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Abstract. In recent years there have been a number of important improvements
in exact color-based maximum clique solvers, which have considerably enhanced
their performance. Initial vertex ordering is one strategy known to have a sig-
nificant impact on the size of the search tree. Typically, a degenerate sorting by
minimum degree is used; literature also reports different tiebreaking strategies.
A systematic study of the impact of initial sorting in the light of new cutting-edge
ideas (e.g. recoloring [8], selective coloring [13], ILS initial lower bound com-
putation [15, 16] or MaxSAT-based pruning [14]) is, however, lacking. This
paper presents a new initial sorting procedure and relates performance to the new
mentioned variants implemented in leading solver BBMC [9, 10].
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1 Introduction

A clique is a complete subgraph whose vertices are all pairwise adjacent. For a given
graph, the maximum clique problem (MCP) is an NP-hard problem which consists in
finding a clique with the maximum number of vertices. MCP has found many appli-
cations in a wide scope of fields such as matching related problems which appear in
computational biology [1], robotics [2, 3] or computer vision [4]. A good survey on
applications may be found in [5].

Many improvements have appeared in exact MCP search since the Bron and
Kerbosch algorithm [6] and the primitive branch-and-bound (BnB) algorithm of Car-
raghan and Pardalos [7]. Specifically in the last decade, there has been an outburst of
ideas related to greedy coloring bounds from which MCS [8] and bit optimized BBMC
[9, 10] standout. In the comparison survey [11], BBMC was reported the fastest.

Both MCS and BBMC implement clique enumeration recursively, branching on a
candidate vertex at each step to enlarge a growing clique. The leaf nodes of the
recursion tree construct maximal cliques, and the largest clique found so far during
search is always stored in memory. An important theoretical result by Balas and Yu is
that the number of colors in any vertex coloring of a graph is an upper bound on its

© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 111–120, 2014.
DOI: 10.1007/978-3-319-09584-4_12



clique number [12]. Based on this property, many recent BnB exact solvers implement
bounding using greedy coloring sequential heuristic SEQ at each step. Pruning occurs
at nodes when the size of the current growing clique added to the color upper bound is
not greater than the size of the best maximal clique stored at that moment.

MCS further introduced recoloring, a repair mechanism which attempts to reassign
lower color numbers to a subset of vertices outputted by SEQ at the cost of linear
complexity. In [10], it was reported to improve performance significantly but only in
more difficult dense graphs.

Selective coloring is another new very recent idea, which has been implemented in
the BBMC solver. Instead of computing a full vertex coloring, selective coloring
relaxes SEQ to the minimum partial coloring such that every vertex will be pruned in
the derived child node [13].

In [14], Li and Quan describe a stronger repair mechanism than recoloring. At every
node, the MCP on the SEQ colored graph is reduced to an equivalent MaxSAT problem.
It turns out that the basic inference mechanisms employed by current MaxSAT solvers,
can also be used to produce tighter bounds than SEQ. Moreover, they can even be tighter
then the chromatic number of the graph. We will refer to this idea as logical pruning.

Also recently, a new local search procedure for the maximum independent set
problem was described in [15]. In combination with iterated local search (ILS) meta-
heuristic it shows excellent results in a number of typical benchmarks. In [16], the
authors propose to precompute ILS for the complement graph and use the output as
initial solution to an exact clique procedure. This line of research (ILS0) is very much
open at present, and results are very encouraging.

Besides these four cutting-edge ideas, two decision heuristics standout as critical
for overall performance in the general scheme: (I) vertex selection by decreasing color
number (first described in [17]) and (II) fixing the order of vertices, at the beginning of
the search, as input to sequential coloring [18]. Note that this implies that SEQ will
assign color numbers to vertices in the same relative order at every step of the search.

Independent of previous ideas, initial vertex sorting has long been known to have
significant impact on overall performance. The general strategy is to pick vertices at the
root node by increasing degree, in order to reduce the average branching factor in the
shallower levels of the search tree. A number of variants have been described in
literature [7, 11, 16], but a precise comparison survey is somewhat lacking.

This paper presents a new initial sorting for exact maximum clique search and
reports improved performance w.r.t. a typical sorting procedure over a set of structured
graphs taken from well known public benchmarks. Moreover, the paper also addresses
the impact of initial sorting in recoloring, selective coloring, logical pruning and ILS0.

The paper is structured in 5 sections. Section 2 includes useful definitions and
notation. Section 3 describes the new initial ordering; Sect. 4 presents empirical vali-
dation, and Sect. 5 conclusions and future lines of research.

2 Preliminaries

A simple undirected graph G = (V, E) consists of a finite set of vertices V ¼
fv1; v2; . . .; vng and edges E ⊆ VxV which pair distinct vertices. Two vertices are said to
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be adjacent (alias neighbors) if they are connected by an edge. N(v) refers to the
neighbor set of v. Standard notation used in the paper includes deg(v) for vertex degree,
Δ for graph degree, ω(v) for the clique number and Gv for the induced graph of v in G.

Useful definitions and notation related to vertex orderings are:

– O(V): Any strict ordering of vertices in a simple graph
– Width of a vertex for a given O: the number of outgoing edges from that vertex to

previous vertices in O.
– Width of an ordering: The maximum width of any of its vertices
– Degeneracy ordering: A sorting procedure which achieves a vertex ordering of

minimum width. It does so by iteratively selecting and removing vertices with
minimum degree [19]. In general, let O Vð Þ ¼ v1; v2; . . .; vn be a degeneracy ordering
of the vertices. Then vn is a vertex of minimum degree in G, vn−1 will have minimum
degree in G − {vn}, vn-2 in G − {vn, vn−1} and so on. How to break ties is not
determined.

– Vertex support σ(v): the sum of the degrees of vertices in N(v) (notation is taken from
[16]).

Literature reports degeneracy ordering as successful for exact MCP already in [7]. In
MCS and others, ties are broken using minimum support criteria. For vertices having the
same σ, ties are usually broken first-found or randomly. We denote by MWS (MinWidth
and min Support tiebreak) the latter sorting procedure, which will be considered as
reference. MW stands for MWS without support tiebreak. Pseudocode for MWS is
available in Algorithm 3 of [16]. Worth noting is that degeneracy ordering is defined in a
last-to-first basis. This is consistent with both BBMC and MCS implementations, which
pick vertices in reverse order at the root node (i.e. vertices with smallest degree first).

3 New Initial Sorting

SEQ is reported to produce tighter colorings if vertices with higher degrees are selected
first. BBMC and MCS both keep an initial MWS coloring (actually BBMC uses simple
MW) fixed throughout the search. Vertices are taken in reverse order at the root node,
and in direct order by SEQ at every step. Moreover, while MWS achieves minimum
vertex width looking from back to front, it does not preserve maximum degree at the
other end. The distortion grows with size.

In the light of the above considerations, we propose a new initial sorting MWSI
which can be seen as a repair mechanism to MWS w.r.t. to maximum degree at the
head of the ordering. MWSI takes as input the ordering produced by MWS and sorts,
according to non decreasing degree, a subset of k vertices v1; v2; . . .; vk (ties are broken
first-found). This second ordering is absolute (not degenerate) since it is directed to
improve SEQ. The remaining n - k vertices are not modified and remain sorted by
minimum width.

Parameter k (the number of vertices reordered by non increasing degree) should be
neither too small (a low impact), nor too big (the first minimum width ordering would
be lost). Instead of using k for tuning, we consider a new parameter p related to the total
number of vertices, such that:
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p ¼ Vj j
k

� �
; p ¼ 2; 3; . . .f g

In practice, MWSI performs best when p ranges between 2 (50 % of the vertices) and
4 (25 % of the vertices). We present an example of MWSI ordering in Table 1. Table 1A
is the simple graph G to be ordered. The number of every vertex uniquely identifies it in
all the figures, but in the case of Table 1A it also indicates the actual ordering. In the
remaining cases, the ordering is the same spatially (i.e. the starting point is the middle
vertex to the right and the rest follow in anticlockwise direction). Vertices are always
picked from G from first to last and ties broken on a first-found basis when necessary.

Table 1. An example of the new MWSI reordering

A) A simple graph G B) MW ordering {5, 4, 0, 3, 2, 1} 

C) MWS ordering {5, 4, 0, 2, 1, 3} D) The new MWSI ordering (p = 2) 
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Table 1B presents minimum width ordering MW and Table 1C presents reference
ordering MWS. The difference between them lies in the difference in support of ver-
tices {1} and {3} which have lowest degree (2). In the case of MW, ties are broken
first-found, so vertex {1} is placed last in the ordering. In the case of MSW, σ(1) = 7
whereas σ(3) = 6 and σ(5) = 6 so vertex {3} is the one placed at the end. After
removing {3}, two triangles appear: {0, 1, 2} and {0, 4, 5}; vertices {1, 2, 4, 5} all
have minimum degree and support so vertex {1} is picked in second place and so on.

Table 1D presents the new ordering with p = 2 (i.e. the first 3 vertices {5, 4, 0} are
considered for reordering by non increasing degree). Clearly vertex {0} has the highest
degree (deg(0) = 4), then comes {4} (deg(4) = 3) and finally {5} (deg(5) = 2). As a
result vertices {5} and {0} are swapped.

4 A Comparison Survey

In this section, MWSI is validated against a subset of instances from the well known
DIMACS benchmark. Moreover, the report also exposes the impact of initial sorting in
the new variants considered, which is another contribution.

We have used leading BBMC (in particular optimized BBMCI) as starting point for
all new variants. The algorithms considered are:

– BBMCI: The reference leading algorithm [10].
– BBMCL: BBMCI with selective coloring [13].
– BBMCR: BBMCI with recoloring, similar to MCS. It is described in [10].
– BBMCXR: BBMCI with logical pruning and recoloring. The ‘X’ in the name refers

to MaxSAT and the ‘R’ to recoloring. BBMCXR is a new algorithm which adapts
MaxSAT pruning to BBMCI without having to explicitly encode the graphs to
MaxSAT as described in the original paper by Li & Quan. It has been specifically
implemented as an improvement on BBMC and a full description has now been
submitted for publication [20].

The orderings reported are (reference) MWS and new MWSI (with parameter p set
to 4). Reordering the first 25 % of the vertices at the head by non increasing degree
produced best results for the instances considered.

All algorithms have been implemented in C++ (VC 2010 compiler) and optimized
using a native code profiler. The machine employed for the experiments was an Intel i7-
2660@3.40 GHz with a 64-bit Win7 O.S. and 8 GB of RAM. In all experiments the time
limit was set to 900 s and only user time for searching the graph is recorded. The
instances used for the tests are taken from DIMACS1 as well as BHOSHLIB2. Most
graphs which are either too easy or too hard (for the chosen time limit) have not been
reported. The subset under consideration for the tests, grouped by families, is as follows:

• C: 125.9
• Mann: a9 and a27

1 http://cs.hbg.psu.edu/txn131/clique.html
2 http://www.nlsde.buaa.edu.cn/*kexu/benchmarks/graph-benchmarks.htm
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• brock: 200_1, 400_1, 400_2, 400_3 and 400_4
• dsjc: 500.5
• frb: 30-15-1, 30-15-2, 30-15-3, 30-15-5
• gen: 200_p0.9_44 and 200_p0.9_55
• phat: 300-3, 500-2, 500-3, 700-2, 1000-1, 1500-1
• san: 200_0.9-1, 200_0.9_2, 200_0.9_3, 400_0.7_1, 400_0.7_2, 400_0.7_3
• sanr: 200-0.7, 200_0.9, 400-0.5, 400-0.7

In the case of the frb family, frb30-15-5 was in some cases not solved within the
chosen time limit. It has, therefore, not been included in the tables but is explicitly
mentioned in the related sections. Also frb30-15-4 failed in all cases.

Two setups are considered for the tests:

1. ILS0: A (strong) initial solution is precomputed using ILS heuristic, as in [16] and
used as starting solution in all algorithms

2. An initial solution is precomputed greedily and used as starting solution in all
algorithms. It is constructed by selecting vertices in ascending order (starting from
the first) until a maximal clique is obtained. This allows for a better comparison
between algorithms avoiding noise from divergent initial branches of the search.
The time taken for this initial solution is never greater than 1ms.

4.1 Experiments Without ILS0

Table 2 reports the number of steps (scaled in millions) taken by the different algo-
rithms considering reference MWS and new MWSI orderings. Each step is a call to a
recursive algorithm. Each row reports the total number of steps for each family. The
best result for each algorithm is shown in cursive (ties broken first-found). Note that
steps between algorithms are not comparable, because the pruning effort could have an

Table 2. Cumulative steps (×10−6) for different algorithms and orderings. In italics – best value
for each algorithm.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01
Mann 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01
brock 123.09 122.33 137.21 134.11 66.54 66.47 40.35 39.86

dsjc 0.26 0.26 0.28 0.28 0.17 0.17 0.11 0.11
frb 453.10 379.05 561.92 466.55 232.69 192.93 144.01 122.10

gen 0.22 0.19 0.26 0.27 0.10 0.06 0.05 0.04

phat 5.61 6.00 6.14 6.57 2.85 3.16 1.70 1.89
san 0.09 0.08 0.28 0.33 0.05 0.04 0.04 0.04
sanr 19.29 18.40 21.71 20.33 10.21 9.92 6.22 5.94

Total 601.68 526.35 727.83 628.48 312.63 272.76 192.48 169.99
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even bigger overhead. Table 3 reports total time in seconds taken by each of the
families considered. In contrast to steps, time is comparable between algorithms.
In bold face the best total time and best time for each family.

MWSI is the fastest in 6 out of the 9 families. Moreover it improves performance
significantly in all algorithms considered, as shown by the row of totals. The overall
fastest algorithm, BBMCXR, is improved by more than 10 %. Regarding steps, frb
family is where the impact of MWSI is more significant. Performance is similar in C,
Mann and dsjc, and only p_hat family becomes more difficult with MWSI.

Worth noting is that frb30-15-5 failed in BBMCI and BBMCL with the reference
sorting but was solved with MWSI (BBMCI took 633.4 s and BBMCL 713.2 s). The
other two algorithms solved the problem under the 900 s limit with both orderings. As
mentioned at the beginning of the section, this instance is not computed in the tables.

4.2 Experiments with ILS0

This section covers experiments in which the algorithms benefit from a good initial
solution computed by ILS heuristic. Tables 4 and 5 report results for the same instances
and in the same format as in the previous section.

Regarding MWSI, the trends w.r.t. MWS are similar to those described when ILS
was not employed. It improves performance of all algorithms on average and only phat
shows a bad behaviour towards new MWSI. This validates MWSI also for ILS0. Best
overall performance is achieved by BBMXCR, as in the previous section. Worth noting
is that frb30-15-5 is now solved under the time limit in all cases.

Another interesting comparison is how ILS influences the impact of MWSI. Table 6
reports the percentage of improvement in performance (time) for all algorithms with
and without ILS. With the exception of reference BBMCI, the rest of the algorithms
benefit more of MWSI when fed with a good initial solution. In particular, selective
coloring improves the most (over 15 %).

Table 3. Cumulative time (seconds) for different algorithms and orderings. In italics – best value
for each algorithm. In bold – best value for the row.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.031 0.031 0.016 0.032 0.031 0.031 0.015 0.032
Mann 0.156 0.171 0.156 0.156 0.110 0.109 0.172 0.156
brock 411 405 411 407 458 462 346 335
dsjc 0.670 0.702 0.686 0.655 0.951 0.827 0.718 0.671
frb 3815 3245 4016 3479 3476 3054 2766 2436
gen 0.624 0.516 0.687 0.702 0.670 0.422 0.468 0.390
phat 41.0 43.9 40.5 43.2 45.4 49.7 33.6 36.3
san 0.655 0.594 1.15 1.23 0.592 0.593 0.703 0.656
sanr 58.5 50.3 59.5 50.3 107 90.5 45.7 42.8
Total 4328 3746 4530 3982 4090 3658 3193 2851

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed 117



5 Conclusions and Future Work

A new initial sorting procedure has been described and empirically shown to improve
performance of a leading exact maximum clique solver. The considered cutting-edge
variants have also been improved. Moreover, the paper also compares these variants

Table 4. Cumulative steps (×10−6) for different algorithms, orderings and ILS0. In italics – best
value for each algorithm.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01
Mann 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01
brock 59.56 54.32 65.27 59.62 31.80 28.94 18.40 16.70

dsjc 0.24 0.24 0.26 0.26 0.15 0.15 0.10 0.10
frb 253.05 214.12 316.01 264.26 127.60 108.02 77.77 66.87

gen 0.03 0.03 0.04 0.03 0.01 0.01 <0.01 <0.01
phat 2.78 2.96 3.02 3.21 1.39 1.53 0.81 0.88
san <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
sanr 17.50 16.88 19.45 18.60 9.50 9.29 5.77 5.64

Total 333.18 288.57 404.07 346.01 170.46 147.96 102.85 90.20

Table 5. Cumulative time (seconds) for different algorithms, orderings and ILS0. In italics –
best value for each algorithm. In bold – best value for the row.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C <0.001 0.016 0.016 0.015 0.016 0.015 <0.001 0.015
Mann 0.140 0.156 0.140 0.140 0.109 0.109 0.156 0.140
brock 231 216 233 225 266 249 185 177
dsjc 0.640 0.624 0.640 0.634 0.764 0.757 0.650 0.650
frb 2809 2418 3138 2603 2484 2174 1794 1553
gen 0.109 0.094 0.124 0.109 0.063 0.047 0.047 0.032
phat 22.4 24.2 22.2 23.6 24.2 26.3 17.6 18.9
san 0.015 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
sanr 48.5 41.8 48.5 46.5 53.8 54.0 42.3 40.6
Total 3112 2701 3443 2900 2828 2504 2040 1791

Table 6. Improvement in performance (%) caused by the new ordering MWSI

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]

ILS0 13.2 % 15.8 % 11.5 % 12.2 %
No ILS0 13.4 % 12.1 % 10.5 % 10.7 %
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when a good initial solution (computed by recent ILS heuristic) is known a priori.
The latter is an open line of research, together with the majority of the algorithmic
variants considered.
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