An Empirical Study of Off-Line Configuration
and On-Line Adaptation in Operator Selection

Zhi Yuan' ™) Stephanus Daniel Handoko?, Duc Thien Nguyen?,
and Hoong Chuin Lau?

! Department of Mechanical Engineering, Helmut Schmidt University,
Hamburg, Germany
yuanz@hsu-hh.de
2 School of Information Systems, Singapore Management University,
Singapore, Singapore
{dhandoko,dtnguyen,hclau}@smu.edu.sg

Abstract. Automating the process of finding good parameter settings is
important in the design of high-performing algorithms. These automatic
processes can generally be categorized into off-line and on-line methods.
Off-line configuration consists in learning and selecting the best setting
in a training phase, and usually fixes it while solving an instance. On-line
adaptation methods on the contrary vary the parameter setting adap-
tively during each algorithm run. In this work, we provide an empirical
study of both approaches on the operator selection problem, explore the
possibility of varying parameter value by a non-adaptive distribution
tuned off-line, and incorporate the off-line with on-line approaches. In
particular, using an off-line tuned distribution to vary parameter values
at runtime appears to be a promising idea for automatic configuration.

1 Introduction

The performance of metaheuristics in solving hard problems usually depends
on their parameter settings. This leaves every algorithm designer and user with
a question: how to properly set algorithm parameters? In recent years, many
works on using automatic algorithm configuration to replace the conventional
rule-of-thumb or trial-and-error approaches have been proposed [1-3].

The automatic algorithm configuration methods can generally be catego-
rized into two classes: off-line method and on-line method. The goal of off-line
configuration method, also referred to as parameter tuning, is to find a good
parameter configuration for the target algorithm based on a set of available
training instances [4]. These training instances in practice can be obtained from,
e.g., a simulated instance generator or historical data if the target optimization
problem happens in a recurring manner, for example, to optimize logistic plans

Main part of this research was carried out while Zhi Yuan was working at the School

of Information Systems, Singapore Management University. Zhi Yuan is currently

also a PhD candidate at IRIDIA, CoDE, Université Libre de Bruxelles, Belgium.
© Springer International Publishing Switzerland 2014

P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 6276, 2014.
DOT: 10.1007/978-3-319-09584-4_7

An Empirical Study of Off-Line Configuration and On-Line Adaptation 63

on weekly delivery demand, etc. Once the training phase is finished, the target
algorithm is deployed using the tuned configuration to solve future instances.
The off-line tuned configuration deployed is usually fixed when solving each
instance, and across different instances encountered'. Existing approaches to
this aim include, e.g., [6-11]. In contrast with off-line configuration, instead of
keeping a static parameter configuration during the algorithm run, an on-line
configuration method tries to vary the parameter value as the target algorithm
is deployed to solve an instance. Such approaches are also referred to as parame-
ter adaptation [12] or parameter control [13]. The on-line parameter adaptation
problem has attracted many attentions and research efforts, especially in the
field of evolutionary algorithm [14]. The usage of machine learning techniques in
parameter adaptation is also the unifying research theme of reactive search [3].

Although the on-line and off-line methods approach the automatic algorithm
configuration problem differently, they can be regarded as complementary to
each other. For example, the on-line methods usually also have a number of
hyper-parameter to be configured, and this can be fine-tuned by an off-line
method, as done in the design of on-line operator selection method in [15].
Besides, off-line methods can provide a good starting parameter configuration,
which is then further adapted by an on-line mechanism once the instances to be
solved are given. Pellegrini et al. [16] provides an in-depth analysis in this direc-
tion under the context of ant colony optimization algorithms (ACO), but shows
that the on-line methods usually worsen the algorithm performance comparing
with using a fixed configuration tuned off-line. Francesca et al. [17] compared
on-line adaptation in operator selection with a static operator tuned off-line, and
found using a statically tuned operator more preferable in their context. Another
study in [18] shows that instead of adapting the tabu list length on-line as in
reactive tabu search [19], varying the tabu list length by a static distribution
tuned off-line performs better.

In this empirical study, we continue with [17] on the operator selection prob-
lem, and try to challenge the off-line tuned static operator by: (1) varying the
parameter value by a non-adaptive off-line tuned distribution; (2) using off-line
configuration in the design of on-line adaptive approaches; (3) cooperation of the
non-adaptive approaches and the adaptive approaches. We also provide further
analysis on the performance of on-line adaptation mechanisms.

2 The Target Problem and Algorithm

The target problem to be tackled is the quadratic assignment problem (QAP)
[20]. In the QAP, n facilities are assigned to n locations, where the flow f;;
between each pair of facilities ¢,5 = 1,...,n and the distance d;; between each
pair of locations ¢,j7 = 1,...,n are given. The goal is to find an permutation 7

! There exist off-line configuration approaches called portfolio-based algorithm selec-
tion [5], which returns a portfolio of configurations instead of one fixed configura-
tion, then select a configuration from the portfolio based on the feature of the future
instance. However, each of its configurations remains fixed when solving an instance.

64 7. Yuan et al.

that assigns to the location 7 one unique facility 7;, such that the cost defined as
the sum of the distances multiplied by the corresponding flows such as follows:

DD frtinty - dig (1)

i=1 j=1

is minimized.

As the target algorithm for the study of off-line and on-line configuration
methods, we focus on the operator selection in the evolutionary algorithm (EA).
Our implementation of EA is inspired by the work described by Merz et al. [21].
In EA, a population of p individuals, each of which represents a QAP solu-
tion, are evolved from iteration to iteration by applying variation operators such
as crossover and mutation. Initially, the p individuals are generated uniformly
at random. Then at each iteration, p. new individuals, dubbed offspring, will
be generated by applying a crossover operator, and p,, new individuals will be
generated by applying a mutation operator. All these new individuals may be
refined by applying an optional local search procedure. The best p individuals
among the old and newly generated individuals will be selected to enter the next
iteration.

A crossover operator generates an offspring based on two through recombina-
tion of the chromosomes of two randomly chosen parent solutions. In this study,
we look into the following four different crossover operators:

Cycle crossover (CX) first passes down all chromosomes that are shared by
both parents, I,, and I, to the offspring, I,. The remaining chromosomes of the
offspring are assigned starting from a random one, I,(j). CX first sets I,(j) =
I, (j). Then, denoting I, (j') as the chromosomes where I, (j') = I, (j), CX
sets I,(j') = I,,(j') and substitutes the index j with j’. This procedure is
repeated until all chromosomes of I, are assigned.

Distance-preserving crossover (DPX) generates an offspring that has the
same distance from both parents. DPX simply passes down to I, all the chromo-
somes that are shared by both I, and I,,,. Each of the remaining chromosomes,
1,(4), is assigned randomly provided that I,(j) is a permutation and it is differ-
ent from both I, (j) and Ip,(j) in some approximate sense.

Partially-mapped crossover (PMX) randomly draws two chromosome loca-
tions of I,, namely j and j' where j < 7. PMX then sets I, (k) = I, (k) for all k
outside the range of [j,j'] and I,(k) = I,,(k) for all j < k < j'. If the offspring
generated is not a valid permutation, then for each chromosome pair I,(k) and
I,(z) where I,(k) = I,(z) and j < z < j', PMX sets I, (k) = I, (z). This process
is repeated until a valid permutation is obtained.

Order crossover (OX) randomly draws two chromosome locations of I,
namely j and j’ where j < j'. OX then sets I,(k) = I, (k) for all j < k < j’
and assigns in the k-th unassigned chromosomes of I, the k-th chromosomes of
I, that differs from any I,(z), j < z < j'.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 65

3 Operator Selection Strategies

3.1 The Static Operator Strategy

The static operator strategy (SOS) refers to fixing one operator when solving an
instance. Most EA follows this strategy, especially when an off-line configuration
tool is available [17]. Then this amounts to setting a categorical parameter.

3.2 The Mixed Operator Strategy

In contrast with fixing one operator to use, the mixed operator strategy? (MOS)
assigns a probability to each operator. This allows an operator to be selected
at each iteration of the algorithm under a certain probability. This strategy is
often designed with a uniform probability distribution for each possible operators
in the literature [17,22], and referred to as “naive”. Of course, the probability
of selecting each operator can be set in other ways than uniform, and can be
regarded as a real-valued parameter.? These parameters can potentially be fine-
tuned in the off-line training phase.

3.3 The Adaptive Operator Selection

Different from the two approaches above, adaptive operator selection strategy
(AOS) try to adjust the parameter values while running the target algorithm
for each instance. As an on-line method, it is able to adapt parameter values
according to different instances and different search stages. The development of
such on-line methods needs to address two issues: the reward function, or credit
assignment [23], which concerns how to measure operator quality according to
operator performance; and the adaptation mechanism that concerns which oper-
ator to use at each time step according to the performance measurement.

Reward Function. Two reward functions were used in our work. Both versions
make reference of the cost of the offspring ¢, to the cost of the current best
solution ¢, and the better parent solution c,. The first reward function is adopted
from the study of [17], for an operator i that is used to generate a set Z; of
offspring at the current iteration:

. 1 Cp Ccp —C
R = -— 0,2 °1. 2
= i X sl) g

A drawback in the reward function R; is that the relative improvement of the
offspring over its better parent will bias the multiplicative reward value much

2 The term is syntactically and semantically analogous to the term mized strategy
widely used in game theory.

3 One can even regard the static operator strategy as a degenerate case of a mixed
strategy, in which one operator is selected with probability 1, and each of the others
with probability 0.

66 7. Yuan et al.

stronger than its relative performance to the current best solution. This may
not be effective especially when the parents are drawn uniformly randomly.
We modify (2) by making the reference to the parent solution and the current
best solution to contribute the same magnitude to the reward function:

1 Cy C .

—. 2. Szgn(cp - Co)7 (3)

|Ii| 0T Co Co

Rj =

where sign(x) function returns 1 when z > 0, and returns 0 otherwise.

On-line Adaptation Mechanisms. We considered the three on-line algorithm
adaptation methods studied in [17] for the operator selection problem, namely,
Probability Matching (PM) [24], Adaptive Pursuit (AP) [25] and Multi-Armed
Bandit (MAB) [26]. These three on-line methods update the quality Q; of each
candidate operator ¢ by the formula:

Qi = Qi+ a(R — Q) (4)
where 0 < a < 1 is a parameter, and @; is by default initialized to 1 for each
operator i. Using a PM mechanism, the probability of choosing an operator i is
given by the following formula:

P = Pin + (1 — 1| Pn) 20— (5)

Zi’e] Qi’
where [is the set of all possible operators. The lower threshold 0 < P,,;,, < 1isa
parameter to guarantee that every operator has a chance to show its impact. The
second adaptation method AP differs from PM by using a different probability
update formula than (5):

p_ {Pi + B(Prae — Pi), if Qi = maxy Qi

6
P, 4+ 8(Pmin — P;), otherwise, (6)

where 0 < § <1 is a parameter, and Pq, = 1 — (|I| — 1) Pin. Over time, the
probability of choosing a promising operator converge to P,,., while all others
descend into P,;,. The third adaptation method MAB selects an operator i
deterministically by

2In) ", ny

argmax {Rl +9(
ng

iel

)}, (7)

where R is the average reward computed since the beginning of the search and
n; is the number of times the crossover operator ¢ is chosen.

4 Experimental Setup

All experiments are conducted on a computing node with 24-core Intel Xeon
CPU X7542 at 2.67 GHz sharing 128 GB RAM. Each run uses single thread.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 67

4.1 Instance Setup

Three classes of QAP instances are considered in our experiments: one heteroge-
neous and two homogeneous sets. For the heterogeneous set (het), we followed
the experimental setup in [17]: 32 instances from QAPLIB [27] with size from 50
to 100.* For the homogeneous sets, we generated 32 relatively easy homogeneous
instances (hom-easy) and 32 harder homogeneous instances (hom-hard) using
instance generator described in [28]. The instances in hom-easy are uni-size 80,
with Manhattan distance matrix and random (unstructured) flow matrix gener-
ated with the same distribution with 50 % sparsity; while the hom-hard instances
are uni-size 100 with zero sparsity. Both homogeneous instance sets are chosen
with large size (80 and 100), so that the computational overhead of the on-line
adaptation mechanisms can be ignored.® All three instance classes are divided
in half, 16 instances for training and 16 others for testing. Each instance was run
10 times, resulting in 160 instance runs. Each of the 160 runs is assigned with
a unique random seed. Note that during each run, different algorithms will use
the same random seed. This is to reduce evaluation variance [29].

4.2 Target Algorithm Setup

In [17], three memetic algorithm (MA) schemes were used for experiments: sim-
ple MA with crossover only; intermediate MA with crossover and local search;
and full MA with crossover, mutation, and local search. Three levels of com-
putation time are considered, 10, 31, and 100s. From our initial experiments,
we found that local search is time-consuming. For an instance of size 100, one
local search took about 1s. The intermediate and full MA thus performed no
crossover in 10 or 31s, and only 1 or 2 crossover generations after 100s.5 With
this observation, and also to better distinguish the performance difference of
crossover operator selection strategies, we excluded the local search as well as
mutation’, and focused on the crossover operation in this study. In such case, the
computation time chosen corresponds to around 9000, 30000, 90000 crossover
generations, respectively. For the default parameters in our implemented MA,
we followed exactly [17], setting population size p = 40, crossover population
pe = p/2 = 20. A restart is triggered when the average distance over all pairs
of individuals in the population has dropped below 10 or the average fitness

4 There are in total 33 instances found in the QAPLIB with size from 50 to 100.
We further exclude one of them, esc64a, which is too simple and each algorithm
considered in this work will solve it to optimum. Then it results in a total number
of 32 instances in the heterogeneous set.

5 Comparing with the non-adaptive operator strategy (fixed or mixed strategy), the
computational overhead of the on-line adaptation mechanisms in our implementation
is around 1% on instances of size 100, and around 3 % on instances of size 50.

5 More sophisticated techniques such as don’t look bit or neighborhood candidate list
may speed up local search. However, the development of these techniques is out of
the scope of this study.

" However, mutation will be used in restart when the population converges.

68 7. Yuan et al.

of the population has remained unchanged for the past 30 generations. In such
case, each individual except the current best one will be changed by a mutation
operator until it is 30 % of the instance size differ from itself.

4.3 Off-line Configuration Setup

Configuring SOS. The task is to choose one of the four crossover operators
based on the training set. Since the parameter space is small, we assess each
static operator by an exhaustive evaluation in each of the training set, which
consists of 10 runs of 16 instances.

Configuring MOS. Three versions of MOS are presented in this work: an
untrained MOS with uniform probability distribution for each operator, denoted
MOS-u and two automatically tuned versions of MOS, denoted MOS-b and MOS-
w. The two tuned versions differ in how the configuration experiment is designed,
more specifically, in which reference operator to choose: MOS-b chooses the best
operator as reference, while MOS-w chooses the worst. Note that finding the best
or the worst operator requires a priori knowledge such as studied in Sect. 5.1,
or additional tuning effort. However, this additional tuning effort is usually
small, since the parameter space is much smaller comparing with the rest tun-
ing task. Suppose there are n operators, each of which is assigned a parameter
¢i,1 = 1,...,n. After a reference operator r is chosen, in our case, either the
best or worst operator, we fix ¢, = 1, and try to tune the n — 1 parameters
¢i,i = {1,...,n} \ {r}. The range of these n — 1 parameters is set to [0,1.2] in
MOS-b, while in MOS-w, the range is set to [0,100]. Since the parameter space
is infinite, exhaustive evaluation won’t be feasible, thus we used two state-of-
the-art automatic configuration tool, namely iterated racing [7] and BOBYQA
post-selection [11,30]. We reimplemented both configuration methods in Java,
and integrated them into the framework of AutoParTune [31]. For each of the
configuration methods, maximum 1000 target algorithm runs were allowed as
configuration budget. Then the best configurations found by the both configu-
rators are compared based on their training performance, and the one with the
better training performance is selected. After the tuned configuration is obtained,

the probability p; of each operator ¢ is set to p; = ﬁ.
j=19j

Configuring AOS. We further embarked the off-line algorithm configuration
tools described above to fine-tune the hyper-parameter of the on-line AOS meth-
ods. The AOS parameters with their default parameter values and ranges for
off-line configuration are listed in Table 1.

5 Experimental Results

5.1 The Static Operator Strategy

In each of the 9 training sets (three instance classes with three computation
time), PMX is found to be the best performing operator, thus selected as the

An Empirical Study of Off-Line Configuration and On-Line Adaptation 69

Table 1. The hyper-parameters of the on-line adaptive operator selection: their default
values and their ranges for off-line configuration.

param. name used in |default |range comment

! PM, AP | 0.3 [0.0, 1.0] | Adaptation rate
Prin PM, AP | 0.05 [0.0, 0.2] | Minimum probability
8 AP 0.3 [0.0, 1.0] | Learning rate

5 MAB 1.0 [0.0, 5.0] | Scaling factor

best off-line tuned static operator. Consider the 16 training instances of the het
set, each with three stopping time, totaling 48 case studies. For each case study,
we rank the four operators on each of the 10 runs and compare the their median
rank. In the het set, PMX is best performing in 41 case studies, followed by CX
in 4 case studies and OX in 3 case studies; in the hom-easy set, PMX performs
best in 44 out of 48 case studies, and CX excels in the other four; PMX is most
dominant in the hom-hard set, topping 47 case studies, while CX stands out in
only one case studies. This shows PMX’s dominance in the training set.

We further applied all the four static operators to the testing set, and their
relative ranking performance in each of the 9 testing sets with a particular run-
time is shown in the first block of each plot in Fig.1, and their performance
across different runtime in each instance class is shown in Fig. 2. For assessing
the different candidate algorithms in the following, we test the statistical signif-
icance of each pairwise comparison by the Friedman test, and each plot in Fig. 1
shows the median and the 95 % simultaneous confidence intervals of candidate
algorithm regarding these comparisons. If the intervals of two candidate algo-
rithms overlap, then the difference between them is not statistically significant.?
As clearly shown, PMX is dominantly best performing compared to the other
three operators, and the difference is statistical significant in almost every test
case. PMX is also chosen to be the reference in each plot of Figs. 1 and 2 (vertical
dotted line), since it is found to be preferable in [17]. CX, as the runner-up, sig-
nificantly outperforms the other two operators except few cases in the hom-hard
set. DPX turns out to the worst-performing candidate.

5.2 The Mixed Operator Strategy

The ranking performance of the three MOS based approaches is listed in the
second block of each plot in Fig. 1. Firstly, the two tuned versions MOS-b and
MOS-w substantially improves over the default MOS-u with uniform probability
in all case studies. The difference is statistically significant especially when the

8 We further generated the box-plot of the median ranks across 10 trials of each
instance, and the performance comparison in this median-rank box-plot and the
presented confidence-interval plots are almost identical. The confidence-interval plot
is shown here instead of median-rank box-plot since it displays additional information
of statistical significance by the Friedman test.

70 7. Yuan et al.

10 seconds 31 seconds 100 seconds
CX| — CX| — CX| —
DPX| — DPX} —e DPX] —
x| — x| — x| ——
PMX| — PMX| — PMX| —e
MOs| —— MOS| —— MOS) R
MOS-b — MOS-b — MOS-b —_—
MOS-w| — MOS-w| — MOS-w| —
PM-1 — PM-1 — PM-1 —
PM-t1 — PM-t1 — PM-t1 —
PM-2| — PM-2| — PM-2| —e
PM-2f —e— PM-12 — PM-2 —
AP-1 — AP-1 —— AP-1 —
AP-t1 — AP-t1 — AP-t1 —_—
AP-2| — AP-2| — AP-2] —
AP—12] — AP-12] — AP-12| —
MAB-1 — MAB-1 — MAB-1 —
MAB-t1 — MAB-t1 — MAB-t1 —
MAB-2| — MAB-2 — MAB-2 —
MAB-12] — MAB-2| — MAB-2| —
MOS-PM| —e— MOS-PM| — MOS-PM| —
PM-MOS| — PM-MOS| —_— PM-MOS| —
PM-2r| — PM-2r| — PM-2r| —e
5 10 15 20 25 5 10 15 20 25 5 10 15 20 2
(a) hom-easy
10 seconds 31 seconds 100 seconds
oX —— oX — oX —
DPX — DPX]| — DPX] —
OX| — OX] — OX] —
PMX| — PMX| — PMX| —
MOS| — MOS| — MOS —
MOS-bf —&— MOS-b — MOS-b —
MOS-wf—e— MOS-wf —e— MOS-w| —
PM-1 —— PM-1 — PM-1 —
PM-t1 —— PM-t1 —— PM-t1 ——
PM-2f —e— PM-2| — PM-2| —e
PM-t2} —e— PM-12] — PM-12] —
AP-1 — AP-1 — AP-1 —
AP-t1 — AP-t1 — AP-t1 —
AP-2| — AP-2 — AP-2| —
AP-12] — AP-12| — AP-12| —e
MAB-1 —— MAB-1 — MAB-1 ——
MAB-t1 — MAB-t1 — MAB-t1 —
MAB-2| —e MAB-2| — MAB-2 —
MAB-12| —— MAB-12| — MAB-12| —
MOS-PMF —eo— MOS-PM| — MOS-PM| —_—
PM-MOS| —&— PM-MOS| — PM-MOS| —e
PM-2rF —o— PM-2r| — PM-2r| —
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
(b) hom-hard
10 seconds 31 seconds 100 seconds
CX| — CX| — CX| —
DPX| — DPX} —e DPX} —
OxX] — Ox| —e Ox] —
PMX| —e— PMX| —e— PMX| —e
MOS| — MOS| — MOS) e
MOS-bf —o— MOS-b| — MOS-b| —
MOS-wf —e— MOS-w| — MOS-w| —
PM-1 — PM-1 — PM-1 —_—
PM-t1 — PM-t1 — PM-t1 —
PM-2| — PM-2| — PM-2| —
PM-2] — PM-2] — PM-2] —
AP-1 — AP-1 — AP-1 e
AP-t1 —— AP-t1 —— AP-t1 —
AP-2| — AP-2 — AP-2] —e
AP-12] — AP-12] — AP-12| —
MAB-1 — MAB-1 — MAB-1 —_—
MAB-t1 —_— MAB-t1 — MAB-t1 —
MAB-2| — MAB-2 — MAB-2 —e
MAB-t2| —e MAB-t2) —— MAB-t2) —
MOS-PM| —e MOS-PM| — MOS-PM| —
PM-MOS| — PM-MOS| — PM-MOS| —e
PM-2r| — PM-2r| — PM-2r| —_—
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

(c) het

Fig. 1. The ranking performance of different operator selection methods (acronyms see
text) with different computation time 10, 31, and 100s on (a) homogeneous easy (b)
homogeneous hard or (c) heterogeneous instance set.

computation time is small, i.e. 10 or 31s. MOS-w appears to be a slightly better
way of tuning MOS compared to MOS-b, but the difference between them is never
statistical significant. Both MOS-w and MOS-b perform better than the off-line
tuned static operator PMX, especially when the instances are heterogeneous as

An Empirical Study of Off-Line Configuration and On-Line Adaptation 71

all all all
cx — cx —— cx —
DPX — DPX —— DPX ——
ox . ox — ox —
e . o . e .
Mos o Mos o Mos e
MOS-b N MOS-b — MOS-b —
MOS-w - MOS-w — MOS-w —
P Bl pve g P Tt
PM-t1 —e— PM-t1 —— PM-t1 ——
PM-2 —— PM-2 —— PM-2 ——
o = el = el o
AP-1 —— AP-1 —— AP-1 ——
AP-t1 —— AP-t1 —e— AP-t1 ——
pe - pe o p pel
AP-t2 —— AP-t2 —— AP-t2 ——
MAB-1 —— MAB-1 —— MAB-1 —
MAB-t1 — MAB-t1 —— MAB-t1 ——
o2 . os . oo .
MAB-t2 —— MAB-t2 —— MAB-t2 ——
MOS-PM —— MOS-PM —e— MOS-PM ——
PM-MOS —— PM-MOS —— PM-MOS ——
PM-2r —e— PM-2r —e— PM-2r ——
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25
(a) hom-easy (b) hom-hard (c) het

Fig. 2. The ranking performance of different operator selection methods (acronyms
see text) across different computation time on (a) homogeneous easy (b) homogeneous
hard or (c) heterogeneous instance set.

in the het set, and when the instances are hard as in the hom-hard set. In these
two sets, the overall ranking difference between MOS-w and PMX across three
computation times is significant. Even the untrained MOS-u can perform better
than the trained static strategy PMX when solving het and hom-hard in 100s.
This interesting result indicates that, even if an operator that is dominantly
better than the others exists, such as PMX in our case, varying the choice of
operators at runtime can result in significantly better and more robust strategy
than a static choice. This also sheds some light on how off-line configuration
should be conducted: instead of finding one static configuration, varying the
parameter values at runtime by a static distribution trained off-line may be
a better idea. In fact, varying parameter values at runtime by a non-adaptive
distribution is also applied to set the tabu list length in robust tabu search [32],
a state-of-the-art algorithm for QAP.

5.3 The On-line Adaptive Operator Selection

The ranking performance of probability matching (PM), adaptive pursuit (AP),
and multi-armed bandit (MAB) is illustrated in Figs.1 and 2, at the third,
fourth, and fifth block, respectively. Within each block, the first two boxes refer
to untrained and tuned version with the first reward function R! in Eq.(2),
while the latter two boxes with second reward function R? in Eq. (3). It appears
that the R? benefits PM and AP, while worsens MAB. In general, PM with R?2
(PM-2), is the best-performing adaptation method. The overall ranking differ-
ences between PM-2 and all the AP and MAB variants are significant for the
heterogeneous instances (het) and hard instances (hom-hard).

The off-line configuration can improve the on-line adaptation methods when
its quality is poor or when computation time is small. For example, the MAB-t2
significantly improves the performance of MAB-2 in terms of overall ranking as
well as ranking in 10-s cases in the set of heterogeneous and hard instances.

72 7. Yuan et al.

Likewise, AP-t1 significantly improves AP-1. It appears that the performance of
AP and MAB are more sensitive to their parameters and the reward function
used; especially the scaling factor v in MAB needs to be fine-tuned when the
reward function is changed. So an off-line configuration should be helpful for
these methods. However, the off-line configuration doesn’t seem to be able to
improve the performance of our best on-line method PM. Nevertheless, it is
still recommended to use an off-line configuration, if one is uncertain about the
algorithm performance, faces new problem domain or new setting of reward
function, or the number of total operator generation is small.

Comparing with the static or mixed operator strategies, the ranking perfor-
mance of on-line adaptation methods improve as computation time increases.
Comparing with the off-line selected static operator PMX, PM-2 in general per-
forms better, and the difference is significant when the instance set is heteroge-
neous as in het, and the computation time is long enough (100s). It is interesting
to see that even our best-performing on-line adaptation methods cannot outper-
form the fine-tuned mixed operator strategy. The difference between PM-2 and
MOS-w and MOS-b is never significant. MOS variants tend to perform better in
the homogeneous instances and at short or medium computation time, and PM-2
appears to be slightly better performing when the instances are heterogeneous
and the computation time is long.

5.4 Combining MOS and AOS

We further investigate the possibility to incorporate both MOS and AOS
together. The best MOS and AOS version found in this work, MOS-w and PM-2,
respectively, are used for this study. Two ways of combination, namely, MOS-PM
and PM-MOS are discussed below, and their results are presented in the second
last block of each plot in Figs. 1 and 2.

MOS-PM. The first hybrid, named MOS-PM, is to tune the MOS-w parameters
gi (the quality vector to generate probability of choosing each operator) in the
training set, and then use this to initialize the quality vector Q; for each operator
i in PM-2 by setting Qi = ¢i/qargmax, q,- The scaling by setting the maximum ini-
tial Q; to 1 is to make @); consistent with the magnitude in the reward function
R2. This approach amounts to a biased initial condition for the on-line adap-
tation method by an operator distribution trained off-line. However, MOS-PM
does not bring any improvement to

— MOS-w, which shows that on-line adaptation cannot further improve a well-
tuned non-adaptive mixed operator strategy. This agrees with the study in [16]
that on-line adaptation methods cannot improve an off-line tuned static para-
meter configuration in ACO.

— PM-2 or PM-t2, which shows that either the fine-tuned initial quality @); does
not interact well with the default setting of a and P,,;, in PM, or tuning
initial condition for PM doesn’t pay off in our context. We further ruled out
the first factor by tuning the initial operator quality @Q; together with o and

An Empirical Study of Off-Line Configuration and On-Line Adaptation 73

P,.:n. However, no noticeable performance improvement can be observed com-
paring with tuning only o and P,,;,, as in PM-t2. The same observation can
be obtained on MAB and AP, where tuning initial condition doesn’t improve
adaptation performance, as long as its hyper-parameters for adaptation are
already fine-tuned. This may be due to the large number of crossover oper-
ations in our experimental setting. There are already around 9000 crossover
generations in the 10-s case, where in each generation 20 crossover operations
are performed, totaling 180 000 crossover operations. If the number of opera-
tions are low, such as when local search is applied, an off-line configuration of
the initial conditions may pay off.

PM-MOS. The second hybrid PM-MOS is to apply PM-2 on the training set to
obtain the probability p; of operator i for MOS-w. We first run PM-2 exhaustively
on the training set (10 runs on each of the 16 training instances), keep track of the
number of usage n} for operator ¢ in each run r, normalize it into the probability
p; = nj/Y . nj of each operator ¢ in run 7, then derive p; by averaging pJ
over all training runs. This amounts to tuning parameters of MOS-w by an on-
line adaptation method PM-2. In the study of [18], the on-line adaptation is
found to perform worse than varying parameter setting randomly by the same
empirical distribution in reactive tabu search [19]. If the same holds for PM-2,
PM-MOS may perform better than PM-2. However, the results disagrees with our
hypothesis. Comparing with PM-2, PM-MOS performs worse in the het set, and
no observable difference on the two homogeneous instance set can be concluded.
The reason for PM-MOQOS’ inferior performance to PM-2 is further analyzed in
the next section.

5.5 Further Analysis on the Effectiveness of On-line Adaptation

The reason that PM-2 works better than PM-MOS on het set may be due to three
factors: (1) the difference in the training and testing set induces experimental
bias for the trained configuration; (2) the heterogeneity between instances, so
that PM-2 can adapt to different settings for different instances; (3) PM-2, as
an on-line adaptation method, has the ability to adapt the algorithm’s behavior
to local characteristics of the search space when running the algorithm for an
instance [18]. We first took a look into the operator usage frequency in PM-2 on
each instance on both the training and testing set. The operator usage frequency
is actually very close from instance to instance, and no major difference between
the training set and testing set can be observed. We set up experiments inspired
by [18] to test the third factor as follows. For each run on each instance in the
testing set, we keep track of the number of usage n; of operator i in PM-2, and
then randomly generate operators by MOS based on the empirical probability
distribution of PM-2, p; = n;/ . n;. We allowed MOS to run exactly the same
number of total operator generations in the PM-2. In such case, we observed that
MOS may finish around 1% earlier than PM-2 due to the ease of computational
overhead caused by the adaptation in PM-2. This result of the MOS run is

74 7. Yuan et al.

denoted as PM-2r as shown at the last block of each plot in Figs.1 and 2. Note
that the empirical distribution in PM-2r is learned for each run on each instance,
therefore, the first two factors above are ruled out. As shown in Figs.1 and 2,
we observed that PM-2 and PM-2r have no performance difference in the two
homogeneous instance sets hom-easy and hom-hard. However, in the het set
of real-world benchmark QAP instances, PM-2 has a noticeable advantage over
PM-2r, although the difference is not yet statistically significant. This indicates
that the best adaptive operator selector in our context, PM-2, does adapt well
to the local characteristics of the search space when running on the real-world
benchmark QAP instances, however, it fails to do so for the generated instances
with more random structures.

6 Conclusions and Future Works

In this work, we provide an empirical study of off-line parameter configuration
and on-line parameter adaptation on the operator selection problem in evolu-
tionary algorithm. We extended [17] by incorporating off-line configuration with
the non-static operator selection methods, including: (i) a non-adaptive mixed
operator strategy (MOS), which assigns a probability distribution for selecting
each operator; (ii) three adaptive operator selection (AOS) methods: Probability
Matching, Adaptive Pursuit, and Multi-Armed Bandit. State-of-the-art off-line
algorithm configuration tools are applied to this end, including iterated racing [7]
and post-selection techniques [30]. One major contribution in this study is to
identify an automatically tuned MOS as one of the best performing approaches
for operator selection. The results show that even when a dominantly best choice
of static operator exists, using an automatically tuned operator probability dis-
tribution still significantly outperforms the best static operator approach. This
also sheds some light to the future design of off-line algorithm configuration:
instead of tuning for a static parameter configuration, it may be a better idea
to tune a distribution from which the parameter configurations are randomly
generated and changed during algorithm run. Besides, we also improved the
performance and robustness of on-line AOS methods by considering different
reward function and an off-line configuration of its hyper-parameters. Our inves-
tigation also showed that the best adaptation method adapts well to different
search stages for the benchmark QAP instances.

Our future works aim to extend this study to operator selection problem to
include more than crossover operators: local search operators, mutation opera-
tors, selection criteria operators, etc., or even a combination of different kinds
of operators to test the scalability of the approaches in this work. We also plan
to include other state-of-the-art operator selection techniques such as Dynamic
Multi-Armed Bandit (DMAB) [33]. Since adapting operator choice according to
search stages is found to be crucial for the good performance of the best on-line
method PM-2; applying Markov Decision Process such as in [34] by translating
the local landscape characteristics into different states at each time step and
performing state-based on-line learning becomes a good direction to follow.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 75

Acknowledgments. We sincerely thank Dr. Thomas Stiitzle for sharing the QAP
instance generator, and for the insightful discussions on the instances and the result pre-
sentation. This work was partially supported by the BMBF Verbundprojekt
E-Motion.

References

10.

11.

12.

13.

14.

15.

16.

Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer, Hei-
delberg (2007)

Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70-80 (2012)
Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.
Springer, New York (2008)

Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Studies in
Computational Intelligence, vol. 197. Springer, Heidelberg (2009)

Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-
rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565-606 (2008)
Birattari, M., Stiitzle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for con-
figuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of GECCO,
pp. 11-18. Morgan Kaufmann, San Francisco (2002)

Birattari, M., Yuan, Z., Balaprakash, P., Stiitzle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311-336. Springer, Heidelberg (2010)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stiitzle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267-306 (2009)
Ansétegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142-157. Springer, Heidelberg (2009)

Hutter, F., Bartz-Beielstein, T., Hoos, H.H., Leyton-Brown, K., Murphy, K.:
Sequential model-based parameter optimisation: an experimental investigation of
automated and interactive approaches. In: Bartz-Beielstein, T., et al. (eds.) Empir-
ical Methods for the Analysis of Optimization Algorithms, pp. 363-414. Springer,
Heidelberg (2010)

Yuan, Z., Montes de Oca, M., Birattari, M., Stiitzle, T.: Continuous optimization
algorithms for tuning real and integer parameters of swarm intelligence algorithms.
Swarm Intell. 6(1), 49-75 (2012)

Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In:
Palaniswami, M., et al. (eds.) Computational Intelligence: A Dynamic Systems
Perspective. IEEE Press, New York (1995)

FEiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., et al. (eds.) Parameter Setting in Evolu-
tionary Algorithms. SCI, vol. 54, pp. 19-46. Springer, Heidelberg (2007)

Lobo, F., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)

Fialho, A., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive opera-
tor selection. In: Proceedings of GECCO, pp. 767-774. ACM (2010)

Pellegrini, P., Stiitzle, T., Birattari, M.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intell. 6(1), 23-48 (2012)

76

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

7. Yuan et al.

Francesca, G., Pellegrini, P., Stiitzle, T., Birattari, M.: Off-line and on-line tuning:
a study on operator selection for a memetic algorithm applied to the QAP. In:
Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 203-214. Springer,
Heidelberg (2011)

Mascia, F., Pellegrini, P., Birattari, M., Stiitzle, T.: An analysis of parameter
adaptation in reactive tabu search. Int. Trans. Oper. Res. 21(1), 127-152 (2014)
Battiti, R.: The reactive tabu search. ORSA J. Comput. 6, 126-140 (1994)
Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Prob-
lems. DIMACS Series. American Mathematical Society, Providence (1994)

Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337-352 (2000)
Krempser, E., Fialho, A., Barbosa, H.J.C.: Adaptive operator selection at the
hyper-level. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G.,
Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 378-387. Springer,
Heidelberg (2012)

Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 175-184. Springer, Heidelberg (2008)
Corne, D.W., Oates, M.J., Kell, D.B.: On fitness distributions and expected fitness
gain of mutation rates in parallel evolutionary algorithms. In: Guervés, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Ferndndez-Villacanas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, p. 132. Springer, Heidelberg (2002)

Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of IEEE CEC, pp. 1539-1546. IEEE (2005)

Auer, P.; Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235-256 (2002)

Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem
library. J. Global Optim. 10(4), 391-403 (1997)

Stiitzle, T., Fernandes, S.: New benchmark instances for the QAP and the exper-
imental analysis of algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004.
LNCS, vol. 3004, pp. 199-209. Springer, Heidelberg (2004)

McGeoch, C.: Analyzing algorithms by simulation: variance reduction techniques
and simulation speedups. ACM Comput. Surv. (CSUR) 24(2), 195-212 (1992)
Yuan, Z., Stiitzle, T., Montes de Oca, M.A., Lau, H.C., Birattari, M.: An analysis
of post-selection in automatic configuration. In: Proceeding of GECCO, pp. 1557—
1564. ACM (2013)

Lindawati, Yuan, Z., Lau, H.C., Zhu, F.: Automated parameter tuning framework
for heterogeneous and large instances: case study in quadratic assignment problem.
In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 423-437. Springer,
Heidelberg (2013)

Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4), 443-455 (1991)

Fialho, A., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits
and extreme value-based rewards for adaptive operator selection in evolutionary
algorithms. In: Stiitzle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 176-190. Springer,
Heidelberg (2009)

Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for
adaptive operator selection in memetic search applied to quadratic assignment
problem. In: Proceedings of GECCO (2014, to appear)

	An Empirical Study of Off-Line Configuration and On-Line Adaptation in Operator Selection
	1 Introduction
	2 The Target Problem and Algorithm
	3 Operator Selection Strategies
	3.1 The Static Operator Strategy
	3.2 The Mixed Operator Strategy
	3.3 The Adaptive Operator Selection

	4 Experimental Setup
	4.1 Instance Setup
	4.2 Target Algorithm Setup
	4.3 Off-line Configuration Setup

	5 Experimental Results
	5.1 The Static Operator Strategy
	5.2 The Mixed Operator Strategy
	5.3 The On-line Adaptive Operator Selection
	5.4 Combining MOS and AOS
	5.5 Further Analysis on the Effectiveness of On-line Adaptation

	6 Conclusions and Future Works
	References

