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Preface

Over the last couple of years, evidence has been mounting for the existence of
very massive stars (VMS) in the Local Universe up to 300 solar masses. With this
paradigm shift in the stellar upper-mass limit, it seems timely to construct a textbook
on the physics unique to VMS.

As the top-end of the stellar initial mass function is imprinted on the observed
spectra of distant populations, such as the star-forming galaxies detected at the
highest redshifts, this paradigm shift on the stellar upper-mass limit may have major
implications far beyond the field of stellar physics.

For these reasons, we decided to work on a textbook that discusses the evidence
for and against the existence of stars up to 300 solar masses, and that entails VMS
formation, mass loss, evolution, and death.

The book in front of you may be considered a spin-off from a fruitful joint
discussion (JD) at the 2012 IAU General Assembly in Beijing that was organized
by the IAU Working Group on Massive Stars.

The textbook comprises seven in-depth chapters and an introduction on the role
of VMS in the Universe. The book is intended to describe the status of the field
and the physics specific to VMS, with sufficient background material to enable a
graduate student or a researcher from a different area to enter this exciting new field
of research.

I would like to take the opportunity to warmly thank the authors of the book and
the people at Springer for their help with the editorial aspects. I would also like
to thank the participants of the fruitful JD held in 2012. Finally, I would like to
express my gratitude to all my collaborators, including post-docs and students over
the years, without whom the science would have been far less enjoyable!

Armagh, Ireland Jorick S. Vink
April 2014
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Chapter 1
Very Massive Stars in the Local Universe

Jorick S. Vink

Abstract Recent studies have claimed the existence of very massive stars (VMS)
up to 300 Mˇ in the local Universe. As this finding may represent a paradigm shift
for the canonical stellar upper-mass limit of 150 Mˇ, it is timely to evaluate the
physics specific to VMS, which is currently missing. For this reason, we decided
to construct a book entailing both a discussion of the accuracy of VMS masses
(Martins), as well as the physics of VMS formation (Krumholz), mass loss (Vink),
instabilities (Owocki), evolution (Hirschi), and fate (theory – Woosley and Heger;
observations – Smith).

1.1 Introduction

It has been thought for many years that very massive stars (VMS) with masses
substantially larger than 100 Mˇ may occur more frequently in the early Universe,
some few hundred million years after the Big Bang. The reason for the expectation
that the first few stellar generations would generally have been more massive is that
there was less cooling during the formation process of these metal-poor objects than
in today’s metal-rich Universe (e.g. Bromm et al. 1999; Abel et al. 2002; Omukai
and Palla 2003; Yoshida et al. 2004; Ohkubo et al. 2009).

Furthermore, as radiation-driven winds are thought to be weaker at the lower
metal content of the early Universe (e.g. Kudritzki 2002; Vink and de Koter 2005;
Krticka and Kubat 2006; Gräfener and Hamann 2008; Muijres et al. 2012), this
could imply that the final masses of VMS in the early Universe would be almost
equally high as their initial masses. This could then lead to the formation of 102–
103 Mˇ intermediate-mass black holes (IMBHs), with masses in between stellar
mass black holes and supermassive black holes of order 105 Mˇ in the centres of
galaxies. IMBHs have been hypothesized to be the central engines of ultraluminous
x-ray sources (ULXs). Moreover, in a high stellar mass – low mass loss – situation it
might become possible to produce pair-instability supernovae (PISNe) in the initial
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2 J.S. Vink

mass range of 140–260 Mˇ (Woosley et al. 2002; see also Fowler and Hoyle 1964;
Barkat et al. 1967; Bond et al. 1984; Langer et al. 2007; Moriya et al. 2010; Pan
et al. 2012; Dessart et al. 2013; Whalen et al. 2013). Such PISNs are very special as
just one such explosion could potentially produce more metals than an entire initial
mass function (IMF) below it (Langer 2012).

Interestingly, Crowther et al. (2010) re-analyzed the most massive hydrogen-and
nitrogen-rich Wolf-Rayet (WNh) stars in the center of R136, the ionizing cluster
of the Tarantula nebula in the Large Magellanic Cloud (LMC). The conclusion
from their analysis was that stars usually assumed to be below the canonical stellar
upper-mass limit of 150 Mˇ (of e.g. Figer 2005), were actually found to be much
more luminous (see also Hamann et al. 2006; Bestenlehner et al. 2011), with initial
masses up to �200–300Mˇ. As this finding may represent a paradigm shift for the
canonical stellar upper-mass limit of 150 Mˇ, it is timely to discuss the status of the
data as well as VMS theory.

Whilst textbooks and reviews have been devoted to the physics of canonical
massive single and binary stars (Maeder 2009; Langer 2012) there is as yet no source
that specifically addresses the physics unique to VMS. As such objects are in close
proximity to the Eddington limit, this is likely to affect both their formation, and via
their mass loss also their fates.

1.2 The Role of Very Massive Stars in the Universe

The first couple of stellar generations may be good candidates for the reionization of
the Universe (e.g. Haehnelt et al. 2001; Barkana and Loeb 2001; Ciardi and Ferrara
2005; Fan et al. 2006) and their ionizing properties at very low metallicity (Z)
may also be able to explain the extreme Ly˛ and He II emitting galaxies at high
redshift (Malhotra and Rhoads 2002; Kudritzki 2002; Schaerer 2003; Stark et al.
2007; Ouchi et al. 2008).

Notwithstanding the role of the first stars, the interest in the current generation of
massive stars has grown as well. Massive stars are important drivers for the evolution
of galaxies, as the prime contributors to the chemical and energy input into the
interstellar medium (ISM) through stellar winds and supernovae (SNe). A number
of exciting developments have taken place in recent years, including the detection
of long-duration gamma-ray bursts (GRBs) at redshifts of 9 (e.g. Tanvir et al. 2009),
just a few hundred millions years after the Big Bang (Cucchiara et al. 2011). This
provides convincing evidence that massive stars are able to form and die massive
when the Universe was not yet enriched.

Very massive stars are usually found in and around young massive clusters, such
as the Arches cluster in the Galactic centre and the local starburst region R136 in
the LMC. Young clusters are also relevant for the unsolved problem of massive star
formation. For decades it was a real challenge to form stars over 10–20 Mˇ, as
radiation pressure on dust grains might halt and reverse the accretion flow onto the
central object (e.g. Yorke and Kruegel 1977; Wolfire and Cassinelli 1987). Because
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of this issue, theorists have been creative in forming massive stars via competitive
accretion and collisions in dense cluster environments (e.g., Bonnell et al. 1998). In
more recent times several multi-D simulations have shown that massive stars might
form via disk accretion after all (e.g., Krumholz et al. 2009; Kuiper et al. 2010). In
the light of recent claims for the existence of VMS in dense clusters, however, the
issue of forming VMS in extreme environments is discussed by Mark Krumholz in
Chap. 3.

The fact that so many VMS are located within dense stellar clusters
still allows for an intriguing scenario in which VMS may originate from
collisions of smaller objects (e.g., Portegies Zwart et al. 1999; Gürkan et al.
2004), leading to the formation of VMS up to 1,000 Mˇ at the cluster
center, which may produce IMBHs at the end of their lives, but only
if VMS mass loss is not too severe (see Belkus et al. 2007; Yungelson
et al. 2008; Glebbeek et al. 2009; Pauldrach et al. 2012; Yusof et al.
2013).

1.3 Definition of a Very Massive Star

One of the very first questions that arises when one prepares a book on VMS is
what actually constitutes a “very” massive star. One may approach this in several
different ways.

Theoretically, “normal” massive stars with masses above �8 Mˇ are those that
produce core-collapse SNe (Smartt et al. 2009), but what happens at the upper-mass
end? Above a certain critical mass, one would expect the occurrence of PISNe, and
ideally this could be the lower-mass limit for the definition of our VMS. However,
in practice this number is not known a priori (due to mass loss), and therefore
the initial and final masses are likely not the same. In other words, the initial
main-sequence mass for PISN formation is model-dependent, and thus somewhat
arbitrary. Furthermore, there is the complicating issue of pulsational pair-instability
(PPI) at masses below those of full-fedged PISNe (e.g. Woosley et al. 2007). One
could alternatively resort to the mass of the helium (He) core for which stars reach
the conditions of electron/positron pair-formation instability. Heger showed this
minimum mass to be �40 Mˇ to encounter the PPI regime and �65 Mˇ to enter
the arena of the true PISNe (see also Chatzopoulos and Wheeler 2012).

Another definition could involve the spectroscopic transition between normal
main-sequence O-type stars and hydrogen-rich Wolf-Rayet stars (of WNh type),
which have also been shown to be core H burning main sequence objects. However,
such a definition would be dependent on the mass-loss transition point between O-
type and WNh stars, which is set by the transition luminosity (Vink and Gräfener
2012) and is expected to be Z dependent.

For these very reasons, we decided at the joint discussion meeting at the 2012
IAU GA in Beijing to follow a more pragmatic approach, defining stars to be very
massive when their initial masses are '100 Mˇ (Vink et al. 2013).
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1.4 The Very Existence of Very Massive Stars

With this definition, the question of whether very massive stars exist can easily be
answered affirmatively, but the more relevant question during the joint discussion
was whether the widely held “canonical” upper-mass limit of 150 Mˇ has been
superseded, as some part of the astronomical community had expressed some
skeptism regarding very high masses in R136, in the light of an earlier spectacular
claim for the existence of a 2;500 Mˇ star R136 in the 30 Doradus region of the
LMC (e.g. Cassinelli et al. 1981). Higher spatial resolution showed that R136 was
actually not a single supermassive star, but it eventually revealed a young cluster
containing several lower mass objects, including the current record holder R136a1.

Over the last few decades there has been a consensus of a 150 Mˇ stellar upper
mass limit (Weidner and Kroupa 2004; Figer 2005; Oey and Clarke 2005; Koen
2006), albeit the accuracy of these claims was surprisingly low (e.g. Massey 2011).
Crowther et al. (2010) re-analyzed the VMS data in R136 claiming that the cluster
hosts several stars with masses as high as 200–300Mˇ. In addition they performed
a sanity check on similar WNh objects in the Galactic starburst cluster NGC 3603.
Although these objects were fainter than those in R136, the advantage was the
available dynamical mass estimate by Schnurr et al. (2008) of the binary object
NGC 3603-A1 with a primary mass of 116 ˙ 31Mˇ. This was deemed important as
the least model-dependent way to obtain stellar masses is through the analysis of the
light-curves and radial velocities induced by binary motions (see Martins’ Chap. 2).

It could still be argued that the luminosities derived by Crowther et al. are
uncertain and that these central WNh stars might in reality involve multiple
sources due to insufficient spatial resolution, especially considering that the highest
resolution data of the young Galactic Arches cluster with the largest telescope
(Keck) only has a limiting resolution of 50 mas, and given that R136 is 7 times
more distant than the Arches cluster, the achievable resolution if the Arches cluster
were in the LMC would mean that R136 would not be resolved. This suggests that
we still cannot be 100 % certain that the bright WNh stars in R136 could not “break
up” into lower-mass objects.

For this reason it was rather relevant that Bestenlehner et al. (2011) found an
almost identical twin of R136a3 WNh star in 30 Doradus: VFTS 682. Its key
relevance is that it is located in apparent isolation from the R136 cluster, and as
a result the chance of line-of-sight contamination is insignificant in comparison to
R136. The VFTS 682 object thus offered a second sanity check on the reliability
of the luminosities of the R136 core stars. Bestenlehner et al. argued for a high
luminosity of log(L=Lˇ/ D 6:5 with a present-day mass of 150 Mˇ for VFTS 682,
which implies an initial mass on the zero-age main sequence (ZAMS) higher than
the canonical upper-mass limit.

In other words, although one cannot exclude the possibility that the object
R136a1 claimed to be �300 Mˇ in the R136 cluster might still “dissolve” when
higher spatial resolution observations become available, the sanity checks involving
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binary dynamics and isolated objects make it quite convincing that stars with ZAMS
masses at least up to 200 Mˇ exist.

A more detailed overview of the masses of VMS and the upper end of the IMF
will be described in Martins’ Chap. 2.

1.5 The Evolution and Fate of Very Massive Stars

Very massive stars are thought to evolve almost chemically homogeneously
(Hirschi’s Chap. 6), implying that knowing the exact details of the mixing processes
(e.g., rotation, magnetic fields) are less relevant in comparison to their canonical
�10–60 Mˇ counterparts. Instead, the evolution and death of VMS is dominated
by mass loss.

At some level it does not matter ‘how’ VMS became such massive objects. First
of all we do not yet definitively know the formation mode of ‘very’ massive stars,
and whether the formation involves disk accretion or coalescence of less massive
objects. Secondly, there is a possibility that binary evolution already during early
core hydrogen (H) burning resulted in the formation of massive blue stragglers
(Schneider et al. 2014; de Mink et al. 2014), but the fate of these effectively single
VMS will naturally be determined by single-star mass loss.

The existence of the Humphreys-Davidson (HD) limit at approximately solar
metallicity tells us that VMS do not become red supergiants (RSG) but that they
remain on the hot side of the Hertzsprung-Russell (HR) diagram as luminous O
stars and Wolf-Rayet-type objects. For these hot stars the mass loss is thought to be
driven by million of iron lines in a radiatively-driven wind, but what is not yet known
is whether episodes of super-Eddington (Shaviv 1998), continuum-driven mass loss
(such as may occur in Eta Carinae and other Luminous Blue Variable (LBV) star
eruptions) may also play a role (see Vink’s Chap. 4 and Owocki’s Chap. 5). What
is clear is that the Eddington � limit will play a dominant role in the mass-loss
physics.

We should also note that the Eddington limit is relevant for another issue relating
to VMS physics. When objects approach the Eddington limit, they may or may not
inflate (Ishii et al. 1999; Petrovic et al. 2006), i.e. be subject to enormous radius and
temperature changes (Gräfener et al. 2012). This implies that the temperatures and
thus the ages of VMS are highly uncertain.

A final issue concerns the fate of VMS. In the traditional view, after core H-
burning, VMS would become LBVs, remove large amounts of mass, exposing their
bare-naked helium (He) cores, burn He for another 105 before giving rise to H-poor
Type Ibc SNe (e.g. Conti 1976; Yoon et al. 2012; Georgy et al. 2012). However since
2006 there have been indications that some massive stars may explode prematurely
as H-rich type II SNe already during the LBV phase (Kotak and Vink 2006; Gal-
Yam et al. 2007; Mauerhan et al. 2013).

Might some of the most massive stars even produce PISNe? And how do PISNe
compare to the general population of super-luminous SNe (SLSNe) that have
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recently been unveiled by Quimby et al. (2011), and are now seen out to high
redshifts (Cooke et al. 2012)? Gal-Yam et al. (2009) discovered an intruiging optical
transient with an observed light curve that fits the theoretical one calculated from
pair-instability supernova with a He core mass around 100 Mˇ (see also Kozyreva
et al. 2014).

Even if the SLSNe turn out to be unrelated to PISNe as argued by Nicholl et al.
(2013) and Inserra et al. (2013), we should note that alternative models such as
magnetar models (e.g. Kasen and Bildsten 2010) would also involve rather massive
stars, and if the high luminosity is not the result of a magnetar, but for instance due
to mass loss, then the amounts of mass loss inferred for interacting type IIn SNe
are so humongous (of order tens of solar masses; see Smith’s Chap. 8) that they can
only originate from VMS.

In summary, the evolution of VMS into the PISN and/or SLSNe regime can only
be understood once we obtain a comprehensive framework regarding the evolution
and physics of VMS. In this book, a number of experts discuss aspects of their
research field relevant to VMS in the local Universe. In Chap. 2 Fabrice Martins
discusses the observational data of VMS with a special emphasis on the luminosity
and mass determinations of both single and binary VMS. The rest of the book is
mostly theoretical. In Chap. 3, Mark Krumholz discusses the different formation
modes of VMS. As mass loss is so dominant for the evolution and fate of VMS, the
next topics involve the physics of both their stellar winds (Jorick Vink; Chap. 4) and
instabilities (Stan Owocki; Chap. 5), before Raphael Hirschi discusses the evolution
of VMS in Chap. 6. We finish with an overview of the possible theoretical outcomes
in Chap. 7 by Woosley and Heger, and an overview of the observations of VMS fate
by Nathan Smith in Chap. 8.
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Chapter 2
Empirical Properties of Very Massive Stars

Fabrice Martins

Abstract In this chapter we present the properties of the most massive stars known
by the end of 2013. We start with a summary of historical claims for stars with
masses in excess of several hundreds, even thousands of solar masses. We then
describe how we determine masses for single stars. We focus on the estimates of
luminosities and on the related uncertainties. We also highlight the limitations of
evolutionary models used to convert luminosities into masses. The most luminous
single stars in the Galaxy and the Magellanic Clouds are subsequently presented.
The uncertainties on their mass determinations are described. Finally, we present
binary stars. After recalling some basics of binary analysis, we present the most
massive binary systems and the estimates of their dynamical masses.

2.1 Historical Background and Definition

Massive stars are usually defined as stars with masses higher than 8 Mˇ. In the
standard picture of single star evolution, these objects end their lives as core collapse
supernovae. Unlike lower mass stars, they go beyond the core carbon burning phase,
and produce many of the elements heavier than oxygen. In particular, they are
major producers of ˛ elements. Consequently, massive stars are key players for
the chemical evolution of the interstellar medium and of galaxies: the fresh material
produced in their cores is transported to the surface and subsequently released in
the immediate surroundings by powerful stellar winds (and the final supernova
explosion). The origin of these winds is rooted in the high luminosity of massive
stars (several 104 to a few 106 times the solar luminosity). Photons are easily
absorbed by the lines of metals present in the upper layers, which produces a strong
radiative acceleration sufficient to overcome gravity and to accelerate significant
amounts of material up to speeds of several thousands of km s�1 (Castor et al. 1975).
Mass loss rates of 10�9–10�4 Mˇ year�1 are commonly observed in various types
of massive stars. Another property typical of massive stars is their high effective
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temperature. Teff exceeds 25,000 K on the main sequence. In the latest phases of
evolution, massive stars can be very cool (about 3,500 K in the red supergiant phase)
but also very hot (100,000 K in some Wolf-Rayet stars) depending on the initial
mass. A direct consequence of the high temperature is the production of strong
ionizing fluxes which create HII regions.

Spectrally, massive stars appear as O and early B (i.e. earlier than B3) stars
on the main sequence. Once they evolve, they become supergiants of all sorts:
blue supergiants (spectral type O, B and A), yellow supergiants (spectral type
F and G) and red supergiants (spectral type K and M). The most massive stars
develop very strong winds which produce emission lines in the spectra: these
objects are Wolf-Rayet stars. The strong mass loss of WR stars peels them off,
unravelling deep layers of chemically enriched material. WN stars correspond to
objects showing the products of hydrogen burning (dominated by nitrogen), while
WC (and possibly WO) stars have chemical compositions typical of helium burning
(where carbon is the main element). For stars more massive than about 25 Mˇ, there
exists a temperature threshold (the Humphreys-Davidson limit, see Humphreys and
Davidson 1994) below which stars are expected to become unstable, the ratio of
their luminosity to the Eddington luminosity reaching unity. This temperature limit
is higher for higher initial masses. Stars close to the Humphreys-Davidson limit are
usually Luminous Blue Variable objects (such as the famous � Car).

From the above properties, massive stars are defined as stars with masses higher
than 8 Mˇ. But the question of the upper limit on the mass of stars is not settled.
For some time, it was thought that the first stars formed just after the big-bang had
masses well in excess of 100 Mˇ, and likely of 1,000 Mˇ (Bromm et al. 1999). The
reason was a lack of important molecular cooling channels, favouring a large Jeans
mass. Recent advances in the physics of low metallicity star formation have shown
that masses of a few tens “only” could be obtained if feedback effects are taken into
account (Hosokawa et al. 2011). At the same time, 3D hydrodynamical simulations
of massive star formation at solar metallicity have been able to create objects with
M > 40 Mˇ through accretion (Krumholz et al. 2009), a process long thought to be
inefficient for massive stars because of the strong radiative pressure.

Observationally, the existence of an upper mass limit for stars has always been
debated actively. The method most often used to tackle this question relies on
massive clusters. The idea is to determine the mass function of such clusters and
to look for the most massive component. The mass function is extrapolated until
there is only one star in the highest mass bin. The mass of this star is the maximum
stellar mass expected in the cluster (Mmax). Mmax is subsequently compared to the
mass of the most massive component observed in the cluster (Mobs

max). If Mobs
max <

Mmax (and if all massive stars in the cluster are young enough not to have exploded
as supernovae), then the lack of stars in the mass range Mobs

max–Mmax is attributed to
an upper mass cut-off in the mass function. Weidner and Kroupa (2004) used this
method to infer an upper mass limit of about 150 Mˇ. Their analysis relied on the
young cluster R136. Their conclusions were based on the results of Massey and
Hunter (1998) who obtained masses of about 140–155 Mˇ for the most massive
members. We will see later that the most massive members of R136 may actually be
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more massive than 150 Mˇ, which could slightly change the conclusions of Weidner
and Kroupa. Following the same method, Oey and Clarke (2005) determined the
mass of the most massive member of a cluster as a function of the number of cluster
components and of the upper mass cut-off. Using both R136 and a collection of OB
associations, they confirmed that an upper mass limit between 120 and 200 Mˇ
should exist to explain the maximum masses observed. The studies of Weidner
and Kroupa (2004) and Oey and Clarke (2005) rely on a statistical sampling of
the mass function, without taking into account any physical effects that might alter
the formation of massive stars. The subsequent work of Weidner and Kroupa (2006)
and Weidner et al. (2010) show that a random sampling of the initial mass function
may not be the best way of investigating the relation between the cluster mass and
the mass of its most massive component. Feedback effects once the first massive
stars are formed might be important, stopping the formation of objects in the mass
bin Mobs

max–Mmax. This could explain that in the Arches cluster no star with masses in
excess of 130 Mˇ is observed while according to Figer (2005), there should be 18
of them. Therefore, very massive stars are important not only for stellar physics, but
also for star formation and the interplay between stars and the interstellar medium,
both locally and on galactic scales. The reminder of this chapter focuses on the
search for these objects, and their physical properties.

Many of the stars with masses claimed to be higher than 100 Mˇ are located
in the Magellanic Clouds. The most striking example is certainly that of R136, the
core of the 30 Doradus giant HII region in the Large Magellanic Clouc (LMC)
where the metallicity is about half the solar metallicity. Using photographic plates,
Feitzinger et al. (1980) showed that R136 is made of three components (a, b and c)
separated by �1”. R136a is the brightest and bluest object. Based on its effective
temperature (50,000 < Teff < 55,000 K) and bolometric luminosity (3:1 � 107 Lˇ),
Feitzinger et al. (1980) estimated a lower and upper mass limit of 250 and 1,000 Mˇ
respectively. This made R136a the most massive star at that time. Cassinelli et al.
(1981) obtained an ultraviolet spectrum of R136a with the International Ultraviolet
Explorer telescope and confirmed the hot and luminous nature of R136a: they
obtained a temperature of 60,000 K and a luminosity close to 108 Lˇ. Cassinelli
et al. (1981) compared the morphology of the UV spectrum to that of known
early O and WN stars. They concluded that the large terminal velocity deduced
from the blueward extension of the P-Cygni profiles (3,400 km s�1) and the shape
of the CIV 1550 line (with a non zero flux in the blue part of the profile) was
incompatible with a collection of known massive stars following a standard mass
distribution. The authors favoured the solution of a unique object to explain these
signatures. This object should have a mass of about 2,500 Mˇ and a mass loss rate
of 10�3:5˙ 1:0 Mˇ year�1, far in excess of any other known O or Wolf-Rayet star. A
similar mass was estimated for the progenitor of the peculiar supernova SN 1961V
in the galaxy NGC 1058 (Utrobin 1984). The width of the maximum emission
peak in the light curve of the supernova together with the bright magnitude of the
progenitor were only reproduced by hydrodynamical models with masses of the
order 2,000 Mˇ.
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The high luminosity is often the first criterion to argue for very massive objects.
We will return to this at length in Sect. 2.2. Other example of claims for very massive
stars based on luminosity in the Magellanic Clouds exist. Humphreys (1983)
reported on the brightest stars in the Local Group. She listed the brightest blue
and red supergiants of six galaxies (Milky Way, SMC, LMC, M33, NGC 6822 and
IC 1613). In the Magellanic Clouds, several stars reached bolometric magnitudes of
�11 (LMC) and �10 (SMC), corresponding to luminosities in excess of 106 Lˇ and
thus masses larger than 100 Mˇ. Kudritzki et al. (1989) studied the most massive
cluster in the SMC, NGC 346, and estimated a mass of 113C40

�29 Mˇ for the brightest
component, NGC 346-1.

Since all of the above examples of very massive stars are located in the Magel-
lanic Clouds, the question of distance and crowding rises. On the good side, distance
is rather well constrained, so that luminosity estimates are usually more robust than
in the Galaxy. On the other hand, the Magellanic Clouds are much further away than
any Galactic region: they are more difficult to resolve. This problem turned out to
be a key in the understanding of very massive objects. Weigelt and Baier (1985)
used speckle interferometry to re-observe R136. They achieved a spatial resolution
of 0.09” which broke the R136a object into 8 components, all located within 1”.
The three brightest members – R136a1, a2 and a3 – have similar magnitudes and are
separated by a few tenths of arcseconds (Fig. 2.1, right). The 1,000 Mˇ star in R136a
had long lived. Figure 2.1 illustrates the improvements in the imaging capabilities
between the study of Feitzinger et al. (1980) and the recent paper by Crowther
et al. (2010). Taking advantage of the developments in photometric observations
(CCDs, adaptive optics) and image analysis (deconvolution), Heydari-Malayeri
et al. showed in a series of papers that several of the claimed very massive stars were

Fig. 2.1 R136 cluster in the giant HII region 30 Doradus (Large Magellanic Cloud). Left panel:
photographic observation of Feitzinger et al. (1980). Right panel: adaptive Optics observations
presented in Fig. 1 of Crowther et al. (2010, MNRAS, 408, 731 “The R136 star cluster hosts
several stars whose individual masses greatly exceed the accepted 150Msolar stellar mass limit”)
(Reproduced with permission)
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in fact multiple objects. HDE 268743, one of the bright LMC blue supergiant listed
by Humphreys (1983), was first decomposed into 6 components (Heydari-Malayeri
et al. 1988) before further observations with AO systems revealed not 6 but 12 stars.
The mass of the most massive objects was estimated to be �50 Mˇ (compared
to more than 100 Mˇ for the single initial object). Similarly, NGC 346-1 turned
out to be made of at least three components (Heydari-Malayeri and Hutsemekers
1991), its mass shrinking from 113 (single object) to 58 Mˇ (most massive resolved
component). Two additional Magellanic Clouds very bright stars (Sk 157 and
HDE 269936) were resolved into at least ten components by Heydari-Malayeri et al.
(1989).

Spatial resolution is thus crucial to understand the nature of very massive stars.
But mass estimates also rely on a number of models, for both stellar interiors and
stellar atmospheres. The case of the Pistol star in the Galactic Center is an example
of the effects of model improvements on mass estimates. Figer et al. (1998) studied
that peculiar object using infrared spectroscopy and atmosphere models. Pistol is a
late type massive star, probably of the class of Luminous Blue Variables. Figer et al.
obtained a temperature of 14,000–20,000K. Form that, they produced synthetic
spectral energy distributions and fitted the observed near infrared photometry. They
obtained luminosities between 4 � 106 and 1:5 � 107 Lˇ, corresponding to masses
in the range 200–250 Mˇ. Najarro et al. (2009) revisited the Pistol star with modern
atmosphere models including the effects of metals on the atmospheric structure
and synthetic spectra. They revised the temperature (11,800 K) and luminosity
(1:6�106) of the Pistol star, with the consequence of a lower mass estimate: 100 Mˇ.

In the following sections of this chapter, we will illustrate how masses of single
and binary stars can be determined. We will focus on the methods to constrain the
stellar parameters, and especially the luminosity. We will highlight the assumptions
of the analysis and raise the main sources of uncertainties.

2.2 Very Massive Single Stars

In this section we will describe how we determine the properties of single massive
stars. We will see how an initial mass can be derived from the luminosity, and we
will describe the related uncertainties. We will also explain how the present mass of
stars can be obtained from the determination of gravity.

2.2.1 Atmosphere Models and Determination of Stellar
Parameters

Two types of masses are usually determined for massive single stars. The “evolu-
tionary” mass is the most often quoted. It is based on the luminosity of the star and
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its comparison to predictions of evolutionary calculations which provide a direct
relation between L and the initial mass of the star. This is done in the Hertzsprung-
Russell diagram. An estimate of the effective temperature of the star is required.
The second mass is the “spectroscopic” mass. It is obtained from the determination
of the surface gravity and its radius. From the definition of the gravity g, one has:

M D gR2=G (2.1)

where G is the constant of gravitation. The radius R is usually obtained from the
estimate of both the effective temperature and of the luminosity, since by definition:

L D 4� R2� T 4
eff (2.2)

with � the Stefan-Boltzmann constant. Thus, the spectroscopic mass requires the
knowledge of one more fundamental parameter (the surface gravity) compared
to the evolutionary mass. For both masses, the determination of the effective
temperature and of the luminosity are necessary.

The most important parameter to constrain is the effective temperature since once
it is known the luminosity can be relatively easily determined. Atmosphere models
are necessary to estimate Teff. They predict the shape of the flux emitted by the
star which can be compared to observations, either photometry or spectroscopy.
The spectral energy distribution (SED) and lines strength depend sensitively on the
effective temperature (and also to a lesser extent on other parameters). Iterations
between models and observations allow to find the best models, and consequently
the best temperature, to account for the properties of the star.

For low and intermediate mass stars, the effective temperature can be obtained
from optical photometry. Since the peak of the SED is located around the visible
wavelength range, a change in Teff is mirrored by a change of optical colors
(e.g. B-V or V-I, Bessell et al. 1998). For (very) massive stars, optical colors are
almost insensitive to Teff. Their high effective temperature shifts the SED peak to
the ultraviolet wavelength range. The visible range is located is in the Rayleigh-
Jeans tail of the flux distribution where the slope of the SED barely depends
on Teff. In principle, UV colors could be used to constrain the temperature of
massive stars. But the UV range is dominated by metallic lines the strength of
which depends on several parameters (metallicity, mass loss rate, microturbulence).
Consequently, another way has to be found to estimate Teff. The ionization balance
is the standard diagnostic: for higher Teff the ionization is higher and consequently
lines from more ionized elements are stronger. Classically, for O stars, the ratio of
HeI to HeII lines is used: HeII lines are stronger (weaker) and HeI lines weaker
(stronger) at higher (lower) Teff. Synthetic spectra are compared to observed He
lines: if a good match is achieved, the effective temperature used to compute
the synthetic spectrum is assigned to the star. He lines are the best temperature
indicators between 30,000 and 45,000 K. Above (below), HeI (HeII) lines disappear.
Alternative diagnostics have to be used. In the high temperature range, more relevant
for very massive stars, nitrogen lines can replace helium lines (Rivero González
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et al. 2012). Their behaviour is more complex than helium lines and uncertainties
on Teff determinations are larger.

From above, we see that the determination of the effective temperature of a
(very) massive star requires the use of synthetic spectroscopy and atmosphere
models. Atmosphere models are meant to reproduce the level populations of all
the ionization states of all elements present in the atmosphere of a star, as well
as the shape and intensity of the associated radiation field. Their ultimate goal,
for spectroscopic analysis of stars, is to predict the flux emitted at the top of
the atmosphere so that it can be compared to observational data. An atmosphere
model should account for the radial stratification of: the temperature, the density,
velocity fields (if present), the specific intensity and opacities. The latter are directly
related to level populations. Ideally, such models should be time-dependent and
computed in 3D geometry. In practice, the current generation of atmosphere models
for massive stars is far from this. The reasons are the following:

• Atmosphere models for massive stars have to be calculated in non-LTE (non
Local Thermodynamic Equilibrium). This means that we cannot assume that the
flux distribution at each point in the atmosphere is a blackbody. This assumption
is not even valid locally. It would be relevant if radiation and matter were
coupled only by collisional processes and were at equilibrium. But the very
strong radiation field coming from the interior of the star prevents this situation
from happening. Radiative processes are much more important than collisional
ones. The populations of atomic levels are governed by radiative (de)population
and cannot be estimated by the Saha-Boltzmann equation. Instead, the balance
between all populating and depopulating routes from and to lower and higher
energy levels has to be evaluated. For instance, to estimate the population of the
first energy level above the ground state of an element, we have to know the rate
at which electrons from the ground level are pushed into the first level, the rate
of the inverse transition (from the first level to the ground state) and similarly
from all transitions for levels beyond the second level to/from the first level. The
computational cost is thus much larger than if the LTE approximation could be
applied.

• Massive stars emit strong stellar winds. Consequently, their atmosphere are
extended, with sizes typically between a few tens and up to one thousand times
their stellar radius. Spherical effects are important and the assumption of a thin
atmosphere (plane-parallel assumption) cannot be applied. A spherical geometry
has to be adopted. In addition, and more importantly, the winds of massive
stars are accelerated. Starting from a quasi static situation at the bottom of the
atmosphere, material reaches velocities of several thousands of km s�1 above
ten stellar radii. Doppler shifts are thus induced, which complicates the radiative
transfer calculations. A photon emitted at the bottom of the atmosphere can travel
freely throughout the entire atmosphere and be absorbed by a Doppler shifted line
only in the upper atmosphere. Non local interaction between light and matter are
thus possible.
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• For realistic models, as many elements as possible have to be included. This is
not only important to predict realistic spectra with numerous lines from elements
heavier than hydrogen and helium. It is also crucial to correctly reproduce the
physical conditions in the atmosphere. Indeed, having more elements implies
additional sources of opacities which can affect the solution of the rate equations
and consequently the entire atmosphere structure. The effects of elements heavier
than hydrogen and helium on atmosphere models are known as line-blanketing
effects.

The combination of these three ingredients makes atmosphere models for
massive stars complex. For a reasonable treatment of non-LTE and line-blanketing
effects, they are restricted to stationary and 1D computations. There are currently
three numerical codes specifically devoted to the study of massive stars: CMFGEN
(Hillier and Miller 1998), FASTWIND (Puls et al. 2005) and POWR (Hamann
and Gräfener 2004). They all account for the three key ingredients described
above. A fourth one (TLUSTY, Lanz and Hubeny 2003) assumes the plane-parallel
configuration and is thus only adapted to spectroscopy in the photosphere of massive
stars. All these models are computed for a given set of input parameters. The
effective temperature, the luminosity (or the stellar radius), the surface gravity,
the chemical composition and the wind parameters (mass loss rate and terminal
velocity) are the main ones. The computation of the atmospheric structure is
performed for this set of parameters. Once obtained, a formal solution of the
radiative transfer equation is usually done to produce the emergent spectrum. It
is this spectrum that is subsequently compared to observations. If a good match is
obtained, the parameters of the models are considered to be the physical parameters
of the star. CMFGEN and POWR are better suited to the analysis of VMS since as
we will see below, VMS usually appear as Wolf-Rayet stars with numerous emission
lines from H, He but also metals.

As explained above, the effective temperature is the first parameter to constrain.
Once it is obtained, the luminosity determination can be made. There are usually
two ways to proceed: either spectro-photometric data covering a large wavelength
region exist and the SED can be fitted, or only photometry in a narrow wavelength
region is available, and bolometric corrections have to be used. SED fitting is
illustrated in the left panel of Fig. 2.2. Atmosphere models provide the spectral
energy distribution at the stellar surface for the set of input parameters. This flux is
scaled by the ratio (R/d)2 where R is the stellar radius and d the distance of the target
star. The resulting flux is then compared to the observational spectro-photometric
data. In Fig. 2.2 we see the effect of a change of 0.1 dex on the luminosity. Optical
and infrared photometry has been used together with flux calibrated UV spectra
to build the observed SED. The red model, corresponding to log L

Lˇ
D 5:2, best

reproduces these data. The right panel of Fig. 2.2 illustrates an important limitation
of the determination of luminosities for massive stars: the knowledge of distances
and their uncertainties. An error of only 10 % on the distance is equivalent to an
error of about 0.1 dex on the luminosity. Distance is usually the main contributor to
the uncertainty on the luminosity of Galactic objects.
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a b

Fig. 2.2 Determination of the luminosity from the spectral energy distribution. The black line and
dots are data for star HD 188209. Left panel: the colored lines are three models with luminosities
differing by 0.1 dex. Right panel: the colored lines are the same model for three different distances
(From Martins et al. (in prep))

If a sufficient number of spectro-photometric data is available, SED fitting can
be performed rather safely (see Sect. 2.2.2 for limitations). Often, only photometry
in the optical or the infrared range can be obtained. This is the case for stars located
behind large amounts of extinction. In that case, luminosity has to be determined
differently. This is done through an estimate of the bolometric correction. In the
following, we will assume that only K-band photometry is available. The first step
is to estimate the absolute K band magnitude

K D mK � A.K/ � DM (2.3)

where mK is the observed magnitude, A.K/ the amount of extinction in the K
band and DM the distance modulus (DM = 5 � log(d)�5, d being the distance). As
before, a good knowledge of the distance is required. We see that an estimate of the
extinction is necessary too. We will come back to this issue in Sect. 2.2.2. In the
second step, we need to add to the absolute K-band magnitude a correction to take
into account the fact that we observe only a small fraction of the entire flux. This
bolometric correction is computed from atmosphere models, and calibrated against
effective temperature. For instance, Martins and Plez (2006) give

BC.K/ D 28:80 � 7:24 � log.Teff/ (2.4)

The K-band bolometric correction is thus by definition the total bolometric magni-
tude minus the K-band absolute magnitude. Said differently, with K and BC(K), we
have the total bolometric magnitude and thus the luminosity of the star:
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Fig. 2.3
Hertzsprung-Russell diagram
illustrating the determination
of evolutionary masses.
Evolutionary tracks are from
Meynet and Maeder (2003).
The red square is for a star
with Teff D 35;000˙2;000 K
and log L

Lˇ
D 6:0 ˙ 0:15.

The derived initial mass is
68C25

�14 Mˇ, while the
estimated present-day mass is
50C18

�9 Mˇ

log
L

Lˇ
D �0:4 � .K C BC.K/ � M bolˇ / (2.5)

where M bolˇ is the bolometric magnitude of the Sun. Both methods (SED fitting
or bolometric corrections) rely on atmosphere models and thus depend on the
assumptions they are built on.

Once the effective temperature and luminosity are constrained, the evolutionary
mass can be determined. Figure 2.3 shows a classical Hertzsprung-Russell diagram
with the position of a bright O supergiant shown by the red symbol. From
interpolation between the evolutionary tracks, we can estimate a present-day mass of
50C18

�9 Mˇ and an initial mass of 68C25
�14 Mˇ. The difference between both estimates

is due to mass loss through stellar winds. These masses are the evolutionary masses
introduced at the beginning of this section. They depend on the way the interpolation
between tracks is done and most importantly on the tracks themselves (Sect. 2.2.3).
From Fig. 2.3, we see that very massive stars are objects with luminosities larger
than one million times the Sun’s luminosity.

The second mass estimate that can be given for single massive stars is the
spectroscopic mass. As explained above, it is obtained from the surface gravity and
an estimate of the stellar radius. The surface gravity, log g, is obtained from the
fit of Balmer, Paschen or Brackett lines in the optical/infrared range. Their width
is sensitive to pressure broadening, especially Stark broadening. Stark broadening
corresponds to a perturbation of the energy levels due to the electric field created by
neighbouring charged particles. Broadening is thus stronger in denser environments,
and consequently in stars with larger surface gravity. Hence, the width and strength
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of lines sensitive to Stark broadening effects are good estimates of log g. The most
commonly used spectral diagnostics of surface gravity are Hˇ and H� in the visible
range. In the infrared, Br� and Br10 are the best indicators. Synthetic spectra
computed for a given log g are directly compared to the observed line profile. An
accuracy of 0.1 dex on log g is usually achieved. This corresponds to an uncertainty
of about 25 % on the stellar mass (without taking into account any error on the stellar
radius).

The spectroscopic mass is more difficult to obtain than the evolutionary mass
since it requires the observation of photospheric hydrogen lines. Such lines are
sensitive to mass loss rate. When the wind strength becomes large, emission starts
to fill the underlying photospheric profile leaving usually a pure emission profile,
preventing the determination of log g. Unfortunately, this is often the case for very
massive stars (see Sect. 2.2.4) which are very luminous and consequently have
strong stellar winds.

The evolutionary mass and the spectroscopic mass should be consistent. How-
ever, as first pointed out by Herrero et al. (1992), the former are often systematically
larger than the latter. Improvements in both stellar evolution and atmosphere models
have reduced this discrepancy (e.g. Mokiem et al. 2007; Bouret et al. 2013), but
the problem is still present for a number of stars. At present, the reason(s) for
this difference is (are) not clear. Studies of binary systems tend to indicate that
the evolutionary masses and the dynamical masses obtained from orbital solutions
(see Sect. 2.3) are in good agreement below 30–50 Mˇ. Above, that limit, no clear
conclusion can be drawn (Burkholder et al. 1997; Weidner and Vink 2010; Massey
et al. 2012). The general conclusion is that there are at least two types of mass
estimates for massive stars and that currently, no preference should be given to any
of them.

In this section, we have presented the mass determinations for massive stars.
For very massive objects, the evolutionary masses are usually quoted because of
the shortcomings of the surface gravity determination. Evolutionary masses rely
heavily on luminosity estimates and on the relation between luminosity and mass.
In the next two sections, we will present the uncertainties related to both of them.

2.2.2 Uncertainties on the Luminosity

We now focus on the errors that enter the determination of the stellar luminosity. We
assume we are dealing with single stars. In case of multiplicity, the determinations
of L are obviously overestimated by an amount which depends on the number of
companions and their relative brightness.

We have seen above that the luminosity of a star could be obtained from the
monochromatic magnitude, a bolometric correction, an estimate of the extinction
and of the distance (see Eqs. 2.3–2.5). This method is useful when not enough data
are available to fit the entire SED. This is often the case for objects hidden behind
large amounts of extinction. We have used this set of equations to compute the
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Table 2.1 Effect of various uncertainties on luminosity and mass estimatea

Error � log L
Lˇ

� Minit [Mˇ] � M/M [%]

� m D 0.1 0.04 7 9.0

� A D 0.2 0.08 13 16.7

� d D 0.1 0.09 15 19.2

� Teff D 3,000 0.11 18 23.1

Combination of above errors 0.17 28 35.9

� d D 0.25 0.22 36 46.1
aCalculations are for a star at 8 kpc, behind an extinction of 3 mag, with an observed magnitude of
11.2 and an effective temperature of 35,000 K. Photometry is taken in the K band. The luminosity
and evolutionary mass of such a star would be log L

Lˇ
= 6.06 and 78 Mˇ (initial mass). The mass

is estimated using the evolutionary tracks of Meynet and Maeder (2003)

effects of uncertainties of several quantities on the derived luminosity. The results
are summarized in Table 2.1. We have considered the case of a star with log L

Lˇ�6.0. We have assumed it was observed in the K band. The distance and extinction
are consistent with a position in the Galactic Center, a place where many massive
stars are found. We have assumed typical errors on the magnitude, extinction,
distance and effective temperature. The latter directly affects the uncertainty on the
bolometric correction (Eq. 2.4). From Table 2.1, we see that the largest error budget
is due to the uncertainties on the effective temperature and distance when the latter
is poorly constrained. When combining all the sources of uncertainty, we get an
error in the luminosity of about 0.17 dex (for a 10 % uncertainty on the distance).

In Table 2.1, we also provide estimates of the variations in mass estimates due
to the above uncertainties. The evolutionary tracks of Meynet and Maeder (2003)
have been used in this test case. The parameters we have chosen are those of a star
with an initial mass of about 78 Mˇ according to the Meynet and Maeder tracks.
The individual errors induce changes of the initial mass between 7 and 18 Mˇ. The
combined effects correspond to an uncertainty of 28 Mˇ, or 35 %. If the distance is
poorly known (e.g. 25 % error, see last line of Table 2.1), the uncertainty can even
reach almost 50 %.

Another source of uncertainty not taken into account in the above estimates is
the shape of the extinction law. In Table 2.1 we have assumed a K-band extinction
of 3.0. However, depending on the extinction law, the stellar flux will be redenned
differently and for the same star, different values of the extinction can be obtained.
As a consequence, the luminosity estimate will be affected. An illustration of this
effect is given in the left panel of Fig. 2.4. Observational data (in black) for the
Galactic star WR 18 are compared to a model with log L

Lˇ
= 5.3 (colored lines).

In the UV, the extinction of Seaton (1979) is adopted. In the optical/infrared,
three different extinction laws have been used: Howarth (1983) (green), Rieke and
Lebofsky (1985) (red) and Nishiyama et al. (2009) (blue). All models assume E(B-
V) = 0.9 and RV = 3.2. The UV part of the SED is correctly reproduced, except in
the region around 3,000 Å. The optical and infrared flux are different depending on
the extinction curve. The laws of Howarth (1983) and Rieke and Lebofsky (1985)
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a b

Fig. 2.4 Extinction law and luminosity determination. Left panel: effect of various extinction laws
on the luminosity determination. The data are for the Galactic star WR 18 (black line and dots).
The colored lines are models redenned with different extinction laws in the optical/infrared range.
In the UV, the extinction law is that of Seaton (1979). Right panel: illustration of the luminosity
tuning necessary to fit the SED with the extinction law of Nishiyama et al. (2009)

are relatively similar in the infrared but differ in the optical. The Nishiyama et al.
law leads to a larger flux in the infrared compared to the other two laws. If we
were to adopt the Nishiyama et al. law, we would need to reduce the luminosity to
reproduce the infrared part of the SED. This is shown in the right panel of Fig. 2.4.
The model with log L

Lˇ
= 5.3 and E(B-V) = 0.9 is shown in blue. Two additional

models are shown: one with log L
Lˇ

= 5.2 and E(B-V) = 0.86 (orange) and one with

log L
Lˇ

= 5.1 and E(B-V) = 0.82 (magenta). A luminosity intermediate between that
of the two new models better reproduces the SED. Hence, using the Nishiyama
et al. extinction leads to a downward revision of the luminosity by �0.15 dex. At
luminosities of � 2�105 Lˇ, such a change corresponds to a reduction of the initial
mass by 4 Mˇ, or 12 %.

In Table 2.1 we finally show the influence of the uncertainty on the effective
temperature. It affects the bolometric correction and consequently the luminosity.
A typical error of 3,000 K on Teff (usually found for infrared studies) corresponds
to a change in luminosity by 0.11 dex, and thus to an uncertainty of about 20–25 %
on the initial mass. This estimate does not take into account the uncertainty in the
relation between bolometric correction and temperature. It only accounts for the
effect of Teff on BC for the relation given in Eq. 2.4. Different model atmospheres
provide slightly different calibrations of bolometric corrections. This adds another
source of error in the mass estimate.

In conclusion, various uncertainties in the quantities involved in the luminosity
determination lead to a typical error of about 0.15–0.20 dex on log L

Lˇ
. If the
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distance is poorly known, this uncertainty is larger. This translates into an error
on the estimate of the initial mass of the order 10–50 %.

2.2.3 Uncertainties in Evolutionary Tracks

In the previous section, we have seen how the luminosity determination was affected
by uncertainties in various observational quantities. We now focus on the uncer-
tainties involved in the interpretation of the determined luminosity. As explained
previously, the determination of the initial or present mass relies on comparison
with evolutionary tracks (see Sect. 2.2.1). Such models rely on different assumptions
to take into account the physical processes of stellar evolution. Consequently, they
produce different outputs. In the following we will compare the public tracks of
Brott et al. (2011) and Ekström et al. (2012). We refer to Martins and Palacios
(2013) for a detailed comparison of various tracks.

Figure 2.5 shows the evolutionary tracks for Galactic stars from these two public
grids of models. The tracks from Brott et al. (2011) are only available up to 60 Mˇ,
so we do not show the higher mass models of Ekström et al. (2012). There are many
differences between both sets of tracks (see Martins and Palacios 2013). The most
important one for the sake of mass determination is the very different luminosities
for a given mass. Looking at the 40 Mˇ tracks, we see that the Ekstroem et al.
tracks are about 0.2 dex more luminous than the Brott et al. tracks beyond the main

Fig. 2.5
Hertzsprung-Russell diagram
with the evolutionary tracks
of Brott et al. (2011) (blue)
and Ekström et al. (2012)
(red). The Brott et al. tracks
are for an initial rotational
velocity of 300 km s�1 while
those of Ekstroem et al.
assume a ratio of initial to
critical rotation of 0.4
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sequence. This offset is smaller at lower masses, and larger at higher masses. The
direct consequence is that a lower initial mass is needed by the Ekstroem et al.
tracks to reproduce the observed luminosity of a star. The black dot in Fig. 2.5 is
an artificial star with Teff D 30;000 K and log L

Lˇ
D 5:7. Using the Ekstroem et al.

tracks, one would find an initial mass of 37 Mˇ. For the Brott et al. tracks, the initial
mass would be 48 Mˇ. The difference is of the order of 25 %.

The origin for the differences between the predictions of evolutionary tracks
are manifold. One of the key effect known to affect the luminosity of a star is
the amount of overshooting. The size of the convective core of massive stars is
usually defined by the Schwarzschild criterion. But when this criterion applies to the
velocity gradient of the convective region, and not to the velocity itself. It means that
before reaching a zero velocity, the material transported by convection in the core
travels a certain distance above the radius defined by the Schwarzschild criterion.
This distance is not well known and is usually calibrated as a function of the local
pressure scale height. The effect of this overshooting region is to bring to the core
fresh material. This material is burnt and thus contributes to the luminosity of the
star. Consequently, the larger the overshooting, the higher the luminosity of the star.

Another cause of luminosity increase is the effect of rotation. The physical reason
is the same as for overshooting. When a star rotates, mixing of material takes
place inside the star. Consequently, there is more material available for burning in
the stellar core compared to a non-rotating star. The effect is an increase of the
luminosity (Meynet and Maeder 2000). Quantitatively, the increase is between 0.1
and 0.3 dex depending on the initial mass for a moderate rotation of 300 km s�1

on the main sequence. Here again, the consequence for mass determinations is that
lower masses are determined when tracks with rotation are used. In the case of
the tracks of Ekström et al. (2012), and for the same example as above, a mass of
49 Mˇ would be derived without rotation, compared to 37 Mˇ with rotation. For
very massive stars, the effects of rotation might be limited. The reason is the large
mass loss rates at very high luminosities, causing efficient braking. However, the
effects of rotation have not (yet) been investigated in the very high mass range.

Other parameters affecting the shape of evolutionary tracks are mass loss rate
and metallicity. The former impact the evolution of the stars by removing material
through stellar winds. Depending on the strength of the winds, the mass of a star
at a given time will be different. Since mass and luminosity are directly related, a
star with a strong mass loss will have a lower luminosity than a star with a lower
mass loss (Meynet et al. 1994). Mass loss rates used in evolutionary calculations
come from various sources. Some are empirical, some are theoretical. There are
uncertainties associated with mass loss rates, but they are not straightforward to
quantify. Clumping is known to affect the mass loss rate determinations in O-type
stars (Bouret et al. 2005; Fullerton et al. 2006) but a good handle of its properties
is missing. For cool massive stars, there is a wide spread in the mass loss rates
of red supergiants (Mauron and Josselin 2011). Stellar winds are also weaker at
lower metallicity (at least for hot massive stars). Their dependence is rather well
constrained in the range 0.5 < Z/Zˇ < 1.0, but beyond, mass loss rates are based
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on extrapolations. Hence, evolutionary calculations, which adopt general (empirical
or theoretical) prescriptions, can be adapted to explain the averaged properties of
massive stars, but may fail to explain individual objects. They should thus be used
with care.

2.2.4 The Best Cases for Very Massive Single Stars

After raising the sources of uncertainty in the determination of the mass of the
most massive stars, we now turn to the presentation of the best cases. Since the
stellar initial mass function (IMF) is a power law of the mass (at least above
�1 Mˇ), massive stars are very rare. Consequently, we expect to find them more
predominantly in clusters or association hosting a large number of stars. Adopting
a standard Salpeter IMF, a cluster should have a mass in excess of a few 103 Mˇ in
order to host at least one star with mass in excess of 100 Mˇ. Thus, very massive
stars have to be searched in massive clusters. In addition, massive stars live only
a few million years, typically 2–3 Myr for objects above 100 Mˇ (e.g. Yusof et al.
2013). Hence, VMS can only be found in young massive clusters. The best places
to look for them would be young super star clusters. Observed in various types of
galaxies, these objects have estimated masses in excess of 104 Mˇ, some of them
reaching several 105 Mˇ (Mengel et al. 2002; Bastian et al. 2006). However, none
of these super star cluster is known in the local group, preventing current generation
of telescopes and instruments to resolve their components individually.

In the Galaxy and its immediate vicinity, where individual stars can be observed,
the best place to look for VMS is thus in young massive clusters. Although there
has been a lot of improvement in the last decade in the detection of such objects
(Figer et al. 2006; Chené et al. 2013), only a few are massive and young enough
to be able to host VMS. In the Galaxy, the Arches and NGC3603 clusters are so
far the two best candidates. In the Magellanic Clouds, R136 in the giant HII region
30 Doradus (see Sect. 2.1) is another interesting cluster. Beyond these three cases,
known clusters are either too old or not massive enough. In the following, we will
describe the evidence for the presence of VMS in the Arches, NGC3603 and R136
clusters. We will also highlight a couple of presumably isolated stars with large
luminosities.

The Arches Cluster

The Arches cluster is located in the center of the Galaxy. It was discovered in the
late 1990s through infrared imaging (Cotera et al. 1996; Figer et al. 1999). First
thought to have a top heavy IMF (Figer et al. 2002) it is now considered to host
a classical mass function (Espinoza et al. 2009). It hosts 13 Wolf-Rayet stars and
several tens of O stars. All the Wolf-Rayet stars are of spectral WN7-9h. They are
very luminous and their properties are consistent with those core-H burning objects
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(Martins et al. 2008). Their luminosities, estimated using Eqs. 2.3 and 2.5, is larger
than 106 Lˇ, indicating that they are more massive than 80 Mˇ. Martins et al. (2008)
adopted a short distance (7.6 kpc) and a low extinction (AK = 2.8) to obtain these
luminosities. Revisiting the properties of two of the Arches WNh stars with a larger
distance and extinction, Crowther et al. (2010) derived luminosities larger by about
0.25 dex. Consequently, they reported masses in excess of 160 Mˇ. This illustrates
the importance of extinction and distance in the estimates of the initial mass of
VMS, as described in Sect. 2.2.2.

In Fig. 2.6 we present new HR diagrams of the Arches WNh stars. Table 2.2
provides the initial mass estimates depending on various assumptions. In this table,
we have selected star F12 of Figer et al. (2002) as a test case. F12 is the hottest
object in the HR diagram. Figure 2.6 and Table 2.2 are meant to further illustrate
the role of various observational parameters on mass determinations. The upper
left panel shows the effect of photometry. A change of 0.1 magnitude in the K-
band photometry results in a change of about 10 % in the initial mass. The effect of
extinction is similar. In our estimates, we have assumed a constant value of E(H-K)
for all stars. Depending on the extinction law adopted, the ratio of selective to total
absorption in the infrared (RK = AK /E(H-K)) is different. We have used the values
of Rieke and Lebofsky (1985) (RK = 1.78), Espinoza et al. (2009) (RK = 1.61) and
Nishiyama et al. (2009) (RK = 1.44) to obtain the K-band extinction AK . For the
same observed color (H-K), the extinction can differ by 0.8 magnitude depending
on the extinction law. The mass of star F12 varies between 93 and 138 Mˇ (35 %

Table 2.2 Effects of
photometry, extinction and
distance uncertainty on the
initial mass estimatea for star
F12 in the Arches cluster

mK / AK / d(kpc) Ma
init [Mˇ]

10.99b/3.1c/8.0 111

10.88d/3.1c/8.0 120

10.88d/3.06d/8.0 117

10.88d / 3.38d/8.0 138

10.88d/2.74d/8.0 93

10.99/2.74/7.6e 78

10.88/3.38/8.3e 146
aThe mass is estimated using the
evolutionary tracks of Meynet and
Maeder (2003)
bPhotometry is from Figer et al.
(1999) and Espinoza et al. (2009)
cExtinction is from Stolte et al.
(2002)
dExtinction is computed assuming
E(H-K) D 1.9 and using the reden-
ning laws of Rieke and Lebofsky
(1985), Espinoza et al. (2009) and
Nishiyama et al. (2009)
eDistances are from Eisenhauer
et al. (2005) and Gillessen et al.
(2009)
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a b

c

Fig. 2.6 HR diagram of the Arches cluster. The data points correspond to the WNh stars. The
evolutionary tracks are from Meynet and Maeder (2003) and have Z = 0.02. Upper left panel:
effect of photometry. The luminosity of the stars is computed using both the HST/NICMOS and
VLT/NACO photometry (Figer et al. 1999; Espinoza et al. 2009). The distance is set to 8.0 kpc and
effective temperatures are from Martins et al. (2008). Upper right panel: effect of extinction. An
average value of E(H-K) = 1.9 is adopted and is transformed into AK using the relations of Rieke
and Lebofsky (1985), Nishiyama et al. (2009) and Espinoza et al. (2009). Bottom panel: extreme
values of the Arches luminosities obtained by combining the faintest (brightest) photometry
(Figer et al. 1999; Espinoza et al. 2009), lowest (highest) extinction (Rieke and Lebofsky 1985;
Nishiyama et al. 2009) and shortest (largest) distances (Eisenhauer et al. 2005; Gillessen et al.
2009)

variation). In the bottom panel of Fig. 2.6, we show the most extreme variation in
luminosity expected for the Arches star. For star F12, the initial mass can be as
low as 78 Mˇ or as large as 146 Mˇ depending on the combination of photometry,
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extinction and distance adopted.1 There is almost a factor of 2 in the estimated initial
mass.

From the bottom panel of Fig. 2.6 we can conclude that according to the
evolutionary tracks of Meynet and Maeder (2003), the most massive stars in
the Arches cluster likely have masses higher than 80–90 Mˇ. Under the most
favourable assumptions, the most massive objects can reach 150–200 Mˇ. This is
the initial masses of stars with log L

Lˇ
> 6.5 (the group of stars around log L

Lˇ
= 6.55

corresponds to initial masses of 160 Mˇ). The truth probably lies somewhere in
between these extreme values.

The above mass estimates have been obtained using the evolutionary tracks of
Meynet and Maeder (2003). The grid of Ekström et al. (2012) is a revised version
of these tracks, with a lower metal content (Z = 0.014 versus 0.02). Yusof et al.
(2013) also published models for very massive stars at solar metallicity (Z = 0.014).
Interestingly, none of the evolutionary calculations of Ekstroem et al. nor of Yusof
et al. is able to reproduce the luminosity and temperature of the Arches stars.
Their tracks for masses above 100 Mˇ remain close to the zero age main sequence
or even turn rapidly towards the blue part of the HR diagram. They never reach
temperatures lower than about 40,000 K. Crowther et al. (2010) pointed out that
metallicity in the Galactic center may be slightly super solar (Najarro et al. 2009).
Evolutionary models with Z = 0.02 might be more relevant for the Arches cluster.
In any case, the behaviour of evolutionary tracks at very high masses indicates that
large uncertainties exist in the predicted temperature and luminosity of very massive
stars. This should be kept in mind when quoting initial masses derived by means of
evolutionary calculations.

R136 in 30 Doradus

R136 was once thought to be a single object of mass �1,000 Mˇ, as described in
Sect. 2.1. As shown in Fig. 2.1, three components are resolved by adaptive optics
observations. Two other bright objects (R136b and R136c) are located next to the
R136a stars. Contrary to the case of the stars in the Arches cluster, extinction is
not the main limitation of the luminosity and mass determination. Crowding is at
least as important. It is only when the Hubble Space Telescope started its operation
that spectroscopic data could be obtained. Even with HST, a1 and a2 are difficult to
separate.

de Koter et al. (1997) performed an analysis of the UV spectra of a1 and
a3. Their results are shown by the green points in Fig. 2.7. They determined
effective temperatures of about 45,000 K and luminosities close to 2:0 � 106 Lˇ,
corresponding to initial masses between 100 and 120 Mˇ. Crowther and Dessart

1For masses above 120 Mˇ, we simply linearly extrapolate the luminosities and initial masses
from the grid of Meynet and Maeder (2003), taking the 85 and 120 Mˇ tracks as reference to
estimate the dependence of mass on luminosity.
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a b

Fig. 2.7 Hertzsprung-Russell for the stars in R136. The evolutionary tracks at Z = 0.008 are from
Meynet and Maeder (2005). The positions of the stars a1, a2, a3 and c are shown in red according
to the analysis of Crowther et al. (2010). Left: the green squares are stars a1 and a3 from de Koter
et al. (1997). The blue triangles are stars a1, a2 and a3 from Crowther and Dessart (1998). Right:
the green squares correspond to luminosity estimates based on HST/WFPC2 photometry (Hunter
et al. 1995), effective temperatures and extinction from Crowther et al. (2010), and bolometric
corrections from Martins and Plez (2006). The orange hexagons are based on HST/WFPC3
photometry from De Marchi et al. (2011). The effective temperatures of stars a1, a2 and a3 have
been shifted by 200 K for clarity

(1998) used improved model atmospheres to re-analyze a1 and a3, and included
also a2. They extended their study to the optical range. They found very similar
effective temperatures and luminosities 0.1–0.2 dex lower. A major re-investigation
of the properties of the R136a components was performed by Crowther et al.
(2010). They used atmosphere models including many metals, thus correctly taking
into account the line-blanketing effects. In addition, they used the K-band spectra
and photometry obtained by Schnurr et al. (2009), taking advantage of the high
spatial resolution collected with the adaptive optics demonstrator MAD on the
VLT (Campbell et al. 2010). Due to the inclusion of line-blanketing in atmosphere
models, new, hotter effective temperatures were obtained (Teff D 53;000 K). The
luminosities were significantly revised upward, reaching 106:6�6:9 Lˇ (see Fig. 2.7,
left panel). Consequently, much larger initial masses were estimated: 320 Mˇ for
a1, 240 Mˇ for a2, 165 Mˇ for a3 and 220 Mˇ for c.

There are several reasons for the revised luminosities: change of effective tem-
perature and new bolometric corrections, different extinction, and use of different
wavelength bands. de Koter et al. (1997) and to a lower extent Crowther and
Dessart (1998) used atmosphere models with a limited treatment of line-blanketing.
Crowther et al. (2010) included many metals in their models. As is well known,
metals affect the determination of effective temperatures and bolometric corrections
(Martins et al. 2005). Let us take the example of star R136a3. de Koter et al. (1997)
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Table 2.3 Luminosity estimates for the R136a stars using WFPC2 and WFPC3 photometrya

Star Teff mV(WFPC2) AV MV(WFPC2) BC(V) log L
Lˇ

[K] mV(WFPC3) MV(WFPC3)

R136a1 53,000 12.84 1.80 �7.41 �4.48 6.65

12.28 �7.97 6.88

R136a2 53,000 12.96 1.92 �7.41 �4.48 6.66

12.34 �8.03 6.90

R136a3 53,000 13.01 1.72 �7.16 �4.48 6.56

12.97 �7.20 6.57

R136c 51,000 13.47 2.48 �7.46 �4.37 6.63

13.43 �7.50 6.65
aA distance modulus of 18.45 is adopted. Bolometric corrections are from Martins and Plez
(2006). Photometry is from Hunter et al. (1995) for HST/WPFC2 and De Marchi et al. (2011)
for HST/WPFC3. Extinction is from Crowther et al. (2010)

used an absolute visual magnitude MV = �6:73 and obtained Teff D 45;000 K.
According to the calibration of Vacca et al. (1996) based on models without line-
blanketing, the corresponding bolometric correction is �4:17. Using Eq. 2.5 (for
the optical range, see Martins and Plez 2006) we obtain log L

Lˇ
D 6:26, in

perfect agreement with the value of 6.25 determined by de Koter et al. (1997). If
we were using the lower effective temperature of Crowther and Dessart (1998) –
Teff D 40;000 K – one would get log L

Lˇ
D 6:11, close to 6.07 as derived by

Crowther and Dessart (1998). If we now adopt the effective temperature derived
by Crowther et al. (2010) (Teff D 53;000 K) and use modern calibrations of
bolometric corrections including the effects of line-blanketing (Martins and Plez
2006), we obtain BC = �4.48 and log L

Lˇ
D 6:38. Hence, better atmosphere models

and temperature determinations contribute to an increase of about 0.2–0.3 dex in
luminosity. But compared to the value obtained by Crowther et al. (2010) (log L

Lˇ
D

6:58) there is another 0.2 dex to explain. de Koter et al. (1997) adopted an extinction
AV D 1:15, using E(B-V) = 0.35 and a standard value of the ratio of selective to
total extinction. Crowther et al. (2010) used the extinction determined by Fitzpatrick
and Savage (1984) and obtained AV D 1:72 for star a3. If we use this extinction,
the absolute magnitude reaches �7:24 which, together with BC = �4.8 leads to
log L

Lˇ
D 6:59, similar to Crowther et al. (2010). For star a3, the combination of

new effective temperature, bolometric corrections, and a larger extinction explains
the revised luminosity and thus initial mass. The results are summarized in Table 2.3
and Fig. 2.7 (right panel). Table 2.3 includes the optical photometry of Hunter et al.
(1995) (HST/WFPC2) and that of De Marchi et al. (2011) (HST/WFPC3). Both are
similar for star a3.

If we now turn to star R136c, the new stellar parameters together with optical
HST photometry lead to log L

Lˇ
D 6:65. This is lower than the value of Crowther

et al. (2010) by 0.1 dex, but still within the error bars. We also note that the WFPC2
and WFPC3 results are consistent. This is not true for stars a1 and a2. Using the
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Table 2.4 Initial mass estimates for the R136a stars. Minitial
C10 and Mcurrent

C10 are initial and current
masses obtained from evolutionary tracks by Crowther et al. (2010). MG11 are upper limits from
the homogeneous M-L relations of Gräfener et al. (2011) using a hydrogen mass fraction of 0.7
and the luminosities based on K-band, WFPC2 and WFPC3 photometry (see Table 2.3), assuming
the distance and extinction of Crowther et al. (2010). All values are in Mˇ

Star Minitial
C10 Mcurrent

C10 MK
G11 MWFPC2

G11 MWFPC3
G11

R136a1 320C100
�40 265C80

�35 372 230 336

R136a2 240C45
�45 195C35

�35 285 234 347

R136a3 165C30
�30 135C25

�20 206 200 203

R136c 220C55
�45 175C40

�35 271 223 231

WFPC2 magnitudes, we obtain log L
Lˇ

D 6:65 (6.66) for a1 (a2), while using

WFPC3 photometry, one gets log L
Lˇ

D 6:88 (6.90) for a1 (a2). These values have

to be compared to log L
Lˇ

D 6:94 and 6.78 obtained by Crowther et al. (2010). For
both stars, WFPC2 photometry leads to lower luminosities than the K-band analysis
of Crowther et al. (2010). The difference is significant for star a1. Luminosities are
much higher if recent optical photometry is used. The results are now consistent for
a1 (optical/K-band) while the optically derived luminosity of a2 is higher than the
K-band luminosity. The changes in optical photometry might be due to crowding,
stars a1 and a2 being separated by only 0.1”.

In Table 2.4 we have gathered different mass estimates. The initial and current
masses of Crowther et al. (2010) are shown in the first two columns. They are
based on the dedicated evolutionary tracks presented in the study of Crowther et al.
Masses can also be obtained from mass-luminosity relations. Gräfener et al. (2011)
presented such relations for completely mixed stars. In that case, there is no gradient
of molecular weight inside the star and the mass is maximum for a given luminosity.
We have used their relation for a hydrogen mass fraction of 0.7 (slightly higher than
the observed values) to provide upper limits on the current masses of the R136
stars. We have used the luminosities of Crowther et al. (2010) and those given in
Table 2.3, based on WFPC2 and WPFC3 photometry. The results are shown in the
last three columns of Table 2.4. The upper limits are consistent with the current mass
estimates of Crowther et al. (2010). The impact of luminosity on the derived mass
is clearly visible from Table 2.4: R136 a1 has an upper mass limit between 230 and
372 Mˇ depending on its luminosity estimate.

The main conclusions regarding the revised R136 luminosities (and consequently
masses) can be summarized as follows: (1) line-blanketed models lead to new
effective temperatures and bolometric corrections which in turn contribute to an
increase in luminosity; (2) higher visual extinction provides an additional source of
luminosity increase; (3) photometric precision is important, especially in crowded
regions. These three factors all affect the determination of luminosities, and thus
initial masses, for stars in R136. Future studies of this region with high spatial
resolution will certainly shed new light on the initial mass and nature of the R136
very massive components.
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NGC 3603

NGC 3603 is a Galactic massive cluster dominated by three bright objects named A,
B and C. The former is a known binary and will be described in Sect. 2.3. Stars B and
C have been analyzed by Crowther and Dessart (1998) and revisited by Crowther
et al. (2010). They are Wolf-Rayet stars of type WN6h.

Crowther and Dessart (1998) obtained log L
Lˇ

D 6:16 and 6.06 for stars B and C
respectively. They did not use luminosities to infer stellar masses, but instead relied
on the wind properties (Kudritzki et al. 1992). According to the radiatively driven
wind theory, the wind terminal velocity is directly related to the escape velocity,
which is itself related to the surface gravity. With the effective temperature and
luminosity obtained from the spectroscopic analysis, the radius is known. Calcula-
tions of the terminal velocity in the framework of the radiatively driven wind theory
and comparison to the observed velocities provides an estimate of the present stellar
mass. Crowther and Dessart (1998) obtained M = 89 ˙ 12 (62 ˙ 8) for star B (C).

Crowther et al. (2010) used the more classical transformation of luminosities
into stellar masses in the HR diagram. As for R136, they used atmosphere models
including a proper treatment of line-blanketing effects. Consequently, the effective
temperatures they derive are higher. They also take into account a larger extinction
(AV � 4.7 versus 3.8 for Crowther and Dessart) and a shorter distance (7.6 kpc
versus 10.0 kpc, corresponding to distances modulus of 14.4 and 15.0 respectively).
The effect of extinction and distance act in different directions, but the former
is larger, so that in addition to the increased luminosity due to higher Teff, the
luminosities obtained by Crowther et al. (2010) are higher than those of Crowther
and Dessart (1998): log L

Lˇ
D 6:46 and 6.35 for B and C respectively. The

present day masses (113 Mˇ for both stars) and initial masses (166 ˙ 20 and
137C17

�14 Mˇ) are higher than the wind masses quoted above. They were obtained
using non-rotating tracks. Since evolutionary models including rotation have higher
luminosities, lower initial masses would be determined if they were used.

The determination of the masses of the brightest objects in NGC 3603 illustrates
once again the role of extinction and of better stellar parameters. But it also
highlights the importance of distances. For the Arches cluster and R136, they
were quite well constrained. For NGC 3603, the uncertainty is larger. Assuming
the physical parameters of Crowther et al. (2010) for star B, but using a distance
of 10.0 kpc (instead of 7.6) would lead to log L

Lˇ
D 6:70, 0.24 dex higher than

reported by Crowther et al. The initial masses would then exceed 200 Mˇ. Accurate
parallaxes hopefully provided by the Gaia mission will help to refine the mass
estimates of NGC3603 B and C.

Other Candidates

There are a few stars that can be considered as candidates to have masses in excess
of 100 Mˇ. Most of them are located in the Galactic Center. The first one is the
Pistol star (Figer et al. 1998). As we have described in Sect. 2.1, it was once thought
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to have a luminosity between 1.5 and 4.0 � 106 Lˇ, corresponding to a mass larger
than 200 Mˇ. But the luminosity was revised by Najarro et al. (2009) so that the
current initial mass of Pistol is thought to be closer to 100 Mˇ. In addition, Martayan
et al. (2011) reported the presence of a faint companion, calling for an additional
downward revision of the mass of the brightest member.

If the Pistol star has lost its status of most luminous star in the Galactic Center,
other objects have attracted attention in the last years. Barniske et al. (2008) studied
two WN stars located between the Arches and central cluster, in relative isolation.
Using 2MASS near-infrared and Spitzer mid-infrared photometry, they fitted the
SED of these stars and determined log L

Lˇ
D 6:3 ˙ 0:3 and 6:5 ˙ 0:2 for stars

WR102c and WR102ka respectively. They adopted the extinction law of Rieke and
Lebofsky (1985) and Lutz (1999), as compiled by Moneti et al. (2001). Keeping
in mind the limitations described in Sect. 2.2.4, these two stars are comparable to
the most luminous WNh stars in the Arches cluster, and could have initial masses
between 100 and 150 Mˇ.

Hamann et al. (2006) studied most of the Galactic WN stars and obtained
luminosities larger than 2.0 � 106 Lˇ for a few objects (WR24, WR82, WR85,
WR131, WR147, WR158). All are H-rich WN stars, like all luminous stars in young
massive clusters presented above. This seems to be a common characteristics of all
suspected very massive stars: they have the appearance of WN stars, but contain a
large hydrogen fraction. They are thus most likely core-H burning objects, still on
the main sequence. Their Wolf-Rayet appearance is due to their high luminosity and
consequently their strong winds.

Finally, Bestenlehner et al. (2011) reported on VFTS-682, a H-rich WN star
located 29 pc away (in projection) from R136. Bestenlehner et al. rely on optical
spectroscopy and optical-near/mid infrared photometry to constrain the stellar
parameters. They determine an effective temperature of 54,500 ˙ 3,000 K. The
luminosity estimate depends on the assumptions made regarding the extinction law.
With a standard RV = 3.1, they obtain log L

Lˇ
D 5:7 ˙ 0:2. But the resulting SED

does not match the 3.6 and 4.5 �m Spitzer photometry. To do so, the authors use
a modified extinction law with RV = 4.7. The SED is better reproduced and the
luminosity increases to log L

Lˇ
D 6:5˙0:2. The Spitzer 5.8 and 8.0 �m photometry

remains unfitted, which is attributed to mid infrared excess possibly caused by
circumstellar material. Bestenlehner et al. also argue that differences in the near
infrared measurements between IRSF and 2MASS translates into an additional
uncertainty of 0.1 dex on the luminosity. They favour the highest luminosity, which
would correspond to a mass of about 150 Mˇ. A luminosity of 105:7 Lˇ would
correspond to an initial mass of about 40 Mˇ (see Sect. 2.2.2).

In conclusion, there are several stars that can be considered good candidates
for a VMS status. The best cases are located in the Aches, NGC 3603 and R136
clusters. However, we have highlighted the uncertainties affecting their luminosity
determination and consequently their evolutionary masses. If masses in excess of
100 Mˇ are likely, values higher than 200 Mˇ are still subject to discussion and
should be confirmed by new analysis.
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2.3 Very Massive Stars in Binary Systems

In this section we focus on binary systems containing massive stars. After presenting
the various types of binary stars, we recall some relations relating physical to
observed properties of binary systems. Finally, we present the best cases for binary
systems containing very massive stars.

2.3.1 Massive Binaries and Dynamical Masses

Types of Binaries

Mason et al. (1998) showed that two main types of binaries are detected: visual
binaries and spectroscopic systems. The former are seen in imaging surveys. The
two components of the systems are observed and astrometric studies covering sev-
eral epochs can provide the orbital parameters, especially the separation and period.
Visual binaries have periods larger than 100 years. The majority actually have
periods of 104–106 years (corresponding to separations of the order of 0.1–10 pc).
The reason is that massive binaries are located at large distances. Even with the best
spatial resolution achievable today, only the systems with the widest separation can
be detected. The other category of binaries is observed by spectroscopy. Due to the
orbital motion of the two components around the center of mass, spectral lines are
Doppler shifted. Radial velocities can be measured. If a periodicity is found in the
RV curve, this is a strong indication of binarity. Spectroscopic binaries have short
periods: from about 1 day to a few years, with a peak between 3 days and 1 month
(separations of the order of a few tenths to one AU). This is again an observational
bias: to detect significant variations of radial velocities the components have to be
relatively close to each other, which implies short periods. Spectroscopic binaries
cannot be spatially resolved. Hence, the spectrum collected by observations is a
composite of the spectra of both components. Depending on the line strengths and
the luminosity of the components, the spectral signatures of only one star or of both
components can be observed. In the former (latter) case, the system is classified
as SB1 (SB2). Spectroscopic binaries can sometimes experience eclipses if the
inclination of the system is favourable. In that situation, the components periodically
pass in front of each other, creating dips in the light curve. Such systems are the best
to constrain masses as we will see below. Binary stars with periods between a few
years and a century currently escape detection.

In the following we focus on spectroscopic binaries since all the suspected very
massive stars in multiple systems discovered so far belong to this category.

Orbital Elements and Dynamical Masses

The first step to study a spectroscopic binary is to measure the radial velocities from
spectral lines. The most widely used method consists in fitting Gaussian profiles to
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the observed lines. Such profiles are not able to account for the real shape of O stars
lines, but it is a good approximation for their core, at least in the optical range. This
is sufficient to measure a radial velocity (RV). Several lines are usually used and the
final RV is the average of the individual RV measured on each line. An important
limitation of this method is that it assumes that lines are formed in the photosphere
at zero velocity with respect to the star’s center of mass. For absorption lines of
O stars, this is a good approximation. For stars with strong winds such as WNh
stars, the observed lines will be mainly formed in the wind. Hence, they will have a
non zero velocity due to the wind outflow. This can introduce a systematic offset in
the radial velocity curve. Hopefully, the important quantity to constrain the mass of
binary components is the amplitude of the RV curve, which is less sensitive to the
above limitation. A way to avoid this problem is to use a cross-correlation method
in which the spectrum of a single star with a spectral type similar to the components
of the system is used to obtain RV.

The vast majority of spectroscopic binaries are studied using optical spectra.
Hydrogen and helium lines are the main indicators, especially when the Gaussian
fit method is employed. For the very massive stars we will describe below, nitrogen
lines are also present and are included in the analysis. Near-infrared spectra are
becoming available and are well suited to investigate the binarity of stars hidden
behind several magnitudes of extinction. The K-band is the most commonly used
spectral range in the near-infrared. Here again, hydrogen and helium lines are
present. The typical width of absorption lines in O stars is 10–20 km s�1. In order
to correctly resolve them, at least ten points should be obtained throughout the
line profile. This implies a minimum spectral resolution of �3,000. The higher the
spectral resolution, the smaller the error on the RV measurement. For stars with
strong winds, lines are broad and high spectral resolution is not required.

Once the radial velocity measurements are obtained, a period search can be
performed using time series analysis. If a signal is detected, radial velocities can
be phased to create the type of curves presented in Fig. 2.8. In a SB2 system,
the RV changes of both components are seen. They are anti-correlated. In a SB1
system, only the radial velocity variations of the brightest star are seen. According
to Kepler’s laws, the semi-amplitude of the RV variations (K) is related to the orbital
elements as follows:

K D .2� G/1=3.
M

T
/1=3 q

.1 C q/2=3

sin ip
1 � e2

(2.6)

where G is the constant of gravitation, M the mass of the star, T the period, q D
M2=M1 the ratio of the secondary to primary mass, i the inclination of the system
and e its eccentricity. For a SB1 system, we can reprocess this relation to obtain the
so-called mass function

f .m/ D M sin3 i

.1 C q/2
D K3

2�G
.1 � e2/3=2T (2.7)
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This is not sufficient to constrain the mass of the system unless assumptions on the
mass ratio are made. On the contrary, for a SB2 system we can use Kepler first law
to derive

M1 sin3 i D T

2�G
.K1 C K2/K2.1 � e2/3=2 (2.8)

M2 sin3 i D T

2�G
.K1 C K2/K1.1 � e2/3=2 (2.9)

from which we immediately see that the mass ratio M1=M2 is the inverse of the RV
amplitude ratio K2=K1.

With these expressions, it is possible to fit the observed RV curves and to estimate
lower limits on the components masses. These masses are called “dynamical
masses”. The shape of the RV curve provides a first guess of the eccentricity.
For a circular orbit, it should be a perfect sine curve. For more eccentric orbits,
the RV curve becomes asymmetric with a maximum absolute value of the radial
velocity concentrated in a short period of time corresponding to periastron passage.
In Fig. 2.8 the observations are consistent with a zero eccentricity. The ratio of the
semi-amplitude K1/K2 is the inverse of the mass ratio. Consequently, a look at the
RV curve already provides information on the mass ratio of the system: for equal
mass binaries, the amplitude of the radial velocity variations of the primary and
of the secondary stars are the same. From the above equations, it appears that the
determination of Msin3 i is essentially model independent. The main limitations
come from the measurement of the radial velocities.

To obtain dynamical masses and not just lower limits, one needs to determine
the inclination of the system. This is possible for eclipsing binaries. A photometric

Fig. 2.8 Radial velocity curve of the binary system WR20a. Filled (open) symbols are for the
primary (secondary) (From Rauw et al. (2004). Reproduced with permission)
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monitoring over several periods provides the light curve, i.e. the evolution of
the system’s magnitude as a function of time. For eclipsing binaries, minima are
observed in the light curve. They correspond to the physical situation where one
star passes in front of the other and (partly) blocks its light. The shape of the light
curve in the eclipse phases can be quite complex depending on the geometry of the
system. For stars relatively separated and experiencing complete eclipses, a plateau
is observed in the minimum of the light curve. If the eclipse is only partial, no
plateau is seen. For close binaries, interactions between components affect the shape
of the stars and their light. Tidal forces cause elongations along the binary axis. Light
of one component can be reflected and/or heat the surface of the companion, making
more complex the shape of the eclipses in the light curve. In the most extreme
cases of contact binaries, material is exchanged between both stars which affects
the system’s photometry. All these processes render the fit of the light curve more
difficult and more mode-dependent than the RV curve. Even in the simplest case
of detached, non-interacting binaries, a limb darkening model has to be adopted to
reproduce the eclipses. In addition, assumptions on the luminosity ratio are usually
necessary to obtain a complete solution. Under these assumptions, it is possible to
constrain the inclination of the system and thus, from Eq. 2.9, the dynamical masses.

In order to refine the analysis of RV and light curves, a better knowledge of
the physical properties of the stars is useful. The method of spectral disentangling
consists in the separation of the individual spectra from the combined, observed
spectrum of the system. The principle is rather simple: subtract the spectrum of one
star from the combined spectrum. In practice, this method requires again a good
knowledge of the luminosity ratio of both components in order to evaluate their
respective contribution. The radial velocity amplitudes have to be large enough so
that the two spectra are well separated. A good sampling of the orbit is necessary.
Under these conditions, it is possible to extract the individual spectra and perform
spectral classification. A spectroscopic analysis of each star can be attempted,
providing additional stellar parameters. Like for single stars, evolutionary and
spectroscopic masses can be obtained and directly compared to dynamical masses
(e.g. Mahy et al. 2011).

Provided that eclipses are observed, it is thus possible to obtain dynamical
masses for massive binaries. The analysis of the RV curve is affected mainly by
uncertainties in the measurements of radial velocities, while the interpretation of
the light curve is much more model dependent. With these limitations in mind, we
now present a few example of massive binary systems potentially hosting VMS.

2.3.2 The Most Massive Binary Systems

Now that the basic ingredients of mass determination in binary systems have been
recalled, we turn to the presentation of some of the most interesting systems
potentially hosting very massive stars.
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WR20a

WR20a is located in the vicinity of the massive cluster Westerlund 2. Rauw
et al. (2004) presented the optical spectrum of the system and first radial velocity
measurements. They used Gaussian profiles to fit the main emission lines. The main
difficulty they encountered was that the two components have the same spectral
type: WN6ha. Hence, a period search was performed in the absolute difference of
radial velocities (j RV1 � RV2 j). The preferred value of the period was 3.675 d,
with a second possible value at 4.419 d. Assuming a zero eccentricity orbit (from
the shape of the RV curve), Rauw et al. (2004) determined minimum masses of
70:7 ˙ 4:0 and 68:8 ˙ 3:8 Mˇ for the primary and secondary.

At the same time, Bonanos et al. (2004) collected I-band photometry for WR20a.
The lightcurve showed clear minima, revealing the eclipsing nature of the system.
They revised the period determination: 3.686 d. Performing a fit of the light curve,
Bonanos et al. (2004) determined an inclination of 74ı:5 ˙ 2ı:0. Combined with
the radial velocity measurements of Rauw et al. (2004), Bonanos et al. concluded
that the current masses of the two components are 83:0 ˙ 5:0 and 82:0 ˙ 5:0 Mˇ.
The very similar masses are consistent with both stars having the same spectral
type, and with the absence of strong asymmetry in the light curve (all eclipses have
almost the same depth). Rauw et al. (2005) subsequently determined the stellar and
wind parameters of the system and obtained an effective temperature of 43,000 K
and a luminosity of 1.15 � 106 Lˇ for each component. The effective temperature
is consistent with that assumed by Bonanos et al. (2004) for their light curve fit.
Using the evolutionary tracks of Meynet and Maeder (2003), the stellar parameters
corresponds to present mass of 71 Mˇ and an initial mass of 84 Mˇ. Given the
uncertainties related to evolutionary tracks described in Sect. 2.2.3, the agreement is
good.

Although not a very massive star per see, WR20a is one of the binary star with
the best determination of dynamical masses.

NGC 3603 A1

In Sect. 2.2.4 we have shown that NGC 3603 contained two stars (B and C) with high
luminosities and good candidates for having initial masses in excess of 100 Mˇ. A
third object lies in the core of NGC 3603: star A1. Using unresolved spectroscopy,
Moffat and Niemela (1984) showed that object HD 97950, which includes all three
stars A1, B and C, was variable in radial velocity. A period of 3.77 days could
be identified. Subsequent investigation of NGC 3603 with HST by Moffat et al.
(2004) revealed photometric variability with the same period. With the improved
spatial resolution, the origin of the variability could be attributed to star A1 which
was then classified as a double-line eclipsing binary (SB2). Moffat et al. (2004)
performed a series of light curve fits assuming various values for the mass ratio of
both components. They found that an inclination of 71ı best reproduced their light
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curve. This inclination was obtained for a mass ratio between 0.5 and 2.0 and for an
effective temperature of the secondary (primary) of 43,000 K (46,000 K).

Schnurr et al. (2008) used adaptive optics integral field spectroscopy in the K-
band to monitor the radial velocity variations of A1. They showed that Br� and
HeII 2.189 �m were both in emission and were double peaked, with one peak
stronger than the other. They concluded that the system was most likely formed
by a WN6ha star and a less luminous O star. They determined radial velocities from
Gaussian fits to the emission lines. Measurements of the secondary radial velocity
variations were difficult when lines from the primary and secondary were blended
and dominated by the primary’s emission. This resulted in large uncertainties on the
secondary RV curve and consequently on the dynamical mass estimates. Schnurr
et al. adopted the inclination and period of Moffat et al. (2004) as well as a zero
eccentricity and calculated an orbital solution. They obtained M = 116 ˙ 31 Mˇ and
M = 89 ˙ 16 Mˇ for the primary and secondary respectively. The mass ratio is thus
1:3 ˙ 0:3.

Crowther et al. (2010) performed a spectroscopic study of the integrated
spectrum of A1 at maximum separation of the two components. They found
Teff D 42;000 K for the primary and Teff D 40;000 K for the secondary. This is
lower than the values adopted by Moffat et al. (2004) for their light curve solution.
Revisiting the inclination determination with these new temperatures would be
useful. Crowther et al. also constrained the luminosity of the components and used
non-rotating evolutionary tracks to estimate the current mass of the stars: 120C26

�17 and
92C16

�15 Mˇ. These values are in very good agreement with the dynamical masses. But
here again, current masses determined with evolutionary tracks including rotation
would have been lower.

R144 and R145

R144 and R145 are two H-rich WN stars located in the LMC. Moffat (1989)
reported variability in R145 and tentatively derived a periodicity of 25.4 days,
indicating a binary nature. Schnurr et al. (2009) monitored the spectroscopic
variability of R145 and confirmed that most lines display changes in both shape
and position. They observed mainly one set of line, thus one of the components. Its
spectral is similar to other massive binaries: WN6h. Using a method based on the
removal of the averaged primary spectrum in each individual spectra, they identified
weak HeII features typical of O stars. Hence, they concluded that the secondary
should be a less massive object than the primary. This was confirmed by estimates
of the visible flux level and the study of the strength of the companion HeII lines in
comparison with template spectra of O stars. The primary should be about 3 times
more massive than the secondary.

In addition to spectroscopic observations, Schnurr et al. (2009) also obtained
simultaneous polarimetric data in which they clearly detected Zeeman signatures in
the Q and U profiles. Interestingly, these profiles also showed variability. A clear
periodicity of 159 d could be identified. Using this period, they obtained an orbital
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solution for the radial velocity curve yielding Msin3i = 116 ˙ 33 Mˇ (48 ˙ 20 Mˇ)
for the primary (secondary). The mass ratio of 2:4˙1:2 was in reasonable agreement
with that determined from the visible continuum flux. In a further step, Schnurr
et al. (2009) performed a combined fit of the radial velocity and polarimetric curves
and obtained i = 38ı ˙ 9ı (inclination of the system). With such an inclination, the
primary and secondary mass should be larger than 300 and 125 Mˇ. These masses
are inconsistent with the systems brightness though, questioning the inclination
determination.

R144 was also monitored by Schnurr et al. (2009), but no periodicity was
detected. Sana et al. (2013) presented new spectroscopic observations. They
detected line shifts in NIII, NIV and NV lines. Interestingly, the NIII and NV
shifts are anti-correlated, pointing towards a different origin for both types of lines.
Sana et al. (2013) concluded that the optical spectra are the composite of the spectra
of two types of stars: one WN5-6h mainly contributing to NV lines, and one WN6-
7h star dominating the NIII features. A period search indicated a variability on a
timescale of 2–12 months, without better constraint. Based on the visual photometry
and assumptions regarding the bolometric correction of the components, Sana et al.
(2013) estimated log L

Lˇ
�6.8. This places R144 among the potential very massive

stars.
For both R144 and R145, additional spectroscopic and photometric observations

are required to better characterize the system’s component. In particular, spectral
disentangling would be helpful to constrain the nature of these massive systems.

In conclusion, there are relatively few binary systems potentially hosting VMS.
The best cases would benefit for additional combined RV and light curve analysis
(when eclipses are present) to refine the dynamical mass estimates. NGC 3603 A1
appears to be the best candidate.

Summary and Conclusions
In this chapter we have presented the observational evidence for the existence
of very massive stars. Mass estimates of single stars are mainly obtained from
the conversion of luminosities to evolutionary masses. We have highlighted
the uncertainties in the determination of luminosities: crowding, accurate
photometry, distance, extinction, atmosphere models all contribute to render
uncertain luminosity estimates. The other source of error comes from evo-
lutionary tracks. Different calculations produce different outputs depending
on the assumptions they are built on. Even if the luminosity was perfectly
well constrained, its transformation to masses relies on the predictions of
evolutionary models. With these limitations in mind, there are several stars
that can be considered as good candidates for a VMS status. They are manily
located in the massive young clusters NGC 3603, R136 and the Arches. In
R136, the brightest members may reach initial masses higher than 200 Mˇ.

(continued)
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In the other two clusters, masses between 150 and 200 Mˇ are not excluded.
A few binary systems may also host stars with masses in excess of 100 Mˇ.
NGC 3603 A1 seems to be the best candidate, with a M � 115 Mˇ primary
star, but a better analysis of the light curve is needed to refine the analysis.

In conclusion, very massive stars may be present in our immediate vicinity.
They usually look like WN5-9h stars, i.e. hydrogen rich mid to late WN stars.
Super star clusters – the best places to look for VMS – being impossible to
resolve with the current generation of instruments, these local VMS have to be
re-observed and re-analyzed in order to minimize the uncertainties involved
in their mass determination. This is important to understand the upper end of
the initial mass function and the formation process of massive stars in general.

Acknowledgements The author thanks Paul Crowther for discussions on the mass determination
of the R136 stars.
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Chapter 3
The Formation of Very Massive Stars

Mark R. Krumholz

Abstract In this chapter I review theoretical models for the formation of very
massive stars. After a brief overview of some relevant observations, I spend the bulk
of the chapter describing two possible routes to the formation of very massive stars:
formation via gas accretion, and formation via collisions between smaller stars. For
direct accretion, I discuss the problems of how interstellar gas may be prevented
from fragmenting so that it is available for incorporation into a single very massive
star, and I discuss the problems presented for massive star formation by feedback
in the form of radiation pressure, photoionization, and stellar winds. For collision,
I discuss several mechanisms by which stars might be induced to collide, and I
discuss what sorts of environments are required to enable each of these mechanisms
to function. I then compare the direct accretion and collision scenarios, and discuss
possible observational signatures that could be used to distinguish between them.
Finally, I come to the question of whether the process of star formation sets any
upper limits on the masses of stars that can form.

3.1 Introduction

The mechanism by which the most massive stars form, and whether there is an
upper limit to the mass of star that this mechanism can produce, has been a problem
in astrophysics since the pioneering works of Larson and Starrfield (1971) and
Kahn (1974). These authors focused on the physical mechanisms that might inhibit
accretion onto stars as they accreted interstellar matter, and we will return to this
topic below. However, a more modern approach to the problem of very massive
stars requires placing them in the context of a broader theory of the stellar initial
mass function (IMF).

The IMF is characterized by a peak in the range 0.1–1 Mˇ, and a powerlaw tail
at higher masses of the form dn=d ln m / m	 with 	 � �1:35 (Bastian et al.
2010, and references therein). However, the mass to which this simple powerlaw
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extends is not very well-determined. It is not possible to measure the IMF for field
stars to very high masses due to uncertainties in star formation histories and the
limited number of very massive stars available in the field. Measurements of the
high-mass end of the IMF in young clusters must target very massive systems in
order to achieve strong statistical significance, and such clusters are rare and thus
distant. This creates significant problems with confusion. The limited studies that
are available suggest that the a powerlaw with 	 � �1:35 remains a reasonable
description of the IMF out to masses of �100 Mˇ or more (e.g. Massey and Hunter
1998; Kim et al. 2006; Espinoza et al. 2009). However, it is by no means implausible
that there are hidden features lurking in the IMF at the highest masses. Indeed some
analyses of the IMF have claimed to detect an upper cutoff (see the Chapter by
F. Martins in this volume for a critical review).

This observational question of whether the most massive stars are simply the
“tip of the iceberg” of the normal IMF, or whether they represent a fundamentally
distinct population, animates the theoretical question about how such stars form.
The two dominant models for how massive stars form are formation by accretion
of interstellar material, i.e. the same mechanism by which stars of low mass form,
and formation by collisions between lower mass stars, which would represent a
very different formation mechanism from the bulk of the stellar population.1 In the
remainder of this chapter, I review each of these models in turn (Sects. 3.2 and 3.3),
pointing out its strengths, weaknesses, and areas of incompleteness. I then discuss
the observable predictions made by each of these models, and which might be used
to discriminate between them (Sect. 3.4). Finally, I summarize and return to the
question first raised by Larson and Starrfield (1971) and Kahn (1974): is there
an upper mass limit for star formation, and if so, why (section “Conclusions and
Summary: Does Star Formation Have an Upper Mass Limit?”)?

3.2 The Formation of Very Massive Stars by Accretion

The great majority of stars form via the collapse of cold, gravitationally-unstable,
molecular gas, and the subsequent accretion of cold gas onto the protostellar seeds
that the collapse produces (McKee and Ostriker 2007, and references therein).
There are numerous competing models for the origin of the observed 	 � �1:35

slope (e.g. Bonnell et al. 2001; Padoan and Nordlund 2002; Padoan et al. 2007;
Hennebelle and Chabrier 2008, 2009, 2013; Krumholz et al. 2011, 2012; Hopkins
2012), but in essentially all of these models, the massive end of this tail is populated

1Mergers between two members of a tight binary as a result of the growth of stellar radii during
main sequence or post-main sequence evolution, or as a result of secular interactions in hierarchical
triples, is a third possible mechanism by which massive stars can and probably do gain mass (Sana
et al. 2012; de Mink et al. 2013; Moeckel and Bonnell 2013). However, I do not discuss this
possibility further, because it provides at most a factor of 2 increase in stellar mass.
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by stars forming in rare, high-density regions that provide at least the potential for
large mass reservoirs to be accreted onto protostellar seeds at high rates. Some but
not all of these models identify the regions that give rise to massive stars with
observed “cores”: compact (�0.01 pc), dense (>105 molecules cm�3) regions of
gas, the largest of which can have masses large enough to form very massive stars
(e.g,. Beuther and Schilke 2004; Beuther et al. 2005; Bontemps et al. 2010). None of
these models predict that there is an upper limit to the masses of either cores or stars,
and there is no observational evidence of a truncation either. Thus, it would seem
that there is no barrier in terms of mass supply to the formation of very massive
stars via the same accretion processes that give rise to the remainder of the IMF.
However, the fact that there is a large supply of mass available does not guarantee
that it can actually accrete onto a single object and thereby produce a very massive
star. There are four major challenges to getting the available interstellar mass into
a star, which we discuss below: fragmentation, radiation pressure, photoionization,
and stellar winds. I discuss each of these challenges in turn in the remainder of this
section.

3.2.1 Fragmentation

The first challenge, fragmentation, can be stated very simply. When gravitationally-
unstable media collapse, they tend to produce objects with a characteristic mass
comparable to the Jeans mass,

MJ D �

6

c3
sp

G3

D 0:5

�
T

10 K

�3=2 � n

104 cm�3

�1=2

Mˇ; (3.1)

where cs is the sound speed, 
 is the gas density, T is the gas temperature, and n is
the gas number density. The temperature and density values to which I have scaled
in the above equation are typical values in star-forming regions. Clearly, a massive
star is an object whose mass is far larger than the Jeans mass of the interstellar gas
from which it is forming. Why, then, does this gas not fragment into numerous small
stars rather than forming a single large one? Indeed, hydrodynamic simulations of
the collapse of compact, massive regions such as the observed massive cores show
that they generally fail to produce massive stars (Dobbs et al. 2005), and larger-
scale simulations of star cluster formation appear to produce mass functions that are
better described by truncated powerlaws than pure powerlaws (e.g. Maschberger
et al. 2010), and where the formation of the most massive stars is limited by
“fragmentation-induced starvation” (Peters et al. 2010b; Girichidis et al. 2012).

While these results might seem to present a serious challenge to the idea that
massive stars form by accretion, they are mostly based on simulations that include
no physics other than hydrodynamics and gravity. More recent simulations including
a wider range of physical processes suggest that the fragmentation problem is much
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less severe than was once believed. Fragmentation is reduced by two primary effects:
radiation feedback and magnetic fields.

Radiation feedback works to reduce fragmentation by heating the gas, raising
its pressure and thus its Jeans mass (cf. Eq. 3.1). Although massive stars can
of course produce a tremendous amount of heating, the more important effect
from the standpoint of suppressing fragmentation is the early feedback provided
by low mass stars, whose luminosities are dominated by accretion rather than
internal energy generation. Krumholz (2006) first pointed out the importance of
this effect, showing that even a 1 Mˇ star accreting at the relatively high rates
expected in the dense regions where massive stars form could radiate strongly
enough to raise the gas temperature by a factor of a few at distances of �1,000 AU.
Since the minimum fragment mass is roughly the Jeans mass, and this varies
as temperature to the 3=2 power (Eq. 3.1), this effect raises the minimum mass
required for gas to fragment by a factor of �10. Subsequent radiation-hydrodynamic
simulations by a number of authors (Krumholz et al. 2007, 2010, 2011; Bate 2009,
2012; Offner et al. 2009b) have confirmed that radiation feedback dramatically
suppresses fragmentation compared to the results obtained in purely hydrodynamic
models. Krumholz and McKee (2008) argue that this effect will efficiently suppress
fragmentation in regions of high column density, allowing massive stars to form
without their masses being limited by fragmentation. In contrast, Peters et al.
(2010b) find that fragmentation limits the growth of massive stars even when
heating by direct stellar photons is included, but their simulations do not include
the dust-reprocessed radiation field that is likely more important for regulating
fragmentation, and are limited to regions of much lower density than the typical
environment of massive star formation.

Magnetic fields limit fragmentation in two ways. First, they remove angular
momentum. In a collapsing cloud, the densest regions collapse fastest, and as the
gas falls inward it attempts to rotate faster and faster in order to conserve angular
momentum. When the collapsing gas is threaded by a magnetic field, however, the
resulting differential rotation between inner collapsing regions and outer ones that
have not yet begun to collapse twists the magnetic field lines. The twist produces a
magnetic tension force that transfer angular momentum from the inner to the outer
regions, a process known as magnetic braking. Formally, for an axisymmetric flow,
one can show (e.g., Stahler and Palla 2005) that the time rate of change of the
angular momentum of a fluid element at a distance $ from the rotation axis due
to magnetic forces is given by

@J

@t
D 1

4�

�
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@

@$
.$B�/ C $Bz

@

@z
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where B is the magnetic field, and we have used cylindrical coordinates such that the
components of B are .B$ ; B�; Bz/. Thus in general if the toroidal (�) component of
the magnetic field varies with either radial or vertical position, and the field also has
a poloidal ($ or z) component, there will be a magnetic torque that alters the angular
momentum of the gas. For the types of magnetic field configurations produced by
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collapse, the net effect is to transport angular momentum outward. This process
inhibits the formation of rotationally-flattened structures (e.g. accretion disks). This
is significant from the standpoint of fragmentation, because rotational flattening
raises the density of the gas as it approaches the star, and dense, rotationally-
flattened structures are vulnerable to the Toomre instability (see below), in which
the self-gravity of a flattened rotating structure overcomes support from thermal
pressure and angular momentum, leading to fragmentation and collapse.

Second, magnetic fields provide extra pressure support that prevents regions from
collapsing unless their magnetic flux to mass ratios are below a critical value

�
˚

M

�

crit
D .4�2G/1=2: (3.3)

Regions with masses small enough such that ˚=M < .˚=M /crit are said to be
magnetically sub-critical, meaning that they do not have enough mass to overcome
magnetic pressure support and collapse. Observations indicate that star-forming
cores, over a wide range of size and density scales, tend to have flux to mass ratios
that are roughly uniformly distributed from 0 up to .˚=M /crit (Crutcher 2012, and
references therein). Thus the median core is magnetically supercritical, and is able
to collapse despite magnetic support. However, gravity overcomes magnetic support
only by a factor of �2. If the flux to mass ratio is at all non-uniform, this implies
that there may be significant amounts of mass contained in regions that are too
magnetized to collapse. Simulations of massive protostellar cores by Hennebelle
et al. (2011) find that, for realistic levels of magnetization, the number of fragments
is reduced by a factor of �2 compared to a purely hydrodynamic calculation.

More recently, Commerçon et al. (2011) and Myers et al. (2013) have studied
the collapse of massive cores using both radiative feedback and magnetic fields,
and the effects amplify one another. At early times, the extra magnetic braking
provided by magnetic fields removes angular momentum and channels material
to the center faster. This tends to raise the accretion rate and thus the luminos-
ity, making radiative heating more effective. Moreover, radiative and magnetic
suppression of fragmentation are complementary in that they operate in different
regions. Radiation suppresses fragmentation within �1,000 AU of a forming star,
as found by Krumholz (2006) and subsequent radiation-hydrodynamic simulations,
but becomes ineffective at larger radii. However, the regions more than �1,000 AU
from a forming star are precisely those that are mostly likely to be magnetically sub-
critical, and thus magnetic fields are able to suppress fragmentation in these regions.
Because each mechanism operates where the other is weakest, the combination of
the two reduces fragmentation much more efficiently than one might naively guess.
Figure 3.1 shows an illustration of this effect: a simulation with magnetic fields
and radiation shows almost no fragmentation, while ones with either alone both
experience some fragmentation, though still less than in a purely hydrodynamic
case. Based on these simulations, Myers et al. (2013) conclude that compact, dense
regions such as the observed massive cores are likely to form single star systems,
rather than fragment strongly.
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Fig. 3.1 Column densities from simulations of the collapse of massive protostellar cores (Myers
et al. 2013). The left column (BR) shows simulations including both magnetic fields and radiative
feedback. The middle column (MI) uses magnetic fields but no radiation, while the right column
(HR) uses radiation but has not magnetic field. Rows show snapshots at uniformly-spaced times,
from the initial state to 0.6 core free-fall times. The region shown is the central 5,000 AU around the
most massive star. Colors show column density, and black circles show stars, with the size of the
circle indicating the stellar mass. The initial magnetic field is oriented vertically in this projection
See Myers et al. (2013) for more details
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While this would seem to settle the question of whether fragmentation might
limit stellar masses, it is worth noting that there is one final possible fragmentation
mechanism that has not yet been evaluated via simulations. Kratter and Matzner
(2006) point out that the disks around massive stars are likely to be gravitationally-
unstable. Gravitational stability for a pressure-supported disk can be characterized
by the (Toomre 1964) parameter,

Q D �epcs

�G˙
; (3.4)

where �ep is the epicyclic frequency (equal to the angular frequency of the orbit
for a Keplerian disk), cs is the gas sound speed, and ˙ is the gas surface density.
Values of Q < 1 indicate instability of the disk to axisymmetric perturbations, and
non-axisymmetric perturbations begin to appear at Q � 1 � 2. Depending on the
properties of the disk, these instabilities can run away and cause the disk to fragment
into point masses. For a steady disk with dimensionless viscosity ˛ (Shakura and
Sunyaev 1973), the accretion rate through the disk is (e.g., Kratter et al. 2010)

PM D 3˛c3
s

GQ
D 1:5 � 10�4 ˛

Q

�
T

100 K

�3=2

Mˇ yr�1; (3.5)

where the numerical evaluation for the sound speed uses cs D p
kBT= and

the mean particle mass  D 3:9 � 10�24 g, appropriate for fully molecular gas
of standard cosmic composition. Local instabilities such as the magnetorotational
instability in the disk cannot produce ˛ > 1, and the disk cannot be gravitationally
stable if Q < 1, so the accretion rate through a gravitationally-stable disk where
angular momentum is transported primarily by local instabilities is strictly limited
from above. Accretion rates of 10�4 Mˇ year�1 in such disks are possible only if
the temperature is �100 K.

This means that there is a race between stellar heating and accretion. Forming
a very massive star via accretion in a time less than its main sequence lifetime
of a few Myr requires extremely high accretion rates – �10�3 Mˇ year�1 for a
>100 Mˇ star. However, such high accretion rates tend to be more than a disk
can process without going unstable and fragmenting, unless radiation from the
central star can heat the disk up, allowing it to transport mass more quickly while
remaining stable. However, this process of heating to allow more mass through
has a limit: once the temperature required to stabilize the disk exceeds the dust
sublimation temperature, it will not be easy to heat the disk further, and this may
result in an instability so violent that the disk fragments entirely, halting further
accretion. Kratter and Matzner (2006) estimate that this could limit stellar masses
of �120 Mˇ. Simulations thus far have not probed this possibility, as no 3D
simulations have reached such high stellar masses. However, we caution that Kratter
and Matzner’s scenario did not consider the effects of magnetic fields, which limit
the disk radius and help stabilize it against fragmentation, or the effects of molecular
opacity in the gas, which can provide coupling to the stellar radiation field and



50 M.R. Krumholz

a means to heat the disk to temperatures above the dust sublimation temperature
(Kuiper and Yorke 2013).

3.2.2 Radiation Pressure

The second potential difficulty in forming massive stars via accretion is the radiation
pressure problem, first pointed out by Larson and Starrfield (1971) and Kahn (1974).
The problem can be understood very simply: the inward gravitational force per unit
mass exerted by a star of mass M and luminosity L on circumstellar material with
specific opacity � located at a distance r is fgrav D GM=r2, while the outward
radiative force frad D �L=.4�r2c/. Since the radial dependence is the same, the net
force will be inward only if

L

M
<

4�Gc

�
D 2;500

�
�

5 cm2 g�1

��1
Lˇ
Mˇ

: (3.6)

All stars above �20 Mˇ have L=M > 2;500 Lˇ=Mˇ, so the question naturally
arises: why doesn’t radiation pressure expel circumstellar material and prevent stars
from growing to masses substantially larger than �20 Mˇ?

The choice of opacity � to use in evaluating this limit is somewhat subtle, because
the dominant opacity source for circumstellar material will be dust that is mixed with
the gas, which provides a highly non-gray opacity that will vary with position as
starlight passes through the dust and is reprocessed by absorption and re-emission.
Thus there is no single value of � that can be used in the equation above, and
for an accurate result one must first compute the radiation field that results from
the interaction of stellar photons with circumstellar dust, and then ask how the
resulting radiation force compares to gravity. Nonetheless, detailed one-dimensional
calculations by Wolfire and Cassinelli (1986, 1987), Preibisch et al. (1995), and
Suttner et al. (1999), including effects such as grain growth and drift relative to the
gas, nonetheless confirm that radiation pressure is sufficient to halt accretion onto
massive protostars at masses of �20 Mˇ for Milky Way dust abundances.

However, spherical symmetry is likely to be a very poor assumption for this
problem, and a number of authors point out that relaxing it might reduce or eliminate
the radiation pressure problem. The central idea behind these models is that the
optically thick circumstellar matter around a rapidly-accreting protostar is capable
of reshaping the radiation field emitted by the star, and making it non-spherical. If
the radiation can be beamed, then the radiation force can be weaker than gravity
over a significant solid angle even if the mean radiation force averaged over 4� sr is
stronger than gravity. This beaming could be accomplished by a disk (Nakano 1989;
Nakano et al. 1995; Jijina and Adams 1996) or an outflow cavity (Krumholz et al.
2005), or by any other non-spherical feature that might be found in the flow.
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Fig. 3.2 Volume renderings of the density field in the central 4,000 AU of a simulation of the
formation of a massive binary system including radiation pressure feedback (Krumholz et al. 2009).
The left image shows the edge-on view of the disk, while the right image shows the face-on view.
At the time shown in these images, the simulation contains a 41:5 C 29:2 Mˇ binary, each with
its own disk, and with the two disks embedded in a circumbinary disk. The filamentary structure
above and below the disk is created by radiation Rayleigh-Taylor instability, and consists of dense
filaments carrying mass onto the disk

The first radiation-hydrodynamic simulations in two dimensions found that
beaming by the disk was indeed effective at channeling radiation away from an
accreting star (Yorke and Kaisig 1995; Yorke and Bodenheimer 1999; Yorke and
Sonnhalter 2002), but that nevertheless the radiation field was able to reverse the
accretion flow and prevent formation of stars larger than �40 Mˇ. The first three-
dimensional radiation-hydrodynamic simulation, on the other hand, found that there
was no flow reversal, and that mass was able to accrete essentially without limit
(Krumholz et al. 2009). Figure 3.2 shows a snapshot from this simulation. The
key physical process uncovered in these simulations was radiation Rayleigh-Taylor
instability (RRTI): the configuration of a radiation field attempting to hold up a
dense, accreting gas is unstable to the development of fingers of high optical depth
material that channel matter down toward the star, while radiation preferentially
escapes through low optical depth chimneys that contain little matter. While the
instability was first discovered numerically, subsequently Jacquet and Krumholz
(2011) and Jiang et al. (2013) performed analytic stability calculations that allowed
them to derive the linear stability condition and linear growth rate for RRTI.

This picture was somewhat complicated by the work of Kuiper et al. (2010,
2011, 2012), who pointed out that the numerical method used in the Krumholz et al.
(2009), while it provided a correct treatment of the dust-reprocessed radiation field,
did not properly include the radiation force produced by the direct stellar radiation
field. When Kuiper et al. include this effect, they find that the extra acceleration
provided to the circumstellar matter is such that gas tends to be ejected from a
protostellar core before the RRTI has time to become non-linear. While there is no
reason to doubt that the result is correct in the case of an initially-laminar protostellar
core as considered by Kuiper et al., it is unclear how general this result is, since
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any pre-existing density structure in the core will “jump-start” the growth of the
instability and allow it to become non-linear in far less time. Such pre-existing
density structures are inevitable given the regions of massive star formation are
highly turbulent (e.g. Shirley et al. 2003), and even in the absence of turbulence,
gravitational instabilities in the accretion disk will tend to produce large density
contrasts and possibly binary systems (Kratter et al. 2010).2

While there is debate about the role of RRTI, there is no debate about whether
radiation pressure can actually halt accretion. Kuiper et al. (2011) and Kuiper and
Yorke (2013) find that, even though radiation pressure is able to eject matter in
their simulations, it is unable to eject the accretion disk, and thus that accretion can
continue onto stars up to essentially arbitrary masses. Similarly, Cunningham et al.
(2011), confirming the hypothesis of Krumholz et al. (2005), show that a protostellar
outflow cavity produced by a massive star provides an efficient mechanism for
radiation to escape, allowing accretion to continue essentially without any limit due
to radiation pressure. Indeed, the presence of an outflow cavity removes the need
for RRTI to occur, as it provides a pre-existing low-optical depth chimney through
which radiation escapes. Thus, the consensus of modern radiation-hydrodynamic
simulations of massive star formation that radiation pressure does not represent a
serious barrier to the formation of stars up to essentially arbitrary masses.

3.2.3 Ionization Feedback

The third potential problem in forming very massive stars is photoionization:
galactic molecular clouds generally have escape speeds below 10 km s�1 (e.g.,
Heyer et al. 2009), the sound speed in �104 K photoionized gas. As a result, if
the gas in a star-forming region becomes ionized, the gas pressure may drive a
thermal wind that will choke off accretion. This process is thought to be a major
factor in limiting the star formation efficiency of giant molecular clouds (e.g.,
Whitworth 1979; Matzner 2002; Krumholz et al. 2006). However, it is much less
clear whether photoionization can limit the formation of individual massive stars.
The key argument on this point was first made by Walmsley (1995), who noted that
an accretion flow onto a massive star can sharply limit the radial extent of an H II

region. This is simply a matter of the ionizing photon budget: the higher the mass
inflow rate, the higher the density of matter around the star, and thus the higher the
recombination rate and the smaller the Strömgren radius. If the radius of the ionized
region is small enough that the escape speed from its outer edge is >10 km s�1,
then photoionized gas will not be able to flow away in a wind or escape. Walmsley
(1995) considered an accretion flow in free-fall onto a star, and showed that the

2Although Kuiper et al.’s simulations are three-dimensional, they cannot model either turbulence
of disk fragmentation, because the numerical method they use for radiation transport can only
handle a single star whose location is fixed at the origin of their spherical grid.
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escape speed from the edge of the ionized region will exceed the ionized gas sound
speed ci if the accretion rate satisfies

PM� >

�
8�2

HGM�S

2:2˛B ln.vesc;�=ci /

�
D 4�10�5

�
M�

100 Mˇ

�1=2 �
S

1049 s�1

�1=2

Mˇ year�1;

(3.7)

where M� is the stellar mass, S is the star’s ionizing luminosity (photons per unit
time), H D 2:34�10�24 is the mean mass per H nucleus, ˛B � 2:6�10�13 cm3 s�1

is the case B recombination coefficient, and vesc;� is the escape speed from the
stellar surface. The factor of 2:2 in the denominator arises from the assumption
that He is singly ionized. The numerical evaluation uses vesc;� D 1;000 km s�1

and ci D 10 km s�1, but the numerical result is only logarithmically-sensitive
to these parameters. Thus an accretion rate of �10�4 Mˇ year�1 is sufficient to
allow continuing accretion onto even an early O star. Given the dense, compact
environments in which massive stars appear to form, such high accretion rates
are entirely expected (McKee and Tan 2003). Keto (2003) extended Walmsley’s
result by deriving a full solution for a spherical inflow plus ionization front in
spherical symmetry, and reached the same qualitative conclusion. Keto and Wood
(2006), Klaassen and Wilson (2007), and Keto and Klaassen (2008) provide direct
observational evidence for accretion in photoionized regions.

This argument makes clear that whether photoionization can limit accretion onto
massive stars depends critically on the interplay between the initial conditions,
which determine the accretion rate, and stellar evolution, which determines the
ionizing luminosity. If the accretion rate drops low enough, and the ionizing flux is
high enough, then the ionized region will extend out to the point where photoionized
gas can escape and accretion will be choked off. The geometry of the flow matters
as well. Keto (2007) considered rotating infall, and showed that this may result
in a configuration where the ionized region blows out in the polar direction, but
accretion continues uninhibited through a denser equatorial disk that self-shields
against the ionizing photons. In three dimensions turbulent structure may plan an
analogous role. Dale et al. (2005) and Peters et al. (2010a, 2011) have simulated
the formation of massive stars and star clusters including photoionization feedback,
and they find that photoionization is generally unable to disrupt accretion flows. In
the simulations, accretion tends to be highly aspherical, proceeding through disks
and filaments, as illustrated in Fig. 3.3. Because these structures are dense, they
have very high recombination rates and thus are resistant to being photoionized. The
structure that tends to result in these simulations is that there are low-density ionized
regions where material is escaping, but that the majority of the mass is contained in
dense filaments where it continues to accrete. As a result, in Dale et al.’s simulations
accretion is able to continue to masses of several hundred Mˇ, while in Peters et al.’s
simulations reach a mass of �70 Mˇ without photoionization halting accretion.

There has been considerably more work on whether ionization can halt accretion
in the context of the formation of the first stars. McKee and Tan (2008) developed
an analytic model for several forms of feedback, and argued that photoionizing
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Fig. 3.3 Column density
from a simulation of the
formation of a massive star
cluster including
photoionization feedback
(Dale et al. 2005). The central
star begins the simulation
with a mass of �30 Mˇ, but
continues to grow over the
course of the simulation,
reaching >100 Mˇ by the
end. White dots are stars

radiation will blow out the polar regions of a rotating accretion flow around
an accreting star once its mass reaches �50–100Mˇ, will thereafter go on to
photoevaporate the disk. This process will halt accretion at a mass of �150 Mˇ.
Hosokawa et al. (2011) conducted 2D simulations and obtained results qualitatively
consistent with McKee and Tan’s model, but with an even lower limiting mass
of �40�50 Mˇ. Similar limiting masses were obtained from three-dimensional
simulations by Stacy et al. (2012) and Susa (2013), and in a 2D simulation of
metal free-star formation in gas that was externally ionized before collapsing (so-
called population III.2 star formation), Hosokawa et al. (2012) found an even lower
limiting mass of 20 Mˇ.

The fairly low limiting masses found in the simulations of primordial star
formation appear to be in some tension with the results of the numerical simulations
of present-day star formation. At first one might think that the presence or absence
of dust opacity provides an obvious explanation for the difference, but it is not clear
if this is the case. Even at Solar metallicity, most ionizing photons are absorbed by
hydrogen atoms and not dust grains (see the Appendix of Krumholz and Matzner
2009 for a discussion of why this is), so dust is responsible for removing only a
small fraction of ionizing photons. Similarly, primordial H II regions have somewhat
higher temperatures (due to lack of metal line cooling) and metal-free stars have
somewhat higher ionizing luminosities (due to the lack of metal opacity in the stellar
atmosphere).
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A more promising explanation has to do with the initial conditions, which
determine the accretion rate and geometry of the inflow. In an isolated star-
forming core, which is the initial condition employed in the primordial calculations,
once the photoionized region escapes from the vicinity of the star it can choke
off further accretion onto the disk, leaving the disk subject to photoevaporation.
However this does not appear to happen in a flow that is continuously fed by
large amounts of mass supplied from larger, �1 pc scales, as occurs in the present-
day star formation simulations. This mass supply into the filaments and disks
appears to shield them against photoevaporation. If the initial conditions are the
key difference, then for the case of present-day star formation this suggests that
the mass limit imposed by photoionization is likely to depend on the large-scale
environment, though exactly which environmental properties are important remains
uncertain.

Finally, as a caveat, it is important to note that the treatments of ionizing
radiative transfer used in the codes for the simulation of both the present-day
and primordial star formation are based on a simple ray-trace using the “on-the-
spot” approximation. In this approximation, one treats ionizing photons produced
by recombinations in the ionized gas as having a mean free path of zero, so
that photons produced by a recombination to the ground state are re-absorbed
on the spot rather than propagating a finite distance. Thus the diffuse radiation
field produced by recombinations is ignored, and shadowing is too perfect. This is
potentially problematic for the treatment of accretion disks, as the photoevaporation
of disks is probably dominated by the diffuse photons produced in the photoionized
atmosphere above the disk, rather than by direct stellar radiation (Hollenbach et al.
1994; McKee and Tan 2008). Thus it is unclear if the numerical results are reliable.
The question of whether photoionization might limit stellar masses thus remains an
only partially-solved problem.

3.2.4 Stellar Winds

A final potential challenge for the formation of massive stars by accretion has
received far less theoretical attention: stellar winds. Once the surface temperatures
of stars exceed � 2:5 � 104 K, they begin to accelerate fast, radiatively-driven
winds (Leitherer et al. 1992; Vink et al. 2000, 2001). Zero-age main sequence stars
reach this temperature at a mass of �40 Mˇ, and stars of this mass have such short
Kelvin-Helmholtz timescales that, even if they are rapidly accreting, their radii and
surface temperatures during formation are likely to be close to their ZAMS values
(Hosokawa and Omukai 2009). The momentum carried by these winds is about half
that of the stellar radiation field (Kudritzki et al. 1999; Richer et al. 2000; Repolust
et al. 2004), and so if the direct stellar radiation field cannot stop accretion then the
momentum carried by stellar winds will not either.

However, winds might yet be important, because the wind launch velocity is quite
large, �1,000 km s�1. As a result, when the winds shock against the dense accretion
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flow, their post-shock temperature can be >107 K, well past the peak of the cooling
curve (Castor et al. 1975; Weaver et al. 1977), and as a result the gas will stay hot
rather than cooling radiatively. Should it become trapped, this hot gas could exert a
pressure that is far greater than what would be suggested by its launch momentum –
in effect, it could convert from a momentum-driven flow to an energy-driven one
(cf. Dekel and Krumholz 2013). If this were to happen, it is possible that the stellar
wind gas might be able to interfere with accretion.

There has been a great deal of work on the interaction of post-shock stellar wind
gas with the ISM on the scale of star clusters (e.g., Tenorio-Tagle et al. 2007; Dale
and Bonnell 2008; Rogers and Pittard 2013). This work suggests that the wind
gas tends, much like radiation, to leak out through openings in the surrounding
dense gas rather than becoming trapped and building up a large pressure. Indeed,
on the cluster scale observations appear to confirm that the pressure exerted by
the hot gas is subdominant (Lopez et al. 2011). However, there is no comparable
work on the scale of individual stars, and it is therefore possible that the situation
there could be different. Moreover, even when the wind gas does escape on cluster
scales, as it flows past the colder, denser material it tends to entrain and carry of
some of it. Again, the question of whether this might happen to the accretion flows
around individual protostars has yet to be addressed. Given the lack of theoretical
or observational attention, the best that can be said for now is that, if the interaction
between stellar winds on small scales resembles those seen on larger scales, stellar
winds are unlikely to set significant limits on the masses to which stars can grow by
accretion.

3.3 The Formation of Very Massive Stars by Collision

The discussion in the previous section indicates that there is no strong argument
against the idea that very massive stars form via the same accretion mechanisms
that give rise to stars of lower masses. However, it is also possible for very massive
stars to form through an entirely different channel: collisions between lower mass
stars. The central challenge for forming massive stars via collisions is the very
small cross-sectional area of stars compared to typical interstellar separations, and
the relatively short times allowed for collisions by the lifetimes of massive stars.
Very massive stars are found routinely in clusters with central densities �104 pc�3

(e.g. Hillenbrand and Hartmann 1998), and the highest observed central densities in
young clusters are �105 pc�3 (Portegies Zwart et al. 2010, their Figure 9), with the
possible exception of R136 (Selman and Melnick 2013). If gravitational focusing
is significant in enhancing collision rates (usually the case for young clusters), the
mean time between collisions in a cluster consisting of stars of number density n

and velocity dispersion � , each with mass m and radius r , is (Binney and Tremaine
1987)
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tcoll D 7:1n�2
4 �1r

�1
0 m�1

0 Myr; (3.8)

where n4 D n=104 stars pc�3, �1 D �=10 km s�1, r0 D R=Rˇ, and m0 D m=Mˇ.
Thus under observed cluster conditions, we expect <1 collision between 1 Mˇ stars
to occur within the �4 Myr lifetime of a massive star. Collision rates for stars
more massive than the mean require a bit more care to calculate, but even under
the most optimistic assumptions, production of very massive stars via collisions
requires that clusters reach stellar densities much higher than the �104 pc�3 seen
in young clusters. This dense phase must be short-lived, since it is not observed.
Models for the production of massive stars via collision therefore consist largely of
proposals for how to produce such a short-lived, very dense phase. In this section
I examine the collisional formation model. In Sects. 3.3.1 and 3.3.2 I describe two
possible scenarios by which collisions could occur, and I discuss the mechanics of
the collisions themselves, and the role of stellar evolution in mediating collisions, in
Sect. 3.3.3.

3.3.1 Gas Accretion-Driven Collision Models

The first class of proposed mechanisms to raise the density high enough to allow
collisional growth consists of processes that occur during the formation of a star
cluster when it is still gas-rich. In a gas-rich cluster, stars can accrete gas, and
this process is dissipative: it reduces the total gas plus stellar kinetic energy of
the system, with the lost energy going into radiation from accretion shocks on the
surfaces of protostars, and from Mach cones created by supersonic motion of stars
through the gas. To see why this should lead to an increase in density, it is helpful
to invoke the virial theorem. For a system where gravity, thermal pressure, and ram
pressure are the only significant forces, the Lagrangian virial theorem states that
(Chandrasekhar and Fermi 1953; Mestel and Spitzer 1956)

1

2
RI D 2T � W ; (3.9)

where

I D
Z

r2 dm (3.10)
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2

v2

�
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W D �
Z


r � r˚ dV (3.12)
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are the moment of inertia, the total kinetic plus thermal energy, and the gravitational
binding energy, respectively.3 The quantity ˚ is the gravitational potential. If there
are significant forces on the surface of the region, or significant magnetic forces,
additional terms will be present, but for the moment we will ignore them.

The process of shock dissipation reduces T while leaving W unchanged, so the
right-hand side becomes negative, and, on average, the system will tend to accelerate
inward to smaller radii. This infall converts gravitational binding energy to kinetic
energy, so both T and �W rise by the same amount. Because of the factor of 2

in front of T in Eq. (3.9), this tends to push the right-hand side back toward zero:
the system is re-virializing, but at a smaller radius, higher density, and larger kinetic
and (in absolute value) binding energy. However, this new equilibrium will last only
as long as shocks do not keep decreasing T . If shocks continue to happen, this will
drive a continuous decrease in radius, and a continuous rise in density of both gas
and stars. Bonnell et al. (1998) proposed the first version of this model, and argued
that it could drive stellar densities to �108 pc�3, at which point collisions would
become common and massive stars could build up in this manner. The required
density can be lowered significantly if all massive stars are in primordial hard
binaries (Bonnell and Bate 2005), but even for such a configuration a significant
rise in stellar density compared to observed conditions is required.

Bonnell et al. suggested that contraction would halt only when gas was removed
by feedback from the forming massive stars. This halts contraction because, once the
gas is removed, there is no longer a dissipation mechanism available to reduce T .
However, Clarke and Bonnell (2008) subsequently realized that at sufficiently high
density two-body relaxation would become faster than dissipation, and this would
halt further shrinkage. In terms of the virial theorem, the increase in �W required
to increase T and balance the dissipation starts to come from stars forming tight
binaries rather than from overall shrinkage of the system. The maximum density
that can be reached therefore depends on the total cluster mass, in such a manner as
to prevent collisions from becoming significant in clusters substantially smaller than
�104 Mˇ. It is important to note that this excludes the Orion Nebula Cluster, which
contains a star of �38 Mˇ (Kraus et al. 2009), suggesting that stars of at least this
mass at least can form via non-collisional processes.

These conclusions were based on analytic models, but more recently Moeckel
and Clarke (2011) and Baumgardt and Klessen (2011) conducted N-body simu-
lations including analytic prescriptions for the effects of gas accretion.4 In these
models, the gas is treated as a fixed potential that is reduced as the stars gain
mass, eventually disappearing entirely when a prescribed amount has been accreted;

3The functional form of W is independent of whether or not there is an external gravitational field,
but one can only identify the quantity W as the gravitational self-energy if the field is entirely due
to self-gravity, with no external contribution.
4These authors did not include the effect of gas drag due to Mach cones, which for Bondi-Hoyle
accretion flows is actually a factor of several larger than the change in stellar momentum due to
accretion (Ruffert and Arnett 1994), but this is probably not the most serious limitation of the
simulations.
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Fig. 3.4 Example results from the N-body plus accretion simulations of Moeckel and Clarke
(2011). The top set of four panels shows the radially-averaged stellar density profile as a function of
time in the simulations (black lines), together with the mass profile corresponding to the imposed
gas potential (gray lines). The bottom panel shows the growth history of some of the most massive
stars in the simulations. Points indicate stellar masses and the times when those stars first appear,
and the convergence of two lines indicates a merger between two stars that yields a more massive
star. Black points indicate stars that survive to the end of the simulation, while gray points indicate
stars that merge before the end of the simulation

this sets the limit on the duration of the gas-dominated phase. Figure 3.4 shows
an example output from one of these simulations. As anticipated by Clarke and
Bonnell (2008), in these models the stars sink to the center until they form a stellar-
dominated region in which two-body relaxation inhibits further contraction, though
these regions can also undergo core collapse (see the next section). They both find
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that, as a result of this limitation, stellar collisions during the gas-dominated phase
are negligible unless the initial conditions are already very compact or massive, with
half-mass radii of �0.1 pc or less and/or masses of �104 Mˇ or more.

The requirement for very high initial densities creates significant tension with
observations. Moeckel and Clarke (2011) find that even the Arches cluster is
insufficiently dense to have produced stellar collisions up to this point, despite the
fact that it contains numerous very massive stars. Similarly, Baumgardt and Klessen
(2011) find that, once the gas potential is removed and clusters re-virialize, those
that began their evolution at densities high enough to induce significant numbers of
collisions end up far too compact in comparison to observed open clusters, including
those containing very massive stars. As a result of these findings, both sets of authors
tentatively conclude that stellar collisions during the gas-dominated phase cannot be
the dominant route to the formation of very high mass stars, though they cannot rule
out the possibility that such collisions occur in rare circumstances.

Before relying on these conclusions too heavily, it is important to understand
the limitations of these calculations. Undoubtedly the largest one is the simple
prescription used to treat the gas. In these models, the shape of the gas poten-
tial (though not its depth) is fixed, the accretion rates onto stars are fixed and
independent of stellar mass or position, and the final star formation efficiency is
also fixed. Obviously none of these assumptions are fully realistic. In particular,
depending on the effectiveness of stellar feedback, the gas potential might either
shrink and promote increases in stellar density, or the gas potential might vary
violently in time as gas is pushed around by stellar feedback, pumping energy into
the stars and preventing contraction – indeed, the latter is seen to occur in at least
some simulations that do treat the gas (Li and Nakamura 2006; Nakamura and Li
2007; Wang et al. 2010). It is unclear how the conclusions might change if these
phenomena were treated more realistically.

3.3.2 Gas-Free Collision Models

The second class of models for inducing growth of very massive stars via collisions
takes place in the context of gas-free clusters. These mechanisms, and their potential
role in young massive clusters, were recently reviewed by Portegies Zwart et al.
(2010), and I refer readers there for further details. The advantage of this approach
compared to the gas-driven one is that the time available for collisions is longer, but
the disadvantage is the lack of gas drag as a mechanism for raising the density.

Clusters of equal-mass stars are unstable to spontaneous segregation into a
contracting core and an expanding envelope, in which the negative heat capacity
of the system drives a continuous transfer of energy out of the core and thus
ever-higher densities (Lynden-Bell and Wood 1968). In a cluster containing a
spectrum of masses, contraction of the core is further enhanced by the ten-
dency of the stars to mass-segregate, with the core consisting of more massive,
dynamically-cool stars, and the envelope consisting of low-mass, dynamically-hot
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ones (Spitzer 1969; Gürkan et al. 2004). While there is no doubt that these processes
operate, it is uncertain whether they are fast enough to produce collisions within
the �4 Myr lifetime of the most massive stars. Portegies Zwart et al. (1999)
conclude based on N-body simulations that collisions will occur before massive
stars die only if the central density starts at �107 stars pc�3. In this case, the
mergers themselves are dissipative and will trigger further core contraction, leading
to runaway formation of a single very massive object. As in the case of gas-
driven collisions, the existence of a large population of primordial hard binaries
can somewhat reduce the density required to initiate this cascade (Portegies Zwart
and McMillan 2002). Even so, the initial densities required in the simplest gas-free
collision models would preclude the possibility of very massive stars forming by
collisions except perhaps in R136. Models in which a significant fraction of very
massive stars form via collision therefore generally posit a set of initial conditions
that significantly increases the collision rate.

One way to shorten the time required for core collapse and the onset of collisions
is to consider a cluster with primordial mass segregation, meaning that the cluster
is mass-segregated even before the gas-free evolution begins (e.g. Ardi et al. 2008;
Goswami et al. 2012; Banerjee et al. 2012a,b). Such a starting configuration reduces
the time required for core collapse to begin because it provides both a higher density
and a higher mean stellar mass (and thus a lower relaxation time) in the cluster
center. Depending on the degree of mass segregation, the reduction in time to the
onset of core collapse and collisions can be �1�2 Myr, a non-trivial fraction of the
lifetime of a very massive star, and simulations using sufficiently mass-segregated
initial conditions generally find that collisions become common before massive stars
end their lives.

The extent to which star clusters actually are primordially mass-segregated is
unclear. Observations generally show at least some degree of mass segregation in
present-day clusters, but the amount varies widely. At the low-mass end of clusters
containing massive stars, in the Orion Nebula Cluster the Trapezium stars are all
at the cluster center, but there is no observed mass segregation for any stars except
these (Hillenbrand and Hartmann 1998; Huff and Stahler 2006). In NGC 3603 (Pang
et al. 2013) and R136 (Andersen et al. 2009), the cluster is segregated throughout
so that the mass function is flatter at small radii, but more massive stars are more
segregated than less massive ones. However, all of these clusters are �1–3 Myr
old, so it is entirely possible that the segregation we see now is a product of
dynamical evolution during this time, not primordial segregation – indeed, Pang
et al. (2013) argue that the segregation they observe in NGC 3603 is more consistent
with dynamical evolution from a weakly-segregated or unsegregated initial state
than with primordial segregation. Unfortunately answering this question fully would
require that observations probe the gas-enshrouded phase, which is possible only
in the infrared, where low resolution creates severe difficulties with confusion.
Indeed, confusion is a serious worry for measurements of mass segregation even
in optically-revealed clusters (Ascenso et al. 2009).

Another way to accelerate the dynamical evolution of star clusters is to begin
from unrelaxed initial conditions. Both observations (Fűrész et al. 2008; Tobin
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et al. 2009) and simulations (Offner et al. 2009a) of star clusters that are still gas-
embedded show that the stars are subvirial with respect to the gas, and such cold
conditions lead to more rapid dynamical evolution than virialized initial conditions
(Allison et al. 2009). Larger star clusters may also be assembled via the mergers
of several smaller clusters within the potential provided by a massive gas cloud
(Bonnell et al. 2003; McMillan et al. 2007; Fujii et al. 2012). These smaller
clusters, since they have smaller numbers of stars, also have smaller time-scales
for core collapse. Allison et al. (2009) find that substructured initial conditions
accelerate mass segregation, but it is unclear whether they do so enough to accelerate
collisions. Fujii and Portegies Zwart (2013) find that the extent to which the
formation of a large cluster out of multiple star clusters influences collisions depends
on the ratio of the assembly time to the core collapse time of the initial subclusters.
If the subclusters undergo core collapse before merging, then they may have a few
internal collisions, but there are no collisions in the merged cluster, and collisional
growth of stars is negligible overall. On the other hand, if core collapse does not
occur in the subclusters before they merge, the evolution is similar to that of a cluster
that formed as a single entity.

In summary, collisions during the gas-free phase are unlikely to contribute
significantly to the growth of very massive stars if star clusters are born virialized
and non-segregated, but in reality neither of these assumptions is likely to be exactly
true. The viability of collisional formation models then turns sensitively on the
extent to which these assumptions are violated, and this question is unfortunately
poorly constrained by observations. Hydrodynamic simulations of the formation
of massive star clusters that include the gas-dominated phase may be helpful in
addressing this question, but to be credible these simulations will need to include
feedback processes such as stellar winds, photoionization, and radiation pressure
that are presently omitted from most models.

3.3.3 Stellar Evolution and Massive Star Mergers

One important subtlety for models of the growth of massive stars via mergers is
that the outcome depends not just on N-body processes, but also on the physics of
stellar collisions, and on the structure and subsequent evolution of stellar merger
products. Both questions have been the subject of considerable study in the context
of mergers between low-mass stars leading to the production of blue stragglers,
but only a few authors have conducted similar simulations for mergers involving
massive stars. Mergers involving massive stars (particularly very massive ones)
may be substantially different than those involving low-mass stars because of the
importance of radiation pressure for massive stars. As stellar mass increases, the
increasing dominance of radiation pressure brings the structure close to that of an
n D 3 polytrope, which is very weakly bound. Moreover, radiative forces may be
non-negligible during the collision itself. For example, just as radiation pressure
may be capable of inhibiting accretion, it may be capable of ejecting material that is
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flung off stellar surfaces during a collision, thereby increasing mass loss during the
collision.

One quantity of interest from stellar merger simulations is the amount of prompt
mass loss during the collision itself. Models for collisional growth generally assume
that the mass loss is negligible, thus maximizing the collisional growth rate. Freitag
and Benz (2005), Suzuki et al. (2007), and Glebbeek et al. (2013) all find in their
simulations that losses are indeed small, with at most �10 % of the initial mass
being ejected for realistic collision velocities. In three-body mergers produced when
an intruder enters a tight binary system, the loss can be as large as �25 % (Gaburov
et al. 2010). However, a very important limitation of these simulations is that they
do not include any radiative transfer, and treat radiation pressure as simply an extra
term in the equation of state, with the radiation pressure determined by the matter
temperature, which in turn is determined by hydrodynamic considerations. This
is likely to be a very poor approximation for the material that is flung outward
from a collision, where illumination from the central merged object will dominate
the thermodynamics, as it does in the case of accretion onto massive stars. In the
approximation used by the existing merger simulations, it is impossible for radiation
pressure to eject matter, and thus the �5–10 % mass loss found in the simulations
simply represents the mass of material that is raised to escape velocities during the
collision itself. This figure should therefore be thought of as representing a lower
limit. There is a clear need to reinvestigate this problem using a true radiation-
hydrodynamics code. If the mass loss has been underestimated, collisional growth
will be harder than is currently supposed.

A second quantity of interest from merger simulations is the radius of the merger
product. When stars merge, shocks during the collision raise the entropy of the
stellar material, so that when hydrostatic equilibrium is re-established a few days
after the merger, the resulting star will initially be very bloated compared to main
sequence stars of the same mass, and will gradually shrink over a Kelvin-Helmholtz
timescale (Dale and Davies 2006; Suzuki et al. 2007). Building up very massive
stars via collisions likely requires multiple mergers, and at the very high densities
required, the interval between mergers may be smaller than the KH timescale, so that
the growing stars will have enlarged radii. Whether this will enhance or reduce the
rate of collisional growth is unclear. Suzuki et al. (2007) point out that the enhanced
radii of the merger products make them bigger targets that are more likely to collide
with other stars. On the other hand, Dale and Davies (2006) note that the envelopes
of the post-merger stars are even more weakly bound than those of massive main
sequence stars, and as a result such collisions may actually erode the envelope rather
than add to it, ultimately limiting collisional growth. Which effect dominates is
unclear, as no merger simulations involving such swollen stars have been reported
in the literature.

A final consideration for collisional growth models in the gas-free phase, where
the timescales involved may be several Myr, is mass loss via stellar winds. At masses
below �100 Mˇ, wind mass loss rates are considerable, but are unlikely to be able
to counteract the effects of collisional growth if the density is high enough for
runaway merging to begin. However, little is known about wind mass loss rates
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Fig. 3.5 Results from three simulations of massive stellar mergers driven by gas-free core collapse
by Vanbeveren et al. (2009), reprinted by permission. The blue line shows a calculation using fairly
modest wind mass losses, similar to those adopted by Portegies Zwart et al. (1999). The black
line shows a calculation with identical initial conditions but using a wind prescription taken from
Belkus et al. (2007) for Solar metallicity stars, and the red line is the same but using a metallicity
of 5 % of Solar

at still higher masses, and there are good empirical arguments that they might be
orders of magnitude larger (Belkus et al. 2007). N-body simulations using these
enhanced winds find that they remove mass from stars faster than collisions can add
it, yielding only very transient growth to large masses, followed by rapid shrinkage
back to �100 Mˇ (Yungelson et al. 2008; Vanbeveren et al. 2009; Glebbeek et al.
2009). Figure 3.5 provides an example. Moreover, the winds might remove mass
so efficiently that they reduce the gravitational potential energy of the system fast
enough to offset the loss of kinetic energy that occurs during mergers, halting the
collisional cascade completely.

3.4 Observational Consequences and Tests

Having reviewed the various models for the origins of very massive stars, I now turn
to the question of their predictions for observable quantities, and how these might
be used to test the models. One can roughly divide these predictions into those that
apply on the scale of star clusters, and those that apply on the scale of individual
star systems.

3.4.1 The Shape of the Stellar Mass Function

On the cluster scale, one obvious difference between collisional and accretion-based
models of massive star formation is their predictions for the form of the stellar
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mass function at the massive end – note that I refer here to the present-day mass
function (PDMF) rather than the initial mass function (IMF), since in gas-free
collision models very massive stars are absent in the IMF and only appear later
due to collisions. As discussed above, in the case where massive stars form by the
same accretion processes that produce low-mass stars, one naturally expects that
very massive stars should simply be a smooth continuation of the Salpeter mass
function seen at lower masses. The situation is very different for collisional models,
where very massive stars form via a fundamentally different process than low mass
ones. Not surprisingly, this different formation mechanism gives rise to a feature in
the stellar mass function.

For the gas-driven collision gas, both Moeckel and Clarke (2011) and Baumgardt
and Klessen (2011) find that the typical outcome of collisions is one or two
objects whose masses are much greater than those of any other object, and a
corresponding depletion of objects slightly less massive than the dominant one
or two. Figure 3.6 shows an example result from Baumgardt and Klessen (2011).
As the plot shows, collisions that yield very massive stars of several hundred Mˇ
tend to produce an overall mass function in which the range from �10�100 Mˇ
is actually significantly under-populated relative to the Salpeter slope found at
lower masses, while the one or two most massive objects that are formed by
collision represent a significant over-population relative to Salpeter. Unfortunately
the authors of models in which collisional growth occurs during the gas-free phase
have generally not reported the full mass functions produced in their simulations,
but given that the mechanism for assembling the very massive stars is essentially
the same as in the gas-driven models – runaway collisions that agglomerate many

Fig. 3.6 Mass functions of
stars in an N-body simulation
of gas-driven stellar collisions
by Baumgardt and Klessen
(2011). The histograms are
mass functions obtained
10 Myr after the beginning of
the simulation, and the
number of stars and initial
half-mass radius used in each
of the simulations are as
indicated in the legend. The
straight dashed line is the
Salpeter mass function. Note
that the simulations all predict
a turndown in the mass
function relative to Salpeter at
masses from �10 to 100 Mˇ
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massive stars into one or two supermassive ones – it seems likely that these models
would predict a similar functional form for the mass function.

At present there is no observational evidence for mass functions of this
form. Massey and Hunter (1998) report that the mass function in R136 is well-
approximated by a single powerlaw with a Salpeter-like slope from 3 to 120 Mˇ,
and Andersen et al. (2009) report a continuous powerlaw slope over an even
wider range of mass, with no evidence for a turn-down in the vicinity of 10 Mˇ.
Similarly, Espinoza et al. (2009) examine the Arches cluster and report that
the mass function above 10 Mˇ is well-described by a powerlaw with a slope
	 D �1:1 ˙ 0:2, consistent within the errors with the Salpeter value 	 D �1:35.
There are significant systematic uncertainties on these values, arising mostly from
the challenge of assigning masses to stars based on photometry, but it is important
to note that a mass function of the form predicted by the collisional simulations
should be apparent even from the luminosity function, independent of the mapping
between luminosity and mass. Due to confusion, even luminosity functions can
be difficult to measure in the cores of clusters dense enough to be candidates
for collisions, but this data should improve significantly in the era of 30 m-class
telescopes. Observations with these facilities should be able to settle the question of
whether the mass and luminosity functions in cluster cores show the characteristic
signature of a depletion from �10 to 100 Mˇ coupled to a one or two stars at a few
hundred Mˇ that is predicted by collisional models.

3.4.2 Environmental-Dependence of the Stellar Mass Function

A second possible discriminant between accretion and collision as mechanisms for
the formation of very massive stars is the way the stellar mass function depends on
the large-scale properties of the cluster. As noted above, both gas-free and gas-driven
collision models require very high stellar densities (even in the present-day state)
and very high cluster masses; Baumgardt and Klessen (2011) argue that clusters
where gas-driven collisions occur all end up too compact compared to observed
ones, and Moeckel and Clarke (2011) argue that the Arches is not dense enough to
be able to produce significant collisions. In contrast, accretion models either predict
that the stellar IMF will be independent of environment, or that massive stars will
be biased to regions of high surface density (Krumholz and McKee 2008; Krumholz
et al. 2010). Accretion models do not predict that there should be an upper limit to
stellar masses that is a function of either cluster mass or central stellar density.

This is a somewhat weaker test than the functional form of the stellar mass
function, simply because the model predictions are somewhat less clear, but it may
nonetheless provide a valuable complement. The challenge here will be obtaining a
sample large enough to see if there is a statistically-significant correlation between
the presence or absence of stars above some mass and properties of the environment
like cluster mass or density. The major challenge is that one expects a correlation
between maximum stellar mass and cluster size simply due to size of sample effects.
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Observations must therefore remove the size of sample effect statistically, and
search for a small correlation that might remain once the size of sample effect is
removed. Some authors have claimed to detect such a correlation already in Galactic
clusters (Weidner et al. 2010, 2013), while others have reported the absence of any
such correlation in extra-Galactic environments (Calzetti et al. 2010; Fumagalli et al.
2011; Andrews et al. 2013). Given the poorly-understood selection issues associated
with the Galactic sample (which is culled from the literature, rather than produced
by a single survey), it seems likely that the extragalactic results based on uniform
samples are more reliable, but the issue remains disputed.

An observation of a very massive star formed in relative isolation would also be
strong proof that collisions are not required to make such stars, though it would not
rule out the possibility that some stars form that way. There are several candidates
for isolated stars with masses above �20 Mˇ (and in some cases as much as
100 Mˇ; Bressert et al. 2012; Oey et al. 2013), and which appear unlikely to be
runaways because they have small radial velocities and no bow shocks indicating
large transverse motions. However, there remains the possibility that these are “slow
runaways” with that were ejected very early and thus managed to reach fairly large
distances from the cluster despite their fairly small space velocities (Banerjee et al.
2012a).

3.4.3 Companions to Massive Stars

The properties of massive star companions provide a final potential test for
distinguishing accretion-based and collisional formation models. It is well known
that massive stars are much more likely than stars of lower mass to be members
of multiple systems. Mason et al. (2009) report a companion fraction of 75 % for O
star primaries in Milky Way star clusters,5 while Sana et al. (2013) find a companion
fraction of 50 % for O stars in the Tarantula Nebula in the Large Magellanic Cloud.
Sana et al. (2012) estimate that 70 % of O stars have a companion close enough
that they will exchange mass with it at some point during their main sequence or
post-main sequence evolution, and that 1=3 of O stars have a companion so close
that they will merge.6 From the standpoint of formation theories, a high binary
fraction is expected regardless of whether massive stars are formed via accretion
(e.g. Kratter et al. 2008, 2010; Krumholz et al. 2012) or collisions (e.g. Portegies
Zwart et al. 1999; Bonnell and Bate 2005). However, much less is known about the
prevalence of low-mass companions to massive stars, or to tight massive binaries,

5O stars outside clusters are likely to have been dynamically ejected from the cluster where they
were born, and in the process stripped of companions.
6Mergers and mass transfer may also be significant during pre-main sequence evolution – see
Krumholz and Thompson (2007).
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and the statistics of low-mass companions to massive stars provide another potential
test of formation models.

Accretion-based models predict that, in addition to their massive companions,
massive stars are also very likely to have low-mass companions at separations of
�100�1;000 AU (Kratter and Matzner 2006; Kratter et al. 2008, 2010; Krumholz
et al. 2012). The authors of collisional models have not thus far published detailed
predictions for massive binary properties, but these should be trivial to obtain
from the simulations already run, and it seems likely that the dense dynamical
environment required for collisions would strip any low-mass, distant companions
from massive stars. Thus observations capable of probing large mass ratios at
intermediate separations might be a valuable test of massive star formation models.

This range is unfortunately relatively hard to probe via observations, as the
expected radial velocity shifts are too small to be measured against the broad
lines of a massive star, and the large contrast ratio makes direct imaging difficult.
Observations using high contrast techniques like speckle imaging (Mason et al.
2009), adaptive optics (Sana et al. 2010), and lucky imaging (Maíz Apellániz 2010)
are starting to push into this range, but still have some distance to go. Consider a
primary massive star of mass Mp with a companion of mass qMp (with q < 1) in
a circular orbit with semi-major axis a. The system is a distance d from the Sun.
Spectroscopic surveys are generally limited in their ability to detect companions by
the velocity semi-amplitude vlim to which they are sensitive, which is generally �5–
10 km s�1 depending on the linewidths of the primary star (e.g. Kiminki et al. 2007;
Kobulnicky and Fryer 2007). The companion is detectable only if

a <

�
q2

q C 1

�
GMp

v2
lim

� 5:3
� q

0:1

�2
�

Mp

60 Mˇ

��
vlim

10 km s�1

��2

AU: (3.13)

Imaging surveys are limited by the contrast they can achieve. For example, Sana
et al. (2010) estimate that their detection threshold is a contrast of �Ks � �Ks;0.r�
0:0024/1=3, where �Ks;0 D 6 mag and r is the angular separation in arcsec and
�Ks is the contrast in the Ks band. Given a mass-magnitude relationship Ks.M /, a
companion will be detectable if

jKs.Mp/ � Ks.qMp/j < �Ks;0

h
2:06 � 105

�arcsec

rad

� a

d
� 0:0024

i1=3

: (3.14)

Figure 3.7 shows the ranges of q and a over which companions to massive stars are
detectable given these sensitivities.

The next generation of high-contrast systems designed for planet imaging,
such as the Gemini Planet Imager (GPI) and Spectro-Polarimetric High-contrast
Exoplanet Research instrument (SPHERE) should push much farther and be able to
detect even very low mass companions to massive stars. Indeed, the contrast ratios
these instruments can achieve is such that, outside of their occulting stops, they
should be sensitive to companions to O stars down to the hydrogen burning limit.
Figure 3.7 shows an estimate of the sensitivity region for GPI. Observations using
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Fig. 3.7 Estimated detectability of companions to massive stars as a function of mass ratio q

and semi-major axis a using spectroscopic surveys (blue hashed region), adaptive optics imaging
surveys (red dashed region), and using a next-generation instrument like GPI (gray region). These
sensitivities are calculated for a hypothetical primary of mass Mp D 60 Mˇ at a distance d D
2 kpc. The limit for spectroscopy is computed using Eq. (3.13) assuming a velocity semi-amplitude
limit vlim D 5 km s�1. The limit for adaptive optics is computed from Eq. (3.14) using the Padova
mass-magnitude relations for ZAMS stars (Marigo et al. 2008; Girardi et al. 2010). The GPI limit
shown is the physical size corresponding to the 0:0011 size of the GPI occulting stop in J band

these instruments provide a definitive census of massive star companions at high
mass ratio and intermediate separation. This is likely to prove a powerful constraint
on formation models.

Conclusions and Summary: Does Star Formation Have an Upper Mass
Limit?
Having discussed the two main formation scenarios, I now return to the
question of whether star formation has a mass limit. To review, there is
at present no really convincing evidence that any mechanism is capable of
halting the growth of stars by accretion. The classical mechanism for limiting
stellar masses is radiation pressure, but non-spherical accretion, produced
by some combination of disks, outflow cavities, and instabilities appears
to defeat this limit. Similarly, the problem of gas fragmenting too strongly
to form massive stars appears to be solved by a combination of radiative
heating and magnetic fields, though the possibility that disk fragmentation
might at some point limit stellar masses remains. Photoionization and stellar
winds are somewhat more promising as mechanisms that might limit stars’
growth, but these remain at best possibilities. There are no real analytic

(continued)
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models applicable to present-day (as opposed to primordial) star formation
that suggest what limits these mechanisms might impose, and there are
no simulations demonstrating that either of these processes are capable of
terminating accretion. A fair description of the state of the field a decade
ago might have been that the presumption was in favor of feedback limiting
massive star formation, and that the burden of proof was on those trying to
show that feedback could be overcome. The last decade of work has reversed
that situation, with all tests thus-far performed showing that accretion is very
difficult to reverse. This does not prove that no mechanism can limit stellar
masses, but does mean that such a limit would need to be demonstrated.

For collisions, the question is not whether but where they can create
very massive stars. There is no doubt that collisions and collisional growth
will occur if the conditions are dense enough, and the only question is the
frequency with which such dense conditions are created in nature, which
in turn will determine the contribution of the collisional formation channel
to the overall population of very massive stars. No presently-observed star
cluster has a density high enough for collisions to be likely, but it is possible
that these clusters experienced a very dense phase during which collisions
occurred. This could have been either an early gas-dominated phase or a later
phase of core collapse aided by primordial mass segregation and high levels
of primordial substructure. However, the threshold density required to achieve
significant collisional growth depends on details of massive star mergers and
winds that are poorly understood. Even for favorable assumptions about these
uncertain parameters, it is not clear that the observed present-day properties of
massive star clusters can be reconciled with an evolutionary history in which
they were once dense enough to have produced collisions.

There are a number of observational tests that may be able to settle the
question of which of these mechanisms is the dominant route to the formation
of the most massive stars. Accretion models predict that massive stars are
simply the tip of the iceberg of normal star formation, so that the high end
of the stellar mass function is continuous and does not depend radically
on the environment, and that massive stars are likely to have low-mass as
well as high-mass companions. Although the observable consequences of
the collisional formation models have received somewhat less attention, such
models appear to predict quite different results: there should be a large gap
in stellar mass functions separating the bulk of the accretion-formed stellar
population from the few collisionally-formed stars, and this feature should
appear only in the most massive and densest clusters. It seems likely that
these collisionally-formed stars will lack low-mass companions. It should be
possible to perform most or all of these observational tests with the coming
generation of telescopes and instruments, which will provide higher angular
resolution and contrast sensitivity than have previously been possible.
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Chapter 4
Mass-Loss Rates of Very Massive Stars

Jorick S. Vink

Abstract We discuss the basic physics of hot-star winds and we provide mass-loss
rates for (very) massive stars. Whilst the emphasis is on theoretical concepts and
line-force modelling, we also discuss the current state of observations and empirical
modelling, and we address the issue of wind clumping.

4.1 Introduction

Mass loss via stellar winds already plays a well-documented role in the evolution of
canonical 20–60 Mˇ O stars, because of the removal of mass from the outer layers,
as well as the removal of angular momentum. However, nowhere is mass loss more
dominant than for the most massive stars. As very massive stars (VMS) evolve
structurally close to chemically homogeneously, the detailed mixing processes
due to rotation and magnetic fields are less relevant than for canonical massive
stars. Instead, VMS evolution is determined by mass loss (Yungelson et al. 2008;
Yusof et al. 2013; Köhler et al. 2015). However, there is uncertainty regarding the
quantitative mass-loss rates, partly because of uncertain physics in close proximity
to the Eddington (	 ) limit, and partly because O-star winds are inhomogeneous and
clumpy, implying that empirical mass-loss rates are overestimated if one does not
properly take clumping effects into account in the analysis.

In this mass-loss chapter, we start off in Sect. 4.2 with the mass-loss theory
of canonical 20–60 Mˇ O-star winds, which are optically thin, and where the
traditional CAK theory due to Castor et al. (1975) is applicable. For VMS, the role of
radiation pressure over gas pressure is even more important than for normal massive
stars, and as VMS are in closer proximity to the 	 limit, at some point their winds
are expected to become optically thick.

In Sect. 4.3, we discuss the optically thick wind theory for classical Wolf-Rayet
(WR) stars with very strong emission lines and dense winds. Once we have reached
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a basic understanding of both optically thin and optically thick winds,1 we discuss
the transition from O to WR star winds in the context of VMS in Sect. 4.4. VMS are
associated with WR stars of the WNh subtype. WNh implies the presence of both
hydrogen (H) and nitrogen (N) at the surface. The latter is thought to have originated
in the CNO-cycle, having reached the surface through mass loss and (rotational)
mixing. WNh stars are thought to be core H-burning (see Martins’ Chap. 2) and can
thus be considered “O-stars on steroids”. The reason they have a WR type spectrum
is due to their strong winds, because of the proximity to the Eddington limit.

Another group of objects that may be relevant for VMS evolution are the
Luminous Blue Variables (LBVs). Already in quiescence these objects reside in
dangerous proximity to the Eddington limit, where they are subjected to outbursts
and mass ejections. A discussion of both “quiet” and super-Eddington winds
relevant to both the characteristic “moderate” S Dor variations and the “giant”
outbursts, such as displayed by Eta Car in 1840, as well as the theory of super-
Eddington winds are thus discussed in Sect. 4.6.

After this theoretical overview of homogeneous stellar winds, we consider
clumped winds. To this purpose, we first discuss the diagnostics of smooth winds
(Sect. 4.7) before turning to clumped winds in Sect. 4.8. We finish Sect. 4.8 with
potential theories that may cause wind clumping, as well as some possibilities to
quantify the number of clumps, before we summarize.

For the 2D effects of rotation on stellar winds, we refer to the review by Puls
et al. (2008) and for more recent calculations to Müller and Vink (2014), which also
includes a discussion of the diagnostics of axi-symmetric outflows.

4.2 O Stars with Optically Thin Winds

As each photon carries a momentum, P D h�=c, it was thought as early as the 1920s
(e.g. Milne 1926) that radiative acceleration on spectral lines might selectively
“eject” metal ions (such as iron, Fe) from stellar photospheres. However, it was not
until the arrival of ultraviolet (UV) observations in the late 1960s that the theory
of radiative line driving became the established theory describing the stationary
outflows from massive OB stars. Lucy and Solomon (1970) and CAK showed
that in case the momentum imparted on metal ions was shared through Coulomb
interactions with the more abundant H and helium (He) species2 in the atmospheric
plasma, this would result in a substantial rate of mass loss PM , affecting the evolution
of massive stars significantly (Conti 1976; Langer et al. 1994; Meynet and Maeder

1Note however that these winds are also driven by a myriad of lines, forming a “pseudo” continuum
of lines.
2Note that for every Fe atom there are as many as 2,500 H atoms (for a solar abundance pattern;
see Anders and Grevesse 1989).
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2003; Eldridge and Vink 2006; Limongi and Chieffi 2006; Belkus et al. 2007; Brott
et al. 2011; Hirschi’s Chapter 6; and Woosley & Heger’s Chapter 7) .

4.2.1 Stellar Wind Equations

The basic idea of momentum transfer by line-scattering is that absorbed photons
originate from a preferred direction, whereas the subsequent re-emission is averaged
to be (more or less) isotropic. This change in direction angle � leads to a radial
transfer of momentum, �P D h=c.�in cos �in � �out cos �out/ – comprising the key
to the momentum transfer with its associated line acceleration gline

rad . The mass-loss
rate through a spherical shell with radius r that surrounds the star is conserved, as
may be noted from the equation of mass continuity

PM D 4 � r2 
 .r/ v .r/: (4.1)

The equation of motion is given by:

v
dv

dr
D � GM

r2
� 1




dp

dr
C grad; (4.2)

with inwards directed gravitational acceleration ggrav D GM=r2 and an outwards
directed gas pressure (p) term and total (continuum and line) radiative acceleration
(grad). The wind initiation condition is that the total radiative acceleration, grad =
gline

rad C gcont
rad exceeds gravity beyond a certain point. With the equation of state,

p D a2 
, where a is the isothermal sound speed, the equation becomes:

�
1 � a2

v2

	
v

dv

dr
D 2a2

r
� da2

dr
� GM

r2
C grad: (4.3)

The prime challenge lies in accurately computing grad. For free electrons this
concerns the Thomson opacity, �e D se
 (se proportional to cross section) and the
flux:

gTh
rad D 1

c


�eL

4�r2
D ggrav 	; (4.4)

with the Eddington parameter 	 representing the radiative acceleration over gravity,
given by:

	 D �L

4�cGM
: (4.5)

Spectral lines provide the dominant contribution to the overall radiative acceleration.
The reason is that line scattering is intrinsically much stronger than electron
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scattering because of the resonant nature of bound-bound transitions (Gayley 1995),
and although photons and matter are only allowed to interact at specific frequencies,
they can be made to resonate over a wide range of stellar wind radii via the Doppler
effect (see Owocki’s Chap. 5).

For a single line at frequency �, with line optical depth � , the line acceleration can
be approximated by local quantities (Sobolev 1960). This approximation is valid as
long as opacity, source function, and the velocity gradient (dv=dr) do not change
significantly over a velocity range �v D vth, corresponding to a spatial region
�r � vth=.dv=dr/, i.e. the Sobolev length. In the Sobolev approximation, the line
acceleration becomes:

gline
rad;i D L��

4�r2c2
.

dv

dr
/

1



.1 � e�� /; (4.6)

with L� the luminosity at the line frequency, and with

� D N��=.dv=dr/; (4.7)

where N� represents the frequency integrated line-opacity and � is the wavelength
of the transition. For optically thin lines (� < 1) the line acceleration has the same
1=r2 dependence as electron scattering (Eq. 4.4), whereas for optically thick lines
(� > 1) it depends on the velocity gradient (dv=dr), which is the root cause for the
peculiar nature of line driving.

4.2.2 CAK Solution

The next step is to sum the line acceleration over all lines. In the CAK theory
this is achieved through the line-strength distribution function that describes the
statistical dependence of the number of lines on frequency position and line-strength
(e.g. Puls et al. 2000). Combining the radiative line acceleration (Eq. 4.6) with the
distribution of lines, the total line acceleration can be calculated by integration. It
can be expressed in terms of the Thomson acceleration (Eq. 4.4) multiplied by the
famous force-multiplier M.t/,

M.t/ D gline
rad

gTH
rad

D k t�˛ / �dv=dr




	˛
; (4.8)

where k and ˛ are the so-called force multiplier parameters.
For the complete distribution of lines, the radiative acceleration depends on

(dv=dr) through the power of ˛. CAK postulated that this term has a similar meaning
as the velocity gradient entering the inertial term on the left hand side of Eq. (4.3).
Assuming this is the case, the equation of motion becomes non-linear, and can be
solved through a critical point that sets the mass-loss rate PM :
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PM / .kL/1=˛ .M.1 � 	 //1�1=˛: (4.9)

And with velocity:

v.r/ D v1.1 � R=r/ˇ (4.10)

v1 D C1
�2GM.1 � 	 /

R�
	 1

2 D C1vesc; (4.11)

where C1 � 2:6 for O stars, and vesc is the photospheric escape velocity corrected
for Thomson electron acceleration. ˇ is exactly 0.5 for a point source, and in the
range ˇ � 0:8 � 1 for more realistic (finite sized) objects (Pauldrach et al. 1986;
Müller and Vink 2008). For O stars, ˛ ' 0:6 and k is of the order of 0.1.

Using these relations, one can construct the modified wind momentum rate,
Dmom D PM v1 .R�=Rˇ/1=2. Given that v1 scales with the escape velocity
(Eq. 4.11), Dmom scales with luminosity and effective line number only, and as long
as ˛ ' 2=3, the effective mass M.1 � 	 / conveniently cancels from the product
PM v1, resulting in:

log Dmom � x log.L=Lˇ/ C D; (4.12)

(with slope x and offset D, depending on the flux-weighted number of driving
lines), the “wind momentum luminosity relationship (WLR)” (Kudritzki et al. 1995;
Puls et al. 1996; Vink et al. 2000). The relationship played an instrumental role
in determining the empirical mass-loss metallicity (Z) dependence for O stars in
the Local Group (Mokiem et al. 2007), and observed and predicted WLRs can be
compared to test the validity of the theory, and to highlight potential shortcomings,
e.g. concerning wind clumping. One should also realise that PM is not only a function
of L but also parameters like Teff. One should properly account for this multivariate
behaviour of PM when one attempts to compare observations to theory, and when
one wishes to properly assess the effects of stellar wind mass loss in stellar evolution
modelling.

We note that all CAK-type relations are only valid for spatially constant force
multiplier parameters, k and ˛, which is not the case in more realistic models (Vink
et al. 2000; Kudritzki 2002; Muijres et al. 2012a). Other assumptions involve the
adoption of a core-halo structure, and the neglect of multi-line effects.

4.2.3 Predictions Using a Monte Carlo Radiative Transfer
Approach

An alternative approach to CAK involves the Monte Carlo method developed by
Abbott and Lucy (1985). Here photon-scattering histories are tracked on their
journey outwards. At each interaction, momentum and energy are transferred from
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Fig. 4.1 Cartoon explaining
the Monte Carlo method:
photon path histories are
tracked on their outwards
journey (From Abbott and
Lucy 1985)

the photons to the ions (see Fig. 4.1). One of the major advantages of the Monte
Carlo method is that it easily allows for multi-line scattering, which becomes
important in denser winds. Prior to the year 2000, theoretical mass-loss rates fell
short of the observed rates for dense O star and WR winds, whilst for weak winds
the oft-used single line approach overestimated mass-loss rates. The crucial point
is that multiply scattered photons add radially outward momentum to the wind,
and the momentum may exceed the single-scattering limit, i.e., � D PM v1=.L=c/

can become larger than unity. The overall PM can be obtained from global energy
conservation:

1

2
PM.v21 C v2

esc/ D �L; (4.13)

where �L is the total energy transferred per second from the radiation to the
outflowing particles.

Vink et al. (2000) and Vink et al. (2001) used the Monte Carlo method to derive
a mass-loss recipe, where for objects hotter than the so-called bi-stability jump at
' 25;000 K, the rates roughly scale as:

PM / L2:2 M �1:3 Teff .v1=vesc/
�1:3: (4.14)

The success of the Monte Carlo method is highlighted through the comparison
of observed and predicted mass-loss rates in Vink (2006). Figures 4.1 and 4.4 of
that review display the level of agreement between modified CAK models and
observations on the one hand, and the Vink et al. (2000) predictions on the other
hand. Despite remaining uncertainties due to an unknown amount of wind clumping,
by properly including multiple scatterings, the results were shown to be equally
successful for relatively weak (with PM � 10�7 Mˇ year�1) as dense O-star winds
(with PM � 10�5 Mˇ year�1). The predictions can also be expressed via the WLR.
For O-stars hotter than 27,500 K, the relation is shown in Fig. 4.2 and given by
Eq. (4.12) with a slope x D 1.83.
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Fig. 4.2 Predicted WLR for
O stars hotter than 27 kK for a
range of
.L; M /-combinations in the
upper HR diagram (From
Vink et al. 2000)

Traditionally, the prime drawback of the Monte Carlo approach was the usage of
a pre-determined v1 (guided by accurate empirical values) but this assumption can
be dropped, as discussed in the following.

4.2.4 Line Acceleration Formalism g.r/ for Monte Carlo Use

In solving the equation of motion self-consistently without relying on any free
parameters, Müller and Vink (2008) determined the velocity field through the use
of a parameterised description of the line acceleration that only depends on radius
(rather than explicitly on the velocity gradient dv/dr as in CAK theory.) The line
acceleration was obtained from Monte Carlo radiative transfer calculations. As this
acceleration is determined in a statistical way, it shows scatter, and given the delicate
nature of the equation of motion it should be represented by an appropriate analytic
fit function. Müller and Vink (2008) motivated:

gline
rad D



0 if r < rı

gı .1 � rı=r/�=r2 if r � rı;
(4.15)

where gı, rı, and � are fit parameters to the Monte Carlo line acceleration. Müller
and Vink (2008) derived an analytic solution of the velocity law in the outer wind,
which was compared to the standard CAK ˇ-law and subsequently used to derive
v1 and the most representative ˇ value.

Equation 4.3 is a critical point equation, where the left- and right-hand side
vanish at the point v.rs/ D aı, i.e. where rs is the sonic-point radius. Müller
and Vink (2008) showed that for the isothermal case and a line acceleration as
described in Eq. (4.15), analytic expressions for all types of solutions of Eq. (4.3)
can be constructed by means of the Lambert W function. A useful approximate wind
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solution for the velocity law can be constructed if the gas pressure related terms
2a2=r and a=v are neglected. After some manipulation one obtains the approximate
velocity law:

v.r/ D
s

R�v2
esc

r
C 2

rı
gı

.1 C �/

�
1 � rı

r

��C1 C C; (4.16)

where C is an integration constant. From this equation the terminal wind velocity
can be derived if the integration constant C can be determined, which can be done
by assuming that at radius rı the velocity approaches zero, resulting in:

C D �R�v2
esc

rı
: (4.17)

In the limit r ! 1:

v1 D
s

2

rı
gı

.1 C �/
� R�v2

esc

2
: (4.18)

The terminal velocity v1 can also be determined from the equation of motion. At
the critical point, the left-hand and right-hand side of Eq. (4.3) both equal zero.
Introducing v1 in relation to gı as expressed in Eq. (4.18), one obtains

v1;new D
s

2

rı

��
rs

rs � rı

��
rs

.1 C �/

�vesc

2
� 2rs

�
� v2

esc

�
: (4.19)

A direct comparison to the ˇ-law can be made for the supersonic regime of the
wind, resulting in

ˇ D 1 C �

2
: (4.20)

The procedure to obtain the best-ˇ solution is that in each iteration step of the Monte
Carlo simulation the values of gı, rı, and � are determined by fitting the output line
acceleration. Using these values and the radius of the sonic point, Eqs. (4.18)–(4.20)
are used to determine v1 and ˇ. v1 derived from Eq. (4.19), the predicted mass-
loss rate, and the expression derived for ˇ serve as input for the next model, with
iterations continuing until convergence is achieved.

Muijres et al. (2012a) tested the Müller and Vink (2008) wind solutions
through explicit numerical integrations of the fluid equation, also accounting for
a temperature stratification, obtaining results that were in excellent agreement with
the Müller & Vink solutions. These solutions were extended to 2D in Müller and
Vink (2014).
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4.3 Wolf-Rayet Stars with Optically Thick Winds

4.3.1 Wolf-Rayet (WR) Stars

WR stars can be divided into nitrogen-rich WN stars and carbon/oxygen rich
WC/WO stars. The principal difference between the two subtypes is believed to
be that the N-enrichment in WN stars is a by-product of H-burning, whereas the
C/O in WC/WO stars is due to the arrival of He-burning products at the surface,
showing strong emission lines of He, C and O.

The WR classification is purely spectroscopic, signalling the presence of strong
and broad emission lines. Such spectra can originate in evolved stars, or alternatively
from objects that formed with high initial masses and luminosities, the VMS. This
latter group of WR stars may thus include objects still in their core H-burning phase
of evolution: WNh stars.

Stellar radii determined from sophisticated non-LTE models are a factor of
several (�3) larger than those predicted for the He-main sequence by stellar
evolution modelling. In other words, there is a radius problem, and a potential
solution might involve the inflation of a clumped outer envelope (Gräfener et al.
2012; See Chap. 5 for more details).

4.3.2 WR Wind Theory

WR stars have strong winds with large mass-loss rates, typically a factor of 10 larger
than O-star winds with the same luminosity (see Fig. 4.3), and they are not easily
explained by the optically thin line-driven wind theory by CAK. The observed wind
efficiency � values are typically in the range of 1–5, i.e. well above the single-
scattering limit. So, if WR-type winds are driven by radiation, photons must be

Fig. 4.3 Comparison of
mass-loss rates from WR and
Galactic O supergiants (From
Puls et al. (2008)). Solid and
dotted lines represent mean
relations for H-poor WN
(solid) and WC stars (dotted)
(From Nugis & Lamers,
2000). The dashed line
corresponds to Galactic O
supergiants – taken (From the
Mokiem et al. (2007) WLR)
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scattered more than once. As the ionisation equilibrium decreases outwards, photons
can interact with lines from a variety of different ions on their way out, whilst gaps
between lines become “filled in” (see Lucy and Abbott 1993; Schaerer and Schmutz
1994; Springmann 1994; Gayley et al. 1995).

The initiation of the mass loss relies on the condition that the winds are already
optically thick at the sonic point and that the photospheric line acceleration due to
the high opacity “iron peak” may overcome gravity, thus driving a wind (Nugis and
Lamers 2002).

The crucial point in such a critical-point analysis for optically thick winds is
that due to their large mass-loss rates, the atmospheres become so extended and
the sonic point of the wind is already reached at large flux-mean optical depth �s ,
which implies that the radiation can be treated in the diffusion approximation. The
equation for the radiative acceleration can then be approximated to:

grad D 1

c

Z
��F�d� D �Ross

L?

4�r2c
; (4.21)

where �Ross is the Rosseland mean opacity which can be taken from for instance the
OPAL opacity tables (Iglesias and Rogers 1996). As grad does not depend on ( dv

dr
)

Eq. (4.3) has a critical point at the sonic point rs where v D a.
A finite value of ( dv

dr
) can only be obtained if the right hand side of Eq. (4.3) is

zero at this point.

0 D �GM

r2
s

C 2a2

rs
� da2

drs
C grad: (4.22)

For reasonable wind parameters the second and third term on the right-hand side of
Eq. (4.22) become zero such that

GM

r2
s

' grad.rs/ � �crit
L?

4�r2
s c

: (4.23)

The Eddington limit with respect to the Rosseland mean opacity is thus crossed at
the sonic point, and �crit for the Rosseland mean opacity can be computed for stellar
parameters in terms of the (L=M ) ratio.

In Fig. 4.4 the solution of Eq. (4.23) is plotted. This figure shows the relation
between density and temperature with �Ross.
; T / D �crit, for a typical WC star.
Below the sonic point, rs, the radiative acceleration must be sub-Eddington, and
�Ross thus needs to increase outward with decreasing density. Figure 4.4 shows how
this condition is fulfilled at the hot edges of two Fe opacity peaks, one “cool”
one at �70 kK and a “hot” one above 160 kK. The resulting mass-loss rates on
these parts of the curve are given by PM D 4�R2

?
 a. To determine the actual
density and temperature at the sonic point, Nugis and Lamers (2002) utilised the
approximate relation between temperature and optical depth due to Lucy (1971)
(see also Gräfener and Vink 2013):
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Fig. 4.4 Solution of Eq. (4.23) in the 
-T plane. The sonic-point conditions for an optically thick
wind, i.e. �Ross D �crit with outward increasing �Ross, are fulfilled at the solid parts of the curve
around 70 kK, and above 160 kK. The Rosseland opacities are taken from the OPAL opacity tables
(From Gräfener & Hamann)

T 4
S .r/ D 3

4
T 4

eff

�
�S.r/ C 4

3
W.r/

�
; (4.24)

with the modified optical depth �S and the dilution factor W , which is close to unity.
�S is obtained from the assumption that the outer wind is driven by radiation, and by
combining Eqs. (4.34) and (4.35) of Nugis and Lamers (2002) for the optical depth
and the temperature stratification, the resulting mass-loss rate for optically-thick
winds is:

PM D C
aT 4

s R3
S

M
:

Nugis and Lamers (2002) found that the observed WR mass-loss rates are in
agreement with this optically-thick wind assumption, and with a bifurcation of two
sonic-point temperature regimes: a “cool” regime corresponding to late-type WN
(WNL) stars, and a hot regime for early-type WR (WC and WN) stars.

4.3.3 Hydrodynamic Optically Thick Wind Models

Gräfener and Hamann (2005) included the OPAL Fe-peak opacities of the ions
Fe IX–XVII in more sophisticated models that treat the full set of non-LTE pop-
ulation numbers in combination with the radiation field in the co-moving frame
(CMF). Combining these models with the equations of hydrodynamics, Gräfener &
Hamann obtained a self-consistent model for the WC5 star WR 111. The resulting
wind acceleration and Fe-ionisation structure are depicted in Fig. 4.5. grad was
obtained from an integration of the product of opacity and flux over frequency
(see Eq. 4.21). Wind clumping was treated in the optically thin (“micro”) clumping
approach (see Sect. 4.8.1). With a mass-loss rate of PM D 10�5:14 Mˇ=year and
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Fig. 4.5 Top panel: the
radiative acceleration of the
Gräfener and Hamann (2005)
WC5 star model WR 111
(expressed in units of the
local gravity). The wind
acceleration gwind due to
radiation and gas pressure
balances the mechanical and
gravitational acceleration
gmech C ggrav. Bottom panel:
the Fe-ionisation structure
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terminal wind velocity of v1 D 2;010 km=s, the observed spectrum was also
reproduced, although the electron scattering wings highlighted that the assumed
clumping factor of D D 50 was rather (too) large given that WC stars generally
seem to have clumping factors of the order of D D 10, as determined from electron
scattering wings (Hillier 1991; Hamann and Koesterke 1998). The models might
therefore underestimate the mass loss rate by a factor of

p
5. This is likely due to

the omission of opacities of intermediate-mass elements, such as Cl, Ne, Ar, S, and
P, which according to Monte Carlo models may account for up to half of the total
line acceleration in the outer wind (Vink et al. 1999).

4.4 VMS and the Transition Between Optically Thin
and Thick Winds

There are many uncertainties in the quantitative mass-loss rates of both VMS as
well as canonical 20–60 Mˇ massive stars. One reason is related to the role of wind
clumping, which will be discussed later, but there are also uncertainties related
to modelling techniques. Nevertheless, arguably the most pressing uncertainty is
actually still qualitative! Do VMS winds become optically thick in Nature?3 And if
so, would this lead to an accelerated increase of PM ? And if so, at what point does
the transition occur?

3Note that Pauldrach et al. (2012) argue that VMS winds remain optically thin.
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4.4.1 Analytic Derivation of Transition Mass-Loss Rate

As hydrostatic equilibrium is a good approximation for the subsonic part of the
wind the terms on the right-hand side of Eq. (4.2) cancel each other. In the
supersonic portion of the wind the gas pressure gradient becomes small, and through
multiplying Eq. (4.2) by 4�r2, it reads:

4�
r2vdv D 4�r2.grad � g/dr: (4.25)

Employing the mass-continuity equation, one obtains

PM dv D 4�GM.	 .r/ � 1/
dr: (4.26)

Where 	 .r/ the Eddington factor with respect to the total flux-mean opacity �F:
	 .r/ D �FL

4�cGM . Using the wind optical depth � D R1
rs

�F
 dr , one obtains

PM

L=c
dv D �F


	 � 1

	
dr D 	 � 1

	
d�: (4.27)

Assuming hydrostatic equilibrium below the sonic point, in integral form this
becomes:

Z v1

0

PM

L=c
dv D

PM v1
L=c

D
Z 1

rS

	 � 1

	
d� ' �S: (4.28)

Where it is assumed that 	 is significantly larger than one in the supersonic region,
such that the factor 	 �1

	
becomes close to unity, and

PM v1 D L

c
�: (4.29)

Vink and Gräfener (2012) derived a condition for the wind efficiency number �:

� D
PM v1
L=c

D � D 1: (4.30)

The key point is that one can employ the unique condition � D � D 1 right at the
transition from optically thin O-star winds to optically-thick WR winds. In other
words, if one were to have a data-set containing luminosities for O and WR stars,
the transition mass-loss rate PMtrans is obtained by simply considering the transition
luminosity Ltrans and the terminal velocity v1 representing the transition point from
O to WR stars:

PMtrans D Ltrans

v1c
(4.31)
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This transition point can be obtained by purely spectroscopic means, independent
of any assumptions regarding wind clumping.

As 	 D grad=g is expected to be connected to the ratio .v1 C vesc/=vesc D
v1=vesc C 1, and f ' 	 �1

	
, Vink & Gräfener followed a model-independent

approach, adopting ˇ-type velocity laws, as well as full hydrodynamic wind models,
computing the integral � D R1

rs
�
 dr numerically using the flux-mean opacity

�F.r/. The mean opacity �F follows from the resulting radiative acceleration grad

grad.r/ D �F .r/
L

4�cr2
: (4.32)

Whilst grad follows from the prescribed density 
.r/ and velocity structures v.r/ –
via the equation of motion:

v
dv

dr
D grad � 1




dp

dr
� GM

r2
; (4.33)

where a grey temperature structure can be assumed to compute the gas pressure p.
The sole assumption entering this analysis is that the winds are radiatively driven.
The resulting mean opacity �F thus captures all physical effects that could affect
the radiative driving, including clumping and porosity. The obtained values for the
correction factor is 0.6 ˙ 0.2. The transition between O and WR spectral types
should in reality occur at:

PM D f
Ltrans

v1c
' 0:6 PMtrans: (4.34)

There is a transition between O and WR spectral types. The spectroscopic
transition for spectral subtypes O4-6IfC occurs at log.L/ D 6:05 and
log. PM�D1=Mˇ year�1/ D �4:95. This is the transition mass-loss rate for the
Arches cluster. The only remaining uncertainties are due to uncertainties in the
terminal velocity and the stellar luminosity L, with potential errors of at most
�40 %, and several factors lower than the order-of-magnitude uncertainties in
mass-loss rates resulting form clumping and porosity.

4.4.2 Models Close to the Eddington Limit

The predictions of the O star recipe of Vink et al. (2000) and Eq. (4.14) are only valid
for objects at a sufficient distance from the Eddington limit, with 	 	 0.5. There are
two regimes where this is no longer the case: (i) stars that have formed with large
initial masses and luminosities, i.e. very massive stars (VMS) with M > 100 Mˇ,
and (ii) less extremely luminous “normal” stars that approach the Eddington limit
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Fig. 4.6 Mass-loss predictions versus the Eddington parameter 	 – divided by M 0:7. Symbols
correspond to models of different mass ranges (Vink et al. 2011)

when they have evolved significantly. Examples of the latter category are LBVs and
classical WR stars.

For LBVs, Vink and de Koter (2002) and Smith et al. (2004) showed with Monte
Carlo computations that the mass-loss rate increases more rapidly than Eq. (4.14)
indicates. This implies that not only does the mass-loss rate increase when the
Eddington limit is approached, but the mass-loss rate increases more strongly, which
leads to a positive feedback effect on the total mass lost over time. For VMS, Vink
et al. (2011) discovered a kink in the slope of the mass-loss vs. 	 relation at the
transition from optically thin O-type to optically thick WR-type winds. Bestenlehner
et al. (2014) performed a homogeneous spectral analysis of >60 Of-Of/WN-WNh
stars in 30 Doradus, and confirmed the kink empirically.

Figure 4.6 depicts mass-loss predictions for VMS as a function of the Eddington
parameter 	 from Monte Carlo modelling. For ordinary O stars with “low” 	 the
PM / 	 x relationship is shallow, with x '2. There is a steepening at higher 	 ,

where x becomes '5. Here the optical depths and wind efficiencies exceed unity.

4.5 Predictions for Low Metallicity Z and Pop III Stars

For objects in a Z-range representative for the observable Universe with Z=Zˇ >

1=100, Monte Carlo mass-loss predictions were provided by Vink et al. (2001).
Extending the predictions to extremely low Z=Zˇ < 10�2, PM is still expected to
drop until the winds reach a point where they become susceptible to ion-decoupling
and multi-component effects (Krticka et al. 2003). In order to maintain a one-fluid
wind model is by increasing the Eddington factor – by pumping up the stellar mass
and luminosity.
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For the case of Pop III stars with truly “zero” metallicity, i.e. only H and He
present, it seems unlikely that these objects develop stellar winds of significant
strength (Kudritzki 2002; Muijres et al. 2012b). However, other physical effects
may contribute to the driving. Interesting possibilities include stellar rotation and
pulsations, although pure vibration models for Pop III stars also indicate little mass
loss via pulsations alone (Baraffe et al. 2001). Perhaps a combination of several
effects could result in large mass loss close to the Eddington limit. Moreover, we
know that even in the present-day Universe a significant amount of mass is lost
in LBV type eruptions, potentially driven by continuum radiation pressure, which
might be also relevant for the First Stars (Vink and de Koter 2005; Smith and
Owocki 2006).

Despite the fact that the first generations of massive stars start their evolutionary
clocks with fewer metals, as the First Stars may be highly luminous and/or rapidly
rotating, it is not inconceivable that they enrich their atmospheres with nitrogen and
carbon (Meynet and Maeder 2006), thereby inducing a stellar wind (Vink 2006).

In a first attempt to investigate the effects of self-enrichment on the total wind
strength, Vink and de Koter (2005) performed a pilot study of WR mass loss versus
Z. The prime interest in WR stars here is that these objects, especially those of WC
subtype, show the products of core burning in their outer atmospheres.

The reasoning behind the assertion that WR winds may not be Z-dependent was
that WR stars enrich themselves by burning He into C, and it could be the large
C-abundance that is the most relevant ion for the WC wind driving, rather than the
sheer number of Fe lines. Figure 4.7 shows that despite the fact that the C ions
overwhelm the amount of Fe, both late-type WN (dark line) and WC (light line)

Fig. 4.7 Monte Carlo WR mass-loss predictions as a function of Z. The dark line represents the
late-type WN stars, whilst the lighter dashed line shows the results for late-type WC stars. The
slope for the WN models is similar to the predictions for OB-supergiants, whereas the slope is
shallower for WC stars. At low Z, the slope becomes smaller, flattening off entirely at Z=Zˇ D
10�3 (The computations are from Vink and de Koter 2005)
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show a strong PM -Z dependence, basically because Fe has such a complex electronic
structure.

The implications of Fig. 4.7 are two-fold. First, WR mass-loss rates decrease
steeply with Z. This may be of key relevance for black hole formation and the
progenitor evolution of long duration GRBs. The collapsar model of MacFadyen
and Woosley (1999) requires a rapidly rotating stellar core prior to collapse, but at
solar metallicity stellar winds are expected to remove the bulk of the core angular
momentum (Zahn 1992). The WR PM -Z dependence from Fig. 4.7 provides a route
to maintain rapid rotation, as the winds are weaker at lower Z prior to final collapse.

The second point is that mass loss is no longer expected to decrease when Z=Zˇ
falls below �10�3 (due to the dominance of driving by carbon lines). This suggests
that once massive stars enrich their outer atmospheres, radiation-driven winds might
still exist, even if stars started their lives with extremely small amounts of metals.

Whether the mass-loss rates are sufficiently high to alter the evolutionary tracks
of the First Stars remains to be seen, but it is important to keep in mind that the
mass-loss physics does not only quasi-linearly depend on Z, but that other factors,
such as the proximity to the 	 limit, should also be considered.

4.6 Luminous Blue Variables

4.6.1 What Is an LBV?

Luminous Blue Variables represent a short-lived (�104–105 years) phase of massive
star evolution during which the objects are subjected to humongous changes in
their stellar radii by about an order of magnitude. They come in two flavors. The
largest population of �30 LBVs in the Galaxy and the Magellanic Clouds is that of
the S Doradus variables with magnitude changes of 1–2 magnitudes on timescales
of years to decades (Humphreys and Davidson 1994). These are the characteristic
S Dor variations, represented by the dotted horizontal lines in Fig. 4.8. The general
understanding is that the S Dor cycles occur at approximately constant bolometric
luminosity (which has yet to be proven) – principally representing temperature
variations. The second type of LBV instability involves objects that show truly
giant eruptions with magnitude changes of order 3–5 during which the bolometric
luminosity most certainly increases. In the Milky Way it is only the cases of P Cygni
and Eta Carina which have been noted to exhibit such giant outbursts.

Whether these types of variability occur in similar or distinct objects is not yet
clear, but in view of the “unifying” properties of the object P Cygni it is rather
probable that the S Dor variables and giant eruptors are subject to the same type of
instabilities near the Eddington limit (see Vink (2012)).
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Fig. 4.8 The LBVs in the Hertzsprung-Russell diagram. The slanted band running from 30 kK
at high L=Lˇ to 15 kK at lower luminosity is the S Dor instability strip. The vertical band at a
temperature of �8;000 K represents the position of the LBVs “in outburst”. The vertical line at
21,000 K is the position of the observed bi-stability jump (Lamers et al. 1995) (Adapted from Vink
2012 and Smith et al. 2004)

4.6.2 Do LBVs Form Pseudo-photospheres?

Although it appears that the photospheric temperatures of the objects in Fig. 4.8
change during HRD transits, there is an alternative possibility that the underlying
star does not change its actual temperature but that the star undergoes changes
in mass-loss properties instead. The second case is normally referred to as the
formation of a “pseudo-photosphere” resulting from the formation of an optically
thick wind.

Eta Car’s outstanding wind density with PM � 10�3Mˇ year�1 Hillier et al.
(2001) places R.�Ross D 2=3/ at 80 % of the terminal velocity, impeding any
derivation of the hydrostatic radius, but it is not yet clear whether the general
LBV population of S Dor variables have PM values high enough to produce pseudo
photospheres.

As a result of enhanced mass loss during maximum it is hypothetically possible
to form a pseudo-photosphere. Until the late 1980s this was the leading idea to
explain the colour changes of S Dor variables. Using more advanced non-LTE model
atmosphere codes, Leitherer et al. (1989) and de Koter et al. (1996) predicted colours
based on empirical LBV mass-loss rates that are not red enough to make an LBV
appear cooler than the temperature of its underlying surface. Despite the proximity
of LBVs to the Eddington limit, current consensus is that LBV winds are generally
not sufficiently optically thick.
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Fig. 4.9 Pseudo-photosphere formation in a relatively low mass LBV with a high L=M ratio. The
difference in inner (dashed) and apparent temperature (representative for the size of the computed
pseudo-photosphere) is plotted against the stellar mass. These computations have been performed
for a constant luminosity of log L=Lˇ D 5:7. The mass is gradually decreased whilst the LBV
approaches the Eddington limit: the apparent temperature drops as a result of the lower effective
gravity, and the higher mass loss results in the formation of a pseudo-photosphere Smith et al. 2004

Figure 4.9 shows the potential formation of an optically thick wind for a
relatively low-mass (with high L=M ) LBV in close proximity to the bi-stability
jump (Pauldrach and Puls 1990; Vink and de Koter 2002; Groh and Vink 2011).
The size of the temperature difference (dashed vs. solid) is a proxy for the extent of
the pseudo-photosphere. The figure demonstrates that for masses in the range 15–
25 Mˇ and fixed luminosity, the winds remain optically thin, but when the stellar
mass approaches values as low as 10 Mˇ, and the star enters the mass-loss regime
near the Eddington limit, the photospheric scale-height blows up, which results in
the formation of a pseudo-photosphere.

4.6.3 Winds During S Doradus Variations

Although most S Dor variables have been subject to photometric monitoring, only
a few have been analysed in sufficient detail to understand the driving mechanism
of their winds. Mass-loss rates are of the order of 10�3 � 10�5Mˇ year�1, whilst
terminal wind velocities are in the range �100�500 km s�1. Obviously, these values
vary with L and M , but there are indications that the mass loss varies as a function
of Teff when the S Dor variables transit the upper HRD on timescales of years,
providing an ideal laboratory for testing the theory of radiation-driven winds.

The Galactic LBV AG Car is one of the best monitored and analysed S Dor
variables. Vink and de Koter (2002) predicted PM rises in line with radiation-driven
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wind models for which the PM variations are attributable to ionisation shifts of
Fe. Sophisticated non-LTE spectral analysis have since confirmed these predictions
(Groh et al. 2011; Groh and Vink 2011).

It is relevant to mention here that this variable wind concept (wind bi-stability;
see also Pauldrach and Puls 1990) has been suggested to be responsible for
circumstellar density variations inferred from modulations in radio light-curves and
H˛ spectra of supernovae (Kotak and Vink 2006; Trundle et al. 2008). However
most stellar evolution models would have predicted massive stars with M � 25 Mˇ
to explode at the end of the WR phase, rather than after the LBV phase. The
implications could be gigantic, impacting our most basic understanding of massive
star death in the Universe (see Smith’s Chap. 8).

4.6.4 Super-Eddington Winds

Whilst during “quiet” phases, LBVs may lose mass via ordinary line-driving, some
objects, like Eta Car also seem to be subject to phases of more extreme mass
loss. For instance, the giant eruption of � Car with a cumulative loss of �10 Mˇ
between 1840 and 1860 (Smith et al. 2003) which resulted in the Homunculus
nebula corresponds to PM � 0:1 � 0:5 Mˇ year�1, which is a factor of 1,000 larger
than that expected from line-driven wind models for an object of that luminosity.

Shaviv (1998) and Owocki et al. (2004) studied the theory of porosity-moderated
continuum driving in objects that formally exceed the Eddington limit. It is possible
that continuum-driven winds in super-Eddington stars reach mass-loss rates close to
the photon tiring limit, PMtir D L�=.GM�=R�/, which could result in a stagnating
flow that may lead to spatial structure (van Marle et al. 2008). However, it should
be noted that alternatively, wind clumping may be the result of other instabilities,
possibly related to the presence of the Fe opacity peak (Cantiello et al. 2009;
Gräfener et al. 2012; Gräfener and Vink 2013; Glatzel and Kiriakidis 1993),
especially for objects approaching the 	 -limit.

The general equation of motion for a stellar wind (ignoring gas pressure) is given
by:

v
�
1 � a2

v2

�dv

dr
' ggrav.r/ C grad.r/ D �GM

r2
.1 � 	 .r//: (4.35)

At the sonic point, rs: v D a, and thus grad D �ggrav implying 	 .rs/ D 1. Thus,
	 .r/ must be <1 below the sonic point and 	 .r/ must be >1 above the sonic point.
An accelerating wind solution thus implies an increasing opacity dN�

dr
js > 0 (given

that 	 .r/ D N�.r/L�

4�GMc ).
If, on the other hand, the entire atmosphere is super-Eddington, i.e. 	 .r/ > 1

throughout the atmosphere, continuum driving might nonetheless become possible.
The reason is that when atmospheres exceed the Eddington limit, instabilities may
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arise which could make them clumpy: outward travelling photons may avoid regions
of enhanced density, which means that the medium may behave in a porous manner,
leading to a lower grad. This means that the effective Eddington parameter can
drop below unity. However, further out in the wind, the clumps become optically
thinner as a result of expansion, and the porosity effect decreases. 	 cont

eff can now
become larger than unity. In other words, a wind solution with 	 cont

eff crossing unity
is feasible, even when the stars are formally above the Eddington limit.

Owocki et al. (2004) expressed the effective opacity in terms of the so-called
porosity length (see Sect. 4.8). They showed that PM might become substantial when
the porosity length is of the order of the pressure scale height H . Owocki et al.
developed the concept of a power-law distributed porosity length (in analogy to
CAK-type the line-strength distribution function), and showed that even the gigantic
mass-loss rate during Eta Car’s giant eruption might be explained by some form of
radiative driving.

4.7 Observed Wind Parameters

Radiation-driven wind models can provide predictions for two global wind param-
eters: the mass-loss rate, PM , and the terminal velocity, v1. Most studies rely
on the assumption of a smooth wind. The mass-loss rate then follows from the
continuity equation (Eq. 4.1), and most diagnostics are based on a wind model with
a prescribed ˇ-type velocity field.

A useful concept involves the optical-depth invariant Q parameter (Puls et al.
1996), where Qres can be utilised for resonance lines with line opacity / 
. Alter-
natively, recombination is a 2-body process and Qrec is useful for recombination
based line processes such as H˛ which thus have opacities / 
2,

Qres D
PM

R�v21
; Qrec D

PM

.R�v1/1:5
: (4.36)

Most diagnostics rely on the use of non-LTE model atmospheres. Stellar and wind
parameters, such as PM can be determined by fitting resonance and recombination
lines simultaneously. Smooth wind models constitute the ideal case, but the optical
depth invariant Qrec as defined in Eq. (4.36) can easily be modified for the case that
the winds are clumped (Sect. 4.8, Eq. 4.46).

A more detailed discussion of the various methods to derive wind parameters is
given in Puls et al. (2008). The most common line profiles in a stellar wind are (i)
UV P Cygni profiles with a blue absorption trough and a red emission peak, and
(ii) optical emission lines (such as H˛). These line shapes are caused by different
population mechanisms of the upper energy level of the transition. In a P Cygni
scattering line, the upper level is populated by the balancing act between absorption
from and spontaneous decay to the lower level. An emission line is formed if the
upper level is populated by recombinations from above (see however Puls et al.
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(1998) and Petrov et al. (2014) for the formation of P Cygni H˛ lines in the cooler
BA supergiants).

4.7.1 Ultraviolet P Cygni Resonance Lines

P Cygni lines may be used to determine the velocity field in stellar winds, and in
particular v1. H˛ is generally utilised to derive PM (or Qrec). UV P-Cygni lines
from hot stars (e.g. C IV and P V) are usually analysed by means of the Sobolev
optical depth:

�Sob.r/ D
�e
mec

f nl.r/�

dv=dr

R�
v1

; (4.37)

where f is the oscillator-strength and nl the lower occupation number of the
transition. Relating the occupation number, nl, to the density:

�Sob.r/ D 1

r2vdv=dr
E.r/q.r/

PM

R�v21
.�e2/=.mec/

4�mH

Ak

1 C 4Y
f �; (4.38)

where E is the excitation factor of the lower level, q the ionisation fraction, Ak the
abundance of the element, and Y the He abundance. This quantity is invariant with
respect to Qres D PM=.R�v21/ (see Eq. 4.36) as long as the ground-state population
is proportional to the density 
. Thus, PM can be derived from resonance line P Cygni
profiles when the ionisation fraction is known. Most P Cygni lines however are
saturated and mass-loss rate derivations become unfeasible, such that only lower
limits on PM can be determined.

UV resonance lines have been considered relatively clean from clumping effects,
but this might not be the case if porosity effects become important.

4.7.2 The H˛ Recombination Emission Line

The most oft-used diagnostics to derive PM for O-star winds involves H˛, for which
there is hardly any uncertainty due to ionisation. The H˛ opacity scales with 
2, and

�Sob.r/ /
PM 2

.R�v1/3

b2.r/

r4v2dv=dr
; (4.39)

i.e., the scaling invariant quantity is now Q2
rec (Eq. 4.36), and b2 is the non-LTE

departure coefficient of n2.
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The challenge with H˛ concerns its 
2 dependence. Any notable inhomogeneity
will necessarily result in an PM overestimate if clumping is neglected in the analysis.
An advantage is the fact that H˛ remains optically thin in the main part of the
emitting wind, such that porosity effects can be neglected (which is not the case
for UV resonance lines).

4.7.3 Radio and (Sub)millimetre Continuum Emission

A somewhat different approach to measure mass-loss rates is to utilize long
wavelength radio and (sub)millimetre continua. In fact this approach may lead to
the most accurate results, as they are model-independent. The basic concept is to
measure the excess wind flux over that from the stellar photosphere. This excess
flux is emitted by free-free and bound-free processes. The reason the excess flux
becomes more important at longer (sub)-mm/radio wavelengths is due to the �2

dependence of the opacities.
Following Wright and Barlow (1975), Panagia and Felli (1975), and Lamers and

Cassinelli (1999), the dominant free-free opacity (in units of cm�1) at frequency �

can be written as:

�� / ni ne g� .
1

�2
/ /

PM

v1

2

.
1

r4
/ g� .

1

�2
/; (4.40)

in cm�3, and g� is the Gaunt factor for free-free emission. For an isothermal wind
and frozen-in ionisation, Nz (the mean value of the atomic charge) and e and i

remain constant, and:

�� / g��2
2; (4.41)

which increases with � and 
. As the continuum becomes optically thick in the wind
in free-free opacity the emitting wind volume increases as a function of �, leading
to the formation of a radio photosphere where the the radio emission dominates the
stellar photospheric emission. For a typical O supergiant this occurs at about 100
stellar radii. At such large distances the outflow reaches its terminal wind velocity
and an analytic solution of the radiative transfer problem becomes possible:

F� /
� PM

v1

�4=3
�
�g�

	2=3

d 2
; (4.42)

where F� is the observed radio flux measured in Jansky, PM in units of Mˇ year�1,
v1 in km s�1, distance d to the star in kpc and frequency � in Hz. Thus, the spectral
index of thermal wind emission is close to 0.6.
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4.8 Wind Clumping

H˛ and long-wavelength continuum diagnostics depend on the density squared,
and are thus sensitive to clumping, whereas UV P Cygni lines such as PV are
insensitive to clumping, as they depend linearly on density. In the canonical optically
thin (micro-clumping) approach the wind is divided into a portion of the wind
that contains all the material with a volume filling factor f (the reciprocal of the
clumping factor D), whilst the remainder of the wind is assumed to be void. In
reality however, clumped winds are porous with a range of clump sizes, masses, and
optical depths.

Wind clumping has been extensively discussed for canonical 20–60 Mˇ O-type
stars and WR stars in a dedicated clumping workshop (Hamann et al. 2008). Here
one may also find studies of X-ray observations (see also Cohen et al. (2014) and
references therein for more recent work).

4.8.1 Optically Thin Clumping (“Micro-clumping”)

The general concept of optically-thin micro clumping is simply based on the
assumption that the wind is made up of large numbers of small-scale density clumps.
Largely motivated by the results from hydrodynamic simulations including the line-
deshadowing instability (LDI; see Owocki’s Chap. 5), the inter-clump gas is usually
assumed to be void. The average density h
i D PM=.4�r2v) is given by:

h
i D f
C ; h
2i D f .
C /2 (4.43)

where 
C is the density inside the over-dense clumps, and h
2i is the mean of the
squared density. Thus, the clumping factor:

D D h
2i=h
i2 ) D D f �1 and 
C D Dh
i; (4.44)

measures the clump over-density. As the inter-clump space is assumed to be void,
matter is only present inside the clumps, with density 
C , and with its opacity given
by � D �C .Dh
i/, where C represents the quantities inside the clump. Optical
depths may be calculated via � D R

�C .Dh
i/f dr with a reduced path length
.f dr/ as to correct for the volume where clumps are actually present.

The formulation is only correct as long as the clumps are optically thin, and
optical depths may be expressed by a mean opacity N�:

N� D �C .Dh
i/f D 1

D
�C .Dh
i/: (4.45)

Thus, for processes that are linearly dependent on density, the mean opacity of a
clumped medium is exactly the same as for a smooth wind, whilst for processes
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that scale with the density squared, mean opacities are enhanced by the clumping
factor D.

It should be noted that processes described by the optically thin micro-clumping
approach do not depend on clump size nor geometry, but only the sheer clumping
factor. The enhanced opacity for 
2 dependent processes implies that PM derived by
such diagnostics are a factor of

p
D lower than older mass-loss rates derived with

the assumption of smooth winds. As a result, the optical depth invariant, Qrec (see
Eq. 4.36) transforms into:

Qrec D
PM

p
D

.R�v1/1:5
: (4.46)

Note that also for the case of thermal radio and (sub)-mm continuum emission the
scaling invariant is proportional to PM=R1:5� , i.e. very similar to Qrec for optical
emission lines, such as H˛. Abbott et al. (1981) studied the effects of clumping
on the wind radio emission as a function of the volume filling factor and the density
ratio between clumped and inter-clump material. For the standard assumption of
vanishing inter-clump density, Abbott et al. showed that the radio flux may be a
factor f �2=3 larger than that from a smooth wind with the same PM . In other words,
using Eq. (4.42), it can be noted that radio mass-loss rates derived from clumped
winds must also be lower than those derived from smooth winds.

4.8.2 The P V Problem

Due to the very low cosmic abundance of phosphorus (P), the P V doublet remains
unsaturated, even when PC4 is dominant. This allows for a direct estimate of the
product PM hqi, where hqi is a spatial average of the ion fraction. Unfortunately,
hqi estimates for a given resonance line are uncertain due to shocks and associated
X-ray ionisation. Empirical determination of ionisation fractions is normally not
feasible, as resonance lines from consecutive ionisation stages are not generally
available. Nevertheless, for P V, insight is gained from FUSE data: for those O-stars
in a certain hqi ' 1 region, the P V line should provide an accurate estimate of PM ,
as the pure linear character with 
 makes it clumping independent.

Fullerton et al. (2006) selected a large sample of O-stars, which also had

2 (from H˛/radio) estimates available, and compared both 
-linear UV and 
-
quadratic dependent methods. They found enormous discrepancies, with a median
PM (
2)/( PM (P V)hqi/ D 20 in mid-O supergiants, implying an extreme clumping

factor D ' 400 if the winds could indeed be treated in an optically thin (micro-
clumping) approach (see also Bouret et al. (2003)).
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4.8.3 Optically Thick Clumping (“Macro”-clumping)

With studies yielding clumping factors ranging from D up to 400, one may
wonder whether a pure micro-clumping analysis is physically sound. Most of the
atmospheric codes only consider density variations, but hydrodynamic simulations
also reveal strong velocity changes inside the clumps. Most worrisome is probably
the assumption that all clumps are assumed to be optically thin.

Within the optically thin approach, a clump has a size smaller than the photon
mean free path. However, in an optically thick clump, photons may interact with
the gas several times before they escape through the inter-clump gas. Whether a
clump is optically thin or thick depends on the abundance, ionisation fraction, and
cross-section of the transition.

For optically thick clumps, photons care about the distribution, the size and the
geometry of the clumps (see Fig. 4.10). The conventional description of macro-
clumping is based on a clump size, l.r/, and an average spacing of a statistical
distribution of clumps, L.r/, which are related to f :

f D � l

L

	3 D 1

D
: (4.47)

Following Eq. (4.45), the optical depth across a clump of size l and opacity �C

becomes:

�C D �C l D N�Dl D N� L3

l2
D N�h; (4.48)

with mean opacity N� (Eq. 4.45) and porosity length h D L3=l2. The porosity length
h involves the key parameter to define a clumped medium, as h corresponds to the
photon mean free path in a medium consisting of optically thick clumps.

Fig. 4.10 Schematic explanation of porosity, involving a notable difference between the volume
filling fraction f (and its reciprocal clumping factor D D 1=f ), which is the same for the top and
bottom case, and the separation of the clumps L, which is larger in the top case than the bottom
case (From Muijres et al. 2011)
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Fig. 4.11 Porosity as a possible solution for the PV problem (Adapted from Oskinova et al. 2007)

The effective clump cross section, i.e., the spatial cross section now corrected for
the fraction of transmitted radiation, becomes:

�C D l2 .1 � e��C /; (4.49)

and the effective opacity becomes:

�eff D nC �C D l2 .1 � e��C /

L3
D N� .1 � e��C /

�C

; (4.50)

where nC is the clump number density. The key point is that this very equation
holds for clumps of any optical thickness! For instance, in the optically thin limit,
the micro-clumping approximation is recovered: �eff D N�, which depends on f and
not on clump size or distribution. In the optically thick case, the effective opacity is
indeed reduced appropriately, �eff D N�=�C = h�1 now only depending on h.

Oskinova et al. (2007) employed the effective opacity concept in the formal
integral for the line profile modelling of the O supergiant � Pup. Figure 4.11
shows that the most pronounced effect involves strong resonance lines, such as
P V which can be reproduced by this macro-clumping approach – without the
need for extremely low PM – resulting from an effective opacity reduction when
clumps become optically thick. Given that H˛ remains optically thin for O stars it
is not affected by porosity,4 and it can be reproduced simultaneously with P V. This
enables a solution to the P V problem (see also Surlan et al. 2013).

However, this porosity concept was developed for continuum processes, whilst
line processes may also be affected by velocity-field changes. Owocki (2008)
performed LDI simulations where the line strength was described through a
velocity-clumping factor. These simulations resulted in a reduced wind absorption

4This might be different for B supergiants below the bi-stability jump (see Petrov et al. 2014).
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due to porosity in velocity space, which has been termed “vorosity”. The issue with
explaining a reduced P V line-strength through vorosity is that one needs to have a
relatively large number of substantial velocity gaps, which does not easily arise from
the LDI simulations. In any case, there is still a need to study scenarios including
both porosity and vorosity, as well as how they interrelate (Sunqvist et al. 2012).

4.8.4 Quantifying the Number of Clumps

In the traditional view of line-driven winds of O-type stars via the CAK theory and
the associated LDI, clumping would be expected to develop in the wind when the
wind velocities are large enough to produce shocked structures. For typical O star
winds, this is thought to occur at about half the terminal wind velocity at about 1.5
stellar radii.

Various observational indications, involving the existence of linear polarisation
(e.g. Davies et al. 2005) as well as radial dependent spectral diagnostics (Puls et al.
2006) however show that clumping must already exist at very low wind velocities,
and more likely arise in the stellar photosphere. Cantiello et al. (2009) suggested
that waves produced by the subsurface convection zone associated with the Fe
opacity peak could lead to velocity fluctuations, and possibly density fluctuations,
and thus be the root cause for the observed wind clumping at the stellar surface (see
Fig. 4.12).

Envelope convective zone

Radiative Layer

Radiative Layer

Stellar surface

Clumps

Acoustic and gravity waves

Microturbulence

Convective Zone

Buoyant magnetic flux tubes

Fig. 4.12 Cartoon of the physical processes involved in sub-surface convection. Acoustic and
gravity waves are emitted in the convective zone, and travel through the radiative layers, reaching
the stellar surface, thereby inducing density and velocity fluctuations. In this picture, clumping
starts at the wind base (From Cantiello et al. 2009)
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Assuming the horizontal extent of the clumps to be comparable to the sub-
photospheric pressure scale height Hp, one may estimate the number of convective
cells by dividing the stellar surface area by the surface area of a convective cell
finding that it scales as (R=HP/2. For main-sequence O stars in the canonical
mass range 20–60 Mˇ, pressure scale heights are within the range 0.04–0.24 Rˇ,
corresponding to a total number of clumps 6 �103 � 6 � 104. These estimates
may in principle be tested through linear polarisation variability, which probes wind
asphericity at the wind base.

In an investigation of WR linear polarisation variability Robert et al. (1989)
uncovered an anti-correlation between the wind terminal velocity and the scatter
in polarisation. They interpreted this as the result of blobs that grow or survive
more effectively in slow winds than fast winds. Davies et al. (2005) found this
trend to continue into the regime of LBVs, with even lower v1. LBVs are are
thus an ideal test-bed for constraining clump properties, due to the larger wind-
flow times. Davies et al. showed that over 50 % of LBVs are intrinsically polarised.
As the polarisation angle was found to vary irregularly with time, the polarisation
line effects were attributed to wind clumping. Monte Carlo models for scattering
off wind clumps have been developed by Code and Whitney (1995), Rodrigues
and Magalhaes (2000), and Harries (2000), whilst analytic models to produce the
variability of the linear polarisation may be found in Davies et al. (2007), Li et al.
(2009), and Townsend and Mast (2011).

An example of an analytic model that predicts the time-averaged polarisation
for the LBV P Cygni is presented in Fig. 4.13. The clump ejection rate per wind
flow-time N is defined as N D PN tfl D PN R?=v1, where the clump ejection rate,
PN , is related to PM as PM D PN NeemH , where Ne is the number of electrons

in each clump, and e is the mean mass per electron. There are two regimes
where the observed polarisation level can be achieved. One is where the ejection
rate is low and a few very optically thick clumps are expelled; the other one is
that of a very large number of clumps. These two cases can be distinguished via

Fig. 4.13 Time-averaged
polarisation over a range of
ejection rates per wind
flow-time. At N � 20, the
optical depth per clump
exceeds unity and the overall
polarisation falls off (see
Davies et al. 2007 for details).
The observed polarisation
level for the LBV P Cygni is
given by the dash-dotted line.
There are two ejection-rate
regimes where the required
polarisation level can be
achieved
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time resolved polarimetry. Given the relatively short timescale of the observed
polarisation variability, Davies et al. argued that LBV winds consist of order
thousands of clumps near the photosphere.

Nevertheless, for main-sequence O stars the derivation of wind-clump sizes from
polarimetry has not yet been feasible as very high signal-to-noise data are required.
LBVs however provide an excellent group of test-objects owing to the combination
of higher mass-loss rates, and lower terminal wind velocities. Davies et al. (2007)
showed that in order to produce the observed polarisation variability of P Cygni,
the wind should consist of �1,000 clumps per wind flow-time. In order to check
whether this is compatible with the sub-surface convection scenario ultimately
being the root cause for wind clumping, one would need to consider the sub-
surface convective regions of an object with global properties similar to those of
P Cygni. Due to the lower LBV gravity, the pressure scale height is about 4Rˇ,
i.e. significantly larger than for O-type stars. As a result, the same estimate for the
number of clumps drops to about 500 clumps per wind-flow time, which appears to
be consistent with that derived for P Cygni from observations (see Fig. 4.13).

4.8.5 Effects on Mass-Loss Predictions

Muijres et al. (2011) studied the possible effects of both optically thin and thick
wind clumping (porosity) on mass-loss predictions for O-type stars.

Because of the non-linear character of the equation of motion, the CAK solution
is complex, with the physics involving instabilities due to the LDI (e.g. Owocki et al.
1988). One of the key implications of the LDI is that in hydro-dynamical simulations
the time-averaged PM is not anticipated to be affected by wind clumping, as it has
the same average PM as the smooth CAK solution. However, the shocked velocity
structure and its associated density structure are expected to result in effects on the
mass-loss diagnostics.

In contrast to the LDI simulations, Muijres et al. (2011) studied the effects of
clumping on grad due to changes of the ionisation structure, as well as the effects of
wind porosity, using Monte Carlo simulations. When only accounting for optically
thin (micro) clumping grad was found to increase for certain clumping stratifications
D.r/, but only for an extremely high clumping factor of D � 100 (see Fig. 4.14
for a range of clumping factors and stratifications). The reason grad may increase
is the result of recombination yielding more flux-weighted opacity from lower Fe
ionisation stages (similar to the bi-stability physics). For D D 10 the effects were
however found to be relatively minor.

When simultaneously also accounting for optically thick (macro) clumping, the
effects were partially reversed, as photons could now escape in between the clumps
without interaction, and the predicted grad goes down, as well as up (see Fig. 4.15
for a range of clumping stratifications). Nevertheless, again, for D D 10 the effects
were found to be rather modest.

A fully consistent study of the impact of wind-clumping on predicted wind
properties has yet to be performed.
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Fig. 4.14 The effect of optically thin micro-clumping on the wind kinetic energy in Monte Carlo
simulations for different clumping stratifications for 30,000 K OV-type stars. The smooth wind
models have D D 1. The numbers 1–5 refer to different clumping stratifications (see Muijres et al.
2011 for details), but clumping in the outer winds (stratifications 1 through 3) results in an increase
of the kinetic wind energy due to a larger number of effective driving lines

Fig. 4.15 The effects of optically thick macro-clumping on the wind kinetic energy in Monte
Carlo simulations for different clumping and porosity stratifications for 30,000 K OV-type stars.
The smooth wind models have D D 1. The numbers 1–5 refer to different clumping stratifications
(see Muijres et al. 2011 for details)

Summary and Conclusion
As we mentioned in Sect. 4.1 (see also Chaps. 6 and 7) the evolution and
fate of VMS are predominantly determined by PM . Current stellar evolution
models for VMS (e.g. Yusof et al. 2013; Köhler et al. 2015) utilise the smooth
Monte Carlo theoretical predictions of Vink et al. (2000).

(continued)
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However, it has become clear that empirical PM rates have been over-
estimated when determined from 
2 diagnostics such as H˛. According to
Repolust et al. (2004) and Mokiem et al. (2007) the non-clumping corrected
empirical rates are a factor 2–3 higher than the Vink et al. (2000) rates, mean-
ing that moderate clumping effects (with D = 4–10) are indirectly accounted
for in stellar evolution models, noting that all recently reviewed stellar models
employ Vink et al. (2000) rates according to Martins and Palacios (2013).

However, there has been a breakthrough in our understanding of PM

for VMS in close proximity to the Eddington 	 limit. Vink et al. (2011)
discovered a “kink” in the PM vs. 	 relation at the transition from optically
thin O-type to optically thick winds. For ordinary O stars with “low” 	

the PM / 	 x relationship is shallow, with x '2. There is a steepening at
higher 	 , where x becomes '5. This mass-loss enhancement due to VMS in
proximity to the 	 -limit has not yet been included in evolutionary models of
VMS, and is likely to be crucial for their ultimate fate.

We also discussed a methodology that involves a model-independent PM

indicator: the transition mass-loss rate PMtrans – located right at the transition
from optically thin to optically thick stellar winds (Vink and Gräfener
2012). As PMtrans is model independent, all that is required is to postulate
the spectroscopic transition point in a given data-set and to determine the
far more accurate L parameter. In other words PMtrans is extremely useful
for calibrating wind mass loss, and assessing its role in mass loss during
stellar evolution. As was mentioned, current stellar models use Vink et
al. mass-loss rates that have been reduced by factors of 2–3 compared to
previous unclumped empirical rates, and there is thus no immediate reason to
reduce them further, unless clumping factors would be higher than �10.

Furthermore, we have also seen in Sect. 4.8 that clumping can affect the
Monte Carlo mass-loss predictions in various ways, involving both reductions
and increases in PM . We have also highlighted that both the origin and onset of
wind clumping remain unclear. Polarisation measurements call for clumping
to be already present in the stellar photosphere, but how this would interact
with the hydro-dynamical LDI simulations further out, and how this would
need to be consistently incorporated into radiative transfer calculations and
mass-loss predictions is as yet unclear. For these reasons, the search for the
nature and implications of wind clumping should continue!
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Chapter 5
Instabilities in the Envelopes and Winds of Very
Massive Stars

Stanley P. Owocki

Abstract The high luminosity of Very Massive Stars (VMS) means that radiative
forces play an important, dynamical role both in the structure and stability of their
stellar envelope, and in driving strong stellar-wind mass loss. Focusing on the
interplay of radiative flux and opacity, with emphasis on key distinctions between
continuum vs. line opacity, this chapter reviews instabilities in the envelopes and
winds of VMS. Specifically, we discuss how: (1) the iron opacity bump can induce
an extensive inflation of the stellar envelope; (2) the density dependence of mean
opacity leads to strange mode instabilities in the outer envelope; (3) desaturation
of line-opacity by acceleration of near-surface layers initiates and sustains a line-
driven stellar wind outflow; (4) an associated line-deshadowing instability leads to
extensive small-scale structure in the outer regions of such line-driven winds; (5) a
star with super-Eddington luminosity can develop extensive atmospheric structure
from photon bubble instabilities, or from stagnation of flow that exceeds the “photon
tiring” limit; (6) the associated porosity leads to a reduction in opacity that can
regulate the extreme mass loss of such continuum-driven winds. Two overall themes
are the potential links of such instabilities to Luminous Blue Variable (LBV) stars,
and the potential role of radiation forces in establishing the upper mass limit of
VMS.

5.1 Background: VMS M-L Relation and the Eddington
Limit

A hallmark of very massive stars (VMS) is that they are very, very luminous. For
example, a star of a hundred solar masses typically has a luminosity that is of order
a million times the solar luminosity. This means that, from the realm of solar to
very massive stars, the luminosity scales roughly with the cube of the stellar mass,
L � M 3 (justifying perhaps adding even a third “very” to “luminous”). This is
not (as sometimes inferred) a consequence of the core nuclear burning source of
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the stellar luminosity; instead, as worked out by Eddington (1926) and others even
before nuclear burning was fully understood, this follows from the basic equations
of stellar structure, namely the dual requirements of hydrostatic pressure support
against stellar gravity, and radiative transport of energy from the interior to the
surface (see Sect. 5.3). As was also recognized (most notably by Eddington) from
these early studies of stellar structure, this cubic scaling of luminosity with mass can
not be maintained to arbitrarily large masses, essentially because at high luminosity
the associated radiation pressure becomes significant in the star’s gravitational
support.

Radiation pressure is a consequence of the fact that, in addition to their important
general role as carriers of energy, photons also have an associated momentum, set by
their energy divided by the speed of light c. The trapping of radiative energy within
a star thus inevitably involves a trapping of its associated momentum, leading to an
outward radiative force, or for a given mass, an outward radiative acceleration grad,
that can compete with the star’s gravitational acceleration g. For a local radiative
energy flux F (energy/time/area), the associated momentum flux (force/area, or
pressure) is just F=c. The material acceleration resulting from absorbing this
radiation depends on the effective cross sectional area � for absorption, divided
by the associated material mass m,

grad D �

m

F

c
� �F

c
: (5.1)

The latter equality defines the opacity � D �=m, which is just a measure of the total
effective absorption cross section per unit mass of absorbing material.

For a star of luminosity L, the radiative flux at some radial distance r is just
F D L=4�r2. This gives the radiative acceleration the same inverse-square radial
decline as the stellar gravity, g D GM=r2 (with G the gravitation constant); their
ratio, generally referred to as the “Eddington parameter”, thus tends to be relatively
constant, set by the ratio of luminosity to mass,

	 � grad

g
D �F

gc
D �L

4�GMc
D 	e

�

�e

� 2:6 � 10�5 �

�e

L=M

Lˇ=Mˇ
: (5.2)

The last two equalities provide scalings in terms of the classical Eddington
parameter, 	e, defined for the electron scattering opacity, �e � �Th=e, where
�Th D 6:7 � 10�25 cm2 g�1 is the Thompson cross section for free electron
scattering, and e is the mean mass per free electron. The latter scales with the
Hydrogen mass mH rather than the much smaller electron mass, because even for
free electrons, maintaining overall charge neutrality requires an effective coupling
between electrons and the ions that are the main contributors to the material mass.
For a fully ionized gas with Hydrogen mass fraction X , e D 2mH =.1 C X/,
giving �e D 0:2.1 C X/ � 0:34 cm2 g�1 for standard (solar) mass fraction
X � 0:7. Applying this in (5.2), the last equality shows that, for a star with the solar
luminosity to mass ratio Lˇ=Mˇ, the electron Eddington parameter 	eˇ is very
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small, implying that for such solar-type stars the electron scattering acceleration
ge D 	eg is entirely negligible compared to gravity.

But if one assumes an overall cubic scaling of luminosity with mass, then

	e D 	eˇ.M=Mˇ/2 ; (5.3)

which would reach the classical Eddington limit 	e D 1 for a mass MEdd D
Mˇ=

p
	eˇ � 195Mˇ. Rather remarkably, this agrees quite well with modern

empirical estimates for the most massive observed stars, which are in the range
150–300Mˇ (Figer 2005; Oey and Clarke 2005; Crowther et al. 2010; Crowther
2012). (See Chaps. 1 and 2.)

More complete analyses that account for the effect of radiation pressure in the
hydrostatic support against gravity show that associated adjustments in the stellar
structure formally allow gravitationally bound (	 < 1) stars without any upper
mass limit. For example, for a homogenous star with solar Hydrogen mass fraction
X � 0:7 and radially constant 	 , the so-called “Eddington Standard Model” (ESM)
gives the scaling (Eddington 1926),

	

.1 � 	 /4
�
�

M

48Mˇ

�2

: (5.4)

The 1 � 	 factor comes from the reduction in effective gravity from radiation
pressure; its presence as a quartic in the denominator represents a strong repeller
against the Eddington limit, 	 ! 1. As illustrated in Fig. 5.1, this forces the low-
mass cubic scaling L � M 3 to reduce to a linear scaling L � M at large mass,
always keeping below the limit.

The ESM assumption of a radially fixed 	 also implies (see Sect. 5.3.1) a fixed
ratio of the radiation pressure to gas pressure,

Fig. 5.1 Log-log plot of the
stellar luminosity L vs. mass
M for the Eddington
Standard Model scaling of
Eq. (5.4)
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Prad

Pgas
� 	

1 � 	
: (5.5)

The case 	 D 1=2, with ESM mass M D 136 Mˇ, has Prad D Pgas, and so
marks the transition from gas to radiation as the dominant source of pressure support
against gravity. In analogy to having a heavier fluid be supported by a lighter one,
an envelope with gravitational support that is predominately from radiation pressure
is expected to be intrinsically unstable, sometimes dubbed the “photon bubble
instability” (Spiegel and Tao 1999; Shaviv 1998, 2000, 2001). If the nonlinear
growth of this and related instabilities can sufficiently disrupt the stellar structure,
for example inducing strong episodes of extensive mass loss, it could be a key factor
in setting an effective upper limit for stellar mass.

Indeed, the above-mentioned observationally inferred mass limit (Crowther
2012) (Chaps. 1 and 2) is just above the ESM mass for transition to radiation
pressure dominance. For electron scattering opacity, the corresponding ESM lumi-
nosity �5 � 106Lˇ (Mbol � �12) is near the luminosities of the intrinsically
brightest observed stars, for example, � Carinae or the ‘Pistol star’, both of which
show evidence for past episodes of strong mass loss. These stars are prototypes
of a “giant eruption” subclass of “Luminous Blue Variable” (LBV) stars. On the
Hertzsprung-Russell diagram they lie very near the Humphreys-Davidson (H-D)
limit (Humphreys and Davidson 1979) that delineates the most luminous observed
stars. A second subtype, the S-Doradus LBVs, can occur a factor ten or more
below the H-D limit; in contrast to the strong brightenings of eruptive LBV’s, they
are characterized by year timescale variations in effective temperature, but with a
roughly constant bolometric magnitude.

Focusing on the interplay of opacity, radiative flux and gravity, the remaining
sections of this chapter review how the strong radiative acceleration in luminous
VMS can lead to strong mass loss and induce instabilities in both their interior
envelopes and stellar wind outflows. The goal is to provide a good physical basis for
exploring the potential role of such radiative acceleration and the associated mass
loss and instability for understanding both giant eruption and S-Doradus variability
in LBVs, as well as for the inferred VMS upper mass limit.

Building on methods (Sect. 5.2) for estimating the flux-weighted mean opacity,
Sect. 5.3 examines the effect of radiative forces on the structure and inflation of
the hydrostatic, gravitationally bound stellar envelope. We next (Sect. 5.4) write
the general time-dependent equations for conservation of mass, momentum, and
energy, and apply these (Sect. 5.4.2) to a linear perturbation analysis of ‘strange-
mode’ instabilities in the stellar envelope, and to write the basic equations for
steady stellar wind outflow (Sect. 5.4.3). Applying the latter to the standard case
of a line-driven wind (Sect. 5.5), we derive steady solutions for the mass loss
rate and wind velocity (Sect. 5.5.1), and then discuss (Sects. 5.5.2 and 5.5.3) the
extensive structure (clumping and porosity) that arises in time-dependent models
that account for the strong Line-Deshadowing Instability (LDI) intrinsic to line-
driving. Finally, for the giant eruption LBVs with a super-Eddington luminosity,
we review (Sect. 5.6) how the much stronger mass loss – which can approach
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the “photon tiring” limit for the luminosity to lift material out of the star’s
gravitational potential – can be modeled in terms of a quasi-steady continuum-
driven wind regulated by a porosity reduction in the effective opacity. Finally
section “Concluding Summary” presents a concluding summary.

5.2 Mean Opacity Formulations

5.2.1 Flux-Weighted Mean Opacity

In addition to the free electron scattering that provides a nearly fixed, frequency-
independent (gray), baseline opacity, there are additional contributions associated
with electron interactions with ions, namely through free-free (f-f), bound-free (b-f)
and bound-bound (b-b) processes. The resonant nature of bound-bound transitions
makes the associated line opacities very strong, and these, especially from complex
heavy ions of iron-group elements, turn out to be particularly important in the
structure of near-surface layers and in driving stellar wind mass loss.

To account for the strong frequency dependence of the associated opacity, the
simple expression (5.1) for the radiative acceleration must now be generalized to
the integral form,

grad.r/ D 2�

Z 1

�1

d 

Z 1

0

d� �� I�.; r/=c D
Z 1

0

d� �� F�.r/=c : (5.6)

where the integrals are over frequency � and radial direction cosine  D On � Or for
radiation in vector direction On with specific intensity I� and associated opacity �� . If
this opacity is isotropic,1 the evaluation reduces to just the latter frequency integral
of �� times the associated energy flux F� .

To compute the radiative acceleration in terms of the local bolometric flux F �R1
0 F�d�, as done in Eq. (5.1), the appropriate opacity is now a flux-weighted mean,

N�F �
Z 1

0

�� F�

F
d� : (5.7)

The dependence on local gas and radiation conditions means this opacity, and thus
the Eddington parameter from Eq. (5.2), both now generally vary with the local
radius r .

While notationally convenient in connecting back to the simple gray opacity
scalings, it is important to realize that computation of N�F can be very difficult,

1As discussed in Sect. 5.5.1, even when the opacity is formally isotropic in the atom’s frame, a
spherical wind expansion can lead to an anisotropy for line opacity in the stellar frame, through
the directional dependence of the local velocity gradient.
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in principal requiring a global integral solution of the generally nonlocal radiative
transport to obtain the frequency dependence of the local flux F� , accounting for the
frequency dependence of the opacity �� , as well as its dependence on ionization and
excitation level of the absorbing ions.

5.2.2 Planck Mean and its Dominance by Line Opacity

To illustrate the potentially dominant importance of line opacity, let’s first consider
an optically thin limit in which absorbing ions are exposed fully to the local
continuum radiation, unattenuated by any self-absorption within the lines. If we
model this continuum flux spectrum as being given by the broad Planck blackbody
function for the star’s surface temperature, so that F�=F D B�=B , we see that the
flux-mean opacity N�F of Eq. (5.7) is just given in terms of a Planck mean opacity,
defined by

N�P �
Z 1

0

�� B�

B
d� : (5.8)

As a direct mean, N�P is dominated by the strongest opacity sources, namely by
the cumulative contribution from individual spectral lines. Relative to electron
scattering, the line opacity of an individual line with index i has the form,

��i

�e

D ni

ne

fi

�cl

�e

�.� � �i / ; (5.9)

where ni and ne are the number densities of absorbing ions and electrons, and the
line-profile function, �.� ��i /, is narrowly peaked around the line-center frequency
�i , with unit normalization

R1
0

�.� � �i / d� D 1. The quantum mechanical
oscillator strength, fi , corrects the frequency-integrated cross-section �cl (with
dimensions of area times frequency) obtained from the “classical oscillator” model
of line absorption. In terms of the classical electron radius re � e2=mec

2, the
frequency-integrated line-cross-section is enhanced by the dimensionless factor

Q�i � �cl

�i�e

D �rec

�i 8�r2
e =3

D 3

8

�i

re

D 1:5 � 108 �i

1;000 Å
; (5.10)

where �i D c=�i is the line-center wavelength, and the notation Q�i is chosen
because it is related (by just a factor �2) to the resonance quality Q D �i=�i , with
�i the radiative damping rate (Gayley 1995). The very large numerical value for a
sample UV wavelength stems from the resonance nature of line transitions, showing
that, even when integrated over a broad frequency range that is much larger than
the line width, a bound electron has an enormously larger cross section than a free
electron. The effect is somewhat analogous to blowing into a whistle vs. just open
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air; the response is very strong, but concentrated in a narrow frequency range near
the resonance.

Upon integration over the individual line-profiles, we can thus approximate the
Planck opacity as a sum over the line index i , weighted by a factor Wi D �i B�i =B

that reflects the blackbody strength at the line frequency �i ,

�P

�e

D
X

i

ni

ne

fi Q�i Wi � Q � 2;000

�
Z

0:02

�
; (5.11)

where the notation and evaluation in the last two equalities are due to Gayley
(1995). For allowed transitions near the peak of the Planck function, both fi and
Wi are order unity; but for hot stars with high ionization and near-solar metallicity,
only a relatively small fraction �10�5 of electrons remain bound in metal ions,
implying a similarly small cumulative abundance ratio

P
i ni =ne that counters the

large resonance factor Q�i , leaving a more moderately strong average resonance
quality Q � 2;000.

The upshot here is that, when unsaturated in this way, the radiative force from
line-opacity can approach an upper limit that is substantially enhanced over that
associated with electron scattering, with an associated Eddington parameter

	max � Q	e : (5.12)

This means that for lines the requirement 	 > 1 to overcome gravity and drive
a wind outflow can occur in any stars with electron Eddington parameters 	e >

1=Q � 0:0005 (see Sect. 5.5.1). For VMS with 	e only a factor few below unity,
it indicates the potential for strong line-deshadowing instability (LDI), with any
optically thin portions of a wind outflow having radiative acceleration approaching
a thousand times the acceleration of gravity (see Sects. 5.5.2 and 5.5.3).

5.2.3 Rosseland Opacity and Radiative Diffusion in Stellar
Interior

Of course this full brunt of line opacity does not apply in the dense, opaque
stellar interior because, in diffusing outward, radiation preferentially leaks through
the inter-line frequencies of lower continuum opacity, leaving only a significantly
reduced flux within the lines. Within such a diffusion approximation for radiation
transport, the local frequency-dependent flux now scales as

F�.r/ � �
�

4�

3��


@B�

@T

�
dT

dr
; (5.13)
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where 
 is the local density and B�.T / is the frequency-dependent Planck function
for the interior temperature T .r/ at local radius r . Application of (5.13) in (5.7)
shows that in this diffusion limit, the flux-weighted opacity is now approximated by
the so-called “Rosseland mean”,

�R �
R1

0
@B�

@T
d�

R1
0

1
��

@B�

@T
d�

: (5.14)

As a harmonic mean, �R is dominated by the weaker components of the opacity,
with generally little relative contribution from individual spectral lines.2 The
numerator can be readily evaluated by taking the temperature derivative outside the
frequency integral,

Z 1

0

@B�

@T
d� D @

@T

Z 1

0

B� d� D @B

@T
D @

@T

�
�BT 4

�

�
D 4�BT 3

�
; (5.15)

where �B is the Stefan-Boltzmann constant. One can then write the frequency-
integrated flux as a radiative diffusion equation,

F.r/ D �
�

16�B

3

T 3

�R


�
dT

dr
: (5.16)

The next section examines the stellar structure scalings for such radiative envelopes,
both in terms of the classical ESM M-L scaling, and for detailed opacity models
based on the OPAL tables.

5.3 Effect of Radiation Pressure on Stellar Envelope

5.3.1 Mass-Luminosity Scaling for Radiative Envelope

This diffusion form for energy transport, along with the requirement for momentum
balance through hydrostatic equilibrium, provide the basic stellar structure con-
straints that set the mass-luminosity scaling. To see this, let us rewrite Eq. (5.16)
in terms of the radial gradient of the radiation pressure Prad � 4�BT 4=3c,

dPrad

dr
D �


�RF

c
D �
grad D �
	

GM

r2
: (5.17)

2An exception is when the spectral density of lines become high enough to lead to an effective
“line-blanketing” effect, as occurs in the iron opacity bump discussed in Sect. 5.3.3.
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When modified to account for the 1 � 	 radiative reduction in the effective gravity,
the requirement for hydrostatic equilibrium sets the gradient of the gas pressure,

dPgas

dr
D �


GM

r2
.1 � 	 / : (5.18)

Together these imply that the relative variation of gas to radiation pressure depends
only on the Eddington parameter,

dPgas

dPrad
D 1 � 	

	
: (5.19)

As noted in Sect. 5.1, for the Eddington Standard Model with constant 	 , this gives
Pgas=Prad � .1 � 	 /=	 D constant, which leads to the simple ESM scaling (5.4)
for the mass dependence of the Eddington parameter. A related, commonly quoted
quantity is the gas pressure fraction ˇ of the total pressure, which in the interior of
an ESM model is just set by the Eddington parameter,

ˇ � Pgas

Pgas C Prad
D 1 � 	 : (5.20)

These ESM scalings can be understood from average gradients in (5.17)
and (5.18) in terms of stellar mass M and radius R. Using the ideal gas law
Pgas � 
T with 
 � M=R3, (5.18) implies the characteristic interior temperature
scales as

T � M.1 � 	 /

R
: (5.21)

With the further proportionalities F � L=R2 and Prad � T 4, the radiative
diffusion (5.17) gives

L � R4T 4

M
: (5.22)

Combining (5.21) and (5.22), we can eliminate both R and T to find

L � .1 � 	 /4 M 3 or
	

.1 � 	 /4
� M 2 ; (5.23)

which agrees with the ESM scaling (5.4). As noted, this scaling does not depend
explicitly on the nature of energy generation in the stellar core, but is strictly a
property of the envelope structure.3

3Of course, this simple scaling relation has to be modified to accommodate gradients in the
molecular weight as a star evolves from the zero-age main sequence, and it breaks down altogether



122 S.P. Owocki

5.3.2 Virial Theorem and Stellar Binding Energy

This hydrostatic balance of a stellar envelope can also be used to derive a relation
– known as the virial theorem – between the internal thermal energy U and the
gravitational binding energy ˚ of the whole star (Kippenhahn et al. 2013),

˚ D �3.� � 1/U : (5.24)

where � is the ratio of specific heats. The total stellar energy is thus given by

E � ˚ C U D 3� � 4

3� � 3
˚ : (5.25)

For the case of a monotonic ideal gas � D 5=3, the total energy is just half the
gravitational binding energy, E D ˚=2.

However, in very massive stars near the Eddington limit 	 ! 1, the internal
energy can become dominated by radiation instead of gas, since Prad=Pgas D 	 =.1�
	 / ! 1. In this limit of a radiation gas, � ! 4=3, which by Eq. (5.25) implies a
vanishing total energy E ! 0. This is another factor toward making VMS unstable.

5.3.3 OPAL Opacity

Let us next examine how the Rosseland opacity N�R, and its associated Eddington
parameter 	 , can change through the stellar envelope due to changes in temperature
and density. For this, we adopt the widely used tabulations from the OPAL4

opacity project (Iglesias and Rogers 1996), using the specific OPAL tables given by
Grevesse and Noels (1993), and taking the case with standard solar values X D 0:7

and Z D 0:02 for the Hydrogen and metal mass fractions. The OPAL tabulations
are given in terms of temperature T and a parameter R � 
=.T=106K/3, but to
make a clear connection to the above discussion, let us here cast the latter in the
equivalent terms of gas to radiation pressure, Pgas=Prad.

The left panel of Fig. 5.2 plots contours of log.�=�e/ in the log.T / vs.
log.Prad=Pgas/ plane, oriented such that the high-temperature, high-density of
the stellar interior is at the lower left. The heavy black contour with labeled value
0.3 corresponds to an opacity �=�e � 2 that is roughly twice that of the basal value
for electron scattering. Indeed, for typical stellar-core temperatures of order several
million Kelvin (MK), note that the total opacity is only slightly above this electron
scattering value.

in the coolest stars (both giants and dwarfs), for which convection dominates the envelope energy
transport.
4http://opalopacity.llnl.gov/

http://opalopacity.llnl.gov/
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Fig. 5.2 Left: OPAL opacity �, from tables by Grevesse and Noels (1993) for mass fractions
X D 0:7 and Z D 0:02, plotted as contours of log.�=�e/ in the log T vs. log.Prad=Pgas/ plane. The
peak in contours at log T � 5:3 is from the Iron opacity bump. Right: For a star with 	e D 1=2,
contours of 	 D .�=�e/	e , now plotted in the log Prad vs. log Pgas plane. In both plots, the contours
have log spacings of 0.1, with the heavy solid contours representing the case with � D 2�e and
	 D 1. In the right panel, the dotted line shows the locus where Prad D Pgas

But for temperatures near 1 MK and below, the opacity increases, especially for
low values of Prad=Pgas corresponding to relatively higher densities 
. Particularly
note the strong peak near T � 105:3 K � 2 � 105 K, which is due to a dense
“blanketing” of line (bound-bound) opacity from iron group elements, and is thus
commonly known as the “iron opacity bump”. For low Prad=Pgas, and thus high
density 
, the opacity can exceed the electron scattering value by an order of
magnitude or more. This enhancement decreases at lower density, but only very
weakly, requiring several decades decline in 
 (represented here by a several decade
increase in Prad=Pgas) to recover the modest factor 2 above electron scattering.

For temperatures along the opacity peak, an approximate fitting relation, normal-
ized about the density 
 D 
2 that has � D 2�e, is given by the logarithmic form,

2�e

�
� 1 C log

�

2




�0:2

; (5.26)

wherein the 0.2 quantifies the extreme weakness of the dependence on density. For
modest deviations about 
2, this can alternatively be written in the power-law form,

�

2�e

�
�





2

�0:086

; (5.27)
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where the small power index 0:086 D 0:2 log e again shows the weak density
dependence.

5.3.4 Envelope Inflation and the Iron Bump Eddington Limit

For VMS near the classical Eddington limit, this iron-bump increase in opacity
near temperatures T � 150,000–200,000K, can have dramatic effects on the near-
surface envelope structure, inducing an inversion in gas pressure and density, with
an associated inflation in the surface radius (Petrovic et al. 2006; Gräfener et al.
2012), and possibly triggering strong stellar wind mass loss.

For the specific case of a VMS with 	e D 1=2, the right panel of Fig. 5.2 plots
contours of log 	 in the log Prad vs. log Pgas plane, with the heavy solid contour for
the Eddington limit value 	 D 1. Since the combined stellar structure Eq. (5.19)
specifies dPgas=dPrad in terms of 	 , we can follow the decline of gas pressure from
the deep interior, where 	 � 	e D 1=2, implying from (5.19) that Pgas � Prad. But
toward the subsurface layer with lower temperature and pressure, the large bump in
opacity pushes the integration toward the 	 D 1 contour, forcing the gas pressure,
and thus density, to very low values, in this case to a minimum density 
min;2 �
2:5 � 10�11g cm�3 at the peak of the bump, where the opacity is � D 2�e .

A key result here is that, because this iron-peak opacity depends so weakly on
density, keeping it limited to the Eddington value �Edd � �e=	e requires a minimum
density that has a strong inverse scaling with electron Eddington parameter. Using
Eq. (5.26), this can be fit approximately by

log

�

min;2


min

�
� 10.	e � 1=2/ : (5.28)

Note, for example, that each linear increase of just 0.1 in 	e gives an order
magnitude decrease in 
min!

For a typical VMS effective temperature Teff � 60;000 K, the optical depth at
the Iron bump temperature T � 180;000 K is, by the diffusion equation (5.17),
� � .T=Teff/

4 � 100. Because the iron bump region has very low density, and
an opacity limited to the Eddington value �Edd D �e=	e, achieving this large � �R

�
dr requires an extended, or “inflated”, range in radius r . Since 	 � 1, we see
from the radiative diffusion equation (5.17) that the change in radiation pressures
scales as dPrad=
 D GMd.1=r/. Integration from a “core” radius Rc at the base of
the iron bump to an outer “envelope” radius Re gives

�P

2
min
� GM

�
1

Rc

� 1

Re

�
; (5.29)

where �P � 2:2 � 106 dyn cm�2 characterizes the radiation pressure width of
the iron bump, and the factor two in the left-side denominator comes from simple
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trapezoidal rule integration. Equation (5.29) can be readily solved to give a simple
analytic scaling for the radius inflation factor in terms of a dimensionless ratio W

of the pressure width to gravitational binding energy (Gräfener et al. 2012),

Re

Rc

� 1

1 � W
I W � �P

2
minGM=Rc

D W1=21010.	e�1=2/ : (5.30)

Note that when W approaches order unity, the envelope radius can become very
large.

Indeed, the radius divergence Re ! 1 as W ! 1 defines a “Iron Bump
Eddington Limit” (IBEL), for which it is no longer possible to have a radiatively
diffusive, hydrostatic envelope. Applying the scaling (5.28) for 
min within the
critical condition W D 1, we find the limiting Eddington parameter has the scaling

	IBEL � 	e.W D 1/ � 0:5 C 0:1 log

�
M=Mˇ

13Rc=Rˇ

�
: (5.31)

To locate this limit on the H-R diagram, let us, for a given luminosity, associate
the core radius with an effective temperature T � L1=4=R1=2. Figure 5.3 shows
contours of the stellar mass for this limit, scaled for the given luminosity by the ESM
mass of Eq. (5.4), and then plotted in an H-R diagram of log T vs. log.L=Lˇ/. Here
the steep dashed curve represents the locus of the zero-age main sequence (ZAMS),
and the shaded regions outline the observational domains for S-Doradus type LBV
stars, which typically vary horizontally within the V-shape on times scales of a few
years.

Near the ZAMS, stars should roughly follow the ESM M-L scaling, and so
the high location of the uppermost, unit-value contour representing the ESM mass
indicates that only the most luminous VMS stars will breach the IBEL on the MS.
As less-massive MS stars evolve to the right, their luminosities tend to increase
while the masses decrease due to mass loss, making M=MESM decrease and so

Fig. 5.3 Uppermost part of
H-R diagram, showing
contours of the limiting mass
for the iron bump Eddington
limit, scaled by the mass for
the Eddington standard
model. The dashed curve
shows the locus of the
ZAMS, and the V-shaped
shaded regions outline the
observational range for
S-Doradus LBVs

1.0

0.9

0.8

0.70.60.5
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bringing them up against to the IBEL. In principle, this could be an underlying cause
or trigger for the observed variability in surface temperature of S-Doradus LBVs,
but further work is needed to flesh out the nature of the time-dependent variations
and relaxation processes. As discussed by Petrovic et al. (2006) and Gräfener et al.
(2012), the overall inflation effect may also help explain the larger than expected
core radii inferred for Wolf-Rayet stars.

A key general unresolved issue is the interplay between this iron-bump inflation
and mass loss. Under what conditions might mass loss eliminate inflation, or
inflation initiate mass loss? Other complications include the potential roles of
mixing, porosity, pulsation, etc. in limiting or disrupting the inflation effect from
this idealized 1D, hydrostatic model.

5.4 Basic Formalism for Envelope Instability and Mass Loss

5.4.1 General Time-Dependent Conservation Equations

The dominant role of radiative forces in VMS can lead to both time-dependent
instabilities of the stellar interior and strong stellar wind mass loss from their
surface. To treat these we need to generalize the above assumption of a hydrostatic
equilibrium balance to consider now cases wherein the vector sum of forces acting
on the gas is no longer zero, but instead has an imbalance that leads, via Newton’s
second law, to a net acceleration,

dv
dt

D @v
@t

C v � rv D grad � gOr � rPgas



: (5.32)

Here v is the flow velocity, and grad and �gOr and are the vector forms for the
radiative acceleration and gravity, with Or a unit radial vector. The first equality
relates the total time derivative d=dt as the sum of intrinsic variation @=@t and
advective changes along a flow gradient, v � r.

The density and velocity are related through the mass conservation relation

@


@t
C r � 
v D d


dt
C 
r � v D 0 ; (5.33)

while conservation of energy takes the form

@e

@t
C r � ev D �Pgas r � v � r � F ; (5.34)

where the divergence of vector radiative flux F represents a local source or sink of
gas internal energy e. For an ideal gas with ratio of specific heats � , this is related
to the gas pressure through
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Pgas D 
a2 D .� � 1/e ; (5.35)

where a � p
kT= is the isothermal sound speed, with k Boltzmann’s constant

and  the mean molecular weight.
Collectively, Eqs. (5.32)–(5.35) represent the general equations for a potentially

time-dependent, multi-dimensional flow.

5.4.2 Local Linear Analysis for “Strange-Mode” Instability
of Hydrostatic Envelope

Let us first apply these general equations as the basis for a local, linear perturbation
analysis of hydrostatic radiative envelopes in VMS with a dynamically significant
radiative acceleration grad. The response of this acceleration to local perturbations,
e.g. in the gas density 
, gives rise to the so-called strange-mode instability (Blaes
and Socrates 2003; Glatzel and Kiriakidis 1993; Glatzel 1994, 2005). The most
general form requires a global analysis of the envelope structure; but in the limit of
wavelengths shorter than the local gravitational scale height, we can apply the so-
called “WKB approximation” that ignores background gradients and analyzes the
effect of localized, small-amplitude perturbations ı
, ıv, etc. (Since the coupling
to radiation keeps the gas nearly isothermal, a simplified analysis can ignore
perturbations in temperature.)

For strange modes, the simplest case involves purely radial variations of sinu-
soidal form ı � ei.kr�!t/, with k the (real) radial wavenumber and ! the (possibly
complex) frequency. To first order in small-amplitude perturbations, the momentum
equation (5.32) gives

� i!ıv D �ika2 ı




C ıgrad : (5.36)

A similar application to the perturbed continuity equation (5.33) relates the per-
turbed velocity to density,

ıv D !

k

ı




: (5.37)

If we further assume that the opacity has density dependence given by the
logarithmic derivative

�
 � @ ln �

@ ln 

; (5.38)

then the perturbed radiative acceleration can also be expressed in terms of the
perturbed density,
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ıgrad D �
grad
ı




: (5.39)

The combination of (5.36), (5.37), and (5.39) allows us to solve for a dispersion
relation for the frequency

! D
q

a2k2 C ik�
 grad � ˙ak

�
1 C i�
grad

2a2k

�
D ˙ak ˙ i�


grad

2a
; (5.40)

where the middle approximation uses a high-wavenumber limit to expand the radical
from the first form. For upward-propagating (C) modes, the frequency has a positive
imaginary component, implying an instability with growth rate � D �
 grad=2a D
�
	 g=2a. The associated instability growth time is

tg � ��1 D 2a

�
	 g
D 400 s

a20

g4	 �


; (5.41)

where a20 � a=.20 km=s/ and g4 � g=.104cm=s2/.
Figure 5.4a shows that for OPAL opacities �
 is typically a few tenths in the

subsurface regions of a stellar envelope. Taking �
 � 0:5 and typical stellar
parameters g4 D a20 D 1, we see that instability growth time tg � 2;000 s is quite
short for VMS with 	 a factor few below unity, but is much longer for lower-mass
stars with very small 	 .

Fig. 5.4 Logarithmic derivative of opacity with density �
 (left) and net instability growth rate
� (scaled by grad=2a; right) from Eq. (5.42), plotted as contours in the log T vs. log.Prad=Pgas/

plane for the case of a hot VMS with Teff D 60kK .x (log Teff D 4:8). The contours are in
increments of 0.1 and the heavy thick curves represent a value of 0.5 for �
 and 0 for �. The dashed
contours indicate negative growth rates, and so show deep interior regions have a net damping due
to radiation drag effects
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The above stability analysis is based solely on mass and momentum conserva-
tion, ignoring the gas and radiative energy. A generalization (Blaes and Socrates
2003) that takes proper account of associated perturbations in the radiation field
shows that the instability competes against the damping from a “radiation drag”
effect, yielding now a net growth rate (cf. Eq. 62 of Blaes and Socrates 2003)

� D grad

2a

�
1 C Pgas

4Prad

�
.�
 � D/ ; (5.42)

where the radiative drag coefficient term is given by

D D
�

1 C Pgas

4Prad

�
4Prad

F
a D

�
1 C Pgas

4Prad

�
16

3

�
T

Teff

�4
a

c
: (5.43)

As shown in the right panel of Fig. 5.4, in the hot interior regions with log T & 5:4,
the medium is now stabilized by the net damping from this radiation drag term, but
in the subsurface layers where T . Teff, the a=c factor keeps this drag small, thus
preserving the instability found above, and so again giving growth rates � that are a
few tenths times grad=2a.

The net instability should lead to amplification of upward-propagating sound
waves, eventually limited by the steeping into weak or moderate shocks with
velocity amplitude on the order of the sound speed, ıv � a. For near-surface
temperatures T � Teff of a few 104 K, the sound speed is a � 20 km/s, much
smaller (by factor �1/30) than the near-surface escape speed vesc � p

2GM=R,
which is about 600 km/s for a star with a solar value for the ratio of mass to radius.
As such, this short-wavelength form of such strange mode instability is not at all
suitable to providing the kind of large-scale mass ejection inferred from LBVs. But
there have been suggestions (Glatzel and Kiriakidis 1993; Glatzel 1994, 2005) that
analogous larger-scale, global modes of strange-mode pulsations might be important
in triggering episodic mass loss.

5.4.3 General Equations for Steady, Spherically Symmetric
Wind

The general flow conservation Eqs. (5.32)–(5.35) also provide the basis for mod-
eling stellar wind outflows. First-order wind models are commonly based on the
simplifying approximations of steady-state (@=@t D 0), spherically symmetric,
radial outflow (v D v.r/Or). The mass conservation requirement (5.33) then can
then be used to define a constant overall mass loss rate,

PM � 4�
vr2 : (5.44)

Using this and the ideal gas law (5.35) to eliminate the density in the pressure
gradient term then gives for the radial equation of motion
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�
1 � a2

v2

�
v

dv

dr
D grad � GM

r2
C 2a2

r
C da2

dr
: (5.45)

The gas pressure terms (containing the sound speed a) on the right-hand-
side are key to accelerating the hot (MK) coronal-type winds of the sun and
other cool, lower-mass stars. But in winds from massive stars – which are kept
almost isothermal near the stellar effective temperature by the competition between
photoionization heating and radiative cooling – these terms are negligible, since
compared to competing terms needed to drive the wind, they are of order ws �
.a=vesc/

2 � 0:001, where vesc � p
2GM=R is the escape speed from the stellar

surface radius R. These gas pressure terms on the right-hand side of (5.45) can
thus be quite generally neglected in VMS winds. However, to allow for a smooth
mapping of a wind model onto a hydrostatic atmosphere through a subsonic wind
base, one can still retain the sound-speed term on the left-hand-side. Transitioning
to a supersonic wind then requires grad D GM=r2, and so 	 D 1, at the sonic point
v D a.

Since overcoming gravity is key, it is convenient to rewrite (5.45) in a dimen-
sionless form that scales all accelerations by gravity,

�
1 � ws

w

�
w0 D 	 � 1 (5.46)

Here w � v2=v2
esc is the flow kinetic energy in terms of the escape energy from the

surface radius R, and w0 � dw=dx is the change of this scaled energy with scaled
the gravitational potential x � 1 � R=r at any radius r .

In characterizing the sonic point as the flow “critical point”, it is sometimes
suggested (Nugis and Lamers 2002) that conditions for reaching 	 D 1, for
example in the iron opacity bump, set the sonic point density 
s and thus the mass
loss rate PM D 4�
saR2 of a steady wind outflow. But it is important to emphasize
that, because the flow energy at the sonic point is just a tiny fraction ws � 0:001

of what’s needed to escape the star’s gravitational potential, maintaining a steady
wind requires keeping 	 > 1 over an extended range of the supersonic region.
In Sect. 5.6.3 we discuss the flow stagnation that occurs if the opacity or radiative
energy flux is insufficient to maintain initial outflow from a limited super-Eddington
region. But the next section first reviews the standard “CAK” theory (Castor et al.
1975) for a steady-state wind outflow driven by line-opacity.

5.5 Line-Driven Stellar Winds

As noted in Sects. 5.2.2 and 5.2.3, the resonant nature of line (bound-bound)
scattering from metal ions leads to an opacity that is inherently much stronger
than from free electrons. In the deep envelope where the radiative transfer is well
characterized as a radiative diffusion, the cumulative opacity of lines is given by
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the Rosseland mean, which can be several times that from pure electron scattering,
e.g. near the Iron bump; in VMS approaching the IBEL, this can lead to a strong
inflation of the stellar envelope (Sect. 5.3.4).

But in the idealized case that ions are illuminated by an unattenuated continuum
– as would occur in the limit of optically thin radiative transfer–, the cumulative
opacity is given by the Planck mean (Sect. 5.2.2), wherein the dominant contribution
of lines leads to an opacity enhancement that is a huge factor Q � 2;000 larger
than from free electrons (Gayley 1995). In terms of the radiative force, this implies
the Eddington parameter associated with lines can be enhanced by a similarly
large factor over the classical electron scattering value. This suggest that, even in
moderately massive stars with electron Eddington parameters 	e > 5 � 10�4, line
opacity could completely overcome gravity and so initiate a sustained stellar wind
outflow.

In practice, self-absorption within strong lines limits the line force, giving it
a value that is intermediate between that from the Rosseland and Planck means.
Modeling such line-driven wind outflows thus requires a treatment of the line
radiation transport in regimes between the associated diffusion vs. optically thin
limits. Chapter 4 reviews how mass loss rates from VMS are computed from
numerical models using Monte-Carlo (MC) treatments of the radiation transport.
As complement to this, the next Sect. 5.5.1 reviews the classical Castor et al. (1975,
CAK) model, which by using the key Sobolev approximation (Sobolev 1960) for
localized line-transport, allows one to obtain fully analytic solutions for the steady-
state wind, with associated simple scaling forms for the wind mass loss rate and
velocity law (Owocki 2013). This provides a basis for a linear perturbation analysis
of a strong instability intrinsic to line-driving (Sect. 5.5.2), and for time-dependent
numerical hydrodynamical simulations of the resulting instability wind structure
(Sect. 5.5.2).

5.5.1 The CAK/Sobolev Model for Steady-State Winds

Sobolev Line-Transfer and Desaturation by Wind Expansion

As illustrated in Fig. 5.5, a key factor in controlling the net strength of the line-force
that drives a stellar wind outflow is the desaturation of the lines associated with the
variable Doppler shift from the wind acceleration. In the highly supersonic wind,
the thermal Doppler broadening of the line, which for heavy ions is set by a thermal
speed vth that is a factor several smaller than the sound speed a, is much smaller
than the Doppler shift associated with the wind outflow speed v 
 a. This allows
a localized “Sobolev approximation” (Sobolev 1960) for the line transport, with
stellar photons interacting with the wind over a narrow resonance layer, with width
set by the Sobolev length, lSob D vth=.dv=dr/, and with associated optical depth
proportional to t � �e
c=.dv=dr/ D 	e

PMc2=L�w0.
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Fig. 5.5 Two perspectives for the Doppler-shifted line-resonance in an accelerating flow. Right:
Photons with a wavelength just shortward of a line propagate freely from the stellar surface up
to a layer where the wind outflow Doppler shifts the line into a resonance over a narrow width
(represented here by the shading) equal to the Sobolev length, set by the ratio of thermal speed
to velocity gradient, lSob � vth=.dv=dr/. Left: Seen from successively larger radii within the
accelerating wind, the Doppler-shift sweeps out an increasingly broadened line absorption trough
in the stellar spectrum

The CAK Line-Force, Mass Loss Rate, and Wind Velocity Law

Based on this Sobolev treatment of line transport, Castor et al. (1975) developed a
powerful and highly useful formalism for treating the cumulative force from a large
ensemble of lines by assuming they could be approximated by power-law number
distribution in line-strength, with characteristic power index ˛. A key result is that
the cumulative force from the ensemble is reduced by a factor 1=.Qt/˛ from the
optically thin value,

	CAK D Q	e

.1 � ˛/.Qt/˛
D 	ekt�˛ D C.w0/˛ ; (5.47)

where the second equality defines the CAK “force multiplier” kt�˛ , with5 k �
Q

1�˛
=.1 � ˛/. The last equality relates the line-force to the flow acceleration, with

C � 1

1 � ˛

�
L�
PM c2

�˛ �
Q	e

�1�˛
: (5.48)

5Here we use a slight variation of the standard CAK notation in which the artificial dependence
on a fiducial ion thermal speed is avoided by simply setting vth D c. Back-conversion to CAK
notation is achieved by multiplying t by vth=c and k by .vth=c/˛ . The line normalization Q offers
the advantages of being a dimensionless measure of line-opacity that is independent of the assumed
ion thermal speed, with a nearly constant characteristic value of order Q � 103 for a wide range
of ionization conditions (Gayley 1995).
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Note that, for fixed sets of parameters for the star (L�, M�, 	e) and line-opacity (˛,
Q), this constant scales with the mass loss rate as C / 1= PM ˛.

Neglecting the small sound-speed term ws � 0:001 � 1, application of
Eq. (5.47) into (5.46) gives the CAK equation of motion,

F D w0 C 1 � 	e � C.w0/˛ D 0 : (5.49)

For small PM (large C ), there are two solutions, while for large PM (small C ), there
are no solutions. The CAK critical solution corresponds to a maximal mass loss rate,
defined by @F=@w0 D 0, for which the C.w0/˛ is tangent to the line 1 � 	e C w0
at a critical acceleration w0

c D .1 � 	e/˛=.1 � ˛/. Since the scaled equation of
motion (5.49) has no explicit spatial dependence, this critical acceleration applies
throughout the wind, and so can be trivially integrated to yield w.x/ D w0

c x. In
terms of dimensional quantities, this represents a specific case of the general “beta”-
velocity-law,

v.r/ D v1
�

1 � R�
r

�ˇ

; (5.50)

where here ˇ D 1=2, and the wind terminal speed v1 D vesc

p
˛.1 � 	e/=.1 � ˛/.

Similarly, the critical value Cc yields, through Eq. (5.48), the standard CAK scaling
for the mass loss rate

PMCAK D L�
c2

˛

1 � ˛

"
Q	e

1 � 	e

#.1�˛/=˛

: (5.51)

Modifications and Limitations of the CAK Mass Loss Scaling

These CAK results strictly apply only under the idealized assumption that the stellar
radiation is radially streaming from a point-source. If one takes into account the
finite angular extent of the stellar disk, then near the stellar surface the radiative
force is reduced by a factor fd� � 1=.1 C ˛/, leading to a reduced mass loss rate
(Friend and Abbott 1986; Pauldrach et al. 1986)

PMfd D f
1=˛

d� PMCAK D
PMCAK

.1 C ˛/1=˛
� PMCAK=2 : (5.52)

Away from the star, the correction factor increases back toward unity, which
for the reduced base mass flux implies a stronger, more extended acceleration,
giving a somewhat higher terminal speed, v1 � 3vesc, and a flatter velocity law,
approximated by replacing the exponent in Eq. (5.50) by ˇ � 0:8.

The effect of a radial change in ionization can be approximately taken into
account by correcting the CAK force (5.47) by a factor of the form .ne=W /ı ; where
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ne is the electron density, W � 0:5
�
1 �p

1 � R2�=r2

�
is the radiation “dilution

factor”, and the exponent has a typical value ı � 0:1 (Abbott 1982). This factor
introduces an additional density dependence to that already implied by the optical
depth factor 1=t˛ given in Eq. (5.47). Its overall effect can be roughly accounted
with the simple substitution ˛ ! ˛0 � ˛ � ı in the power exponents of the CAK
mass loss scaling law (5.51). The general tendency is to moderately increase PM ,
and accordingly to somewhat decrease the wind speed.

The above scalings also ignore the finite gas pressure associated with a small
but non-zero sound-speed parameter ws . Through a perturbation expansion of the
equation of motion (5.46) in this small parameter, it possible to derive simple
scalings for the fractional corrections to the mass loss rate and terminal speed
(Owocki and ud-Doula 2004)

ıms � 4
p

1 � ˛

˛

a

vesc
I ıv1;s � �˛ıms

2.1 � ˛/
� �2p

1 � ˛

a

vesc
: (5.53)

For a typical case with ˛ � 2=3 and ws D 0:001, the net effect is to increase the
mass loss rate and decrease the wind terminal speed, both by about 10 %.

An important success of these CAK scaling laws is the theoretical rationale
they provide for an empirically observed “Wind-Momentum-Luminosity” (WML)
relation (Kudritzki et al. 1999). Combining the CAK mass-loss law (5.51) together
with the scaling of the terminal speed with the effective escape, we obtain a WML
relation of the form,

PM v1
p

R� � L1=˛0

Q
1=˛0�1

(5.54)

wherein we have neglected a residual dependence on M.1 � 	e/ that is generally
very weak for the usual case that ˛0 is near 2=3. Note that the direct dependence
Q � Z provides the scaling of the WML with metalicity Z.

Finally, as a star approaches the classical Eddington limit 	e ! 1, these
standard CAK scalings formally predict the mass loss rate to diverge as PM /
1=.1 � 	e/

.1�˛/=˛ , but with a vanishing terminal flow speed v1 / p
1 � 	e. The

former might appear to provide an explanation for the large mass losses inferred in
LBV’s, but the latter fails to explain the moderately high inferred ejection speeds,
e.g. the 500–800 km/s kinematic expansion inferred for the Homunculus nebula of
� Carinae (Smith 2002; Smith et al. 2003).

So one essential point is that line-driving could never explain the extremely
large mass loss rates needed to explain the Homunculus nebula. To maintain the
moderately high terminal speeds, the 	e=.1 � 	e/ factor would have to be of order
unity. Then for optimal realistic values ˛ D 1=2 and Q � 2;000 for the line opacity
parameters (Gayley 1995), the maximum mass loss from line driving is given by
Smith and Owocki (2006),

PMmax;lines � 1:4 � 10�4L6 Mˇ=year ; (5.55)
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where L6 � L=106Lˇ. Even for peak luminosities of a few times 107Lˇ during
� Carinae’s eruption, this limit is still several orders of magnitude below the mass
loss needed to form the Homunculus. Thus, if mass loss during these eruptions
occurs via a wind, it must be a super-Eddington wind driven by continuum radiation
force (e.g., electron scattering opacity) and not lines (Quinn and Paczynski 1985;
Belyanin 1999). Such continuum-driven wind models for LBVs are discussed
further in Sect. 5.6.

5.5.2 Non-Sobolev Models of Wind Instability

The above CAK steady-state model depends crucially on the use of the Sobolev
approximation to compute the local CAK line force (5.47). Analyses that relax
this approximation show that the flow is subject to a strong, “line-deshadowing
instability” (LDI) for velocity perturbations on a scale near and below the Sobolev
length lSob D vth=.dv=dr/ (Lucy and Solomon 1970; MacGregor et al. 1979; Owocki
and Rybicki 1984, 1985; Owocki and Puls 1996). Moreover, the diffuse, scattered
component of the line force, which in the Sobolev limit is nullified by the fore-
aft symmetry of the Sobolev escape probability (see Fig. 5.6), turns out to have
important dynamical effects on the instability through a “diffuse line-drag” (Lucy
1984).
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Fig. 5.6 (a) The line profile � and direct intensity plotted vs. comoving frame frequency x � u D
x � v=vth , with the light shaded overlap area proportional to the net direct line-force gdir. The
dashed profile shows the effect of the Doppler shift from a perturbed velocity ıv, with the resulting
extra area in the overlap with the blue-edge intensity giving a perturbed line-force ıg that scales
in proportion to this perturbed velocity ıu D ıv=vth . (b) The comoving-frequency variation of
the forward (C) and backward (�) streaming parts of the diffuse, scattered radiation. Because of
the Doppler shift from the perturbed velocity, the dashed profile has a stronger interaction with
the backward streaming diffuse radiation, resulting in a diffuse-line-drag force that scales with the
negative of the perturbed velocity, and so tends to counter the instability of the direct line-force in
part a
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Linear Analysis of Line-Deshadowing Instability

For sinusoidal perturbations (�ei.kr�wt /) with wavenumber k and frequency !, the
linearized momentum equation (5.36) (ignoring the small gas pressure by setting
a D 0) relating the perturbations in velocity and radiative acceleration implies ! D
i

ıg

ıv , which shows that unstable growth, with =! > 0, requires <.ıg=ıv/ > 0. For a
purely Sobolev model (Abbott 1980), the CAK scaling of the line-force (5.47) with
velocity gradient v0 implies ıg � ıv0 � ikıv, giving a purely real !, and thus a
stable wave that propagates inward at phase speed,

!

k
D � @g

@v0 � �U ; (5.56)

which is now known as the “Abbott speed”. Abbott (1980) showed this is compara-
ble to the outward wind flow speed, and in fact exactly equals it at the CAK critical
point.

As illustrated in Fig. 5.6a, instability arises from the deshadowing of the line by
the extra Doppler shift from the velocity perturbation, giving ıg � ıv and thus
=! > 0. A general analysis (Owocki and Rybicki 1984) yields a “bridging law”
encompassing both effects,

ıg

ıv
� ˝

ik�

1 C ik�
; (5.57)

where ˝ � gcak=vth sets the instability growth rate, and the “bridging length” �

is found to be of order the Sobolev length lsob. As illustrated in Fig. 5.7, in the
long-wavelength limit k� � 1, we recover the stable, Abbott-wave scalings of the
Sobolev approximation, ıg=ıv � ik˝� D ikU ; while in the short-wavelength limit
k� 
 1, we obtain the instability scaling ıg � ˝ıv. The instability growth rate is
very large, about the flow rate through the Sobolev length, ˝ � v=lSob. Since this
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Fig. 5.7 Illustration of the scaling for perturbed line-acceleration ıgrad with velocity perturbation
ıv, showing how this goes from being proportional to the perturbed velocity gradient ıv0 � ikıv
in the long-wavelength Sobolev limit appropriate for Abbott waves, to scaling directly with the
perturbed velocity ıv in the short-wavelength limit of the Line-Deshadowing Instability (LDI)
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is a large factor v=vth bigger than the typical wind expansion rate dv=dr � v=R�, a
small perturbation at the wind base would, within this lineary theory, be amplified
by an enormous factor, of order ev=vth � e100!

Numerical Simulations of Instability-Generated Wind Structure

Numerical simulations of the nonlinear evolution require a non-Sobolev line-force
computation on a spatial grid that spans the full wind expansion over several R�,
yet resolves the unstable structure at small scales near and below the Sobolev
length. The first tractable approach (Owocki et al. 1988) focussed on the absorption
of the direct radiation from the stellar core, accounting now for the attenuation
from intervening material by carrying out a nonlocal integral for the frequency-
dependent radial optical depth. Simulations show that because of inward nature of
wave propagation implies an anti-correlation between velocity and density variation,
the nonlinear growth leads to high-speed rarefactions that steepen into strong reverse
shocks and compress material into dense clumps (or shells in these 1D models)
(Owocki et al. 1988).

The assumption of pure-absorption was criticized by Lucy (1984), who pointed
out that the interaction of a velocity perturbation with the background, diffuse radi-
ation from line-scattering results in a line-drag effect that reduces, and potentially
could even eliminate, the instability associated with the direct radiation from the
underlying star. The basic effect is illustrated in Fig. 5.6. The fore-aft (˙) symmetry
of the diffuse radiation leads to cancellation of the gC and g� force components
from the forward and backward streams, as computed from a line-profile with
frequency centered on the local comoving mean flow. Panel b shows that the Doppler
shift associated with the velocity perturbation ıv breaks this symmetry, and leads to
stronger forces from the component opposing the perturbation.

Full linear stability analyses accounting for scattering effects (Owocki and
Rybicki 1985) show the fraction of the direct instability that is canceled by the
line-drag of the perturbed diffuse force depends on the ratio of the scattering source
function S to core intensity Ic ,

s D r2

R2�
2S

Ic

� 1

1 C �
I � �

q
1 � R2�=r2 ; (5.58)

where the latter approximation applies for the optically thin form 2S=Ic D 1 � �.
The net instability growth rate thus becomes

˝.r/ � gcak

vth

�.r/

1 C �.r/
: (5.59)

This vanishes near the stellar surface, where � D 0, but it approaches half the
pure-absorption rate far from the star, where � ! 1. This implies that the outer
wind is still very unstable, with cumulative growth of ca. v1=2vth � 50 e-folds.
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Most efforts to account for scattering line-drag in simulations of the nonlinear
evolution of the instability have centered on a Smooth Source Function (SSF)
approach (Owocki 1991; Feldmeier 1995; Owocki and Puls 1996, 1999). This
assumes that averaging over frequency and angle makes the scattering source
function relatively insensitive to flow structure, implying it can be pulled out of
the integral in the formal solution for the diffuse intensity. Within a simple two-
stream treatment of the line-transport, the net diffuse line-force then depends on the
difference in the nonlocal escape probabilities b˙ associated with forward (C) vs.
backward (�) integrals of the frequency-dependent line-optical-depth.

In the Sobolev approximation, both the forward and backward integrals give the
same form, viz. bC � b�, leading to the net cancellation of the Sobolev diffuse
force. But for perturbations on a spatial scale near and below the Sobolev length,
the perturbed velocity breaks the forward/back symmetry (Fig. 5.6b), leading to
perturbed diffuse force that now scales in proportion to the negative of the perturbed
velocity, and thus giving the diffuse line-drag that reduces the net instability by the
factors given in (5.58) and (5.59).

The left panel of Fig. 5.8 illustrates the results of a 1D SSF simulation, starting
from an initial condition set by smooth, steady-state CAK/Sobolev model (dashed
curves). Because of the line-drag stabilization of the driving near the star (Eq. 5.59),
the wind base remains smooth and steady. But away from the stellar surface, the
net strong instability leads to extensive structure in both velocity and density,
roughly straddling the CAK steady-state. Because of the backstreaming component
of the diffuse line-force causes any outer wind structure to induce small-amplitude
fluctuations near the wind base, the wind structure, once initiated, is “self-excited”,
arising spontaneously without any explicit perturbation from the stellar boundary.
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Fig. 5.8 Left: Results of 1D Smooth-Source-Function (SSF) simulation of the line-deshadowing
instability. The line plots show the spatial variation of velocity (upper) and density (lower) at a
fixed, arbitrary time snapshot. The corresponding grey scales show both the time (vertical axis) and
height (horizontal axis) evolution. The dashed curve shows the corresponding smooth, steady CAK
model. Right: For 2DHC1DR SSF simulation, grayscale representation for the density variations
rendered as a time sequence of 2-D wedges of the simulation model azimuthal range �� D 12ı

stacked clockwise from the vertical in intervals of 4,000 s from the CAK initial condition
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In the outer wind, the velocity variations become highly nonlinear and non-
monotonic, with amplitudes approaching 1,000 km/s, leading to formation of strong
shocks. However, these high-velocity regions have very low density, and thus
represent only very little material. As noted for the pure-absorption models, this
anti-correlation between velocity and density arises because the unstable linear
waves that lead to the structure have an inward propagation relative to the mean
flow. For most of the wind mass, the dominant overall effect of the instability is
to concentrate material into dense clumps. As discussed below, this can lead to
overestimates in the mass loss rate from diagnostics that scale with the square of
the density.

The presence of multiple, embedded strong shocks suggests a potential source
for the soft X-ray emission observed from massive star winds; but the rarefied
nature of the high-speed gas implies that this self-excited structure actually feeds
very little material through the strong shocks needed to heat gas to X-ray emitting
temperatures. To increase the level of X-ray emission, Feldmeier et al. (1997),
introduced intrinsic perturbations at the wind base, assuming the underlying stellar
photosphere has a turbulent spectrum of compressible sound waves characterized by
abrupt phase shifts in velocity and density. These abrupt shifts seed wind variations
that, when amplified by the line-deshadowing instability, now include substantial
velocity variations among the dense clumps. As illustrated in Fig. 5.9, when these
dense clumps collide, they induce regions of relatively dense, hot gas which produce
localized bursts of X-ray emission. Averaged over time, these localized regions can
collectively yield X-ray emission with a brightness and spectrum that is comparable
to what is typically observed from such hot stars.

Because of the computational expense of carrying out nonlocal optical depth
integrations at each time step, such SSF instability simulations have generally
been limited to just 1D. More realistically, various kinds of thin-shell instabilities
(Vishniac 1994; Kee et al. 2014) can be expected to break up the structure into a
complex, multidimensional form. A first step to modelling both radial and lateral

Fig. 5.9 Greyscale rendition of the evolution of wind density and temperature, for time-dependent
wind-instability models with structure formation triggered by photospheric perturbations. The
boxed crosses identify localized region of clump-clump collision that lead to the hot, dense gas
needed for a substantial level of soft X-rays emission
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structure is to use a restricted “2D-HC1D-R” approach (Dessart and Owocki 2003),
extending the hydrodynamical model to 2D in radius and azimuth, but still keeping
the 1D-SSF radial integration for the inward/outward optical depth within each
azimuthal zone. The right panel of Fig. 5.8 shows the resulting 2D density structure
within a narrow (12ı) wedge, with the time evolution rendered clockwise at fixed
time intervals of 4,000 s starting from the CAK initial condition at the top. The
line-deshadowing instability is first manifest as strong radial velocity variations and
associated density compressions that initially extend nearly coherently across the
full azimuthal range of the computational wedge.

But as these initial “shell” structures are accelerated outward, they become
progressively disrupted by Rayleigh-Taylor or thin-shell instabilities that operate
in azimuth down to the grid scale d� D 0:2ı. Such a 2DRC1DH approach may
well exaggerate the level of variation on small lateral scales. The lack of lateral
integration needed to compute an azimuthal component of the diffuse line-force
means that the model ignores a potentially strong net lateral line-drag that should
strongly damp azimuthal velocity perturbations on scales below the lateral Sobolev
length l0 � rvth=vr (Rybicki et al. 1990). Presuming that this would inhibit
development of lateral instability at such scales, then any lateral breakup would be
limited to a minimum lateral angular scale of ��min � l0=r D vth=vr � 0:01 rad �
0:5ı. Further work is needed to address this issue through explicit incorporation of
the lateral line-force and the associated line-drag effect.

5.5.3 Clumping, Porosity and Vorosity: Implications for Mass
Loss Rates

Both the 1D and 2D SSF simulations thus predict a wind with extensive structure
in both velocity and density. A key question then is how such structure might affect
the various wind diagnostics that are used to infer the mass loss rate. Historically
such wind clumping has been primarily considered for its effect on diagnostics that
scale with the square of the density, The strength of such diagnostics is enhanced
in a clumped wind, leading to an overestimate of the wind mass loss rate that
scales with

p
fcl, where the clumping factor fcl � ˝


2
˛
= h
i2, with angle brackets

denoting a local averaging over many times the clump scale. For strong density
contrast between the clump and interclump medium, this is just inverse of the clump
volume filling factor, i.e. fcl � 1=fvol. 1D SSF simulations by Runacres and Owocki
(2002) generally find fcl increasing from unity at the structure onset radius �1:5R�,
peaking at a value fcl & 10 at r � 10R�, with then a slow outward decline to �5

for r � 100R�.
These thus imply that thermal IR and radio emission formed in the outer wind

r � 10–100 R� may overestimate mass loss rates by a factor 2–3. The 2D models of
Dessart and Owocki (2003, 2005) find a similar variation, but somewhat lower peak
value, and thus a lower clumping factor than in 1D models, with a peak value of
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about fcl � 6, apparently from the reduced collisional compression from clumps
with different radial speeds now being able to pass by each other. But in both
1D and 2D models, the line-drag near the base means that self-excited, intrinsic
structure does not appear till r & 1:5, implying little or no clumping effect on
H˛ line emission formed in this region. It should be stressed, however, that this is
not necessarily a very robust result, since turbulent perturbations at the wind base,
and/or a modestly reduced diffuse line-drag, might lead to onset of clumping much
closer to the wind base.

If clumps remain optically thin, then they have no effect on single-density
diagnostics, like the bound-free absorption of X-rays. The recent analysis by Cohen
et al. (2010) of the X-ray line-profiles observed by Chandra from �-Pup indicates
matching the relatively modest skewing of the profile requires mass loss reduction
of about a factor 3 from typical density-squared diagnostic value. However, a key
issue here is whether the individual clumps might become optically thick to X-ray
absorption. In this case, the self-shadowing of material within the clump can lead to
an overall reduction in the effective opacity of the clumped medium (Owocki et al.
2004; Oskinova et al. 2007),

�eff D �
1 � e��cl

�cl
; (5.60)

where � is the microscopic opacity, and the optical thickness for clumps of size
` is �cl D �
 f̀cl. The product f̀cl � h is known as the porosity length, which
also represents the mean-free-path between clumps. A medium with optically thick
clumps is thus porous, with an opacity reduction factor �eff =� D 1=�cl D 1=�
h.

However, it is important to emphasize that getting a significant porosity decrease
in the continuum absorption of a wind can be quite difficult, since clumps must
become optically thick near the radius of the smoothed-wind photosphere, implying
a collection of a substantial volume of material into each clump, and so a porosity
length on order the local radius. Owocki and Cohen (2006) showed in fact that
a substantial porosity reduction the absorption-induced asymmetry of X-ray line
profiles required such large porosity lengths h � r . Since the LDI operates on
perturbations at the scale of the Sobolev length lsob � vth=.dv=dr/ � .vth=v1/R� �
R�=300, the resulting structure is likewise very small scale, as illustrated in the 2D
SSF simulations in Fig. 5.8. Given the modest clumping factor fcl . 10, it seems
clear that the porosity length is quite small, h < 0:1r , and thus that porosity from
LDI structure is not likely to be an important factor for continuum processes like
bound-free absorption of X-rays.

The situation is however quite different for line absorption, which can readily
be optically thick in even a smooth wind, with Sobolev optical depth �sob D
�l
vth=.dv=dr/ D �l 
lsob > 1. In a simple model with a smooth velocity law but
material collected into clumps with volume filling factor fvol D 1=fcl, this clump
optical depth would be even larger by a factor fcl. As noted by Oskinova et al.
(2007), the escape of radiation in the gaps between the thick clumps might then
substantially reduce the effective line strength, and so help explain the unexpected
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weakness of PV lines observed by FUSE (Fullerton et al. 2006), which otherwise
might require a substantial, factor-ten or more reduction in wind mass loss rate.

But instead of spatial porosity, the effect on lines is better characterized as
a kind of velocity porosity, or “vorosity”, which is now relatively insensitive to
the spatial scale of wind structure (Owocki 2008). The left panel of Fig. 5.10
illustrates the typical result of 1D dynamical simulation of the wind instability,
plotted here as a time-snapshot of velocity vs. a mass coordinate, instead of radius.
The intrinsic instability of line-driving leads to a substantial velocity structure, with
narrow peaks corresponding to spatially extended, but tenuous regions of high-
speed flow; these bracket dense, spatially narrow clumps/shells that appear here
as nearly flat, extended velocity plateaus in mass. The right panel of Fig. 5.10
illustrates a simplified, heuristic model of such wind structure for a representative
wind section, with the velocity clumping now represented by a simple “staircase”
structure, compressing the wind mass into discrete sections of the wind velocity law,
while evacuating the regions in between; the structure is characterized by a “velocity
clumping factor” fvel, set by the ratio between the internal velocity width ıv to the
velocity separation �v of the clumps. The straight line through the steps represents
the corresponding smooth wind flow.

The effect of the velocity structure on the line-absorption profile depends on the
local Sobolev optical depth, which scales with the inverse of the mass derivative
of velocity, �y � 1=.dv=dm/, evaluated at a resonance location rs , where the
velocity-scaled, observer-frame wavelength y D �v.rs/=v1. In a smooth wind with
Sobolev optical depth �y , the absorption profile is given simply by Ay D 1 � e��y

(Owocki 2008). In the structured model, the optical thickness of individual clumps
is increased by the inverse of the clumping factor 1=fvel, but they now only cover a
fraction fvel of the velocity/wavelength interval. The net effect on the averaged line
profile is to reduce the net absorption by a factor (Owocki 2008),

v

massmass

v

Δv}
δv

fv=δv/Δv

Fig. 5.10 Left: Self-excited velocity structure arising in a 1D SSF simulation of the line-driven
instability, plotted versus a mass coordinate, M.r/ D R r

R 4�
r 02 dr0. Note the formation of velocity
plateaus in the outer regions of the wind. Right: Velocity vs. mass in a wind seqment with structure
described by a simplified velocity staircase model with multiple large steps �v between plateaus
of width ıv. Here the associated velocity clumping factor fvel � ıv=�v D 1=10. The straight line
represents the corresponding smooth CAK/Sobolev model
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RA.�y; fvel/ D fvel
1 � e��y=fvel

1 � e��y
: (5.61)

Note that for optically thick lines, �y 
 1, the reduction approaches a fixed value,
given in fact by the clumping factor, RA � fvel. If the smooth-wind line is optically
thin, �y � 1, then RA.�y; fvel/ � .1 � e��y =f /=.�y=fvel/, which is quite analogous
to the opacity reduction for continuum porosity (Eq. 5.60), if we just substitute for
the clump optical depth, �c ! �y=fvel.

But a key point here is that, unlike for the continuum case, the net reduction
in line absorption no longer depends on the spatial scale of the clumps. Instead
one might think of this velocity clumping model as a kind of velocity form of
the standard venetian blind, with fvel representing the fractional projected covering
factor of the blinds relative to their separation. The fvel D 1 case represents closed
blinds that effectively block the background light, while small fvel represent cases
when the blinds are broadly open, letting through much more light.

Further discussion of the potentially key role of wind clumping and vorosity for
determining wind mass loss rates is given by Sundqvist et al. (2011).

5.6 Continuum-Driven Mass Loss from Super-Eddington
LBVs

5.6.1 Lack of Self-Regulation for Continuum Driving

Despite the extensive instability-generated structure in the outer regions of line-
driven winds, their overall mass loss is quite steady, and can persist throughout
the lifetime of even moderately massive stars. But VMS show occasional episodes
of much stronger mass loss, known generally as giant eruption LBVs, commonly
characterized by a radiative luminosity that exceeds even the classical electron-
scattering Eddington limit, and lasting for up to about a decade. The energy source
and trigger of such eruptive LBVs is uncertain, and could even have an explosive
character seated in the deep stellar interior; but their persistence for much longer
than the dynamical time scale of few days suggests they can be at least partly
modeled as a quasi-steady stellar wind, though now driven by continuum opacity
through electron scattering of their super-Eddington luminosity.

A key issue for such continuum-driven wind models is that they lack a natural
self-regulation. In line-driven winds, the self-absorption and saturation of line flux
defers the onset of line-acceleration to a relatively low-density near-surface layer,
thus limiting the associated mass flux to a value that can be sustained to full escape
from star by the expansion-desaturated line-driving in the outer wind. For continuum
driving by a gray opacity like electron scattering, the bolometric flux does not
saturate, keeping the radiative force strong even in dense, optically thick layers
well below the photospheric surface. As discussed below, a mass outflow initiated



144 S.P. Owocki

from such deep, dense layers becomes difficult to sustain with the finite energy flux
available from the stellar interior, and this can lead to flow stagnation and infall,
with extensive variability and spatial structure.

5.6.2 Convective Instability of a Super-Eddington Interior

It should be emphasized, however, that locally exceeding the Eddington limit need
not necessarily lead to initiation of a mass outflow. As first shown by Joss et al.
(1973), in a stellar envelope allowing the Eddington parameter 	 ! 1 generally
implies through the Schwarzschild criterion that material becomes convectively
unstable. Since convection in such deep layers is highly efficient at transporting
the energy, the contribution from the radiative flux is reduced, thereby lowering the
associated radiative Eddington parameter away from unity.

This suggests that, even in a star that formally exceeds the Eddington limit,
a radiatively driven outflow could only be initiated outside the region where
convection is efficient. An upper bound to the convective energy flux is set by

Fconv � vconv l dU=dr . a H dP=dr � a3
; (5.62)

where vconv, l , and U are the convective velocity, mixing length, and internal energy
density, and a, H , P , and 
 are the sound speed, pressure scale height, pressure, and
mass density. Setting this maximum convective flux equal to the total stellar energy
flux L=4�r2 yields an estimate for the maximum mass loss rate that can be initiated
by radiative driving,

PM 	 L

a2
� PMmax;conv : (5.63)

This is a very large rate, generally well in excess of the fundamental limit set by the
energy available to lift the material out of the star’s gravitational potential. In terms
of the escape speed vesc � p

GM=R from the stellar surface radius R, this can be
written as

PMtir D L

v2
esc=2

D L

GM=R
D 0:032

Mˇ
year

L

106Lˇ
Mˇ=Rˇ

M=R
: (5.64)

where L6 � L=106Lˇ. As indicated by the subscript, this is commonly referred
to as the photon tiring limit, since the radiation driving such a mass loss would
lose energy, or become “tired”, from the work done to lift the material against
gravity. Since generally a � vesc, a mass flux initiated from the radius of inefficient
convection would greatly exceed the photon tiring limit, implying again that any
such outflow would necessarily stagnate at some finite radius.
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5.6.3 Flow Stagnation from Photon Tiring

To account for the reduction in the radiative luminosity L.r/ due to the net work
done in lifting and accelerating the wind from the stellar radius R to a local radius
r with wind speed v.r/, we can write

L.r/ D Lo � PM

�
v.r/2

2
C GM

R
� GM

r

�
; (5.65)

where Lo � L.R/ is the radiative luminosity at the wind base. For the dimension-
less equation of motion (5.46),

�
1 � ws

w

�
w0 D 	 .x/ � 1 ;

the associated Eddington parameter depends on the scaled wind energy w and
inverse radius coordinate x,

	 .x/ D 	o.x/Œ1 � m.w C x/� ; (5.66)

where 	o.x/ � �.x/Lo=4�GMc. Here the gravitational “tiring number”,

m �
PM

PMtir
D

PM GM

LR
� 0:012

PM�4V
2

1;000

L6

; (5.67)

characterizes the fraction of radiative energy lost in lifting the wind out of
the stellar gravitational potential. The last expression allows easy evaluation
of the likely importance of photon tiring for characteristic scalings, where
PM�4 � PM=10�4 Mˇ=year, L6 � L=106 Lˇ, and V1;000 � vesc=1;000 km/s

� 0:62 .M=R/=.Mˇ=Rˇ/. In particular, for the typical CAK wind scalings of
line-driven winds, m < 0:01, justifying the neglect of photon tiring in the CAK
model discussed in Sect. 5.5.

More generally for cases with non-negligible tiring numbers m . 1, the equation
of motion (5.66) can be solved using integrating factors, yielding an explicit solution
for w.x/ in terms of the integral quantity N	o.x/ � R x

0 dx0	o.x0/,

w.x/ D �x C 1

m

h
1 � e�m N	o.x/

i
C ws ; (5.68)

where for typical hot-star atmospheres the sonic point boundary value is very small,
w.0/ D ws < 10�3.

As a simple example, consider the case6 with 	0.x/ D 1 C p
x, for which N	c D

x C 2x3=2=3. Figure 5.11a plots solutions w.x/ vs. x from Eq. (5.68) with various

6The choice of these functions is arbitrary, to illustrate the photon-tiring effect within a simple
model. More physically motivated models based on a medium’s porosity are presented in
Sect. 5.6.5
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Fig. 5.11 (a) Wind energy w vs. scaled inverse radius x(� 1 � R=r), plotted for Eddington
parameter 	o.x/ D 1 C p

x with various photon tiring numbers m. (b) Same as (a), except
for weak tiring limit m � 1, and for various constants c in the Eddington parameter scaling
	o.x/ D 1 C p

x � 2cx

m. For low m, the flow reaches a finite speed at large radii (x D 1), but for high
m, it curves back, stopping at some finite stagnation point xs , where w.xs/ � 0.
The latter solutions represent flows for which the mass loss rate is too high for the
given stellar luminosity to be able to lift the material to full escape at large radii.
In a time-dependent model, such material can be expected to accumulate at this
stagnation radius, and eventually fall back to the star (see Sect. 5.6.5 and Fig. 5.13).

Figure 5.11b shows that, even without photon tiring, a similar stagnation can
occur from an outward decline in 	 after an initially super-Eddington driving, as
might occur, for example, in the region above the iron bump. Again, a general point
here is that even if a super-Eddington condition 	 > 1 initiates an outflow, it does
not guarantee that material will escape to large radii in a steady-state wind.

5.6.4 Porosification of VMS Atmospheres by Stagnation
and Instabilities

The stagnation implied by the above simple steady 1D models can lead to a complex,
time-dependent, 3D pattern of outflows and inflows in actual VMS atmospheres.
Moreover, dating back to early work by Spiegel (1976, 1977), there have been
speculations that atmospheres supported by radiation pressure would likely exhibit
instabilities not unlike that of Rayleigh-Taylor, associated with the support of a
heavy fluid by a lighter one, leading to formation of “photon bubbles”. Quantitative
stability analyses (Spiegel and Tao 1999; Shaviv 2001) indicate that even a simple
case of a pure “Thomson atmosphere” – i.e., supported by Thomson scattering of
radiation by free electrons – could be subject to intrinsic instabilities for devel-
opment of lateral inhomogeneities, with many similar properties to the excitation
of strange mode pulsations (Glatzel 1994; Papaloizou et al. 1997) discussed in



5 Instabilities in VMS Envelopes and Winds 147

Sect. 5.4.2. If magnetic fields are introduced, even more instabilities come into play
(Arons 1992; Gammie 1998; Begelman 2002; Blaes and Socrates 2003).

The general upshot is that the atmospheres of VMS should have extensive
variability and spatial structure, characterized by strong density inhomogeneities
over a wide range in length scales. In deeper layers with a high mean density, we can
expect that many of the largest and/or densest clumps should individually become
optically thick, forcing the radiation flux to preferentially diffuse through relatively
low-density channels between the clumps.

This is the same spatial “porosity” effect discussed in Sect. 5.5.3, which reduces
the effective coupling of the gas and radiation in the deeper layers. In the present
context the net result is to keep these inner dense layers gravitationally bound even
when the radiative flux exceeds the Eddington limit. This defers the onset of a
continuum driven wind outflow to a higher, lower-density layer where the clumps
are becoming optically thin, resulting in a more moderate mass loss rate that can be
more readily sustained.

Figure 5.12 illustrates the expected overall structure of stars with a super-
Eddington luminosity, wherein porosity-regulated continuum opacity drives a quasi-
steady wind from a stably bound atmospheric base. The distinct physical layers from
interior to wind are as follows:

(A) As elaborated upon in Sect. 5.6.2, deep inside the star where the density is
sufficiently high, any excess flux above the Eddington luminosity is necessarily
advected through convection. Thus, we have a bound layer with Lrad < LEdd <

Ltot.

Fig. 5.12 The structure of a
super-Eddington star. The
labelled regions are described
in the text
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(B) At lower densities, where convection is inefficient, radiative instabilities
necessarily force the atmosphere to become inhomogeneous. This reduces the
effective opacity and thus increases the effective Eddington luminosity Leff. In
other words, this layer is bound, not because the flux is lowered (as it is in
the convective regions), but because the opacity is reduced. Thus here we find
LEdd < Lrad D L < Leff.

(C) Opacity reduction can operate only as long as the individual clumps are
optically thick. In high layers with lower density, the clumps lose their
opaqueness and so the effective opacity recovers the microscopic value (and
thus Leff to LEdd). A sonic/critical point of a wind will therefore be located
where L D Leff & LEdd.

(D) Since the mass loss rate is large, the inner wind is optically thick and
the radiative photosphere resides in the wind itself, at some radius where
geometrical dilution eventually makes it become transparent.

5.6.5 Continuum-Driven Winds Regulated by Porous Opacity

To develop quantitative scalings for such porosity-regulated mass loss, let us again
first consider a medium in which material has coagulated into discrete clumps of
individual optical thickness �cl D �
cl`, where ` is the clump scale, and the clump
density is enhanced compared to the mean density of the medium by a volume
filling factor f D 
cl=
. The effective overall opacity of this medium can then
be approximated by the form given in (5.60),

�eff � �
1 � e��cl

�cl
:

Note again that in the limit of optically thin clumps (�cl � 1) this reproduces the
usual microscopic opacity (�eff � �); but in the optically thick limit (�cl 
 1),
the effective opacity is reduced by a factor of 1=�cl, thus yielding a medium with
opacity characterized instead by the clump cross section divided by the clump mass
(�eff D �=�cl D `2=mcl). The critical mean density at which the clumps become
optically thin is given by 
o D 1=�h, where h � `=f is a characteristic “porosity
length” parameter. A key upshot of this is that the radiative acceleration in such
a gray, but spatially porous medium would likewise be reduced by a factor that
depends on the mean density.

More realistically, it seems likely that structure should occur with a range of
compression strengths and length scales. Drawing upon an analogy with the power-
law distribution of line-opacity in the standard CAK model of line-driven winds, let
us thereby consider a power-law-porosity model in which the associated structure
has a broad range of porosity length h. As detailed in Owocki et al. (2004), this
leads to an effective Eddington parameter that scales as
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	eff � 	

�

o




�˛p

I 
 > 
o ; (5.69)

where ˛p is the porosity power index (analogous to the CAK line-distribution power
index ˛), and 
o � 1=�ho, with ho now the porosity-length associated with the
strongest (i.e. most optically thick) clump. As discussed by Sundqvist et al. (2012), a
power index ˛p D 2 gives the same transport as a simple two-component (clump C
void) medium described by Markovian statistics (Levermore et al. 1986; Pomraning
1991).

In rough analogy with the “mixing length” formalism of stellar convection, let
us assume the basal porosity length ho scales with gravitational scale height H �
a2=g. Then the requirement that 	eff D 1 at the wind sonic point yields a scaling for
the mass loss rate scaling with luminosity. For a canonical case ˛p D 1=2 (Owocki
et al. 2004), we find

PMpor.˛p D 1=2/ D 4.	 � 1/
L

ac

H

ho

(5.70)

D 0:004.	 � 1/
Mˇ
year

L6

a20

H

ho

: (5.71)

The second equality gives numerical evaluation in terms of characteristic values for
the sound speed a20 � a=20 km/s and luminosity L6 � L=106Lˇ. Comparision
with the CAK scalings (5.51) for a line-driven wind shows that the mass loss
can be substantially higher from a super-Eddington star with porosity-regulated,
continuum driving. Applying the extreme luminosity L � 20 � 106 Lˇ estimated
for the 1840–1860 outburst of � Carinae, which implies an Eddington parameter
	 � 5, the derived mass loss rate for a canonical porosity length of ho D H

is PMpor � 0:32Mˇ/year, quite comparable to the inferred average �0:5 Mˇ/year
during this epoch.

For comparison, a Markov model with ˛p D 2 gives a different, weaker scaling
of mass loss with 	 ,

PMpor.˛p D 2/ D
�

1 � 1

	

�
L

ac

H

ho

D
PMpor.˛p D 1=2/

4	
; (5.72)

which saturates to a fixed limit for 	 
 1. To reach the mass loss inferred for
� Carianae’s giant eruption, such a Markov model would need to have a much
smaller porosity length, e.g. ho � 0:05H .

But overall, it seems that, together with the ability to drive quite fast outflow
speeds (of order the surface escape speed), the extended porosity formalism
provides a promising basis for self-consistent dynamical modeling of even the most
extreme mass loss outbursts of Luminous Blue Variables, namely those that, like the
giant eruption of � Carinae, approach the photon tiring limit.
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5.6.6 Simulation of Stagnation and Fallback Above the Tiring
Limit

For porosity models in which the base mass flux exceeds the photon tiring limit,
numerical simulations van Marle et al. (2009) have explored the nature of the
resulting complex pattern of infall and outflow. Despite the likely 3-D nature of such
flow patterns, to keep the computation tractable, this initial exploration assumes
1-D spherical symmetry, though now allowing a fully time-dependent density and
flow speed. The total rate of work done by the radiation on the outflow (or vice
versa in regions of inflow) is again accounted for by a radial change of the radiative
luminosity with radius,

dL

dr
D � Pmgrad D ��eff 
vL=c ; (5.73)

where Pm � 4�
vr2 is the local mass-flux at radius r , which is no longer a constant,
or even monotonically positive, in such a time-dependent flow. The latter equality
then follows from the definition (5.1) of the radiative acceleration grad for a gray
opacity �eff, set here by porosity-modified electron scattering. At each time step,
Eq. (5.73) is integrated from an assumed lower boundary luminosity L.R/ to give
the local radiative luminosity L.r/ at all radii r > R. Using this to compute the
local radiative acceleration, the time-dependent equations for mass and momentum
conservation are evolved forward to obtain the time and radial variation of density

.r; t/ and flow speed v.r; t/. (For simplicity, the temperature is fixed at the stellar
effective temperature.) The base Eddington parameter is 	 D 10, and the analytic
porosity mass flux is 2.3 times the tiring limit.

Figure 5.13 illustrates the flow structure as a function of radius (for r D 1�15 R)
and time (over an arbitrary interval long after the initial condition). The left panel
grayscale shows the local mass flux, in Mˇ=year, with dark shades representing
inflow, and light shades outflow. In the right panel, the shading represents the local
luminosity in units of the base value, L.r/=L.R/, ranging from zero (black) to one
(white); in addition, the superposed lines represent the radius and time variation of
selected mass shells.

Both panels show the remarkably complex nature of the flow, with positive mass
flux from the base overtaken by a hierarchy of infall from stagnated flow above.
However, the re-energization of the radiative luminosity from this infall makes
the region above have an outward impulse. The shell tracks thus show that, once
material reaches a radius r � 5R, its infall intervals become ever shorter, allowing
it eventually to drift outward. The overall result is a net, time-averaged mass loss
through the outer boundary that is very close to the photon-tiring limit, with however
a terminal flow speed v1 � 50 km/s that is substantially below the surface escape
speed vesc � 600 km/s.

These initial 1-D simulations thus provide an interesting glimpse into this
competition below inflow and outflow. Of course, the structure in more realistic
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Fig. 5.13 Grayscale plot of radius and time variation of mass flux (left) and luminosity (right) in
a time-dependent simulation of a super-Eddington wind with a porosity-mediated base mass flux
above the photon tiring limit. The white contours on the right trace the height progression of fixed
mass shells

2-D and 3-D models is likely to be even more complex, and may even lead itself
to a highly porous medium. But overall, it seems that one robust property of super-
Eddington stars may well be mass loss that is of the order of the photon tiring limit.

5.6.7 LBV Eruptions: Enhanced Winds or Explosions?

The previous section has modeled the eruptive, LBV mass loss of VMS in terms
of a quasi-steady, continuum-driven wind that results from the stellar luminosity
exceeding the Eddington limit. But an alternative paradigm is that such eruptions
might in fact be point-time “explosions” that simply did not have sufficient energy
to completely disrupt the star.

Both paradigms require an unknown energy source, but one important distinction
is that explosions are driven by gas pressure, whereas super-Eddington winds are
driven by radiation. The two have markedly different timescales.

The overpressure from an explosion propagates through the star on a very
short dynamical time scale, of order R=a, where a is the sound-speed in the very
high temperature gas that is heated by the energy deposition of the explosion. In
supernovae, this sound speed is on the order of the mass ejection speed, on the order
of 10,000 km/s; even in a “failed” LBV explosion, it would be on the order of the
surface escape speed, or a few hundred km/s, implying a dynamical time of order the
free fall time, or just a few hours. Of course, the release of radiative energy is tied
to the expansion (and later on, radioactive ˇ-decay), and thus peaks on a somewhat
longer time of a few days or weeks for supernovae. But it is difficult to see how such
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a direct gas-pressure-driven explosion could be maintained for the years to decade
timescale inferred for LBV eruptions.

This then is perhaps the key argument for a radiation-driven model. If energy is
released in the deep interior, its radiative signature can take up to a much longer
diffusion time to reach the surface.7 This can be long as a few years.

In contrast to the explosive disruption of supernovae, for LBV eruptions the total
energy is typically well below the stellar binding energy. Thus even if this energy
were released suddenly in the deep interior, the initial dynamical response would
quickly stagnate, leaving then radiative diffusion as the fall-back transport. But
since massive stars are already close to the Eddington limit, the associated excess
luminosity should push it over this limit, leading then to the strong, radiatively
driven mass loss described above.

Because this time scale is still much longer than any dynamical time in
the system, the essential processes can be modeled in terms of a quasi-steady
continuum-driven wind during this super-Eddington epoch, as described above.

Perhaps the least understood aspect of LBVs is the mechanism giving rise to
the observed eruptions. In supernovae explosions, the energy source is obviously
the core-collapse to a neutron star or black hole. But in LBV eruptions, the post-
eruption survival of an intact star, and the indication at least some LBVs can undergo
multiple giant eruptions, both show that the energy source cannot be a one-time
singular event like core collapse. Some other mechanism must provide the energy,
but the exact nature of this is still unknown. So it is still unclear why LBVs erupt,
or what sets the eruption time, amplitude, and repetition rate. In particular, there is
currently no model that predicts these quantities.

Concluding Summary
An overall theme of this chapter is that, because of their very high luminosity,
radiative forces play an important, dynamical role in the stability of the
envelopes and winds of VMS. A key issue is the nature of the opacity that
links the radiation to gas, and in particular the distinction between line vs.
continuum processes. Line opacity can in principle be much stronger, but in
the stellar envelope the saturation of the radiative flux within the line means
that flux-weighted line-force depends on an inverse or harmonic mean (a.k.a.
Rosseland mean). This only becomes moderately strong (factor ten above
electron scattering) in regions of strong line overlap, most particularly the
so-called Iron bump near 150,000 K. This iron bump can cause a strong, even

(continued)

7Since the luminous stars are likely to be mostly convective (e.g. Sect. 5.6.2), the limiting time
scale is that of the convective diffusion’s mixing length time in the stellar cores, which due to the
high density is much longer than the dynamical time scales.
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runaway inflation of the stellar envelope, leading to an Iron-Bump Eddington
Limit that might be associated with S-Doradus type LBVs.

Near surface layers, the desaturation of the lines leads to a much stronger
line-force that drives a strong stellar wind, with a well defined mass loss rate
regulated by the level of line saturation at the sonic point base. Away from the
wind base, there develops a strong “line-deshadowing instability” that induces
an extensive clumping and associated porosity in the outer wind.

For stars that exceed the classical Eddington limit, much stronger mass loss
can be driven by the continuum opacity, even approaching the “photon tiring”
limit, in which the full stellar energy flux is expended to lift and accelerate the
mass outflow. A key issue here is regulation of the continuum driving by the
porosity that develops from instability and flow stagnation of the underlying
stellar envelope. For a simple power-law model of the porous structure, the
derived mass loss rates seem capable of explaining the giant eruption LBVs,
including the 1840s eruption seen in Eta Carinae. Two key remaining issues
are the cause of the super-Eddington luminosity, and whether the response
might be better modeled as an explosion vs. a quasi-steady mass loss eruption.
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Chapter 6
Evolution and Nucleosynthesis of Very Massive
Stars

Raphael Hirschi

Abstract In this chapter, after a brief introduction and overview of stellar evolution,
we discuss the evolution and nucleosynthesis of very massive stars (VMS: M >

100 Mˇ) in the context of recent stellar evolution model calculations. This chapter
covers the following aspects: general properties, evolution of surface properties, late
central evolution, and nucleosynthesis including their dependence on metallicity,
mass loss and rotation. Since very massive stars have very large convective cores
during the main-sequence phase, their evolution is not so much affected by rotational
mixing, but more by mass loss through stellar winds. Their evolution is never
far from a homogeneous evolution even without rotational mixing. All VMS at
metallicities close to solar end their life as WC(-WO) type Wolf-Rayet stars. Due
to very important mass loss through stellar winds, these stars may have luminosities
during the advanced phases of their evolution similar to stars with initial masses
between 60 and 120 Mˇ. A distinctive feature which may be used to disentangle
Wolf-Rayet stars originating from VMS from those originating from lower initial
masses is the enhanced abundances of neon and magnesium at the surface of WC
stars. At solar metallicity, mass loss is so strong that even if a star is born with
several hundred solar masses, it will end its life with less than 50 Mˇ (using current
mass loss prescriptions). At the metallicity of the LMC and lower, on the other hand,
mass loss is weaker and might enable stars to undergo pair-instability supernovae.

6.1 Introduction

For a long time, the evolution of VMS was considered only in the framework of
Pop III stars. Indeed, it was expected that, only in metal free environments, could
such massive stars be formed, since the absence of dust, an efficient cooling agent,
would prevent a strong fragmentation of the proto-stellar cloud (Bromm et al. 1999;
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Abel et al. 2002).1 It came therefore as a surprise when it was discovered that
the most metal-poor low-mass stars, likely formed from a mixture between the
ejecta of these Pop III stars and pristine interstellar medium, did not show any
signature of the peculiar nucleosynthesis of the VMS (Heger and Woosley 2002;
Umeda and Nomoto 2002; Christlieb et al. 2002; Frebel et al. 2005). While such
observations cannot rule out the existence of these VMS in Pop III generations (their
nucleosynthetic signature may have been erased by the more important impact of
stars in other mass ranges), it seriously questions the importance of such object
for understanding the early chemical evolution of galaxies. Ironically, when the
importance of VMS in the context of the first stellar generations fades, they appear
as potentially interesting objects in the framework of present day stellar populations.

For a long time, observations favored a present-day upper mass limit for stars
around 150 Mˇ (Figer 2005; Oey and Clarke 2005). Recently, however, Crowther
et al. (2010) have re-assessed the properties of the brightest members of the R136a
star cluster, revealing exceptionally high luminosities (see Chaps. 1 and 2 for more
details). The comparison between main sequence evolutionary models for rotating
and non-rotating stars and observed spectra resulted in high current (	265 Mˇ) and
initial (	320 Mˇ) masses for these stars. The formation scenarios for these VMS
are presented in Chap. 3.

The above observations triggered a new interest in the evolution of very massive
stars. However, since VMS are so rare, only a few of them are known and we have
to rely on stellar evolution models in order to study their properties and evolution.
In this chapter, the evolution of VMS will be discussed based on stellar evolution
models calculated using the Geneva stellar evolution code (Eggenberger et al. 2007)
including the modifications implemented to follow the advanced stages as described
in Hirschi et al. (2004a). Models at solar (Z D 0:014), Large Magellanic Cloud
(LMC, Z D 0:006) and Small Magellanic Cloud (SMC, Z D 0:002) metallicities
will be presented (see Yusof et al. 2013, for full details about these models). These
models will also be compared to models of normal massive stars calculated with
the same input physics at solar metallicity (Z D 0:014) presented in Ekström et al.
(2012) and Georgy et al. (2012) as well as their extension to lower metallicities
(Georgy et al. 2013).

In Sect. 6.2, we review the basics of stellar evolution models and their key
physical ingredients. The general properties and early evolution of VMS are
presented in Sect. 6.3. The Wolf-Rayet stars originating from VMS are discussed
in Sect. 6.4. The late evolution and possible fates of the VMS is the subject of
Sect. 6.5. The nucleosynthesis and contribution to chemical evolution of galaxies is
discussed in Sect. 6.6. A summary and conclusions are given in section “Summary
and Conclusion”.

1Note, however, that recent star formation simulations find lower-mass stars forming in groups,
similarly to present-day star formation (Stacy et al. 2010; Greif et al. 2010).
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6.2 Stellar Evolution Models

The evolution of VMS is similar enough to more common massive stars that the
same stellar evolution codes can be used to study their evolution and corresponding
nucleosynthesis. Stellar evolution models require a wide range of input physics
ranging from nuclear reaction rates to mass loss prescriptions. In this section, we
review the basic equations that govern the structure and evolution of stars as well
as some of the key input physics with a special emphasis on mass loss, rotation and
magnetic fields.

6.2.1 Stellar Structure Equations

There are four equations describing the evolution of the structure of stars: the mass,
momentum and energy conservation equations and the energy transport equations,
which we recall below. On top of that, the equations of the evolution of chemical
elements abundances are to be followed. These equations are discussed in the next
section. In the Geneva stellar evolution code (GENEC, see Eggenberger et al. 2007),
which we base our presentation on in this section, the problem is treated in one
dimension (1D) and the equations of the evolution of chemical elements abundances
are calculated separately from the structure equations, as in the original version of
Kippenhahn and Weigert (Kippenhahn et al. 1967; Kippenhahn and Weigert 1990).
In GENEC, rotation is included and spherical symmetry is no longer assumed. The
effective gravity (sum of the centrifugal force and gravity) can in fact no longer be
derived from a potential and the case is said to be non–conservative. The problem
can still be treated in 1D by assuming that the angular velocity is constant on isobars.
This assumes that there is a strong horizontal (along isobars) turbulence which
enforces constant angular velocity on isobars (Zahn 1992). The case is referred to
as “shellular” rotation and using reasonable simplifications described in Meynet and
Maeder (1997), the usual set of four structure equations (as used for non-rotating
stellar models) can be recovered:

• Energy conservation:

@LP

@MP

D �nucl � �� C �grav D �nucl � �� � cP

@T

@t
C ı




@P

@t
(6.1)

Where LP is the luminosity, MP the Lagrangian mass coordinate, and �nucl, �� ,
and �grav are the energy generation rates per unit mass for nuclear reactions,
neutrinos and gravitational energy changes due to contraction or expansion,
respectively. T is the temperature, cP the specific heat at constant pressure, t

the time, P the pressure, 
 the density and ı D �@ln
=@lnT .
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• Momentum equation:

@P

@MP

D �GMP

4�r4
P

fP (6.2)

Where rP is the radius of the shell enclosing mass MP and G the gravitational
constant.

• Mass conservation (continuity equation):
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(6.3)

• Energy transport equation:
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where � is the total opacity and � is the Stefan-Boltzmann constant.
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< x > is x averaged on an isobaric surface, x is x averaged in the volume separating
two successive isobars and the index P refers to the isobar with a pressure equal to
P . g is the effective gravity and SP is the surface of the isobar (see Meynet and
Maeder 1997, for more details). The implementation of the structure equations into
other stellar evolution codes are presented for example in Paxton et al. (2011) and
Chieffi et al. (1998).
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6.2.2 Mass Loss

Mass loss strongly affects the evolution of very massive stars as we shall describe
below. Mass loss is already discussed in Chap. 4 but here we will recall the different
mass loss prescriptions used in stellar evolution calculations and how they relate
to each other. In the models presented in this chapter, the following prescriptions
were used. For main-sequence stars, the prescription for radiative line driven winds
from Vink et al. (2001a) was used, which compare rather well with observations
(Crowther et al. 2010; Muijres et al. 2011). For stars in a domain not covered by
the Vink et al. prescription, the de Jager et al. (1988a) prescription was applied
to models with log.Teff/ > 3:7. For log.Teff/ 	 3:7, a linear fit to the data
from Sylvester et al. (1998) and van Loon et al. (1999) (see Crowther 2001) was
performed. The formula used is given in Eq. 2.1 in Bennett et al. (2012).

In the stellar evolution simulations, the stellar wind is not simulated self-
consistently and a criterion is used to determine when a star becomes a WR star.
Usually, a star becomes a WR when the surface hydrogen mass fraction, Xs ,
becomes inferior to 0.3 (sometimes when it is inferior to 0.4) and the effective
temperature, log.Teff/, is greater than 4.0. The mass loss rate used during the WR
phase depends on the WR sub-type. For the eWNL phase (when 0:3 > Xs > 0:05),
the Gräfener and Hamann (2008) recipe was used (in the validity domain of this
prescription, which usually covers most of the eWNL phase). In many cases, the
WR mass-loss rate of Gräfener and Hamann (2008) is lower than the rate of Vink
et al. (2001a), in which case, the latter was used. For the eWNE phase – when
0:05 > Xs and the ratio of the mass fractions of (12CC 16O)/4He< 0:03 – and
WC/WO phases – when (12CC 16O)/4He > 0:03 – the corresponding prescriptions
of Nugis and Lamers (2000a) were used. Note also that both the Nugis and Lamers
(2000a) and Gräfener and Hamann (2008) mass-loss rates account for clumping
effects (Muijres et al. 2011).

As is discussed below, the mass loss rates from Nugis and Lamers (2000a) for
the eWNE phase are much larger than in other phases and thus the largest mass loss
occurs during this phase. In Crowther et al. (2010), the mass loss prescription from
Nugis and Lamers (2000a) was used for both the eWNL and eWNE phases (with a
clumping factor, f D 0:1). The models presented in this chapter thus lose less mass
than those presented in Crowther et al. (2010) during the eWNL phase.

The metallicity dependence of the mass loss rates is commonly included in the
following way. The mass loss rate used at a given metallicity, PM.Z/, is the mass
loss rate at solar metallicity, PM.Zˇ/, multiplied by the ratio of the metallicities to
the power of ˛: PM.Z/ D PM.Zˇ/.Z=Zˇ/˛ . ˛ was set to 0.85 for the O-type phase
and WN phase and 0.66 for the WC and WO phases; and for WR stars the initial
metallicity rather than the actual surface metallicity was used in the equation above
following Eldridge and Vink (2006). ˛ was set to 0.5 for the de Jager et al. (1988a)
prescription.

For rotating models, the correction factor described below in Eq. 6.5 is applied
to the radiative mass-loss rate.
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6.2.3 Rotation and Magnetic Mields

The physics of rotation included in stellar evolution codes has been developed
extensively over the last 20 years. A recent review of this development can be found
in Maeder and Meynet (2012). The effects induced by rotation can be divided into
three categories.

1. Hydrostatic effects: The centrifugal force changes the hydrostatic equilibrium of
the star. The star becomes oblate and the equations describing the stellar structure
have to be modified as described above.

2. Mass loss enhancement and anisotropy: Mass loss depends on the opacity and
the effective gravity (sum of gravity and centrifugal force) at the surface. The
larger the opacity, the larger the mass loss. The higher the effective gravity, the
higher the radiative flux (von Zeipel 1924) and effective temperature. Rotation,
via the centrifugal force, reduces the surface effective gravity at the equator
compared to the pole. As a result, the radiative flux of the star is larger at the
pole than at the equator. In massive hot stars, since the opacity is dominated
by the temperature–independent electron scattering, rotation enhances mass loss
at the pole. If the opacity increases when the temperature decreases (in cooler
stars), mass loss can be enhanced at the equator when the bi-stability is reached
(see mass loss chapter for more details).

For rotating models, the mass loss rates can be obtained by applying a correction
factor to the radiative mass loss rate as described in Maeder and Meynet (2000):

PM.˝/ D F˝ � PM .˝ D 0/ D F˝ � PMrad

with F˝ D .1 � 	 /
1
˛ �1

h
1 � ˝2

2�G
m
� 	

i 1
˛ �1

(6.5)

where 	 D L=LEdd D �L=.4�cGM/ is the Eddington factor (with � the total
opacity), and ˛ the Teff�dependent force multiplier parameter. Enhancement factors
(F˝) are generally close to one but they may become very large when 	 & 0:7 or
˝=˝crit > 0:9 (see Maeder and Meynet 2000; Georgy et al. 2011, for more details).
If critical rotation, where the centrifugal force balances gravity at the equator, is
reached, mechanical mass loss may occur and produce a decretion disk (see Krtička
et al. 2011, for more details). In most stellar evolution codes, the mass loss is
artificially enhanced when ˝=˝crit & 0:95 to ensure that the ratio does not become
larger than unity but multi-dimensional simulations are required to provide new
prescriptions to use in stellar evolution codes.

For mass loss rates, PM.˝ D 0/, the following prescriptions are commonly used:
Vink et al. (2001b) for radiatively driven wind of O-type stars, Nugis and Lamers
(2000b) for Wolf-Rayet stars and de Jager et al. (1988b) for cooler stars not covered
by the other two prescriptions and for which dust and pulsation could play a role in
the driving of the wind.
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3. Rotation driven instabilities: The main rotation driven instabilities are hori-
zontal turbulence, meridional circulation and dynamical and secular shear (see
Maeder 2009, for a comprehensive description of rotation-induced instabilities).

Horizontal turbulence corresponds to turbulence along the isobars. If this turbu-
lence is strong, rotation is constant on isobars and the situation is usually referred
to as “shellular rotation” (Zahn 1992). The horizontal turbulence is expected to be
stronger than the vertical turbulence because there is no restoring buoyancy force
along isobars (see Maeder 2003, for recent development on this topic).

Meridional circulation, also referred to as Eddington–Sweet circulation, arises
from the local breakdown of radiative equilibrium in rotating stars. This is due to the
fact that surfaces of constant temperature do not coincide with surfaces of constant
pressure. Indeed, since rotation elongates isobars at the equator, the temperature on
the same isobar is lower at the equator than at the pole. This induces large scale
circulation of matter, in which matter usually rises at the pole and descends at the
equator (see Fig. 6.1).

In this situation, angular momentum is transported inwards. It is however also
possible for the circulation to go in the reverse direction and, in this second
case, angular momentum is transported outwards. Circulation corresponds to an
advective process, which is different from diffusion because the latter can only
erode gradients. Advection can either build or erode angular velocity gradients (see
Maeder and Zahn 1998, for more details).

Dynamical shear occurs when the excess energy contained in differentially
rotating layers is larger then the work that needs to be done to overcome the
buoyancy force. The criterion for stability against dynamical shear instability is the

Fig. 6.1 Streamlines of
meridional circulation in a
rotating 20 Mˇ model with
solar metallicity and
vini D 300 km s�1 at the
beginning of the H–burning
phase. The streamlines are in
the meridian plane. In the
upper hemisphere on the right
section, matter is turning
counterclockwise along the
outer streamline and
clockwise along the inner
one. The outer sphere is the
star surface and has a radius
equal to 5.2 Rˇ. The inner
sphere is the outer boundary
of the convective core. It has
a radius of 1.7 Rˇ

(Illustration from Meynet and
Maeder 2002)
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Richardson criterion:

Ri D N 2

.@U=@z/2
>

1

4
D Ric; (6.6)

where U is the horizontal velocity, z the vertical coordinate and N 2 the Brunt–
Väisälä frequency.

The critical value of the Richardson criterion, Ric D 1=4, corresponds to the
situation where the excess kinetic energy contained in the differentially rotating
layers is equal to the work done against the restoring force of the density gradient
(also called buoyancy force). It is therefore used by most authors as the limit for the
occurrence of the dynamical shear. However, studies by Canuto (2002) show that
turbulence may occur as long as Ri . Ric � 1. This critical value is consistent
with numerical simulations done by Brüggen and Hillebrandt (2001) where they
find shear mixing for values of Ri greater than 1=4 (up to about 1:5).

Different dynamical shear diffusion coefficients, D, can be found in the litera-
ture. The one used in GENEC is:

D D 1

3
vl D 1

3

v

l
l2 D 1

3
r

d ˝

d r
�r2 D 1

3
r�˝ �r (6.7)

where r is the mean radius of the zone where the instability occurs, �˝ is the
variation of ˝ over this zone and �r is the extent of the zone. The zone is the
reunion of consecutive shells where Ri < Ric (see Hirschi et al. 2004b, for more
details and references).

If the differential rotation is not strong enough to induce dynamical shear, it can
still induce the secular shear instability when thermal turbulence reduces the effect
of the buoyancy force. The secular shear instability occurs therefore on the thermal
time scale, which is much longer than the dynamical one. Note that the way the
inhibiting effect of the molecular weight () gradients on secular shear is taken into
account impacts strongly the efficiency of the shear. In some work, the inhibiting
effect of –gradients is so strong that secular shear is suppressed below a certain
threshold value of differential rotation (Heger et al. 2000). In other work (Maeder
1997), thermal instabilities and horizontal turbulence reduce the inhibiting effect
of the –gradients. As a result, shear is not suppressed below a threshold value of
differential rotation but only decreased when –gradients are present.

There are other minor instabilities induced by rotation: the GSF instability
(Goldreich and Schubert 1967; Fricke 1968; Hirschi and Maeder 2010), the ABCD
instability (Knobloch and Spruit 1983; Heger et al. 2000) and the Solberg–Høiland
instability (Kippenhahn and Weigert 1990). The GSF instability is induced by
axisymmetric perturbations. The ABCD instability is a kind of horizontal con-
vection. Finally, Solberg–Høiland stability criterion is the criterion that should be
used instead of the Ledoux or Schwarzschild criterion in rotating stars. However,
including the dynamical shear instability also takes into account the Solberg–
Høiland instability (Hirschi et al. 2004b).
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Transport of Angular Momentum

For shellular rotation, the equation of transport of angular momentum (Zahn 1992)
in the vertical direction is (in lagrangian coordinates):



d

dt

�
r2˝

	
Mr

D 1

5r2

@

@r

�

r4˝U.r/

	C 1

r2

@

@r

�

Dr4 @˝

@r

�
; (6.8)

where ˝.r/ is the mean angular velocity at level r, U.r/ the vertical component
of the meridional circulation velocity and D the diffusion coefficient due to the
sum of the various turbulent diffusion processes (convection, shears and other
rotation induced instabilities apart from meridional circulation). Note that angular
momentum is conserved in the case of contraction or expansion. The first term on the
right hand side, corresponding to meridional circulation, is an advective term. The
second term on the right hand side, which corresponds to the diffusion processes,
is a diffusive term. The correct treatment of advection is very costly numerically
because Eq. 6.8 is a fourth order equation (the expression of U.r/ contains third
order derivatives of ˝ , see Zahn 1992). This is why some research groups treat
meridional circulation in a diffusive way (see for example Heger et al. 2000) with
the risk of transporting angular momentum in the wrong direction (in the case
meridional circulation builds gradients).

Transport of Chemical Species

The transport of chemical elements is also governed by a diffusion–advection
equation like Eq. 6.8. However, if the horizontal component of the turbulent
diffusion is large, the vertical advection of the elements (but not that of the angular
momentum) can be treated as a simple diffusion (Chaboyer and Zahn 1992) with a
diffusion coefficient Deff,

Deff D j rU.r/ j2
30Dh

; (6.9)

where Dh is the coefficient of horizontal turbulence (Zahn 1992). Equation 6.9
expresses that the vertical advection of chemical elements is severely inhibited
by the strong horizontal turbulence characterized by Dh. The change of the mass
fraction Xi of the chemical species i is simply

�
dXi

dt

�

Mr

D
�

@

@Mr

�

t

�
.4�r2
/2Dmix

�
@Xi

@Mr

�

t

�
C
�

dXi

dt

�

nuclear
; (6.10)

where the second term on the right accounts for composition changes due to nuclear
reactions. The coefficient Dmix is the sum Dmix D D C Deff, where D is the term
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appearing in Eq. 6.8 and Deff accounts for the combined effect of advection and
horizontal turbulence.

Interaction Between Rotation and Magnetic Fields

Circular spectro-polarimetric surveys have obtained evidence for the presence of
magnetic field at the surface of OB stars (see e.g. the review by Walder et al. 2011,
and references therein). The origin of these magnetic fields is still unknown. It might
be fossil fields or fields produced through a dynamo mechanism.

The central question for the evolution of massive stars is whether a dynamo
is at work in internal radiative zones. This could have far reaching consequences
concerning the mixing of the elements and the loss of angular momentum. In
particular, the interaction between rotation and magnetic fields in the stellar interior
strongly affects the angular momentum retained in the core and thus the initial
rotation rate of pulsars and which massive stars could die as long & soft gamma-ray
bursts (GRBs), see Vink et al. (2011a) and the discussion in Sect. 6 in Georgy et al.
(2012, and references therein).

The interplay between rotation and magnetic field has been studied in stellar
evolution calculations using the Tayler–Spruit dynamo (Spruit 2002; Maeder and
Meynet 2005). Some numerical simulations confirm the existence of a magnetic
instability, however the existence of the dynamo is still controversial (Braithwaite
2006; Zahn et al. 2007).

The Tayler-Spruit dynamo is based on the fact that a purely toroidal field
B'.r; #/, even very weak, in a stable stratified star is unstable on an Alfvén
timescale 1=!A. This is the first magnetic instability to appear. It is non–
axisymmetric of type m D 1 (Spruit 2002), occurs under a wide range of conditions
and is characterized by a low threshold and a short growth time. In a rotating star,
the instability is also present, however the growth rate �B of the instability is, if
!A � ˝ ,

�B D !2
A

˝
; (6.11)

instead of the Alfvén frequency !A, because the growth rate of the instability is
reduced by the Coriolis force (Spruit 2002). One usually has the following ordering
of the different frequencies, N 
 ˝ 
 !A. In the Sun, one has N � 10�3 s�1,
˝ D 3 � 10�6 s�1 and a field of 1 kG would give an Alfvén frequency as low as
!A D 4 � 10�9 s�1 (where N 2 is the Brunt–Väisälä frequency).

This theory enables us to establish the two quantities that we are mainly
interested in for stellar evolution: the magnetic viscosity �, which expresses the
mechanical coupling due to the magnetic field B, and the magnetic diffusivity �,
which expresses the transport by a magnetic instability and thus also the damping of
the instability. The parameter � also expresses the vertical transport of the chemical
elements and enters Eq. 6.10, while the viscosity � determines the vertical transport
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Fig. 6.2 Left: evolution of the angular velocity ˝ as a function of the distance to the center in a
20 Mˇ star with vini D 300 km s�1. Xc is the hydrogen mass fraction at the center. The dotted line
shows the profile when the He–core contracts at the end of the H–burning phase. Right: rotation
profiles at various stages of evolution (labelled by the central H content Xc) of a 15 Mˇ model with
X D 0:705; Z D 0:02, an initial velocity of 300 km s�1 and magnetic field from the Tayler–Spruit
dynamo (Taken from Maeder and Meynet (2005))

of the angular momentum by the magnetic field and enters the second term on the
right-hand side of Eq. 6.8.

Figure 6.2 shows the differences in the internal ˝–profiles during the evolution
of a 20 Mˇ star with and without magnetic field created by the Tayler–Spruit
dynamo. Without magnetic field, the star has a significant differential rotation, while
˝ is almost constant when a magnetic field created by the dynamo is present. It is
not perfectly constant, otherwise there would be no dynamo. In fact, the rotation
rapidly adjusts itself to the minimum differential rotation necessary to sustain the
dynamo. One could then assume that the mixing of chemical elements is suppressed
by magnetic fields. This is, however, not the case since the interplay between
magnetic fields and the meridional circulation tend to lead to more mixing in
models including magnetic fields compared to models not including magnetic fields
(Maeder and Meynet 2005). Fast rotating models of GRB progenitors calculated
by Yoon et al. (2006) also experience a strong chemical internal mixing leading
to the stars undergoing quasi-chemical homogeneous evolution. The study of the
interaction between rotation and magnetic fields is still under development (see
e.g. Potter et al. 2012, for a different rotation-magnetic field interaction theory, the
˛ � ˝ dynamo, and its impact on massive star evolution) and the next 10 years will
certainly provide new insights on this important topic.

Other Input Physics

The other key input physics that are essentials for the computation of stellar
evolution models are: nuclear reactions, mass loss prescriptions (discussed above),
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the equation of state, opacities and neutrino losses. Stellar evolution codes are
now able to include larger and more flexible nuclear reaction network (see e.g.
Frischknecht et al. 2010, for a description of the implementation of a flexible
network in GENEC). Nuclear physics and other inputs are described for other codes
for example in Paxton et al. (2011) and Chieffi et al. (1998).

In this chapter, the evolution of single stars is discussed. We refer the reader
to Langer (2012) for a review of the impact of binarity on massive star evolution
and to Schneider et al. (2014) for the possible impact of a binary companion on
the properties of VMS. Note that the mass transfer efficiency prescriptions used
in binary model represent an important uncertainty, especially for VMS with high
luminosities.

6.3 General Properties and Early Evolution of VMS

6.3.1 VMS Evolve Nearly Homogeneously

Probably the main characteristic that makes VMS quite different from their lower
mass siblings is the fact that they possess very large convective cores during the
MS phase. They therefore evolve quasi-chemically homogeneously even if there is
no mixing (due e.g. by rotation) in radiative zones as discussed in Maeder (1980).
To illustrate this last point, Fig. 6.3 shows the convective core mass fraction for

Fig. 6.3 Mass fraction of the convective core in non-rotating solar metallicity models. This figure
and all the following figures are taken from Yusof et al. (2013). Models with initial masses superior
or equal to 150 M are from Yusof et al. (2013). Models for lower initial masses are from Ekström
et al. (2012). The continuous line corresponds to the ZAMS, the short-dashed line to models when
the mass fraction of hydrogen at the centre, Xc , is 0.35, and the long-dashed line to models when
Xc is equal to 0.05
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Fig. 6.4 Structure evolution as a function of age for selected models: solar metallicity 150 Mˇ

rotating (top-left) and non-rotating (top-right) models, rotating SMC metallicity 150 Mˇ model
(bottom-left) and rotating solar metallicity 500 Mˇ model (bottom-right). The blue zones represent
the convective regions. The top solid black line indicates the total mass of the star and vertical red
markers are given for the different phases (O-type, WR = eWNL, eWNE and WC/WO) at the top
of the plots. The transition between H- and He-burning phases is indicated by the red vertical line
at the bottom of the plots

non-rotating massive stars at solar metallicity. It is apparent that the convective cores
for masses above 150 Mˇ extend over more than 75 % of the total mass of the star.

Figure 6.4 shows how age, metallicity and rotation influence this mass fraction.
Comparing the top-left and bottom-left panels showing the rotating 150 Mˇ models
at solar and SMC metallicities (Z), respectively, we can see that the convective core
occupies a very slightly larger fraction of the total mass at SMC metallicity on
the ZAMS. As for lower-mass massive stars, this is due to a lower CNO content
leading to higher central temperature. This effect is counterbalanced by the lower
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opacity (especially at very low metallicities) and the net change in convective core
size is small. As the evolution proceeds mass loss is weaker at lower Z and thus
the total mass decreases slower than the convective core mass. This generally leads
to a smaller fraction of the total mass occupied by the convective core in the SMC
models.

We can see the impact of rotation by comparing the rotating (top-left) and non-
rotating (top-right) 150 Mˇ models. The convective core size remains higher in
the rotating model due to the additional mixing in radiative zones. We can see
that rotation induced mixing can even lead to an increase of the convective core
size as is the case for the SMC model (bottom-left). This increase is typical of
quasi-chemically homogeneous evolution also found in previous studies (see Yoon
et al. 2012, and citations therein). The rotating 500 Mˇ model (bottom-right panel)
evolves quasi-homogeneously throughout its entire evolution, even with an initial
ratio of the velocity to the critical velocity of 0.4.

These features, very large convective cores and quasi-chemi homogeneous
evolution, are key factors governing their evolution as is discussed below.

6.3.2 Evolutionary Tracks

In Figs. 6.5 and 6.6, we present the evolutionary tracks of models with initial
masses between 150 and 500 Mˇ at various metallicities. Other properties of VMS
models at the end of H- and He- burning stages are given in Tables 6.1 and 6.2,
respectively.

A very first striking feature is that these massive stars evolve vertically in the HR
diagram (HRD) covering only very restricted ranges in effective temperatures but a
very large range in luminosities. This is typical of an evolution mainly governed by
mass loss and also by a strong internal mixing (here due to convection).

Let us now describe in more details the evolution of the non-rotating 500 Mˇ
model at solar metallicity (see Fig. 6.5). In general, the luminosity of stars increases
during the MS phase. Here we have that during that phase, the luminosity decreases
slightly by about 0.1 dex. This is the consequence of very high mass loss rates (of
the order of 7 � 10�5 Mˇ per year) already at very early evolutionary stages.

At an age of 1.43 million years, the mass fraction of hydrogen at the surface
becomes inferior to 0.3, the star enters into the WR phase and has an actual mass
decreased by about 40 % with respect to its initial value. At that time the mass
fraction of hydrogen in the core is 0.24. Thus this star enters the WR phase while still
burning hydrogen in its core and having nearly the same amount of hydrogen at the
centre and at the surface, illustrating the nearly homogeneous nature of its evolution
(see also Maeder 1980). Typically for this model, the convective core encompasses
nearly 96 % of the total mass on the ZAMS (see also Fig. 6.3).

At an age equal to 2.00 Myr, the mass fraction of hydrogen is zero in the core
(Xc D 0). The star has lost a huge amount of mass through stellar winds and has at
this stage an actual mass of 55.7 Mˇ. So, since the entrance into the WR phase, the
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Fig. 6.5 HR diagram from
150 up to 500 Mˇ at solar
metallicity for non-rotating
(left) and rotating (right)
models, respectively. Key
stages are indicated along the
tracks. Only the first portion
(up to start of WR phase) of
the tracks for the 200 and
300 Mˇ are shown

star has lost about 245 Mˇ, i.e. about half of its total mass. This strong mass loss
episode translates into the HR diagram by a very important decrease in luminosity.
Note that when Xc is zero, the convective core still encompass 80 % of the total
stellar mass!

The core helium burning phase last for about 0.3 Myr, that means slightly more
than 15 % of the MS lifetime. At the end of the core He burning phase, the actual
mass of the star is 29.82 Mˇ, its age is 2.32 My, the mass fraction of helium at the
surface is 0.26. The total WR phase lasts for 0.88 My, that means about 38 % of the
total stellar lifetime.

It is interesting to compare the evolution of the 500 Mˇ stellar model with that
of the 150 Mˇ model. In contrast to the 500 Mˇ model, the 150 Mˇ increases
in luminosity during the MS phase. Looking at the HRD we see that the O-type
star phases of the 150 and 500 Mˇ models cover more or less the same effective
temperature range. This illustrates the well known fact that the colors of stars for
this mass range does not change much with the initial mass.

When the stars enters into the WR phase, in contrast to the case of the 500 Mˇ
where the luminosity decreases steeply, the luminosity of the 150 Mˇ model
continues to increase a little. The luminosities of the two models when the hydrogen
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Fig. 6.6 Same as Fig. 6.5 for right: LMC models (Z D 0:006) and right: SMC rotating models
(Z D 0:002)

mass fraction at the surface becomes inferior to 10�5 differ by just a little more than
0.1 dex. The effective temperatures are similar. Thus one expects stars from very
different initial masses to occupy similar positions in the HRD (the 500 Mˇ star
being slightly less luminous than the 150 Mˇ during the WR phase). We note that
after the end of the core He-burning phase, the star evolves to the red and terminate
its lifetime around an effective temperature of Log Teff equal to 4. This comes from
the core contraction at the end of core He-burning which releases energy and leads
to an envelope expansion akin to the expansion of the envelope at the end of the MS
(see also Yoshida and Umeda 2011).

The duration of the core H-burning phase of the 150 Mˇ model is not much
different from the one of the 500 Mˇ model being 2.5 My instead of 2 My. The core
He-burning lifetime lasts for 0.3 My as for the 500 Mˇ. The total duration of the
WR phase is 0.45 My, thus about half of the WR duration for the 500 Mˇ.

The 200 Mˇ model has an evolution similar to the 150 Mˇ model, while the
300 Mˇ has an evolution similar to the 500 Mˇ.

Let us now consider how rotation changes the picture. The right panel of Fig. 6.5
shows the evolutionary tracks of the Z D 0:014 rotating models in a similar way
to the tracks of the non-rotating models in the left panel. The changes brought
by rotation are modest. This is expected because of two facts: first, in this high
mass range, the evolution is more impacted by mass loss than by rotation, second,
stars are already well mixed by the large convective cores. One notes however a
few differences between the non-rotating and rotating models. One of the most
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striking differences is the fact that the models during their O-type phase evolve
nearly vertically when rotation is accounted for. This is the effect of rotational
mixing which keeps the star more chemically homogeneous than in the non-rotating
cases (although, as underlined above, already in models with no rotation, due to
the importance of the convective core, stars are never very far from chemical
homogeneity). As was the case in the non-rotating tracks, the O-type star phase
corresponds to an upward displacement when time goes on in the HR diagram
for the 150 Mˇ model, while, it corresponds to a downwards displacement for the
three more massive models. One notes finally that lower luminosities are reached
by the rotating models at the end of their evolution (decrease by about 0.3 dex in
luminosity, thus by a factor 2). This comes mainly because the rotating models enter
earlier into their WR phase and thus lose more mass.

How does a change in metallicity alter the picture? When the metallicity
decreases to Z = 0.006 (see Fig. 6.6, left), as expected, tracks are shifted to higher
luminosities and effective temperatures. In this metallicity range, all models evolve
upwards during their O-type star phase in the HR diagram. This is an effect of the
lower mass loss rates.

As was already the case at Z D 0.014, rotation makes the star evolve nearly
vertically in the HR diagram. One notes in this metallicity range, much more
important effects of rotation than at Z D 0.014, which is also expected, since at these
lower metallicity, mass loss rates are smaller and rotational mixing more efficient.
We note that most of the decrease in luminosity in the 500 Mˇ solar mass model
occurs during the WC phase in the Z D 0.006 non-rotating model, while it occurs
during the WNL phase in the rotating one. This illustrates the fact that rotational
mixing, by creating a much larger H-rich region in the star, tends to considerably
increase the duration of the WNL phase. One notes also that while the 150 Mˇ
model enters the WR phase only after the MS phase, the rotating model becomes a
WR star before the end of the MS phase.

At the metallicity of the SMC (see Fig. 6.6, right), except for the 500 Mˇ, the
tracks evolve horizontally after the end of the core H-burning phase (triangle in
Fig. 6.6, right). The much lower mass loss rates are responsible for this effect.

6.3.3 Lifetimes and Mass-Luminosity Relation

In Tables 6.1 and 6.2, we provide ages at the end of core hydrogen burning and core
helium burning, respectively. We see that the MS lifetime of non-rotating models
at solar metallicity ranges from 2.67 to 1.99 Myr for initial masses ranging from
120 to 500 Mˇ showing the well known fact that VMS have a very weak lifetime
dependence on their initial mass.

The mass-luminosity relation on the ZAMS for rotating massive stars at solar
composition is shown in Fig. 6.7. The relation (L / M ˛) is steep for low and
intermediate-mass stars (˛ � 3 for 10 < M=Mˇ < 20) and flattens for VMS
(˛ � 1:3 for 200 < M=Mˇ < 500). This flattening is due to the increased radiation
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Fig. 6.7 Mass-luminosity
relation on the ZAMS for
rotating models at solar
metallicity. The formulae in
the bottom right corner are
linear fits for the mass ranges:
9–50 Mˇ and 80–500 Mˇ.
The non-rotating models have
very similar properties on the
ZAMS

pressure relative to gas pressure in massive stars. Since the lifetime of a star is
roughly M=L, we get that for VMS � / M=L / M �0:3.

The H-burning (and total) lifetimes of VMS are lengthened by rotation as in
lower mass stars. Differences in the H-burning lifetimes of rotating and non-rotating
150 Mˇ models at solar metallicity are �14 %. The effects of metallicity on the
lifetimes are generally very small. The small differences in total lifetimes are due to
different mass loss at different metallicities.

6.3.4 Mass Loss by Stellar Winds

Mass loss by stellar winds is a key factor governing the evolution of VMS. This
comes from the very high luminosities reached by these objects. For example, the
luminosity derived for R136a1 is about 10 million times that of our sun.

For such luminous objects, winds will be very powerful at all evolutionary stages,
so while early main-sequence VMS are formally O-type stars from an evolutionary
perspective, their spectral appearance may be closer to Of or Of/WN at early phases
(Crowther et al. 2012).

Table 6.3 gives the total mass at the start and end of the evolution2 as well as
at the transitions between the different WR phases in columns 1 to 5. The average

2The models have been evolved beyond the end of core He-burning and usually until oxygen
burning, thus very close to the end of their life (see Yusof et al. 2013, for full details)
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Table 6.3 Mass loss properties: Total mass of the models at various stages (columns 1–5), and
average mass loss rates

˝ PM
˛

during the O-type and eWNE phases (6,7). Masses are in solar mass
units and mass loss rates are given in Mˇ year�1

ZAMS start eWNL start eWNE start WC final
˝ PMVink

˛ ˝ PMeWNE

˛

Z = 0.014, v=vcrit D 0:0

120 69:43 52:59 47:62 30:81 2.477e-05 3.638e-04

150 88:86 66:87 61:20 41:16 3.274e-05 6.107e-04

200 121:06 91:20 83:85 49:32 4.618e-05 1.150e-03

300 184:27 130:47 52:05 38:15 8.047e-05 8.912e-04

500 298:79 169:50 45:14 29:75 1.736e-04 9.590e-04

Z = 0.014, v=vcrit D 0:4

120 88:28 69:54 27:43 18:68 1.675e-05 2.057e-04

150 106:64 80:88 29:49 20:22 2.467e-05 2.640e-04

200 137:52 98:75 31:84 21:93 3.985e-05 3.564e-04

300 196:64 129:10 34:45 23:93 7.559e-05 5.160e-04

500 298:42 174:05 38:30 25:83 1.594e-04 7.901e-04

Z = 0.006, v=vcrit D 0:0

120 74:30 57:91 56:91 54:11 2.140e-05 3.272e-04

150 94:18 74:20 71:75 59:59 2.839e-05 5.038e-04

500 332:68 250:64 197:41 94:56 1.304e-04 3.334e-03

Z = 0.006, v=vcrit D 0:4

120 100:57 90:78 54:43 39:25 9.429e-06 3.219e-04

150 125:79 111:84 60:75 45:58 1.367e-05 4.418e-04

200 166:81 144:86 66:25 51:02 2.180e-05 6.257e-04

300 247:07 207:10 73:11 54:04 4.166e-05 9.524e-04

500 397:34 315:51 86:10 74:75 9.194e-05 1.685e-03

Z = 0.002, v=vcrit D 0:4

150 135:06 130:46 113:51 106:50 6.661e-06 4.485e-04

200 181:42 174:18 137:90 129:21 9.902e-06 6.631e-04

300 273:18 260:81 156:14 149:70 1.730e-05 1.040e-03

mass loss rates during the O-type and eWNE phases (the phase during which the
mass loss rates are highest) are given in columns 6 and 7, respectively.

The evolution of the mass loss rates for various models are shown in Fig. 6.8.
Following the evolution from left to right for the 150 Mˇ model at solar metallicity
(solid-black), mass loss rates slowly increase at the start of the O-type phase with
mass loss rates between 10�5 Mˇ year�1 (absolute values for the mass loss rates,
� PM , are quoted in this paragraph) and 10�4:5 Mˇ year�1. If a bi-stability limit
is encountered during the MS phase, as is the case in the non-rotating 150 Mˇ
model, mass loss rates can vary significantly over a short period of time and mass
loss peaks reach values higher than 10�4 Mˇ year�1. The highest mass loss rate is
encountered at the start of the eWNE phase (star symbols) with values in excess
of 10�3 Mˇ year�1 (note that the mass loss rate in the non-rotating model has a
peak at the end of the H-burning phase. phase due to the star reaching temporarily
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Fig. 6.8 Evolution of the
mass loss rate as a function of
time left until last model (log
scale) for the rotating
500 Mˇ model (solid-red),
the rotating 150 Mˇ model
(solid-black), the non-rotating
(dashed) 150 Mˇ model at
solar metallicity, and the
rotating 150 Mˇ model at
SMC metallicity
(solid-green). The diamonds
indicate the start of the
eWNL phase, the stars the
start of the eWNE phase and
hexagons the start of the
WC/WO phase. The squares
and triangles indicate the end
of H-b. and He-b. phases,
respectively 3.03.54.04.55.05.56.0

log10 (time left until last model) [yr]
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cooler effective temperatures). Such high mass loss rates quickly reduce the mass
and luminosity of the star and thus the mass loss rate also decreases quickly during
the eWNE phase. During the WC/WO phase, mass loss rates are of the same order
of magnitude as during the O-type phase.

Comparing the rotating 500 and 150 Mˇ model at solar metallicity (solid black
and red), we see that more massive stars start with higher mass loss rates but
converge later on to similar mass loss rates since the total mass of the models
converges to similar values (see Table 6.3).

Comparing the SMC and solar metallicity 150 Mˇ rotating models, we can
clearly see the metallicity effect during the O-type star phase. During the eWNE
phase, mass loss rates are similar and in the WC/WO, mass loss rates in the SMC
model are actually higher since the total mass in that model remained high in
contrast with solar metallicity models.

Table 6.3 also shows the relative importance of the mass lost during the various
phases and how their importance changes as a function of metallicity. Even though
mass loss is the strongest during the eWNE phase, significant amount of mass is lost
in all phases.

6.3.5 Mass Loss Rates and Proximity of the Eddington Limit

Vink et al. (2011b) suggest enhanced mass-loss rates (with respect to Vink et al.
2001a, used in the models presented here) for stars with high Eddington parameters
((	e � 0.7), see Eq. 1 in Vink et al. 2011b, for the exact definition of 	e) that they
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Fig. 6.9 Eddington parameter, 	edd for rotating models at solar metallicity. 	edd is plotted on the
ZAMS (blue line) and the end of H-(light blue), He-(green) and C-burning (red) phases. Except
for the 300 and 500 Mˇ models, 	edd increases throughout the evolution. At solar metallicity, the
highest value (close to 0.8) is actually reached by the 85 Mˇ model at the end of its evolution.
This could lead to significant mass loss shortly before the final explosion in a model that ends as
a WR star and potentially explain supernova surrounded by a thick circumstellar material without
the need for the star to be in the luminous variable phase. The formulae in the bottom right corner
are linear fits for the mass ranges: 9–50 Mˇ and 80–500 Mˇ. The non-rotating models have very
similar properties on the ZAMS

attribute to the Wolf-Rayet stage. In order to know whether higher mass loss rates
near the Eddington limit could have an impact on the present result, we discuss here
the proximity of our models to the Eddington limit.

Figure 6.9 shows the Eddington parameter, 	Edd D L=LEdd D �L=.4�cGM/,
as a function of the initial mass of our models at key stages. Since the Eddington
parameter, 	Edd scales with L=M , the curve for 	Edd also flattens for VMS. The
ZAMS values for 	Edd range between 0.4 and 0.6, so well below the Eddington
limit, 	Edd D 1, and below the limiting value of 	e D 0:7 where enhanced mass-
loss rates are expected according to Vink et al. (2011b).

How does 	Edd change during the lifetime of VMS? Figure 6.10 presents the
evolution of 	Edd for a subset of representative models. The numerical values for
each model are given at key stages in Tables 6.1 and 6.2. Since 	Edd / �L=M , an
increase in luminosity and a decrease in mass both lead to higher 	Edd. Changes in
effective temperature and chemical composition affect the opacity and also lead to
changes in 	Edd.

In rotating models at solar metallicity, 	Edd slowly increases until the start of the
eWNE phase. This is mainly due to the increase in luminosity and decrease in mass
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Fig. 6.10 Evolution of the
Eddington parameter, 	Edd, as
a function of time left until
last model (log scale) for the
rotating 500 Mˇ model
(solid-red), the rotating
150 Mˇ model (solid-black),
the non-rotating (dashed)
150 Mˇ model at solar
metallicity, and the rotating
150 Mˇ model at SMC
metallicity (solid-green). The
stars indicate the start of the
eWNE phase. The squares
and triangles indicate the end
of H-b. and He-b. phases,
respectively

3.03.54.04.55.05.56.06.57.0
log10 (time left until last model) [yr]
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of the model. At the start of the eWNE phase, mass loss increases significantly.
This leads to a strong decrease in the luminosity of the model and as a result 	Edd

decreases sharply.
During the WC/WO phase, mass loss rates being of similar values as during the

O-type star phase, 	Edd increases again gradually.
We can see that, at solar metallicity, 	Edd rarely increases beyond 0.7 even in the

500 Mˇ model. There are nevertheless two interesting cases in which values above
0.7 are reached. The first case is during the advanced stages. At this stage, mass loss
does not have much time to change the total mass of the star (it is mostly changes in
effective temperature and to a minor extent in luminosity that influence the increase
in 	Edd). This may nevertheless trigger instabilities resulting in strong mass loss
episodes. This may have consequences for the type of SN event that such a star will
produce and may be a reason why the explosion of VMS may look like as if they
had happened in an environment similar to those observed around Luminous Blue
Variable. The second case is at low metallicity, as highlighted by the 150 Mˇ model
at SMC metallicity. Indeed, values above 0.7 are reached before the end of the MS
(square symbol). Mass loss prescriptions such as the ones of Vink et al. (2011b)
and Maeder et al. (2012) may thus play an important role on the fate of VMS. The
non-rotating model has a different mass loss history (see Fig. 6.8), which explains
the slightly different evolution of 	Edd near the end of the main sequence.
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6.3.6 Evolution of the Surface Velocity

The surface velocity of stars is affected by several processes. Contraction or expan-
sion of the surface respectively increases and decreases the surface velocity due to
the conservation of angular momentum. Mass loss removes angular momentum and
thus decreases the surface velocity. Finally internal transport of angular momentum
generally increases the surface velocity. As shown in Fig. 6.11 (left panel), at solar
metallicity, the surface velocity rapidly decreases during the main sequence due to
the strong mass loss over the entire mass range of VMS. At SMC metallicity, mass
loss is weaker than at solar metallicity and internal transport of angular momentum
initially dominates over mass loss and the surface velocity increases during the first
half of the MS phase. During this time, the ratio of surface velocity to critical
velocity also increases up to values close to 0.7 (note that the models presented
include the effect of the luminosity of the star when determining the critical rotation
as described in Maeder and Meynet 2000). However, as the evolution proceeds, the
luminosity increases and mass loss eventually starts to dominate and the surface
velocity and its ratio to critical rotation both decrease for the rest of the evolution.
SMC stars thus never reach critical rotation. The situation at very low and zero
metallicities has been studied by several groups (see Hirschi 2007; Ekström et al.
2008; Yoon et al. 2012; Chatzopoulos and Wheeler 2012, and references therein). If
mass loss becomes negligible, then the surface velocity reaches critical rotation for
a large fraction of its lifetime, which probably leads to mechanical mass loss along
the equator. The angular momentum content in the core of VMS stars is discussed
further in Sect. 6.5.4.
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Fig. 6.11 Evolution of surface equatorial velocity (left) and ratio of the surface angular velocity
to the critical angular velocity (right) for the rotating solar metallicity 150 and 500 Mˇ and SMC
150 Mˇ models as a function of age of the star
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6.4 WR Stars from VMS

Figure 6.12 presents the evolution of the surface abundances as a function of the total
mass for the solar metallicity rotating models of 150 and 60 Mˇ. This figure shows
how the combined effects of mass loss and internal mixing change their surface
composition. Qualitatively there are no big differences between the 60 and 150 Mˇ
models. Since the 150 Mˇ has larger cores, the transition to the various WR stages
occurs at larger total masses compared to the 60 Mˇ model. It thus confirms the
general idea that a more massive (thus more luminous) WR star originates from a
more massive O-type star. Figure 6.12 shows that all abundances and abundance
ratios are very similar for a given WR phase. It is therefore not easy to distinguish
a WR originating from a VMS from its surface chemical composition (however see
below).

We present in Table 6.4 the lifetimes of the different WR phases through which
all our VMS models evolve. At solar metallicity, the WR phase of non-rotating
stellar models for masses between 150 and 500 Mˇ covers between 16 and 38 %
of the total stellar lifetime. This is a significantly larger proportion than for masses
between 20 and 120 Mˇ, where the WR phase covers only 0–13 % of the total stellar
lifetimes. At the LMC metallicity, the proportion of the total stellar lifetime spent

Fig. 6.12 Evolution of
surface abundances of the
solar metallicity rotating
150 Mˇ (solid) and 60 Mˇ

(dashed) rotating solar Z

models as a function of total
mass (evolution goes from
left to right since mass loss
peels off the star and reduces
the total mass). The top panel
shows individual abundances
while the bottom panel shows
abundance ratios
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Table 6.4 Lifetimes of the various phases in units of years

Mini Zini
vini
vcrit

O-star WR WNL WNE WN/WC WC (WO)

120 0:014 0 2.151e06 3.959e05 1.150e05 9.390e03 2.675e02 2.715e05

150 0:014 0 2.041e06 4.473e05 1.777e05 5.654e03 7.120e02 2.639e05

200 0:014 0 1.968e06 5.148e05 2.503e05 1.773e03 4.576e02 2.626e05

300 0:014 0 1.671e06 8.014e05 5.051e05 9.217e03 2.735e03 2.870e05

500 0:014 0 1.286e06 8.848e05 5.804e05 1.079e04 3.279e03 2.935e05

120 0:014 0:4 2.289e06 1.227e06 8.790e05 4.118e04 4.008e03 3.076e05

150 0:014 0:4 2.105e06 1.189e06 8.567e05 2.579e04 3.649e03 3.068e05

200 0:014 0:4 1.860e06 1.164e06 8.375e05 2.242e04 3.153e03 3.042e05

300 0:014 0:4 1.585e06 1.152e06 8.315e05 1.897e04 2.897e03 3.015e05

500 0:014 0:4 1.422e06 1.083e06 7.663e05 1.830e04 2.899e03 2.990e05

120 0:006 0 2.222e06 2.964e05 2.043e05 1.302e02 6.025e02 9.202e04

150 0:006 0 2.028e06 3.320e05 1.579e05 1.211e03 2.921e02 1.728e05

500 0:006 0 1.388e06 5.362e05 2.690e05 5.211e03 1.350e03 2.620e05

120 0:006 0:4 2.513e06 9.624e05 6.776e05 1.601e04 3.386e03 2.687e05

150 0:006 0:4 2.188e06 9.789e05 6.912e05 2.172e04 2.336e03 2.660e05

200 0:006 0:4 1.922e06 9.848e05 7.073e05 1.347e04 2.757e03 2.640e05

300 0:006 0:4 1.644e06 9.838e05 7.033e05 1.600e04 9.744e02 2.644e05

500 0:006 0:4 1.461e06 9.283e05 6.647e05 9.312e03 6.853e02 2.542e05

150 0:002 0:4 2.583e06 6.119e05 3.691e05 8.459e03 4.874e03 2.343e05

200 0:002 0:4 2.196e06 6.926e05 4.524e05 1.019e04 2.709e03 2.300e05

300 0:002 0:4 1.827e06 7.602e05 5.186e05 1.317e04 1.289e03 2.283e05

as a WR phase for VMS decreases to values between 12 % (150 Mˇ) and 25 %
(500 Mˇ).

Figure 6.13 shows how these lifetimes vary as a function of mass for non-
rotating and rotating solar metallicity models. Looking first at the non-rotating
models (Fig. 6.13, left), we see that the very massive stars (above 150 Mˇ) have WR
lifetimes between 0.4 and nearly 1 My. The longest WR phase is the WNL phase
since these stars spend a large fraction of H-burning in this phase. The duration of
the WC phases of VMS is not so much different from those of stars in the mass
range between 50 and 120 Mˇ.

Rotation significantly increases the WR lifetimes. Typically, the WR phase of
rotating stellar models for masses between 150 and 500 Mˇ covers between 36 and
43 % of the total stellar lifetime. The increase is more important for the lower mass
range plotted in the figures. This reflects the fact that for lower initial mass stars,
mass loss rates are weaker and thus the mixing induced by rotation has a greater
impact. We see that this increase is mostly due to longer durations for the WNL
phase, the WC phase duration remaining more or less constant for the whole mass
range between 50 and 500 Mˇ as was the case for the non rotating models. Rotation
has qualitatively similar effects at the LMC metallicities.
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Fig. 6.13 Lifetimes of the RSG phase and of the different WR phases for the solar metallicity
non-rotating (left) and rotating (right) models. Lifetimes are piled up. For example, the lifetime of
the WNE phase extent corresponds to the height of the purple area

Would the account of the VMS stars in the computation of the number ratios
of WR to O-type stars and on the WN/WC ratios have a significant effect? The
inclusion of VMS is marginal at solar metallicity, since the durations are only
affected by a factor 2. Convoluted with the weighting of the initial mass function
(IMF), WR stars originating from VMS only represent � 10 % of the whole
population of WR stars (using a Salpeter 1955, IMF) originating from single stars.
However, the situation is different at SMC metallicity. Due to the weakness of the
stellar winds, single stellar models below 120 Mˇ at this Z do not produce any
WC or WO stars (Georgy et al. in prep.). In that case, we expect that the few
WC/WO stars observed at low metallicity come from VMS, or from the binary
channel (Eldridge et al. 2008). In starburst regions, the detection of WR stars at
very young ages would also be an indication that they come from VMS, as these
stars enter the WR phase before their less massive counterparts, and well before
WRs coming from the binary channel.

We see in Fig. 6.14 that VMS models well fit the most luminous WNL stars. On
the other hand, they predict very luminous WC stars. Of course the fact that no such
luminous WC stars has ever been observed can simply come from the fact that such
stars are very rare and the lifetime in the WC phase is moreover relatively short.
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Fig. 6.14 The positions of
WR stars observed by
Hamann et al. (2006) and
Sander et al. (2012) are
indicated with the rotating
evolutionary tracks taken
from Ekström et al. (2012)
for masses up to 120 Mˇ and
from Yusof et al. (2013) for
VMS

6.5 Late Evolution and Pre-SN Properties of Very Massive
Stars

The next chapter discusses the explosion that will take place at the end of VMS
life but whether or not a star produces a pair-instability supernova (PISN, aka
pair-creation SN, PCSN) can be reasonably estimated from the mass of its carbon-
oxygen (CO) core as demonstrated by the similar fate for stars with the same CO
core found in various studies of VMS in the early Universe (Bond et al. 1984; Heger
and Woosley 2002; Chatzopoulos and Wheeler 2012; Dessart et al. 2013), even if
their prior evolution is different. In this section, we will thus use the CO core mass
to estimate the fate of the models discussed in the previous sections.3 We will only
briefly discuss the supernova types that these VMS may produce in this chapter as
this is discussed in Chaps. 7 and 8.

3Note that for lower-mass massive stars (. 50 Mˇ), the CO core mass alone is not sufficient
to predict the fate of the star and other factors like compactness, rotation and the central carbon
abundance at the end of helium burning also play a role (see e.g. Chieffi and Limongi 2013).
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6.5.1 Advanced Phases, Final Masses and Masses
of Carbon-Oxygen Cores

In Fig. 6.15, the structure evolution diagrams are drawn as a function of the log of
the time left until the last model calculated (as opposed to age in Fig. 6.4). This
choice of x-axis allows one to see the evolution of the structure during the advanced
stages. In the left panel, we can see that, at solar metallicity, VMS have an advanced
evolution identical to lower mass stars (see e.g. Fig. 12 in Hirschi et al. 2004a)
with a radiative core C-burning followed by a large convective C-burning shell,
radiative neon burning and convective oxygen and silicon burning stages. All the
solar metallicity models will eventually undergo core collapse after going through
the usual advanced burning stages. As presented in Table 6.2 (column 9), the central
mass fraction of 12C is very low in all VMS models and is anti-correlated with the
total mass at the end of helium burning (column 6): the higher the total mass, the
lower the central 12C mass fraction. This is due to the higher temperature in more
massive cores leading to a more efficient 12C(˛; � )16O relative to 3˛.

The similarities between VMS and lower mass stars at solar metallicity during
the advanced stages can also be seen in the central temperature versus central density
diagram (see Fig. 6.16). Even the evolution of the 500 Mˇ rotating model is close
to that of the 60 Mˇ model. The non-rotating models lose less mass as described
above and thus their evolutionary track is higher (see e.g. the track for the non-
rotating 150 Mˇ model in Fig. 6.16). Non-rotating models nevertheless stay clear
of the pair-instability region (	 < 4=3, where 	 is the adiabatic index) in the
centre.
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Fig. 6.15 Structure evolution diagram for rotating 150 Mˇ at solar and SMC metallicities as a
function of the log of the time left until the last model. The blue zones represent the convective
regions and the top solid line the total mass
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Fig. 6.16 Evolution of the
central temperature Tc versus
central density 
c for the
rotating 20 (from Hirschi
et al. 2004a), 60 (from
Ekström et al. 2012), 150 and
500 Mˇ models and
non-rotating 150 Mˇ model
at solar metallicity as well as
the rotating 150 Mˇ model at
SMC metallicity. The gray
shaded area is the
pair-creation instability
region (	 < 4=3, where 	 is
the adiabatic index). The
additional dotted line
corresponds to the limit
between non-degenerate and
degenerate electron gas
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The situation is quite different at SMC metallicity (see Fig. 6.15, right panel).
Mass loss is weaker and thus the CO core is very large (93.5 Mˇ for this 150 Mˇ
model). Such a large core starts the advanced stages in a similar way: radiative
core C-burning followed by a large convective C-burning shell and radiative neon
burning. The evolution starts to diverge from this point onwards. As can be seen
in Tc vs 
c plot, the SMC 150 Mˇ model enters the pair-instability region. These
models will thus have a different final fate than those at solar metallicity (see below).

Figure 6.17 (see also Table 6.3) shows the final masses of VMS as a function of
the initial masses. All models at solar Z, rotating or not, end with a small fraction
of their initial mass due to the strong mass loss they experience. Rotation enhances
mass loss by allowing the star to enter the WR phase earlier during the MS (see
top panels of Fig. 6.4) and the final mass of non-rotating models is generally higher
than that of rotating models. At low metallicities, due to the metallicity dependence
of radiatively-driven stellar winds in both O-type stars (Vink et al. 2001a) and WR
stars (Eldridge and Vink 2006), final masses are larger.

Figure 6.18 shows how the CO core masses vary as a function of the initial mass,
rotation and metallicity. The CO core (MCO) is here defined as the core mass for
which the mass fraction of C+O is greater than 75 %. Since the CO core mass is
so close to the total mass, the behavior is the same as for the total mass and for
the same reasons. For the rotating solar metallicity models, mass loss is so strong
that all models end with roughly the same CO core mass around 20 Mˇ. As the
metallicity decreases, so does mass loss and thus the LMC and SMC models have
higher final CO core masses and the CO core mass does depend on the initial mass
in a monotonous way. Finally, non-rotating models lose less mass than their rotating
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Fig. 6.17 Final mass versus
initial mass for all rotating
(solid lines) and non-rotating
(dashed line) models
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Fig. 6.18 Mass of
carbon-oxygen core of all the
models as a function of the
initial mass. The light grey
shaded area represents the
range of MCO, for which the
estimated fate is a PISN. The
thin dark grey shaded area
corresponds to the estimated
MCO of the progenitor of
SN2007bi assuming it is a
PISN (see text for more
details). The points linked by
the dotted black line are from
the models of Yoshida and
Umeda (2011) at Z D 0:004,
case A
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counterpart since they enter the WR phase later and also have less hot surface.
Simulations at Z D 0:004 from Yoshida and Umeda (2011) (case A) are also plotted
in Fig. 6.18. The CO core masses they obtain are consistently slightly larger than for
the LMC (Z D 0:006) models.
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6.5.2 Do VMS Produce PISNe?

As mentioned above, the core masses, especially the CO core masses, can be used
to estimate whether or not models produce a Pair Instability SuperNova (PISN) by
using the results of previous studies, which follow the explosion of such massive
cores and knowing that VMS with the same CO core masses have similar core
evolution from carbon burning onwards. Heger and Woosley (2002) calculated a
grid of models and found that stars with helium cores (M˛) between 64 and 133 Mˇ
produce PISNe and that stars with more massive M˛ will collapse to a BH without
explosion, confirming the results of previous studies, such as Bond et al. (1984).
The independent results of Chatzopoulos and Wheeler (2012) also confirm the CO
core mass range that produce PISNe.

PISNe occur when very massive stars (VMS) experience an instability in their
core during the neon/oxygen burning stage due to the creation of electron-positron
pairs out of two photons. The creation of pairs in their oxygen-rich core softens the
equation of state, leading to further contraction. This runaway collapse is predicted
to produce a very powerful explosion, in excess of 1053 erg, disrupting the entire
star and leaving no remnant (Bond et al. 1984; Fryer et al. 2001).

Heger and Woosley (2002) also find that stars with M˛ between roughly 40 and
63 Mˇ will undergo violent pulsations induced by the pair-instability leading to
strong mass loss but which will not be sufficient to disrupt the core. Thus these stars
will eventually undergo core collapse as lower mass stars. Since in our models, the
CO core masses are very close to M˛ (equal to the final total mass in our models, see
Table 6.5), in this chapter we assume that models will produce a PISN if 60 Mˇ 	
MCO 	 130 Mˇ. In Fig. 6.18, the light grey shaded region corresponds to the zone
where one would expect a PISN, the dark shaded region shows the estimated range
of the carbon oxygen core of the progenitor of SN2007bi (see Yusof et al. 2013, for
more details).

We see in Fig. 6.18 that at solar metallicity none of the models is expected to
explode as a PISN. At the metallicity of the LMC, only stars with initial masses
above 450 for the rotating models and above about 300 Mˇ for the non-rotating
case are expected to explode as a PISN. At the SMC metallicity, the mass range
for the PISN progenitors is much more favorable. Extrapolating the points obtained
from our models we obtain that all stars in the mass range between about 100 Mˇ
and 290 Mˇ could produce PISNe. Thus these models provide support for the
occurrence of PISNe in the nearby (not so metal poor) universe.

Table 6.5 presents for each of the models, the initial mass (Mini), the amount
of helium left in the star at the end of the calculation (M env

He ), and final total mass
as well as the estimated fate in terms of the explosion type: PISN or core-collapse
supernova and black hole formation with or without mass ejection (CCSN/BH). The
helium core mass (M˛) is not given since it is always equal to the final total mass,
all the models having lost the entire hydrogen-rich layers.
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Table 6.5 Initial masses, mass content of helium in the envelope, mass of carbon-oxygen core,
final mass in solar masses and fate of the models estimated from the CO core mass

Non-rotating Rotating

Mini M env
He Mco Mfinal Fate M env

He Mco Mfinal Fate

Z = 0.014

120 0:4874 25:478 30:8 CCSN/BH 0:5147 18:414 18:7 CCSN/BH

150 0:6142 35:047 41:2 CCSN/BH 0:5053 19:942 20:2 CCSN/BH

200 0:7765 42:781 49:3 CCSN/BH 0:5101 21:601 21:9 CCSN/BH

300 0:3467 32:204 38:2 CCSN/BH 0:4974 19:468 23:9 CCSN/BH

500 0:3119 24:380 29:8 CCSN/BH 0:5675 20:993 25:8 CCSN/BH

Z = 0.006

120 1:2289 43:851 54:2 CCSN/BH 0:5665 32:669 39:2 CCSN/BH

150 1:1041 47:562 59:7 CCSN/BH 0:7845 38:436 45:6 CCSN/BH

200 – – – CCSN/BH 0:5055 42:357 51:0 CCSN/BH

300 – – – CCSN/BH 0:5802 44:959 54:0 CCSN/BH

500 1:6428 92:547 94:7 PISN 0:7865 73:145 74:8 PISN

Z = 0.002

150 – – – – 2:3353 93:468 106:5 PISN

200 – – – – 3:3022 124:329 129:2 PISN

300 – – – – 5:5018 134:869 149:7 BH

6.5.3 Supernova Types Produced by VMS

Let us recall that, in VMS, convective cores are very large. It is larger than 90 %
above 200 Mˇ at the start of the evolution and even though it decreases slightly
during the evolution, at the end of core H-burning, the convective core occupies
more than half of the initial mass in non-rotating models and most of the star
in rotating models. This has an important implication concerning the type of
supernovae that these VMS will produce. Indeed, even if mass loss is not very strong
in SMC models, all the models calculated have lost the entire hydrogen rich layers
long before the end of helium burning. Thus the models predict that all VMS stars
in the metallicity range studied will produce either a type Ib or type Ic SN but no
type II.

6.5.4 GRBs from VMS?

The evolution of the surface velocity was described in Sect. 6.3.6. Only models
at SMC retain a significant amount of rotation during their evolution (see angular
momentum contained in the CO core at the end of helium burning in the last column
of Table 6.2) but do they retain enough angular momentum for rotation to affect the
fate of the star? The angular momentum profile of the SMC models is presented
in Fig. 6.19. Note that the models presented in this section do not include the
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Fig. 6.19 Specific angular
momentum profile, jm, as a
function of the Lagrangian
mass coordinate in the core of
the SMC rotating 150, 200,
300 Mˇ models, plotted at
the end of the calculations
(solid line). The dash-dotted
line is jKerr;lso D rLSO c

(Shapiro and Teukolsky 1983,
p. 428), where the radius of
the last stable orbit, rLSO, is
given by rms in formula
(12.7.24) from Shapiro and
Teukolsky (1983, p. 362) for
circular orbit in the Kerr
metric. jKerr;lso is the
minimum specific angular
momentum necessary to form
an accretion disc around a
rotating black hole.
jSchwarzschild D p

12Gm=c

(dotted line) is the minimum
specific angular momentum
necessary for a non-rotating
black hole, for reference
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Tayler-Spruit dynamo so represent the most optimistic (highest possible) prediction
concerning the angular momentum in the core of these models. Mass loss in the
300 Mˇ model is too strong for the core to retain enough angular momentum for
rotation to impact the death of this model. In the 200 Mˇ model, and even more
so in the 150 Mˇ model, however, the central part of the core retain a significant
amount of angular momentum that could potentially affect the death of the star.
Since the role of rotation is very modest from carbon until just after the end of
core silicon burning, even for extremely fast rotators (see e.g. Hirschi et al. 2005;
Chieffi and Limongi 2013), we do not expect rotation to affect significantly the
fate of stars that are predicted to explode as PISN during neon-oxygen burning.
However, as discussed in Yoon et al. (2012, and references therein), the large
angular momentum content is most interesting for the stars that just fall short of
the minimum CO core mass for PISN (since fast rotation plays an important role
during the early collapse Ott et al. 2004; O’Connor and Ott 2011; Chieffi and
Limongi 2013). Indeed, without rotation, these stars would produce a BH following
a possible pulsation pair-creation phase, whereas with rotation, these stars could
produce energetic asymmetric explosions (GRBs or magnetars). Since the 150 Mˇ
model is predicted to explode as a PISN, we thus do not expect the models presented
in this grid to produce GRBs or magnetars but such energetic asymmetric explosions
are likely to take place in lower mass and lower metallicity stars (see Hirschi et al.
2005; Yoon and Langer 2005; Woosley and Heger 2006).

Yoon et al. (2012) calculated a grid of zero-metallicity rotating stars, including
the Tayler-Spruit dynamo for the interaction between rotation and magnetic fields.
They find that fast rotating stars with an initial mass below about 200 Mˇ retain
enough angular momentum in their cores in order to produce a collapsar (j >

jKerr;lso Woosley 1993) or a magnetar (see e.g. Wheeler et al. 2000; Burrows et al.
2007; Dessart et al. 2012). Thus some VMS that do not produce PISNe might
produce GRBs instead.

6.6 The Final Chemical Structure and Contribution
to Galactic Chemical Evolution

Figure 6.20 shows the chemical structure at the last time steps calculated, which
is the end of the carbon burning phase in the case of the 40 Mˇ, and the end
of the core oxygen-burning phase in the case of the 150 and 500 Mˇ models. A
few interesting points come out from considering this figure. First, in all cases,
some helium is still present in the outer layers. Depending on how the final stellar
explosion occurs, this helium may or may not be apparent in the spectrum, as
discussed in Yusof et al. (2013). Second, just below the He-burning shell, products
of the core He-burning, not affected by further carbon burning are apparent. This
zone extends between about 4 and 10 Mˇ in the 40 Mˇ model, between about 32
and 35 Mˇ in the 150 Mˇ model and in a tiny region centered around 24 Mˇ
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Fig. 6.20 Chemical structure of 40, 150 and 500 Mˇ non-rotating (left) and rotating (right)
models at Z = 0.014 at the end of the calculations. Note that the rotating 500 M model is shown
at an earlier evolutionary stage than the corresponding non-rotating model

in the 500 Mˇ model. We therefore see that this zone decreases in importance
when the initial mass increases. Interestingly, the chemical composition in this zone
present striking differences if we compare for instance the 40 Mˇ and the 500 Mˇ
model. We can see that the abundance of 20Ne is much higher in the more massive
model. This comes from the fact that in more massive stars, due to higher central
temperatures during the core He-burning phase the reaction 16O(˛, � )20Ne is more
active, building thus more 20Ne. Note that 24Mg is also more abundant, which is
natural since the reaction 20Ne(˛, � )24Mg reaction will also be somewhat active in
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VMS for the same reasons. While in the case of the 150 Mˇ, due to the mass loss
history, the 20Ne and 24Mg-rich layers are not uncovered, they are uncovered in the
500 Mˇ model. This implies that strong overabundances of these two isotopes at
the surface of WC stars can be taken as a signature for an initially very massive
stars as the progenitor of that WC star. It also means that, contrary to what occurs
at the surface of WC stars originating from lower initial mass stars, neon is no
longer present mainly in the form of 22Ne (and thus be a measure of the initial
CNO content since resulting from the transformation of nitrogen produced by CNO
burning during the H-burning phase) but will mainly be present in the form of 20Ne.

Rotation does not change much this picture (see right panel of Fig. 6.20),
except that, due to different mass loss histories, the rotating models lose much
more mass and end their evolution with smaller cores. This is particularly striking
for the 150 Mˇ model. Qualitatively the situation is not much different at lower
metallicities.

As stars in the mass range 50–100 Mˇ (see e.g. Meynet and Maeder 2005; Chieffi
and Limongi 2013), VMS eject copious amount of H-burning products through their
stellar winds and to a lesser extent He-burning products. The potential difference
between VMS and stars in the mass range 50–100 Mˇ is how they explode (or
not) at the end of their life, which is discussed in detail in the next chapter. If
they collapse to a black hole the contribution from the supernova will be negligible
whereas if they explode as PISNe they will produce large amounts of iron and other
heavy elements.

Do VMS contribute to the chemical enrichment of galaxies or are VMS so
rare that whatever their evolution, their impact on energy and mass outputs will
anyway be very low? Considering a Salpeter IMF, the number of stars with masses
between 120 and 500 Mˇ corresponds to only about 2 % of the total number of
stars with masses between 8 and 500 Mˇ. So they are indeed only very few! On the
other hand, one explosion can release a great amount of energy and mass into the
interstellar medium. Typically a 200 Mˇ star releases about ten times more mass
than a 20 Mˇ star. If we roughly suppose that for hundred 20 Mˇ stars there are
only two 200 Mˇ star, this means that the 200 Mˇ stars contribute to the release of
mass at a level corresponding to about 20 % of the release of mass by 20 Mˇ, which
is by far not negligible. Of course this is a rough estimate but, as a rule of thumb
we can say that any quantity released by a VMS � tenfold intensity compared to
that of a typical, 20 Mˇ star will make a non-negligible difference in the overall
budget of this quantity at the level of a galaxy. For instance, the high bolometric
luminosities, stellar temperatures and mass loss rates of VMS imply that they will
contribute significantly to the radiative and mechanical feedback from stars in high
mass clusters at ages prior to the first supernovae (Crowther et al. 2010). Core-
collapse SNe produce of the order of 0:05 Mˇ (ejected masses) of iron, 1 Mˇ
of each of the ˛�elements. According to the production factors in Table 6.4 in
Heger and Woosley (2002), PISN produce up to 40 Mˇ of iron, of the order of
30 Mˇ of oxygen and silicon and of the order of 5–10 Mˇ of the other ˛�elements.
Considering that PISN may occur up to SMC metallicity and represent 2 % of SNe
at a given metallicity, their contribution to the chemical enrichment of galaxies may
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be significant, especially in the case of iron, oxygen and silicon. If the IMF is top
heavy at low metallicities, the impact of VMSs would be even larger.

Summary and Conclusion
In this chapter, we have discussed the evolution of very massive stars based on
stellar evolution models at various metallicities. The main properties of VMS
are the following:

• VMS possess very large convective cores during the MS phase. Typically,
in a 200 Mˇ model on the ZAMS the convective core extends over more
than 90 % of the total mass.

• Since the mass-luminosity relation flattens above 20 Mˇ, VMS have
lifetimes that are not very sensitive to their initial mass and range between
2 and 3.5 million years.

• Even in models with no rotation, due to the importance of the convective
core, VMS evolve nearly chemically homogeneously.

• Most of the very massive stars (all at solar Z) remain in blue regions of the
HR diagram and do not go through a luminous blue variable phase.

• They all enter into the WR phase and their typical evolution is Of – WNL-
WNE - WC/WO.

• Due to increasing mass loss rates with the mass, very different initial mass
stars end with similar final masses. As a consequence very different initial
masses may during some of their evolutionary phases occupy very similar
positions in the HRD.

• A significant proportion of the total stellar lifetimes of VMS is spent in the
WR phase (about a third).

• A WC star with high Ne (20Ne) and Mg (24Mg) abundances at the surface
has necessarily a VMS as progenitor.

• At solar metallicity VMS are not expected to explode as PISNe because
mass loss rates are too high.

• Whether or not some VMS models retain enough mass to produce a PISN
at low metallicity is strongly dependent on mass loss. As discussed above,
models that retain enough mass at SMC metallicity (and below) also
approach very closely the Eddington limit after helium burning and this
might trigger a strong enough mass loss in order to prevent any VMS from
producing a PISN.

• Most VMS lose the entire hydrogen rich layers long before the end of
helium burning. Thus most VMS stars near solar metallicity are expected
to produce either a type Ib or type Ic SN but no type II.

• Models near solar metallicity are not expected to produce GRBs or
magnetars. The reason for that is that either they lose too much angular
momentum by mass loss or they avoid the formation of a neutron star or

(continued)
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BH because they explode as PISN. Lower mass stars at low metallicities
(Z . 0:002), however, may retain enough angular momentum as in metal
free stars (see Yoon et al. 2012; Chatzopoulos and Wheeler 2012) for
rotation (and magnetic fields) to play a significant role in their explosion.

Even though VMS are rare, their extreme luminosities and mass loss will
still contribute significantly to the light and chemistry budget of their host
galaxies. And although many VMS will die quietly and form a black hole,
some VMS may die as PISNe or GRBs. Thus the extreme properties of
VMS compensate for their rarity and they are worth studying and considering
in stellar population and galactic chemical evolution studies. As discussed
above, the main uncertainty that strongly affects their evolution and their fate
is the uncertainty in mass loss, especially for stars near the Eddington limit.
Thus, although the discussions and conclusions presented in this chapter will
remain qualitatively valid, quantitative results will change as our knowledge
of mass loss in these extreme stars improves.

Acknowledgements The author thanks his collaborators at the University of Keele (C. Georgy),
Geneva (G. Meynet, A. Maeder and Sylvia Ekström) and Malaysia (N. Yusof and H. Kassim)
for their significant contributions to the results presented in this chapter. R. Hirschi acknowledges
support from the World Premier International Research Center Initiative (WPI Initiative), MEXT,
Japan and from the Eurogenesis EUROCORE programme. The research leading to these results
has received funding from the European Research Council under the European Union’s Seventh
Framework Programme (FP/2007–2013)/ERC Grant Agreement n. 306901.

References

Abel, T., Bryan, G. L., & Norman, M. L. (2002). Science, 295, 93
Bennett, M. E., Hirschi, R., Pignatari, M., et al. (2012). Monthy Notices of the Royal Astronomical

Society, 420, 3047
Bond, J. R., Arnett, W. D., & Carr, B. J. (1984). Astrophysics Journal, 280, 825
Brüggen, M., & Hillebrandt, W. (2001). Monthy Notices of the Royal Astronomical Society, 323,

56
Braithwaite, J. (2006). Astronomy and Astrophysics, 449, 451
Bromm, V., Coppi, P. S., & Larson, R. B. (1999). Astrophysics Journal Letters, 527, L5
Burrows, A., Dessart, L., Livne, E., Ott, C. D., & Murphy, J. (2007). Astrophysics Journal, 664,

416
Canuto, V. M. (2002). Astronomy and Astrophysics, 384, 1119
Chaboyer, B., & Zahn, J.-P. (1992). Astronomy and Astrophysics, 253, 173
Chatzopoulos, E., & Wheeler, J. C. (2012). Astrophysics Journal, 748, 42
Chieffi, A., & Limongi, M. (2013). Astrophysics Journal, 764, 21
Chieffi, A., Limongi, M., & Straniero, O. (1998). Astrophysics Journal, 502, 737
Christlieb, N., Bessell, M. S., Beers, T. C., et al. (2002). Nature, 419, 904



6 Evolution and Nucleosynthesis of Very Massive Stars 197

Crowther, P. A. (2001). In D. Vanbeveren (Ed.), Astrophysics and Space Science Library (The
Influence of Binaries on stellar population studies, Vol. 264, p. 215). ISBN: 0792371046,
Springer.

Crowther, P. A., Hirschi, R., Walborn, N., & N., Y. (2012). In L. Drissen, C. Robert, N. St-Louis,
& A. Moffat (Eds.) Four decades of research on massive stars (Astronomical Society of the
Pacific, San Fransisco, conference series)

Crowther, P. A., Schnurr, O., Hirschi, R., et al. (2010). Monthy Notices of the Royal Astronomical
Society, 408, 731

de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. (1988a). Astronomy and Astrophysics
Supplement, 72, 259

de Jager, C., Nieuwenhuijzen, H., & van der Hucht, K. A. (1988b). Astronomy and Astrophysics
Supplement, 72, 259

Dessart, L., O’Connor, E., & Ott, C. D. (2012). Astrophysics Journal, 754, 76
Dessart, L., Waldman, R., Livne, E., Hillier, D. J., & Blondin, S. (2013). Monthy Notices of the

Royal Astronomical Society, 428, 3227
Eggenberger, P., Meynet, G., Maeder, A., et al. (2007). Astrophysics and Space Science, 263
Ekström, S., Georgy, C., Eggenberger, P., et al. (2012). Astronomy and Astrophysics, 537, A146
Ekström, S., Meynet, G., Chiappini, C., Hirschi, R., & Maeder, A. (2008). Astronomy and

Astrophysics, 489, 685
Eldridge, J. J., Izzard, R. G., & Tout, C. A. (2008). Monthy Notices of the Royal Astronomical

Society, 384, 1109
Eldridge, J. J., & Vink, J. S. (2006). Astronomy and Astrophysics, 452, 295
Figer, D. F. (2005). Nature, 434, 192
Frebel, A., Aoki, W., & Christlieb, N., e. a. (2005). Nature, 434, 871
Fricke, K. (1968). Zeitschrift fur Astrophysics, 68, 317
Frischknecht, U., Hirschi, R., Meynet, G., et al. (2010). Astronomy and Astrophysics, 522, A39
Fryer, C. L., Woosley, S. E., & Heger, A. (2001). Astrophysics Journal, 550, 372
Georgy, C., Ekström, S., Meynet, G., et al. (2012). Astronomy and Astrophysics, 542, A29
Georgy, C., Ekström, S., Eggenberger, P., et al. (2013). Astronomy and Astrophysics, 558, A103
Georgy, C., Meynet, G., & Maeder, A. (2011) Astronomy and Astrophysics, 527, A52
Goldreich, P., & Schubert, G. (1967). Astrophysics Journal, 150, 571
Gräfener, G., & Hamann, W.-R. (2008). Astronomy and Astrophysics, 482, 945
Greif, T. H., Glover, S. C. O., Bromm, V., & Klessen, R. S. (2010). Astrophysics Journal, 716, 510
Hamann, W.-R., Gräfener, G., & Liermann, A. (2006). Astronomy and Astrophysics, 457, 1015
Heger, A., Langer, N., & Woosley, S. E. (2000). Astrophysics Journal, 528, 368
Heger, A. & Woosley, S. E. (2002). Astrophysics Journal, 567, 532
Hirschi, R. (2007). Astronomy and Astrophysics, 461, 571
Hirschi, R. & Maeder, A. (2010). Astronomy and Astrophysics, 519, A16
Hirschi, R., Meynet, G., & Maeder, A. (2004a). Astronomy and Astrophysics, 425, 649
Hirschi, R., Meynet, G., & Maeder, A. (2004b). Astronomy and Astrophysics, 425, 649
Hirschi, R., Meynet, G., & Maeder, A. (2005). Astronomy and Astrophysics, 443, 581
Kippenhahn, R., & Weigert, A. (1990). Stellar structure and evolution. Berlin/New York, Springer.
Kippenhahn, R., Weigert, A., & Hofmeister, E. (1967). In B. Alder, S. Fernbach, & M. Rotenberg

(Eds.), Methods in Computational Physics (Vol. 7). New York: Academic Press.
Knobloch, E., & Spruit, H. C. (1983). Astronomy and Astrophysics, 125, 59
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Chapter 7
The Deaths of Very Massive Stars

Stan. E. Woosley and Alexander Heger

Abstract The theory underlying the evolution and death of stars heavier than
10 Mˇ on the main sequence is reviewed with an emphasis upon stars much heavier
than 30 Mˇ. These are stars that, in the absence of substantial mass loss, are
expected to either produce black holes when they die, or, for helium cores heavier
than about 35 Mˇ, encounter the pair instability. A wide variety of outcomes is
possible depending upon the initial composition of the star, its rotation rate, and the
physics used to model its evolution. These stars can produce some of the brightest
supernovae in the universe, but also some of the faintest. They can make gamma-
ray bursts or collapse without a whimper. Their nucleosynthesis can range from
just CNO to a broad range of elements up to the iron group. Though rare nowadays,
they probably played a disproportionate role in shaping the evolution of the universe
following the formation of its first stars.

7.1 Introduction

Despite their scarcity, massive stars illuminate the universe disproportionately. They
light up regions of star formation and stir the media from which they are born. They
are the fountains of element creation that make life possible. The neutron stars and
black holes that they make are characterized by extreme physical conditions that can
never be attained on the earth. They are thus unique laboratories for nuclear physics,
magnetohydrodynamics, particle physics, and general relativity. And they are never
quite so fascinating as when they die.

Here we briefly review some aspects of massive star death. The outcomes can be
crudely associated with three parameters – the star’s mass, metallicity, and rotation
rate. In the simplest case of no rotation and no mass loss, one can delineate five
outcomes and assign approximate mass ranges (in some cases very approximate
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mass ranges) for each. These masses then become the section heads for the first part
of this chapter. (1) From 8 to 30 Mˇ on the main sequence (presupernova helium
core masses up to 12 Mˇ), stars mostly produce iron cores that collapse to neutron
stars leading to explosions that make most of today’s observable supernovae and
heavy elements. Within this range there are probably islands of stars that either do
not explode or explode incompletely and make black holes, especially for helium
cores from 7 to 10 Mˇ. (2) From 30 to 80 Mˇ (helium core mass 10–35 Mˇ),
black hole formation is quite likely. Except for their winds, stars in this mass
range may be nucleosynthetically barren. Again though there will be exceptions,
especially when the effects of rotation during core collapse are included. (3) 80 to
(very approximately) 150 Mˇ (helium cores 35–63 Mˇ), pulsational-pair instability
supernovae. Violent nuclear-powered pulsations eject the star’s envelope and, in
some cases, part of the helium core, but no heavy elements are ejected and a massive
black hole of about 40 Mˇ is left behind. (4) 150–260 Mˇ (again very approximate
for the main sequence mass range, but helium core 63–133 Mˇ), pair instability
supernovae of increasing violence and heavy element synthesis. No gravitationally
bound remnant is left behind. (5) Over 260 Mˇ (133 Mˇ of helium), with few
exceptions, a black hole consumes the whole star. Rotation generally shifts the
main sequence mass ranges (but not the helium core masses) downwards for each
outcome. Mass loss complicates the relation between initial main sequence mass
and final helium core mass.

The latter part of the paper deals with some possible effects of rapid rotation on
the outcome. In the most extreme cases, gamma-ray bursts are produced, but even
milder rotation can have a major affect on the light curve and hydrodynamics if a
magnetar is formed.

7.2 The Deaths of Stars 8–80Mˇ

7.2.1 Compactness as a Guide to Outcome

The physical basis for distinguishing stars that become supernovae rather than plan-
etary nebulae, and that are therefore, in some sense, “massive”, is the degeneracy
of the carbon-oxygen (CO) core following helium core burning. Stars with dense,
degenerate CO cores develop thin helium shells and eject their envelopes leaving
behind stable white dwarfs, while heavier stars go on to burn carbon and heavier
fuels. A mass around 8 Mˇ is usually adopted for the transition point. The effects of
degeneracy linger, however, on up to at least 30 Mˇ at oxygen ignition, and to still
heavier masses for silicon burning. Even at 80 Mˇ, the center of a massive star has
become degenerate by silicon depletion.

Were the core fully degenerate and composed of nuclei with equal numbers of
neutrons and protons, its maximum mass would be the cold Chandrasekhar mass,
1:38 Mˇ. This cold Chandrasekhar mass is altered however, both by electron capture
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reactions, which tend to reduce it, and the high temperatures necessary to burn
oxygen and silicon, which increase it (Chandrasekhar 1939; Hoyle and Fowler 1960;
Timmes et al. 1996). For main sequence stars from 8 to 80 Mˇ, the iron core mass at
the time it collapses varies from about 1.3–2.3 Mˇ (baryonic mass), with the larger
values appropriate for more massive stars. Surrounding this degenerate core is a
nested structure of shells that cause adjustments to the density structure. For very
degenerate cores with energetic shells at their edges, the presupernova structure
resembles that of an asymptotic giant branch star – a compact core surrounded
by thin burning shells and a low density envelope with little gravitational binding
energy. The matter outside of the iron core is easily ejected in such stars, and it
is easy to make a supernova out of them, even with an inefficient energy source
like neutrinos. Heavier stars with less degenerate cores and shells farther out, on
the other hand, have a density that declines more slowly. These mantles of heavy
elements, where ultimately most of the nucleosynthesis occurs, are more tightly
bound and the star is more difficult to blow up.

O’Connor and Ott (2011) have defined a “compactness parameter”, �2:5 D
2:5=R2:5, that is a quantitative measure of this density fall off. Here R2:5 is the
radius, in units of 1,000 km, of the mass shell in the presupernova star that encloses
2:5 Mˇ. The fiducial mass is taken to be well outside the iron core but deep enough
in to sample the density structure around that core. It makes little difference whether
this compactness is evaluated at the onset of hydrodynamical instability or at core
bounce (Sukhbold and Woosley 2014). Figure 7.1 shows �2:5 as a function of main
sequence mass for stars of solar metallicity. O’Connor and Ott and Ugliano et al.
(2012) have both shown that it becomes difficult to explode the star by neutrino
transport alone if �2:5 becomes very large. The critical value is not certain and may
vary with other properties of the star, but in Ugliano’s study is usually 0.20–0.30. By
this criterion, it may be difficult to explode stars in the 22–24 Mˇ range (at least) as
well as all stars above about 30 Mˇ that do not lose substantial mass along the way
to their deaths. The latter especially includes stars with very subsolar metallicity.

Fig. 7.1 Compactness
parameter for presupernova
stars of solar metallicity as a
function of main sequence
mass (Sukhbold and Woosley
2014). Stars with smaller �2:3

explode more easily
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There are a number of caveats that go along with this speculation. The struc-
ture of a presupernova star is not fully represented by a single number and its
compactness is sensitive to a lot of stellar physics, including the treatment of
semiconvection and convective overshoot mixing and mass loss and the nuclear
reaction rates employed (Sukhbold and Woosley 2014). Rotation and magnetic
fields will change both the presupernova structure and its prospects for explosion
by non-neutrino processes. Finally, the surveys of how neutrino-powered explosions
depend on compactness have, so far, been overly simple and mostly in 1D, though
see recent work by Janka et al. (2012), Janka (2012), Müller et al. (2012). Still
the simplification introduced by this parametrization is impressive and reasonably
consistent with what we know about the systematics of supernova progenitors.

Figure 7.1 suggests that stars below 22 Mˇ should be, for the most part, easy
to explode using neutrinos alone and no rotation. This is consistent with the
observational limits that Smartt (2009) and Smartt et al. (2009) placed upon about a
dozen presupernova progenitor masses as well as the estimated mass of SN 1987A.
It also is a minimal set of masses if the solar abundances are to be produced (Brown
and Woosley 2013). The compactness of stars between 22 and about 35 Mˇ is highly
variable though due to the migration outwards of the carbon and oxygen burning
shells (Sukhbold and Woosley 2014). For a standard choice of stellar physics, there
exists an island of compact cores between 26 and 30 Mˇ that might allow for islands
of “explodability”. This would help with nucleosynthesis and also possibly have
implications for the properties of the Cas A supernova remnant. Cas A, like SN
1993J and 2001gd (Chevalier and Soderberg 2010), is thought to be the remnant
of a relatively massive single star that lost most of its hydrogenic envelope either
to a wind or a binary companion, yet its remnant contains a neutron star. If the
mass loss was to a companion, as is currently thought, then the progenitor mass was
probably less than 20 Mˇ, but if a star of 30 Mˇ could explode after losing most of
its envelope, this might provide an alternate, solitary star explanation.

On the other hand, binary x-ray sources exist and the black holes in them are
thought to be quite massive (Özel et al. 2010; Wiktorowicz et al. 2014). Stars above
35 Mˇ either make black holes if their mass loss during the Wolf-Rayet stage is
small, or some variant of Type Ibc supernovae if it is large and shrinks the carbon
oxygen core below about 6 Mˇ.

Probably the greatest omission here is the effect of rotation and the need to
produce gamma-ray bursts in a subset of stars. We also have said nothing about
the fate of stars over 80 Mˇ. Both topics will be covered in later sections.

7.2.2 8–30 Mˇ; Today’s Supernovae and Element Factories

For reasonable choices of initial mass function, stars in this mass range are
responsible for most of the supernovae we see today and for the synthesis of most
of the heavy elements. This does not preclude many of these stars from making
black holes, but the supernovae we see are in this range. Baring binary interaction,



7 The Deaths of Very Massive Stars 203

including mergers, or low metallicity, such stars are, at death, red supergiants, and
so the most common supernovae are Type IIp. Explosion energies range from 0.5
to 4 � 1051 erg with a typical value of 9 � 1050 erg (Kasen and Woosley 2009).
These values are the kinetic energy of all ejecta at infinity and the actual energy
requirement for the central engine may be larger, especially for more massive stars
with large binding energies in their mantles. The light curves and spectra of the
models are consistent with observations, to the extent that models for SN IIp can
even be used as “standard candles” based upon the expanding photosphere method.

Including binary interactions, one can account for the remainder of common
(non-thermonuclear) supernovae, including Type Ib, Ic, IIb, etc. (Dessart et al. 2011,
2012). These events typically come from massive stars in the 12–18 Mˇ range that
lose their binary envelopes and die as stripped down helium cores of 3–4 Mˇ. On
the low end, the explosion ejects too little 56Ni to be a bright optical event. Heavier
stars are rarer and may not explode. If they do their light curves are broader and
fainter than typical Ib and Ic supernovae.

The nucleosynthesis produced by solar metallicity stars in this mass range
has been explored many times (Woosley and Weaver 1995; Woosley et al. 2002;
Woosley and Heger 2007; Thielemann et al. 1996; Nomoto et al. 2006; Limongi
et al. 2000; Chieffi and Limongi 2004, 2013; Hirschi et al. 2005; Nomoto et al.
2013). While the results from the different groups studying the problem vary
depending upon the treatment of critical reaction rates, mass loss, semiconvection,
convective overshoot, and rotationally induced mixing, some general conclusions
may be noted.

• The majority of the elements and their isotopes from carbon (Z = 6) through
strontium (Z D 38) are made in solar proportions in supernovae with an average
production factor of around 15 (IMF averaged yield expressed as a mass fraction
and divided by the corresponding solar mass fraction). The iron group, Ti through
Ni, is underproduced in massive stars by a factor of several, which is consistent
with the premise that most of the solar abundances of these species were made
recently in thermonuclear (Type Ia) supernovae. In the distant past, the oxygen to
iron ratio was larger, and massive stars probably produced the iron group in very
low metallicity stars.

• For a reasonable choice for the critical 22Ne.˛; n/25Mg reaction rate, the light
s-process up to A = 90 is made well in massive stars, but only if the upper bound
for the masses of stars that explode is not too low (Brown and Woosley 2013).
The heavy component of the p-process above A = 130 is also produced in massive
stars, but the production of the lighter p-process isotopes (A D 90�130) remains
a mystery, especially the origin of the abundant closed shell nucleus 92Mo .Z D
42; N D 50/.

• While oxygen is definitely a massive star product, the elemental yield of carbon
(12C) is sensitive to how mass loss is treated and requires for its production the
inclusion of the winds of stars heavier than 30 Mˇ. Red giant winds, AGB mass
loss, and planetary nebulae also produce 12C, perhaps most of it, as well as all of
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13C and 14N. 15N and 17O are not sufficiently produced in massive stars and may
be made in classical novae.

• 11B and about one-third of 19F are made by neutrino spallation in massive star
supernovae. 6Li, 9Be, and 10B do not appear to be substantially made, and
probably owe their origin to cosmic ray spallation in the interstellar medium.
Some but not all of 7Li is made by neutrino spallation.

• Certain select nuclei like 44Ca, 48Ca, and 64Zn are underproduced and may
require alternate synthesis.

In addition to the previously mentioned uncertainties affecting presupernova
evolution, assumptions about the explosion mechanism also play a major role.
Fundamentally important is just which masses of stars eject their mantles of heavy
elements and which collapse to black holes while ejecting little new elements. For
a given presupernova structure, a shock that imparts �1051 erg of kinetic energy
to the base of the ejecta, none of which fall back, will give a robust pattern of
nucleosynthesis whether that energy is imparted by a piston or as a thermal “bomb”.
The approximation used by many, however, that the explosion across all masses
can be parametrized by a constant kinetic energy at infinity is too crude and needs
revisiting. Stars of different masses have different binding energies, compactness
parameters, and iron core masses. Rotation probably has a major effect on the
explosion, especially of the more massive stars. The next stage of modeling will
need to take into account these dependencies.

7.2.3 Stars 30–80 Mˇ; Black Hole Progenitors

While the jury is still out regarding the mass-dependent efficiency of an explosion
mechanism that includes realistic neutrino transport, rotation, magnetic fields, and
relativity in three dimensions, the existence of stellar mass black holes and the
absence of observable supernova progenitors with high mass implies that at least
some stars do not explode and eject all of their heavy element inventory. Until such
time as credible models exist, a reasonable assumption is that the success of the
explosion is correlated with the compactness (O’Connor and Ott 2011; Ugliano
et al. 2012). By this criterion, one expects the central regions of stars with helium
cores much larger than about 10 Mˇ and lighter than 35 Mˇ to collapse (Sukhbold
and Woosley 2014) to black holes. Above 10 Mˇ of helium, or about 30 Mˇ on the
main sequence, the iron core is large, typically over 2.0 Mˇ and the compactness
parameter is large. Above 35 Mˇ, or about 80 Mˇ on the main sequence, one
encounters the pulsational pair instability (Sect. 7.3).

For solar metallicity stars, mass loss may reduce the presupernova mass of the
star to a level where it can frequently explode. If it does and the entire envelope has
been lost, the explosion will be some sort of Type Ib or IC supernova. Because of
the large mass, the light curve would be broad, and not as bright as most observed
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SN Ibc. The remnant would probably be a neutron star. It is unclear if such events
have been observed, though Cas A might be a candidate.

Even if the core of the star collapses to a black hole, its death is not necessarily
nucleosynthetically barren or unobservable. The black hole could result from fall
back and the envelope may still be ejected. Even if the presupernova star does not
explode at all, its evolution will still have contributed to nucleosynthesis by its wind,
which may be appreciable (Hirschi et al. 2005). If only the hydrogenic layers are
ejected, these winds can be a rich source of 12C, 16O and, at low metallicity, 14N
(Meynet 2002). If the wind eats deeply into the helium core, 18O and 22Ne can also
be ejected, but the winds of such stars are devoid of heavier elements like silicon
and iron.

If the star rotates sufficiently rapidly, a gamma-ray burst may result (Sect. 7.6.2)
or a magnetar-powered supernova. Even for non-rotating stars, it is debatable
whether the star can simply disappear without a trace. The sudden loss of mass
energy from the protoneutron star can trigger mass ejection and a very subluminous
supernova (Lovegrove and Woosley 2013). Pulsations or gravity waves generated
in the final stages of evolution may partly eject the envelope (Quataert and Shiode
2012). Even a weak explosion might produce a potentially observable bright spike as
its shock wave erupts through the surface of the star (Piro 2013). In a tidally locked
binary or a low metallicity blue supergiant with diminished mass loss, sufficient
angular momentum may exist in the outermost layers of the star to pile up in an
accretion disk around the new black hole producing some sort of x-ray and gamma-
ray transient (Woosley and Heger 2012; Quataert and Kasen 2012).

7.2.4 Yesterday’s Metal Poor Stars

Stars with lower metallicity, as may have predominated in the early universe,
can have different presupernova structures for a variety of reasons (Sukhbold and
Woosley 2014). Most importantly, metallicity affects mass loss, especially for the
more massive stars. If the amount of mass lost is low or zero, the presupernova star
including its helium core, is larger, and that has a dramatic effect on its compactness
and explodability. A vastly different outcome is expected for e.g., a 60 Mˇ star that
retains most of its hydrogen envelope and dies with a helium core of 24 Mˇ, and
one that loses all of its envelope as well as most of its helium core to die with a total
mass of 7.3 Mˇ. This small mass is obtained with current estimates of mass loss for
solar metallicity stars (Woosley et al. 2002). Indirect effects can also come into play.
Because a low metallicity star loses less mass, it loses less angular momentum and
thus dies rotating more rapidly. Indeed, there is some suggestion from theory that
massive stars are all born rotating near break up and only slow as a consequence of
evolution (expansion) and mass loss (Rosen et al. 2012).

Very low metallicity may also enhance the probability of forming more massive
stars (Abel et al. 2002). Whether this results in much more massive stars than
are being born today is being debated. While this is an important issue for the
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frequency of first generation stars with masses over 80 Mˇ (Sect. 7.3), an equally
important question is whether the IMF for the first generation stars might have been
“bottom-light”, that is producing a deficiency of stars below some characteristic
mass, say �30 Mˇ (Tan and McKee 2004). Since this would remove the range
of masses responsible for most supernovae and nucleosynthesis today, the early
universe would have been quite a different place.

Even assuming the exact same masses of stars and explosions as today, nucle-
osynthesis would be distinctly different in low metallicity stars. The amount of
neutrons available to produce all isotopes except those with Z = N depends on the
“neutron excess”, � D ˙.Ni � Zi /.Xi=Ai/, where Zi , Ni , and Ai are the proton
number, neutron number and atomic weight of the species “i” and XI is its mass
fraction. At the end of hydrogen burning all CNO (essentially the metallicity of the
star) has become 14N. Early in helium burning this becomes 18O by the reaction
sequence 14N.˛; �/18F.eC�/18O. The weak interaction here is critical as it creates
a net neutron excess that persists throughout the rest of the star’s life and limits the
production of neutron rich isotopes (like 22Ne, 26Mg, 30Si etc.) and odd-Z elements
(like Na, Al, P). Other weak interactions in later stages of evolution also increase
�, so that by the time one reaches calcium, the dependence on initial metallicity is
not so great, but one does expect an effect on the isotopes from oxygen through
phosphorus.

Assuming that the IMF was unchanged and using the same explosion model
as for solar metallicity stars (but suppressing mass loss) gives an abundance set
that agrees quite well with observations of metal-deficient stars in the range �4 <

ŒZ=Zˇ� < �2 (Lai et al. 2008). All elements from C through Zn are well fit without
the need for a non-standard IMF or unusually high explosion energy.

Below ŒZ=Zˇ� D �4, one becomes increasing sensitive to individual stellar
events and to the properties of the first generation stars. If the stars below 30 Mˇ are
removed from the sample, the nucleosynthesis is set by (a) the pre-collapse winds
of stars in the 30–80 Mˇ range; (b) the results of rotationally powered explosions
with uncertain characteristics; and (c) the contribution of pulsational pair- and pair-
instability supernovae (see below). If only (a) and (c) contribute appreciably, the
resulting nucleosynthesis could be CNO rich and very iron poor.

The light curves of metal deficient supernovae below 80 Mˇ are likely to be
different – some of the time. If the stars die as red supergiants, then very similar
Type IIp supernovae will result, but more of the stars are expected to die as
blue supergiants with light curves like SN 1987A (Heger and Woosley 2010).
Rotation can alter this conclusion, however, as it tends to increase the number of
red supergiants compared with blue (Maeder and Meynet 2012). To the extent that
the massive stars retain their hydrogenic envelope, Type Ib and Ic supernovae will
be suppressed, though of course a binary channel remains a possibility.
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7.3 Pulsational Pair Instability Supernovae (80–150 Mˇ)

The pair instability occurs during the advanced stages of massive stellar evolution
when sufficiently high temperature and low density lead to a thermal concentration
of electron-positron pairs sufficient to have a significant effect on the equation of
state. Only the most massive stars have sufficiently high entropy to encounter this
instability. Making the rest mass of the pairs in a post-carbon burning star takes
energy that might have otherwise contributed to the pressure. As a result, for a
time, the pressure does not rise rapidly enough in a contracting stellar core to
keep pace with gravity. The structural adiabatic index of the core dips below 4/3
and, depending on the strength of the instability, the core contracts more or less
rapidly to higher temperature, developing considerable momentum as it does so.
As temperature rises, carbon, oxygen and, in some cases, silicon burn rapidly. The
extra energy from this burning, plus the eventual partial recovery from the instability
when the pairs become highly relativistic, causes the pressure to rebound fast
enough to slow the collapse. If enough burning occurs before the infall momentum
becomes too great, the collapse is reversed and an explosion is possible. For stars
that are too big though, specifically for helium non-rotating cores above 133 Mˇ,
the collapse continues to a black hole.

When an explosion happens, it can be of two varieties. If enough burning occurs
to unbind the star in a single pulse, a “pair-instability supernova” results (Sect. 7.4).
If not, the core of the star expands violently for a time and may kick off its outer
layers, including any residual hydrogen envelope. It then slowly contracts until
the instability is encountered again and the core pulses once more. The process
continues until enough mass has been ejected and entropy lost as neutrinos that
the pair instability is finally avoided and the remaining star evolves smoothly to
iron core collapse. Typically this requires a reduction of the helium and heavy
element core mass to below 40 Mˇ. These repeated thermonuclear outbursts can
have energies ranging from “mild”, barely able to eject even the loosely bound
hydrogen envelope of a red supergiant, to extremely large, with over 1051 erg in
a single pulse. On the high energy end, collisions of ejected shells can produce
very bright transients. The observational counterpart is “pulsational pair-instability
supernovae” (PPSN).

Depending upon rotation, the electron-positron pair instability begins to have a
marked effect on the post-carbon burning evolution of massive stars with negligible
mass loss when their main sequence mass exceeds about 70–80 Mˇ. (Extremely
efficient rotationally-induced mixing leading to chemically homogeneous chemical
evolution can reduce the threshold main sequence mass still further to approximately
the threshold helium core mass (Chatzopoulos and Wheeler 2012)). For solar
metallicity, stars this massive are usually assumed to lose all their hydrogen
envelope and part of their cores along the way and thus avoid the instability.
Suffice it to say that if the combined effects of mass loss and rotation allow the
existence of a helium core mass in excess of 34 Mˇ at carbon depletion, the pair
instability will have an effect. To get a full-up pair instability supernova, one needs
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a helium core mass of about 63 Mˇ which might correspond, depending upon
the treatment of convection physics, to a main sequence star around 150 Mˇ. In
between, lies the PPSN. As we shall see, the final evolution of such stars can be quite
complicated because of the many pulses, but they have the merit that the explosion
hydrodynamics is simple.

7.3.1 Pulsationally Unstable Helium Stars

While the observable display is quite sensitive to whether the presupernova star
retains its hydrogen envelope or not, the number, energies, and duration of the pulses
driven by the pair instability is determined entirely by the helium core mass. One can
thus sample the broad properties of PPSN using only a grid of bare helium cores.
This has the appealing simplicity of removing the uncertain effects of convective
dredge up and rotational mixing during hydrogen burning and reducing the problem
to a one parameter family of outcomes. Table 7.1 and Fig. 7.2 summarize some
recent results for helium cores of various masses.

Initially, the instability is quite mild and only happens very close to the end of
the star’s life, after it has already completed core oxygen burning and is burning
oxygen in a shell. For larger helium core masses, a few pulses contribute sufficient
energy (about 1048 erg), that starting at around 34 Mˇ, the hydrogen envelope is
ejected, but little else. The low energy ejection of the envelope produces very faint,

Table 7.1 Pulses from
helium core explosions of
different masses (Mˇ)

Mass N Pulse Duration Energy Rem. Mass

32 Weak 4.0(3) 1.6(45) 32

34 12 6.5(3) 1.5(48) 33.93

36 Many 1.4(4) 9.2(48) 35.81

38 Many 8.7(4) 1.1(50) 37.29

40 Many 2.8(5) 2.7(50) 38.24

42 18 3.3(5) 2.4(50) 39.72

44 10 9.0(5) 5.8(50) 39.94

46 10 2.2(6) 6.6(50) 41.27

48 7 6.4(6) 9.2(50) 41.52

50 4 7.1(7) 8.1(50) 42.80

52 4 4.3(8) 8.1(50) 45.87

54 2 5.4(10) 1.6(51) 43.35

56 2 1.3(11) 1.6(51) 40.61

58 2 3.0(11) 3.7(51) 17.06

60 2 1.3(11) 2.7(51) 36.60

62 2 5.3(11) 7.1(51) 5.33

64 1 – 4.7(51) 0

66 1 – 6.8(51) 0
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Fig. 7.2 Pair-driven pulsations cause rapid variations in the central temperature (109 K) near the
time of death for helium cores of 32, 36, 40, 44, 48, 52 (on two different time scales) and 56 Mˇ

(left to right; top to bottom). The log base 10 of the time scales (s) in each panel are respectively
4, 4, 5, 5, 6, 8, 7, and 10. The last rise to high temperature marks the collapse of the iron core to a
compact object. More massive cores have fewer, less frequent, but more energetic pulses. All plots
begin at central carbon depletion
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long lasting Type IIp supernovae. The continued evolution of such stars yields an
iron core of about 2.5 Mˇ that almost certainly collapses to a black hole with a
mass nearly equal to the helium core mass. Thus the ejection of the envelope and its
nucleosynthesis are the only observables for a distant event.

Moving on up in mass, the pulses have more energy, start earlier, and increase in
number until, above 42 Mˇ, their number starts to decline again. Figure 7.2 shows
that in the mass range 3 Mˇ to about 44 Mˇ a major pulse is typically preceded by
a string of smaller ones that grow in amplitude until a single violent event causes
a major change in the stellar structure. Recovery from this violent event requires a
Kelvin-Helmholtz time scale (�KH � GM 2=RL) for the core to contract back to the
unstable temperature, around 2 � 109 K. If the pulse is a weak one, the luminosity
in the Kelvin-Helmholtz time scale is the neutrino luminosity and is large, making
the time scale short. If the pulse decreases the central temperature below a half-
billion degrees however, radiation transport enters in and the time scale becomes
long. On the heavier end of this mass range, the total energy of pulses is a few times
1050 erg, but their overall duration is less than a week. Since this is less than the time
required for the ejected matter to become optically thin, the collisions are usually
finished before any supernova becomes visible. Depending upon the presence of an
envelope, one expects, for these cases, a rather typical Type Ib or IIp light curve,
with some structure possible in the case of the bare helium core because of its short
shock transversal time (Sect. 7.3.2). When the pulses are over, a large iron core
is again produced, and, some time later, the remaining core of helium and heavy
elements probably becomes a black hole.

For still heavier helium core masses, 44–52 Mˇ, the total energy of the pulses
becomes that of a typical supernova, but spread over several pulses that require from
weeks to years to complete. An important alignment of time scales occurs in this
mass range. For the masses and energies ejected, average shell speeds for the first
pulse are a few thousand km s�1 (much less if a hydrogen envelope is in the way).
At this speed, a radius of �1016 cm is reached in about a year, which is comparable
to the interval between pulses. Repeated supernovae and supernovae with complex
light curves are thus possible. The photospheric radii of typical supernovae in nature
are a few times 1015 cm, this being the distance where the expanding debris most
efficiently radiate away their trapped energy on an explosive time scale. Since
the ejecta of a given pulse will consist of material moving both slower than and
faster than the average, and because each pulse is typically more energetic than its
predecessor, shells collide at radii 1015–1016 cm (Fig. 7.3).

These collisions convert streaming kinetic energy to optical light with high
efficiency. In principle, a substantial fraction of the total kinetic energy of the pulses
can be radiated, especially if the shells all run into a slowly moving hydrogen shell
ejected in the first pulse. Stars in this mass range, in the most extreme cases, can
thus give repeated supernovae with up to 1051 erg of light.

Still more energetic and less frequent pulsations happen at higher mass, but
now the presence of the envelope becomes critical. Without a hydrogen envelope,
the time between pulses is so long that the collisions happen at very large radii,
1017–1018 cm. For these very large radii, the result would not be so different from
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Fig. 7.3 Velocities (solid lines) and radii (dashed lines) of ejected shells for four helium cores
producing mass ejection by the pulsational pair mechanism. The velocities are evaluated at various
times when the collision between shells is underway. For the 42 and 48 Mˇ models. this was near
iron core collapse. For 52 Mˇ, it was at central silicon depletion, and for 56 Mˇ, after a strong
silicon flash, but before the re-ignition of silicon. Some merging of pulses has already occurred.
Regions of flat velocity imply spatially thin, high density shells that may be unstable in two or
three dimensions

an ordinary 1051 erg supernova running into an unusually dense interstellar medium.
Both the very large radii and long time scales preclude any resemblance to ordinary
optical supernovae, but the events might instead present as bright radio and x-ray
transients.

In the presence of an envelope, the first pulse does not eject matter with such high
speed and, given the large variation in speed from the inner part of the moving shell
to its outer extremity, substantial energy could still be emitted by explosions in this
mass range by shells colliding inside of 1016 cm making a bright Type II supernova.

Pulses continue until the helium core has lost enough mass to be stable again.
This gives a range of remnant masses typically around 34–46 Mˇ (Table 7.1). The
iron core masses and compactness parameters for these stars are both very large, so
it seems very likely that black holes will result for the entire range of stars making
PPSN, all having typical masses around 40 Mˇ.
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7.3.2 Light Curves for Helium Stars

Light curves for a sample of helium core explosions are shown in Fig. 7.4 and
illustrate the characteristics discussed in the previous section. For the lighter helium
cores, the pulses only eject a small amount of matter with low energy. Shell
collisions are over before light escapes from the collision region. The light curve for
the 26 Mˇ helium core is typical for this mass range – a subluminous “supernova”
of less than 1042 erg s�1 lasting only a few days. These might be looked for in the
case of stars that have lost their envelopes prior to exploding. In a star with an
envelope, as we shall see later, the situation would be very different. Even the small
(1049 erg) kinetic energy would unbind the envelope producing a long, faint Type
IIp supernova.

For the 42 Mˇ helium core, a brighter, longer lasting transient is produced, but
still only a single event, albeit a structured one. The total duration of pulses is about 2
days, followed by a 2 day wait until the core collapse. The last pulse is a particularly
violent one. The light curve (Fig. 7.4) shows a faint outburst occurring as many
smaller pulses merge and the first big of mass is ejected, followed by a longer more

Fig. 7.4 Bolometric light curves from pulsational pair instability supernovae derived from bare
helium cores of 36, 42, 48 and 50 Mˇ. A wide variety of outcomes is possible. For the 36 and
42 Mˇ models the photospheric radius is inside 1015 cm and the transients will be blue. For the
higher two masses, the photosphere is near 1015 cm and the transients might have colors more like
an ordinary supernova
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luminous peak as that main pulse runs into the prior ejecta. Both of these transients
are quite blue since the collisions are occurring at small radius, a few times 1014 cm.

By 48 Mˇ, the shell collisions are becoming sufficiently energetic and infrequent
that the light curve fractures into multiple events. The collisions are now happening
at around 1015 cm and should be quite bright optically. At 52 Mˇ, one sees repeated
individual supernovae. Figure 7.4 merely shows the brightest one from this object.
Activity at the 1041 erg level started two years before.

It should be noted, though, that all these 1D light-curve calculations are
quite approximate and need to be repeated in a multi-dimensional code with the
appropriate physics, especially for cases where the shells collide in an optically thin
regime. KEPLER, a one dimensional implicit hydrodynamics code with flux-limited
radiative diffusion does an admirable job in a difficult situation. In 1D however, the
snowplowing of a fast-moving shell into a slower one generates a large spike in
density, with variations of many orders of magnitude in density between one zone
and an adjacent one. For a time this thin shell corresponds to the photosphere. The
“linearized” equations of hydrodynamics do not behave well in such clearly non-
linear circumstances and the outcome of a multi-dimensional calculation may be
qualitatively different. This is an area of active research.

7.3.3 Type II Pulsational Pair Instability Supernovae

The retention of even a small part of the original hydrogen envelope significantly
alters the dynamics and appearance of PPSN. For example, what wold have been a
brief, faint transient for a 36 Mˇ helium core (Fig. 7.4), provides more than enough
energy to eject the entire envelope of a red supergiant. A great diversity of outcomes
is possible depending upon the mass of the envelope and helium core and the radius
of the envelope

Most striking are the “ultra-luminous supernovae” of Type IIn that happen when
very energetic pulses from the edge of the helium core strike a slowly moving,
previously ejected hydrogen envelope. A similar (Type I) phenomenon could happen
for bare helium cores, but probably with a shorter-lived, less luminous light curve
owing to the smaller masses involved. An example is shown in Fig. 7.6 based upon
the evolution of a 110 Mˇ star (Woosley et al. 2007). By the end of its life this
star had shrunk to 74.6 Mˇ (using a wholly artificial mass loss rate), of which
49.9 Mˇ was the helium core. This core experienced three violent pulsations. The
first ejected almost all of the hydrogen envelope, leaving 50.7 Mˇ behind. This
envelope ejection produced a rather typical Type IIp supernova although with a
slower than typical speed and luminosity (Fig. 7.5). By 6.8 years later, the stellar
remnant had contracted to the point that it experienced the pair instability again.
Two more pulses, occurring in rapid succession, ejected an additional 5.1 Mˇ with
a total kinetic energy of 6 � 1050 erg. Pulses 2 and 3 quickly merged and then run
into the ejected envelope (Figs. 7.5 and 7.6).
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Fig. 7.5 Light curves of the two supernovae produced by the 110 Mˇ PPSN (Woosley et al.
2007). The first pulse ejects the envelope and produces the faint supernova shown in greater detail
on the right. 6.8 years later the collision of pulses 2 and 3 with that envelope produces another
brighter outburst (see Fig. 7.6)

Fig. 7.6 Left: Light curve for the second very luminous outburst of the 110 Mˇ model (see
Fig. 7.5) of the two supernovae produced by the 110 Mˇ PPSN (Woosley et al. 2007). The brighter
set of curves results hen the collision speed is artificially increased by a factor of 2 and resembles
SN 2006 gy. Right: 2D calculation of the explosion of a 110 Mˇ star as a PPSN. The dense shell
produced in 1D by the collision of the ejecta from two pulse is Rayleigh-Taylor unstable. The
resulting density contrast is much smaller

These light curves were calculated using 1D codes in which the collision of the
shells again produced a very large density spike. When the calculation was run
again in 2D, but without radiation transport (Fig. 7.6), a Rayleigh-Taylor instability
developed that led to mixing and a greatly reduced density contrast. The combined
calculation of multi-D hydro coupled to radiation transport has yet to be carried out,
so the light curves shown here are to be used with caution, but a multi-dimensional
study would probably give a smoother light curve.
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Table 7.2 Nucleosynthesis in ejected shells (Mˇ) from helium core pulsational explosions

Mass Total He C O Ne Mg Si S Ar Ca

34 0.071 0.071 – – – – – – – –

36 0.19 0.19 – – – – – – – –

38 0.71 0.32 0095 0.17 0.096 0.032 – – – –

40 1.76 0.50 0.29 0.53 0.32 0.11 – – – –

42 2.28 0.60 0.43 0.70 0.41 0.14 – – – –

44 4.06 0.85 0.79 1.36 0.80 0.26 – – – –

46 4.73 1.02 0.94 1.61 0.90 0.27 – – – –

48 6.48 1.34 1.40 2.30 1.15 0.30 – – – –

50 7.20 1.58 1.60 2.61 1.16 0.26 – – – –

52 6.13 1.55 1.33 2.29 0.81 0.16 0.001 – – –

54 10.64 1.65 1.83 5.32 1.35 0.41 0.074 – – –

56 15.38 1.74 2.06 9.41 1.52 0.50 0.15 – – –

58 40.93 1.85 2.87 30.5 2.64 1.42 1.49 0.17 0.020 0.015

60 23.39 1.89 3.10 15.0 2.49 0.60 0.28 0.058 0.008 0.005

62 56.67 1.95 2.87 37.5 2.60 1.43 6.39 2.99 0.51 0.44

64 64 1.92 3.62 44.1 3.60 2.12 5.35 2.41 0.43 0.38

66 66 1.79 3.60 42.8 3.99 2.07 7.11 3.49 0.60 0.53

7.3.4 Nucleosynthesis

The nucleosynthesis from PPSN is novel in that it is heavily weighted towards the
light species that are ejected in the shells. For present purposes, given the large iron
cores, we assume that all matter not ejected by the pulsations becomes a black hole.
This assumption could be violated if rapid rotation energized some sort of jet-like
outflows (e.g., a gamma-ray burst), but otherwise it seems reasonable.

Table 7.2 gives the approximate bulk nucleosynthesis, in solar masses, calculated
for our standard set of helium cores models. For the lightest cores, the pulses lack
sufficient energy to eject more than a small amount of surface material, which by
assumption here is pure helium. It should be noted, however, that even these weak
explosions would eject at least part of the hydrogen envelope of any red supergiant
(typical binding energy less than 1048 erg). Since these envelopes often produce
primary nitrogen by mixing between the helium core and hydrogen burning shell,
an uncertain but possibly large yield of carbon, nitrogen, and oxygen (and of course
hydrogen and helium) would accompany these explosions in a star that had not lost
its envelope.

Moving up in mass, the violence of the pulses increases rapidly and more
material is ejected, eventually reaching the deeper shells rich in heavier elements. In
Table 7.2, total yields of less than 0.01 Mˇ have not been included with the single
exception of the 66 Mˇ model which made 0.037 Mˇ of 56Ni. The 64 and 66 Mˇ
models are actually full up pair instability supernovae and leave no remnants, so
perhaps including their yields here with the PPSN is a bit misleading.
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If one folds these yields with an IMF to get an overall picture of the nucleosynthe-
sis from a generation of PPSN, it is clear that the production (and the typical spectra
of PPSN) will be dominated by H, (He), C, N, O, (Ne) and Mg and little else. In
particular, PPSN make no iron-group elements. Given the dearth of strong He and
Ne lines, one might expect that the generation of stars following a putative “first
generation” of PPSN would show enhancements of C, N, O, and Mg and be “ultra-
iron poor”. Of course some heavier elements could be made by stars sufficiently
light (main sequence mass less than 20 Mˇ?) to explode by the neutrino-transport
process, or sufficiently heavy to make iron in a pair-instability supernova (helium
core mass over 65 Mˇ).

7.4 150–260 Mˇ; Pair Instability Supernovae

The physics of pair instability supernovae (PISN) is sufficiently well understood
that they can be accurately modeled in 1D on a desktop computer. A major question
though is their frequency in the universe. PISN come from a range of masses
somewhat heavier than we expect for presupernova stars today. This is not to say
that stars of over 150 Mˇ are not being born. See e.g., the review by Crowther
reported in Vink et al. (2013) which gives 320 Mˇ as the current observational
limit. The issue is whether such large masses can be retained in a star whose
luminosity hovers near the Eddington limit (Vink et al. 2011). Still observers claim
to have discovered at least one PISN event (Galyam et al. 2009). Because the critical
quantity governing whether a star becomes PISN is the helium core mass of the
presupernova star (greater than 65 Mˇ), they are favored by diminished mass loss,
i.e., at low metallicity, and may have been more abundant in the early universe.

A common misconception is that all PISN make a lot of 56Ni and therefore are
always very bright. As Fig. 7.7 shows, large 56Ni production and very high kinetic
energies are limited to a fairly narrow range of exceptionally heavy and rare PISN.
Most events will either present as a particularly energetic Type IIp supernova or a
subluminous SN I. For an appreciable range of masses, less 56Ni is produced than
in, e.g., a SN Ia (about 0.7 Mˇ).

The nucleosynthesis of very low metallicity PISN is quite distinctive because
they lack the excess neutrons needed to make odd-Z elements during the explosion.
This is because the initial metallicity of the star, mostly CNO, is turned into 14N
during hydrogen burning. During helium burning, 14N captures an alpha particle
experiencing a weak decay to make 18O which has two extra neutrons. Subsequent
burning stages rearrange these neutrons using them to make isotopes and elements
that require an excess of neutrons over protons, like almost all odd Z elements do.
During the collapse phase, the time is too short for additional weak interactions so
the ejected matter ends up deficient in things like Na, Al, P, Cl, K, Sc, V, and Mn.
Very metal poor stars show no such anomalies and this suggests that the contribution
of PISN to very early nucleosynthesis was small.
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Fig. 7.7 Nucleosynthesis in pair-instability supernovae as a function of helium core mass. Also
given is the explosion energy in units of 1051 erg (broad grey line) which rises steadily with mass.
The dark solid line is 56Ni synthesis which is not particularly large below 90 Mˇ (Heger and
Woosley 2002)

7.5 Above 260 Mˇ

Stars heavier than 260 Mˇ, or more specifically non-rotating helium cores greater
than 133 Mˇ, are expected to produce black holes, at least up to about 105 Mˇ.
Starting around 105 Mˇ, hydrogenic stars encounter a post-Newtonian instability
on the main sequence and collapse (Fowler and Hoyle 1964). If these stars
have near solar metallicity (above Z D 0:005) then titanic explosions of 1056–
1057 erg, powered by explosive hydrogen burning, can result for masses in the range
105–106 Mˇ (Fuller et al. 1986). Lacking a large initial concentration of CNO, stars
in this mass range, collapse to black holes.

For lighter stars, �103–105 Mˇ, hydrogen burns stably, but helium burning
encounters the pair instability, and on the upper end, the post-Newtonian instability.
Again black hole formation seems the most likely outcome, though this mass range
has not been fully explored.

7.6 The Effects of Rotation

Rotation alters stellar evolution in two major ways. During presupernova evolution
it leads to additional mixing processes that can stir up either regions of the star or
the whole star. Generally the helium cores of rotating stars are larger and, since the
nucleosynthesis and explosion physics of massive stars depends sensitively upon the
helium core mass, the outcome of a smaller mass main sequence star with rotation
can resemble that of a larger one without rotation. The mixing can also increase
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Table 7.3 Pulsar rotation rate predicted by models (Heger et al. 2005)

Mass Baryon Gravitational J BE Pulsar P

(Mˇ) (Mˇ) (Mˇ) (1047 erg s) (1053 erg) (ms)

12 1.38 1.26 5.2 2.3 15

15 1.47 1.33 7.5 2.5 11

20 1.71 1.52 14 3.4 7.0

25 1.88 1.66 17 4.1 6.3

35 2.30 1.97 41 6.0 3.0

the lifetime of the star and its luminosity and bring abundances to the surface that
might have otherwise remained hidden. In extreme cases, rotation can even lead to
the complete mixing of the star on the main sequence, thus avoiding the formation
of a supergiant and producing a very rapidly rotating presupernova star that might
serve as a gamma-ray burst progenitor (Sect. 7.6.2).

The other way rotation changes the evolution is by affecting how the star
explodes and the properties of the compact remnant it leaves behind. Calculations
that use reasonable amounts of rotation and approximate the effects of magnetic
torques in transporting angular momentum show that rotation may play an increas-
ingly dominant role in the explosion as the mass of the star increases (Heger et al.
2005). This is in marked contrast to the neutrino transport model which shows
the opposite behavior (Sect. 7.2.1); heavier stars are more difficult to explode with
neutrinos.

Table 7.3 shows the expected rotation rates of pulsars derived from the collapse
of rotating stars of various main sequence masses. The rotational energy of these
neutron stars is given approximately by 1051.5 ms=P /�2 erg, where it is assumed
that the neutron star moment of inertia is 80 km2 Mˇ (Lattimer and Prakash 2007).
This implies that supernova over about 20 Mˇ or so have enough rotational energy
to potentially power a standard supernova. Rapidly rotating stellar cores are also
expected to give birth to neutron stars with large magnetic fields (Duncan and
Thompson 1992), thus providing a potential means of coupling the large rotation
rate to the material just outside the neutron star. Calculations so far are encouraging
(e.g. Akiyama et al. 2003; Burrows et al. 2007; Janka 2012). No calculation has
yet modeled the full history, of a rotational, or rotational plus neutrino powered
supernova all the way through from the collapse to explosion phase including all
the relevant neutrino and MHD physics, but probably this will happen in the next
decade.

In principle, the outcomes of rotationally powered supernovae and those powered
by neutrinos should be very similar, though only rotation offers the prospect
of making the explosion hyper-energetic (much greater than 1051 erg). To the
extent that nucleosynthesis, light curves and spectra only depend upon the prompt
deposition of �1015 erg at the center of a highly evolved red or blue supergiant, they
will be indistinguishable. Rotation breaks spherical symmetry and may produce jets,
but except in the case of gamma-ray bursts, it may be hard to disentangle effects
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essential to the explosion from those that simply modify an already successful
explosion. There are interesting constraints on time scales, however, and hence on
field strengths. Rotation or neutrinos must overcome a ram pressure from accretion
that, in the case of high compactness parameter, may approach a solar mass per
second. At a radius of 50 km, roughly typical of a young hot protoneutron star, it
would take a field strength of over 1015 gauss to impede the flow. A similar estimate
comes from nucleosynthesis. In order to synthesize 56Ni, material must be heated to
at least 4 and preferably 5 � 109 K. In a hydrodynamical model in which radiation
dominates and 1051 erg is deposited instantly, this will only occur in a region smaller
than 3,000 km. It takes the shock, moving at typically 20,000 km s�1, about 0.1 s
to cross that region, after which it begins to cool off. To deposit 1051 erg in that
time with a standard dipole luminosity (Lang 1980) the field strength would need
to exceed about 1016 gauss. This probably exceeds the surface fields generated by
collapse alone. Whether the magneto-rotational instability can generate such fields
is unclear, but it may take an exceptionally high rotation rate for this to all work out.

Perhaps the most common case is a neutrino-powered initial explosion amplified
by rotation at later times. If that is the case though, a successful outgoing shock
must precede any significant pulsar input. That starting point be difficult to achieve
in stars with high compactness (Fig. 7.1). In any case we do know that some massive
stars do make black holes.

7.6.1 Magnetar Powered Supernova Light Curves

If magnetic fields and rotation can provide the �1051 erg necessary for the kinetic
energy of a supernova, they might, with greater ease, deliver the 1048 or even
1050 erg needed to make a bright – or a really bright – light curve (Woosley
2010; Kasen and Bildsten 2010). At the outset, one must acknowledge the huge
uncertainty in applying the very simple pulsar power formula (Lang 1980),

dE

dt
� 1049 B2

15P
�4
ms erg s�1; (7.1)

to a situation where the neutron star is embedded in a dense medium and that is
still be rapidly evolving. Doing this blindly, however, yields some interesting results
(Fig. 7.8). Since the energy is deposited late, it is less subject to adiabatic losses and
is emitted as optical light with high efficiency. For reasonable choices of magnetic
field and initial rotation rate, the supernova can be “ultra-luminous”, brighter than a
typical SN Ia for a much longer time.

The magnetic fields required are not all that large and are similar to what has
been observed for modern day magnetars (Mereghetti 2008). In fact, too large a
field results in the rotational energy being deposited too early. That energy then
contributes to the explosion kinetic energy, but little to the light curve because,
by the time the light is leaking out, the magnetar has already deposited most of
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Fig. 7.8 Magnetar powered light curves for (left) different values of field strength (1014, 1015,
and 1016 G at 4 ms) and (right) initial rotation periods (2, 4, 6 ms at 1014 G). The base event is
the 1.2 �1051 erg explosion of a 10 Mˇ carbon-oxygen core. (Sukhbold and Woosley 2014, in
preparation)

its rotational energy. The rotation rates, though large, are also not extreme, not
very different, in fact, from the predictions for quite massive stars (Heger et al.
2005). If gamma-ray bursts are to be powered by millisecond magnetars with fields
�1015�1016 G, and if ordinary pulsars have fields and rotational energies 100–1,000
times less, one expects somewhere, sometime to make neutron stars with fields and
rotational energies that are just ten times less. The long tails on the light curves are
interesting and, lacking spectroscopic evidence or very long duration observations,
might easily be confused with 56Co decay (Woosley 2010).

Depending upon the mass and radius of the star, the presence or absence of a
hydrogenic envelope, and the supernova explosion energy, the resulting magnetar-
illuminated transients can be quite diverse. The brighter events will tend to be of
Type I because the supernova becomes transparent at an earlier time when greater
rotational energy is being dissipated. The upper bound to the luminosity is a few
times 1051 erg emitted over several months, or �1044:5 erg s�1, but much fainter
events are clearly possible. For Type II supernovae in red supergiants, the magnetar
contribution may present as a rapid rise in brightness after an extended plateau
(Maeda et al. 2007). The rise could be even more dramatic and earlier in a blue
supergiant.

An interesting characteristic of 1D models for magnetar powered supernovae is
a large density spike caused by the pile up of matter accelerated from beneath by
radiation. In more than one dimension, this spike will be unstable and its disruption
will lead to additional mixing that might have consequences for both the spectrum
and the appearance of the supernova remnant.
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7.6.2 Gamma-Ray Bursts (GRBs)

In the extreme case of very rapid rotation and the complete loss of its hydrogenic
envelope, the death of a massive star can produce a common (long-soft) GRB. For
a recent review see Woosley (2013). There are two possibilities for the “central
engine” – a “millisecond magnetar” and a “collapsar”. The former requires that the
product of a successful supernova explosion be, at least for awhile, a neutron star,
and that the power source is its rotational energy. The latter assumes the formation
of a black hole with a centrifugally supported accretion disk. The energy source can
be either the rotational energy of that black hole or of the disk, which is, indirectly,
energized by the black hole’s strong gravity.

Both models require that the progenitor star have extremely high angular
momentum in and around the iron core. Loss of the hydrogen envelope could occur
though a wind, binary mass exchange, or because extensive rotationally-induced
mixing on the main sequence kept a red giant from ever forming. Loss of the
envelope by a wind is disfavored because the existence of a lengthy red giant phase
would probably break the rotation of the core to the extent that the necessary angular
momentum was lost. One is this left with the possibility of a massive star that lost its
envelope quite early in to a companion or a single star that experienced chemically
homogeneous evolution (Maeder 1987; Woosley and Heger 2006; Yoon and Langer
2005, 2006). The resulting Wolf-Rayet star must also not lose much mass or its
rotation too will be prohibitively damped. This seems to exclude most stars of solar
metallicity, so GRBs are relegated to a low metallicity population. The relevant mass
loss rate depends upon metallicity (specifically the iron abundance) as Z0:86 (Vink
and de Koter 2005), and even mild reduction is sufficient to provide the necessary
conditions for a millisecond magnetar.

The collapsar model is capable, in principle, of providing much more energy (up
to �1054 erg) than the magnetar model (up to 3 � 1052 erg). The former is limited
only by the efficiency of converting accreted mass into energy, which can be quite
high for a rotating black hole, while the latter is capped by a critical rotation rate
where the protoneutron star deforms and efficiently emits gravitational radiation. So
far, there is no clear evidence for total (beaming corrected) energies above 1052:5 in
any GRB, so both models remain viable. It is interesting that there may be some pile
up of the most energetic GRBs and their associated supernovae around a few times
1052. That might be taken as (mild) evidence in favor of the magnetar model. On the
other hand, black hole production is likely in the more massive stars and it may be
difficult to arrange things such that all the matter always accretes without forming a
disk (Woosley and Heger 2012).

Since angular momentum is in short supply, it is definitely easier to produce
a millisecond magnetar which requires a mass averaged of angular momentum of
only 2 � 1015 erg s (for a moment of inertia I D 1045 g cm2), or a value at its equator
of 6 � 1015 erg s (for a neutron star radius of 10 km). For comparison, the angular
momentum for the last stable orbit of a Kerr black hole is 1:5 � 1016 MBH

3 Mˇ
erg s and

about three times larger for a Schwarzschild hole. The same sorts of systems that
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make collapsars thus also seem likely to make, at least briefly, neutron stars with
millisecond rotation periods. How these rapid rotators make their fields and how
the fields interact with the rapidly accreting matter in which they are embedded is a
very difficult problem in 3D, general relativistic magnetohydrodynamics. Analytic
arguments suggest however that large fields will be created (Duncan and Thompson
1992) and that the rotation and magnetic fields will play a major role in launching
an asymmetric explosion (Akiyama et al. 2003; Burrows et al. 2007).

Just which mass and metallicity stars make GRBs is an interesting issue. Even
when the effects of beaming are included, the GRB event rate is a very small fraction
of the supernova rate and thus the need for special circumstances is a characteristic
of all successful models. These special circumstances include, as mentioned, the
lack of any hydrogenic envelope and very rapid rotation. Without magnetic torques,
the cores of most massive stars would rotate so rapidly at death that millisecond
magnetars, collapsar, and presumably GRBs would abound. Any realistic model
thus includes the effects of magnetic braking, even though the theory (Spruit 2002;
Heger et al. 2005) is highly uncertain. In fact, most massive stars may be born
with extremely rapid rotation, corresponding to 50 % critical in the equatorial plane,
because of their magnetic coupling to an accretion disk (Rosen et al. 2012). The
fact that most massive stars are observed to be rotating more slowly on the main
sequence is a consequence of mass loss which would be reduced in regions with
low metallicity. Since these large rotation rates are sufficient, again with uncertain
parameters representing the inhibiting effect of composition gradients, to provoke
efficient Eddington-Sweet mixing on the main sequence, GRBs should be abundant
(too abundant?) at low metallicity. It is noteworthy that models for GRBs that invoke
such efficient mixing on the main sequence do not require that the star be especially
massive since, for low metallicity, the zero age main sequence mass is not much
greater than the presupernova helium core mass (Woosley and Heger 2006). A low
metallicity star of only 15 Mˇ could become a GRB and a star of 45 Mˇ could
become a pulsational pair instability supernova.

Using a standard set of assumptions, the set of massive stars that might make
GRBs by the collapsar mechanism has been surveyed for a grid of masses and
metallicities by Yoon and Langer (2006). Averaged over all redshifts they find a
GRB to supernova event ratio of 1/200 which declines at low redshift to 1/1,250.
Half of all GRBs are expected to be beyond redshift 4. Given that magnetars might
also make GRBs, or even most of them, these estimates need to be reexamined. In
particular, the mean redshift for bursts may be smaller and the theoretical event rate
higher.

7.7 Final Comments

As is frequently noted, we live in interesting times. Most of the basic ideas invoked
for explaining and interpreting massive star death are now over 40 years old. This
includes supernovae powered by neutrinos, pulsars, the pair-instability, and the
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pulsational pair instability. Yet lately, the theoretical models and observational data
have both experienced exponential growth, fueled on the one hand by the rapid
expansion of computer power and the shear number of people running calculations,
and on the other, by large transient surveys. Ideas that once seemed “academic”,
like pair-instability supernovae and magnetar-powered supernovae are starting to
find counterparts in ultra-luminous supernovae.

“Predictions” in such a rapidly evolving landscape quickly become obsolete or
irrelevant. Still, it is worth stating a few areas of great uncertainty where rapid
progress might occur. These issues have been with us a long time, but problems
do eventually get solved.

• What range(s) of stellar masses and metallicities explode by neutrino transport
alone. The community has hovered on the brink of answering this for a long time.
Today some masses explode robustly and others show promise (Janka et al. 2012;
Janka 2012), but a comprehensive, parameter-free understanding is still lacking.
The computers, scientists, and physics may be up to the task in the next five
years. The compactness of the progenitor very likely plays a major role. It would
be really nice to know.

• What is the relation between the initial and final (presupernova) masses of stars
of all masses and metallicities. Suppose we knew the initial mass function at
all metallicities (a big given). What is the final mass function for presupernova
stars? We can’t really answer questions about the explosion mechanism of stars
of given main sequence masses without answering this one too. Our theories and
observations of mass loss are developing, but still have a long way to go.

• What is the angular momentum distribution in presupernova stars? To answer
this the effects of magnetic torques and mass loss must be included throughout
all stages of the evolution – a tough problem. Approximations exist, but they are
controversial and more 3D modeling might help.

• Are the ultra-luminous supernovae that are currently being discovered predom-
inantly pair instability, pulsational pair instability, or magnetar powered (or all
three)? Better modeling might help, especially with spectroscopic diagnostics.

• Is the most common form of GRB powered by a rotating neutron star or by an
accreting black hole? What are the observational diagnostics of each?

• Does “missing physics”, e.g., neutrino flavor mixing or a radically different
nuclear equation of state play a role in answering any of the above questions?

This small list of “big theory issues” of course connects to a greater set of
“smaller issues” – the treatment of semiconvection, convective overshoot, and
rotational mixing in the models; critical uncertain nuclear reaction rates; opacities;
the complex interplay of neutrinos, magnetohydrodynamics, convection and general
relativity in 3D in a real core collapse – well maybe that is not so small.

Obviously there is plenty for the next generation of stellar astrophysicists to do.
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Chapter 8
Observed Consequences of Preupernova
Instability in Very Massive Stars

Nathan Smith

Abstract This chapter concentrates on the deaths of very massive stars, the events
leading up to their deaths, and how mass loss affects the resulting death. The
previous four chapters emphasized the theory of wind mass loss, eruptions, and
core collapse physics, but here we emphasize mainly the observational properties
of the resulting death throes. Mass loss through winds, eruptions, and interacting
binaries largely determines the wide variety of different types of supernovae that
are observed, as well as the circumstellar environments into which the supernova
blast waves expand. Connecting these observed properties of the explosions to
the initial masses of their progenitor stars is, however, an enduring challenge
and is especially difficult for very massive stars. Superluminous supernovae, pair
instability supernovae, gamma ray bursts, and “failed” supernovae are all end fates
that have been proposed for very massive stars, but the range of initial masses
or other conditions leading to each of these (if they actually occur) are still very
uncertain. Extrapolating to infer the role of very massive stars in the early universe
is essentially unencumbered by observational constraints and still quite dicey.

8.1 Introduction

As discussed in previous chapters (Vink, Owocki), two critical aspects in the
evolution of very massive stars (VMSs) are that their high luminosities cause strong
mass loss in radiation-driven winds, and that high luminosities can also cause severe
instabilities in the stellar envelope and interior as the star approaches the Eddington
limit. These features become increasingly important as the initial stellar mass
increases, but especially so as the star evolves off the main sequence and approaches
its death. Moreover, the two are interconnected, since mass loss will increase the
star’s luminosity/mass ratio, possibly leading to more intense instabilities over time.

It should not be surprising, then, that VMSs show clear empirical evidence of
this instability, and this chapter discusses various observational clues that we have.
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This is a particularly relevant topic, as time-domain astronomy is becoming an
increasingly active field of observational research. Throughout, the reader should
remember that we are focussed on observed phenomena, and that working backward
to diagnose possible underlying physical causes is not always straightforward.
Hence, this interpretation is where most of the current speculation and debate rests
among researchers working in the field. Stellar evolution models make predictions
for the appearance of single massive stars late in their lives, but the influence of
binary interaction may be extremely important or even dominant (Langer 2012),
and the assumptions about mass-loss that go into the single-star models are not
very reliable (Smith 2014). In particular, the eruptive instabilities discussed in this
chapter are not included in single-star evolution models, and as such, these models
provide us with little perspective for understanding the very latest unstable phases of
VMSs or their final fates. The loosely bound envelopes that result from a star being
close to the Eddington limit may be an important factor in directly causing outbursts,
but having a barely bound envelope may also make it easier for other mechanisms to
be influential, such as energy injection from non-steady nuclear burning, precursor
core explosions, or binary interactions (see e.g., Smith and Arnett 2014 for a broader
discussion of this point).

In the sections to follow, we discuss the observed class of eruptive luminous blue
variables (LBVs) that have been linked to the late evolutionary phases of VMSs,
various types of very luminous supernovae (SNe) or other explosions that may come
from VMSs, and direct detections of luminous progenitors of SNe (including a few
actual detections of pre-SN eruptions) that provide a direct link between VMSs and
their SNe.

8.2 LBVs and Their Giant Eruptions

Perhaps the most recognizable manifestation of the instability that arises in the post-
main-sequence evolution of VMSs is the class of objects known as luminous blue
variables (LBVs). These were recognized early-on as the brightest blue irregular
variables in nearby galaxies like M31, M33, and NGC 2403 (Hubble and Sandage
1953; Tammann and Sandage 1968), and these classic examples were referred to as
the “Hubble-Sandage variables”. Later, Conti (1984) recognized that many different
classes of hot, irregular variable stars in the Milky Way and Magellanic clouds
were probably related to these Hubble-Sandage variables, and probably occupy
similar evolutionary stages in the lives of massive stars, so he suggested that they
be grouped together and coined the term “LBV” to describe them collectively.
The LBVs actually form a rather diverse class, consisting of a wide range of
irregular variable phenomena associated with evolved massive stars (see reviews
by Humphreys and Davidson 1994; van Genderen 2001; Smith et al. 2004, 2011a;
Van Dyk and Matheson 2012; Clark et al. 2005).



8 Observed Deaths of Very Massive Stars 229

8.2.1 Basic Observed Properties of LBVs

In addition to their high luminosities, some of the key observed characteristics
of LBVs are as follows (although beware that not all LBVs exhibit all these
properties):

• S Doradus eruptions. Named after the prototype in the LMC, S Dor eruptions
are seen as a brightening that occurs at visual wavelengths resulting from
a change in apparent temperature of the star’s photosphere; this causes the
peak of the energy distribution to shift from the UV to visual wavelengths at
approximately constant bolometric luminosity. The increase in visual brightness
(i.e. 1–2 mag, typically for more luminous stars) corresponds roughly to the
bolometric correction for the star, so that hotter stars exhibit larger amplitudes
in their S Dor events. LBVs have different temperatures in their quiescent state,
and this quiescent temperature increases with increasing luminosity. The visual
maximum of S Dor eruptions, on the other hand, usually occurs at a temperature
around 7500 K regardless of luminosity, causing the star to resemble a late F-type
supergiant with zero bolometric correction (see Fig. 8.1). While these events are
defined to occur at constant bolometric luminosity (Humphreys and Davidson
1994), in fact quantitative studies of classic examples like AG Car do reveal some
small variation in LBol through the S Dor cycle (Groh et al. 2009). Similarly, the
traditional explanation for the origin of the temperature change was that the star
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increases its mass-loss rate, driving the wind to very high optical depth and the
creation of a pseudo photosphere (Humphreys and Davidson 1994; Davidson
1987). Quantitative spectroscopy reveals, however, that the measured mass-loss
rates do not increase enough to cause a pseudo photosphere in classic S Dor
variables like AG Car (de Koter et al. 1996), and that the increasing photospheric
radius is therefore more akin to a true expansion of the star’s photosphere (i.e., a
pulsation). Possible causes of this inflation of the star’s outer layers is discussed
elsewhere in this book (see Owocki’s chapter). LBVs that experience these
excursions are generally thought to be very massive stars, but their mass range is
known to extend down to around 25 Mˇ (Smith et al. 2004).

• Quiescent LBVs reside on the S Dor instability strip. As noted in the previous
point, LBVs all show roughly the same apparent temperature in their cool/bright
state during an outburst, but they have different apparent temperatures in their
hot/quiescent states. These hot temperatures are not random. In quiescence, most
LBVs reside on the so-called “S Dor instability strip” in the HR Diagram (Wolf
1989). This is a diagonal strip, with increasing temperature at higher luminosity
(see Fig. 8.1). Notable examples that do not reside on this strip are the most
luminous LBVs, like � Car and the Pistol star, so the S Dor instability strip may
not continue to the most massive and most luminous stars, for reasons that may
be related to the strong winds in these VMSs (see Vink chapter). Many of the
stars at the more luminous end of the S Dor instability strip are categorized
as Ofpe/WN9 or WNH stars in their hot/quiescent phases, with AG Car and
R127 being the classic examples where these stars are then observed to change
their spectral type and suffer bona-fide LBV outbursts. There are also many
Ofpe/WN9 stars in the same part of the HR Diagram that have not exhibited the
characteristic photometric variability of LBVs in their recent history, but which
have circumstellar shells that may point to previous episodes of eruptive mass
loss (see below). Such objects with spectroscopic similarity to quiescent LBVs,
but without detection of their photometric variability, are sometimes called “LBV
candidates”.

• Giant eruptions. The most dramatic variability attributed to LBVs is the
so-called “giant eruptions”, in which stars are observed to increase their radia-
tive luminosity for months to years, accompanied by severe mass loss (e.g.,
Humphreys et al. 1999; Smith et al. 2011a). The star survives the disruptive event.
The best studied example is the Galactic object � Carinae, providing us with its
historically observed light curve (Smith and Frew 2011), as well as its complex
ejecta that contain 10–20 Mˇ and �1050 ergs of kinetic energy (Smith et al.
2003; Smith 2006). Besides the less well-documented case of P Cygni’s 1600
AD eruption, our only other examples of LBV-like giant eruptions are in other
nearby galaxies. A number of these have been identified, with peak luminosities
similar to � Car or less (Van Dyk and Matheson 2012; Smith et al. 2011a). Typical
expansion speeds in the ejecta are 100–1,000 km s�1 (Smith et al. 2011a). These
events are discussed more below.

• Strong emission-line spectra. Most, but not all, LBVs exhibit strong emission
lines (especially Balmer lines) in their visual-wavelength spectra. This is a
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consequence of their very strong and dense stellar winds (see Vink chapter),
combined with their high UV luminosity and moderately high temperature. The
wind mass-loss rates implied by quantitative models of the spectra range from
10�5 to 10�3 Mˇ yr�1; this is enough to play an important role in the evolution
of the star (see Smith 2014), and eruptions enhance the mass loss even more.
The emission lines in LBVs are, typically, much stronger than the emission lines
seen in main-sequence O-type stars of comparable luminosity, and all of the
more luminous LBVs have strong emission lines. Other stars that exhibit similar
spectra but are not necessarily LBVs include WNH stars, Ofpe/WN9 stars, and
B[e] supergiants, some of which occupy similar parts of the HR Diagram.

• Circumstellar shells. Many LBVs are surrounded by spatially resolved cir-
cumstellar shells. These fossil shells provide evidence of a previous eruption.
Consequently, some stars that resemble LBVs spectroscopically and have mas-
sive circumstellar shells, but have not (yet) been observed to exhibit photometric
variability characteristic of LBVs, are often called LBV candidates. Many
authors prefer to group LBVs and LBV candidates together (the logic being that
a volcano is still a volcano even when it is dormant). LBV circumstellar shells
are extremely important, as they provide the only reliable way to estimate the
amount of mass ejected in an LBV giant eruption. The most common technique
for measuring the mass is by calculating a dust mass from thermal-IR radiation,
and then converting this to a total gas mass with an assumed gas:dust mass ratio
(usually taken as 100:1 for the Milky Way, although this value is uncertain1).
To calculate a dust mass from the IR luminosity, one must estimate the dust
temperature from the spectral energy distribution (SED), and then adopt some
wavelength-dependent grain opacities in order to calculate the emitting mass. The
technique can be quite sensitive to multiple temperature components, and far-IR
data have been shown to be very important because most of the mass can be hid-
den in the coolest dust, which is often not detectable at wavelengths shorter than
20 �m. One can also measure the gas mass directly by various methods, usually
adopting a density diagnostic like line ratios of [Fe II] or [S II] and multiplying
by the volume and filling factor, or calculating a model for the density needed to
produce the observed ionization structure using codes such as CLOUDY (Ferland
et al. 1998). The major source of uncertainty here is the assumed ionization
fraction. Masses of LBV nebulae occupy a very large range from �20 Mˇ at
the upper end down to 0.1 Mˇ (Smith and Owocki 2006), although even smaller
masses become difficult to detect around bright central stars.

• Wind speeds and nebular expansion speeds. LBV winds and nebulae typically
have expansion speeds of 50–500 km s�1, due to the fact that the escape speed of

1If this value is wrong, it is probably a conservative underestimate. This is because a gas:dust mass
ratio of 100:1 assumes that all refractory elements at Zˇ are in grains, whereas in reality, the dust
formation may be less efficient or UV and shocks may destroy some dust, leaving some of these
elements in the gas phase (and thus raising the total mass). In general, nebular gas masses inferred
from thermal-IR dust emission should be considered lower limits, especially at Z < Zˇ.
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the evolved blue supergiant is lower than for the more compact radii of O-type
stars and WR stars that have faster speeds of order 1,000 km s�1. In many cases,
the shell nebulae are expanding with an even slower speed than the underlying
wind, but this is not always the case. The slower nebular speeds may suggest that
the nebulae were ejected in a state when the star was close to the Eddington limit
(lower effective gravity) or that the LBV eruption ejecta have decelerated after
colliding with slow CSM or high-pressure ISM.

• N-rich ejecta. Lastly, LBVs typically exhibit strong enhancements in their N
abundance, measured in the circumstellar nebulae or in the wind spectrum.
The most common measurement involves the analysis of visual-wavelength
spectra, using nebular [S II] lines to derive an electron density, using the [N II]
(�6583C�6548)/�5755 ratio to derive an electron temperature, and then using
the observed intensity of the [N II] lines compared to H lines for a relative NC/H
ratio (and then doing a similar analysis of O and C lines in order to estimate N/O
and N/C ratios). One must make assumptions about the ionization levels of N and
other elements, but if UV spectra are available, one can constrain the strength
of a wide range of ionization levels of each atom. In the case of � Carinae, for
example, strong lines of N I, II, III, IV, and V are detected, but O lines of all
ionization levels are extremely faint (Davidson et al. 1986). The observed levels
of N enrichment in LBVs suggest that the outer layers of the stars include large
quantities of material processed through the CNO cycle and mixed to the surface,
requiring that LBVs are post-main-sequence stars.

8.2.2 The Evolutionary State of LBVs

While evidence for N enrichment and CCO depletion suggest that LBVs are mas-
sive post-main-sequence stars, their exact evolutionary status within that complex
and possibly non-monotonic evolution has been controversial – moreso in recent
years.

The traditional view of LBVs, which emerged in the 1980s and 1990s, is that
they correspond to a very brief transitional phase of massive star evolution, as the
star moves from core H burning when it is seen as a main sequence O-type star, to
core He burning when it is seen as a Wolf-Rayet (WR) star. A typical monotonic
evolutionary scheme for a VMS is as follows:

100 Mˇ W O star ! Of/WNH ! LBV ! WN ! WC ! SN Ibc

In this scenario, the strong mass-loss experienced by LBVs is important for
removing what is left of the star’s H envelope after the main sequence, leaving a
hydrogen-poor WR star following the end of the LBV phase. The motivation for
thinking that this is a very brief phase comes from the fact that LBVs are extremely
rare, even for very massive stars: taking the relative numbers of LBVs and O-type
stars at high luminosity, combined with the expected H-burning lifetime of massive
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O-type stars, would imply a duration for the LBV phase of only a few 104 years
or less. This view fits in nicely with a scenario where the observed population of
massive stars is dominated by single-star evolution.

However, a number of problems and inconsistencies have arisen with this
standard view of LBVs. For one thing, the very short transitional lifetime depends on
the assumption that the observed LBVs are representative of the whole transitional
phase. In fact, there is a much larger number of blue supergiant stars that are not
bona fide LBVs seen in eruption, but which are probably related—these are the
LBV candidates discussed earlier. Examining populations in nearby galaxies, for
example, Massey et al. (2007) find that there are more than an order of magni-
tude more LBV candidates than there are LBVs confirmed by their photometric
variability. (For example, there are several hundred LBV candidates in M31 and
M33, compared to the 8 LBVs known by their photometric variability.) If the LBV
candidates are included with LBVs, then the average lifetime of the LBV phase
must rise from a few 104 year to several 105 year. Now we have a problem, because
this is a significant fraction of the whole He burning lifetime, making it impossible
for LBVs to be fleeting transitional objects. There is not enough time in core-He
burning to link them to both WR stars and LBVs. Should we include the LBV
candidates and related stars? Are they dormant LBVs? If indeed LBVs go through
dormant phases when they are not showing their instability (or when they have
temporarily recovered from the instability after strong mass loss), then it would be a
mistake not to include the duty cycle of instability in the statistics of LBVs. Massey
(2006) has pointed to the case of P Cygni as a salient example: its 1600 A.D. giant
LBV eruption was observed and so we consider it an archetypal LBV, but it has
shown no eruptive LBV-like behavior since then. If the observational record had
started in 1700, then we would have no idea that P Cygni was an LBV and we
would be wrong. So how many of the other LBV candidates are dormant LBVs?
The massive circumstellar shells seen around many LBV candidates imply that they
have suffered LBV giant eruptions in the previous 103 year or so.

Another major issue is that we have growing evidence that LBVs or some-
thing like them (massive stars with high mass loss, N enrichment, H rich, slow
�100 km s�1 winds, massive shells) are exploding as core-collapse SNe while still
in an LBV-like phase (see below). This could not be true if LBVs are only in a
brief transition to the WR phase, which should last another 0.5–1 Myr before core
collapse to yield a SN Ibc. Pre-supernova eruptive stars that resemble LBVs are
discussed in more detail in following sections.2

Last, the estimates for lifetimes in various evolutionary phases in the typical
monotonic single-star scenario (see above) ignore empirical evidence that binary
evolution dominates the evolution of a large fraction of massive stars. Many massive
O-type stars (roughly 1/2 to 2/3) are in binary systems whose orbital separation
is small enough that they should interact and exchange mass during their lifetime
(Kobulnicky and Fryer 2007; Kiminki and Kobulnicky 2012; Kiminki et al. 2012;

2See Smith & Tombleson (2014), in press.
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Chini et al. 2012; Sana et al. 2012). These binary systems must make a substantial
contribution to the observed populations of evolved massive stars and SNe, so to
find agreement between predictions of single-star evolutionary models and observed
populations indicates that something is wrong with the models. Unfortunately,
solutions to these problems are not yet readily apparent; some current effort is
focussed here, and these topics are still a matter of debate among massive star
researchers.

8.2.3 A Special Case: Eta Carinae

The enigmatic massive star � Carinae is perhaps the most famous and recognizable
example of an evolved and unstable VMS. It is sometimes regarded as the prototype
of eruptive LBVs, but at the same time it has a long list of peculiarities that make
it seem unique and very atypical of LBVs. In any case, it is by far the best studied
LBV, and (for better or worse) it has served as a benchmark for understanding LBVs
and the physics of their eruptions.

Several circumstances conspire to make � Car such a fountain of information.
It is nearby (about 2.3 kpc; Smith 2006) and bright with low interstellar extinction,
so one is rarely photon-starved when observing this object at any wavelength. It
is one of the most luminous and massive stars known, with rough values of L '
5 � 106 Lˇ and a present-day mass for the primary around 100 Mˇ (its ZAMS
mass is uncertain, but was probably a lot more than this). Its giant eruption in the
nineteenth century was observed at visual wavelengths so that we have a detailed
light curve of the event (Smith and Frew 2011), and � Car is now surrounded by the
spectacular expanding Homunculus nebula that provides us with a fossil record of
that mass loss. This nebula allows us to estimate the ejected mass and kinetic energy
of the event, which are �15 Mˇ and �1050 erg, and we can measure the geometry
of the mass ejection because the Homunculus is still young and in free expansion
(Smith et al. 2003; Smith 2006).

Davidson and Humphreys (1997) provided a comprehensive review of the star
and its nearby ejecta in the mid-1990s, but there have been many important advances
in the subsequent 16 years. It has since been well established that � Car is actually
in a binary system with a period of 5.5 year and e ' 0:9 (Daminelli et al.
1997), which drastically alters most of our ideas about this object. Accordingly,
much of the research in the past decade has been devoted to understanding the
temporal variability in this colliding-wind binary system (see Madura et al. 2012,
and references therein). Detailed studies of the Homunculus have constrained its 3D
geometry and expansion speed to high precision (Smith 2006), and IR wavelengths
established that the nebula contains almost an order of magnitude more mass than
was previously thought (Smith et al. 2003; Morris et al. 1999; Gomez et al. 2010).
The larger mass and kinetic energy force a fundamental shift in our understanding of
the physics of the Great Eruption (see below). Observations with HST have dissected
the detailed ionization structure of the nebula and measured its expansion proper
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Fig. 8.2 The historical light curve of the nineteenth century Great Eruption of � Carinae, from
Smith and Frew (2011)

motion (e.g., Gull et al. 2005; Morse et al. 2001). Spectra have revealed that the
Great Eruption also propelled extremely fast ejecta and a blast wave outside the
Homunculus, moving at speeds of 5,000 km s�1 or more (Smith 2008). We have
an improved record of the nineteenth century light curve from additional released
historical documents (Smith and Frew 2011; Fig. 8.2), and perhaps most exciting,
we have now detected light echoes from the nineteenth century eruption, allowing
us to obtain spectra of the outburst itself after a delay of 160 years (Rest et al. 2012).

Altogether, the outstanding observational record of � Car suggests a picture
wherein a VMS suffered an extremely violent, �1050 erg explosive event compa-
rable to a weak supernova, which ejected much of the star’s envelope – but the star
apparently survived this event. This gives us a solid example of the extreme events
that can result from the instability in a VMS, but the underlying physics is still not
certain. Interactions with a close companion star are critical for understanding its
present-day variability; the binary probably played a critical role in the behavior of
the nineteenth century Great Eruption as well, although the details are still unclear.

While � Car is the best observed LBV, it may not be very representative of the
LBV phenomenon in general. In what ways is � Car so unusual among LBVs?
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Its nineteenth century Great Eruption reached a similar peak absolute magnitude
(�14 mag) to those of other so-called “SN impostor” events in nearby galaxies (see
Smith et al. 2011a), but unlike most extra-galactic examples, its eruption persisted
for a decade or more, whereas most extra-galactic examples of similar luminosity
last only 100 days or less. Among well-studied LBVs in the Galaxy and Magellanic
Clouds, only � Car is known to be in a wide colliding-wind binary system that shows
very pronounced, slow periodic modulation across many wavelengths (HD 5980
in the SMC is in a binary, but with a much shorter period). Its 500 km s�1 and
10�3 Mˇ year�1 wind is unusually fast and dense compared to most LBVs, which
are generally an order of magnitude less dense. Its Homunculus nebula is the
youngest LBV nebula, and together with P Cygni these are the only sources for
which we have both an observed eruption event and the nebula it created. Thus,
it remains unclear if � Car represents a very brief (and therefore rarely observed)
violent eruption phase that most VMSs pass through at some time in their evolution,
or if it really is so unusual because of its very high mass and binary system
parameters.

In any case, the physical parameters of � Car’s eruption are truly extreme, and
they push physical models to limits that are sometimes hard to meet. The nineteenth
century event has long been the prototype for a super-Eddington wind event, but
detailed investigation of the physics involved shows that this is quite difficult to
achieve (see Owocki’s chapter in this volume). At the same time, we now have
mounting observational evidence of an explosive nature to the Great Eruption: (1)
A very high ratio of kinetic energy to integrated radiated energy, exceeding unity;
(2) Brief spikes in the light curve that occur at times of periastron; (3) evidence for a
small mass of very fast moving (�5,000 km s�1) ejecta and a blast wave outside the
Homunculus, which requires a shock-powered component to the eruption, and (4)
behavior of the spectra seen in light echoes (Rest et al. 2012), which do not evolve
as expected from an opaque wind. These hints suggest that some of the phenomena
we associate with LBVs (and their extra-galactic analogs) are driven by explosive
physics (i.e. hydrodynamic events in the envelope) rather than (or in addition to)
winds driven from the surface by high luminosity. This is discussed in more detail
in the following subsection.

8.2.4 Giant Eruptions: Diversity, Explosions, and Winds

Giant eruptions are simultaneously the most poorly understood, most puzzling, and
probably the physically most important of the observed phenomena associated with
LBVs. They are potentially the most important aspect for massive stars because
of the very large amounts of mass (as much as 10–20 Mˇ) that are ejected in a
short amount of time, and consequently, because of their dramatic influence on
immediate pre-SN evolution (next section). Although the giant eruptions themselves
are rarely observed because they are infrequent and considerably fainter than SNe,
a large number of LBVs and spectroscopically similar stars in the Milky Way and
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Magellanic Clouds are surrounded by massive shell nebulae, indicating previous
eruptions with a range of ejecta masses from 1–20 Mˇ (Clark et al. 2005; Smith
and Owocki 2006; Wachter et al. 2010; Gvaramadze et al. 2010). Thus, eruptive
LBV mass loss is inferred to be an important effect in late evolution of massive
stars, and perhaps especially so in VMSs.

Originally the class of LBV giant eruptions was quite exclusive, with only four
approved members: � Car’s 1840s eruption, P Cygni’s 1600 AD eruption, SN 1954J
(V12 in NGC 2403), and SN 1961V (see Humphreys, Davidson, and Smith 1999).
Due the the advent of dedicated searches for extra-galactic SNe from the late 1990s
onward, the class of giant eruptions has grown to include a few dozen members (see
recent summaries by Smith et al. 2011a; Van Dyk and Matheson 2012). Because
of their serendipitous discovery in SN searches, they are also referred to as “SN
impostors”. Other names include “Type V” supernovae (from F. Zwicky), “� Car
analogs”, and various permutations of “intermediate luminosity transients”.

Although the total number of SN impostors is still quite small (dozens) compared
to SNe (thousands), the actual rates of these events could potentially be comparable
to or even exceed those of core-collapse SNe. The difference is due to the fact that
by definition, SN impostors are considerably fainter than true SNe, and are therefore
much harder to detect. Since they are �100 times less luminous than a typical Type
Ia SN, their potential discovery space is limited to only 1/1,000 of the volume in
which SNe can be discovered with the same telescope. Their discovery is made
even more difficult because of the fact that their contrast compared to the underlying
host galaxy light is lower, and because in some cases they have considerably longer
timescales and much smaller amplitudes of variability than SNe. Unfortunately,
there has not yet been any detailed study of the rates of SN impostors corrected
for the inherent detection bias in SN searches. We are limited to small numbers, but
one can infer that the rates of LBV eruptions and core-collapse SNe are comparable
based on a local guesstimate: in our nearby region of the Milky Way there have been
2 giant LBV eruptions (P Cyg & � Car) and 3 SNe (Tycho, Kepler, and Cas A; and
only 1 of these was a core-collapse SN) in the past �400 year.

The increased number of SN impostors in the past decade has led to recognition
of wide diversity among the group, and correspondingly, increased ambiguity about
their true physical nature. It is quite possible that many objects that have been
called “SN impostors” are not LBVs, but something else. The SN impostors have
peak absolute magnitudes around �14 mag, but there is actually a fairly wide
spread in peak luminosity, ranging from �15 mag down to around �10 mag. At
higher luminosity, transients are assumed to be supernovae, and at lower luminosity
we call them something else (novae, stellar mergers, S Dor eruptions, etc.)—
but these dividing lines are somewhat arbitrary. Most of their spectra are similar,
the most salient characteristic being bright, narrow H emission lines (so they are
all “Type IIn”) atop either a smooth blue continuum or a cooler absorption-line
spectrum. Since the outbursts all look very similar, many different types of objects
might be getting grouped together by observers. When more detailed pre-eruption
information about the progenitor stars is available, however, we find a range of cases.
Some are indeed very luminous, blue, variable stars; but some are not so luminous
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(<105 Lˇ), and are sometimes found among somewhat older stellar populations
than one expects for a VMS (Prieto et al. 2008a,b; Thompson et al. 2009). Some
well-studied extra-galactic SN impostors that are clearly massive stars suffering
LBV-like giant eruptions are SN 1997bs, SN 2009ip, UGC 2773-OT, SN 1954J, V1
in NGC 2366, SN 2000ch; some well-studied objects that appear to be lower-mass
stars (around 6–10 Mˇ) are SN 2008S, NGC 300-OT, V838 Mon, and SN 2010U.
There are many cases in between where the interpretation of observational data is
less straightforward or where the data are less complete. In any case, it is interesting
that even lower mass stars (8–15 Mˇ) may be suffering violent eruptive instabilities
similar to those seen in the most massive stars. If the physical cause of the outbursts
is at all related, it may point to a deep-seated core instability associated with nuclear
burning or some binary collision/merger scenario, rather than an envelope instability
associated with the quiescent star being near the Eddington limit.

Physically, the difference between a “SN impostor”/giant eruption and a true
(but under-luminous) SN is that the star does not survive the latter type of event.
Observationally, it is not always so easy to distinguish between the two. Even if the
star survives, it may form dust that obscures the star at visual wavelengths, while
IR observations may not be available to detect it. On the other hand, even if the star
dies, there may appear to be a “surviving” source at the correct position if it is a
host cluster, a companion star, an unrelated star superposed at the same position, or
ongoing CSM interaction from the young SN remnant. It is often difficult to find
decisive evidence in the faint, noisy, unresolved smudges one is forced to interpret
when dealing with extra-galactic examples. Consider the extremely well-observed
case of SN 1961V. This object was one of the original “Type V” SNe and a prototype
of the class of LBV giant eruptions (Humphreys et al. 1999). However, two recent
studies have concluded that it was most likely a true core-collapse Type IIn SN, and
for two different reasons: Smith et al. (2011a) point out that all of the observed
properties of the rather luminous outburst are fully consistent with the class of
Type IIn SNe, which did not exist in 1961 and was not understood until recently. If
SN 1961V were discovered today, we would undoubtedly call it a true SN IIn since
its high peak luminosity (�18 mag) and other observed properties clearly make it an
outlier among the SN impostors. On the other hand, Kochanek et al. (2011) analyzed
IR images of the site of SN 1961V and did not find an IR source consistent with a
surviving luminous star that is enshrouded by dust, like � Car. Both studies conclude
that since the source is now �6 mag fainter than the luminous blue progenitor star, it
probably exploded as a core-collapse event. Although there is an H˛ emission line
source at the correct position (Van Dyk et al. 2002), this could be due to ongoing
CSM/shock interaction, since no continuum emission is detected. It is hard to prove
definitively that the star is dead, however (for an alternative view, see Van Dyk and
Matheson 2012). This question is very important, though, because the progenitor
of SN 1961V was undoubtedly a very luminous star with a likely initial mass well
exceeding 100 Mˇ. If it was a true core-collapse SN, it would prove that some very
massive stars do explode and make successful SNe.

What is the driving mechanism of LBV giant eruptions? What is their source
of luminosity and kinetic energy? Even questions as simple and fundamental as
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these have yet to find answers. Two broad classes of models have developed: super-
Eddington winds, and explosive mass loss. Both may operate at some level in
various objects.

Traditionally, LBV giant eruptions have been discussed as super-Eddington
winds driven by a sudden and unexplained increase in the star’s bolometric
luminosity (Humphreys and Davidson 1994; Shaviv 2000; Owocki et al. 2004;
Smith and Owocki 2006), but there is growing evidence that some of them are non-
terminal hydrodynamic ejections (see Smith 2008, 2013). Part of the motivation for
this is based on detailed study of � Carinae, which as noted above, has shown several
signs that the 1840s eruption had a shock-driven component to it. One normally
expects sudden, hydrodynamic events to be brief (i.e., a dynamical time), which
may seem incongruous with the 10 year long Great Eruption of � Car. However, as
in some very long-lasting core-collapse SNe, it is possible to power the observed
luminosity of the decade-long Great Eruption with a shock wave plowing through
dense circumstellar gas (Smith 2013). In this model, the duration of the transient
brightening event is determined by how long it takes for the shock to overrun the
CSM (this, in turn, depends on the relative speeds of the shock and CSM, and the
radial extent of the CSM). Since shock/CSM interaction is such an efficient way to
convert explosion kinetic energy into radiated luminosity, it is likely that many of
the SN impostors with narrow emission lines are in fact powered by this method.
The catch is that even this method requires something to create the dense CSM
into which the shock expands. This may be where super-Eddington winds play an
important role. The physical benefit of this model is that the demands on the super-
Eddington wind are relaxed to a point that is more easily achievable; instead of
driving 10 Mˇ in a few years (as for � Car), the wind can provide roughly half the
mass spread over several decades or a century. The required mass-loss rates are then
of order 0.01–0.1Mˇ year�1, which is more reasonable and physically plausible
than a few to several Mˇ year�1. Also, the wind can be slow (as we might expect for
super-Eddington winds; Owocki et al. 2004), whereas the kinetic energy in observed
fast LBV ejecta can come from the explosion.

In any case, the reason for the onset of the LBV eruption remains an unanswered
question. In the super-Eddington wind model, even if the wind can be driven
at the rates required, we have no underlying physical explanation for why the
star’s bolometric luminosity suddenly increases by factors of 5–10 or more. In the
explosion model, the reason for an explosive event preceding core collapse is not
known, and the cause of explosive mass loss at even earlier epochs is very unclear.
It could either be caused by some instability in late nuclear burning stages (see
e.g., Smith and Arnett 2014), or perhaps by some violent binary interaction like a
collision or merger (Smith 2011; Smith and Arnett 2014; Podsiadlowski et al. 2010).
Soker and collaborators have discussed an accretion model to power the luminosity
in events like � Car’s Great Eruption, but these assume that an eruption occurs to
provide the mass that is then accreted by a companion, and so there is no explanation
for what triggers the mass loss from the primary in the first place. In any case,
research on these eruptions is actively ongoing; it is a major unsolved problem in
astrophysics, and in the study of VMSs in particular.
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8.3 Very Luminous Supernovae

8.3.1 Background

The recognition of a new regime of SN explosions has just occurred in the last few
years—this includes SNe that are observed to be substantially more luminous than
a standard bright Type Ia SN (the brightest among “normal” SNe). Although this is
still a young field, the implications for and connections to the evolution and fate of
VMSs is exciting. Here we discuss these luminous SNe as well as gamma ray bursts
(GRBs), and their connection to the lives and deaths of the most massive stars.

This field of research on the most luminous SNe took on a new dimension with
the discovery of SN 2006gy (Smith et al. 2007; Ofek et al. 2007), which was the
first of the so-called “super-luminous SNe” (SLSNe). The surprising thing about
this object was that with its high peak luminosity (�21.5 mag) and long duration
(70 days to rise to peak followed by a slow decline), the integrated luminous energy
Erad was a few times 1051 erg, more than any previous SN. A number of other
SLSNe have been discovered since then (see below). Why were these SLSNe not
recognized previously? There may be multiple reasons, but clearly one reason is that
earlier systematic SN searches were geared mainly toward maximizing the number
of Type Ia SN discoveries in order to use them for cosmology. This meant that these
searches, which usually imaged one galaxy per pointing due to the relatively small
field of view, mainly targeted large galaxies to maximize the chances of discovering
SNe Ia each night. Since it appears that SLSNe actually seem to prefer dwarf
galaxy hosts (either because of lower metallicity, or because dwarf galaxies have
higher specific star-formation rates), these searches may have been biased against
discovering SLSNe. More recent SN searches have used larger fields of view and
therefore search large areas of the sky, rather than targeting individual large galaxies;
this is probably the dominant factor that led to the increased discovery rate of SLSNe
(see Quimby et al. 2011). Additionally, even if SLSNe were discovered in these
earlier targeted searches, precious followup resources for spectroscopy on large
telescopes are limited, and so SNe that were not Type Ia were given lower priority.

8.3.2 Sources of Unusually High Luminosity

So what can make SLSNe 10–100 times more luminous than normal SNe? There are
essentially two ways to get a very luminous explosion. One is by having a relatively
large mass of 56Ni that can power the SN with radioactive decay; a higher luminosity
generally requires a larger mass of synthesized 56Ni. While a typical bright Type Ia
SN might have 0.5–1 Mˇ of 56Ni, a super-luminous SN must have 1–10 Mˇ of
56Ni to power the observed luminosities. Currently, the only proposed explosion
mechanism that can do this is a pair instability SN (see Chapter 7 by Woosley &
Heger). It is interesting to note that most normal SNe are powered by radioactive
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decay – were it not for the synthesis of 56Ni in these explosions, we wouldn’t ever
see most SNe.

The synthesized mass of 56Ni needed to supply the luminosity of a PISN through
radioactivity is estimated from observations the same way as for normal SNe:

L D 1:42 � 1043ergs s�1e�t=111d MNi=Mˇ (8.1)

(Sutherland and Wheeler 1984) where L is the bolometric luminosity at time t

after explosion (usually measured at later times when the SN is clearly on the
radioactive decay tail). Important uncertainties here are that L must be the bolomet-
ric luminosity, which is not always easily obtained without good multiwavelength
data (otherwise this provides only a lower limit to the 56Ni mass), and the time of
explosion t must be known (this is often poorly constrained observationally, since
most SNe have been discovered near maximum luminosity). An additional cause of
ambiguity is that in very luminous SNe, it is often difficult to determine if the source
of luminosity is indeed radioactivity, since other mechanisms (see below) may be at
work.

The other way to generate an extraordinarily high luminosity is to convert kinetic
energy into heat, and to radiate away this energy before the ejecta can expand and
cool adiabatically. This mechanism fails for many normal SNe, since the explosion
of any progenitor star with a compact radius (a white dwarf, compact He star, blue
supergiant) must expand to many times its initial radius before the photosphere is
large enough to provide a luminous display. These SNe are powered primarily by
radioactivity, as noted above. Red supergiants, on the other hand, have larger initial
radii, and so their peak luminosity is powered to a much greater extent by radiation
from shock-deposited thermal energy. However, even the bloated radii of red
supergiants (a few AU) are far smaller than a SN photosphere at peak (�1015 cm),
and so the most common Type II-P SNe from standard red supergiants never achieve
an extraordinarily high luminosity. Most of the thermal energy initially deposited
in the envelope is converted to kinetic energy through adiabatic expansion. This
inefficiency (and relatively low 56Ni yields of only �0.1 Mˇ) is why the total
radiated energy of a normal SN II-P (typically 1049 erg) is only about 1 % of the
kinetic energy in the SN ejecta.3

Smith and McCray (2007) pointed out that this shock-deposition mechanism
could achieve the extremely high luminosities of SLSNe like SN 2006gy if the initial
“stellar radius” was of order 100 AU, where this radius is not really the hydrostatic
photospheric radius of the star, but is instead the radius of an opaque CSM shell
ejected by the star before the SN. The key in CSM interaction is that something
else (namely, pre-SN mass loss) has already done the work against gravity to put a
large mass of dense and slow-moving material out at large radii (�1015 cm) away
from the star. When the SN blast wave crashes into this material, already located at

3Of course, most of the energy from a core collapse SN escapes in the form of neutrinos
(�1053 erg).
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a large radius, the fast SN ejecta are decelerated and so the material is heated far
from the star, where it can radiate away its thermal energy before it expands by a
substantial factor. By this mechanism, large fractions (�50 % or more) of the total
ejecta kinetic energy can be converted to thermal energy that is radiated away. In
a hydrogen-rich medium, the photosphere tends to an apparent temperature around
6000–7000K, and so a large fraction of the radiated luminosity escapes as visual-
wavelength photons. Since this mechanism of optically thick CSM interaction is
very efficient at converting ejecta kinetic energy into radiation, this process can yield
a SLSN without an extraordinarily high explosion energy or an exotic explosion
mechanism. What makes this scenario extraordinary (and a challenge to understand)
is the requirement of ejecting �10 Mˇ in just the few years before core collapse.
This is discussed more below.

A variant of this conversion of kinetic energy into light is powering a SLSN with
the birth of a magnetar (Woosley 2010; Kasen and Bildsten 2010). In this scenario,
a normal core-collapse SN explodes the star and sends its envelope (10 s of Mˇ)
expanding away from the star. For the SN itself, there is initially nothing unusual
compared to normal SNe. But in this case a magnetar is born instead of a normal
neutron star or black hole. The rapid spin-down of the magnetar subsequently injects
�1051 ergs of energy into the SN ejecta (which have now expanded to a large radius
of �100 AU). Similar to the opaque CSM interaction model mentioned previously,
this mechanism reheats the ejected material at a large radius, so that it can radiate
away the energy before the heat is lost to adiabatic expansion, providing an observer
with a SLSN. It would be very difficult to tell the difference observationally between
the magnetar model and the opaque shocked shell model during the early phases
around peak when photons are diffusing out through the shell or ejecta. It may
be possible to see the difference at late times if late-time data are able to see the
signature of the magnetar (Inserra et al. 2013).

In summary, there are three proposed physical mechanisms for powering SLSNe.
For each, there are also reasons to suspect a link to VMSs.

1. Pair instability SNe. This is a very powerful thermonuclear SN explosion.
To produce the observed luminosity and radiated energy, one requires of order
10 Mˇ of synthesized 56Ni. These explosions are only expected to occur in
VMSs with initial masses of >150 Mˇ, because those stars are the only ones
with a massive enough CO core to achieve the high temperatures needed for the
pair-instability mechanism. The physics of these explosions is discussed more in
the chapter by Woosley & Heger. So far, there is only one observed example of a
SN that has been suggested as a good example of a PISN, and this is SN 2007bi
(Gal-Yam et al. 2009). However, this association with a PISN is controversial.
Dessart et al. (2012) have argued that SN 2007bi does not match predictions for
a PISN; it has a very blue color with a peak in the UV, whereas the very large
mass of Fe-group elements in a PISN should cause severe line blanketing, leading
to very red observed colors and deep absorption features. Thus, it is unclear if we
have ever yet observed a PISN.
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2. Opaque shocked shells. Here we have a normal SN explosion that collides with
a massive CSM shell, providing a very efficient way of converting the SN ejecta
kinetic energy into radiated luminosity when the SN ejecta are decelerated. The
reason that this mechanisms would be linked to VMS progenitors is because
one requires a very large mass of CSM (10–20 Mˇ) in order to stop the SN
ejecta. Given expectations for the minimum mass of SN ejecta in models and
the fact that stars also suffer strong mass loss during their lifetimes, a high mass
progenitor star is needed for the mass budget. Also, sudden eruptive mass loss
in non-terminal events that eject �10 Mˇ is, so far, a phenomenon exclusively
associated with VMSs like LBVs. Although lower-mass stars do appear to be
suffering eruptions that look similar (see above), these do not involve the ejection
of 10 Mˇ.

3. Magnetar-powered SNe. In principle, the mechanism is quite similar to the
opaque shocked shell model, in the sense that thermal energy is injected at a
large radius, although here we have magnetar energy being dumped into a SN
envelope, rather than SN ejecta colliding with CSM. Although the SN explosion
that leads to this SLSN may be normal, the potential association with VMSs
comes from the magnetar. Some magnetars have been found in the Milky Way
to be residing in massive young star clusters that appear to have a turnoff mass
around 40 Mˇ, suggesting that the progenitor of the magnetar had an initial mass
above 40 Mˇ.

8.3.3 Type IIn SLSNe

Since massive stars are subject to strong mass loss, it is common that there is CSM
surrounding a massive star at the time of its death, into which the fast SN ejecta must
expand. The collision between the SN blast wave and this CSM is referred to as
“CSM interaction”, which is commonly observed in core-collapse SNe in the form
of X-ray or radio emission (Chevalier and Fransson 1994). However, only about 8–
9 % of core-collapse SNe (Smith et al. 2011b) have CSM that is dense enough to
produce strong visual-wavelength emission lines and an optically thick continuum.
In these cases, the SN usually exhibits a smooth blue continuum with strong narrow
H emission lines, and is classified as a Type IIn SN.

Intense CSM interaction can occur in two basic regimes: (1) If the interaction
is optically thick so that photons must diffuse out through the material in a time
that is comparable to the expansion time, or (2) an effectively optically thin regime,
where luminosity generated by CSM interaction escapes quickly. This is equivalent
to cases where the outer boundary of the CSM is smaller or larger, respectively, than
the “diffusion radius” (see Chevalier and Irwin 2011). The former case will yield an
observed SN without narrow lines, resembling a normal broad-lined SN spectrum.
The latter will exhibit strong narrow emission lines with widths comparable to the
speed of the pre-shock CSM, emitted as the shock continues to plow through the
extended CSM. In most cases, the SN will transition from the optically thick case
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to the optically thin case around the time of peak luminosity (see Smith et al. 2008).
If the CSM is hydrogen rich, the narrow H lines earn the SN the designation of
Type IIn. (If the CSM is H-poor and He-rich, it will be seen as a Type Ibn, but these
are rare and no SLSNe have yet been seen of this type.)

Although narrow H emission lines are the defining characteristic of the Type IIn
class, the line widths and line profiles can be complex with multiple components.
They exhibit wide diversity, and they evolve with time during a given SN event as
the optical depth drops and as the shock encounters density and speed variations in
the CSM. These line profiles are therefore a powerful probe of the pre-SN mass loss
from the SN progenitor star. Generally, the emission line profiles in SNe IIn break
down into three sub-components: narrow, intermediate-width, and broad.

• The narrow (few 102 km s�1) emission lines arise from a photo-ionized shock
precursor, when hard ionizing photons generated in the hot post-shock region
propagate upstream and photo-ionize much slower pre-shock gas. The width
of the narrow component, if it is resolved in spectra, gives an estimate of the
wind speed of the progenitor star in the years leading up to core collapse.
Since these speeds are generally between about 200–600 km s�1, this seems to
suggest blue supergiant stars or LBVs for the progenitors of SNe IIn, because
the escape speeds are about right (see Smith et al. 2007, 2008, 2010a). Bloated
red supergiants or compact WR stars have much slower or faster wind speeds,
respectively. In some cases when relatively high spectral resolution is used,
one can observe the narrow P Cygni absorption profile. This gives an even
more precise probe of the wind speed of the pre-shock gas along the line-of-
sight, which in some cases has multiple velocity components showing that the
wind speed has been changing (see below, and Groh and Vink 2011). Since
the absorption occurs in the densest gas immediately ahead of the shock, one
can potentially use the time variation in the P Cyg absorption to trace out the
radial velocity law in the wind. A dramatic example of this was the case of
SN 2006gy (Fig. 8.4; Smith et al. 2010a), where the velocity of the P Cyg
absorption increased with time as the shock expanded, indicating a Hubble-like
flow in the CSM (i.e. v / R). In this case, the Hubble-like law in the pre-shock
CSM indicated that the dense CSM was ejected only about 8 years before the
SN (Smith et al. 2010a). The rather close synchronization between the pre-SN
eruptions and the SN has important implications, and is discussed more below.

• Intermediate-width (�103 km s�1) components usually accompany the narrow
emission-line cores. Generally these broader components exhibit a Lorentzian
profile at early times and gradually transition to Gaussian, asymmetric, or
irregular profiles at late times. This is thought to be a direct consequence of
dropping optical depth (see Smith et al. 2008). At early times in very dense CSM,
line photons emitted in the ionized pre-shock CSM must diffuse outward through
optically thick material outside that region. The multiple electron scatterings
encountered as the photons escape produces the Lorentzian-shaped wings to
the narrow line cores. For these phases, it would therefore be a mistake to
fit multiple components to the H˛ line profile, for example, and to adopt the
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broader component as indicative of some characteristic expansion speed in the
explosion. At later times when the pre-shock density is lower and we see deeper
into the shock, the intermediate-width components can trace the kinematics of
the post-shock region more directly. These generally indicate shock speeds of a
few 103 km s�1 or less.

• Sometimes, in special cases of lower-density CSM (or at late times), clumpy
CSM, or CSM with non-spherical geometry, one can also observe the broad-line
profiles from the underlying fast SN ejecta. In these cases one can estimate the
speed of the SN ejecta directly. This usually does not occur in the most luminous
SNe IIn, however, simply because the lower-density CSM or the small solid angle
for CSM interaction (i.e. a disk) needed to allow one to see the broad SN ejecta
lines also limits the luminosity of the CSM interaction, making it hard to have
both transparency and high luminosity in the same explosion. A recent case of
this is the 2012 SN event of SN 2009ip (Smith et al. 2014).

8.3.4 CSM Mass Estimates for SLSNe IIn

Cold Dense Shell (CDS) Luminosity: Armed with empirical estimates of the speed
of the CSM and the speed of the advancing shock, one can then calculate a rough
estimate for the density and mass-loss rate of the CSM required to power the
observed luminosity of the SN. Dense CSM slows the shock, and the resulting high
densities in the post-shock region allow the shock to become radiative. With high
densities and optical depths, thermal energy is radiated away primarily as visual-
wavelength continuum emission. This loss of energy removes pressure support
behind the forward shock, leading to a very thin, dense, and rapidly cooling shell
at the contact discontinuity (usually referred to as the “cold dense shell”, or CDS;
see Chugai et al. 2004; Chugai and Danziger 1994). This CDS is pushed by ejecta
entering the reverse shock, and it expands into the CSM at a speed VCDS. In this
scenario, the maximum emergent continuum luminosity from CSM interaction is
given by

LCSM D 1

2
PM

V 3
CDS

VW

D 1

2
w V 3

CDS (8.2)

where VCDS is the outward expansion speed of the CDS derived from observations of
the intermediate-width component, VW is the speed of the pre-shock wind derived
from the narrow emission line widths or the speed of the P Cygni absorption trough,
PM is the mass-loss rate of the progenitor’s wind, and w D PM=VW is the so-called

wind density parameter (see Chugai et al. 2004; Chugai and Danziger 1994; Smith
et al. 2008, 2010a). The wind density parameter is a convenient way to describe the
CSM density, because it does not assume a constant speed (for the highest mass-
loss rates, it may be a poor assumption to adopt a constant wind with a standard
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R�2 density law, since the huge masses involved are more likely to be the result of
eruptive/explosive mass loss).

In general, this suggests that more luminous SNe require either higher density
in the CSM, faster shocks, or both. Thus, a wide range of different CSM density
(resulting from different pre-SN eruption parameters or different wind mass-loss
rates) should produce a wide variety of luminosities in SNe IIn. This is, in fact
observed. Figure 8.3 shows several examples of light curves for well-studied SNe
IIn, which occupy a huge range in luminosity from the most luminous SNe down to
the lower bound of core-collapse SNe (below peaks of about �15:5 mag, we would
generally refer to a SN IIn as a SN impostor).

To derive a CSM mass, it is common to re-write the previous equation with an
efficiency factor � as:

LCSM D �
1

2
PM

V 3
CDS

VW

D �
1

2
w V 3

CDS: (8.3)

With representative values, this can be rewritten as:

PM D 0:3 Mˇ yr�1 � L9

��1

Vw=200

.VCDS=2000/3
(8.4)

where L9 is the bolometric luminosity in units of 109 Lˇ, VW =200 is the CSM
expansion speed relative to 200 km s�1, and VCDS=2; 000 is the expansion speed
of the post-shock gas in the CDS relative to 2,000 km s�1. These velocities are
representative of those observed in SNe IIn, although there is variation from one
object to the next. L9 corresponds roughly to an absolute magnitude of only
�17.8 mag, which is relatively modest for SNe IIn (Fig. 8.3). Thus, we see that even
for relatively normal luminosity SNe IIn, extremely high pre-SN mass-loss rates
are required, much higher than is possible for any normal wind. For SLSNe that
are �10 times more luminous, extreme mass-loss rates of order �1 Mˇ year�1 are
needed. Moreover, this mass-loss rate is really a lower limit, due to the efficiency
factor �, which must be less than 100 %. In favorable cases (fast SN ejecta, slow
and dense CSM) the efficiency can be quite high (above 50 %; see van Marle et al.
2010). However, for lower densities and especially non-spherical geometry in the
CSM, the efficiency drops and CSM mass requirements rise.

In cases where the post-shock H˛ emission is optically thin, one can, in principle,
also estimate the CSM mass in a similar way, by replacing the bolometric luminosity
with LH˛ , and the efficiency � with the corresponding H˛ efficiency �H˛ . This
is perhaps most appropriate at late times, as CSM interaction may continue for a
decade after the SN. During this time the assumption of optically thin post-shock
H˛ emission may be valid. In practice, however, there are large uncertainties in the
value of �H˛ (usually assumed to be of order 0.005 to 0.05; e.g. Salamanca et al.
2002), so this diagnostic provides only very rough order of magnitude estimates.

Light Curve Fits: The rough estimate in the previous method provides a mass-
loss rate corresponding only to the density overtaken at one moment by the shock
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Fig. 8.3 Example light
curves of several Type IIn
SNe, along with two non-IIn
SLSNe (SN 2005ap, a Type
Ic) and SN 2008es (Type II)
for comparison. SN 1999em
is also shown to illustrate a
“normal” Type II-P light
curve. The fading rate of
radioactive decay from 56Co
to 56Fe is indicated, although
for most SNe IIn this is not
thought to be the power
source despite a similar
decline rate at late times in
some objects. Note that
SN 2002ic and SN 2005gl are
thought to be examples of
SNe Ia interacting with dense
CSM, leading them to appear
as Type IIn (see text)
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(assuming the CDS radiation escapes without delay; see below). In reality, the values
of VCDS, Vw, and the CSM density can change with time as the shock decelerates
while it expands into the CSM, as does the speed of the SN ejecta crashing into the
reverse shock. Moreover, pre-SN mass loss is likely to be episodic, so it is unclear
for how long that value of PM was sustained. To get the total CSM mass ejected by
the progenitor within some time frame before core collapse (and hence, an average
value of PM ), one must integrate over time. This means producing a model to fit the
observed light curve.

One can calculate a simple analytic model for the CSM mass needed to yield
the light curve by demanding that momentum is conserved in the collision between
the SN ejecta and the CSM, and that the change in kinetic energy resulting from
the deceleration of the fast SN ejecta is lost to radiation. Assuming an explosion
energy, a density law for the SN ejecta, and a speed and density law of the CSM,
one can calculate the resulting analytic light curve assuming that high densities and
H-rich composition lead to a small bolometric correction (see Smith et al. 2008,
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Fig. 8.4 Observations of pre-shock CSM speeds in the SLSN IIn SN 2006gy. The left panel shows
several tracings of the narrow P Cygni feature. The right shows velocities measured for various
radii, where dates have been converted to radii based on the observed expansion speed of the cold
dense shell (upper points are for the blue edge of the absorption, while the lower points are for
the velocity at the minimum of the absorption). The CSM velocity follows a Hubble-like law,
indicating a single ejection date for the CSM about 8 year prior to the SN. Both figures are from
Smith et al. (2010a)

2010a; Smith 2013a,b; Chatzopoulos et al. 2013; Moriya et al. 2013). One can also
do the same from a numerical simulation (e.g., Woosley et al. 2007; van Marle et al.
2010). In general, very high CSM masses of order 10–20 Mˇ are found for SLSNe
like SN 2006gy and 2006tf, emitted in the decade or so preceding the explosion.
Considering the CSM mass within the radius overtaken by the shock, the uncertainty
in this mass estimate is roughly a factor of 2, but should also be considered a lower
limit to the total mass since more mass can reside at larger radii. When very high
mass and dense CSM is involved, this method is usually more reliable than other
methods (emission lines, X-rays, radio) that may severely underestimate the mass
due to high optical depths.

Diffusion Time: In extreme cases where the CSM is very dense, the diffusion
time �diff ' .n�R2/c may be long. If �diff becomes comparable to the expansion
timescale of the shock moving through the CSM �exp ' R=Vs , then the shock-
deposited thermal energy can leak out after the shock has broken out of the CSM.
Since the radius of the CSM may be very large (of order 1015 cm), this may produce
an extremely luminous SN display (Smith and McCray 2007). This is essentially
the same mechanism as the normal plateau luminosity of a SN II-P (Falk and Arnett
1977), but the radius here is the radius of the CSM, not the hydrostatic radius of the
star. This can be simplified to

MCSM=Mˇ ' R15.�diff =23 days/ (8.5)
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where R15 is the assumed radius of the opaque CSM in units of 1015 cm, and �diff

can be estimated from observations of the characteristic fading time of the SN light
curve. Applying this to SLSNe like SN 2006gy yields a CSM mass of order 10–
20 Mˇ (Smith and McCray 2007; Chevalier and Irwin 2011). This is comparable
to the estimates through the previous method. The underlying physical mechanism
is the same as normal CSM interaction discussed above, but the optical depths are
assumed to be too high for the luminosity to escape quickly. In fact, even lower-
luminosity SNe IIn may have diffusion-powered light curves at early times as the
shock breaks through the inner and denser parts of the wind; their lower luminosity
compared to SLSNe reflects the smaller radius in the CSM where this breakout
occurs (see Ofek et al. 2013a).

H˛ Emission from Unshocked CSM: When high resolution spectra reveal a
narrow P Cygni component to the H˛ line (widths of order 100–500 km s�1), one
can infer that this emission arises from the pre-shock CSM. (Note that if a narrow
P Cyg profile is not seen, but rather a simple emission profile, it is uncertain if
this narrow component arises from a distant circumstellar nebula or a nearby H II

region.) Following Smith et al. (2007), the mass of emitting ionized hydrogen in
the CSM around a SN IIn can be inferred from the total narrow-component H˛

luminosity LH˛ from

MH˛ ' mH LH˛

h�˛
eff
H˛ne

(8.6)

where h� is the energy of an H˛ photon, ˛
eff
H˛ is the Case B recombination

coefficient, and ne is the average electron density. This simplifies to

MH˛ ' 11:4 Mˇ.LH˛=ne/ (8.7)

with LH˛ in units of Lˇ and ne in cm�3 (see Smith et al. 2007). Note that this
is only the mass of ionized H at high densities, so it is only a lower limit to the
CSM mass if some of the CSM remains neutral. However, as with mass-loss rates
of normal O-type stars, the H˛ emission depends on the degree of clumping in the
wind (see review by Smith 2014), which can lower the total required mass. For
more luminous SNe IIn with very dense pre-shock CSM, the narrow H˛ component
may arise from a relatively thin zone ahead of the shock, and it therefore provides
a useful probe of the immediate pre-shock CSM in cases where a narrow P Cyg
profile is observed. For a SLSN IIn like SN 2006gy, this method yields a CSM mass
of order 10 Mˇ or a mass-loss rate of order 1 Mˇ year�1 (Smith et al. 2007). For a
more moderate-luminosity SN IIn like SN 2009ip, Ofek et al. (2013a) applied this
same method and found a mass-loss rate of order 10�2 Mˇ year�1.

X-ray and radio emission: For SLSNe IIn the X-ray and radio emission is
of limited utility in diagnosing the pre-SN mass-loss rate, since very high CSM
densities cause the X-rays to be self absorbed (the reprocessing of X-rays and their
thermalization to lower temperatures is what powers the high visual-wavelength
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continuum luminosity of SNe IIn) and the CSM is optically thick to radio emission
during the main portion of the visual light curve peak.

When X-rays are detected, the X-ray luminosity LX can be used to infer a
characteristic mass-loss rate (see Ofek et al. 2013a; Smith et al. 2007; Pooley et al.
2002):

LX ' 3:8 � 1041 ergss�1. PM =0:01/2.Vw=500/ � 2R15e
�.�C�bf / (8.8)

where PM is in units of 0.01 Mˇ year�1, the wind speed is relative to 500 km s�1,
R15 is the shock radius in units of 1015 cm, � is the Thomson optical depth in the
wind, and the exponential term is due to wind absorption (see Ofek et al. 2013a for
further detail). Caution must be used when inferring global properties, however. If
the CSM is significantly asymmetric (as most nebulae around massive stars are), X-
rays may indeed escape from less dense regions of the CSM/shock interaction, while
much denser zones may yield high optical depths and a strong visual-wavelength
continuum. Thus, one could infer both low and high densities simultaneously, which
might seem contradictory at first glance. This was indeed the case in SN 2006gy,
where the CSM density indicated by X-rays was not nearly enough to provide the
observed visual luminosity (Smith et al. 2007).

Radio synchrotron emission is quashed for progenitor mass-loss rates much
higher than about 10�5 Mˇ year�1 in the first year or so after explosion, and as
a result, radio emission is rarely seen from SNe IIn at early times. (In order
for the CSM interaction luminosity to compete with the normal SN photosphere
luminosity, the mass-loss rate of a SN IIn progenitor must generally be higher than
10�4 Mˇ year�1. Moreover, very massive stars almost always have normal winds
in this range anyway, due to their high luminosity.) Radio emission can be detected
at later times when the density drops, but this emission is then tracing the mass-
loss rate that occurred centuries before the SN, rather than the eruptions in the last
few years before explosion. For a discussion of how to use radio emission as a
diagnostic of the progenitor’s mass-loss rate, we refer the reader to Chevalier and
Fransson (1994).

8.3.5 Connecting SNe IIn and LBVs

There are several lines of evidence that suggest a possible connection between
LBVs and the progenitors of luminous SNe IIn. While each one is not necessarily
conclusive on its own, taken together they clearly favor LBVs as the most likely
known type of observed stars that fit the bill. If the progenitors of SNe IIn are not
actually LBVs, they do a very good impersonation. Here is a list of the different
lines of evidence that have been suggested:

1. Super-luminous SNe IIn, where the demands on the amount of CSM mass are so
extreme (10–20 Mˇ in some cases) that unstable massive stars are required for
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the mass budget, and the inferred radii and expansion speeds of the CSM require
that it be ejected in an eruptive event within just a few years before core collapse
(Smith et al. 2007, 2008, 2010a; Smith and McCray 2007; Woosley et al. 2007;
van Marle et al. 2010). So far, the only observed precedent for stars known to
exhibit this type of extreme, eruptive mass loss is LBV giant eruptions. (In fact,
one could argue that since LBV is an observational designation, if any such pre-
SN event were to be observed, we would probably call it an LBV-like eruption.)

2. Direct detections of progenitors of SNe IIn that are consistent with massive
LBV-like stars (Gal-Yam and Leonard 2009; Gal-Yam et al. 2007; Smith et al.
2010b, 2011a, 2012; Kochanek et al. 2011). This is discussed in the next section
(Sect. 8.4).

3. Direct detections of non-terminal LBV-like eruptions preceding a SN explosion.
This is seen by some as a smoking gun for an LBV/SN connection. So far there
are only two clear cases of this, and two more with less complete observations,
discussed later (Sect. 8.5).

4. The narrow emission-line components from the CSM indicate H-rich ejecta
surrounding the star. H-rich CSM is obviously not exclusive to LBVs, but it
argues against most WR stars as the progenitors. If SNe IIn (especially SLSNe
IIn) indeed require very massive progenitors, this is a pretty severe problem for
standard models of massive-star evolution. In any case, among massive stars with
very strong mass loss, LBVs are the only ones with the combination of H-rich
ejecta and high densities comparable to those required.

5. Wind speeds consistent with LBVs. As noted above, the observed line widths
for narrow components in luminous SNe IIn suggest wind speeds of a few
102 km s�1. This is consistent with the expected escape velocities of blue
supergiants and LBVs (Salamanca et al. 2002; Smith 2006; Smith et al. 2007,
2008, 2010a; Trundle et al. 2008). While it doesn’t prove that the progenitors are
in fact LBVs, it is an argument against red supergiants or WR stars as the likely
progenitors. Wind speeds alone are not conclusive, however, since radiation from
the SN itself may accelerate pre-shock CSM to these speeds.

6. Wind variability that seems consistent with LBVs. Modulation in radio light
curves indicates density variations that suggest a connection to the well-
established variability of LBV winds (Kotak and Vink 2006). Also, multiple
velocity components along the line of sight seen in blue-shifted P Cygni
absorption components of some SNe IIn resemble similar multi-component
absorption features seen in classic LBVs like AG Car (Trundle et al. 2008). This
may hint that some SN IIn progenitors had winds that transitioned across the
bi-stability jump, as do LBVs (see Vink chapter; Groh and Vink 2011). As with
the previous point (wind speed), this is not a conclusive connection to LBVs,
since other stars do experience density and speed variations in their winds, and
the sudden impulse of radiation driving from the SN luminosity itself might give
the impression of multiple wind speeds seen in absorption along the line of sight.
Nevertheless, the variability inferred does hint at a possible connection to LBVs,
and is consistent with that interpretation.
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We must note, however, that not all SNe IIn are necessarily tied to LBVs and the
most massive stars. Some SNe IIn may actually be Type Ia explosions with dense
CSM (e.g., Silverman et al. 2013 and references therein), some may be electron-
capture SN explosions of stars with initial masses around 8�10 Mˇ (Smith 2013b;
Mauerhan et al. 2013b; Chugai et al. 2004), and some may arise from extreme red
supergiants like VY CMa with very dense winds (Smith et al. 2009; Mauerhan &
Smith 2012; Chugai and Danziger 1994). The argument for a connection to LBVs
and VMSs is most compelling for the SLSNe IIn because of the required mass
budget, which is hard to circumnavigate (Smith and McCray 2007; Smith et al.
2007, 2008, 2010a; Woosley et al. 2007; Rest et al. 2011).

8.3.6 Requirements for Pre-SN Eruptions and Implications

In order for the characteristic Type IIn spectrum to be observed, and to achieve
a high luminosity from CSM interaction, the collision between the SN shock and
the CSM must occur immediately after explosion. This places a strong constraint
on the location of the CSM and the time before the SN when it must have been
ejected. Given the luminosity of SLSNe, the photosphere must be at a radius of a
few 1015 cm, which must also be the location of the CSM if interaction drives the
observed luminosity. Another way to arrive at this same number is to require that a
SN shock front (the cold dense shell or CDS, as above) expands at a few 103 km s�1

in order to overtake the CSM in the first �100 days. Then we have D D v � t

D (2,000 km s�1) � (100 days) D 2�1015 cm. Note that the observed blue-shifted
P Cygni absorption profiles in narrow line components indicate that the CSM is
outflowing. This observed expansion rules out possible scenarios where the CSM is
primordial (i.e. disks left-over from star formation).

How recently was this CSM ejected by the progenitor star? From the widths of
narrow lines observed in spectra we can derive the speed of the pre-SN wind, and
these show speeds of typically 100–600 km s�1 (Smith et al. 2008, 2010a; Kiewe
et al. 2012), as noted earlier. In order to reach radii of 1–2�1015 cm, then, the mass
ejection must have occurred only a few years before the SN. Since the lifetime of the
star is several Myr and the time of He burning is 0.5–1 Myr, a timescale of only 2–
3 year is very closely synchronized with the time of core collapse. This is a strong
hint that something violent (i.e., hydrodynamic) may be happening to these stars
very shortly before core collapse, apparently as a prelude to the core collapse event.

As noted earlier, the CSM mass must be substantial in order to provide enough
inertia to decelerate the fast SN ejecta and extract the kinetic energy. This is
especially true for SLSNe, where high CSM masses of order 10 Mˇ are required.
Combined with the expansion speeds of several 102 km s�1 derived from narrow
emission lines in SNe IIn, we find that whatever ejected the CSM must have been
provided with an energy of order 1049 ergs. Since the mass loss occurred in only
a few years before core collapse, it is necessarily an eruptive event that is short in
duration.
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The H-rich composition, high mass, speed, and energy of these pre-SN eruptions
are remarkably similar to the physical conditions derived for LBV giant eruptions.
This is the primary basis for the connections between LBVs and SNe IIn, as noted
earlier. Consequently, we are left with the same ambiguity about the underlying
physical mechanism of pre-SN outbursts as we have for LBVs. The SN precursors
seem to be some sort of eruptive or explosive mass-loss event, but the underlying
cause is not yet known. Unlike many of the LBVs, however, the pre-SN eruptions
provide a telling clue—i.e. for some reason they appear to be synchronized
with the time of core collapse. This is interesting, since we do know that core
evolution proceeds rapidly through several different burning stages as a massive star
approaches core collapse. It is perhaps natural to associate these pre-SN eruptions
with Ne and O burning, each of which lasts roughly a year (see Quataert & Shiode
2011; Smith and Arnett 2014). Carbon burning lasts at least several centuries (too
long for the immediate SN precursors, but possibly important in some SNe IIn),
while Si burning lasts only a day or so (too short). A number of possible instabilities
that may occur in massive stars during these phases is discussed in more detail by
Smith and Arnett (2014), as well the specific case of wave-driven mass loss by
Quataert & Shiode (2011) and Shiode and Quataert (2013).

In extremely massive stars with initial masses above �100 Mˇ, a series of
precursor outbursts can occur as a result of the pulsational pair instability (PPI;
see chapter 7 by Woosley & Heger). These eruptions are thought to occur in a
range of initial masses (roughly 100–150 Mˇ) where explosive O burning events
are insufficient to completely disrupt the star as a final SN, but which can give rise
to mass ejections with roughly the mass and energy required for conditions observed
in luminous SNe IIn precursors. The PPI should occur far too rarely (�1 % or less
of all core-collapse SNe) to explain all of the SNe IIn (which are about 8–9 % of
ccSNe; Smith et al. 2011b). It may, however, provide a plausible explanation for the
much more rare cases of SLSNe of Type IIn.

8.3.7 Type Ic SLSNe and GRBs

Not all SLSNe are Type IIn, and not all SLSNe have H in their spectra. The
progenitors of SNe IIn are required to eject a large mass of H in just a few years
before core collapse, so they must retain significant amounts of H until the very
ends of their lives. This fact is in direct conflict with stellar evolution models, as
noted above. There are also, however, a number of SNe that may be associated with
the deaths of VMSs which have shed all of their H envelopes and possibly their He
envelopes as well before finally exploding. Recall that SNe with no visible sign of
H, but which do show strong He lines are Type Ib, and those which show neither H
nor He are Type Ic (see Filippenko 1997 for a review of SN classification). (Type
IIb is an intermediate category that is basically a Type Ib, but with a small mass of
residual H left, and so the SN is seen as a Type II in the first few weeks, but then
transitions to look like a Type Ib.) Together, Types Ib, Ic, and IIb are sometimes
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referred to as “stripped envelope” SNe. The stripped envelope SNe most closely
related to the deaths of VMSs are the SLSN of Type Ic, and the broad-lined Type Ic
supernovae that are observed to be associated with GRBs.

SLSN Ic. The most luminous SNe known to date turn out to be of spectral Type
Ic. The prototypes for this class are objects like SN 2005ap (Quimby et al. 2007)
and a number of other cases discussed by Quimby et al. (2011). Although these SNe
were discovered around the same time as SN 2006gy, their true nature as the most
luminous Type Ic SNe wasn’t recognized until a few years later. This is because
they were actually located at a fairly substantial redshift (z ' 0:2 to 0.3), causing
their visual-wavelength spectra to appear unfamiliar. It turns out that these objects
are closest to Type Ic spectra, with no H and little if any He visible in their spectra.4

Once their redshifts were recognized, it became clear that these SNe were the most
luminous of any SNe known, having peak absolute magnitudes around �22 to �23.
These SNe are also hotter than normal Type Ic SNe, however, with the peak of
their spectral energy distribution residing in the near-UV; this enhances their visual-
wavelength apparent brightness (and detectability) because of the redshifts at which
they are found. The hotter photospheric temperatures are likely related to their lack
of H and He. Unlike SNe IIn, these object do not have narrow lines in their spectra;
their spectra exhibit broad absorption lines that are more like normal SNe. More
detailed information about these objects is available in two recent reviews (Quimby
et al. 2011; Gal-Yam 2012).

The three possible physical driving mechanisms for these explosions are the same
as those mentioned above for all SLSNe: (1) Interaction between a SN shock and
an opaque CSM shell, (2) Magnetar birth, or (3) Pair instability SN. Even though
these objects do not have narrow lines in their spectra (and therefore lack tell-tale
signatures of CSM interaction), the first is a possible power source if the opaque
CSM shell has a sharp outer boundary that is smaller than the diffusion radius in
the CSM. If this is the case, then the shock will break out of the CSM and photons
will diffuse out afterward, producing a broad-lined spectrum (Smith and McCray
2007; Chevalier and Irwin 2011). Magnetar-driven SNe (Kasen and Bildsten 2010;
Woosley 2010) provide another possible power source for SLSNe Ic, and so far
appear to be consistent with all available observations. Recently, Inserra et al. (2013)
have presented evidence that favors the magnetar model for these SLSNe Ic, seen in
the late-time data. The third mechanism of a pair instability SN (PISN) is perhaps
the oldest viable idea for making SLSNe from very massive stars (Barkat et al.
1967; Bond et al. 1984), but so far evidence for this type of explosion remains
unclear. Most of the SLSNe Ic fade too quickly to be PISNe; for their observed
peak luminosities they would require �10 Mˇ of 56Ni in order to be powered by
radioactive decay, but the rate at which they are observed to fade from peak is much

4There is so far only one exception to this, which is SN 2008es (Miller et al. 2010; Gezari et al.
2010), whose light curve is shown in Fig. 8.3. This object is a SLSN of Type II, with broad H lines
in its spectra, and is not a Type IIn. The total mass of H in its envelope is not well constrained,
however.



8 Observed Deaths of Very Massive Stars 255

faster than the 56Co rate (Quimby et al. 2011). So far only one object among the
SLSNe Ic, SN 2007bi, has a fading rate that is consistent with radioactivity (Gal-
Yam et al. 2009), but the suggestion that this is a true PISN is controversial, as noted
earlier (Dessart et al. 2012). It remains unclear if any PISN have yet been directly
detected. Originally these SNe were predicted to occur only for extremely massive
stars in the early universe (with little mass loss), as discussed more extensively in
the chapter by Woosley & Heger.

SNe Ic-BL associated with GRBs. Gamma Ray Bursts (GRBs) represent
another example of the possible deaths of VMSs. The detailed observed properties
of GRBS, the variety of GRBs (short vs. long duration, etc.), and their history is too
rich to discuss here (see Woosley and Bloom 2006 for a review). Instead we focus on
the observable SNe that are associated with long-duration GRBs, which are thought
to result from core collapse to a black hole in the death of a massive star.

So far, the only type of SN explosion seen to be associated with GRBs are the so
called “broad-lined” Type Ic, or SN Ic-BL. Here we must be careful in terminology.
While earlier in this chapter we referred to the fact that normal SNe have broad
lines, at least compared to the narrow and intermediate-width lines seen in SNe IIn,
the class of SN Ic-BL have extremely broad absorption lines in their spectra. A
normal SN typically has lines that indicate outflow speeds of �10,000 km s�1, but
SNe Ic-BL exhibit expansion speeds closer to 30,000 km s�1, or 0.1c. These trans-
relativistic speeds are related to the fact that a GRB has a highly relativistic jet that
is seen as the GRB, if we happen to be observing it nearly pole-on. Since kinetic
energy goes as velocity squared, these very fast expansion speeds in SNe Ic-BL
imply large explosion energy, and have led them to be referred to as “hypernovae”
by some researchers. The reason to associate these SNe Ic-BL and GRBs with the
possible deaths of VMSs is that the favored scenario for producing the relativistic
jet (the “collapsar”, see Woosley & Heger chapter) involves a collapse to a black
hole that is thought to occur in stars with initial masses above 30 Mˇ. Although the
GRBs and the afterglows are extremely luminous, the SN explosion seen as SNe
Ic-BL that follow the GRBs are not extremely luminous (they are near the top end
of the luminosity distribution for normal SNe, with peaks of �19 or �20 mag), and
certainly not as luminous as the class of SLSN Ic discussed above.

Host Galaxies. An interesting commonality is found between SLSNe Ic and the
class of SN Ic-BL associated with GRBs. In addition to sharing the Ic spectral type,
indicating a progenitor stripped of both its H and He layers, the two groups seem
to arise preferentially in similar environments. Namely, both classes of Ic occur
preferentially in relatively low-mass host galaxies with low metallicity (Neill et al.
2011; Modjaz et al. 2008). This may hint that these two classes of SNe are the
endpoints of similar evolution in massive stars at low metallicity, but that some
additional property helps to determine if the object is a successful GRB or not. Since
one normally associates stronger mass loss and stripping of the H and He layers with
stronger winds (and therefore higher metallicity), the low-metallicity hosts of these
SNe may hint that binary evolution plays a key role in the angular momentum that is
needed (especailly for the production of GRB jets), with an alternative explanation
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relying upon chemically homogeneous evolution of rapidly rotating stars (see Yoon
and Langer 2005). In this vein, it is perhaps interesting to note that magnetars have
been suggested as another possible driving source for GRBs, while magnetar birth
is also a likely explanation for SLSNe Ic as noted above. This is still an active topic
of current research.

8.4 Detected Progenitors of Type IIn Supernovae

While the previous section described inferred connections between very luminous
SNe and VMSs, these connections are however indirect, based primarily on
circumstantial evidence. For example, they rely upon the large mass of CSM needed
in SNe IIn, the observed wind speeds, and the requirement of extreme eruptive
variability only demonstrated (to our knowledge) by evolved massive stars like
LBVs, and the possible association with magnetars or collapsars. However, our most
direct way to draw a connection between a SN and the mass of the star that gave
rise to it is to directly detect the progenitor star itself in archival images of the
explosion site taken before the SN occurred. The increase of successful cases of this
in recent years is thanks in large part to the existence of archival HST images of
nearby galaxies, and this has now been done for a number of normal SNe and for
a small collection of Type IIn explosions (only one of which qualifies as a super-
luminous SN). For this technique to work in identifying the progenitor star, one
must be lucky5 enough to have a high quality, deep image of the explosion site in a
public archive.

The first cases of a direct detection of a SN progenitor star were the very nearby
explosions of SN 1987A in the Large Magellanic Cloud and SN 1993J in M 81,
using archival ground-based data. With the advent of HST, this technique could be
pushed to host galaxies at larger distances, and a number of such cases up until
2008 were reviewed by Smartt (2009). New examples continue to be added since
the Smartt (2009) review, including the very nearby SN IIb in M101, SN 2011hd
(Van Dyk et al. 2013). Most of the progenitor detections so far are for SNe II-P and
IIb, all with relatively low implied initial masses (<20 Mˇ).

The technique for identifying SN progenitors requires very precise work. Once
a nearby SN is discovered, one must determine if an archival image of sufficient
quality exists (it is frustrating, for example, to find that your SN occurred at a
position that is right at the very edge of a CCD chip in an archival image, or just
past that edge). Then one must obtain an HST image or high-quality ground-based

5Another somewhat less direct technique for estimating the mass of a SN progenitor star is to
analyze the stellar population in the nearby SN environment. The age of the surrounding stellar
population provides a likely (although not necessarily conclusive) estimate of the exploded star’s
lifetime and initial mass. While this information can only be obtained for the nearest SNe, it can
be performed after the SN fades and therefore does not require the lucky circumstance of having a
pre-existing high-quality archival image.
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image (with either excellent seeing or adaptive optics) of the SN itself, in order to
perform very careful and precise astrometry to pinpoint the exact position of the SN
(usually the precision is a few percent of an HST pixel). The exact position of the
SN must then be identified on the pre-explosion archival image of the SN site, using
reference stars in common to both images (preferably at the same wavelengths),
and then finally one can determine if there is a detected point source at the SN’s
location. If not, one can derive an upper limit to the progenitor star’s luminosity and
mass, which is most useful in the nearest cases where the upper limit can be quite
restrictive. If there is a source detected, then it becomes a “candidate” progenitor,
because it could also be a chance alignment, a companion star in a binary or triple
system, or a host cluster. The way to tell is to wait several years and verify that this
candidate progenitor source has disappeared after the SN fades beyond detectability.

Once a secure detection is made, one can then use the pre-explosion image to
estimate the apparent and absolute magnitudes of the star, and to estimate colors if
there are multiple filters. After correcting for the effects of extinction and reddening
of the progenitor (which might include the effects of unknown amounts of CSM
dust that was vaporized by the SN), one can place the progenitor star on an HR
diagram. One can then use single-star evolution tracks to infer a rough value for
the star’s initial mass, by comparing the progenitor’s position on the HR diagram
to the expected luminosity and temperatures at the endpoints of evolution models
(note, however, that trajectories of these evolution tracks are highly sensitive to
assumptions about mass loss and mixing in the models, and the 1D models do not
include possible instabilities in late burning phases; see Smith and Arnett 2014).
The technique favors types of progenitor stars that are luminous in the filters used for
other purposes (usually nearby galaxy surveys, using R and I -band filters), allowing
them to be more easily detected. For example, WR stars are the expected progenitors
of at least some SNe Ibc, but while these stars are luminous, they are also hot and
therefore emit most of their flux in the UV. Compared to a red supergiant at the
same distance, they are therefore less easily detected in the red I -band filters that are
often used in surveys of nearby galaxies that populate the HST archive. Similarly,
very luminous progenitors that emit much of their luminosity at visual wavelengths,
like LBVs, should be relatively easy to detect at a given distance. This probably
explains why we have multiple cases of LBV-like progenitors, despite the relatively
small numbers of very massive stars.

A central issue for understanding VMSs is whether they make normal SNe when
they die, rare and unusual types of SNe (like SLSNe or Type IIn), or if instead they
have weak/failed SNe as core material and 56Ni falls back into a black hole (making
them difficult or impossible to observe). A common expectation from single-star
evolution models combined with core collapse studies (e.g., Heger et al. 2003 and
references therein; see also the chapter by Woosley & Heger) is that stars with initial
masses above some threshold (for example, 30 Mˇ, although the exact value differs
from one study to the next) will collapse to a black hole and will fail to make a
successful bright SN explosion, unless special conditions such as very rapid rotation
and envelope stripping can lead to a collapsar and GRB.
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Observationally, there are at least four cases where stars more massive than
30 Mˇ do seem to have exploded successfully, and all of these are Type IIn (recall
that these cases may be biased because LBV-like progenitors are very bright and
easier to detect than hotter stars of the same bolometric luminosity). The four cases
are listed individually below.

SN 2005gl. SN 2005gl was a moderately luminous SN IIn (Gal-Yam et al. 2007).
Pre-explosion images showed a source at the SN position that faded below detection
limits after the SN had faded (Gal-Yam and Leonard 2009). Its high luminosity
suggested that the progenitor was a massive LBV similar to P Cygni, with an
initial mass of order 60 Mˇ and a mass-loss rate shortly before core-collapse of
�0.01 Mˇ year�1 (Gal-Yam et al. 2007).

SN 1961V. Another example of a claimed detection of a SN IIn progenitor,
SN 1961V, has a more complicated history because it is much closer to us and more
highly scrutinized. For decades SN 1961V was considered a prototype (although
the most extreme case) of giant eruptions of LBVs, as noted above, and an analog
of the nineteenth century eruption of � Carinae (Goodrich et al. 1989; Filippenko
et al. 1995; Van Dyk et al. 2002). However, two recent studies (Smith et al. 2011a;
Kochanek et al. 2011) argue for different reasons that SN 1961V was probably a true
core-collapse SN IIn. Both studies point out that the pre-1961 photometry of this
source’s variability was a detection of a very luminous quiescent star, as well as a
possible precursor LBV-like giant eruption in the few years before the supposed core
collapse. While the explosion mechanism of SN 1961V is still debated (e.g., Van
Dyk and Matheson 2012), the clear detection and post-outburst fading of its LBV
progenitor is at least as reliable as the case for SN 2005gl. SN 2005gl was shown to
have faded to be about 1.5 mag fainter than its progenitor star, whereas SN 1961V
is now at least 6 mag fainter than its progenitor. In any case, the luminosity of the
progenitor of SN 1961V suggests an initial mass of at least 100–200Mˇ.

In the previous two cases, the SN has now faded enough that it is fainter than
its detected progenitor star. The implication is that the luminous progenitor stars
detected in pre-explosion images are no longer there, and are likely dead. This
provides the strongest available evidence that these detected sources were indeed
the stars that exploded to make the SNe we saw, and not simply a chance alignment
of another unrelated star, a star cluster, or a companion star in a binary. This is not
true for the next two sources, which are still in the process of fading from their
explosion. We will need to wait until they fade to be sure that the candidate sources
are indeed the star that exploded.

SN 2010jl. Of the four progenitor detections discussed here, SN 2010jl is the
only explosion that qualifies as a SLSN, with a peak absolute magnitude brighter
than �20 mag. Smith et al. (2011c) identified a source at the location of the SN in
pre-explosion HST images. The high luminosity and blue colors of the candidate
progenitor suggested either an extremely massive progenitor star or a very young
and massive star cluster; in either case it seems likely that the progenitor had an
initial mass well above 30 Mˇ. In this case, however, the SN has not yet faded (it is
still bright after 3 years), so we will need to wait to solve the issue of whether the
source was the progenitor or a likely host cluster.
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SN 2009ip. Although its name says “2009”, SN 2009ip is the most recent
addition to the class of direct SN IIn progenitor detections, because while the 2009
discovery event was a SN impostor, the same object now appears to have suffered
a true SN in 2012 (Mauerhan et al. 2013; Smith et al. 2014). SN 2009ip is an
exceptional case, and is discussed in more detail below (Sect. 8.5). For now, the
relevant point to mention is that archival HST images obtained a decade before
the initial discovery revealed a luminous point source at the precise location of
the transient. If this was the quiescent progenitor star, the implied initial mass is
50–80 Mˇ (Smith et al. 2010b) or >60 Mˇ (Foley et al. 2011), depending on the
assumptions used to calculate the mass. Thus, the case seems quite solid that the
progenitor was indeed a VMS.

Altogether, all four of these cases of possible progenitors of SNe IIn suggest
progenitor stars that are much more massive than the typical red supergiant
progenitors of SNe II-P (Smartt 2009).

8.5 Direct Detections of Pre-SN Eruptions

SNe IIn (and SNe Ibn) require eruptive or explosive mass loss in just the few years
preceding core collapse in order to have the dense CSM needed for their narrow-line
spectra and high luminosity from CSM interaction. As noted above, the timescale is
constrained to be within a few years beforehand, based on the observed expansion
speed of the pre-shock gas and the derived radius of the shock and photosphere.

Until recently, these pre-SN eruptions were mostly hypothetical, limited to
conjectures supported by the circumstantial evidence that something must deposit
the outflowing CSM so close to the star. However, we now have examples of SN
explosions where a violent outburst was detected in the few years before a SN, and
in all cases the SN had bright narrow emission lines indicative of CSM interaction.
The two most conclusive detections of an outburst are SN 2006jc and SN 2009ip,
and they deserve special mention. SN 1961V and SN 2010mc also had pre-peak
detections, although the data are less complete, and the interpretations are more
controversial.

SN 2006jc. - SN 2006jc was the first object clearly recognized to have a brief
outburst 2 years before a SN. The precursor event was discovered in 2004 and
noted as a possible LBV or SN impostor. It had a peak luminosity similar to that
of � Car (absolute magnitude of �14), but was fairly brief and faded after only
a few weeks (Pastorello et al. 2007). No spectra were obtained for the precursor
transient source, but the SN explosion 2 years later was a Type Ibn with strong
narrow emission lines of He, indicating moderately slow (1,000 km s�1) and dense
H-poor CSM (Pastorello et al. 2007; Foley et al. 2007). There is no detection of the
quiescent progenitor, but the star is inferred to have been a WR star based on the
H-poor composition of the CSM.



260 N. Smith

3rd outburst (SN)

R band

2nd outburst

V band
(CRTS)

1sd outburst

progenitor variability
SN2009ip
(FRORW. R. LIF)

–4000

–10

–12

–14

–16

–18

A
bs

ol
ut

e 
m

ag
ni

tu
de

–3000 –2000 –1000 0 1000 2000

Days rclativc to 2009 maximum

I band

Fig. 8.5 The pre-SN light curve of SN 2009ip, from Mauerhan et al. (2013)

SN 2009ip. A much more vivid and well-documented case was SN 2009ip,
mentioned earlier (see Fig. 8.5). It was initially discovered and studied in detail
as an LBV-like outburst in 2009, again with a peak absolute magnitude near
�14. This time, however, several spectra of the pre-SN eruptions were obtained,
and these spectra showed properties similar to LBVs (Smith et al. 2010b; Foley
et al. 2011). Also, a quiescent progenitor star was detected in archival HST data
taken 10 year earlier, which as noted above, indicated a VMS progenitor. In the
5 year preceding its discovery as an LBV-like eruption, the progenitor also showed
slow variability consistent with an S Dor-like episode without a major increase in
bolometric luminosity, characteristic of LBVs. The object then experienced several
brief luminosity peaks over 3 years that looked like additional LBV eruptions
(unlike SN 2006jc, detailed spectra of these progenitor outbursts were obtained),
culminating in a final SN explosion in 2012 (Mauerhan, et al. 2013a; Smith et al.
2014). The SN light curve was double-peaked, with an initially fainter bump
(�15 mag) that had very broad (8,000 km s�1) emission lines probably formed in
the SN ejecta photosphere, and it rose quickly 40 days later to a peak of �18 mag,
when it looked like a normal SN IIn (caused by CSM interaction, as the SN crashed
into the slow material ejected 1–3 years earlier; see Mauerhan, et al. 2013a and
Smith et al. 2014). A number of detailed studies of the bright 2012 transient have
now been published, although there has been some controversy about whether the
2012 event was a true core-collapse SN (Mauerhan, et al. 2013a; Prieto et al. 2013;
Ofek et al. 2013a; Smith et al. 2013, 2014) or not (Pastorello et al. 2013; Fraser et al.
2013; Margutti et al. 2014). More recently, Smith et al. (2014) have shown that the
object continues to fade and its late-time emission is consistent with late-time CSM
interaction in normal Type IIn supernovae. In any case, SN 2009ip provides us with
the most detailed information about any SN progenitor for a decade preceding the
SN, with a detection of a quiescent progenitor, several LBV-like precursor eruptions
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of two different types, and detailed high-quality spectra of the star. This object paints
a very detailed picture of the violent death throes in the final years in the life of a
VMS.

SN 2010mc. Ofek et al. (2013b) reported the discovery of a precursor outburst
in the �40 days before the peak of SN 2010mc, recognized after the SN by
analyzing archival data. Smith (2013a,b) showed that the light curve of SN 2010mc
was nearly identical to that of the 2012 supernova-like event of SN 2009ip, to a
surprising degree. Smith et al. (2014) proposed that the �40 day precursor events
in both SN 2009ip and SN 2010mc were in fact the SN explosions, since this is
when very broad P Cygni features were seen in the spectra, and that the following
rise to peak was actually due to additional luminosity generated by intense CSM
interaction. In that case, the �40 day precursor event of SN 2010mc was not actually
a pre-SN eruption, but the SN itself. Nevertheless, the similarity in light curves
and spectra between SN 2009ip and SN 2010mc would obviously suggest that
SN 2010mc probably did have a series of pre-SN LBV-like eruptions too, although
those preceding events were not detected.

SN 1961V. The remarkable object SN 1961V has extensive temporal coverage of
its pre-SN phases and solid detections of a luminous and highly variable progenitor,
moreso than any other SN. The luminous (�12.2 mag absolute at blue/photographic
wavelengths) progenitor is well detected in data reaching back to more than 20 year
preceding the SN, which includes some small (�0.5 mag) fluctuations in brightness
that could be S Dor-like LBV episodes. In the year before the SN, there is one
detection at an absolute magnitude of roughly �14.5, although since it is only one
epoch, we don’t know if this was an LBV giant eruption or the beginning of the
SN. Then in 1961 there was a �100 day plateau at almost �17 mag followed by a
brief peak at about �18 mag. After this, the SN faded rapidly and has been fading
ever since, except for some plateaus or humps in the declining light curve within
�5 year after peak. Currently, the suggested source at the same position is about
6 mag fainter than the progenitor, and shows H˛ emission. In chronological order,
SN 1961V was therefore the first direct detection of a pre-SN eruption. In practice,
however, the significance of this has been overlooked because the 1961 event was
discussed in terms of LBV eruptions (it was considered a “super-� Car-like event”),
and was not thought to be a true SN. It is only the much more recent recognition
that SN 1961V could have been a true core-collapse Type IIn supernova (Smith
et al. 2011a; Kochanek et al. 2011) that underscores the implications of the pre-
1961 photometric evidence.

These direct discoveries of pre-SN transient events provide strong evidence that
VMSs suffer violent instabilities associated with the latest phases in a massive star’s
life. The extremely short timescale of only a few years probably hints at severe
instability in the final nuclear burning sequences, especially Ne and O burning
(Smith and Arnett 2014; Shiode and Quataert 2013; Quataert and Shiode 2012),
each of which lasts about 1 year. These instabilities may be exacerbated in the most
massive stars, although much theoretical work remains to be done. The increased
instability at very high initial masses is certainly true in cases where the pre-SN
eruptions result from the pulsational pair instability (see the chapter by Woosley &
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Heger), but it may extend to other unknown nuclear burning instabilities as well
(Smith and Arnett 2014). Although the events listed above are just a few very
lucky cases, they may also be merely the tip of the iceberg. Undoubtedly, continued
work on the flood of new transient discoveries will reveal more of these cases.
Future cases will be interesting if high-quality data can place reliable constraints
on the duration, number, or luminosity of the pre-SN outbursts that will allow
for a meaningful comparison with LBV-like eruptions. The limitation will be the
existence of high-quality archival data over long timescales of years before the
SNe, but these sorts of archives are always becoming more populated and improved.
When LSST arrives, it will probably become routine to detect pre-SN outbursts.

8.6 Looking Forward (or Backward, Actually)

Very massive stars are very bright, and their SLSNe are even brighter. Thus, we can
see them at large distances, and there is hope that we may soon be able to see light
from the explosions of some of the earliest stars in the Universe. The fact that VMSs
appear to suffer pre-SN instability that leads to the ejection of large amounts of mass
—which in turn enhances the luminosity of the explosion—helps our chances of
seeing the first SNe. There is an expectation that the low metallicity environments
in the early Universe may favor the formation of very massive stars because of the
difficulty in cooling and fragmentation during the star-formation process.

So then we must ask what happens to these stars and their explosions as we move
to very low metallicity? How does the physics of eruptions and explosions in the
local universe translate to the low-metallicity environments of the earlier universe?

Traditional expectations for massive star evolution are that lower metallicity
means lower mass-loss rates (e.g., Heger et al. 2003), since line-driven winds of
hot stars have a strong metallicity dependence. It is somewhat ironic, then, that the
SNe associated with VMSs have some of the most extreme mass-loss rates (SNe IIn
and SLSNe Ic), but these appear to favor host galaxies with low metallicity. This
contradicts the simple expectation that lower metallicity means lower mass loss, and
the implication is that eruptive mass-loss and mass transfer in binary systems may
play an extremely important role. It may, in fact, dominate the observed populations
of different types of SNe (Smith et al. 2011b). In that case, extrapolating back to
low-metallicity conditions in the early universe is not so easy. Binary evolution is
not well understood even in the local universe, so extrapolating to a regime where
there is no data remains rather adventurous.

The main theme throughout this chapter is that VMSs seem to suffer violent
eruptions that impact their evolution and drastically modify the type of SN seen.
These eruptions may be very important and may actually dominate the mass lost
by VMSs in the local universe, and it is important to recognize that they are
probably much less sensitive to changes in metallicity than line-driven winds. The
two leading candidates for the physical mechanism of driving this eruptive mass loss
are continuum-driven super-Eddington winds and hydrodynamic explosions. While
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we are not yet certain of the triggering mechanism(s) for either type of event, which
may turn out to depend somehow on metallicity, the physical mechanisms that drive
the mass loss are not metallicity dependent.

Super-Eddington continuum-driven winds rely on electron scattering opacity
to transfer radiation momentum to the gas (see the chapter by Owocki; Owocki
et al. 2004; Smith and Owocki 2006), and this is independent of metallicity since
it only requires electrons supplied by ionized H. This occurs because absorption
lines are saturated for high densities in winds with mass-loss rates much above
10�4 Mˇ year�1 (recall that LBV eruptions typically have mass-loss rates of
0.01 Mˇ year�1 or more). Non-terminal hydrodynamic explosions are driven by a
shock wave, and shock waves can obviously still accelerate gas even with zero metal
content. If the shocks are driven by some sort of instability in advanced nuclear
burning stages (using the ashes of previous burning stages as fuel), it seems unlikely
that this would depend sensitively on the initial metallicity that the star was born
with. Since these eruptive mechanisms appear to be important for heavy mass loss
of VMS in the local universe, there is a good chance that they will still operate
or may even be enhanced at low metallicity (Smith and Owocki 2006). The recent
recognition that SLSNe appear to favor low-metallicity hosts (see above) would
seem to reinforce this suspicion.

One of the key missions for the James Webb Space Telescope ( JWST) will be to
detect the light of the explosions from the first stars. Given the arguments above, we
should perhaps be hopeful that JWST may be able to see extremely luminous SNe
from very massive stars, if they suffer similar types of pre-SN eruptive mass loss.
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