exists on the node. (c) The ARR-quadruple
that the agent wishes to insert into WB .list is already there. (d) One of
the agents which reported their departure from the previous node has not
reported its arrival at the current node.

Note that, by waiting for agents already present at the node to conclude their
interaction with the whiteboard before initiating its own, the algorithm guar-
antees that an agent which is killed by the malicious host while holding the

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 365

whiteboard lock will also cause future agents visiting the host to effectively kill
themselves, as they will keep requesting the whiteboard lock forever. Moreover,
the conditions (a)–(c) ensure that if the malicious host forwards an agent to the
wrong node, or does not forward an agent at all and pretends to be the desti-
nation node, or attempts to re-forward a duplicate copy of an agent, then the
offended agent will detect this and kill itself instead of continuing the protocol
erroneously and disrupting the entire system. Finally, condition (d) ensures that
if the malicious host disrupts the FIFO order of its queues, the agents which are
pushed forward in the queues will detect this and kill themselves.

We now give a high-level description of the algorithm. An agent is always in
one of two modes: clockwise (+) or counterclockwise (−). In any configuration of
the system in which a node u contains an entry of the form 〈id,+〉 (resp. 〈id,−〉)
in WB .flags , we will say that u contains the flag u+ (resp. u−), or that the
flag u+ (resp. u−) is present. An agent in clockwise mode performs consecutive
cautious steps in the clockwise direction, until it detects a node w with a flag
(either w+ or w−), at which point it bounces and starts performing cautious
steps in the counterclockwise direction. Let u be a node and v its clockwise
neighbor. A cautious step starting from u in the clockwise direction entails the
following sequence of operations:

– An Explore(+) step: The agent inserts a flag 〈id,+〉 and moves to v.
– A Return(+) step: The agent inserts a flag 〈id,−〉 and moves back to u.
– A Finish(+) step: The agent removes its 〈id,+〉 flag, moves to v, removes its
〈id,−〉 flag, and then starts an Explore(+) step from v.

However, if after the Explore(+) step the agent detects a flag at v, then it
performs a Bounce(+) step instead: The agent moves back to u without inserting
a flag in the whiteboard of v, removes its 〈id,+〉 flag, and then either switches
to counterclockwise mode and starts an explore step in the counterclockwise
direction if there is no u− flag, or remains in clockwise mode and starts an
explore step in the clockwise direction if there is a u− flag.

An agent in counterclockwise mode operates in a completely symmetric fash-
ion and performs consecutive cautious steps in the counterclockwise direction,
until it bounces and switches to clockwise mode. Note that an agent can start the
algorithm in clockwise or counterclockwise mode: this is decided when the agent
begins its execution, depending on which flags are present on the homebase.
Figure 1 illustrates the high-level workings of the algorithm.

The next lemma follows by a straightforward adaptation of the proof of The-
orem 1 in [20].

Lemma 5 ([20]). Under any execution of PDR_Rings_4-malicious in
which not all agents are killed, Periodic Data Retrieval is achieved.

In order to show that PDR_Rings_4-malicious works with four agents, we
reason as follows: First, we show that under any benign execution, at most three
agents can be in the queues of the same node at the same time (Lemma 7 below).
For this, we take advantage of the flags left by the agents during the cautious

366 E. Bampas et al.

if no flag

if flag

if
 f

la
g

if no flag

Explore(+)

insert 〈id,+〉
move+

insert 〈id,−〉

Return(+)

move−
insert 〈id,+〉

Return(−)

move+remove 〈id,−〉

Finish(−)

move−
remove 〈id,+〉

remove 〈id,+〉

Finish(+)

move+
remove 〈id,−〉

Bounce(+)

remove 〈id,+〉
move−

Bounce(−)

remove 〈id,−〉
move+

Explore(−)

insert 〈id,−〉
move−

Fig. 1. A diagram of the basic operations of Algorithm PDR_Rings_4-malicious.
“move +” (resp. “move −”) stands for traversing an edge in the clockwise (resp. coun-
terclockwise) direction.

step. Then, we show how to convert any execution in which four agents die into
a benign execution in which all four agents are in the queues of the malicious
host at the same time. This contradicts the immediately preceding statement,
thus the malicious host cannot kill four agents, and thus, by Lemma 5, the (4, 4)-
correctness of the algorithm follows (Theorem 3 below). The low-level operations
of the algorithm play a crucial role in the proof of Theorem 3.

Definition 9. We say that an agent is going from u to v if it has written its
DEP-quadruple on u and requested to be transferred to v, but has not yet written
its corresponding ARR-quadruple on v. This means that the agent could be either
in the outgoing queue of u, or in the process of being transferred to v, or in the
incoming queue of v, or in the whiteboard queue of v. An agent is traversing an
edge (u, v) if it is going from u to v or from v to u. An agent is on a node u if it
has written its ARR-quadruple on u but has not yet written its DEP-quadruple.

Proposition 4 below states an easy to check property of the algorithm.

Proposition 4. Under any benign execution of PDR_Rings_4-malicious,
at most one agent can be on a given node at a given time.

Let A be an agent which is making a move from node u to a neighboring
node v, i.e., A has inserted a DEP-quadruple at u but has not yet inserted the
corresponding ARR-quadruple at v. If this move is part of an Explore(+) step,
we assign to agent A the tag E+. Similarly, we use the tags R+, F+, and B+ for
the Return(+), Finish(+), and Bounce(+) steps, respectively, and the tags E−,
R−, F−, and B− for the symmetric counterclockwise-mode steps.

By a careful case analysis, we can show that if two agents are traversing the
same edge in any direction, the only possible combinations of tags are: {E+, B−},
{E+, F+}, {E−, B+}, {E−, F−}, {E+, E−}, and {B+, B−}. Using this charac-
terization, we can prove Lemma 6:

Lemma 6. Under any benign execution of PDR_Rings_4-malicious, it is
not possible for three agents to traverse the same edge at the same time.

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 367

Lemma 6 and Proposition 4 considerably limit the candidate configurations
of four agents in the queues of the same node. By a more elaborate case analysis,
we can also eliminate the remaining possibilities and arrive at a contradiction in
all cases, thus obtaining the following:

Lemma 7. For any node v other than the homebase, under any benign execution
of PDR_Rings_4-malicious, a total of at most three agents can be in the
queues of v at the same time.

Theorem 3. PDR_Rings_4-malicious is (4, 4)-correct in rings.

5 An Efficient Algorithm for Rings with a Red Hole

Note that, irrespective of the number of agents, the PDR_Rings_4-malicious
algorithm fails if the malicious host is a red hole. Indeed, the red hole can
kill every clockwise (resp. counterclockwise) agent that approaches it after it
has removed the + (resp. −) flag from the neighboring node and while it is
concluding its Finish(+) (resp. Finish(−)) step on the red hole, by presenting
to it a whiteboard which shows that previous clockwise (resp. counterclockwise)
agents were not killed but continued their intended trajectory.

In order to remedy this situation, we propose algorithm PDR_Rings_Red,
which employs a natural extension of the cautious step idea: the cautious double
step. Let u, v, w be consecutive nodes in clockwise order. A cautious double
step starting from u in the clockwise direction entails the following sequence of
operations:

– An Explore1(+) step: The agent inserts a flag 〈id,+〉 and moves to v.
– An Explore2(+) step: The agent moves to w.
– A Return2(+) step: The agent moves back to v.
– A Return1(+) step: The agent moves back to u.
– A Finish(+) step: The agent removes its 〈id,+〉 flag, moves to v, and then

starts an Explore1(+) step from v.

However, if after the Explore1(+) step the agent detects a + flag at v, then it
bounces but first it goes to w anyway. More specifically, in this case the agent
performs the following sequence of operations after the Explore1(+) step:

– An Explore�2(+) step: The agent moves to w.
– A Bounce2(+) step: The agent moves back to v.
– A Bounce1(+) step: The agent moves back to u, removes its 〈id,+〉 flag, and

then starts an Explore1(−) step from u.

Under PDR_Rings_Red, a clockwise agent performs consecutive cautious
double steps in the clockwise direction, until it bounces and switches to counter-
clockwise mode. A counterclockwise agent operates completely symmetrically.

We should mention at this point that the low-level operations performed by
this algorithm when an agent moves from node to node are somewhat more
contrived than in the previous case. We highlight the differences below:

368 E. Bampas et al.

– The ARR- and DEP-tuples now contain more information, namely the mode
of the agent (clockwise or counterclockwise) and the name of the step which it
is currently executing (one of Explore1, Explore2, Return2, Return1, Finish,
Explore�2, Bounce2, Bounce1).

– The agent keeps copies of WB .list from each node before every step, and af-
ter every step checks its stored copies against the whiteboard of the current
node for inconsistencies. This allows the agent to verify that each white-
board is consistent with the whiteboards of its neighbors, as well as that
it reports a correct execution of the protocol. If any inconsistency is de-
tected, the agent halts (kills itself). This check supersedes the simpler check
in PDR_Rings_4-malicious, whereby the agent simply checked whether
all agents previously departed from the same port had reached the destina-
tion.

As in the case of PDR_Rings_4-malicious, the agent never walks too far
away from its flag. The agent is always at distance at most 2 from a flag that
it has left behind. In fact, if the agent does not return to pick up the flag, then
this must have happened because it was killed as a result of malicious activity
from the red hole. Therefore, any flag which remains forever on a node after a
given point in time is at distance at most 2 from the red hole. This, together
with the fact that even when an agent decides to bounce, it still goes one step
further in its intended direction (step Explore�2), implies that a straightforward
adaptation of the proof of Theorem 1 in [20] yields the following:

Lemma 8. Under any execution of PDR_Rings_Red in which not all agents
are killed, Periodic Data Retrieval is achieved.

A feature of the algorithm is that clockwise agents ignore the flags of counter-
clockwise agents (i.e., they do not bounce upon detecting such a flag) and vice
versa. This leads to an algorithm which is likely suboptimal, but can be analyzed
more easily by considering the deaths of clockwise agents separately from those
of counterclockwise agents. In fact, one can show that under any execution, we
can have at most three deaths of clockwise agents and, symmetrically, at most
three deaths of counterclockwise agents.

Lemma 9. Under any execution of PDR_Rings_Red, at most three clock-
wise agents die.

By Lemmas 8 and 9, and by the symmetric of Lemma 9 for counterclockwise
agents, we obtain that PDR_Rings_Red achieves Periodic Data Retrieval
with seven agents:

Theorem 4. PDR_Rings_Red is (7, 5)-correct in rings.

Remark 3. Note that the red hole might not interfere with the agents in any way,
except by modifying the data items that they store in its whiteboard. In this
case, it could happen that altered or corrupted data from certain nodes reach
the homebase, thus rendering the algorithm incorrect. However, the cautious
double step ensures that any agent which leaves a data item on the red hole will

Improved Periodic Data Retrieval in Asynchronous Rings with a Faulty Host 369

also leave a copy of it on at least one of its neighbors. Therefore, by enforcing
agents to pick up data items only if they find them twice on two neighboring
nodes, we ensure that an agent will never pick up a corrupted data item from
the whiteboard of the red hole.

6 Concluding Remarks

We gave the first nontrivial lower bounds on the number of agents for Periodic
Data Retrieval in asynchronous rings with either one gray hole or one red hole,
answering an open question posed in [20]. Moreover, we proposed an optimal,
with respect to the number of agents, protocol for Periodic Data Retrieval in
asynchronous rings with a gray hole, improving the previous upper bound of 9
agents and settling the question of the optimal number of agents in the gray-hole
case. Finally, we proposed a protocol working with 7 agents in the presence of a
red hole, significantly improving the previously known upper bound of 27 agents.

We made no effort to optimize the amount of data stored on the white-
boards of the hosts. Indeed, since the protocol is executed indefinitely, the
amount of data stored in every host under both PDR_Rings_4-malicious
and PDR_Rings_Red grows unbounded. However, it should be clear that
this amount can be reduced to a reasonable function of the number of nodes and
the number of agents, by deprecating and removing information which is known
to be no longer useful. We defer the implementation of this mechanism to the
full version of the paper.

Algorithm PDR_Rings_Red is almost certainly suboptimal. In principle,
we should be able to further reduce the total number of agents killed by suitably
marking all of the nodes involved in a cautious double step, and then having
clockwise and counterclockwise agents not ignore each other’s flags. We conjec-
ture that an algorithm along these lines would work with an optimal number
of 5 agents in the presence of a red hole.

One important research direction which remains completely open is the case
of a malicious host which can alter the state of an agent, its memory, or even its
program. It would be particularly interesting to develop algorithms that cope
with this kind of malicious behavior. Another question that remains open is what
happens in other network topologies under the various malicious host models.

References

1. Balamohan, B., Dobrev, S., Flocchini, P., Santoro, N.: Asynchronous exploration of
an unknown anonymous dangerous graph with O(1) pebbles. In: Even, G., Halldórs-
son, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 279–290. Springer, Heidel-
berg (2012)

2. Balamohan, B., Flocchini, P., Miri, A., Santoro, N.: Time optimal algorithms for
black hole search in rings. Discrete Math., Alg. and Appl. 3(4), 457–472 (2011)

3. Chalopin, J., Das, S., Santoro, N.: Rendezvous of mobile agents in unknown graphs
with faulty links. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 108–122.
Springer, Heidelberg (2007)

370 E. Bampas et al.

4. Czyzowicz, J., Dobrev, S., Gąsieniec, L., Ilcinkas, D., Jansson, J., Klasing, R.,
Lignos, I., Martin, R., Sadakane, K., Sung, W.K.: More efficient periodic traversal
in anonymous undirected graphs. Theor. Comput. Sci. 444, 60–76 (2012)

5. Dobrev, S., Flocchini, P., Královič, R., Ruzicka, P., Prencipe, G., Santoro, N.: Black
hole search in common interconnection networks. Networks 47(2), 61–71 (2006)

6. Dobrev, S., Flocchini, P., Královič, R., Santoro, N.: Exploring an unknown graph
to locate a black hole using tokens. In: Navarro, G., Bertossi, L.E., Kohayakawa,
Y. (eds.) IFIP TCS. IFIP, vol. 209, pp. 131–150. Springer, Boston (2006)

7. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black
hole in an anonymous ring. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp.
166–179. Springer, Heidelberg (2001)

8. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple agents rendezvous in
a ring in spite of a black hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS
2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

9. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Searching for a black hole in
arbitrary networks: optimal mobile agents protocols. Distributed Computing 19(1),
1–19 (2006)

10. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Mobile search for a black hole
in an anonymous ring. Algorithmica 48(1), 67–90 (2007)

11. Dobrev, S., Královič, R., Santoro, N., Shi, W.: Black hole search in asynchronous
rings using tokens. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC
2006. LNCS, vol. 3998, pp. 139–150. Springer, Heidelberg (2006)

12. Dobrev, S., Santoro, N., Shi, W.: Scattered black hole search in an oriented ring
using tokens. In: IPDPS, pp. 1–8. IEEE (2007)

13. Dobrev, S., Santoro, N., Shi, W.: Using scattered mobile agents to locate a black
hole in an un-oriented ring with tokens. Int. J. Found. Comput. Sci. 19(6), 1355–
1372 (2008)

14. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping pong in dangerous graphs: Optimal
black hole search with pebbles. Algorithmica 62(3-4), 1006–1033 (2012)

15. Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Map construction and explo-
ration by mobile agents scattered in a dangerous network. In: IPDPS, pp. 1–10.
IEEE (2009)

16. Flocchini, P., Kellett, M., Mason, P.C., Santoro, N.: Searching for black holes in
subways. Theory Comput. Syst. 50(1), 158–184 (2012)

17. Flocchini, P., Mans, B., Santoro, N.: Sense of direction: Definitions, properties, and
classes. Networks 32(3), 165–180 (1998)

18. Flocchini, P., Mans, B., Santoro, N.: Sense of direction in distributed computing.
Theor. Comput. Sci. 291(1), 29–53 (2003)

19. Flocchini, P., Santoro, N.: Distributed security algorithms for mobile agents. In:
Cao, J., Das, S.K. (eds.) Mobile Agents in Networking and Distributed Computing,
ch. 3, pp. 41–70. John Wiley & Sons, Inc., Hoboken (2012)

20. Královič, R., Miklík, S.: Periodic data retrieval problem in rings containing a mali-
cious host. In: Patt-Shamir, B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058,
pp. 157–167. Springer, Heidelberg (2010)

21. Markou, E.: Identifying hostile nodes in networks using mobile agents. Bulletin of
the EATCS 108, 93–129 (2012)

22. Miklík, S.: Exploration in faulty networks. Ph.D. thesis, Comenius University,
Bratislava (2010)

23. Shi, W.: Black hole search with tokens in interconnected networks. In: Guerraoui,
R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 670–682. Springer, Heidelberg
(2009)

Author Index

Abshoff, Sebastian 194

Bampas, Evangelos 355
Becker, Florent 83
Bilò, Davide 210

Chalopin, Jérémie 279
Conde, Rodolfo 68
Czyzowicz, Jurek 23, 224

Das, Shantanu 295
Dereniowski, Dariusz 295, 311
Durand, Sylvain 96

Eftekhari, Mohsen 235
Emek, Yuval 263

Flocchini, Paola 235
Fuchs, Fabian 180

G ↪asieniec, Leszek 23
Georgiou, Konstantinos 23
Godard, Emmanuel 279
Gu, Zhaoquan 165
Gualà, Luciano 210

Hegeman, James W. 149
Hochuli, Alexandra 121
Holzer, Stephan 121
Hua, Qiang-Sheng 165

Ilcinkas, David 250
Imbs, Damien 37
Izumi, Taisuke 137

Johnson, Matthew P. 108

Kakugawa, Hirotsugu 327
Klasing, Ralf 250, 311
Kniesburges, Sebastian 1
Kosowski, Adrian 295, 311
Kranakis, Evangelos 23, 224
Kuszner, �Lukasz 311

Langner, Tobias 263
Lau, Francis Chi Moon 165
Leonardos, Nikos 355
Leucci, Stefano 210
Liu, Ou 108

MacQuarrie, Fraser 23
Markarian, Christine 1
Markou, Euripides 355
Masuzawa, Toshimitsu 327
Merabet, Massinissa 96
Meyer auf der Heide, Friedhelm 1, 194
Molnár, Miklós 96
Montealegre, Pedro 83

Narayanan, Lata 235
Naudin, Antoine 279

Ooshita, Fukuhito 327
Opatrny, Jaroslav 235
Ortolf, Christian 343
Oshman, Rotem 14

Pagourtzis, Aris 355
Pajak, Dominik 224
Palmieri, Roberto 54
Pandurangan, Gopal 18
Pemmaraju, Sriram V. 149
Petrolia, Matoula 355
Proietti, Guido 210

Rabanca, George 108
Rajsbaum, Sergio 37, 68
Rapaport, Ivan 83
Ravindran, Binoy 54
Raynal, Michel 37

Santoro, Nicola 235
Scheideler, Christian 1
Schindelhauer, Christian 343
Shibata, Masahiro 327
Stainer, Julien 37
Stolz, David 263

Taleb, Najmeh 224
Todinca, Ioan 83

372 Author Index

Uitto, Jara 263
Uznański, Przemys�law 295

Wade, Ahmed Mouhamadou 250
Wagner, Dorothea 180

Wang, Yuexuan 165

Wattenhofer, Roger 121, 263

Zhang, Bo 54

	Preface
	Organization
	Laudatio
	From Turing to the Clouds(On the Computability Power ofDistributed Systems)
	Biological Distributed Computing
	Table of Contents
	Invited Presentations
	Algorithmic Aspects of Resource Managementin the Cloud
	1 Introduction
	2 Online Leasing Problems
	3 Distributed Storage Systems
	References

	Communication Complexity Lower Boundsin Distributed Message-Passing
	References

	Distributed Algorithmic Foundationsof Dynamic Networks
	References

	Best Student Paper
	The Beachcombers’ Problem:Walking and Searching with Mobile Robots
	1 Introduction
	1.1 Preliminaries
	1.2 Related Work
	1.3 Outline and Results of the Paper

	2 Searching a Known Segment
	2.1 Properties of Optimal Schedules
	2.2 The Optimal Schedule for the Beachcombers’ Problem
	2.3 Closed Formulas for the Optimal Schedule of the Beachcombers’ Problem

	3 The Online Search Algorithm
	4 Competitiveness of the Online Searching
	5 Conclusion and Open Problems
	References

	Shared Memory and Multiparty Communication
	Reliable Shared Memory Abstraction on Top of Asynchronous Byzantine Message-Passing Systems
	1 Introduction
	2 Computation Model, Reliable Broadcast and Two Properties
	2.1 ComputationModel
	2.2 Reliable Broadcast Abstraction
	2.3 Two Preliminary Quorum-Related Properties

	3 Construction of Single-Writer/Multi-Reader Atomic h-Registers
	3.1 Atomic Read/Write h-Registers in the Presence of Byzantine Processes
	3.2 The Construction
	3.3 Proof of the Construction and Upper Bound

	4 A Simple Abstraction on Top of SWMR Atomic h-Registers
	5 Solving Multidimensional Approximate Agreement
	5.1 The Multidimensional Approximate Agreement Problem
	5.2 SolvingMultidimensional Approximate Agreement

	6 Conclusion
	References

	Distributed Transactional ContentionManagement as the Traveling Salesman Problem
	1 Preliminaries
	2 The DTM Contention Management Problem
	2.1 Problem Measure and Complexity
	2.2 Lower Bound

	3 Algorithm: Cutting
	3.1 Description
	3.2 Analysis

	4 Conclusions
	References

	The Complexity Gap between Consensusand Safe-Consensus
	1 Introduction
	2 Model and Task Definitions
	3 Solving Consensus with Safe-Consensus
	4 The Lower Bound
	References

	The Simultaneous Number-in-HandCommunication Model for Networks:Private Coins, Public Coins and Determinism
	1 Introduction
	2 Preliminaries
	3 Deterministic Protocols
	4 Randomized Protocols
	5 OpenProblems
	References

	Network Optimization
	Approximation of the Degree-ConstrainedMinimum Spanning Hierarchies
	1 Introduction
	2 Related Works
	3 Problem Definition
	4 Degree Constrained Span of a Star with Hierarchies
	5 An Approximation Algorithm for the DCMSH Problem
	5.1 A Star Decomposition of the MST
	5.2 The Proposed Algorithm to Approximate the DCMSH
	5.3 Discussion about the Heuristic

	6 Conclusion
	References

	Secluded Path via Shortest Path
	1 Introduction
	2 Preliminaries
	3 Δ-Degree Graphs
	3.1 Static
	3.2 Δ-Memory
	3.3 h-Memory for 0 ≤ h ≤ Δ

	4 Unit-Disk Graphs
	5 NP-Hardness
	6 Discussion
	References

	CONGEST Algorithms and Lower Bounds
	Distributed Approximationof Minimum Routing Cost Trees
	1 Introduction
	2 Model and Basic Definitions
	3 OurResults
	4 Related Work
	5 Trees That 2-Approximate the Routing Cost
	6 Considering few Randomly Chosen SP-Trees Is Almostas Good
	7 How to Compute the Routing Cost of Many SP-Treesin Parallel
	8 Proofs of MainResults
	References

	Randomized Lower Boundfor Distributed Spanning-Tree Verification
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Round-Based Distributed Systems
	3.2 Distributed Verification Problems

	4 Randomized Lower Bounds for PHam
	4.1 Two-Party Communication Complexity
	4.2 Graph Construction
	4.3 Reduction

	5 Verifying Low-Diameter Spanning Trees
	6 Concluding Remarks
	References

	Lessons from the Congested Clique Applied to MapReduce
	1 Introduction
	1.1 Models
	1.2 Contributions
	1.3 RelatedWork

	2 Coloring on the Congested Clique
	3 MapReduce Algorithms from Congested Clique Algorithms
	4 Coloring in the MapReduce Framework
	References

	Wireless networks
	Oblivious Rendezvousin Cognitive Radio Networks
	1 Introduction
	1.1 Rendezvous and Oblivious Rendezvous
	1.2 Related Work
	1.3 Our Contributions

	2 Model and Problem Definitions
	2.1 System Model
	2.2 Problem Definition

	3 Lower Bound for ORP-2
	4 Algorithms for ORP-2
	4.1 ID Hopping Rendezvous
	4.2 Multi-Step Channel Hopping Rendezvous

	5 Algorithm for ORP-M
	6 Oblivious Rendezvous Applications
	7 Conclusion
	References

	Local Broadcasting with Arbitrary TransmissionPower in the SINR Model
	1 Introduction
	1.1 Contributions
	1.2 Related Work

	2 Preliminaries
	3 Bounding the Interference
	4 Local Broadcasting
	4.1 Arbitrary But Fixed Transmission Power
	4.2 Variable Transmission Power

	5 Distributed Node Coloring
	5.1 The MW-Coloring Algorithm

	6 Conclussion
	References

	Aggregation and Creation Games in Networks
	Continuous Aggregationin Dynamic Ad-Hoc Networks
	1 Introduction
	1.1 Our Contribution

	2 Models andProblems
	3 Related Work
	4 Static Networks
	5 T-stable Dynamic Networks
	5.1 Graph Patching in T-stable Dynamic Networks
	5.2 Non-Continuous Extremum
	5.3 Non-Continuous Summation
	5.4 Continuous Extremum
	5.5 Continuous Summation

	6 Geometric Dynamic Networks
	7 Conclusion and Future Prospects
	References

	Network Creation Gameswith Traceroute-Based Strategies
	1 Introduction
	2 Convergence
	2.1 Model M1
	2.2 Models M2 and M3

	3 Complexity of Computing a Best Response
	3.1 Model M1
	3.2 Model M2
	3.3 Model M3

	4 Price ofAnarchy
	References

	Patrolling and Barrier Coverage
	Patrolling by Robots Equipped with Visibility
	1 Introduction
	1.1 Preliminaries and Notation
	1.2 RelatedWork
	1.3 Outline and Results of the Paper

	2 Circle Patrolling
	2.1 Equal Speeds
	2.2 Different Speeds

	3 Segment Patrolling
	3.1 Equal Speeds
	3.2 Different Speeds

	4 Hardness Results
	5 Conclusion
	References

	Distributed Barrier Coverage with Relocatable Sensors
	1 Introduction
	1.1 The Problem
	1.2 Main Contributions

	2 Model and Notation
	3 Impossibility without Orientation
	4 Possibility with Orientation
	5 On Visibility and Convergence
	6 Conclusions
	References

	Exploration
	Exploration of Constantly Connected DynamicGraphs Based on Cactuses
	1 Introduction
	2 Preliminaries
	3 ChainMethod
	4 StarMethod
	5 Mixed Method
	5.1 Upper Bound for the Algorithm Mixed-Method
	5.2 Lower Bound for the Algorithm Mixed-Method

	6 Conclusion
	References

	How Many Ants Does It Take to Find the Food?
	1 Introduction
	2 Four Agents
	3 Three Agents
	3.1 Deterministic Protocol for sync-ANTS
	3.2 Randomized Protocol for async-ANTS

	4 TwoAgents
	4.1 No Deterministic FA-Protocol
	4.2 Deterministic FA/PDA-Protocol for sync-ANTS
	4.3 Deterministic PDA-Protocol for async-ANTS

	5 OneAgent
	5.1 No Deterministic PDA-Protocol
	5.2 Randomized PDA-Protocol for async-ANTS

	Conclusion
	References

	What Do We Need to Know to Electin Networks with Unknown Participants?
	1 Introduction
	2 Graphs Properties and Reachable Vertices
	3 Model
	4 Cartography of Reachable Vertices
	5 Isolation Lemma
	6 Election Algorithm
	7 Conclusion
	References

	Rendezvous
	Rendezvous of Distance-Aware Mobile Agentsin Unknown Graphs
	1 Introduction
	1.1 Overview
	1.2 Our Contributions
	1.3 Related Work

	2 Model and Notations
	3 Lower Bound for Distance-Aware Rendezvous
	4 Upper Bound and Algorithm for Rendezvous
	5 Conclusions
	References

	Rendezvous of Heterogeneous Mobile Agentsin Edge-Weighted Networks
	1 Introduction
	1.1 The Model and the Problem
	1.2 Related Work
	1.3 Additional Notation
	1.4 Possible Restrictions on Weight Functions
	1.5 Our Results

	2 Communication Complexity for Θ(TOPT) Time
	2.1 The Case of Arbitrary Functions
	2.2 The Case of Ordered Edges
	2.3 The Case of Ordered Agents

	3 Rendezvous with No Communication
	3.1 The Case of Arbitrary Functions
	3.2 Lower Bound for the Case of Ordered Edges without Communication

	4 FinalRemarks
	References

	Mobile Agents
	Move-Optimal Partial Gatheringof Mobile Agents in Asynchronous Trees
	1 Introduction
	1.1 Background and Our Contribution
	1.2 Related Works

	2 Preliminaries
	2.1 Network and Agent Model
	2.2 System Configuration
	2.3 Partial Gathering Problem

	3 Strong Multiplicity Detection and Non-Token Model
	4 Weak Multiplicity Detection and Removable-Token Model
	4.1 The First Part: Leader Election
	4.2 The Second Part: Leaders’ Instruction and Agents’ Movement

	5 Conclusion
	References

	A Recursive Approach to Multi-robot Exploration of Trees
	1 Introduction
	2 The Yo-yo Exploration
	3 The Yo* Algorithm
	4 Conclusions
	References

	Improved Periodic Data Retrievalin Asynchronous Rings with a Faulty Host
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Periodic Data Retrieval

	3 Lower Bounds on the Number of Agents
	3.1 Three Agents Are Not Enough for Gray Holes
	3.2 Four Agents Are Not Enough for Red Holes

	4 An Optimal Algorithm for Rings with a 4-MaliciousHost
	5 An Efficient Algorithm for Rings with a Red Hole
	6 Concluding Remarks
	References

	Author Index

