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Abstract. We propose an evolutionary multiobjective algorithm that
approximates multiple reference points (the aspiration set) in a single
run using the concept of the averaged Hausdorff distance.
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Background. In the following we consider unconstrained multiobjective opti-
mization problems (MOPs) of the form min{f(x) : x ∈ R

n} where f(x) =
(f1(x), . . . , fd(x))′ is a vector-valued mapping with d ≥ 2 objective functions
fi : R

n → R for i = 1, . . . , d that are to be minimized simultaneously. The
optimality of a MOP is defined by the concept of dominance.

Let u, v ∈ F ⊆ R
d where F is equipped with the partial order � defined by

u � v ⇔ ∀i = 1, . . . d : ui ≤ vi. If u ≺ v ⇔ u � v ∧ u �= v then v is said to be
dominated by u. An element u is termed nondominated relative to V ⊆ F if there
is no v ∈ V that dominates u. The set ND(V,�) = {u ∈ V | � ∃ v ∈ V : v ≺ u} is
called the nondominated set relative to V .

If F = f(X) is the objective space of some MOP with decision space X ⊆ R
n

and objective function f(·) then the set F ∗ = ND(f(X),�) is called the Pareto
front (PF). Elements x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and
the set X∗ of all Pareto-optimal points is called the Pareto set (PS). Moreover,
for some X ⊆ R

n and f : X → R
d the set NDf (X,�) = {x ∈ X : f(x) ∈

ND(f(X),�)} contains those elements from X whose images are nondominated
in image space f(X) = {f(x) : x ∈ X} ⊆ R

d.
If we are not interested in finding an approximation of the entire PF a refer-

ence point method [8] can be used to find a solution that is closest to a so-called
reference point gathering the user-given level of aspiration for each objective.
A modified version [1] does not only offer a single solution but also some addi-
tional solutions in its neighborhood, whereas multiple reference points can be
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used to approximate larger parts of the PF by running the original method in
parallel for each reference point [3]. Here, we propose an alternative method
to approximate only desired parts of the PF (which we call aspiration set)
that is a marriage between a set-based version of the original reference point
method [8] and the averaged Hausdorff distance [6] as selection criterion. The
value Δp(A,B) = max(GDp(A,B), IGDp(A,B)) with p > 0,

GDp(A,B) =

(
1

|A|
∑
a∈A

d(a,B)p

)1/p

and IGDp(A,B) =

(
1

|B|
∑
b∈B

d(b, A)p

)1/p

is termed the averaged Hausdorff distance between sets A and B, where d(u,A)=
inf{‖u − v‖ : v ∈ A} for u, v ∈ R

n and a vector norm ‖ · ‖. In our previous work
[2,4,5,7] we successfully used the concept of the averaged Hausdorff distance in
designing EMOAs that find an evenly spaced approximation of the PF.

Algorithm. The AS-EMOA was designed for approximating the aspiration set:
We applied a weighted normalization for each candidate solution,

f̃(x)j =
f(x)j − minj

maxj −minj
· wj , j ∈ {1, 2}with w1 =

max1 −min1

max2 −min2
and w2 = 1/w1,

in objective space during Δ1 computation in order to focus on the given aspira-
tion set and to avoid biases due to its orientation in objective space. Here, minj

and maxj denote the minimal and maximal value attained for objective fj over
all elements in the aspiration set. The value p = 1 is recommended due to its
robustness to outlier points [4].

AS-EMOA

Require: aspiration set R
1: initialize population P

with |P | = μ
2: P = NDf (P, �)
3: while termination criterion

not fulfilled do
4: generate offspring x

by variation of parents
from P

5: P = Δ1-update(P, x; R)
6: end while

Δ1-update (line 8: ties are broken at random)

Require: archive set A, new x, aspiration set R
1: A = NDf (A ∪ {x}, �)
2: if |A| > NR := |R| then
3: for all a ∈ A do
4: h(a) = Δ1(A \ {a}, R)
5: end for
6: A∗ = {a∗ ∈ A : a∗ = argmin{h(a) : a ∈ A}}
7: if |A∗| > 1 then
8: a∗ = argmin{GD1(A \ {a}, R) : a ∈ A∗}
9: end if

10: A = A \ {a∗}
11: end if

Experiments and Results. The AS-EMOA has been evaluated for four well
known bi-objective test problems (SPHERE: convex, n = 2, DTLZ2: concave,
n = 10, DENT: convex-concave, n = 2, ZDT3: disconnected, n = 20) [4]. Aspira-
tion sets were generated in the utopian objective space (“before PF”) and in the
dominated objective space (“behind PF”), see Fig. 1. AS-EMOA was executed 20
times per test problem and considered aspiration sets for 50,000 function evalua-
tions (FE) with SBX crossover (px = 0.9) and polynomial mutation (pm = 1/n).
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Fig. 1. Exemplary approximation results for applying AS-EMOA to different bi-
objective test problems using various reference sets.

Each plot in Fig. 1 aggregates the results for all applied aspiration sets. The
AS-EMOA closely approximates the aspired region of the PF while reflecting
original structures of the aspiration set, see e.g. Asp. Set 5 in the SPHERE
case and Asp. Set 3 in DTLZ2. Even placing an aspiration set behind the true
PF leads to a good approximation. Depending on the position of the respective
set in objective space, different regions of the true PF come to focus due to the
distance-based selection pressure induced by the Δp indicator: for the DENT case
two separate sets form the best approximation results for Asp. Sets 2 and 3 in
the concave part of the true PF. In fact, the extremal members of the aspiration
set have the smallest distance to the solution sets. In order to comment on the
stability of the proposed approach, we computed the coefficients of variation for
the Δp values of aspiration sets and approximated solutions which are all in the
range from 2.26 · 10−11 to 0.2 with a single outlier of 0.4 for the disconnected
PF (see Table 1). Furthermore, depending on the test problem, AS-EMOA only
needed between 400 and 2,500 FE to reach a good and stable quality level.
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Table 1. Coefficients of variation for all problems and aspiration sets based on 20
experiments each.

Problem Asp. Set 1 Asp. Set 2 Asp. Set 3 Asp. Set 4 Asp. Set 5

SPHERE 2.26 · 10−11 1.48 · 10−2 7.99 · 10−2 1.05 · 10−2 1.98 · 10−1

DTLZ2 3.07 · 10−8 6.20 · 10−3 1.19 · 10−7 – –

DENT 1.76 · 10−2 5.30 · 10−3 2.50 · 10−9 – –

ZDT3 1.88 · 10−1 1.53 · 10−1 4.08 · 10−1 – –

Conclusions. Within the experiments the AS-EMOA successfully approxi-
mated the aspiration sets for different front shapes in 2D. Even suboptimal aspi-
ration sets do not hinder the AS-EMOA from reaching the true Pareto front. The
approach shows promising perspectives for higher dimensions as well; a suitable
normalization within the Δp update procedure is a matter of current research.
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