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Abstract. The Vertex Separator Problem (VSP) on a graph is the prob-
lem of finding the smallest collection of vertices whose removal separates
the graph into two disjoint subsets of roughly equal size. Recently, Hager
and Hungerford [1] developed a continuous bilinear programming formu-
lation of the VSP. In this paper, we reinforce the bilinear programming
approach with a multilevel scheme for learning the structure of the graph.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E . Vertices
are labeled 1, 2, . . ., n. We assign to each vertex a non-negative weight ci ∈ R≥0.
If Z ⊂ V, then we let W(Z) =

∑
i∈Z ci be the total weight of vertices in Z.

Throughout the paper, we assume that G is simple; that is, there are no loops
or multiple edges between vertices.

The Vertex Separator Problem (VSP) on G is to find the smallest weight
subset S ⊂ V whose removal separates the graph into two roughly equal sized
subsets A, B ⊂ V such that there are no edges between A and B; that is,
(A × B) ∩ E = ∅. We may formulate the VSP as

min
A,B,S⊂V

W(S)

subject to A ∩ B = ∅, (A × B) ∩ E = ∅, S = V \ (A ∪ B), (1)
�a ≤ |A| ≤ ua, and �b ≤ |B| ≤ ub .

Here, the size constraints on A and B take the form of upper and lower bounds.
Since the weight of an optimal separator S is typically small, in practice the lower
bounds on A and B are almost never attained at an optimal solution, and may be
taken to be quite small. In [2], the authors consider the case where �a = �b = 1
and ua = ub = 2n

3 for the development of efficient divide and conquer algo-
rithms. The VSP has several applications, including parallel computations [3],
VLSI design [4,5], and network security. Like most graph partitioning problems,
the VSP is NP-hard [6]. Heuristic methods proposed include vertex swapping
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algorithms [5,7], spectral methods [3], continuous bilinear programming [1], and
semidefinite programming [8].

For large-scale graphs, heuristics are more effective when reinforced by a mul-
tilevel framework: first coarsen the graph to a suitably small size; then, solve the
problem for the coarse graph; and finally, uncoarsen the solution and refine it to
obtain a solution for the original graph [9]. Many different multilevel frameworks
have been proposed in the past two decades [10]. One of the most crucial para-
meters in a multilevel algorithm is the choice of the refinement scheme. Most
multilevel graph partitioners and VSP solvers refine solutions using variants of
the Kernighan-Lin [5] or Fidducia-Matheyses [7,11] algorithms. In these algo-
rithms, a low weight edge cut is found by making a series of vertex swaps starting
from an initial partition, and a vertex separator is obtained by selecting vertices
incident to the edges in the cut. One disadvantage of using these schemes is that
they assume that an optimal vertex separator lies near an optimal edge cut.
As pointed out in [8], this assumption need not hold in general.

In this article, we present a new refinement strategy for multilevel separator
algorithms which computes vertex separators directly. Refinements are based on
solving the following continuous bilinear program (CBP):

max
x,y∈Rn

cT(x + y) − γxT(A + I)y (2)

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, �a ≤ 1Tx ≤ ua, and �b ≤ 1Ty ≤ ub .

Here, A denotes the adjacency matrix for G (defined by aij = 1 if (i, j) ∈ E
and aij = 0 otherwise), I is the n × n identity matrix, c ∈ R

n stores the vertex
weights, and γ := max {ci : i ∈ V}. In [1], the authors show that (2) is equivalent
to (1) in the following sense: Given any feasible point (x̂, ŷ) of (2), one can find
a piecewise linear path to another feasible point (x,y) such that

f(x,y) ≥ f(x̂, ŷ), x,y ∈ {0, 1}n, and xT(A + I)y = 0 . (3)

(see the proof of Theorem 2.1, [1]). In particular, there exists a global solution to
(2) satisfying (3), and for any such solution, an optimal solution to (1) is given
by

A = {i : xi = 1}, B = {i : yi = 1}, S = {i : xi = yi = 0} . (4)

(Note that the fact that (4) is a partition of V with (A×B)∩E = ∅ follows from
the last property of (3).)

In the next section, we outline a multilevel algorithm which incorporates (2)
in the refinement phase. Section 3 concludes the paper with some computational
results comparing the effectiveness of this refinement strategy with traditional
Kernighan-Lin refinements.

2 Algorithm

The graph G is coarsened by visiting each vertex and matching [10] it with
an unmatched neighbor to which it is most strongly coupled. The strength of
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the coupling between vertices is measured using a heavy edge distance: For the
finest graph, all edges are assigned a weight equal to 1; as the graph is coarsened,
multiple edges arising between any two vertex aggregates are combined into a
single edge which is assigned a weight equal to the sum of the weights of the
constituent edges. This process is applied recursively: first the finest graph is
coarsened, then the coarse graph is coarsened again, and so on. When the graph
has a suitably small size, the coarsening stops and the VSP is solved for the
coarse graph using any available method (the bilinear program (2), Kernighan-
Lin, etc.) The solution is stored as a pair of incidence vectors (xcoarse,ycoarse)
for A and B (see (4)).

When the graph is uncoarsened, (xcoarse,ycoarse) yields a vertex separator for
the next finer level by assigning components of xfine and yfine to be equal to 1
whenever their counterparts in the coarse graph were equal to 1, and similarly
for the components equal to 0. This initial solution is refined by alternately
holding x or y fixed, while solving (2) over the free variable and taking a step
in the direction of the solution. (Note that when x or y is fixed, (2) is a linear
program in the free variable, and thus can be solved efficiently.) When no further
improvement is possible in either variable, the refinement phase terminates and
a separator is retrieved by moving to a point (x,y) which satisfies (3).

Many multilevel algorithms employ techniques for escaping false local optima
encountered during the refinement phase. For example, in [12] simulated anneal-
ing is used. In the current algorithm, local maxima are escaped by reducing the
penalty parameter γ from its initial value of max {ci : i ∈ V}. The reduced
problem is solved using the current solution as a starting guess. If the current
solution is escaped, then γ is returned to its initial value and the refinement
phase is repeated. Otherwise, γ is reduced in small increments until it reaches 0
and the escape phase terminates.

3 Computational Results

The algorithm was implemented in C++. Graph structures such as the adjacency
matrix and the vertex weights were stored using the LEMON Graph Library [13].
For our preliminary experiments, we used several symmetric matrices from the
University of Florida Sparse Matrix Library having dimensions between 1000 and
5000. For all problems, we used the parameters �a = �b = 1, ua = ub = 	0.503n
,
and ci = 1 for each i = 1, 2, . . . , n. We compared the sizes of the separators
obtained by our algorithm with the routine METIS ComputeVertexSeparator
available from METIS 5.1.0. Comparisons are given in Table 1.

Both our algorithm and the METIS routine compute vertex separators using
a multilevel scheme. Moreover, both algorithms coarsen the graph using a heavy
edge distance. Therefore, since initial solutions obtained at the coarsest level
are typically exact, the algorithms differ primarily in how the solution is refined
during the uncoarsening process. While our algorithm refines using the CBP
(2), METIS employs Kernighan-Lin style refinements. In half of the problems
tested, the size of the separator obtained by our algorithm was smaller than
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Table 1. Illustrative comparison between separators obtained using either METIS or
CBP (2)

Problem |V| Sparsity CBP METIS Problem |V| Sparsity CBP METIS

bcspwr09 1723 .0016 8 7 G42 2000 .0059 498 489

netz4504 1961 .0013 17 20 lshp3466 3466 .0017 61 61

sstmodel 3345 .0017 26 23 minnesota 2642 .0009 17 21

jagmesh7 1138 .0049 14 15 yeast 2361 .0024 196 229

crystm01 4875 .0042 65 65 sherman1 1000 .0028 28 32

that of METIS. No correlation was observed between problem dimension and
the quality of the solutions obtained by either algorithm. Current preliminary
implementation of our algorithm is not optimized, so the running time is not
compared. (However, we note that both algorithms are of the same linear com-
plexity.) Nevertheless, the results in Table 1 indicate that the bilinear program
(2) can serve as an effective refinement tool in multilevel separator algorithms.
We compared our solvers on graphs with heavy-tailed degree distributions and
the results were very similar. We found that in contrast to the balanced graph
partitioning [10], the practical VSP solvers are still very far from being optimal.
We hypothesize that the breakthrough in the results for VSP lies in the com-
bination of KL/FM and CBP refinements reinforced by a stronger coarsening
scheme that introduces correct reductions in the problem dimensionality (see
some ideas related to graph partitioning in [10]).
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