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Abstract. The main goal of the present paper is the development of
general approach to network analysis of statistical data sets. First a gen-
eral method of market network construction is proposed on the base of
idea of measures of association. It is noted that many existing network
models can be obtained as a particular case of this method. Next it is
shown that statistical multiple decision theory is an appropriate theo-
retical basis for market network analysis of statistical data sets. Finally
conditional risk for multiple decision statistical procedures is introduced
as a natural measure of quality in market network analysis. Some illus-
trative examples are given.
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1 Introduction

Network analysis is a popular and powerful tool of modern analysis of com-
plex systems [14,15]. This analysis is known to be very useful for technological,
social, biological, and other complex system. Nodes (vertices) of the network cor-
respond to the elements of the complex system and links (edges) of the network
correspond to the interaction between elements. Measure of interaction between
nodes gives the weights of the links. Resulting weighted graph represents the
network model of the complex system. The structure of the network is defined
by the data sets that we use to measure the links. In the present paper we con-
sider network models generated by statistical data sets. Important examples are
market networks and brain connectivity networks. The statistical origin of the
data generates error in the decision about network structures. This error can
leads to erroneous interpretation of network analysis. The majority of existing
publications in the field in our knowledge does not pay attention to this problem.
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The main goal of the present paper is to develop a general approach to network
analysis of statistical data sets in order to handle the related statistical errors.

Financial market is known to be a complex system. The complexity of the
system is reflected in the associated complete weighted graph. The minimum
spanning tree (MST) of the graph was studied in [13] to extract the most valuable
information from this complex network. This information can be extended with
the use of planar maximally filtered graph (PMFG) as suggested in [23]. Both
procedures (MST and PMFG) can be considered as a filtering of a complex
graph into a simpler relevant subgraph. Research in this direction is very active
our days (see for example [24] where the state of art is given). Another filtering
procedure was proposed in [3]. As a result of this procedure a market graph
(MG) is constructed. Maximum cliques (MC) and maximum independent sets
(MIS) of the market graph give an interesting information about financial market
structures [4,5] (for calculation of MC and MIS see [17,18]).

The financial market has a large element of randomness. The scientific app-
roach to handle the randomness of the financial market consists among others
of the following connected stages:

– Design of the model of the market network, choice of the filtered structural
characteristic (FSC).

– Identification of FSC from the observations, construction of appropriate sta-
tistical procedures.

– Control of uncertainty of statistical procedures.

It is common knowledge that the prices and returns of stocks of financial mar-
ket are modeled by stochastic process [21]. A complete information about this
process is given by the associated probabilistic space (Ω,�, P ). It follows from
the Kolmogorov consistency theorem that the process is defined by the collec-
tions of finite-dimensional joint distributions. To model the associated network
one has to introduce a measure of interaction between stocks. Any measure of
interaction (dependence) between stocks therefore has to be extracted from the
joint distributions. This give rises to the concept of true market network and
true FSC. Once the measure of interaction is defined one can go to the next
stage: identification of the market network and FSC from observations. This
gives rise to the concept of sample market network and sample FSC. Control
of uncertainty can be based now on the analysis of the difference between true
market network and sample market network and true FSC and sample FSC.

In the present paper we develop a general approach which generalizes some
ideas from [1,2,6–9]. First we propose a general approach to design a differ-
ent models for market network on the base of idea of measure of association
introduced in [10] and developed in [11]. We show that existing network models
[13,16,19] can be obtained from this approach. Next we show that statistical
multiple decision theory is an appropriate theoretical basis for identification of
filtered structural characteristic (FSC). Finally we introduce the conditional risk
as a natural measure of quality in market network analysis.

The paper is organized as follows. In Sect. 2 we describe some class of mea-
sures of dependence that we call measures of association. In Sect. 3 we discuss
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identification problem for filtered structural characteristics (FSC). In Sect. 4 we
put the market network analysis in the framework of multiple decision theory. In
Sect. 5 we discuss the conditional risk as a measure of quality in market network
analysis and give some illustrative examples.

2 Measures of Association

There are many measures of dependence between two random variables proposed
in the literature: Pearson correlation, Kruskal correlation, Kendall correlation,
Spearman correlation, Fehner correlation and others [22]. Many of them can
be put in the framework of the general concept proposed in [11]. According to
Lehmann, random variables X,Y are positively dependent if

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y), for all (x, y) ∈ R2 (1)

In terms of the joint distribution function this reads

FX,Y (x, y) − FX(x)FY (y) ≥ 0, for all (x, y) ∈ R2 (2)

Similarly, X,Y are negatively dependent if (1), (2) holds with inequality sign
reversed. The definition of positive dependence compares the probability of the
product of events with the product of probabilities of events in the sense that
small value of Y tends to be associated with small value of X and (see below)
large value of Y with large value of X. Dependence measures based on this
comparison will be called in this paper measures of association. In particular
covariance between two random variables is a measure of association as it follows
from the Hoeffding formula [11]:

Cov(X,Y ) =
∫ ∞

−∞

∫ ∞

−∞
[FX,Y (x, y) − FX(x)FY (y)]dxdy (3)

It implies that if two random variables are positively dependent then their covari-
ance and therefore Pearson correlation between them is non negative. Converse
is known to be true for the normal vector (X,Y ) [11]. It means that for the nor-
mal case positiveness of the correlation implies the positive dependence of the
random variables. It gives a strong additional justification for the use of Pearson
correlation as a measure of dependence in the normal case.

The condition (1) is equivalent to any of the following conditions

P (X ≤ x, Y ≥ y) ≤ P (X ≤ x)P (Y ≥ y), for all (x, y) ∈ R2

P (X ≥ x, Y ≤ y) ≤ P (X ≥ x)P (Y ≤ y), for all (x, y) ∈ R2

P (X ≥ x, Y ≥ y) ≥ P (X ≥ x)P (Y ≥ y), for all (x, y) ∈ R2

Therefore if two variables X,Y are positively dependent then for any x, y ∈ R
one has

P ((X − x)(Y − y) > 0) − P ((X − x)(Y − y) < 0) ≥ 0
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This observation produces a family of different measures of association q(x, y):

qX,Y (x, y) = P ((X − x)(Y − y) > 0) − P ((X − x)(Y − y) < 0) (4)

For example if x = med(X), y = med(Y ) than one obtain the q-measure of asso-
ciation of Kruskal (simplest measure of association in terminology by Kruskal).
If x = E(X), y = E(Y ) then one gets the sign correlation of Fehner [22]. In
addition as it was proven by Lehmann if two random variables are positively
dependent than its Kendall and Spearman correlations are positive. Therefore
measures of association constitute a large family of measures of dependence
between two random variables. In what follows we will use the notation γX,Y for
any measure of association for two random variables X and Y .

3 Identification Problem in Market Network Analysis

We model the financial market as a family of random variables Xi(t), where
i = 1, 2, . . . , N , t = 1, 2, . . . , n. In this setting N is the number of stocks and
n is a number of observations. Random variable Xi(t) for a fixed i, t describes
the behavior of some numerical characteristic (price, return, volume and so on)
of the stock i at the moment t. For a fixed i the sequence of random variables
(Xi(1),Xi(2), . . . , Xi(n)) describes the behavior of the stock i over the time.
We assume that for a fixed i the random variables Xi(t) are independent and
identically distributed as Xi. This assumption is valid for stocks returns and
many other stocks characteristics. The random vector X = (X1,X2, . . . , XN )
gives a complete description of the market for the given numerical characteristic.

In this paper we consider only market network models based on the pair
wise dependence of stocks. The nodes of the network are the stocks of the mar-
ket and the weighted link between stocks i and j, i �= j is given by a measure
of association γi,j for random variables Xi and Xj : γi,j = γ(Xi,Xj). We call
the obtained network true market network with measure of association γ. For a
given structural characteristic S (MST, PMFG, MG, MC, MIS and others) true
characteristic is obtained by filtration on the true market network. In general
measure of association γ has to reflect a dependence between random variables
associated with stocks. The choice of the measure of association is therefore
connected with the joint distribution of the vector (X1,X2, . . . , XN ). The most
popular measure of association used in the literature is Pearson correlation. Pear-
son correlation is known to be the most appropriate measure of association in the
case of multivariate normal distribution of the vector (X1,X2, . . . , XN ). When
the distribution of this vector is not known one needs a more universal measure
of association not related with the form of distribution. One such measure of
association is q-measure of Kruskal.

In practice however market networks are constructed from statistical data
sets of observations. Let xi(t) be an observation of the random variable Xi(t), i =
1, 2, . . . , N , t = 1, 2, . . . , n. For a given structural characteristic S (MST, PMFG,
MG, MC, MIS and others) the main problem is to identify true characteristic
(associated with the true market network) from the observations. Traditional
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way for this identification used in the literature can be described as follows:
first one has to make estimations γ̂i,j of the measures of association γi,j , next
one constructs the sample network as the weighted complete graph where the
nodes are the stocks of the market and the weighted link between stocks is
given by γ̂i,j . Finally, the structural characteristic S is identified on the sample
market network by the same filtration process as on the true market network.
Described identification process can be considered as statistical procedure for
the identification of S. But this statistical procedure is not only one that can be
considered for identification of S. Moreover it is not clear whether this procedure
is the best possible or even if this procedure is good from statistical point of view.
This question is crucial in our investigation.

4 Multiple Decision Theory

To answer the question above and define optimal statistical procedures for iden-
tification of structural characteristics one needs to formulate this problem in the
framework of mathematical statistics theory. Identification of a given structural
characteristic (MST, PMFG, MG, MC, MIS and others) is equivalent to the
selection of one particular structural characteristic from the finite family of pos-
sible ones. Any statistical procedure of identification is therefore a multiple deci-
sion statistical procedure. Multiple decision theory is nowadays one of the active
branch of mathematical statistics [12,20]. In the framework of this theory the
problem of identification of FSC can be presented as follows. One has L hypoth-
esis H1,H2, . . . , HL corresponding to the family of possible subgraphs associated
with FSC. Multiple decision statistical procedure δ(x) is a map from the sample
space of observations RN×n = {xi(t) : i = 1, 2, . . . , N ; t = 1, 2, . . . , n} to the
decision space D = {(d1, d2, . . . , dL)}, where dj is the decision of acceptance of
the hypothesis Hj , j = 1, 2, . . . , L. Quality of the multiple decision statistical
procedure δ(x) according to Wald [25] is measured by it’s conditional risk. In
our case conditional risk R(Hk, δ) can be written as

R(Hk, δ) =
L∑

j=1

wk,jPk(δ(x) = dj)

where wk,j is the loss from the decision dj when the true decision is dk, wk,k = 0,
Pk(δ(x) = dj) is the probability to take the decision dj when the true decision
is dk. Conditional risk can be used for the comparison of different multiple deci-
sion statistical procedures for structural characteristic identification [7] and it is
appropriate to measure the statistical uncertainty of structural characteristics [6].

Example 1. Market graph. For a given value of threshold γ0 market graph [3]
is obtained from the complete weighted graph (market network) by eliminating
all edges with property γi,j ≤ γ0, where γi,j is the measure of association between
stocks i and j. In this case the set of hypotheses is
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H1 : γi,j ≤ γ0,∀(i, j), i < j,
H2 : γ12 > γ0, γi,j ≤ γ0,∀(i, j) �= (1, 2), i < j,
H3 : γ12 > γ0, γ13 > γ0, γi,j ≤ γ0,∀(i, j) �= (1, 2), (i, j) �= (1, 3),
. . .
HL : γi,j > γ0,∀(i, j), i < j,

(5)

where L = 2M with M = N(N − 1)/2. These hypotheses describe all possible
market graphs. To identify the true market graph one needs to construct a
multiple decision statistical procedure δ(x) which will select one hypothesis from
the set H1,H2, . . . , HL.

Example 2. Minimum spanning tree (MST). Minimum spanning tree [13]
is the spanning tree of the complete weighted graph (market network) with
the maximal total associations between included edges. In this case one has
by Caylay formula L = NN−2 and each hypothesis Hs can be associated with
multi-index s = (s1, s2, . . . , sN , sN+1, . . . , s2N ), sj ∈ {0, 1} (tree code).

5 Conditional Risk

There are many ways to define the losses wk,j and associated conditional risk.
For example for a given structural characteristic S one can define a conditional
risk by

R(S, δ) =
∑

1≤i<j≤N

[aijP
a
i,j(S, δ) + bijP

b
i,j(S, δ)], (6)

where ai,j is the loss from erroneous inclusion of the edge (i, j) in the structure
S, P a

i,j(S, δ) is the probability that decision procedure δ takes this decision, bi,j

is the loss from erroneous non inclusion of the edge (i, j) in the structure S,
P b

i,j(S, δ) is the probability that decision procedure δ takes this decision. Two
terms in (6) can be considered as type I and type II statistical errors [12]. The
value of conditional risk R(S, δ) essentially depends on the choice of measure of
association γ, distribution of random vector X = (X1,X2, . . . , XN ), structural
characteristic S, multiple decision statistical procedure δ(x) for structural char-
acteristic identification and number of observations n. To illustrate this depen-
dence we present below some results of numerical experiments for MST on US
stock market with N = 100, ai,j = bi,j = 1/2. The experiments show some
intriguing properties of associated conditional risk. The Fig. 1 shows the behav-
ior of conditional risk for Pearson correlation, two type of distributions (multi-
variate Normal and Student distributions) and different number of observations.
The Fig. 2 shows the behavior of conditional risk for Kruskal correlation, the
same type of distributions (multivariate Normal and Student distributions) and
different number of observations. In both cases the multiple decision statisti-
cal procedure is the Kruskal algorithm applied to the sample network (we use
classical estimations for Pearson and Kruskal correlations).

The Fig. 1 shows that conditional risk for Pearson correlation has a big depen-
dence on the type of distribution. Pearson correlation is a good measure of
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Fig. 1. Conditional risk as a function of number of observations for Pearson correla-
tion. Solid line corresponds to the normal distribution. Dashed line corresponds to the
Student distribution.
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Fig. 2. Conditional risk as a function of number of observations for Kruskal correla-
tion. Solid line corresponds to the normal distribution. Dashed line corresponds to the
Student distribution.
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Table 1. Conditional risk for MST: Pearson correlation

n Normal Truncated normal Platykurtic Bimodal Stable trend Student

rare risk

25 75.647 88.045 75.806 75.718 78.245 81.428

50 65.858 82.403 65.777 65.865 73.120 75.658

100 55.409 74.977 55.078 54.625 71.409 69.790

200 45.056 66.332 44.494 44.365 70.849 63.674

400 35.587 56.704 35.305 34.802 61.127 57.495

600 30.375 50.923 29.910 29.629 53.221 54.051

800 26.812 46.773 26.435 26.564 48.298 51.527

1000 24.468 43.402 24.172 23.957 44.119 49.588

1200 22.857 40.999 22.506 22.063 41.104 48.342

1600 19.799 37.111 19.814 19.495 36.419 45.798

2000 18.137 34.391 17.698 17.626 33.170 43.582

2500 16.099 31.651 15.830 15.829 30.139 41.946

5000 11.496 23.736 11.320 11.567 21.961 36.697

Table 2. Conditional risk for MST: Kruskal correlation

n Normal Truncated Platykurtic Bimodal Stable trend, Student

normal rare risk

25 89.660 89.753 90.074 90.478 90.055 89.576

50 84.568 84.540 84.947 85.839 81.767 84.477

100 77.667 77.683 78.626 79.643 72.985 77.658

200 69.335 69.500 70.503 72.081 63.605 69.393

400 60.303 59.921 61.548 63.293 53.011 59.899

600 54.377 54.130 55.689 57.310 46.885 53.948

800 50.327 49.960 51.069 53.465 42.851 49.716

1000 46.903 46.583 48.068 50.129 39.664 46.599

1200 44.398 44.246 45.461 47.281 37.597 43.986

1600 40.209 40.187 41.552 43.365 33.948 40.190

2000 37.095 37.306 38.492 40.056 31.363 36.980

2500 34.138 34.482 35.452 37.153 28.858 34.345

5000 26.338 26.028 27.313 28.837 22.269 25.854

association for normal distribution and it is not good for Student distribution.
The Fig. 2 shows that conditional risk for Kruskal correlation is stable with
respect to the type of distribution. At the same time Kruskal correlation is
more appropriate measure of association for Student distribution than Pearson



96 V.A. Kalygin et al.

correlation. It suggests to use the Kruskal measure of association in the case of
distributions with fat tails.

The values of conditional risk for different distributions and number of obser-
vations are presented in the Table 1 (Pearson correlation) and Table 2 (Kruskal
correlation). All multivariate distributions in the tables have the same covari-
ance matrix Σ (covariance matrix for the 100 stocks of US stock market) and
are obtained by transformation X = σ1/2Z, Z = (Z1, Z2, . . . , ZN ) being the
vector of normalized independent random variables with the same uni-variate
distribution. This uni-variate distribution are normal, truncated normal, uni-
form distribution (platykurtic), distribution with two modes (bimodal), discrete
distribution with 2 values (stable trend rare risk) and Student distribution with
3 degrees of freedom. Detailed description of these distributions is given in [1].
The Tables 1 and 2 confirm the stability of conditional risk for Kruskal corre-
lation. A comparative analysis of conditional risk for Pearson and sign correla-
tions for the market graph construction is given in [1] where some interesting
observations are described. The problem of optimality of multiple decision sta-
tistical procedures for the market graph identification is discussed in [7]. It was
proven in [7] that it is possible to construct a statistical procedures with lower
conditional risk than the widely used in the literature statistical procedure based
on the sample graph. The dependence of conditional risk on the filtered struc-
tural characteristic is investigated in [6].

6 Concluding Remark

The general approach to market network analysis for statistical data set gives an
appropriate theoretical basis for investigation of different market network mod-
els. It allows to design a statistical procedures of a good quality for identification
of structural characteristics of network.
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