MOI-MBO: Multiobjective Infill for Parallel
Model-Based Optimization

Bernd Bischl! ®) | Simon Wessing?, Nadja Bauer', Klaus Friedrichs',
and Claus Weihs!

! Department of Statistics, TU Dortmund, Dortmund, Germany
{bischl,bauer,friedrichs,weihs}@statistik.tu-dortmund.de
2 Department of Computer Science, TU Dortmund, Dortmund, Germany
simon.wessing@tu-dortmund.de

Abstract. The aim of this work is to compare different approaches for
parallelization in model-based optimization. As another alternative aside
from the existing methods, we propose using a multi-objective infill cri-
terion that rewards both the diversity and the expected improvement
of the proposed points. This criterion can be applied more universally
than the existing ones because it has less requirements. Internally, an
evolutionary algorithm is used to optimize this criterion. We verify the
usefulness of the approach on a large set of established benchmark prob-
lems for black-box optimization. The experiments indicate that the new
method’s performance is competitive with other batch techniques and
single-step EGO.

1 Introduction

Efficient optimizers that work on a strictly reduced budget of function evalua-
tions are crucial for parameter optimization of expensive black-box functions,
such as industrial simulators or time-consuming algorithms. Classical optimiza-
tion methods in design of experiments are based on the assumption of a simple
(often linear or quadratic) relationship between input parameters and perfor-
mance output. In this case, the optimal set of evaluation points to fit such a
model can usually be specified in advance.

However, for computer experiments, these simple models often do not suffice,
as their assumptions are often severely violated, leading to unsatisfying results if
they are employed nevertheless. Therefore, general sequential model-based opti-
mization (MBO) is a standard technique for cost expensive simulations nowa-
days. Here, evaluation points are proposed sequentially using an appropriate
surrogate model that allows for nonlinear relationships. After defining an initial
set of evaluation points, e.g., a space-filling latin hypercube design, the basic
procedure of MBO is an iterating loop of the following steps: firstly, a model is
fitted on the evaluated points; secondly, a new evaluation point is proposed by
an infill criterion; and lastly, its performance is evaluated.

In the last decade, many MBO procedures were proposed and compared
relying on kriging models. Kriging is usually employed when only continuous
© Springer International Publishing Switzerland 2014

P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 173-186, 2014.
DOT: 10.1007/978-3-319-09584-4_17

174 B. Bischl et al.

inputs are available. But particularly in the context of algorithm configuration,
although kriging has been applied successfully in this domain, see [1] for an
example, recently random forest surrogate models received attention, because
of their capability to handle categorical parameters [2]. For an example how to
integrate model selection into MBO see [3].

Instead of just evaluating one point in each iteration, a batch-sequential exten-
sion, which enables parallel evaluation of several points, is natural because of mod-
ern multi-core architectures. While there are already some recent approaches for
multi-point MBO, the idea proposed in this paper is to use a new multiobjective
perspective by considering multiple infill criteria simultaneously without aggre-
gating them into a single criterion. Instead of searching for one optimal evalua-
tion point, an approximate Pareto front of ¢ points is generated, which contains
a spectrum of trade-offs between the different criteria. Possible single-objective
infill criteria are mean prediction or local uncertainty of the surrogate model, and
we also consider distances of the points in the current batch to each other to ensure
diverse new evaluations.

In Sect. 2, MBO is defined more formally and state-of-the-art approaches are
described, including several ones for parallel MBO. Our proposal using multiob-
jectivization is explained in Sect. 3. In Sect. 4, the conducted comparison exper-
iments are described, and in Sect. 5, their results are presented and interpreted.
Finally, in Sect. 6, the most important findings are summarized.

2 Model-Based Optimization

2.1 The Basic Sequential Algorithm

Let us assume that we aim to minimize an expensive black-box function f :
X CcRY =R, f(x) =y, x = (v1,...,74)T. Bach x; is a continuous parame-
ter with box constraints [¢;,u;], X = [f1,u1] X ... X [€q,ug] is the parameter
space of x, and y is the target value. An important distinction is whether we
are observing a deterministic output y or one that is corrupted by noise, i.e.,
whether our observed target values are actually realizations of a random vari-
able. In this paper, we will only study the noiseless, deterministic case. With
D = (x1,...,2,)7, we will later denote an indexed set (design) of n different
points ; € X and y = (f(x1),..., f(x,))T, the vector of associated target
values.

The main idea in model-based optimization is to approximate the expensive
function f(x) in every iteration by a regression model, which is much cheaper
to evaluate. This is also called a meta-model or surrogate. Such a regression
model often not only provides a direct estimation f () of the true function value
f(x) but also an estimation of the prediction standard error §(x), also called a
local uncertainty measure. This value allows to assess the “trustworthiness” of
the prediction, or, in a more Bayesian terminology, the spread of the posterior
distribution of f(z).

An outline of sequential model-based optimization (MBO) is given in Algo-
rithm 1. We start by exploring the parameter space with an initial design, often

Multiobjective Infill for Parallel Model-Based Optimization 175

Algorithm 1. Sequential model-based optimization

1 Generate an initial design D C X;

2 Compute y = f(D);

3 while total evaluation budget is not exceeded do

4 Fit surrogate on D and obtain f, 8;

5 Get new design point ™ by optimizing the infill criterion based on f K
6 Evaluate new point y* = f(x*);

7 Update: D « (D,z*) and y < (y,y");

8

return ym,,, = min(y) and the associated @mn.

constructed in a space-filling fashion. The main sequential loop can be divided
into two alternating stages: Fitting the response surface to the currently avail-
able design data, then optimizing the so-called infill criterion to propose a new
promising point x* for the next expensive evaluation f(x*).

Quite a few infill criteria exist, both for the deterministic and noisy case.
They are usually constructed point-wise by combining f(z) and () in a certain
way. For the former, lower values are more promising, as they indicate a low true
function value f(z). For the latter, higher values indicate less explored regions of
the search space, as our model is less certain about the true landscape, usually
because it lacks training points nearby. The task of many infill criteria is to
balance these two conflicting criteria into one numerical formula.

Probably the simplest infill criterion, which can be used even if no local
uncertainty estimator is available, is just considering the mean prediction f ().
This results in a greedy behavior, where promising regions are exploited at once
and can quickly result in only local convergence.

In their seminal paper, Jones et al. [4] recommended to use Kriging [5], i.e., a
Gaussian process, for regression. This model can fit multimodal landscapes with
satisfying quality, even when only a low amount of data points is available. As a
kernel method, it also offers flexibility, and roughness information regarding the
target function can be encoded into the model via the covariance kernel. The
posterior distribution of f(a) is now a univariate N(f(z), §(z)?) one. Based on
this, the now standard ezpected improvement (EI) criterion was proposed, which
supposedly ensures global convergence [6-8]. It is defined as

= (ymin = f(x)) @ (ym‘f(“")> +5(x) ¢ (ym—f@)) :

$(z) 5(z)

where ¢ and @ are the density and cumulative distribution function of the
standard normal distribution, respectively. Hence, the sought point is x* =
arg max,c v EI(x).

One further infill criterion which is relevant for this paper is the lower confi-
dence bound (LCB) criterion. LCB combines the predicted mean response with
the estimated standard error through a weighted sum:

176 B. Bischl et al.

x* = argmin LCB(x) = argmin f(x) — \3(x).
xzeEX rcX

The weighting parameter A has to be selected by the user and wrong choices
will not guarantee global convergence. Obviously, the LCB criterion has to be
minimized. If A = 0, LCB coincides with predicted mean value. The larger A is
chosen, the more attractive the unexplored regions of the search space become.
Further infill criteria are discussed in [7].

2.2 Review of Parallel MBO Strategies

In the standard MBO procedure, only one point * is proposed in each sequential
step (see line 5 of Algorithm 1). However, often dozens or hundreds of CPU cores
are simultaneously available nowadays. In some cases, these processors can be
used to parallelize a single function call of the simulator f(x*), but in many cases
this is not possible and such an evaluation has to be considered “atomic”. It is
hence essential to exploit this computational potential in a reasonably efficient
way, suggesting a batch-sequential approach. The aim is to propose ¢ (instead
of only 1) new points x7,... , @, in each iteration so that ¢ expensive function
evaluations can be performed in parallel. Some possibilities have already been
proposed to achieve this parallelization. However, they all introduce drawbacks
that we want to avoid.

Arguably the mathematically most intuitive way to tackle the problem is to
directly extend the El-criterion for ¢ points (¢-EI) [9]. While for the 2-EI case an
analytic solution is provided [9], for ¢ > 2 an expensive Monte-Carlo simulation
was implemented in [9] and [10]. Recently, Chevalier and Ginsbourger [11] pro-
posed an analytic approach to more efficiently compute the ¢-EI for moderate
values of ¢ < 10.

A simple alternative for multi-point proposal using the El-criterion is given
by [9], where in the first step the kriging model is fitted based on the real data
and x7 is calculated according to the regular El-criterion. Then, for i = 2,...,q,
a simple “guess” for f(x}) is used to update the model in order to propose the
subsequent point. This estimation could be f (x) or even a constant like Yn
O Ymaz- The first option is called kriging believer, and the constant estimation
of f(x) is called constant liar. One should note that although the expensive
re-estimation of the covariance kernel parameters is not performed during the
batch generation but only after its batch evaluation (although without formal
justification), the EI still needs to be optimized sequentially ¢ times, which can
in itself be very time consuming for higher values of d and q.

Hutter et al. [12] introduce another strategy. They use the LCB criterion
and sample a new A value from an exponential distribution with mean 1 for
each point in the batch. This defines ¢ different infill objective functions, one for
each desired new point, each one — in principle — encoding a different trade-off
between mean and standard error prediction of the model. The simple, inde-
pendent optimization of the single-objective LCB criteria (which can also be
performed in parallel) hence leads to a batch of ¢ promising points. While this

Multiobjective Infill for Parallel Model-Based Optimization 177

approach scales computationally very well with increasing ¢ and is also extremely
simple to implement, there is no guaranteed diversity in the generated batch, so
different values for A can still lead to very similar global optima locations in the
LCB landscape.

The aim of this article is to propose and compare other strategies for multi-
point MBO, based on multicriteria evolutionary algorithms. The next section
will detail our approach.

3 Proposal

Multiobjective optimization considers itself with the task of finding Pareto-
optimal solutions to a set of objective functions. This methodology has become
a standard tool under the belt of many researchers in black-box optimization,
and a lot of excellent overview literature exists. As an introduction, we would
like to refer the reader to [13].

Infill criteria for model-based optimization often consist of two conflicting
parts: the mean response f (z) and the local uncertainty estimation §(x). In
the case of LCB, it is very obvious that these two functions actually constitute
a bicriteria problem. They have simply been scalarized into a weighted sum,
where setting the actual weighting parameter is left up to the experimenter.
This is usually a hard task if no further information is provided, and the best
setting might not even be a constant value, but instead depend on the stage
of the optimization process. For EI one might argue that a formal motivation
exists which dictates the specific formula, but this derivation assumes that all
model assumptions of the Gaussian process hold, which might not be true in
practice. Furthermore, one might want to transfer the principle to other non-
parametric regression models, e.g., because of discrete parameters in the input
space or the disadvantageous runtime scaling behavior of the kriging model fits.
This is already done in the case of SMAC, where a random forest instead of a
kriging model is used in combination with an EI criterion, but there is no reason
to assume that the posterior distribution of forest predictions is really normally
distributed or that the derivation of the EI criterion is still valid.

Instead of dealing with the hassle of appropriately aggregating two or more
objective functions into a single one (as, e.g., for EI or LCB), we simply accept
the multiobjective nature of the problem and use a multiobjective optimizer. As
we want to employ parallelization, we focus on a posteriori methods that return
not only a single point, but a set of points P that approximate the Pareto-
set. We therefore choose |P| = ¢, the number of points we want to process in
parallel. In this case, it also suggests itself to use evolutionary algorithms (EA), as
they are population-based approaches and can be used easily for multiobjective
optimization.

So far, we have not discussed the fact that we need a set of ¢ distinct points.
Therefore, we add the distance to neighboring solutions as another objective, to
respect the influence of the points on each other. By maximizing this distance,
points are rewarded for being dissimilar to other solutions. The objective function

178 B. Bischl et al.

is thus dynamic, i.e., it depends on the EA’s population and may change in each
iteration of the optimization. If the distance is added as an artificial, secondary
objective to a single-criterion problem, this approach is known under the name
of multiobjectivization. The reason to proceed in such a fashion is that one might
want to obtain a whole spectrum of promising, diverse solutions in the decision
space, which is exactly what we want to achieve for multipoint proposal in MBO.
This approach does not guarantee to result in a simpler problem, as shown by
Brockhoff et al. [14], but gave decent results in practical applications similar
to ours [15-17]. Summing up, the following objective functions are available for
building our multiobjective infill (MOI) criterion:

~ mean: mean model prediction f(z),

— se: standard error / model uncertainty §(x),

— ei: expected improvement El(x),

dist.nn: distance to the nearest neighbor of & in the current population

distyn(z,P) = min{d(z,z) |z € P\ {z}}, P C X,

dist.nb: distance to the nearest better neighbor of x,
distyp(x,P) = min{d(z,) | f(Z) < flx) A& € P}, PCX.

The latter distance definition is considered because it proved successful in exper-
iments by Wessing et al. [17]. The distance measure d(z, &) used throughout
this paper is simply the euclidean distance || — Z|2. As there is in every
set at least one solution x* that has no nearest better neighbor, we define
distyp (x*, P) := oc.

Our multi-point MBO approach is geared to the evolutionary multiobjective
optimization algorithm proposed by Beume et al. [18]. Algorithm 2 introduces
the resulting optimization procedure.

The Function crossover(x, &, X, 1., p.) is the simulated binary crossover oper-
ator with a distribution index 7, and application probability p.. The latter para-
meter specifies the probability to apply the operator to each variable. crossover
produces one offspring from two parents. The function mutate(x, X, 1, pm) is
the polynomial mutation operator, which is applied to the offspring. Again, 7,,
denotes the distance parameter of the distribution and p,, the mutation proba-
bility for each variable. In this work, we fix these parameters to n. = n,, = 15
and p. = p;y, = 1.

Lines 9-14 of Algorithm 2 describe the survivor selection. After the distance
values have been incorporated, a non-dominated sorting of all individuals is con-
ducted. Then, the worst individual of the worst non-dominated front is identified,
according either to the hypervolume contribution (hv) [18] or according to the
first single objective (first). The first single objective (see also experimental
setup in Sect.4,) will always be either mean or ei, as these are obviously most
important to guide the optimization. The individual identified as worst is then
removed from the population.

Table 1 introduces our multiobjective infill (MOI-)MBO strategies. Note,
that the two last approaches simply implement a multiobjectivization of the

Multiobjective Infill for Parallel Model-Based Optimization 179

Algorithm 2. Evolutionary optimization of multiobjective infill criteria

1 Generate an initial population P = {x1,...,z,} C X;

2 Evaluate P;

3 while number of iterations is not exceeded do

4 Sample two individuals (parents): x,1 € P and xp2 € P;

5 Generate a new individual (child): @, = crossover(xp1, Tp2, X, Ne, Pe);
6 Mutate the new individual: @ := mutate(xch, X, Mm, Pm);

7 Evaluate selected infill criteria (except distance) for @cp;

8 Update the current population: P := P U {xcn };

9

for x € P do
10 L Calculate dist(z,P) and append to objective values;
11 Compute non-dominated fronts Fi, ..., Fi of P;
12 Sort Fi by a selection criterion;
13 Tworst = last element of Fy;

14 Update the current population: P := P \ {Zworst };

15 return P;

LCB criterion and hence do not use any distance measure. In this case, lines
9-10 of Algorithm 2 should be ignored.

4 Comparison Experiments

In order to study the performances of all variants of our proposed MOI-MBO
and the existing strategies for parallel multi-point infill, we conduct an extensive
benchmark study. We also compare against the usual EGO 1-step algorithm —
which of course works in a purely sequential, non-parallel fashion and is therefore
able to exploit more information during the optimization. Finally, we also include
a simple random search as a baseline comparison method.

Problem Instances and Budget. As problem instances for the benchmark, we
selected all 24 test functions of the black-box optimization benchmark (BBOB)
noise-free test suite [19]. It covers simple unimodal, ill-conditioned and multi-
modal functions. Some of the landscapes of these functions exhibit a strong
global structure which a model-based optimizer can potentially exploit, while
other functions do not have this characteristic. We study these functions in the
dimensions d € {5,10}. For every function (and each dimension) we create 10
initial designs of size 5 - d. We then run each candidate optimizer 10 times,
using the mentioned designs. Hence, this results in 10 statistical replications for
each problem instance with fair and equal starting conditions for all competing
optimizers. The optimizers are given an additional budget of 40 - d function eval-
uations on top of the initial design. Parallel optimizers always propose batches
of size ¢ = 5 in our experiments, resulting in 8 - d sequential iterations for them.
As a quality measure, we choose the difference between the function values of
the best obtained point during the optimization and the known global minimum.

180 B. Bischl et al.

Table 1. Proposed MOI-MBO approaches

Single Infill Criterion | Sel. Criterion | Abbreviation
mean | se |ei dist |first | hv
nn | nb

X X X X moi mean.se.dist nn first
X X X | X moi mean.se.dist nb_first
X X X moi_mean.se.dist_nn_hv
X X X X moi_mean.se.dist_nb_hv

X | X X moi_ei.distnn first

X X | X moi_ei.distnb_first

X | X X moi_ei.dist_nn hv

X X X moi_ei.dist_nb_hv

X moi_mean.se_first
X moi_mean.se_hv

EGO and Constant Liar Variants. To also study the effect of infill opti-
mization methods on the final performance outcome — in EGO this is usually a
sophisticated combination of a gradient-based and an evolutionary /restart mech-
anism, while in multiobjective optimization often a much simpler EA is used —,
we reimplemented EGO with a simple (+ 1) evolutionary algorithm with simu-
lated binary crossover and polynomial mutation as variation operators for opti-
mization of the infill criterion. Here, we set p = 20. We also include an EGO
variant where we use the mean value f (z) as a simple infill criterion.

Software. All of our experiments are conducted in the statistical programming
language R. The BBOB test functions are made available in the R package
soobench [20]. We have implemented all our code regarding model-based opti-
mization (including the below mentioned evolutionary variants of 1-step EGO
and constant liar, all multicriteria methods and parallel LCB) in the experi-
mental R package m1rMBO!. The toolbox allows a generic combination of regres-
sion models and optimization strategies and builds upon the mlr R package
for machine learning from Bischl [21]. The kriging models are fitted via the
DiceKriging package and we compare against the EGO and constant liar imple-
mentations of the popular DiceOptim package implementation. Both Dice pack-
ages are published by Ginsbourger et al. [9].

Summary. In order to provide a succinct overview, we again list all compared
approaches in Table 2.

! See https://github.com/berndbischl/mirMBO

https://github.com/berndbischl/mlrMBO

Multiobjective Infill for Parallel Model-Based Optimization

Table 2. Overview of compared model-based optimization strategies.

181

Method Abbreviation | R Package | Infill optimizer

EGO ego DiceOptim | gradient-based rgenoud
EGO ego_ea_ei mlrMBO simple EA

EGO Infill f(x) ego_ea mean mlrMBO simple EA

Constant liar par_—cl DiceOptim | gradient-based rgenoud
Constant liar par_cl_ea mlrMBO simple EA

Parallel LCB par_lcb mlrMBO simple EA per LCB function
Multiobj. Infill (see Table 1) | moi mlrMBO multicrit EA

Random search random_search | — -

5 Results

As the test functions differ w.r.t. their respective characteristics, we divide the
BBOB function into the following three sets, using the same numbering as in
[19]:

set1l Unimodal functions: 1, 2, 5-14,
set2 Multimodal functions with adequate global structure: 3, 4, 15-19,
set3 Multimodal functions with weak global structure: 20-24.

To interpret the results, we first rank the considered optimization approaches
among each other for each dimension / test function / replication by their perfor-
mance and subsequently calculate the mean rank for each approach across test
functions and replications (per dimension). Thus, the lower the mean rank, the
better the approach. We also conduct statistical sign tests to analyze whether
differences in performance between candidate algorithms are significant. Here,
we compute for each pair of optimization approaches the performance differ-
ences over all replications for a set of test functions (per dimension). The sign
distribution of this difference vector is then used to decide whether one approach
significantly outperforms the other, which is in essence a binomial test, see [22].
Each test is conducted at the 5 significance level without further adjustment for
multiple testing, as our aim is to use the test as an exploratory tool to provide
a descriptive visualization of the stochastic results.

We illustrate the results using preference relation graphs, containing two
kinds of information: the mean ranks of the optimization approaches on the one
hand and the decisions of pairwise sign tests on the other hand. The results
are presented in Fig. 1, 2, 3 and 4. Each colored node represents an optimization
approach, where its mean rank is given in braces. The main goal is to compare the
different MOI-MBO strategies (yellow nodes) with other parallel approaches (red
nodes). Of these, our most relevant competitor is LCB, as it scales a lot better
with increasing sizes of ¢ than constant liar. For comparison, also non-parallel
approaches are considered (green nodes). But these purely sequential optimizers
are expected to perform better than the parallel ones, as they benefit from a

182 B. Bischl et al.

3(5.9) 3 (4.5)

10 (6.2) [160)] [10(56)|
[87.1) [1(67) 8(6.3)
[260) "12/*(’7_4) 1 9(8.0) | [12(7.3)]
[5(9.1) 9 (8.6) 2(8.6)
R = |4 (10.1)] |6(1I0.0)| [509.7) |
| (')/‘(')| 7 (11.2)
7 (10.3) \

13 (13.2)||'11 (13.1)

17 (15.3)

08: moi_mean.se.dist_nb_first

09: moi_mean.se.dist_nb_hv 17: random_search

(| : . . !
01_ €go . O 10: moi_mean.se.dist_nn_first
@ 02: ego_ea_ei = ST
) O 11: moi_mean.se.dist_nn_hv
@ 03: ego_ea_mean o= v
it) O 12: moi_mean.se_nn_first
O 04: moi_ei.dist_nb_first o - -
=T O 13: moi_mean.se_nn_hv
O 05: moi_ei.dist nb_hv) - - -
T . B 14: par_cl
O 06: moi_ei.dist_nn_first =
o= B 15: par_cl_ea
O 07: moi_ei.dist nn_hv)
O B 16: par_Icb
O
O

Fig. 1. Comparison over all test functions (d =5 and d = 10) (Color figure online).

higher number of surrogate model fits and can incorporate more information
into the models. Two nodes are connected with an edge if one approach (the
upper one) is significantly better than the other (the lower one). Note that it is
possible that one approach is significantly better than another one, although it
has a (slightly) worse mean rank.

Figure 1 illustrates the results regarding all test functions. Overall, the best
strategy is ego_ea_mean, even outperforming ego and ego_ea_ei. This is some-
how surprising, particularly as the same holds true for the set of multimodal
functions (Figs. 3 and 4), where exploration of the parameter space is expected
to be more beneficial than just exploitation of the surrogate function.

Over all test functions, the best parallel approach seems to bemoi_mean.se.dist
nn_first, which has the best mean rank and — with one exception — outperforms
all other parallel strategies according to the sign test. Only slightly worse perform
the strategiesmoi mean.se.dist nb_first and moi mean.se_first, which outper-
form all other considered MOI-MBOs. Since all three methods just differ in the
applied distance criterion, this seems to only have a relatively weak influence. In

Multiobjective Infill for Parallel Model-Based Optimization 183

-lw 65[e(e | BRI [3@0] [1@9]
[ho&w[]smn|

12 (6.4)

5 (9.4) 9 (8.6))
[
6 (10.5) 4 (10.0)/|

7 (11.1)

[11 (13.8)13 (14.4)

17 (16.2)

12 (6.0)
9(7.3)

4(105)| [5(10.5)]
6 (11.0)

7 (12.1)

Fig. 2. Comparison over test functions of setl (d = 5 and d = 10) (Color figure online).

10 (6.3)

8(7.8)

|5w&"swq"uw& 9(8.9)

4(9.9) | 7 9.6)
i
11 (13.0

13 (14.2

17 (15.3

Fig. 3. Comparison over test functions of set2 (d = 5 and d = 10) (Color figure online).

contrast, the graphs indicate significant improvements by using the selection cri-
terion first — which focuses more on the first criterion mean or ei — instead of
hv. Regarding our experiments, the best state-of-the-art parallel MBO is par_cl,
although this holds in a strong sense (significance of the sign test when we compare
it to par_1cb) only for d = 10. While par_c1 performs approximately as good as
the best MOI-MBO moi mean.se.dist nn first for the unimodal and the multi-
modal functions with adequate global structure (Figs. 2 and 3), our new approach

184 B. Bischl et al.

06olscalzols o) |s(e.9) | 3(7.0) 12(7A5)|10(6A5)|

| 9(8.6) | 5(8.4) | 2(8.3) 67.9) |[3@3) |7 ©.7)

6 (8.6) | 5(8.3) 2 (8.0) | 4(9.2) | 9(8.3) |

1(11.8] [T02)f3 (10.9 | 1(9.4) |7 (11.5)|11 (12.3113 (11.0*

7(13.9 7(15.3

Fig. 4. Comparison over test functions of set3 (d = 5 and d = 10) (Color figure online).

performs better on multimodal functions with weak global structure (Fig. 4). Con-
trary, par_cl_ea and par_lcb — the other two considered state-of-the-art parallel
MBOs — perform quite weakly on unimodal functions (Fig. 2).

6 Conclusion

In this paper, a multiobjective approach for parallel model-based optimization
was introduced. Therefore, ten different strategies — each relying on a reason-
able subset of five infill criteria — were compared with several state-of-the-art
approaches including EGO, parallel LCB and constant liar. While three of the
infill criteria have been applied before, the concept of multiobjectivization and
the consideration of the distance to neighboring points is a new approach in
the context of MBO. Regarding the 24 considered test functions in five and ten
dimensions, a MOI-MBO strategy, which relies on the mean model prediction
f(x), the model uncertainty 3(z) and the distance to the nearest neighbor as
infill criteria, performs best on average. As shown in the previous section it even
outperforms existing parallel methods in many situations. Additionally, its run-
time behavior is not significantly inhibited if the number of cores ¢ is increased,
as this only results in a larger population size of the EA. Furthermore, the exper-
iment shows a bias in favor of more exploitative methods versus more explorative
ones, although this might be an artefact of the considered benchmark set.

In future comparison studies, also the recent approach of Chevalier and Gins-
bourger [11] should be considered once their code is released. While in the
experiments above all approaches are applied on only five CPU cores ensur-
ing acceptable run times even for the most complex ones, in a next step the
influence of the number of cores regarding the performance should be analyzed.
Furthermore, we also would like to investigate the applicability of MOI-MBO in
the noisy case.

Multiobjective Infill for Parallel Model-Based Optimization 185

Acknowledgements. This paper is based on investigations of the projects B3 and
C2 of the Collaborative Research Center SFB 823, which are kindly supported by
Deutsche Forschungsgemeinschaft (DFG). It is also partly supported by the French
national research agency (ANR) within the Modeles Numeriques project NumBBO.
The authors also thank Tobias Wagner for fruitful discussions of multiobjective infill
criteria.

References

1.

10.

11.

12.

13.

14.

15.

Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.: Tuning
and evolution of support vector kernels. Evol. Intel. 5(3), 153-170 (2012)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol.
6683, pp. 507-523. Springer, Heidelberg (2011)

Hess, S., Wagner, T., Bischl, B.: PROGRESS: progressive reinforcement-learning-
based surrogate selection. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol.
7997, pp. 110-124. Springer, Heidelberg (2013)

Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455-492 (1998)

Krige, D.: A statistical approach to some basic mine valuation problems on the
witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119-139 (1951)
Locatelli, M.: Bayesian algorithms for one-dimensional global optimization. J.
Global Optim. 10(1), 57-76 (1997)

Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Global Optim. 21(4), 345-383 (2001)

Vazquez, E., Bect, J.: Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. J. Stat. Plann. Infer. 140(11),
3088-3095 (2010)

Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize
optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intel. in Expensive
Opti. Prob. ALO, vol. 2, pp. 131-162. Springer, Heidelberg (2010)

Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improve-
ments for the asynchronous parallel global optimization of expensive functions:
potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS,
vol. 7219, pp. 413-418. Springer, Heidelberg (2012)

Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected
improvement with applications in batch selection. In: Nicosia, G., Pardalos, P.
(eds.) LION 7. LNCS, vol. 7997, pp. 59-69. Springer, Heidelberg (2013)

Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 55-70. Springer,
Heidelberg (2012)

Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)
Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: Do additional objectives make a problem harder? In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp.
765-772. ACM (2007)

Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the
Noiseless BBOB Testbed. In: GECCO (Companion), Workshop on Black-Box Opti-
mization Benchmarking (BBOB’2013), Amsterdam, Pays-Bas, July 2013

186

16.

17.

18.

19.

20.

21.
22.

B. Bischl et al.

Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimiza-
tion. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO 11, pp. 641-648. ACM, New York (2011)

Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neigh-
bor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Com-
putation (CEC), pp. 103-110 (2013)

Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653-1669 (2007)
Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Technical report RR-6829,
INRIA (2009). http://hal.inria.fr/inria-00362633/en

Mersmann, O., Bischl, B., Bossek, J., Judt, L.: soobench: Single Objective Opti-
mization Benchmark Functions. R package version 1.1-164

Bischl, B.: mlr: Machine Learning in R. R package version 1.2

Conover, W.: Practical Nonparametric Statistics, 2nd edn. Wiley, New York (1980)

http://hal.inria.fr/inria-00362633/en

	MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization
	1 Introduction
	2 Model-Based Optimization
	2.1 The Basic Sequential Algorithm
	2.2 Review of Parallel MBO Strategies

	3 Proposal
	4 Comparison Experiments
	5 Results
	6 Conclusion
	References

