
Panos M. Pardalos
Mauricio G.C. Resende
Chrysafis Vogiatzis
Jose L. Walteros (Eds.)

 123

LN
CS

 8
42

6

8th International Conference, Lion 8
Gainesville, FL, USA, February 16–21, 2014
Revised Selected Papers

Learning and
Intelligent Optimization

Lecture Notes in Computer Science 8426

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Panos M. Pardalos • Mauricio G.C. Resende
Chrysafis Vogiatzis • Jose L. Walteros (Eds.)

Learning and
Intelligent Optimization
8th International Conference, Lion 8
Gainesville, FL, USA, February 16–21, 2014
Revised Selected Papers

123

Editors
Panos M. Pardalos
Chrysafis Vogiatzis
Jose L. Walteros
Department of Industrial and Systems

Engineering
University of Florida
Gainesville, FL
USA

Mauricio G.C. Resende
AT&T Labs Research
Middletown, NJ
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
ISBN 978-3-319-09583-7 ISBN 978-3-319-09584-4 (eBook)
DOI 10.1007/978-3-319-09584-4

Library of Congress Control Number: 2014946231

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Learning and Intelligent OptimizatioN (LION) conference has been an important
meeting point for scientists working on the forefront of optimization and machine
learning. The conference has always aimed to be the perfect meeting point for
researchers to discuss advancements in algorithms, methods, and theories that are used
in a vast spectrum of fields.

2014 marks the first year that the conference was organized in the United States of
America. This signaled an important advancement of the world renowned conference to
attract more scientists from North America. As its organizers, we were honored and
proud to welcome many scientific articles that discussed a series of innovative
approaches to well-known problems, novel ideas that can shape advancements in the
years to come, and applications that benefit from this intersection of optimization and
machine learning.

LION 2014 was the 8th conference of the series. It was held in Gainesville, Florida,
USA, during February 16–21, 2014.

There were four plenary lectures:

– Vijay Vazirani, Georgia Institute of Technology – USA
New (Practical) Complementary Pivot Algorithms for Market Equilibria

– Baba Vemuri, University of Florida – USA
Dictionary Learning on Riemannian Manifolds and its Applications

– Holger Hoos, University of British Columbia – Canada
Machine Learning & Optimisation: Promise and Power of Data-driven, Automated
Algorithm Design

– Roman Belavkin, Middlesex University – UK
Information-Geometric Optimization of Parameters in Randomized Algorithms

and six tutorial speakers:

– Ding Zhu-Du, University of Texas at Dallas – USA
Nonlinear Combinatorial Optimization

– Mauricio G.C. Resende, AT&T Labs Research – USA
GRASP: Advances and Applications

– Nicolaos Sahinidis, Carnegie Mellon University – USA
ALAMO: Automated Learning of Algebraic Models for Optimization

– My T. Thai, University of Florida – USA
Interdependent Networks Analysis

– Mario Guaraccino, CNR – Italy
From Separating to Proximal-Plane Supervised Classifiers

– Panos M. Pardalos, University of Florida – USA
Feature Selection Methods for High Dimensional Datasets

All manuscripts submitted to LION were independently reviewed by at least three
members of the Program Committee in a blind review process. Overall, these pro-
ceedings consist of 33 research articles from all around the world, discussing a vast
spectrum of ideas, technologies, algorithms, approaches, and applications in optimi-
zation and machine learning. The topics include but are not limited to algorithm
configuration, multiobjective optimization, metaheuristics, graphs and networks,
logistics and transportation, and biomedical applications. The successful organization
of the conference would not have been possible without the attendants, so we would
like to take this opportunity to thank them for coming to Gainesville. We also couldn’t
have organized the conference without the excellent work of the Local Organizing
Committee, Chrysafis Vogiatzis and Jose L. Walteros, and the special session chairs,
Bernd Bischl, Valery Kalyagin, Heike Trautmann, and Holger Hoos. We would also
like to extend our appreciation to the keynote and tutorial speakers, who accepted our
invitations, and to all the authors who worked hard on submitting their research work to
LION 2014.

February 2014 Panos M. Pardalos
Mauricio G.C. Resende

VI Preface

Organization

Conference and Technical Program Committee Co-chairs

Panos M. Pardalos University of Florida, USA
Mauricio G.C. Resende AT&T Labs Research, USA

Special Session Chairs

Bernd Bischl TU Dortmund, Germany
Heike Trautmann Münster University, Germany
Holger Hoos University of British Columbia, Canada
Valery Kalyagin Laboratory of Algorithms and Technologies for

Networks Analysis, Russia

Local Organization

Chrysafis Vogiatzis University of Florida, USA
Jose L. Walteros University of Florida, USA

Liaison with Springer

Panos M. Pardalos

LION 8 Website

Chrysafis Vogiatzis University of Florida, USA
Jose L. Walteros University of Florida, USA

Technical Program Committee

Hernan Aguirre Shinshu University, Japan
Ethem Alpaydin Bogazici University, Turkey
Dirk Arnold Dalhousie University, Canada
Roberto Battiti University of Trento, Italy
Mauro Birattari Université Libre de Bruxelles, Belgium
Christian Blum IKERBASQUE and University of the Basque

Country, Spain

Mauro Brunato Università di Trento, Italy
Philippe Codognet CNRS/UPMC/University of Tokyo, Japan
Pierre Collet Université de Strasbourg, France
Clarisse Dhaenens Flipo Laboratoire LIFL/Inria Villeneuve d'Ascq, France
Luca Di Gaspero Università degli Studi di Udine, Italy
Federico Divina Pablo de Olavide University, Spain
Karl F. Doerner Johannes Kepler University, Austria
Talbi El-Ghazali Polytech'Lille, France
Valerio Freschi University of Urbino, Italy
Pablo García Sánchez University of Granada, Spain
Deon Garrett Icelandic Institute for Intelligent Machines, Iceland
Walter J. Gutjahr University of Vienna, Austria
Youssef Hamadi Microsoft Research, UK
Jin-Kao Hao University of Angers, France
Richard Hartl University of Vienna, Austria
Geir Hasle SINTEF Applied Mathematics, Norway
Francisco Herrera University of Granada, Spain
Tomio Hirata Nagoya University, Japan
Frank Hutter University of British Columbia, Canada
Hisao Ishibuchi Osaka Prefecture University, Japan
Laetitia Jourdan LIFL University of Lille 1, France
Narendra Jussien Ecole des Mines de Nantes, France
Tanaka Kiyoshi Shinshu University, Japan
Zeynep Kiziltan University of Bologna, Italy
Dario Landa-Silva University of Nottingham, UK
Hoong Chuin Lau Singapore Management University, Singapore
Manuel López-Ibáñez Université Libre de Bruxelles, Belgium
Dario Maggiorini University of Milan, Italy
Vittorio Maniezzo University of Bologna, Italy
Francesco Masulli University of Genoa, Italy
Basseur Matthieu LERIA Angers, France
JJ Merelo Universidad de Granada, Spain
Bernd Meyer Monash University, Australia
Marco A. Montes de Oca IRIDIA, Université Libre de Bruxelles, Belgium
Amir Nakib University Paris Este Créteil, France
Giuseppe Nicosia University of Catania, Italy
Gabriela Ochoa University of Nottingham, UK
Luis Paquete University of Coimbra, Portugal
Panos M. Pardalos University of Florida, USA
Marcello Pelillo University of Venice, Italy
Vincenzo Piuri Università degli Studi di Milano, Italy
Mike Preuss, TU Dortmund, Germany
Günther R. Raidl Vienna University of Technology, Austria
Steffen Rebennack Colorado School of Mines, USA

VIII Organization

Celso C. Ribeiro Universidade Federal Fluminense, Brazil
Florian Richoux University of Nantes, France
Andrea Roli Alma Mater Studiorum Università di Bologna,

Italy
Horst Samulowitz IBM Research, USA
Hiroyuki Sato The University of Electro-Communications, Japan
Frédéric Saubion University of Angers, France
Andrea Schaerf University of Udine, Italy
Marc Schoenauer Inria Saclay, France
Yaroslav D. Sergeyev Università della Calabria, Italy
Patrick Siarry Université Paris-Est Créteil, France
Ankur Sinha Aalto University, Finland
Christine Solnon Université de Lyon, France
Theo Stewart University of Cape Town, South Africa
Giovanni Stracquadanio Johns Hopkins University, USA
Thomas Stützle Université Libre de Bruxelles, Belgium
Ke Tang University of Science and Technology of China,

China
Julian Togelius IDSIA, Switzerland
Shigeyoshi Tsutsui Hannan University, Japan
Pascal Van Hentenryck Brown University, USA
Sébastien Verel Inria, France
Stefan Voß University of Hamburg, Germany
Markus Wagner University of Adelaide, Australia
Toby Walsh NICTA and UNSW, Australia
David L. Woodruff University of California at Davis, USA
Petros Xanthopoulos University of Central Florida, USA
Ning Xiong Mälardalen Universit, Sweden

Organization IX

Contents

Algorithm Portfolios for Noisy Optimization: Compare Solvers Early 1
Marie-Liesse Cauwet, Jialin Liu, and Olivier Teytaud

Ranking Algorithms by Performance . 16
Lars Kotthoff

Portfolio Approaches for Constraint Optimization Problems 21
Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro

AClib: A Benchmark Library for Algorithm Configuration 36
Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Marius Lindauer,
Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle

Algorithm Configuration in the Cloud: A Feasibility Study 41
Daniel Geschwender, Frank Hutter, Lars Kotthoff, Yuri Malitsky,
Holger H. Hoos, and Kevin Leyton-Brown

Evaluating Instance Generators by Configuration. 47
Sam Bayless, Dave A.D. Tompkins, and Holger H. Hoos

An Empirical Study of Off-Line Configuration and On-Line Adaptation
in Operator Selection . 62

Zhi Yuan, Stephanus Daniel Handoko, Duc Thien Nguyen,
and Hoong Chuin Lau

A Continuous Refinement Strategy for the Multilevel Computation
of Vertex Separators . 77

William W. Hager, James T. Hungerford, and Ilya Safro

On Multidimensional Scaling with City-Block Distances 82
Nerijus Galiauskas and Julius Žilinskas

A General Approach to Network Analysis of Statistical Data Sets 88
Valery A. Kalygin, Alexander P. Koldanov, and Panos M. Pardalos

Multiple Decision Problem for Stock Selection in Market Network 98
Petr A. Koldanov and Grigory A. Bautin

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed. 111
Pablo San Segundo, Alvaro Lopez, and Mikhail Batsyn

http://dx.doi.org/10.1007/978-3-319-09584-4_1
http://dx.doi.org/10.1007/978-3-319-09584-4_2
http://dx.doi.org/10.1007/978-3-319-09584-4_3
http://dx.doi.org/10.1007/978-3-319-09584-4_4
http://dx.doi.org/10.1007/978-3-319-09584-4_5
http://dx.doi.org/10.1007/978-3-319-09584-4_6
http://dx.doi.org/10.1007/978-3-319-09584-4_7
http://dx.doi.org/10.1007/978-3-319-09584-4_7
http://dx.doi.org/10.1007/978-3-319-09584-4_8
http://dx.doi.org/10.1007/978-3-319-09584-4_8
http://dx.doi.org/10.1007/978-3-319-09584-4_9
http://dx.doi.org/10.1007/978-3-319-09584-4_10
http://dx.doi.org/10.1007/978-3-319-09584-4_11
http://dx.doi.org/10.1007/978-3-319-09584-4_12

Using Comparative Preference Statements in Hypervolume-Based
Interactive Multiobjective Optimization . 121

Dimo Brockhoff, Youssef Hamadi, and Souhila Kaci

Controlling Selection Area of Useful Infeasible Solutions in Directed
Mating for Evolutionary Constrained Multiobjective Optimization 137

Minami Miyakawa, Keiki Takadama, and Hiroyuki Sato

An Aspiration Set EMOA Based on Averaged Hausdorff Distances. 153
Günter Rudolph, Oliver Schütze, Christian Grimme, and Heike Trautmann

Deconstructing Multi-objective Evolutionary Algorithms: An Iterative
Analysis on the Permutation Flow-Shop Problem . 157

Leonardo C.T. Bezerra, Manuel López-Ibáñez, and Thomas Stützle

MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization 173
Bernd Bischl, Simon Wessing, Nadja Bauer, Klaus Friedrichs,
and Claus Weihs

Two Look-Ahead Strategies for Local-Search Metaheuristics 187
David Meignan, Silvia Schwarze, and Stefan Voß

An Evolutionary Algorithm for the Leader-Follower Facility Location
Problem with Proportional Customer Behavior . 203

Benjamin Biesinger, Bin Hu, and Günther Raidl

Towards a Matheuristic Approach for the Berth Allocation Problem 218
Eduardo Aníbal Lalla-Ruiz and Stefan Voß

GRASP with Path-Relinking for the Maximum Contact Map Overlap Problem . . . 223
Ricardo M.A. Silva, Mauricio G.C. Resende, Paola Festa,
Filipe L. Valentim, and Francisco N. Junior

What is Needed to Promote an Asynchronous Program Evolution
in Genetic Programing? . 227

Keiki Takadama, Tomohiro Harada, Hiroyuki Sato, and Kiyohiko Hattori

A Novel Hybrid Dynamic Programming Algorithm for a Two-Stage
Supply Chain Scheduling Problem . 242

Jun Pei, Xinbao Liu, Wenjuan Fan, Panos M. Pardalos, and Lin Liu

A Hybrid Clonal Selection Algorithm for the Vehicle Routing Problem
with Stochastic Demands . 258

Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas

Bayesian Gait Optimization for Bipedal Locomotion 274
Roberto Calandra, Nakul Gopalan, André Seyfarth, Jan Peters,
and Marc Peter Deisenroth

XII Contents

http://dx.doi.org/10.1007/978-3-319-09584-4_13
http://dx.doi.org/10.1007/978-3-319-09584-4_13
http://dx.doi.org/10.1007/978-3-319-09584-4_14
http://dx.doi.org/10.1007/978-3-319-09584-4_14
http://dx.doi.org/10.1007/978-3-319-09584-4_15
http://dx.doi.org/10.1007/978-3-319-09584-4_16
http://dx.doi.org/10.1007/978-3-319-09584-4_16
http://dx.doi.org/10.1007/978-3-319-09584-4_17
http://dx.doi.org/10.1007/978-3-319-09584-4_18
http://dx.doi.org/10.1007/978-3-319-09584-4_19
http://dx.doi.org/10.1007/978-3-319-09584-4_19
http://dx.doi.org/10.1007/978-3-319-09584-4_20
http://dx.doi.org/10.1007/978-3-319-09584-4_21
http://dx.doi.org/10.1007/978-3-319-09584-4_22
http://dx.doi.org/10.1007/978-3-319-09584-4_22
http://dx.doi.org/10.1007/978-3-319-09584-4_23
http://dx.doi.org/10.1007/978-3-319-09584-4_23
http://dx.doi.org/10.1007/978-3-319-09584-4_24
http://dx.doi.org/10.1007/978-3-319-09584-4_24
http://dx.doi.org/10.1007/978-3-319-09584-4_25

Robust Support Vector Machines with Polyhedral Uncertainty
of the Input Data. 291

Neng Fan, Elham Sadeghi, and Panos M. Pardalos

Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature
Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro
Apoptotic Cell Death Induced by Paclitaxel . 306

Michael Fenn, Mario Guarracino, Jiaxing Pi, and Panos M. Pardalos

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm
for Knowledge-Based SVM and Feature Selection. 324

Zhiwei Qin, Xiaocheng Tang, Ioannis Akrotirianakis, and Amit Chakraborty

Efficient Identification of the Pareto Optimal Set. 341
Ingrida Steponavičė, Rob J. Hyndman, Kate Smith-Miles,
and Laura Villanova

GeneRa: A Benchmarks Generator of Radiotherapy Treatment Scheduling
Problem . 353

Juan Pablo Cares, María-Cristina Riff, and Bertrand Neveu

The Theory of Set Tolerances. 362
Gerold Jäger, Boris Goldengorin, and Panos M. Pardalos

Strategies for Spectrum Allocation in OFDMA Cellular Networks. 378
Bereket Mathewos Hambebo, Marco Carvalho, and Fredric Ham

A New Existence Condition for Hadamard Matrices with Circulant Core 383
Ilias S. Kotsireas and Panos M. Pardalos

Author Index . 391

Contents XIII

http://dx.doi.org/10.1007/978-3-319-09584-4_26
http://dx.doi.org/10.1007/978-3-319-09584-4_26
http://dx.doi.org/10.1007/978-3-319-09584-4_27
http://dx.doi.org/10.1007/978-3-319-09584-4_27
http://dx.doi.org/10.1007/978-3-319-09584-4_27
http://dx.doi.org/10.1007/978-3-319-09584-4_28
http://dx.doi.org/10.1007/978-3-319-09584-4_28
http://dx.doi.org/10.1007/978-3-319-09584-4_29
http://dx.doi.org/10.1007/978-3-319-09584-4_30
http://dx.doi.org/10.1007/978-3-319-09584-4_30
http://dx.doi.org/10.1007/978-3-319-09584-4_31
http://dx.doi.org/10.1007/978-3-319-09584-4_32
http://dx.doi.org/10.1007/978-3-319-09584-4_33

Algorithm Portfolios for Noisy Optimization:
Compare Solvers Early

Marie-Liesse Cauwet, Jialin Liu, and Olivier Teytaud(B)

TAO, INRIA-CNRS-LRI, University of Paris-Sud, 91190 Gif-sur-Yvette, France
{marie-liesse.cauwete,jialin.liu,oliver.teytaud}@lri.fr

https://tao.lri.fr

Abstract. Noisy optimization is the optimization of objective functions
corrupted by noise. A portfolio of algorithms is a set of algorithms
equipped with an algorithm selection tool for distributing the compu-
tational power among them. We study portfolios of noisy optimization
solvers, show that different settings lead to different performances, obtain
mathematically proved performance (in the sense that the portfolio per-
forms nearly as well as the best of its’ algorithms) by an ad hoc selection
algorithm dedicated to noisy optimization. A somehow surprising result
is that it is better to compare solvers with some lag; i.e., recommend the
current recommendation of the best solver, selected from a comparison
based on their recommendations earlier in the run.

1 Introduction

Given an objective function, also termed fitness function, from a domain D ∈ R
d

to R, numerical optimization or simply optimization, is the research of points,
also termed individuals or search points, with approximately optimum (e.g. min-
imum) objective function values.

Noisy optimization is the optimization of objective functions corrupted by
noise. Black-box noisy optimization is the noisy counterpart of black-box opti-
mization, i.e. functions for which no knowledge about the internal processes
involved in the objective function can be exploited.

Algorithm Selection (AS) consists in choosing, in a portfolio of solvers, the
one which is (approximately) most efficient on the problem at hand. AS can
mitigate the difficulties for choosing a priori the best solver among a portfolio of
solvers. This means that AS leads to an adaptive version of the algorithms. In
some cases, AS outperforms all individual solvers by combining the good prop-
erties of each of them (with information sharing or with chaining, as discussed
later). It can also be used for the sake of parallelization or parameter tuning. In
this paper, we apply AS to the black-box noisy optimization problem.

1.1 Noisy Optimization

Noisy optimization is a key component of machine learning from supervised
learning to unsupervised or reinforcement learning; it is also relevant in stream-
ing applications. The black-box setting is crucial in reinforcement learning where
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 1–15, 2014.
DOI: 10.1007/978-3-319-09584-4 1

2 M.-L. Cauwet et al.

gradients are difficult and expensive to get; direct policy search [31] usually boils
down to (i) choosing a representation and (ii) black-box noisy optimization.

Order-zero methods, including evolution strategies [6] and derivative-free
optimization [11] are natural solutions in such a setting; as they do not use
gradients, they are not affected by the black-box scenario. However, the noise
has an impact even on such methods [3,28]. Using surrogate models [20] reduces
the impact of noise by sharing information over the domain. Surrogate models
are also a step towards higher order methods; even in black-box scenarios, a
Hessian can be approximated thanks to observed fitness values.

References [12,29] have shown that stochastic gradient by finite differences
(finite differences at each iteration or by averaging over multiple iterations) can
provide tight convergence rates (see tightness in [9]) in the case of an additive
noise with constant variance. Reference [13] has also tested the use of second
order information. Algorithms such as evolution strategies [19] are efficient (log-
linear convergence rate) with variance decreasing to zero around the optimum.
We will consider a parametrized objective function (Eq. 6), with some parameter
z such that z = 0 corresponds to a noise variance Θ(1) in the neighborhood of
the optimum; whereas large values of z correspond to noise variance quickly
decreasing to 0 around the optimum.

In this paper, our portfolio will be made of the following algorithms: (i) an
evolution strategy; (ii) a first-order method using gradients estimated by finite
differences (two variants included); (iii) a second-order method using a Hessian
matrix approximated also by finite differences. We present these methods in
more details in Sect. 2.

Simple regret criterion. In the black-box setting, let us define:

– xn the nth search point at which the objective function (also termed fitness
function) is evaluated;

– x̃n the point that the solver recommends as an approximation of the optimum
after having evaluated the objective function at x1, . . . , xn (i.e. after spending
n evaluations from the budget).

Some algorithms make no difference between xn and x̃n, but in a noisy opti-
mization setting the difference usually matters.

The simple regret for noisy optimization is expressed in terms of objective
function values, as follows:

SRn = E (f(x̃n)− f(x∗)) , (1)

where f : D �→ R is a noisy fitness function and x∗ minimizes x �→ Ef(x). SRn

is the simple regret after n evaluations; n is then the budget.
The slope of the simple regret is then defined as

lim sup
n

log(SRn)
log n

. (2)

For example, the gradient method proposed in [12] (approximating the gradient
by finite differences) reaches a simple regret slope −1 on sufficiently smooth

Algorithm Portfolios for Noisy Optimization 3

problems, for an additive centered noise, without assuming variance decreasing
to zero around the optimum.

1.2 Algorithm Selection

Combinatorial optimization is probably the most classical application domain
for algorithm selection [23]. However, machine learning is also a classical test
case for algorithm selection [32]; in this case, algorithm selection is sometimes
referred to as meta-learning [1].

No free lunch. Reference [34] claims that it is not possible to do better, on aver-
age (uniform average) on all optimization problems from a given finite domain to
a given finite codomain. This implies that no algorithm selection can improve
existing algorithms on average on this uniform probability distribution of prob-
lems. Nonetheless, reality is very different from a uniform average of optimization
problems, and algorithm selection does improve performance in many cases.

Chaining and information sharing. Algorithm chaining [7] means switching
from one solver to another during the portfolio optimization run. More generally,
an hybrid algorithm is a combination of existing algorithms by any means [33].
This is an extremal case of sharing. Sharing consists, more generally, in sending
information from some solvers to other solvers; they communicate in order to
improve the overall performance.

Static portfolios and parameter tuning. A portfolio of algorithms is usually
static, i.e. combines a finite number of given solvers. SatZilla is probably the most
well known portfolio method, combining several SAT-solvers [25]. Reference [27]
has pointed out the importance of having “orthogonal” solvers in the portfolio,
so that the set of solvers is not too large, but covers as far as possible the set
of possible solvers. Reference [35] combines algorithm selection and parameter
tuning; parameter tuning can be viewed as an algorithm selection over a large
but structured space of solvers. We refer to [23] and references therein for more
information on parameter tuning and its relation to algorithm selection; this is
beyond the scope of this paper.

Fair or unfair sharing of computation budgets. In [26], different strategies
are compared for distributing the computation time over different solvers. The
first approach consists in running all solvers during a finite time, then selecting
the best performing one, and then keep it for all the remaining time. Another
approach consists in running all solvers with the same time budget indepen-
dently of their performance on the problem at hand. Surprisingly enough, they
conclude that uniformly distributing the budget is a good and robust strategy.
The situation changes when a training set is available, and when we assume that
the training set is relevant for the future problems to be optimized; [21], using a
training set of problems for comparing solvers, proposes to use 90 % of the time
allocated to the best performing solver, the other 10 % being equally distributed
among other solvers. References [14,15] propose 50 % for the best solver, 25 % for
the second best, and so on. Some selection solvers [2,15] do not need a separate

4 M.-L. Cauwet et al.

training phase, and performs entirely online solver selection; a weakness of this
approach is that it is only possible when a large enough budget is available, so
that the training phase has a minor cost. At the moment, the case of portfolios
of noisy optimization solvers has not been discussed in the literature.

Restart strategies. A related problem is the restart of stochastic strategies:
when should we restart a local optimization solver? Deciding if an optimization
solver should “restart” is related to deciding if we should switch to another
optimization solver; this is relevant for our continuous optimization case below.
References [10,18,30] propose strategies which are difficult to apply in a black-
box scenario, when the optimum fitness value is not known.

Parallelism. Portfolios can naturally benefit from parallelism; however, the
situation is different in the noisy case, which is highly parallel by nature (as
noise is reduced by averaging multiple resamplings); we refer to [17] for more on
parallel portfolio algorithms (though not on the noisy optimization case).

Cooperation and information sharing. A crucial question in portfolio algo-
rithms is how to make different solvers in the portfolio cooperate, instead of just
competing. Knowledge sharing has been shown to provide great improvements
in domains where a concise information (such as inconsistent assignments in
satisfiability problems) can save up a huge computation time [17]; it is not easy
to see what type of information can be shared in noisy optimization. Already
established upper bounds on possible fitness values (in minimization) can help
for deciding restarts as detailed above; good approximate solutions can also be
shared, possibly leading to a diversity loss. We will investigate in this paper the
sharing of current approximate solutions.

Bandit literature. During the last decade, a wide literature on bandits
[4,8,24] have proposed many tools for distributing the computational power over
stochastic options to be tested. The application to our context is however far
from being straightforward. In spite of some adaptations to other contexts (time
varying as in [22] or adversarial [5,16]), maybe due to deep differences such as
the very non-stationary nature of bandit problems involved, these methods did
not, for the moment, really found their way to selection algorithms.

In this paper, we will focus on (i) designing an orthogonal portfolio (ii) dis-
tributing the budget nearly equally over possible solvers (iii) possibly sharing
information between the different solvers.

1.3 Outline of This Paper

Section 2 introduces several noisy optimization solvers. Section 3 explains the
portfolio algorithm we applied on top of it. Section 4 provides experimental
results.

2 Noisy Optimization Solvers

Following [27], we will focus on selecting a portfolio of solvers with some “orthog-
onality”, i.e. as different as possible from each other. We selected two extremal

Algorithm Portfolios for Noisy Optimization 5

cases of Fabian’s algorithm [12], a self-adaptive evolutionary algorithm with
resamplings, and a variant of Newton’s algorithm adapted for noisy optimiza-
tion. These solvers are more precisely defined in Algorithms 1, 2, 3.

3 Algorithms and Analysis

3.1 Definitions and Notations

In all the paper, N∗ = {1, 2, 3, . . . }. Let f : D → R be a noisy function. f is a
random process, and equivalently it can be viewed as a mapping (x, ω) �→ f(x, ω),
where

– the user can only choose x;
– and a random variable ω is independently sampled at each call to f .

For short, we will keep the notation f(x); the reader should keep in mind that
this function is stochastic. A black-box noisy optimization solver, here referred to
as a solver, is a program which aims at finding the minimum x∗ of x �→ Ef(x),
thanks to multiple black-box calls to the unknown function f . The portfolio
algorithm, using algorithm selection, has the same goal, and can use M different
given solvers; a good algorithm selection tool should ensure that it is nearly as
efficient as each of the individual solvers, for any problem in some class of interest.
If X is a random variable, then (X(1),X(2), . . .) denotes a sample of independent
identically distributed random variables, copies of X. Let k : N∗ → N

∗ be a non-
decreasing function, called lag function, such that for all n ∈ N

∗, k(n) ≤ n. For
any i ∈ {1, . . . , M}, x̃i,n denotes the point

– that the solver number i recommends as an approximation of the optimum
(see Sect. 1.1 for more on the difference between evaluated and recommended
search points);

– after this solver has spent n evaluations from the budget.

Similarly, the simple regret given by Eq. 1 corresponding to solver number i
after n evaluations, is denoted by SRi,n.

For n ∈ N
∗, i∗n denotes the solver chosen by the selection algorithm after n

function evaluations per solver.
Another important concept is the two kinds of terms in the regret of the

portfolio.

Definition: Solvers’ regret. Thesolvers’ regretwith indexn, denotedSRSolvers
n ,

is the minimum simple regret among the solvers after n evaluations each, i.e.
SRSolvers

n := min
i∈{1,...M}

SRi,n.

Definition: Selection regret. The selection regret with index n, denoted by
SRSelection

n includes the additional regret due to mistakes in choosing among
these M solvers, i.e. SRSelection

n := E
(
f(x̃i∗

n,n)− f(x∗)
)
.

6 M.-L. Cauwet et al.

3.2 Simple Case: Uniform Portfolio NOPA

We present a simple noisy optimization portfolio algorithm (NOPA) which does
not apply any sharing and distributes the computational budget equally over the
noisy optimization solvers. Consider an increasing sequence r1, . . . , rn, . . . with
values in N

∗. These numbers are iteration indices, at which the M recommen-
dations from the M solvers are compared. Consider a sequence s1, . . . , sn, . . .
with values in N

∗; ∀n ∈ N
∗, sn is the number of resamplings of f(x̃i,n),∀i ∈

{1, . . . , M} at iteration rn; these resamplings are used for comparing these rec-
ommendations. More precisely, NOPA works as follows:

– Iteration 1: one evaluation for solver 1, one evaluation for solver 2, . . . , one
evaluation for solver M .

– Iteration 2: one evaluation for solver 1, one evaluation for solver 2, . . . , one
evaluation for solver M .

– . . .
– Iteration r1: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(r1), . . . , x̃M,k(r1)}, each of them s1

times; for m ∈ {r1, . . . , r2−1}, the recommendation of the selection algorithm
is x̃i∗

r1
,m with i∗r1

= arg min
i∈{1,...,M}

∑s1
�=1 f(x̃i,k(r1))

(�).

– Iteration r1 + 1: one evaluation for solver 1, one evaluation for solver 2, . . . ,
one evaluation for solver M .

– . . .
– Iteration r2 − 1: one evaluation for solver 1, one evaluation for solver 2, . . . ,

one evaluation for solver M .
– Iteration r2: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(r2), . . . , x̃M,k(r2)}, each of them s2

times; for m ∈ {r2, . . . , r3−1}, the recommendation of the selection algorithm
is x̃i∗

r2
,m with i∗r2

= arg min
i∈{1,...,M}

∑s2
�=1 f(x̃i,k(r2))

(�).

– . . .
– Iteration rn: one evaluation for solver 1, one evaluation for solver 2, . . . , one

evaluation for solver M .
– Selection Algorithm: Evaluate X = {x̃1,k(rn), . . . , x̃M,k(rn)}, each of them

sn times; for m ∈ {rn, . . . , rn+1 − 1}, the recommendation of the selection
algorithm is x̃i∗

rn
,m with i∗rn

= arg min
i∈{1,...,M}

∑sn

�=1 f(x̃i,k(rn))(�).

Please note that

– Stable choice of solver: The selection algorithm follows the recommendation
of the same solver i∗rt

at all iterations in {rt, . . . , rt+1 − 1}.
– Use of solvers’ current recommendations: But for such iteration indices

m and p in {rt, . . . , rt+1 − 1}, the portfolio does not necessarily recommends
the same point because possibly x̃i∗

rt
,m �= x̃i∗

rt
,p.

Algorithm Portfolios for Noisy Optimization 7

– Please note that, in this algorithm, we compare, at iteration rn, recommenda-
tions chosen at iteration k(rn); and this comparison is based on sn resamplings.

Effect of the lag: due to k(.), we compare recommendations from earlier iter-
ations. This is somehow surprising, because the optimum solver at iteration
k(n) might be different from the optimum solver at iteration n. However, the
key point, in this algorithm, is that comparing recommendations at iteration
k(rn) is much cheaper than comparing recommendations at iteration rn. This
is because at iteration k(rn), points are not that good, and therefore can be
compared with a budget smaller than rn - which is necessary for not wasting
evaluations.

We see that there are two kinds of evaluations:

– Portfolio budget: this corresponds to the M evaluations per iteration, ded-
icated to running the M solvers (one evaluation per solver and per iteration).

– Comparison budget (algorithm selection step): this corresponds to the
sn evaluations per solver. This is a key difference with deterministic optimiza-
tion; in deterministic optimization, this budget is zero as the exact fitness
value is readily available.

We have Mrn evaluations in the portfolio budget for the rn first iterations. We
will see below conditions under which the other costs can be made negligible,
whilst preserving the same regret as the best of the M solvers.

3.3 Theoretical Analysis: The Log(M)-Shift

Main property: regret of NOPA. Let (rn)n∈N∗ and (sn)n∈N∗ besomesequences
as in Sect. 3.2. Assume that:

– ∀x ∈ D, V ar f(x) ≤ 1;
– for some positive sequence (εn)n∈N∗ , almost surely, there exists some n0 ∈ N

∗

such that:

∀n ≥ n0, SRSolvers
k(rn) < min

i�∈ argmin
j∈{1,...,M}

SRj,k(rn)

SRi,k(rn) − 2εn; (3)

and ∀n ≥ k(rn0), arg min
i∈{1,...,M}

SRi,n = arg min
i∈{1,...,M}

SRi,n+1. (4)

Then, almost surely there exists some n0 such that for any n > n0, NOPA has
simple regret SRSelection

rn
equal to SRSolvers

rn
with probability at most 1 − M

snε2n

after en = rn ×M × (1 +
∑n

i=1
si

rn
) evaluations.

Corollary 1: Asymptotic case.
Under assumptions above and if snε2n → ∞ for some sequence εn satisfying
Eq. 3, and 1

rn

∑n
i=1 si = o(1), then the regret SRSelection

m of the portfolio after
Mm(1 + o(1)) evaluations is at most SRSolvers

m with probability converging to 1
as m→∞.

8 M.-L. Cauwet et al.

Corollary 2: the log(M) shift.
Let r > 1 and r′ > 0, ∀n ∈ N

∗, the following parametrization satisfies the
assumptions of Corollary 1 for some sequence εn = Θ(1

n) satisfying Eq. 3:

– rn = n1+2r+r′
,

– sn = n2r and
– k(n) =
n1/(1+2r+r′)�.

Notice that the comparison budget (sum of the sn) increases polynomially,
slower than the portfolio budget. Moreover, in the case of a constant variance
noise, typical rates are SRn scaling as O(1/n) (see e.g. [9,12,29]). Hence, with
these parameters or others parameters which satisfy the assumptions of Corol-
lary 1, on classical log-log graphs (x-axis: log(number of evaluations); y-axis:
log(simple regret)), cf Eq. 2, the portfolio should perform similarly to the best
solver, within the log(M) shift on the x-axis.

Remark on Corollary 2: Corollary 2 holds under assumption Eq. 3. This
means that the two best solvers have a difference of order 1/n. In order to
get similar results when solvers are very close to each other (εn smaller), it is
necessary to use a slower k function.

Proof of the main property: First, notice that the total number of evaluations,
up to the construction of x̃i∗

rn
,rn

at iteration rn, is: M(rn +
∑n

i=1 si) whereas
each solver has spent rn evaluations.

Let us denote Ês [f(x)] the empirical evaluation of E [f(x)] over s resam-
plings, i.e. Ês [f(x)] := 1

s

∑s
j=1 (f(x))(j).

By Chebyshev’s inequality,

P (|E [
f(xi,k(rn))

]− Êsn

[
f(xi,k(rn))

] | > εn) ≤ V ar
[
f

(
xi,k(rn)

)]

snε2n
≤ 1

snε2n
.

By union bound,

P (∃i ∈ {1, . . . ,M}; |E [
f(xi,k(rn))

]− Êsn

[
f(xi,k(rn))

] | > εn) ≤ M

snε2n
.

With notation i∗ = i∗rn
:= arg min

i∈{1,...,M}
Êsn

[
f(x̃i,k(rn))

]
, it follows that, with prob-

ability 1− M
snε2n

:

E
[
f(x̃i∗,k(rn))

] ≤ Êsn

[
f(x̃i∗,k(rn))

]
+ εn;

E
[
f(x̃i∗,k(rn))

] ≤ Êsn

[
f(x̃j,k(rn))

]
+ εn, ∀j ∈ {1, . . . ,M};

E
[
f(x̃i∗,k(rn))

] ≤ E
[
f(x̃j,k(rn))

]
+ 2εn, ∀j ∈ {1, . . . , M};

E
[
f(x̃i∗,k(rn))

]− E [f(x∗)] ≤ min
j∈{1,...,M}

SRj,k(rn) + 2εn;

SRi∗,k(rn) < min
i�∈ argmin

j∈{1,...,M}
SRj,k(rn)

SRi,k(rn). (5)

Algorithm Portfolios for Noisy Optimization 9

By Eqs. 3 and 5, i∗ ∈ arg min
i∈{1,...,M}

SRi,k(rn) with probability 1 − M
snε2n

, by Eq. 4,

i∗ ∈ arg min
i∈{1,...,M}

SRi,rn
. �

3.4 Real World Constraints and Introducing Sharing

Real world introduces various constraints. Most solvers do not allow you to
run one single fitness evaluation at a time, so that it becomes difficult to have
exactly the same number of fitness evaluations per solver. We will here adapt
the algorithm above for such a case; an additional change is the possible use of
“Sharing” options (i.e. sharing information between the different solvers). The
proposed algorithm is as follows:

– Iteration 1: one iteration for solver 1, one iteration for solver 2, . . . , one iter-
ation for solver M .

– Iteration 2: one iteration for each solver which received less than 2 evaluations.
– . . .
– Iteration i: one iteration for each solver which received less than i evaluations.
– . . .
– Iteration r1: one iteration for each solver which received less than r1 evalua-

tions.
– Selection Algorithm: Evaluate X = {x̃1,k(r1), . . . , x̃M,k(r1)}, each of them s1

times; the recommendation of NOPA is x̃i∗,m for iterations m ∈ {r1, . . . , r2 −
1}, where i∗ = argmin

i∈{1,...,M}

∑s1
j=1 f(x̃i,k(r1))

(j). If sharing is enabled, all solvers

receive x̃i∗,r1 as next iterate.
– Iteration r1 + 1: one iteration for each solver which received less than r1 + 1

evaluations.
– . . .
– Iteration r2: one iteration for each solver which received less than r2 evalua-

tions.
– Selection Algorithm: Evaluate X = {x̃1,k(r2), . . . , x̃M,k(r2)}, each of them s2

times; the recommendation of NOPA is x̃i∗,m for iterations m ∈ {r2, . . . , r3 −
1}, where i∗ = argmin

i∈{1,...,M}

∑s2
j=1 f(x̃i,k(r2))

(j). If sharing is enabled, all solvers

receive x̃i∗,r2 as next iterate.
– . . .
– Iteration rn: one iteration for each solver which received less than rn evalua-

tions.
– Selection Algorithm: Evaluate X = {x̃1,k(rn), . . . , x̃M,k(rn)}, each of them sn

times; the recommendation of NOPA is x̃i∗,m for iterations m ∈ {rn, . . . , rn+1−
1}, where i∗ = argmin

i∈{1,...,M}

∑sn

j=1 f(x̃i,k(rn))(j). If sharing is enabled, all solvers

receive x̃i∗,rn
as next iterate.

10 M.-L. Cauwet et al.

Table 1. Experiments on f(x) = ||x||2 + ||x||zN in dimension 2 and dimension 15. We
see that the portfolio successfully keeps the best of each world (nearly same slope as
the best). Importantly, without lag (i.e. if we use k(n) = n), this property was not
reproduced. Comp. time refers to the computational time.

Comp. Algorithm Obtained slope for d = 2 Obtained slope for d = 15

time z = 0 z = 1 z = 2 z = 0 z = 1 z = 2

10 Portfolio -1.00±0.28 -1.63±0.06 -2.69±0.07 -0.72±0.02 -1.06±0.01 -1.90±0.02

10 P.+Sharing -0.93±0.31 -1.64±0.05 -2.71±0.07 -0.72±0.02 -1.05±0.03 -1.90±0.03

10 Fabian1 -1.24±0.05 -1.25±0.06 -1.23±0.06 -0.83±0.02 -1.03±0.02 -1.02±0.02

10 Fabian2 -0.17±0.09 -1.75±0.10 -3.16±0.06 0.11±0.02 -1.30±0.02 -2.39±0.02

10 Newton -0.20±0.09 -1.84±0.34 -1.93±0.00 0.00±0.02 -1.27±0.23 -1.33±0.00

10 RSAES -0.41±0.08 -0.61±0.13 -0.60±0.16 0.15±0.01 0.14±0.02 0.15±0.01

20 Portfolio -0.92±0.26 -1.58±0.05 -2.66±0.06 -0.70±0.02 -1.02±0.02 -1.85±0.02

20 P.+Sharing -0.94±0.22 -1.60±0.00 -2.67±0.06 -0.69±0.02 -1.02±0.02 -1.84±0.02

20 Fabian1 -1.20±0.07 -1.25±0.10 -1.24±0.05 -0.83±0.03 -1.01±0.02 -1.02±0.02

20 Fabian2 -0.15±0.06 -1.76±0.06 -3.18±0.06 0.11±0.02 -1.32±0.01 -2.45±0.01

20 Newton -0.14±0.05 -1.96±0.00 -1.96±0.00 0.00±0.02 -1.32±0.24 -1.39±0.00

20 RSAES -0.41±0.07 -0.54±0.11 -0.54±0.04 0.12±0.01 0.12±0.02 0.13±0.01

40 Portfolio -0.91±0.25 -1.60±0.00 -2.63±0.05 -0.69±0.01 -1.03±0.01 -1.86±0.03

40 P.+Sharing -0.99±0.18 -1.58±0.06 -2.66±0.06 -0.69±0.01 -1.02±0.02 -1.88±0.02

40 Fabian1 -1.21±0.06 -1.21±0.03 -1.19±0.07 -0.82±0.02 -1.00±0.02 -0.99±0.02

40 Fabian2 -0.18±0.07 -1.78±0.09 -3.18±0.07 0.11±0.02 -1.36±0.02 -2.52±0.02

40 Newton -0.17±0.08 -1.99±0.00 -1.68±0.61 0.00±0.02 -1.32±0.33 -1.45±0.00

40 RSAES -0.41±0.08 -0.64±0.12 -0.55±0.11 0.11±0.01 0.11±0.01 0.11±0.01

80 Portfolio -0.92±0.25 -1.61±0.05 -2.65±0.05 -0.68±0.02 -1.02±0.02 -1.85±0.02

80 P.+Sharing -0.83±0.28 -1.60±0.05 -2.64±0.04 -0.68±0.03 -1.01±0.01 -1.86±0.02

80 Fabian1 -1.15±0.05 -1.20±0.05 -1.22±0.04 -0.82±0.02 -0.99±0.01 -1.00±0.02

80 Fabian2 -0.17±0.09 -1.76±0.07 -3.11±0.09 0.10±0.02 -1.38±0.02 -2.58±0.01

80 Newton -0.12±0.06 -2.01±0.00 -2.01±0.00 0.00±0.01 -1.42±0.29 -1.50±0.00

80 RSAES -0.37±0.06 -0.54±0.12 -0.56±0.14 0.10±0.01 0.11±0.01 0.09±0.01

160 Portfolio -1.01±0.07 -1.61±0.00 -2.67±0.12 -0.65±0.02 -1.01±0.07 -1.89±0.03

160 P.+Sharing -0.90±0.20 -1.60±0.03 -2.66±0.07 -0.67±0.02 -1.02±0.01 -1.89±0.02

160 Fabian1 -1.14±0.04 -1.20±0.05 -1.19±0.05 -0.83±0.01 -0.98±0.01 -0.98±0.01

160 Fabian2 -0.21±0.08 -1.79±0.04 -2.97±0.06 0.09±0.02 -1.42±0.02 -2.62±0.02

160 Newton -0.13±0.08 -2.04±0.00 -2.04±0.00 0.00±0.01 -1.48±0.24 -1.55±0.00

160 RSAES -0.37±0.04 -0.61±0.13 -0.56±0.12 0.09±0.01 0.09±0.01 0.09±0.01

4 Experimental Results

For our experiments below, we use four noisy optimization solvers and portfolio
of these solvers with and without information sharing:

– Solver 1: Fabian’s solver, as detailed in Algorithm3, with parametrization
γ = 0.1, a = 1, c = 100. This variant will be termed Fabian1.

– Solver 2: Another Fabian’s solver with parametrization γ = 0.49, a = 1, c = 2.
This variant will be termed Fabian2.

Algorithm Portfolios for Noisy Optimization 11

– Solver 3: A version of Newton’s solver adapted for black-box noisy optimiza-
tion (gradients and Hessians are approximated on samplings of the objective
function), as detailed in Algorithm1, with parametrization B = 1, β = 2,
A = 100, α = 4. For short this solver will be termed Newton.

– Solver 4: A self-adaptive evolution strategy with resampling as explained in
Algorithm 2, with parametrization λ = 10d, μ = 5d, K = 10, ζ = 2 (in
dimension d). This solver will be termed RSAES (resampling self-adaptive
evolution strategy).

– Portfolio: Portfolio of solvers 1, 2, 3, 4. Functions are k(n) =
n0.1�, rn = n3,
sn = 15n2 at iteration n.

– P.+Sharing: Portfolio of solvers 1, 2, 3, 4, with information sharing enabled.
Same functions.

We approximate the slope of the linear convergence in log-log scale by the log-
arithm of the average simple regret divided by the logarithm of the number of
evaluations.

Experiments have been performed on

f(x) = ||x||2 + ||x||zN (6)

with N a Gaussian standard noise. The results in dimension 2 and dimension
15 are shown in Table 1.

We see on these experiments:

– that the portfolio algorithm successfully reaches almost the same slope as the
best of its solvers;

– that for z = 2 the best algorithm is the second variant of Fabian (consistently
with [12]);

– that for z = 1 the approximation of Newton’s algorithm performs best;
– that for z = 0 the first variant of Fabian’s algorithm performs best (consis-

tently with [12]);
– that the sharing has little or no impact.

5 Conclusion

We have seen that noisy optimization provides a very natural framework for port-
folio methods. Different noisy optimization algorithms have extremely different
rates on different test cases, depending on the noise level, on the dimension. We
show mathematically and empirically a log(M) shift when using M solvers, when
working on a classical log-log scale (classical in noisy optimization). Contrarily
to noise-free optimization (where a log(M) shift would be a trivial result), such
a shift is not so easily obtained in noisy optimization.

Importantly, it is necessary, for getting the log(M) shift, that:

– the selection algorithm compares old recommendations (and selects a solver
from this point of view),

– the portfolio recommends the current recommendation of this selected solver.

12 M.-L. Cauwet et al.

Sharing information in portfolios of noisy optimization algorithms is not so easy.
A further work consists in identifying relevant information for sharing; maybe
the estimate of the asymptotic fitness value of a solver is the most natural infor-
mation for sharing; if a fitness value A is already found and a solver claims that
it will never do better than A we can stop its run and save up computational
power. This should allow better than the log(M) shift. Another further work is
the extension beyond simple unimodal objective functions; the crucial assump-
tion for our result is that the best algorithm does not change too often, this
might not always be the case.

6 Appendix

Algorithm 1. Newton algorithm with gradient and Hessian approximated by
finite differences and revaluations.
1: Parameters: a dimension d ∈ N

∗, A > 0, B > 0, α > 0, β > 0, ε > 0
2: Input: ĥ← identity matrix, an initial x1 ∈ R

d

3: n← 1
4: while (true) do
5: Compute

σn = A/nα

6: Evaluate the gradient g at xn by finite differences, averaging over �Bnβ� samples
at distance Θ(σn) of xn

7: for i = 1 to d do
8: Evaluate hi,i by finite differences at xn + σei and xn − σei, averaging each

evaluation over �Bnβ� resamplings
9: for j = 1 to d do

10: if i == j then
11: Update ĥi,j using ĥi,i = (1− ε)ĥi,i + εhi,i

12: else
13: Evaluate hi,j by finite differences thanks to evaluations at each of xn ±

σei ± σej , averaging over �Bnβ/10� samples
14: Update ĥi,j using ĥi,j = (1− ε

d
)ĥi,j + ε

d
hi,j

15: end if
16: end for
17: end for
18: δ ← solution of ĥδ = −g
19: if δ > Cσn then
20: δ = Cσn

δ
||δ||

21: end if
22: Apply xn+1 = xn + δ
23: n← n + 1
24: end while

Algorithm Portfolios for Noisy Optimization 13

Algorithm 2. Self-adaptive Evolution Strategy with revaluations. N denotes
some independent standard Gaussian random variable, with dimension as
required in equations above.
1: Parameters: K > 0, ζ ≥ 0, λ ≥ μ > 0, a dimension d ∈ N

∗

2: Input: an initial parent population x1,i ∈ R
d and an initial σ1,i = 1, i ∈ {1, . . . , μ}

3: n← 1
4: while (true) do
5: Generate λ individuals ij , j ∈ {1, . . . , λ}, independently using

σj = σn,mod(j−1,μ)+1 × exp

(
1

2d
N
)

and ij = xn,mod(j−1,μ)+1 + σjN

6: Evaluate each of them �Knζ� times and average their fitness values
7: Define j1, . . . , jλ so that

E�Knζ�[f(ij1)] ≤ E�Knζ�[f(ij2)] · · · ≤ E�Knζ�[f(ijλ)]

where Em denotes the average over m resamplings
8: Update: compute xn+1,k and σn+1,k using

σn+1,k = σjk and xn+1,k = ijk , k ∈ {1, . . . , μ}
9: n← n + 1

10: end while

Algorithm 3. Fabian’s stochastic gradient algorithm with finite differences.
Several variants have been defined, in particular versions in which only one
point (or a finite number of points independently of the dimension) is evaluated
at each iteration [9, 29]. We refer to [12] for more details and in particular for
the choice of weights and scales.
1: Parameters: a dimension d ∈ N

∗, 1
2

> γ > 0, a > 0, c > 0, m ∈ N
∗, weights

w1 > · · · > wm summing to 1, scales 1 ≥ u1 > · · · > um > 0
2: Input: an initial x1 ∈ R

d

3: n← 1
4: while (true) do
5: Compute

σn = c/nγ

6: Evaluate the gradient g at xn by finite differences, averaging over 2m samples
per axis. ∀i ∈ {1, . . . , d}, ∀j{1 . . . m}

x(i,j)+
n = xn + ujei and x(i,j)−

n = xn − ujei

gi =
1

2σn

m∑
j=1

wj

(
f(x(i,j)+

n)− f(x(i,j)−
n)

)

7: Apply xn+1 = xn − a
n
g

8: n← n + 1
9: end while

14 M.-L. Cauwet et al.

References

1. Aha, D.W.: Generalizing from case studies: a case study. In: Proceedings of the
9th International Workshop on Machine Learning, pp. 1–10. Morgan Kaufmann
Publishers Inc. (1992)

2. Armstrong, W., Christen, P., McCreath, E., Rendell, A.P.: Dynamic algorithm
selection using reinforcement learning. In: International Workshop on Integrating
AI and Data Mining, pp. 18–25 (2006)

3. Arnold, D.V., Beyer, H.-G.: A general noise model and its effects on evolution
strategy performance. IEEE Trans. Evol. Comput. 10(4), 380–391 (2006)

4. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. 3, 397–422 (2003)

5. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: Gambling in a rigged casino:
the adversarial multi-armed bandit problem. In: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pp. 322–331. IEEE Computer
Society Press, Los Alamitos (1995)

6. Beyer, H.-G.: The Theory of Evolutions Strategies. Springer, Heidelberg (2001)
7. Borrett, J., Tsang, E.P.K.: Towards a formal framework for comparing constraint

satisfaction problem formulations. Technical report, University of Essex, Depart-
ment of Computer Science (1996)

8. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in multi-armed bandits prob-
lems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS,
vol. 5809, pp. 23–37. Springer, Heidelberg (2009)

9. Chen, H.: Lower rate of convergence for locating the maximum of a function. Ann.
Stat. 16, 1330–1334 (1988)

10. Cicirello, V.A., Smith, S.F.: The max k-armed bandit: a new model of exploration
applied to search heuristic selection. In: Proceedings of the 20th National Confer-
ence on Artificial Intelligence, pp. 1355–1361. AAAI Press (2005)

11. Conn, A., Scheinberg, K., Toint, P.: Recent progress in unconstrained nonlinear
optimization without derivatives. Math. Program. 79(1–3), 397–414 (1997)

12. Fabian, V.: Stochastic approximation of minima with improved asymptotic speed.
Ann. Math. Stat. 38, 191–200 (1967)

13. Fabian, V.: Stochastic Approximation. SLP. Department of Statistics and Proba-
bility, Michigan State University (1971)

14. Gagliolo, M., Schmidhuber, J.: A neural network model for inter-problem adaptive
online time allocation. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3697, pp. 7–12. Springer, Heidelberg (2005)

15. Gagliolo, M., Schmidhuber, J.: Learning dynamic algorithm portfolios. Ann. Math.
Artif. Intell. 47, 295–328 (2006)

16. Grigoriadis, M.D., Khachiyan, L.G.: A sublinear-time randomized approximation
algorithm for matrix games. Oper. Res. Lett. 18(2), 53–58 (1995)

17. Hamadi, Y.: Search: from algorithms to systems. Ph.D. thesis, Université Paris-Sud
(2013)

18. Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H.A., Selman, B., Chickering, D.M.:
A bayesian approach to tackling hard computational problems. In: Proceedings of
the 17th Conference in Uncertainty in Artificial Intelligence, pp. 235–244. Morgan
Kaufmann Publishers Inc. (2001)

19. Jebalia, M., Auger, A., Hansen, N.: Log-linear convergence and divergence of the
scale-invariant (1+1)-es in noisy environments. Algorithmica, pp. 1–36. Springer,
New York (2010)

Algorithm Portfolios for Noisy Optimization 15

20. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments. A survey.
IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)

21. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

22. Kocsis, L., Szepesvari, C.: Discounted-UCB. In: 2nd Pascal-Challenge Workshop
(2006)

23. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey.
CoRR, abs/1210.7959 (2012)

24. Lai, T., Robbins, H.: Asymptotically efficient adaptive allocation rules. Adv. Appl.
Math. 6, 4–22 (1985)

25. Nudelman, E., Leyton-Brown, K., H. Hoos, H., Devkar, A., Shoham, Y.: Under-
standing random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

26. Pulina, L., Tacchella, A.: A self-adaptive multi-engine solver for quantified boolean
formulas. Constraints 14(1), 80–116 (2009)

27. Samulowitz, H., Memisevic, R.: Learning to solve QBF. In: Proceedings of the 22nd
National Conference on Artificial Intelligence, pp. 255–260. AAAI (2007)

28. Sendhoff, B., Beyer, H.-G., Olhofer, M.: The influence of stochastic quality func-
tions on evolutionary search. In: Tan, K., Lim, M., Yao, X., Wang, L. (eds.) Recent
Advances in Simulated Evolution and Learning. Advances in Natural Computa-
tion, pp. 152–172. World Scientific, New York (2004)

29. Shamir, O.: On the complexity of bandit and derivative-free stochastic convex
optimization. CoRR, abs/1209.2388 (2012)

30. Streeter, M.J., Golovin, D., Smith, S.F.: Restart schedules for ensembles of problem
instances. In: AAAI 2007, pp. 1204–1210. AAAI Press (2007)

31. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

32. Utgoff, P.E.: Perceptron trees: a case study in hybrid concept representations. In:
National Conference on Artificial Intelligence, pp. 601–606 (1988)

33. Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid
approach. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm, pp. 1–10. ACM (2006)

34. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

35. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-mip: automated
algorithm configuration and selection for mixed integer programming. In: RCRA
Workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion at the International Joint Conference on Artificial Intel-
ligence (IJCAI) (2011)

Ranking Algorithms by Performance

Lars Kotthoff(B)

INSIGHT Centre for Data Analytics, Cork, Ireland
larsko@4c.ucc.ie

1 Introduction

The Algorithm Selection Problem [8] is to select the most appropriate algorithm
for solving a particular problem. It is especially relevant in the context of algo-
rithm portfolios [2,3], where a single solver is replaced with a set of solvers and a
mechanism for selecting a subset to use on a particular problem. A common way
of doing algorithm selection is to train a machine learning model and predict
the best algorithm from a portfolio to solve a particular problem.

Several approaches in the literature, e.g. [4,7], compute schedules for running
the algorithms in the portfolio. Such schedules rely on a ranking of the algorithms
that dictates when to run each algorithm and for how long. Despite this, no com-
parison of different ways of arriving at such a schedule has been performed to
date. In this paper, we investigate how to predict a complete ranking of the
portfolio algorithms on a particular problem. In machine learning, this is known
as the label ranking problem. We evaluate a range of approaches to predict the
ranking of a set of algorithms on a problem. We furthermore introduce a frame-
work for categorizing ranking predictions that allows to judge the expressiveness
of the predictive output. Our experimental evaluation demonstrates on a range
of data sets from the literature that it is beneficial to consider the relationship
between algorithms when predicting rankings.

While a complete ranking is not required to do algorithm selection, it can be
beneficial. Predictions of algorithm performance will always have some degree of
uncertainty associated with them. Being able to choose from among a ranked list
of all portfolio algorithms can be used to mitigate the effect of this by selecting
more than one algorithm.

2 Organizing Predictions

We propose the following levels to categorise the predictive output of a model
with respect to what ranking may be obtained from it.

Level 0. The prediction output is a single label of the best algorithm. It is not
possible to construct a ranking from this and we do not consider it in this
paper.

Level 1. The prediction output is a ranking of algorithms. The relative posi-
tion of algorithms in the ranking gives no indication of the difference in
performance.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 16–20, 2014.
DOI: 10.1007/978-3-319-09584-4 2

Ranking Algorithms by Performance 17

Level 2. The prediction output is a ranking with associated scores. The differ-
ence between ranking scores is indicative of the difference in performance.

In the remainder of this paper, we will denote the framework R and level x
within it Rx. Higher levels strictly dominate the lower levels in the sense that
their predictive output can be used to the same ends as the predictive output at
the lower levels.

In the context of algorithm selection and portfolios, examples for the dif-
ferent levels are as follows. A R0 prediction is suitable for selecting a single
algorithm. R1 allows to select the n best solvers for running in parallel on an
n processor machine. R2 allows to compute a schedule where each algorithm is
allocated resources according to its expected performance. Note that while it is
possible to compute a schedule given just a ranking with no associated expected
performances (i.e. R1), better-quality schedules can usually be obtained if some
kind of performance score is predicted. The expected performance can be related
directly to the time allocated the algorithm rather than allocating a fixed time
that is oblivious of the expected performance.

2.1 Empirical Evaluation

We evaluate the following ten ways of ranking algorithms, five from R1 and five
from R2. The difference between some of these approaches lies in what kind of
predictive models are learned from the same training data.

Order. The ranking of the algorithms is predicted directly as a label. The label
consists of a concatenation of the ranks of the algorithms. This approach
is in R1. Reference [6] use a conceptually similar approach to compute the
ranking with a single prediction step.

Order score. For each training example, the algorithms in the portfolio are
ranked according to their performance. The rank of an algorithm is the
quantity to predict. We used both regression and classification approaches.
The ranking is derived directly from the predictions. These two approaches
are in R1.

Faster than classification. A classifier is trained to predict the ranking as a
label similar to Order score given the predictions of which is faster for each
pair of algorithms. This approach is in R1.

Faster than difference classification. A classifier is trained to predict the
ranking as a label given the predictions for the performance differences for
each pair of algorithms. This approach is in R1.

Solve time. The time to solve a problem is predicted and the ranking derived
directly from this. In addition to predicting the time itself, we also predicted
the log. These approaches are in R2. Numerous approaches predict the solve
time to identify the best algorithm, for example [9].

Probability of being best. The probability of being the best algorithm for a
specific instance in a [0, 1] interval is predicted. If an algorithm is the best
on an instance, the probability should be 1, else 0. The ranking is derived
directly from this. This approach is in R2.

18 L. Kotthoff

Faster than majority vote. The algorithms are ranked by the number of
times they were predicted to be faster than another algorithm. This is the
approach used to identify the best algorithm in recent versions of SATzilla
[10]. This approach is in R2. While the individual predictions are simple
labels (faster or not), the aggregation is able to provide fine-grained scores.

Faster than difference sum. The algorithms are ranked by the sum over the
predicted performance differences for each pair of algorithms. Algorithms
that are often or by a lot faster will have a higher sum and rank higher. This
approach is in R2.

Our evaluation uses four data sets taken from the literature. We use the
SAT-HAN and SAT-IND SATzilla 2009 training data sets with 19 and 18 solvers,
respectively. The third data set comes from the QBF solver evaluation 2010 with
5 solvers. Finally, we take the CSP data set from [1] with 2 solvers.

We use the Weka machine learning toolkit to train models and make predic-
tions. We evaluated our approaches using the AdaBoostM1 BayesNet, Decision
Table, IBk with 1, 3, 5 and 10 neighbours, J48, J48graft, JRip, LibSVM with
radial basis function kernel, MultilayerPerceptron, OneR, PART, RandomForest,
RandomTree, REPTree, and SimpleLogistic algorithms for the approaches that
use classification and the AdditiveRegression, GaussianProcesses, LibSVM
with ε and ν kernels, LinearRegression, M5P, M5Rules, REPTree, and SMOreg
algorithms for regression. We used the standard parameters in Weka.

Where several layers of machine learning algorithms are required, they are
stacked as follows. The first layer is trained on the original training set with the
features of the original problems. The prediction of the models of this first layer
is used to train a model in a second layer that takes the predictions of the earlier
layer as input. The output is the final prediction that we use to compute the
ranking.

The performance of each approach on each data set is evaluated using strat-
ified ten-fold cross-validation. We assess the quality of a predicted ranking by
comparing it to the actual ranking (derived from the measured performance)
using the Spearman correlation test.

3 Results and Conclusion

We present aggregate results in Table 1. For each instance, the Spearman rank
correlation coefficient is computed between the predicted and the actual ranking.
We show the median of the distribution of those coefficients for all data sets and
rank prediction approaches. Only the values for the respective best machine
learning model are shown. In addition to the scores for individual data sets, we
show the sum over all data sets.

The overall best approach is the Faster than classification approach, followed
by the Order approach. The Faster than majority vote, Order score (regres-
sion), and Faster than difference classification approaches exhibit good perfor-
mance as well. The results clearly demonstrate that the relationship between the

Ranking Algorithms by Performance 19

Table 1. Median of the ranking quality scores for all data sets and rank prediction
approaches for the respective best machine learning algorithm for a particular pre-
diction approach. Higher scores are better. All numbers are rounded to three decimal
places. The best value for each column is typeset in bold.

CSP QBF SAT-HAN SAT-IND
∑

R1 Order 1 1 0.888 0.897 3.785

Order score (classification) 1 0.4 0.823 0.759 2.981

Order score (regression) 1 0.4 0.837 0.816 3.053

Faster than classification 1 1 0.891 0.899 3.79

Faster than difference classification 1 0.4 0.83 0.789 3.019

R2 Solve time 1 −0.15 0.453 0.424 1.727

Solve time (log) 1 −0.1 0.791 0.752 2.444

Probability of being best 1 0.1 0.114 0.352 1.566

Faster than majority vote 1 0.8 0.888 0.878 3.566

Faster than difference sum 1 0.1 0.472 0.43 2.002

portfolio algorithms is important to take into account when predicting the rank-
ing of algorithms. In general, the approaches that consider the algorithms only
in isolation perform worse than the approaches that consider the portfolio as a
whole or pairs of algorithms.

Overall, the approaches in R1 have better performance than those in R2. The
likely reason for this is that the predictions in R2 are inherently more complex
and there is more margin for error. The Faster than classification, Faster than
majority vote and Order are the approaches that deliver the best overall perfor-
mance. While some of these are complex and rely on layers of machine learning
models, the Order approach is actually the simplest of those evaluated here. Its
simplicity makes it easy to implement and an ideal starting point for researchers
planning to predict rankings of algorithms. In addition to the approaches named
above, predicting the order through a ranking score predicted by a regression
algorithm achieved good performance.

This paper presented a first attempt at organising algorithm selection mod-
els with respect to how their predictive output can be used when computing
rankings. We evaluated a number of different approaches and identified promis-
ing ones that deliver good performance in practice. An extended version that
presents the results in more detail can be found in [5].

Acknowledgments. Lars Kotthoff is supported by European Union FP7 grant
284715.

20 L. Kotthoff

References

1. Gent, I.P., Jefferson, C., Kotthoff, L., Miguel, I., Moore, N., Nightingale, P., Petrie,
K.: Learning when to use lazy learning in constraint solving. In: ECAI, pp. 873–878,
August 2010

2. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
3. Huberman, B.A., Lukose, R.M., Hogg, T.: An economics approach to hard com-

putational problems. Science 275(5296), 51–54 (1997)
4. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-

rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

5. Kotthoff, L.: Ranking algorithms by performance. Technical report, November
2013. arXiv:1311.4319

6. Kotthoff, L., Gent, I.P., Miguel, I.: An evaluation of machine learning in algorithm
selection for search problems. AI Commun. 25(3), 257–270 (2012)

7. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-
based reasoning in an algorithm portfolio for constraint solving. In: Proceedings of
the 19th Irish Conference on Artificial Intelligence and Cognitive Science, January
2008

8. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
9. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)
10. Xu, L. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Hydra-MIP: automated algo-

rithm configuration and selection for mixed integer programming. In: Workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial
Explosion, pp. 16–30 (2011)

http://arxiv.org/abs/1311.4319

Portfolio Approaches for Constraint
Optimization Problems

Roberto Amadini, Maurizio Gabbrielli, and Jacopo Mauro(B)

Department of Computer Science and Engineering/Lab Focus INRIA,
University of Bologna, Bologna, Italy
{amadini,gabbri,jmauro}@cs.unibo.it

Abstract. Within the Constraints Satisfaction Problems (CSP)
context, a methodology that has proven to be particularly performant
consists in using a portfolio of different constraint solvers. Nevertheless,
comparatively few studies and investigations have been done in the world
of Constraint Optimization Problems (COP). In this work, we provide
a generalization to COP as well as an empirical evaluation of different
state of the art existing CSP portfolio approaches properly adapted to
deal with COP. Experimental results confirm the effectiveness of portfo-
lios even in the optimization field, and could give rise to some interesting
future research.

1 Introduction

Constraint Programming (CP) is a declarative paradigm that allows to express
relations between different entities in form of constraints that must be satisfied.
One of the main goals of CP is to model and solve Constraint Satisfaction Prob-
lems (CSP) [25]. Several techniques and constraint solvers were developed for
solving CSPs and simplified CSPs problems such as the well-known Boolean sat-
isfiability problem (SAT), Satisfiability Modulo Theories (SMT) [7], and Answer
Set Programming (ASP) [5]. One of the more recent trends in this research area -
especially in the SAT field - is trying to solve a given problem by using a portfolio
approach [12,32]. An algorithm portfolio is a general methodology that exploits
a number of different algorithms in order to get an overall better algorithm.
A portfolio of CP solvers can therefore be seen as a particular solver, dubbed
portfolio solver, that exploits a collection of m > 1 different constituent solvers
s1, . . . , sm in order to obtain a globally better CP solver. When a new unseen
instance i comes, the portfolio solver tries to predict which are the best con-
stituent solvers s1, . . . , sk (k ≤ m) for solving i and then runs such solver(s) on
i. This solver selection process is clearly a fundamental part for the success of
the approach and it is usually performed by exploiting Machine Learning (ML)
techniques.

Work partially supported by Aeolus project, ANR-2010-SEGI-013-01.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 21–35, 2014.
DOI: 10.1007/978-3-319-09584-4 3

22 R. Amadini et al.

Exploiting the fact that different solvers are better at solving different prob-
lems, portfolios have proven to be particularly effective. For example, the over-
all winners of international solving competitions like [11,33] are often portfolio
solvers. Despite the proven effectiveness of the portfolio approach in the CSP
case, and in particular in the SAT field, a few studies have tried to apply portfo-
lio techniques to Constraint Optimization Problems (COPs). In these problems
constraints are used to narrow the space of admissible solutions and then one
has to find a solution that minimizes (maximizes) a specific objective function.
This is done by using suitable constraint solvers integrated with techniques for
comparing different solutions. Clearly a COP is more general than a CSP. More-
over, when considering portfolio approaches, some issues which are obvious for
CSPs are less clear for COPs. For example, as we discuss later, defining a suit-
able metric which allows to compare different solvers is not immediate. These
difficulties explain in part the lack of exhaustive studies on portfolios consisting
of different COP solvers. Indeed, to the best of our knowledge, a few works deal
with portfolios of COP solvers and some of them refer only to a specific problem
like the Traveling Salesman Problem [17], while others use runtime prediction
techniques for tuning the parameters of a single solver [39].

Nevertheless, this area is of particular interest since in many real-life appli-
cations we do not want to find just “a” solution for a given problem but “the”
optimal solution, or at least a good one. In this work we tackle this problem and
we perform a first step toward the definition of COP portfolios. We first formal-
ize a suitable model for adapting the “classical” satisfaction-based portfolios to
address COPs, providing also a metric to measure portfolio performances. Then,
by using an exhaustive benchmark of 2670 instances, we test the performances
of different portfolio approaches using portfolios composed from 2 to 12 different
solvers. In particular, we adapt two among the best effective SAT portfolios,
namely SATzilla [38] and 3S [18], to the optimization field. We compare their
performances w.r.t. some off-the-shelf approaches - built on top of the widely
used ML classifiers - and w.r.t. SUNNY, a promising portfolio approach recently
introduced in [2] that (unlike those mentioned above) does not require an offline
training phase.

Empirical results indicate that these approaches always significantly outper-
form the Single Best Solver available. The performances of the SATzilla and
3 S inspired approaches are better than the ones obtained using off-the shelf
approaches, even though not as much as when used for solving CSPs [1]. Finally,
we observe that the generalization of SUNNY to COPs appears to be particu-
larly effective, since this algorithm has indeed reached the peak performances in
our experiments.

Paper structure. In Sect. 2 we introduce the metrics adopted to evaluate the
portfolio approaches for COPs. Section 3 presents the methodology and the port-
folio algorithms we used to conduct the tests. The obtained results are detailed
in Sect. 4 while related work is discussed in Sect. 5. We finally give concluding
remarks and discuss future work in Sect. 6.

Portfolio Approaches for Constraint Optimization Problems 23

2 Solution Quality Evaluation

When satisfaction problems are considered, the definition and the evaluation
of a portfolio solver is straightforward. Indeed, the outcome of a solver run
for a given time on a given instance can be either ‘solved’ (i.e., a solution is
found or the unsatisfiability is proven) or ‘not solved’ (i.e., the solver does not
say anything about the problem). Building and evaluating a CSP portfolio is
then conceptually easy: the goal is to maximize the number of solved instances,
solving them in the least time possible. Unfortunately, in the COP world the
dichotomy solved/not solved is no longer suitable. A COP solver in fact can
provide sub-optimal solutions or even give the optimal one without being able
to prove its optimality. Moreover, in order to speed up the search COP solvers
could be executed in a non-independent way. Indeed, the knowledge of a sub-
optimal solution can be used by a solver to further prune its search space, and
therefore to speed up the search process. Thus, the independent (even parallel)
execution of a sequence of solvers may differ from a “cooperative” execution
where the best solution found by a given solver is used as a lower bound by the
solvers that are lunched afterwards.

Although the ideal goal is to prove the optimality in the least time possible,
in the real world there is often the need of compromises. For many real life
applications it is far better to get a good solution in a relatively short time rather
than consume too much time to find the optimal value (or proving its optimality).
In order to study the effectiveness of the portfolio approaches we therefore need
new and more sophisticated evaluation metrics. In this work we then propose
to give to each COP solver (portfolio based or not) a reward proportional to
the distance between the best solution it finds and the best known solution.
An additional reward is given if the optimality is proven, while a punishment
is given if no solution are found without proving unsatisfiability.In particular,
given an instance i, we assign to a solver s a score of 1 if it proves optimality for
i, 0 if s does not find solutions. Otherwise, we give to s a score corresponding
to the value of its best solution scaled into the range [0.25, 0.75], weighting 0.25
and 0.75 respectively the worst and the best known solutions of the known COP
solvers.

In order to formally define the scoring function and to evaluate the quality
of a solver, we denote with U the universe of the available solvers and with
T the solving timeout in seconds that we are willing to wait at most. We use
the function sol to define the solver outcomes. In particular we associate to
sol(s, i, t) the outcome of the solver s for the instance i at time t. The value
sol(s, i, t) can be either unk, if s does not find any solution for i; sat, if s finds
at least a solution for i but does not prove the optimality; opt or uns if s proves
optimality or unsatisfiability. Similarly, we use the function val to define the
values of the objective function. In particular, with val(s, i, t) we indicate the
best value of the objective function found by solver s for instance i at time t. If
s does not find any solution for i at time t, the value val(s, i, t) is undefined. We
assume the solvers behave monotonically, i.e., as time goes the solution quality
gradually improves and never degrades.

24 R. Amadini et al.

We are now ready to associate to every instance i and solver s a weight that
quantitatively represents how good is s when solving i. We define the scoring
value of s (shortly, score) on the instance i at a given time t as a function score
such that score(s, i, t) can be either:

(i) 0 if sol(s, i, t) = unk
(ii) 1 if sol(s, i, t) ∈ {opt, uns}
(iii) 0.75 if sol(s, i, t) = sat and MIN(i) = MAX(i)

(iv) max
{

0, 0.75− 0.5 · val(s, i, t)− MIN(i)
MAX(i)− MIN(i)

}

if sol(s, i, t) = sat, MIN(i) �= MAX(i) and i is a minimization problem

(v) max
{

0, 0.25 + 0.5 · val(s, i, t)− MIN(i)
MAX(i)− MIN(i)

}

if sol(s, i, t) = sat, MIN(i) �= MAX(i) and i is a maximization problem

where MIN(i) and MAX(i) are the minimal and maximal objective function
values found by any solver s at the time limit T .1

l
l

Fig. 1. Solver performances example.

As an example, consider the scenario
in Fig. 1 depicting the performances of
three different solvers run on the same
minimization problem. By choosing T =
500 as time limit, the score assigned to s1
is 0.75 because it finds the solution with
minimal value (40), the score of s2 is 0.25
since it finds the solution with maximal
value (50), and the score of s3 is 0 because
it does not find a solution. If instead
T = 800, the score assigned to s1 becomes
0.75 − (40 − 10) ∗ 0.5/(50 − 10) = 0.375
while the score of s2 is 0.25 and the score of s3 is 0.75. If instead T = 1000, since
s3 proves the optimality of the value 10 at time 900 (see the point marked with
a star in Fig. 1) it receives a corresponding reward reaching then the score 1.

The score of a solver is therefore a measure in the range [0, 1] that is linearly
dependent on the distance between the best solution it founds and the best
solutions found by every other available solver. We decided to scale the values
of the objective function in a linear way essentially for the sake of simplicity.
Other choices, like for instance using the logarithm of the objective function for
scaling or considering the subtended area

∫ T

0
val(s, i, t) dt may also be equally

useful and justifiable in a real scenario. The exploration of the impact of such
alternative choices is however outside the scope of this paper, and left as a future
work. Moreover in this work we assume the independent execution of the solvers,
1 Formally, MIN(i) = minVi and MAX(i) = maxVi where Vi = {val(s, i, T) . s ∈ U}.

Note that a portfolio solver executing more than one solver for t < T seconds could
produce a solution that is worse than MIN(i). This however is very uncommon: in
our experiments we noticed that the 0 score was assigned only to the solvers that
did not find any solution.

Portfolio Approaches for Constraint Optimization Problems 25

leaving as a future research the study of portfolio approaches that exploit the
collaboration between different solver in order to boost the search speed.

In order to compare different portfolio approaches, we then considered the
following evaluation metrics:

– Average Score (AS): the average of the scores achieved by the selected solver(s)
on all the instances of the dataset;

– Percentage of Optima Proven (POP): the percentage of instances of the dataset
for which optimality is proven;

– Average Optimization Time (AOT): the average time needed for proving opti-
mality on every instance of the dataset, using a time penalty of T seconds when
optimality is not proven.

3 Methodology

Taking as baseline the methodology and the results of [1], in this section we
present the main ingredients and the procedure that we have used for conducting
our experiments and for evaluating the portfolio approaches.

3.1 Solvers, Dataset, and Features

In order to build our portfolios we considered all the publicly available and
directly usable solvers of the MiniZinc Challenge 2012. The universe U was com-
posed by 12 solvers, namely: BProlog, Fzn2smt, CPX, G12/FD, G12/LazyFD,
G12/MIP, Gecode, izplus, JaCoP, MinisatID, Mistral and OR-Tools. We used
all of them with their default parameters, their global constraint redefinitions
when available, and keeping track of each solution found by every solver within
a timeout of T = 1800 s.

To conduct our experiments on a dataset of instances as realistic and large as
possible, we have considered all the COPs of the MiniZinc 1.6 benchmark [29].
In addition, we have also added all the instances of the MiniZinc Challenge 2012,
thus obtaining an initial dataset of 4977 instances in MiniZinc format.

In order to reproduce the portfolio approaches, we have extracted for each
instance a set of 155 features by exploiting the features extractor mzn2feat [3].
We preprocessed these features by scaling their values in the range [−1, 1] and
by removing all the constant features. In this way, we ended up with a reduced
set of 130 features on which we conducted our experiments. We have also filtered
the initial dataset by removing, on one hand, the “easiest” instances (i.e., those
for which the optimality was proven during the feature extraction) and, on the
other, the “hardest” (i.e., those for which the features extraction has required
more than T/2 = 900 s). These instances were discarded essentially for two
reasons. First, if an instance is already optimized during the features extraction,
no solver prediction is needed. Second, if the extraction time exceeds half of
the timeout it is reasonable to assume that the recompilation of the MiniZinc

26 R. Amadini et al.

model into FlatZinc format2 would end up in wasting the time available to solve
the instance. The final dataset Δ on which we conducted our experiments thus
consisted of 2670 instances.

3.2 Portfolio Composition

After running every solver on each instance of the dataset Δ keeping track of
all the solutions found, we built portfolios of different size m = 2, . . . , 12. While
in the case of CSPs the ideal choice is typically to select the portfolio of solvers
that maximizes the number of solved instances, in our case such a metric is no
longer appropriate since we have to take into account the quality of the solutions.
We decided to select for each portfolio size m = 2, . . . , 12 the portfolio Pm that
maximizes the total score (possible ties have been broken by minimizing the
solving time). Formally:

Pm = arg max
P∈{S⊆U . |S|=m}

∑

i∈Δ

max{score(s, i, T) . s ∈ P}

We then elected a backup solver, that is a solver designated to handle exceptional
circumstances like the premature failure of a constituent solver. After simulating
different voting scenarios, the choice fell on CPX3 [10] that in the following we
refer also as Single Best Solver (SBS) of the portfolio. As a baseline for our
experiments, we have also introduced an additional solver called Virtual Best
Solver (VBS), i.e., an oracle solver that for every instance always selects and
runs the solver of the portfolio having highest score (by using the solving time
for breaking ties).

3.3 Portfolio Approaches

We tested different portfolio techniques. In particular, we have considered two
state of the art SAT approaches (SATzilla and 3S) as well as some relatively
simple off-the-shelf ML classifiers used as solver selector. Moreover, we have also
implemented a generalization of the recently introduced CSP portfolio solver
SUNNY [2] in order to deal with optimization problems.

We would like to underline that in the case of 3 S and SATzilla approaches
we did not use the original methods which are tailored for the SAT domain. As
later detailed, we have instead adapted these two approaches for the optimization
2 FlatZinc [6] is the low level language that each solver uses for solving a given MiniZ-

inc instance. A key feature of FlatZinc is that, starting from a general MiniZinc
model, every solver can produce a specialized FlatZinc by redefining the global con-
straints definitions. We noticed that, especially for huge instances, the time needed
for extracting features was strongly dominated by the FlatZinc conversion. How-
ever, for the instances of the final dataset this time was in average 10.36 s, with a
maximum value of 504 s and a median value of 3.17 s.

3 Following [1] methodology, CPX won all the elections we simulated using different
criteria, viz.: Borda, Approval, and Plurality.

Portfolio Approaches for Constraint Optimization Problems 27

world trying to modify them as little as possible. For simplicity, in the following,
we refer to these adapted versions with their original names, 3S and SATzilla.
A study of alternative adaptations is outside the scope of this paper.

In the following we then provide an overview of these algorithms.
Off the shelf. As in the case of satisfiability [1], off the shelf approaches

were implemented by simulating the execution of a solver predicted by a ML
classifier. We then built 5 different approaches using 5 well-known ML clas-
sifiers, viz.: IBk, J48, PART, Random Forest, and SMO, and exploiting their
implementation in WEKA [15] with default parameters. In order to train the
models we added for each instance of the dataset a label corresponding to the
best constituent solver w.r.t. the score for such instance; for all the instances not
solvable by any solver of the portfolio we used a special label no solver. In the
cases where the solver predicted by a classifier was labeled no solver, we directly
simulated the execution of the backup solver.

3S (SAT Solver Selector) [18] is a SAT portfolio solver that combines a fixed-
time solver schedule with the dynamic selection of one long-running component
solver: first, it executes for 10 % of the time limit short runs of solvers; then, if
a given instance is not yet solved after such time, a designated solver is selected
for the remaining time by using a k-NN algorithm. 3S was the best-performing
dynamic portfolio at the International SAT Competition 2011.

The major issue when adapting 3 S for optimization problems is to compute
the fixed-time schedule since, different from SAT problems, in this case, the
schedule should also take into account the quality of the solutions. We then
tested different minimal modifications, trying to be as little invasive as possible
and mainly changing the objective metric of the original Integer Programming
(IP) problem used to compute the schedule. The performances of the different
versions we tried were similar. Among those considered, the IP formulation that
has achieved the best performance (with a peak AS of 0.78 % more than the
original one) is the one that: first, tries to maximize the solved instances; then,
tries to maximize the sum of the score of the solved instances; finally, tries to
minimize the solving time.4

SATzilla [38] is a SAT solver that relies on runtime prediction models to
select the solver that (hopefully) has the fastest running time on a given problem
instance. Its last version [37] uses a weighted random forest approach provided
with an explicit cost-sensitive loss function punishing misclassifications in direct
proportion to their impact on portfolio performance. SATzilla won the 2012 SAT
Challenge in the Sequential Portfolio Track.
4 The objective function of the best approach considered was obtained by replacing

that of the IP problem defined in [18] (we use the very same notation) with:

max

[
C1

∑
y

yi + C2

∑
i,S,t

score(S, i, t) · xS,t + C3

∑
S,t

t · xS,t

]

where C1 = −C2, C2 = C, C3 = − 1
C

, and adding the constraint
∑

t xS,t ≤ 1, ∀S.

28 R. Amadini et al.

Unlike 3S, reproducing this approach turned out to be more straightforward.
The only substantial difference concerns the construction of the runtimes matrix
that is exploited by SATzilla to constructs its selector based on m(m − 1)/2
pairwise cost-sensitive decision forests.5 Since our goal is to maximize the score
rather than to minimize the runtime, instead of using such a matrix we have
defined a matrix of “anti-scores” P in which every element Pi,j corresponds to
the score of solver j on instance i subtracted to 1, that is Pi,j = 1−score(j, i, T).
instance pk.

SUNNY [2] is a brand new lazy algorithm portfolio that, different from
previously mentioned approaches, does not need an offline training phase. For a
given instance i and a given portfolio P , SUNNY uses a k-NN algorithm to select
from the training set a subset N(i, k) of the k instances closer to i. Then, on-the-
fly, it computes a schedule of solvers by considering the smallest sub-portfolio
S ⊆ P able to solve the maximum number of instances in the neighborhood
N(i, k) and by allocating to each solver of S a time proportional to the number
of solved instances in N(i, k).

Even in this case, we faced some design choices to tailor the algorithm for
optimization problems. In particular, we decided to select the sub-portfolio S ⊆
P that maximizes the score in the neighborhood and we allocated to each solver
a time proportional to its total score in N(i, k). In particular, while in the CSP
version SUNNY allocates to the backup solver an amount of time proportional to
the number of instances not solved in N(i, k), where h is the maximum number
of instances solved by S in N(p, k). here we have instead assigned to it a slot
of time proportional to k − h where h is the maximum score achieved by the
sub-portfolio S.

3.4 Validation

In order to validate and test each of the above approaches we used a 5-repeated
5-fold cross validation [4]. The dataset Δ was randomly partitioned in 5 disjoint
folds Δ1, . . . ,Δ5 treating in turn one fold Δi, for i = 1, . . . , 5, as the test set and
the union of the remaining folds

⋃
j �=i Δj as the training set. In order to avoid

possible overfitting problems we repeated the random generation of the folds for 5
times, thus obtaining 25 different training sets (consisting of 534 instances each)
and 25 different training sets (consisting of 2136 instances). For every instance of
every test set we then computed the solving strategy proposed by the particular
portfolio approach and we simulated it using a time cap of 1800 s. For estimating
the solving time we have taken into account both the time needed for converting
a MiniZinc model to FlatZinc and the time needed for extracting the features.
In order to evaluate the performances, we then computed the metrics introduced
in the previous section.
5 For more details, we defer the interested reader to [37].

Portfolio Approaches for Constraint Optimization Problems 29

(a) Results considering all the approaches
and the VBS.

(b) Results considering SBS, VBS, and the
best two approaches.

l l

Fig. 2. AS performances.

4 Results

In this section we present the obtained experimental results.6 In Figs. 2, 3, 4 we
summarize the results obtained by the various techniques considering portfolios
of different sizes and by using the Average Score (AS), the Percentage of Optima
Proven (POP), and the Average Optimization Time (AOT) metrics introduced
in Sect. 2. For ease of reading, in all the plots we report only the two best
approaches among all the off-the-shelf classifiers we evaluated, namely Random
Forest (RF) and SMO. The source code developed to conduct and replicate the
experiments is available at http://www.cs.unibo.it/∼amadini/lion 2014.zip.

4.1 Average Score

Figure 2a shows the AS performances of the various approaches, setting as base-
line the performances of the Virtual Best Solver (VBS). Figure 2b for the sake of
readability visualizes the same results considering the VBS baseline, the two best
approaches only (SUNNY and 3S) and the Single Best Solver (SBS) performance
as additional baseline.

All the considered approaches have good performances and they greatly out-
perform the SBS. As in the case of CSP [1,3], it is possible to notice that off-the-
shelf approaches have usually lower performances even though the gap between
the best approaches and them is not that pronounced.
6 To conduct the experiments we used Intel Dual-Core 2.93 GHz computers with 3MB

of CPU cache, 2 GB of RAM, and Ubuntu 12.04 operating system. For keeping track
of the solving times we considered the CPU time by exploiting Unix time command.

http://www.cs.unibo.it/~amadini/lion_2014.zip

30 R. Amadini et al.

(a) Results considering all the approaches
and the VBS.

(b) Results considering SBS, VBS, and the
best two approaches.

l
l

Fig. 3. POP performances.

(a) Results considering all the approaches
and the VBS.

(b) Results considering SBS, VBS, and the
best two approaches.

l l

Fig. 4. AOT performances.

The best portfolio approach is SUNNY that reaches a peak performance of
0.8802 using a portfolio of just 6 solvers and is able to close the 91.35 % of the
gap between the SBS and VBS. 3S however has performances close to those of
SUNNY and in particular its best performance (0.8718 with 6 and 12 solvers)
is very close to the peak performance of SUNNY. Strangely enough, we can
notice that both SUNNY and 3 S have non monotonic performances when the
portfolio sizes increases. This is particularly evident looking at their performance
decrease when a portfolio of size 7 is used instead of one with just 6 solvers.

Portfolio Approaches for Constraint Optimization Problems 31

This instability is obviously a bad property for a portfolio approach. We think
that in this case it may be due to the noise of the addition of a solver that may
disrupt the choices made by the k-NN algorithm on which SUNNY and 3 S rely.

SATzilla often does not reach the performances of SUNNY or 3S, even though
for big portfolio sizes its performances are rather close. Moreover its behavior is
monotonic w.r.t. the increase of the size of the portfolio. Hence, it seems that
SATzilla is more reliable and scalable and, as also noticed in [1], it is the only
approach that does not present a degradation of performances for portfolios with
more than 6 solvers.

4.2 Percentage of Optima Proven

Looking at the number of optima proven it is clear from Fig. 3a and b that there
is a sharp demarcation of SUNNY w.r.t. other approaches. SUNNY appears to
prove many more optimality w.r.t. the other techniques, reaching a maximum
POP of 57.03 %. We think that the performances of SUNNY exploit the fact that
it schedules more than one solver reducing the risk of making wrong choices.
Moreover, it uses this schedule for the entire time window (on the contrary, 3S
uses a static schedule only for 10 % of the time window). Another interesting
fact is that SUNNY mimics the behavior of the VBS. Thus, SUNNY seems able
to properly use the addition of a solver to prove the optimality of instances
exploiting the capability of the newly added solver.

Regarding other approaches, it can be observed by the overlapping of their
curves in Fig. 3a that they are basically equivalent. What may seem surprising
is that the best among them is SMO, which instead turned out to be the worst
by considering the AS (Fig. 2a).

Even in this case, as shown in Fig. 3b, all the portfolio approaches greatly
outperform the SBS. SUNNY in particular is able to close the 85.73 % of the gap
between the SBS and VBS. Finally, note that there is a significant correlation
between AS and POP (the Pearson coefficient computed taking into account
every instance of all the test sets for all the portfolio sizes is about 0.78). Hence,
maximizing the score is almost equivalent to maximizing the number of optima
proven.

4.3 Average Optimization Time

When the AOT metric is considered we can notice that the 3 S approach does
not perform very well compared to the other approaches. We think that this is
due to the fact that 3 S is a portfolio that uses more than one solver and it does
not employ heuristics to decide which solver has to be executed first. SUNNY
instead does not suffer from this problem since it schedules the solvers according
to their performances on the already known instances. However, 3S is still able
to always outperform the SBS for each portfolio size.

While the performance of SATzilla and the off-the-shelf approaches appear
to be very similar, even in this case we can observe the good performances of

32 R. Amadini et al.

SUNNY that is able to close the 77.51 % of the gap SBS/VBS reaching a peak
performance of 832.62 s with a portfolio of 12 solvers.

The (anti-)correlation between AOT and AS is lower than the one between
POP and AS (the Pearson coefficient is −0.72) but still considerable. On the
other hand, the anti-correlation between AOT and POP is very strong (the
Pearson coefficient is −0.99). This means that trying to maximize the average
percentage score is like trying to minimize the average solving time and to max-
imize the number of optima proven.

Finally, we would like to mention that the AOT metric could be too strict
and not so significant. In fact, if a solver finds the best value after few seconds
and stops its execution without proving optimality it is somewhat over-penalized
with the timeout value T . In future it may therefore be interesting to study other
ways to weight and evaluate the solving time (e.g., a rationale metric could be
to consider a properly normalized area under the curve time/value defined by
each solver behavior).

5 Related Work

As far as the evaluation of optimization solvers and portfolio approaches is con-
cerned, there exist a variety of metrics used to rank them. Among those used
in practice by well known solving competitions worth mentioning are those that
rank the solvers by using the number of the solved instances first, considering
solving time later in case of ties [27,33]. In [30] instead the ranking is performed
by using a Borda count, i.e., a single-winner election method in which voters
rank candidates in order of preference. Differently from the metrics defined in
Sect. 2, these metrics address the quality of the solutions in a less direct way
(i.e., by making pairwise comparisons between the score of the different solvers).

In the previous section we have already mentioned SATZilla [38] and 3S [18]
as two of the most effectives portfolio approaches in the SAT and CSP domain.
For a comprehensive survey on portfolio approaches applied to SAT, planning,
and QBF problems we refer the interested reader to the comprehensive survey
[21] and to [1] for CSPs.

As far as optimization problems are concerned, in the 2008 survey on algo-
rithm selection procedures [34] the authors observe that “there have been sur-
prisingly few attempts to generalize the relevant meta-learning ideas developed
by the machine learning community, or even to follow some of the directions of
Leyton-Brown et al. in the constraint programming community.” To the best of
our knowledge, we think that the situation has not improved and we are not
aware of more recent works addressing explicitly the construction of portfolio
solvers for COPs. Indeed, in the literature, we are aware of portfolio approaches
developed just for some specific instances of COP. For instance, problems like
Mixed Integer Programming, Scheduling, Most Probable Explanation (MPE)
and Travel Salesman Problem (TSP) are addressed by means of portfolio tech-
niques exploiting ML methods in [14,17].

Portfolio Approaches for Constraint Optimization Problems 33

Other related work target the analysis of the search space of optimization
problems by using techniques like landscape analysis [20], Kolmogorov complex-
ity [8], and basins of attractions [28]. Some approaches like [23,35] also use ML
techniques to estimate the search space of some algorithms and heuristics on opti-
mization problems. These works look interesting because precise performance
evaluations can be exploited in order to built portfolios as done, for instance, by
SATzilla [38] in the SAT domain or by [24] for optimization problems solved by
using branch and bound algorithms.

Another related work is [36] where ML algorithms are used to solve the
Knapsack and the Set Partitioning problems by a run-time selection of different
heuristics during the search. In [19,39] automated algorithm configurators based
on AI techniques are used to boost the solving process of MIP and optimization
problems. In [9] a low-knowledge approach that selects solvers for optimization
problems is proposed. In this case, decisions are based only on the improvement
of the solutions quality, without relying on complex prediction models or on
extensive set of features.

6 Conclusions and Extensions

In this paper we tackled the problem of developing a portfolio approach for solv-
ing COPs. In particular, in order to evaluate the performances of a COP solver
we proposed a scoring function which takes into account the solution quality of
the solver answers. We then proposed three different metrics to evaluate and
compare COP solvers. These criteria were used to compare different portfolio
techniques adapted from the satisfiability world with others based on classifiers
and with a recently proposed lazy portfolio approach.

The results obtained clearly indicate that exploiting portfolio approaches
leads to better performances w.r.t. using a single solver. We conjecture that,
especially when trying to prove optimality, the number of times a solver cannot
give an answer is not negligible and that the solving times have a heavy-tail dis-
tribution typical of complete search methods [13]. Hence, a COP setting can be
considered an ideal scenario to apply a portfolio approach and obtain statistically
better solvers exploiting existing ones.

We noticed that, even though at a first glance it can seem counterintuitive,
the best performances were obtained by SUNNY: a portfolio approach which
(possibly) schedules more than one solver. In these cases the risk of choosing the
wrong solver is reduced and, apparently, this is more important than performing
part of the computation again, as could happen when two (or more) solvers are
lunched on the same instance.

We also noticed that the adaptation of methods deriving from SAT does not
lead to the same gain of performance that these methods provide in the CSP
and SAT field. We believe that the study of new techniques tailored to COPs
should be done in order to obtain the same advantages of the SAT field. This
is however left as a future work, as well as adapting and testing other promis-
ing portfolio approaches like [19,26,31] and using filtering [22] or benchmark
generation techniques [16].

34 R. Amadini et al.

Another direction for further research is the study of how cooperative strate-
gies can be used among the constituent solvers, both in the sequential case and
in a parallel setting, where more than one solver of the portfolio is allowed to be
executed at the same time. As previously said, we would also like to study the
impact of using other metrics to evaluate the solution quality of the solvers. On
the basis of the empirical correlation among the metrics so far considered, we
are confident that the performance of portfolio approaches should be robust, i.e.,
the rank of good portfolios approaches does not depend on the specific metric
used, provided that the metric is enough “realistic”.

References

1. Amadini, R., Gabbrielli, M., Mauro, J.: An empirical evaluation of portfolios
approaches for solving CSPs. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013.
LNCS, vol. 7874, pp. 316–324. Springer, Heidelberg (2013)

2. Amadini, R., Gabbrielli, M., Mauro, J.: SUNNY: a Simple and dynamic algorithm
portfolio for solving CSPs. CoRR, abs/1311.3353 (2013)

3. Amadini, R., Gabbrielli, M., Jacopo M.: An Enhanced Features Extractor for a
Portfolio of Constraint Solvers. In: SAC (2014)

4. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection.
Stat. Surv. 4, 40–79 (2010)

5. Baral, C.: Knowledge Representation Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

6. Becket, R.: Specification of FlatZinc - Version 1.6. http://www.minizinc.org/
downloads/doc-1.6/flatzinc-spec.pdf

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press, Amsterdam (2009)

8. Borenstein, Y., Poli, R.: Kolmogorov complexity, Optimization and Hardness pp.
12–119. In Evolutionary Computation (2006)

9. Carchrae, T., Beck, J.C.: Applying machine learning to low-knowledge control of
optimization algorithms. Comput. Intell. 21(4), 372–387 (2005)

10. CPX Discrete Optimiser. http://www.opturion.com/cpx.html
11. Third International CSP Solver Competition 2008. http://www.cril.univ-artois.fr/

CPAI09/
12. Gomes, C.P., Selman, B.: Algorithm portfolios. Artif. Intell. 126(1–2), 43–62 (2001)
13. Gomes, C.P., Selman, B., Crato, N.: Heavy-tailed distributions in combinatorial

search. In: Smolka, G. (ed.) CP 1997. LNCS, vol. 1330. Springer, Heidelberg (1997)
14. Guo, H., Hsu, W.H.: A machine learning approach to algorithm selection for NP-

hard optimization problems: a case study on the MPE problem. Ann. Oper. Res.
156(1), 61–82 (2007)

15. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

16. Hoos, H.H., Kaufmann, B., Schaub, T., Schneider, M.: Robust benchmark set
selection for boolean constraint solvers. In: Nicosia, G., Pardalos, P. (eds.) LION
7. LNCS, vol. 7997, pp. 138–152. Springer, Heidelberg (2013)

17. Hutter, F., Xu, L., Hoos, H.H., Leyton-Brown, K.: Algorithm Runtime Prediction:
The State of the Art. CoRR, abs/1211.0906 (2012)

http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.minizinc.org/downloads/doc-1.6/flatzinc-spec.pdf
http://www.opturion.com/cpx.html
http://www.cril.univ-artois.fr/CPAI09/
http://www.cril.univ-artois.fr/CPAI09/

Portfolio Approaches for Constraint Optimization Problems 35

18. Kadioglu, S., Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algo-
rithm selection and scheduling. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp.
454–469. Springer, Heidelberg (2011)

19. Kadioglu, S., Malitsky, Y., Sellmann, M., Kevin T.: ISAC - Instance-specific algo-
rithm configuration. In: ECAI (2010)

20. Knowles, J.D., Corne, D.W: Towards landscape analyses to inform the design of
hybrid local search for the multiobjective quadratic assignment problem. In: HIS
(2002)

21. Kotthoff, L.: Algorithm Selection for Combinatorial Search Problems: A Survey.
CoRR, abs/1210.7959 (2012)

22. Kroer, C., Malitsky, Y.: Feature filtering for instance-specific algorithm configura-
tion. In: ICTAI (2011)

23. Leyton-Brown, K., Nudelman, E., Shoham, Y.: The case of combinatorial auctions.
In: CP, Learning the Empirical Hardness of Optimization Problems (2002)

24. Lobjois, L., Lemâıtre, M.: Branch and bound algorithm selection by performance
prediction. In: AAAI/IAAI (1998)

25. Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8(1), 99–118
(1977)

26. Malitsky, Y., Sabharwal, A., Samulowitz, H., Sellmann, M.: Algorithm portfolios
based on cost-sensitive hierarchical clustering. In: IJCAI (2013)

27. Max-SAT 2013. http://maxsat.ia.udl.cat/introduction/
28. Merz, P.: Advanced fitness landscape analysis and the performance of memetic

algorithms. Evol. Comput. 12(3), 303–325 (2004)
29. Minizinc version 1.6. http://www.minizinc.org/download.html
30. MiniZinc Challenge. http://www.minizinc.org/challenge2012/results2012.html
31. O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., O’Sullivan, B.: Using case-

based reasoning in an algorithm portfolio for constraint solving. In: AICS 08 (2009)
32. Rice, J.R.: The algorithm selection problem. Adv. Comput. 15, 65–118 (1976)
33. SAT Challenge 2012. http://baldur.iti.kit.edu/SAT-Challenge-2012/
34. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm

selection. ACM Comput. Surv. 41(1), 1–25 (2008)
35. Smith-Miles, K.A.: Towards insightful algorithm selection for optimisation using

meta-learning concepts. In: IJCNN (2008)
36. Telelis, O., Stamatopoulos, P.: Combinatorial optimization through statistical

instance-based learning. In: ICTAI (2001)
37. Xu, L., Hutter, F., Shen, J., Hoos, H., Leyton-Brown, K.: SATzilla2012: improved

algorithm selection based on cost-sensitive classification models. In: SAT Chal-
lenge, Solver description (2012)

38. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The design and
analysis of an algorithm portfolio for SAT. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 712–727. Springer, Heidelberg (2007)

39. Xu, L., Hutter, F., Hoos, H.H., Leyton-brown, K.: Hydra-MIP: automated
algorithm configuration and selection for mixed integer programming. In: RCRA
workshop on Experimental Evaluation of Algorithms for Solving Problems with
Combinatorial Explosion (2011)

http://maxsat.ia.udl.cat/introduction/
http://www.minizinc.org/download.html
http://www.minizinc.org/challenge2012/results2012.html
http://baldur.iti.kit.edu/SAT-Challenge-2012/

AClib: A Benchmark Library for Algorithm
Configuration

Frank Hutter1(B), Manuel López-Ibáñez2, Chris Fawcett3, Marius Lindauer4,
Holger H. Hoos3, Kevin Leyton-Brown3, and Thomas Stützle2

1 Department of Computer Science, Freiburg University, Freiburg, Germany
fh@informatik.uni-freiburg.de

2 IRIDIA, Université Libre de Bruxelles, Brussel, Belgium
{manuel.lopez-ibanez,stuetzle}@ulb.ac.be

3 Department of Computer Science,
University of British Columbia, Vancouver, Canada

{fawcettc,hoos,kevinlb}@cs.ubc.ca
4 Institute of Computer Science, Potsdam University, Potsdam, Germany

manju@cs.uni-potsdam.de

1 Introduction

Modern solvers for hard computational problems often expose parameters that
permit customization for high performance on specific instance types. Since it
is tedious and time-consuming to manually optimize such highly parameterized
algorithms, recent work in the AI literature has developed automated approaches
for this algorithm configuration problem [1,3,10,11,13,16]. This line of work has
already led to improvements in the state of the art for solving a wide range of
problems, including propositional satisfiability (SAT) [2,7,12,20], mixed integer
programming (MIP) [9], timetabling [4], AI planning [6,21], answer set program-
ming (ASP) [18], bi-objective TSP [14], and bi-objective flowshop scheduling
problems [5].

As the field of algorithm configuration matures and the number of available
configuration procedures grows, so does a need for standardized problem defin-
itions, interfaces, and benchmarks. Such a benchmark library would encourage
reproducible research, facilitate the empirical evaluation of new and existing
configuration procedures, reduce obstacles faced by researchers new to the com-
munity, and allow an objective scientific evaluation of strengths and weaknesses
of different methods. We therefore introduce AClib (www.aclib.net), a library of
algorithm configuration benchmarks.

2 Design Criteria and Summary of Benchmarks

Instances of the algorithm configuration problem (called configuration scenarios)
comprise various components: a parameterized algorithm A (target algorithm) to
be configured, a distribution D of problem instances I (target instances) and a
performance metric m(θ, π) capturing A’s performance with parameter settings
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 36–40, 2014.
DOI: 10.1007/978-3-319-09584-4 4

www.aclib.net

AClib: A Benchmark Library for Algorithm Configuration 37

θ ∈ Θ on instances π ∈ I. The objective is then to find a configuration θ∗ that
minimizes a statistic (often the mean) of m across instances sampled from D. In
practice, we typically have a finite set of instances from distribution D, which
is partitioned into disjoint training and test sets in order to obtain an unbiased
estimate of generalization performance for the configuration selected.

Table 1 summarizes the benchmarks we selected for AClib 1.0. One of our
design criteria was to achieve diversity across the following dimensions:

Table 1. Overview of algorithm configuration benchmarks in AClib.

Problem Solvers #Scenarios #Parameters #Instances Citation

Runtime Quality

SAT 12 different solvers 126 0 2–270 500–2064 [7,8,10]

MIP CPLEX 4 4 76 100–2000 [9]

ASP Clasp 3 0 85 480–3133 [18]

AI Planning LPG & Fast Downward 20 0 45–66 60–559 [6,21]

Time-tabling CTT 1 1 7–18 24 [4]

TSP ACOTSP, ACOTSP-VAR 0 2 11–28 50–100 [15]

bTSP MOACO 0 1 16 60 [14]

Machine Learning AutoWEKA 0 21 768 10 (CV folds) [19]

– Target problems: decision and optimization problems, as well as machine
learning;

– Algorithm types: stochastic local search (SLS), tree search, machine learn-
ing;

– Number of parameters: from 2 (in some SLS solvers) to 768 (in Auto-
WEKA [19]);

– Parameter types: from purely continuous (several SLS algorithms) to mixed
discrete/continuous with occasional conditional parameters (most algorithms)
to massively conditional spaces (SATenstein [12] and Auto-WEKA [19]);

– Different objectives: runtime required to reach an optimal solution (most
scenarios) and solution quality achieved in a given time (timetabling, TSP,
MIP, and machine learning);

– Target instance homogeneity: from quite homogeneous instance distri-
butions (most scenarios) to distributions that are heterogeneous at least in
instance hardness;

– Instance features: from scenarios for which no characteristic features have
been defined so far (timetabling) to those where 138 features exist for every
problem instance included (most SAT scenarios).

Another design criterion was to select configuration scenarios that will enable
the assessment of different components of algorithm configuration procedures,
such as their search procedures (deciding which configuration will be selected
next), their intensification/racing components (deciding how many runs to per-
form on which instances), and, in case of runtime optimization, their capping

38 F. Hutter et al.

procedures (deciding after which time a run is terminated as unsuccessful). We
achieved this by including scenarios where:

– the racing component is more important than the search component (because
most configurations are good, but instances are fairly heterogeneous; e.g.,
Spear-SWV);

– the search component is more important than the racing component (because
few configurations are good, but instances are homogeneous; e.g., the CPLEX
scenarios);

– capping is unimportant: all scenarios optimizing solution quality, and scenarios
with maximum runtimes that are already low enough for capping to not yield
large gains;

– capping is very important: large captimes and configurations that finish in
orders of magnitude below the captime (e.g., CPLEX scenarios, ASP-Riposte,
and Spear-SWV).

On a more technical level, since the evaluation of target algorithm A’s per-
formance with configuration θ requires us to execute A with θ on several target
instances, it is important to ensure that time and memory limits are respected
and that different configuration procedures C1 and C2 call A identically. If that
is not guaranteed, spurious performance differences may be measured — e.g.,
we once measured a 20 % performance difference just because C1 used relative
paths and C2 absolute paths to call a particular target algorithm A (the tar-
get algorithm saved its callstring in the heap space before the instance data,
such that the callstring length affected memory locality and thus the num-
ber of cache misses). To avoid such problems, for each configuration scenario
we defined a wrapper that deterministically maps parameter settings to target
algorithm command line call strings, executes those call strings and parses their
results. This wrapper also kills target algorithm runs if these do not respect their
runtime or memory limits (and in this case returns the worst possible perfor-
mance); this mechanism is important to avoid “hung” runs of a configuration
procedure that are waiting for a particular target algorithm call to finish, as
well as cases where excessive memory consumption leads to swapping or to jobs
being killed (e.g., when executing on a cluster). For this purpose, we modified
the runsolver tool [17] used to control algorithm runs in the international SAT
competition.

Regarding usage and maintenance, we designed AClib to be lightweight and
extensible. Because instance files for some scenarios are extremely large, AClib
allows users to download subsets of scenarios. This can be done (automatically)
on the basis of problems (e.g., all TSP scenarios), of algorithms (e.g., all scenarios
that can be used with Clasp), or by requesting individual scenarios. All down-
loadable pieces are hashed to guarantee the integrity of downloads. All current
sequential algorithm configuration procedures that support discrete variables
and multiple instances (ParamILS [11], SMAC [10], and irace [13]) can be run on
the scenarios via a common interface. New configuration scenarios and configu-
ration procedures can be contributed through a streamlined process.

AClib: A Benchmark Library for Algorithm Configuration 39

3 Future Work

In future work, we would like to grow AClib to include other configuration sce-
narios from the literature that are complementary to the current set, including
polynomial-time algorithms. We plan to use AClib to assess strengths and weak-
nesses of existing configuration procedures and to use it as the basis for the first
competition of such procedures. We also plan to expand the instance feature
portion of AClib and to use AClib as a source for generating benchmarks for
algorithm selection.

Acknowledgments. We gratefully acknowledge all authors of algorithms and instance
distributions for making their work available (they are cited on the webpage, acknowl-
edged in README files, and will be cited in a future longer version of this paper).
We thank Kevin Tierney and Yuri Malitsky for modifying GGA [1] to support AClib’s
format; Lin Xu for generating several instance distributions and writing most feature
extraction code for SAT and TSP; Adrian Balint and Sam Bayless for contributing SAT
benchmark distributions; Mauro Vallati for exposing many new parameters in LPG;
the developers of Fast Downward for helping define its configuration space; and Steve
Ramage for helping diagnose and fix problems with several wrappers and runsolver.
M. Lindauer acknowledges support by DFG project SCHA 550/8-3, and M. López-
Ibáñez acknowledges support from a “Crédit Bref Séjour à l’étranger” from the Belgian
F.R.S.-FNRS.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

2. Balint, A., Fröhlich, A., Tompkins, D., Hoos, H.: Sparrow 2011. In: Booklet of
SAT-2011 Competition (2011)

3. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for
configuring metaheuristics. In: Proceedings of GECCO-02, pp. 11–18 (2002)

4. Chiarandini, M., Fawcett, C., Hoos, H.: A modular multiphase heuristic solver for
post enrolment course timetabling. In: Proceedings of PATAT-08 (2008)

5. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

6. Fawcett, C., Helmert, M., Hoos, H.H., Karpas, E., Röger, G., Seipp, J.: FD-
autotune: domain-specific configuration using fast-downward. In: Proceedings of
ICAPS-PAL11 (2011)

7. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Proceedings of FMCAD-07, pp. 27–34 (2007)

8. Hutter, F., Balint, A., Bayless, S., Hoos, H., Leyton-Brown, K.: Configurable SAT
solver challenge (CSSC) (2013), riptsizehttp://www.cs.ubc.ca/labs/beta/Projects/
CSSC2013/

9. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Automated configuration of mixed inte-
ger programming solvers. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010.
LNCS, vol. 6140, pp. 186–202. Springer, Heidelberg (2010)

http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/
http://www.cs.ubc.ca/labs/beta/Projects/CSSC2013/

40 F. Hutter et al.

10. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011)

11. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. JAIR 36, 267–306 (2009)

12. KhudaBukhsh, A., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automati-
cally building local search SAT solvers from components. In: Proceedings of IJCAI-
09, pp. 517–524 (2009)

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

14. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

15. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. Eur. J. Oper. Res. (2013)

16. Nannen, V., Eiben, A.: Relevance estimation and value calibration of evolutionary
algorithm parameters. In: Proc. of IJCAI-07, pp. 975–980 (2007)

17. Roussel, O.: Controlling a solver execution with the runsolver tool. JSAT 7(4),
139–144 (2011)

18. Silverthorn, B., Lierler, Y., Schneider, M.: Surviving solver sensitivity: an ASP
practitioner’s guide. In: Proceedings of ICLP-LIPICS-12, pp. 164–175 (2012)

19. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: Pro-
ceedings of KDD-2013, pp. 847–855 (2013)

20. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: new variable selection
heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011.
LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)

21. Vallati, M., Fawcett, C., Gerevini, A.E., Hoos, H.H., Saetti, A.: Generating fast
domain-optimized planners by automatically configuring a generic parameterised
planner. In: Proceedings of ICAPS-PAL11 (2011)

Algorithm Configuration in the Cloud:
A Feasibility Study

Daniel Geschwender1(B), Frank Hutter2, Lars Kotthoff3, Yuri Malitsky3,
Holger H. Hoos4, and Kevin Leyton-Brown4

1 University of Nebraska-Lincoln, Lincoln, USA
dgeschwe@cse.unl.edu

2 University of Freiburg, Freiburg im Breisgau, Germany
fh@informatik.uni-freiburg.de

3 INSIGHT Centre for Data Analytics, Cork, Ireland
{larsko,y.malitsky}@4c.ucc.ie

4 University of British Columbia, Vancouver, Canada
{hoos,kevinlb}@cs.ubc.ca

1 Introduction and Related Work

Configuring algorithms automatically to achieve high performance is becom-
ing increasingly relevant and important in many areas of academia and indus-
try. Algorithm configuration methods take a parameterized target algorithm, a
performance metric and a set of example data, and aim to find a parameter
configuration that performs as well as possible on a given data set. Algorithm
configuration systems such as ParamILS [5], GGA [1], irace [2], and SMAC [4]
have achieved impressive performance improvements in a broad range of applica-
tions. However, these systems often require substantial computational resources
to find good configurations. With the advent of cloud computing, these resources
are available readily and at moderate cost, offering the promise that these tech-
niques can be applied even more widely. However, the use of cloud computing
for algorithm configuration raises two challenges. First, CPU time measurement
could be substantially less accurate on virtualized than on physical hardware,
producing potentially problematic noise in assessing the performance of target
algorithm configurations (particularly relevant when the performance objective
is to minimize runtime) and in monitoring the runtime budget of the configura-
tion procedure. Second, by the very nature of the cloud, the physical hardware
used for running virtual machines is unknown to the user, and there is no guar-
antee that the hardware that was used for configuring a target algorithm will
also be used to run it, or even that the same hardware will be used throughout
the configuration process. Unlike many other applications of cloud computa-
tion, algorithm configuration relies on reproducible CPU time measurements;
it furthermore involves two distinct phases in which a target algorithm is first
configured and then applied and relies on the assumption that performance as
measured in the first phase transfers to the second. Previous work has investi-
gated the impact of hardware virtualization on performance measurements (see,

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 41–46, 2014.
DOI: 10.1007/978-3-319-09584-4 5

42 D. Geschwender et al.

e.g., [6–8]). To the best of our knowledge, what follows is the first investiga-
tion of the impact of virtualization specifically on the efficacy and reliability of
algorithm configuration.

2 Experimental Setup

Our experiments ranged over several algorithm configurators, configuration sce-
narios and computing infrastructures. Specifically, we ran ParamILS [5] and
SMAC [4] to configure Spear [3] and Auto-WEKA [9]. For Spear, the objec-
tive was to minimize the runtime on a set of SAT-encoded software verification
instances (taken from [3], with the same training/test split of 302 instances
each). For Auto-WEKA, the objective was to minimize misclassification rate
on the Semeion dataset (taken from [9], with the same training/test set split of
1116/447 data points). The time limit per target algorithm run (executed during
configuration and at test time) was 300 CPU seconds (Spear) and 3600 CPU
seconds (Auto-WEKA), respectively. We used the following seven computing
infrastructures:

– Desktop: a desktop computer with a quad-core Intel Xeon CPU and 6 GB
memory;

– UBC: a research compute cluster at the University of British Columbia, each
of whose nodes has two quad-core Intel Xeon CPUs and 16 GB of memory;

– UCC: a research compute cluster at University College Cork, each of whose
nodes has two quad-core Intel Xeon CPUs and 12 GB of memory

– Azure: the Microsoft Azure cloud, with virtual machine instance type medium
(2 cores, 3.5 GB memory, $0.12/hour)

– EC2-c1: theAmazonEC2 cloud,with virtualmachine instance typec1.xlarge
(8 cores, 7 GB memory, $0.58/hour)

– EC2-m1: theAmazonEC2cloud,withvirtualmachineinstancetypem1.medium
(1 core, 3.5 GB memory, $0.12/hour)

– EC2-m3: the Amazon EC2 cloud, with virtual machine instance type
m3.2xlarge (8 cores, 30 GB memory, $1.00/hour)

For each of our two configuration scenarios, we executed eight independent
runs (differing only in random seeds) of each of our two configurators on each
of these seven infrastructures. Each configuration run was allowed one day of
compute time and 2 GB of memory (1 GB for the configurator and 1 GB for
the target algorithm) and returned a single configuration, which we then tested
on all seven infrastructures. On the larger EC2-c1 and EC2-m3 instances, we
performed 4 and 8 independent parallel configuration/test runs, respectively.
Thus, compared to EC2-m1, we only had to rent 1/4 and 1/8 of the time on
these instances, respectively. This almost canceled out with the higher costs of
these machines, leading to roughly identical total costs for each of the machine
types: roughly $100 for the 2 · 2 · 8 configuration runs of 24 h each, and about
another $100 for the testing of configurations from all infrastructures.

Algorithm Configuration in the Cloud 43

3 Results

We first summarize the results for the Auto-WEKA scenarios, which are in
a sense the “easiest case” for automatic configuration in the cloud: in Auto-
WEKA, the runtime of a single target algorithm evaluation only factors into the
measured performance if it exceeds the target algorithm time limit of 3600 CPU
seconds; i.e., target algorithm evaluations that run faster yield identical results
on different infrastructures. Our experiments confirmed this robustness, showing
that configurations resulting from configuring on infrastructure X yielded the
same performance on other infrastructures Y as on X. While SMAC yielded
competitive Auto-WEKA configurations of similar performance on all seven
infrastructures (which turned out to test almost identically on other infrastruc-
tures), the local search-based configurator ParamILS did not yield meaningful
improvements, since Auto-WEKA’s default (and its neighbourhood) consistently
led to timeouts without even returning a classifier.

We turn to the Spear configuration scenario, which we consider more inter-
esting, because its runtime minimization objective made it less certain whether
performance would generalize across different infrastructures. In Fig. 1, we visu-
ally compare the performance achieved by configurations found by ParamILS
on three infrastructures. We note that the variance across different seeds of
ParamILS was much larger than the variation across infrastructures, and that
the performance of configurations found on one infrastructure tended to general-
ize to others. This was true to a lesser degree when using SMAC as a configurator
(data not shown for brevity); SMAC’s performance was quite consistent across
seeds (and, in this case, better than the ParamILS runs).

Table 1 summarizes results for configuration with SMAC, for each of the 49
pairs of configuration and test infrastructures. Considering the median perfor-
mance results, we note that configuring on some infrastructures yielded better
results than on others, regardless of the test infrastructure. For each pair (X,Y)
of configuration infrastructures, we tested whether it is statistically significantly
better to configure on X or on Y , using a Wilcoxon signed-rank test on the 56
paired data points resulting from testing the eight configurations found on X and
Y on each of our seven infrastructures. Using a Bonferroni multiple testing cor-
rection, we found that UBC and EC2-m3 yielded statistically significantly better
performance than most other infrastructures, EC2-c1 performed well, Desktop
and UCC performed relatively poorly, and Azure and EC2-m1 were significantly
worse than most other infrastructures. An equivalent table for ParamILS (not
shown for brevity) shows that it did not find configurations as good as those of
SMAC within our 1-day budget. Since the variation across configurations dom-
inated the variation due to varying testing platforms, the relative differences
across test infrastructures tended to be smaller than in the case of SMAC.

A prime concern with running algorithm configuration in the cloud is the
potentially increased variance in algorithm runtimes. We therefore systemati-
cally analysed this variance. For each pair of configuration and test infrastruc-
ture, we measured test performances of the 8 configurations identified by SMAC
and computed their 25 % and 75 % quantiles (in log10 space). We then took

44 D. Geschwender et al.

10

100

10 100

configuration performance [CPU s]

va
lid

at
io

n
pe

rfo
rm

an
ce

 [C
P

U
 s

]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(a) Configured on UCC

1

10

100

10 100

configuration performance [CPU s]
va

lid
at

io
n

pe
rfo

rm
an

ce
 [C

P
U

 s
]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(b) Configured on Azure

10

100

10 100

configuration performance [CPU s]

va
lid

at
io

n
pe

rfo
rm

an
ce

 [C
P

U
 s

]

Desktop
UBC
UCC
Azure
EC2−c1
EC2−m1
EC2−m3

(c) Configured on EC2-m3

Fig. 1. Test performance (log10 runtime) for Spear configurations found in 8 ParamILS
runs with different random seeds on 3 different infrastructures. The shapes/colours
denote the infrastructure the configuration was tested on.

their difference as a measure of variation for this particular pair of configuration
and test infrastructure. As Table 1 (numbers in parentheses) shows, configuring
on the UBC cluster gave the lowest variation, followed by UCC and the two
bigger cloud instances, EC2-c1 and EC2-m3 (all with very similar median vari-
ations). Configuring on the Desktop machine led to somewhat higher variation,
and configuring on Azure or EC2-m1 to much higher variation.

The fact that configuring on the two bigger cloud instances, EC2-c1 and EC2-
m3, yielded both strong configurations and relatively low variation suggests that

Algorithm Configuration in the Cloud 45

Table 1. Test performance (median of log10 runtimes, and in parentheses, interquartile
range) of the 8 Spear-SWV configurations identified by SMAC on the infrastructure in
the row, tested on the infrastructure in the column. All numbers are medians of log10

runtimes over 8 runs, rounded to two decimal places. For each test infrastructure, we
bold-face the entry for the configuration infrastructure yielding the best performance.

Desktop UBC UCC Azure EC2-c1 EC2-m1 EC2-m3 median

Desktop 0.54 (0.67) 0.52 (0.76) 0.96 (0.46) 0.59 (0.68) 0.59 (0.57) 0.80 (0.62) 0.59 (0.54) 0.59 (0.62)
UBC 0.07 (0.21) 0.01 (0.11) 0.17 (0.21) 0.22 (0.45) 0.19 (0.18) 0.19 (0.16) 0.15 (0.31) 0.17 (0.21)
UCC 0.54 (0.51) 0.53 (0.52) 0.56 (0.09) 0.60 (0.07) 0.59 (0.61) 0.58 (0.42) 0.58 (0.42) 0.58 (0.42)
Azure 0.78 (1.14) 0.78 (1.11) 0.81 (1.03) 0.81 (1.02) 0.81 (1.00) 0.81 (1.01) 0.82 (0.99) 0.81 (1.02)
EC2-c1 0.53 (0.52) 0.16 (0.51) 0.59 (0.43) 0.58 (0.40) 0.26 (0.41) 0.22 (0.41) 0.55 (0.52) 0.53 (0.43)
EC2-m1 0.58 (0.99) 0.58 (1.01) 0.59 (0.93) 0.65 (0.92) 0.62 (0.85) 0.62 (0.88) 0.57 (0.89) 0.59 (0.92)
EC2-m3 0.00 (0.55) -0.02 (0.59) 0.56 (0.51) 0.18 (0.44) 0.30 (0.42) 0.16 (0.46) 0.16 (0.42) 0.16 (0.46)

bigger cloud instances are well suited as configuration platforms. As described
earlier, their higher cost per hour (compared to smaller cloud instances) is offset
by the fact that they allow the parallel execution of several independent parallel
configuration runs.

4 Conclusion

We have investigated the suitability of virtualized cloud infrastructure for algo-
rithm configuration. We also explored the related issue of whether configurations
found on one machine can be used on a different machine. Our results show that
clouds (especially larger cloud instances) are indeed suitable for algorithm con-
figuration, that this approach is affordable (at a cost of about $3 per 1-day
configuration run) and that often, configurations identified to perform well on
one infrastructure can be used on other infrastructures without significant loss
of performance.

Acknowledgements. The authors were supported by an Amazon Web Services
research grant, European Union FP7 grant 284715 (ICON), a DFG Emmy Noether
Grant, and Compute Canada.

References

1. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for the
automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS, vol.
5732, pp. 142–157. Springer, Heidelberg (2009)

2. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race: an
overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.)
Empirical Methods for the Analysis of Optimization Algorithms. Springer, Heidel-
berg (2010)

3. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Formal Methods in Computer Aided Design, pp.
27–34 (2007)

46 D. Geschwender et al.

4. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683,
pp. 507–523. Springer, Heidelberg (2011)

5. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Int. Res. 36(1), 267–306 (2009)

6. Kotthoff, L.: Reliability of computational experiments on virtualised hardware.
JETAI (2013)

7. Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: A tale of millis
and nanos: time measurements in virtual and physical machines. In: Lau, K.-K.,
Lamersdorf, W., Pimentel, E. (eds.) ESOCC 2013. LNCS, vol. 8135, pp. 172–179.
Springer, Heidelberg (2013)

8. Schad, J., Dittrich, J., Quiané-Ruiz, J.-A.: Runtime measurements in the cloud:
observing, analyzing, and reducing variance. VLDB Endow. 3, 460–471 (2010)

9. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined
selection and hyperparameter optimization of classification algorithms. In: KDD,
pp. 847–855 (2013)

Evaluating Instance Generators by Configuration

Sam Bayless1(B), Dave A.D. Tompkins2, and Holger H. Hoos1

1 Department of Computer Science, University of British Columbia,
Vancouver, Canada

{sbayless,hoos}@cs.ubc.ca
2 David R. Cheriton School of Computer Science, University of Waterloo,

Waterloo, Canada
dtompkins@uwaterloo.ca

Abstract. The propositional satisfiability problem (SAT) is one of the
most prominent and widely studied NP-hard problems. The develop-
ment of SAT solvers, whether it is carried out manually or through the
use of automated design tools such as algorithm configurators, depends
substantially on the sets of benchmark instances used for performance
evaluation. Since the supply of instances from real-world applications of
SAT is limited, and artificial instance distributions such as Uniform Ran-
dom k-SAT are known to have markedly different structure, there has
been a long-standing interest in instance generators capable of produc-
ing ‘realistic’ SAT instances that could be used during development as
proxies for real-world instances. However, it is not obvious how to assess
the quality of the instances produced by any such generator. We pro-
pose a new approach for evaluating the usefulness of an arbitrary set of
instances for use as proxies during solver development, and introduce a
new metric, Q-score, to quantify this. We apply our approach on several
artificially generated and real-world benchmark sets and quantitatively
compare their usefulness for developing competitive SAT solvers.

Keywords: SAT · Benchmark sets · Instance generation · Automated
configuration

1 Introduction and Background

The Boolean satisfiability problem (SAT) is perhaps the most widely studied
NP-complete problem; as many advances in SAT have direct implications for
solving other important combinatorial problems, SAT has been a focus of intense
research in algorithms, artificial intelligence and several other areas for several
decades. State-of-the-art SAT solvers have proven to be effective in real-world
applications – particularly, Conflict-Driven Clause Learning (CDCL) solvers in
the area of hardware and software verification. This has been one of the driving
forces in the substantial progress on practical SAT solvers, as witnessed in
the well-known SAT competitions, where instances from applications are often
referred to as industrial instances. The SAT competitions also feature a separate
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 47–61, 2014.
DOI: 10.1007/978-3-319-09584-4 6

48 S. Bayless et al.

track for randomly generated instances, with a particular focus on the prominent
class of uniform k-CNF instances at or near the solubility phase transition [9]
(henceforth, random instances). The competitions separate industrial and ran-
dom instances into distinct tracks, because they tend to have very different
structures [3], and because SAT solvers that perform well on random instances
(e.g., kcnfs [10]) tend to perform poorly on industrial instances, and vice-versa.
The industrial instances used in SAT competitions are often large, routinely
containing millions of variables, whereas challenging random instances are sig-
nificantly smaller. Industrial instances are typically vastly easier than random
instances of comparable size.

Many of the industrial instances available to the public belong to the sets used
in prior competitions. Developers of SAT solvers targeting industrial instances
tend to configure and test their solvers on this limited supply of instances, which
can lead to over-fitting (see, e.g., [18]) and test set contamination. Furthermore,
the instances used in competitions can be very large, and are often unsuitable
for performing the more extensive experiments carried out during the design
and optimisation of solvers. Therefore, developers of SAT solvers would benefit
from access to a large quantity of industrial instances spanning a large range of
sizes and difficulty. Ideally, smaller or easier instances would satisfy the criterion
that improvements made in solving them can be expected to scale to larger
(competition-sized) or harder instances. Such smaller or easier instances would
effectively act as proxies for the target instances that are ultimately to be solved.

The development of solvers targeted for hard, random k-CNF instances has
benefited for a long time from the availability of generators that can easily pro-
duce large quantities of instances of varying sizes and difficulty. The development
of generators for instances bearing close resemblance to real-world SAT instances
has been one of the “ten challenges in propositional reasoning and search” posed
in 1997 by Selman et al. [25] and was reaffirmed as an important goal by Kautz
and Selman in 2003 [20]. The challenge calls for the automated generation of
SAT instances that “have computational properties that are more similar to
real-world instances” [25], and it remains somewhat unclear how to assess the
degree to which a generator meets this goal. Despite this, many generators have
been proposed as more realistic alternatives to k-CNF. These include several
instance generators derived from graph theory problems([12,24,26]), and the
quasigroup completion problem (QCP) [1,11].

More recently, Ansótegui et al. [2] proposed a set of instance generators, includ-
ing one which was specifically designed to produce ‘industrial-like’ instances that
exhibit some of the same statistical properties as real-world industrial instances.
Another industrial-like instance generator was presented by Burg et al. [8], which
combines small segments of instances from real-world instances to produce new
instances.1 Finally, Järvisalo et al. [19] proposed an instance generator derived
from finding optimal circuits for simultaneously computing ensembles of Boolean
functions. While this last generator makes no specific claims of industrial-like
1 Unfortunately, this instance generator is not publicly available.

Evaluating Instance Generators by Configuration 49

properties, its instances are derived from (random) circuits and so we speculate
that they may share properties with industrial instances derived from (real-world)
circuits.

Here, we propose a new approach for assessing instance generators – and,
indeed, arbitrary sets of instances – in terms of how useful they are as prox-
ies for real-world instances during the development SAT solvers. (Actually, our
approach is not specific to SAT, and generalises to other problems in a straight-
forward manner). In particular, we motivate and define a new metric, Q-score, to
measure the extent to which optimising the performance on a given instance set
results in performance improvements on a set of target instances used for testing
purposes (e.g., in the context of a competition or real-world application). Q-score
is particularly useful in situations where benchmark sets that are known a priori
to be good proxies for the target instances are either not available (e.g., because
the supply of target instances is too limited) or not usable for performance opti-
misation (e.g., because they are too difficult). We note that this premise provides
the core motivation for developing random generators for ‘industrial-like’ SAT
instances. It also stands in contrast to standard situations in machine learning,
where the data used for training a prediction or classification procedure is typi-
cally representative of the testing data used for assessing the performance of the
trained procedure. This latter observation is relevant, because the development
of a SAT solver resembles a training process in machine learning in that both
aim at optimising performance on certain classes of input data. This aspect of
solver development is captured in the notion of automated algorithm configura-
tion, an approach that has proven to be very effective for the development of
high-performance SAT solvers [16,21,28,29].

We define the Q-score in Sect. 2, and then use it to measure the usefulness
of benchmark sets obtained from four instance generators with respect to three
industrial target sets using two different highly parametric solvers. In Sect. 3, we
describe the three target sets and the four generators used in our experiments:
an ‘industrial-like’ generator proposed by Ansótegui et al. [2], the ensemble-
circuit generator from [19], a ‘fuzzing’ tool for debugging SAT solvers [7], and
a reference uniform random 3-CNF generator [9]. Also in Sect. 3, we provide
details on the two highly parametric algorithms Lingeling [6] and Spear [5],
and on the way in which we configured these using two fundamentally different
configurators: ParamILS [17,18], and SMAC [15]. The results from our exper-
iments, reported in Sect. 4, indicate that the ‘industrial-like’ generator proposed
in [2] is not generally suitable as a proxy during SAT solver development, while
the ensemble-circuit generator from [19] can indeed produce useful instances.
In Sect. 5 we summarise the insights gained from our work and propose some
avenues for future research.

2 Quantitative Assessment of Instance Set Utility

In the following, we introduce our new metric for determining the utility of
using a given instance set S as a proxy for a target instance set T during the

50 S. Bayless et al.

training and development of new solvers. Our primary motivation is to aid the
development of a new algorithm that we wish to perform well on the target
instance set T , when using T itself during development is infeasible (e.g., the
instances in T are prohibitively large, too costly, or not available in sufficient
numbers). Under such circumstances, we would like to use some other instance
set, S, to develop and train our algorithm. In particular, we might wish to use
randomly generated instances with ‘realistic’ properties as proxies for the target
instances.

Our metric requires a reference algorithm A, which is typically not the same
algorithm we are interested in developing. For example, we may choose A as one
of the current state-of-the-art algorithms for solving instances in the target set
T , or A may be a previous version of an algorithm that we are trying to improve
upon. The configuration space of A, which we denote as Θ, is ideally quite large
and sufficiently rich to permit effective optimisation of A for many different types
of instances. Algorithms that have been designed to have a large configuration
space are known as highly parametric algorithms [5,6,14,22,28,29]. The primary
criterion for selecting A is the quality of its parameter configuration space Θ;
ideally, to solve instances both in T and outside of T , and with significantly
different optimal configurations for each.

Our metric also requires a cost statistic c to measure the performance of
the algorithm with a given configuration θ. We use the notation c(A(θ),X) to
represent the cost of running configuration θ of A on each instance in set X.
Cost statistics used in the literature include the average run-time, average run-
length, percent of instances not solved within a fixed time, and PAR10, which we
describe in Sect. 3. For convenience, we will assume that c is to be minimized and
is greater than zero; otherwise, a simple transformation can be used to ensure
this is true. We use the notation θ∗

X to represent the optimal configuration of
A for an instance set X for the given cost statistic c. The cost statistic used in
the context of assessing instance set utility should reflect the way performance
is assessed when running the algorithm of interest on T .

We now define our metric, Q(S, T,A, c) as the ratio of the performance of
algorithm A in its optimal configuration for target instance set T , and the per-
formance of A in its optimal configuration for the proxy instance set S, both
evaluated on instance set T according to cost statistic c. Formally,

Q(S, T,A, c) =
c(A(θ∗

T), T)
c(A(θ∗

S), T)
.

We use QT (S) as a shorthand for Q(S, T,A, c) if A and c are held fixed and
are clear from the context, and we refer to QT (S) as the Q-score of S given
T . The closer QT (S) is to one, the more suitable set S is as a proxy for target
set T and conversely, the lower QT (S), the less suitable S is as a proxy for
T . Intuitively, QT (S) can be interpreted directly as the percentage of optimal
performance that can be obtained through optimising algorithm A based on the
proxy instances in S.

In practice, the optimal configuration θ∗
T will typically be unknown. We

can approximate it by θ′
T , the best known configuration of A on target set T .

Evaluating Instance Generators by Configuration 51

This best known configuration can be drawn from any source, and represents
an upper bound on the cost of the real optimal configuration. Conveniently, an
approximate Q-score computed using θ′

T will still always be ≤ 1 (as otherwise,
some other known configuration would be better than the best known configura-
tion). Similarly, the optimal configuration θ∗

S (optimal in terms of performance
on the proxy set, not the target set) will also be unknown; one convenient way
to obtain an approximation θ′

S is by applying automatic configuration of A on
the proxy set S.

The approximate Q-score for a given algorithm, proxy set, and target set can
then be calculated as follows:

1. Obtain θ′
S by configuring algorithm A on the proxy set S using some method

(such as one of the automatic configurators discussed in Sect. 3).
2. Evaluate this configuration on some instances from the target set, T , using a

cost metric such as PAR10, to obtain c(A(θ′
S , T)).

3. Evaluate some other, known configurations of A (for example, the default
configuration) on those same target set instances.

4. Let θ′
T be the configuration with the lowest cost from any of the evaluations

above (including θ′
S), and let c(A(θ′

T , T)) be the corresponding cost.
5. Compute QT (S) = c(A(θ′

T),T)
c(A(θ′

S),T)

This process entails collecting a set of good, known configurations of A for
T to find a good approximation θ′

T of the optimal configuration θ∗
T . One way

to improve that approximation is to generate new configurations by applying
automatic configuration of A on T (as we do in this work). This may not always
be possible, nor is it strictly necessary to compute an approximate Q-score; but
we recommend it where practical. However, if automated configuration is applied
to T , it is critical to use a set of training instances for configuration that does
not contain any of the instances from T that are used for evaluating the Q-score.
The reasons for this are somewhat subtle, but worth discussing in some more
detail.

Particularly when a given target set T consists of a small set of available real-
world instances, these instances are assumed to be representative of a larger set of
real-world instances inaccessible to the algorithm designer (or experimenter), and
our goal is to improve performance on that larger set, rather than on the specific
representative instances we have available. Under these circumstances, applying
automatic configuration on the same instances as we use for evaluation may
result in over-tuning - that is, it may produce a configuration that performs well
on those exact instances, but generalizes poorly to the larger set of (unavailable)
instances.

Ideally, we would have enough instances available from T that we can afford
to split them into two disjoint sets, and use one for configuration, and the other
for evaluation and Q-score computation. However, since a motivating factor for
producing instance generators in the first place is having access to only limited
numbers of instances from T , there may not be sufficiently many instances to
split T into disjoint training and testing sets that can both be seen as represen-
tative of T . We encounter precisely this dilemma in Sect. 3, where we resolve it

52 S. Bayless et al.

by configuring instead on a set of instances that we believe to be similar to the
target set. As the approximate Q-score does not define where the best known
configuration comes from, this is entirely safe to do: in the worse case, configur-
ing on other instance families may simply produce bad configurations that fail
to improve on the best known configuration.

We also ensure that the instances in our candidate proxy sets S can be solved
efficiently enough for purposes of algorithm configuration. In particular, for some
cost statistics, Q-scores can be pushed arbitrarily close to 1 simply by adding
a large number of unsolvable instances to the target set; to avoid this possibil-
ity, we exclude from the target set T any instances that were unsolved by any
configuration of a given solver. Even after this consideration, if the performance
differences between different configurations of A on the instance sets of interest,
and in particular on T , are small, then all QT values will be close to one and
their usefulness for assessing instance sets (or the generators from which the
instance sets were obtained) will be limited.

Below, we will provide evidence that for algorithms with sufficiently large and
rich configuration spaces, the differences in QT measures for different candidate
proxy sets tend to be consistent, so that sets that are better proxies w.r.t. a given
algorithm A tend to also be better proxies w.r.t. a different algorithm A′, as long
as A and A′ are not too different. This latter argument implies that instance sets
(or generators) determined to be useful given some target set T (e.g., industrial
instances or, more specifically, hardware verification instances) for some baseline
solver can be reused, without costly recomputation of Q-scores, for the develop-
ment of other solvers. Tompkins et al. [28] used a metric analogous to Q-score,
although their purpose was significantly different than that underlying our work
presented here, and observed configurations where the best known configuration
for a set was found while configuring for a different set.

3 Experimental Setup

We now turn to the question of how useful various types of SAT instances are as
proxies for typical industrial instances. For this purpose, we used four instance
generators (Double-Powerlaw, Ensemble, Circuit-Fuzz and 3-CNF), three indus-
trial target sets (SWV, HWV and SAT Race), two high-performance, highly
parametric SAT solvers (Spear and Lingeling), and the automatic algorithm
configurators ParamILS and SMAC.

The first generator we selected is the Double-Powerlaw generator from
Ansótegui et al. [2]. Of the five generators introduced in that work, Double-
Powerlaw was identified as the most ‘industrial-like’ by its authors, as it was the
only one that they found to produce instances on which a typical CDCL SAT
solver known to perform well on industrial instances, MiniSAT (version 2 [27]),
consistently out-performed the solvers march [13] and satz [23], which per-
form much better on random and crafted (handmade) instances than on indus-
trial instances. Using the software provided by Ansótegui et al. with the same
parameters used in their experiments (β = 0.75,m/n = 2.650, n = 500 000),

Evaluating Instance Generators by Configuration 53

we generated 600 training instances at the solubility phase-transition of the
Double-Powerlaw instance distribution.

The second generator is the random ensemble-circuit generator, GenRan-

dom, from Sect. 5.2 of Järvisalo et al. [19]. This generator takes parameters
(p, q, r), two of which (p and q) were set to 10 in their experiments. Our own
informal experiments suggested that a value of r = 11 produces a mix of sat-
isfiable and unsatisfiable instances that are moderately difficult for Lingeling

(requiring between 10 and 200 s to solve); larger and smaller values produce eas-
ier instances that are dominated by either satisfiable or unsatisfiable instances.
We make no claim that these are optimal settings for this generator, but we
believe that they are reasonable and produce interesting instances. We used
the script provided by Järvisalo et al. to generate 600 training instances with
p = 10, q = 10, r = 11.

The third generator is adapted from the circuit-based CNF fuzzing tool Fuz-

zSAT [7] (version 0.1). FuzzSAT is a fuzzing tool, intended to help the designers
of SAT solvers test their code for bugs by randomly generating many instances.
It randomly constructs combinational circuits by repeatedly applying the oper-
ations AND, OR, XOR, IFF and NOT, starting with a user-supplied number
of input gates. The tool then applies the Tseitin transformation to convert the
circuit into CNF. Finally, a number of additional clauses are added to the CNF,
to further constrain the problem. While not designed with evaluation or config-
uration in mind, these instances are structured in ways that resemble (at least
superficially) real-world, circuit-derived instances, and hence might make good
proxies for such instances. However, the instances generated by the tool are usu-
ally very easy and typically solved within fractions of a second. This is a useful
property for testing, but not for configuration, since crucial parts of a modern
CDCL solver might not be sufficiently exercised to realistically assess their effi-
cacy. Adjusting the number of starting input gates allows the size of the circuit
to be controlled, but even for moderately sized random circuits, most generated
instances remain very easy. In order to produce a set of instances of representa-
tive difficulty, we randomly generated 10 000 instances with exactly 100 inputs
using FuzzSAT (with default settings), and then filtered out any instances solv-
able by the state-of-the-art SAT solver Lingeling (described below) in less than
1 CPU second. This yielded a set of 387 instances, of which 85 could be proved
satisfiable by Lingeling, 273 proved unsatisfiable, and the remaining 29 could
not be solved within 300 CPU seconds. We make no claim that these instances
are near a solubility phase-transition, or that these are the optimal settings for
producing such instances; however, they do represent a broad range of diffi-
culty for Lingeling, which makes them potentially useful for configuration. We
selected 300 of these instances to form a training set.

The fourth generator we selected is the random instance generator used in the
2009 SAT Competition. There is strong evidence that these instances are dissim-
ilar to typical industrial instances [3], and we included them in our experiments
primarily as a control. We generated a set of 600 training instances composed of
100 instances each at 200, 225, 250, 275, 300, and 325 variables at the solubility

54 S. Bayless et al.

phase transition [9]. While other solvers can solve much harder random instances
than these, they are an appropriate size for experimentation with the reference
algorithms we selected (Spear and Lingeling, see below).

We picked two classes of industrial instances known from the literature as our
target instance sets. The first is a set of hardware verification instances (HWV)
sampled from the IBM Formal Verification Benchmarks Library [30], and the
second consists of software verification instances (SWV) generated by Calysto

[4]. Both of these sets have been employed previously by Hutter et al. in the
context of automatically configuring the highly parametric SAT solver Spear,
and we used the same disjoint training and testing sets as they did [16].

The third target instance set is from the 2008 SAT Race and includes a mix
of real-world industrial problems from several sources (including the target sets
we selected). This is the same set used by Ansótegui et al. for evaluating their
instance generators [2]. The SAT Race 2008 organizers used a separate set of
instances to qualify solvers for entry into the main competition. As there are
only 100 instances from the main competition, instead of splitting them into
training and testing sets, we used these qualifying instances to train the solvers
and tested on the complete set of main competition instances. This qualifying
set is comprised of real industrial instances, but from different sources than the
instances used in the actual SAT Race. Still, as we will show below, configuring
on the qualifying instances produced the best configurations for each solver.

We selected two highly parametric, high-performance CDCL SAT solvers
for our experiments. The first is Lingeling [6] (version 276), which won third
place in the application category of the 2011 SAT Competition. The second is
Spear [5] (version 32.1.2.1), one of the first industrial SAT solvers designed to
be highly parametric, which won the QF BV category of the 2007 SMT Compe-
tition. These two solvers were chosen based on their performance on industrial
instances and their large configuration space (≈ 1017 and ≈ 1046 configura-
tions, respectively2). Furthermore, these solvers were developed entirely indepen-
dently from each other, with very different configuration spaces. Lingeling has
many parameters controlling the behaviour of its pre-processing/in-processing
and memory management mechanisms, while Spear features several alternative
decision and phase heuristics.

Both Lingeling and Spear were configured for each of our five training sets
using two independent configurators: ParamILS [16,17], and SMAC [15]. Both
configurators optimised the Penalised Average Runtime (PAR10) performance,
with a cut-off of 300 s for each run of the solver to be configured. PAR10 mea-
sures the average runtime, treating unsolved instances as having taken 10 times
the cut-off time.

Configuration remains a compute-intensive step. Following a widely used pro-
tocol for applying ParamILS, we conducted ten independent runs for each of
our fourteen pairs of solvers and training sets, allocating 2 CPU days to each
2

ParamILS can only configure over finite, discretized configuration spaces. Parame-
ters taking arbitrary integers or real numbers were manually discretized to a small
number of representative values (< 10), from which the spaces above were computed.

Evaluating Instance Generators by Configuration 55

of those runs. For each solver and training set combination we then evaluated
the ten configurations thus obtained on the full training set and selected the one
with the best PAR10 score; this second stage required as much as three addi-
tional days of CPU time. The same protocol was used for SMAC. Carried out on
a large compute cluster using 100 cores in parallel, this part of our experiments
took five days of wall clock time and resulted in seven configurations for each
configurator on both SAT solvers (in addition to their default configurations),
which we refer to as SAT-Race, HWV, SWV, 3-CNF, Circuit-Fuzz, Ensemble,
and Double-Powerlaw. We then evaluated each configuration on each target test-
ing set using a cut-off time of 15 CPU minutes per instance. On the HWV and
SAT Race target sets, there were some instances that were not solved by any
configuration of each solver. We have excluded those instances from the results
for the respective solvers, to avoid inflating the Q-scores, as discussed above. We
note that, unlike in a competition scenario, this does not distort our results, as
the purpose of our study was not to compare solver performance.

All experiments were performed on a cluster of machines equipped with
six-core 2.66 GHz 64-bit CPUs with 12 MB of L3 cache running Red Hat Linux
5.5; each configuration and evaluation run had access to 1 core and 4 GB of
RAM.

4 Results and Analysis

Results for each configuration against the three target instance sets (HWV,
SWV, and SAT Race 2008) are presented in Tables 1, 2, 3 and 4; for reference,
the performance of each respective solver’s default configuration is shown in the
bottom rows. As seen from these data, in all cases the best known configuration
of each solver was found through automatic configuration (sometimes by SMAC,
and sometimes by ParamILS).

Table 1. ParamILS configurations of Lingeling running on the target instances.
Best known configurations are shown in boldface. Q-scores closer to 1 are better.

Lingeling HWV SWV SAT Race 2008

Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.043 182.8 286/291 0.005 32.3 301/302 0.175 3512.4 58/93

Double-

Powerlaw

0.095 82.9 289/291 0.005 34.6 301/302 0.209 2944.7 64/93

Circuit-Fuzz 0.175 45.2 290/291 0.132 1.2 302/302 0.437 1404.5 80/93

Ensemble 0.766 10.3 291/291 0.079 2.1 302/302 0.562 1092.8 83/93

HWV 1.000 7.9 291/291 0.078 2.1 302/302 0.621 989.8 84/93

SWV 0.095 83.2 289/291 0.879 0.2 302/302 0.217 2825.2 65/93

SAT-Race

Qualifying

0.624 12.6 291/291 0.203 0.8 302/302 1.000 614.3 88/93

Default 0.724 10.9 291/291 0.054 3.0 302/302 0.624 984.0 84/93

56 S. Bayless et al.

Table 2. SMAC configurations of Lingeling running on the target instances. Best
known configurations are shown in boldface. Q-scores closer to 1 are better.

Lingeling HWV SWV SAT Race 2008

Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.065 121.5 288/291 0.005 32.7 301/302 0.183 3349.2 60/93

Double-

Powerlaw

0.100 78.7 289/291 0.090 1.8 302/302 0.273 2250.3 71/93

Circuit-Fuzz 0.053 150.1 287/291 0.932 0.2 302/302 0.215 2852.4 65/93

Ensemble 0.177 44.6 290/291 0.073 2.3 302/302 0.551 1114.6 83/93

HWV 0.720 11.0 291/291 0.158 1.0 302/302 0.471 1303.5 81/93

SWV 0.100 79.3 289/291 1.000 0.2 302/302 0.327 1879.8 75/93

SAT-Race

Qualifying

0.178 44.3 290/291 0.177 0.9 302/302 0.439 1399.2 80/93

Default 0.724 10.9 291/291 0.054 3.01 302/302 0.624 984.0 84/93

Table 3. ParamILS configurations Spear running on the target instances. Best known
configurations are shown in boldface. Q-scores closer to 1 are better.

Spear HWV SWV SAT Race 2008

Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.265 376.3 279/290 0.001 881.0 273/302 0.487 4336.6 45/78

Double-Powerlaw 0.083 1111.7 255/290 < 0.001 1737.2 244/302 0.298 6712.4 23/78

Circuit-Fuzz 0.211 435.8 276/290 0.001 907.4 273/302 0.615 3589.0 52/78

Ensemble 0.084 1097.9 256/290 0.001 1389.5 256/302 0.499 4251.0 46/78

HWV 1.000 91.8 287/290 0.001 695.4 279/302 0.687 3292.2 55/78

SWV 0.045 2058.2 224/290 0.641 1.19 302/302 0.300 6585.8 23/78

SAT-Race

Qualifying

0.800 114.7 286/290 0.469 1.62 302/302 1.000 1909.3 63/78

Default 0.213 430.2 277/290 0.012 64.5 300/302 0.591 3706.7 51/78

Table 4. SMAC configurations of Spear running on the target instances. Best known
configurations are shown in boldface. Q-scores closer to 1 are better.

Spear HWV SWV SAT Race 2008

Config. Q PAR10 #Solved Q PAR10 #Solved Q PAR10 #Solved

3-CNF 0.199 462.1 276/290 0.001 1496.9 252/302 0.533 3579.3 48/78

Double-Powerlaw 0.061 1497.6 243/290 < 0.001 1981.4 236/302 0.262 7300.2 15/78

Circuit-Fuzz 0.271 338.9 280/290 0.001 613.6 282/302 0.633 3015.1 53/78

Ensemble 0.163 563.8 273/290 0.001 823.7 275/302 0.611 3125.6 52/78

HWV 0.787 116.6 287/290 0.289 2.63 302/302 0.662 2885.7 54/78

SWV 0.029 3122.0 190/290 1.000 0.762 302/302 0.280 6818.2 19/78

SAT-Race

Qualifying

0.188 487.7 275/290 0.003 231.0 295/302 0.572 3338.2 50/78

Default 0.213 430.2 277/290 0.012 64.5 300/302 0.591 3231.7 51/78

Evaluating Instance Generators by Configuration 57

The Q-scores provide us with quantitative insight regarding the extent to
which the instance generators can serve as proxies for the three sets of real-
world instances considered here. For example, overall, there are only two cases
where a configuration on generated instances produced a SAT-solver that scored
above 0.75 (i.e., was within 25% of the best known configuration’s performance).
Both of these involve Lingeling: once when configured by ParamILS on the
Ensemble instances and running on the HWV target set, and once when config-
ured by SMAC on the Circuit-Fuzz instances and running on the SWV target
set. However, in both cases this very strong performance of a generated instance
configuration seems to be an isolated occurrence, one that is not replicated with
Spear or the other configurator. This suggests that none of the four generated
instance sets could be considered excellent matches to any of the three industrial
instance sets considered here (for the purposes of developing SAT solvers).

However, there are still substantial differences between the generators: Con-
sidering the Q-scores in Tables 1, 2, 3 and 4, we observe that, as expected, the
3-CNF instances did not provide effective guidance towards good configurations
for real-world instances: in only one case we obtained performance within 50%
of the best known configuration, and in most cases the Q-scores are well below
25% of optimal.

On the other hand, solvers configured on the Circuit-Fuzz instances showed
better performance, especially on the SAT Race instances.Spear always improved
its performance on the SAT Race instances relative to the default configuration
when configured using the Circuit-Fuzz instances. This provides evidence that
the Circuit-Fuzz instances can make reasonable proxies for real-world SAT Race
instances. However, we also observe that these are at best imperfect proxies: Lin-

geling, a SAT solver that has been more heavily optimized for performance on
SAT Race instances, always performed worse than the default on the SAT Race
instances after configuring on the Circuit-Fuzz instances (however, configuring
Lingeling on the Circuit-Fuzz instances was still better than configuring on
3-CNF).

The evidence for the utility of the Ensemble instances is much stronger. In
three out of four cases, configuring on the Ensemble instances lead to a solver
that obtained a runtime > 50% of best known configuration on the SAT Race
2008 target set, and even in the remaining case its runtime was only just barely
less than 50% of the best known configuration. This is not stellar performance –
but it is not dismal, either: we can conclude that the Ensemble instance are
moderately effective proxies for the SAT Race target set.

Our results also provide a clear answer to the question whether the Double-
Powerlaw instances can serve as useful proxies in solver design for the types
of industrial instances considered here. Neither Lingeling nor Spear when
configured on these instances performed well on any of our three target sets; not
once did configuring on the Double-Powerlaw instances produce a solver that was
within 50% of the best known configuration. Strikingly, we can see that in 7 of
12 cases, the Double-Powerlaw configurations performed worse than the 3-CNF
configurations, and even in the remaining cases, it was better than 3-CNF by
less than 10%.

58 S. Bayless et al.

Finally, we compared results between Lingeling and Spear to assess of
the robustness of our Q-score measure. As we observed for the Circuit-Fuzz
instances, there are certainly differences between these solvers, and an instance
set may be more useful for one than for the other. However, our results indicate
that even for these very different solvers (in terms of configuration space, design
and implementation), Q-scores are generally quite consistent, especially if the
same configurator is used. For example, configuring either Spear or Lingeling

on the HWV training instances always produced reasonably good results on
the SAT Race 2008 target set. Conversely, training either solver on the SWV
training instances always produced poor results on the HWV and SAT Race
2008 instances. Training either solver on 3-CNF or Double-Powerlaw always
produced poor results on HWV and SWV; as observed above, training on the
Ensemble instances always produced reasonably good results on the SAT Race
2008 instances.

That said, ParamILS and SMAC sometimes produced inconsistent results.
For example, using ParamILS to configure either solver on the SAT Race Qual-
ifying instances produced good performance on the HWV target set, whereas
poor performance was observed on the same set for configurations observed from
SMAC. We speculate that this could be due to the way in which the model-
based search approach underlying SMAC reacts to characteristics of the given
instances and configuration spaces. Nevertheless, these inconsistencies were quite
rare, and even when using different configurators, results were usually highly
consistent between solvers.

Closer examination of the Double-Powerlaw instances provided strong evi-
dence that, despite sharing some statistical similarities with actual industrial
instances, they give rise to very different behaviour in standard SAT solvers. In
particular, we found that the Double-Powerlaw instances (both satisfiable and
unsatisfiable) are without exception extremely easy for industrial SAT solvers
to solve. A typical industrial instance of medium difficulty tends to require a
modern CDCL solver to resolve tens or hundreds of thousands of conflicts; these
conflicts arise from bad decisions made by the decision heuristic while searching
for a satisfying assignment of literals. In contrast, the Double-Powerlaw instances
can typically be solved (by MiniSat [27], which reports this information conve-
niently) with less than 100 conflicts – even though these instances are very large
(containing 500 000 variables and 1.3 million clauses).

Unfortunately, there is not much room to make these instances larger with-
out causing solvers to run out of memory (though we have experimented infor-
mally with generating Double-Powerlaw instances that are 10 times larger, and
found that they are not substantially harder to solve). Moreover, we found these
instances to be uniformly easy to solve – even out of thousands of generated
instances, none took more than 10 s to solve using Spear or Lingeling. For
this reason, filtering by difficulty, as we did with the Circuit-Fuzz instances,
would not be effective.

Evaluating Instance Generators by Configuration 59

5 Conclusions and Future Work

We have introduced a new configuration-based metric, the Q-score, for assessing
the utility of a given instance set for developing, training and testing solvers. The
fundamental approach underlying this metric is based on the idea of using the
automated configuration of highly parametric solvers as a metaphor for a solver
development process aimed at optimising performance on particular classes of
target instances. Although the notion of Q-score applies to highly parametric
solvers for arbitrary problems, our motivation for developing it was to assess
how actual instance generators can serve as proxies for a range of SAT instances
as considered in the literature.

We found strong evidence that the Double-Powerlaw instances do not ful-
fill that role well, as indicated by robust, consistent results obtained for two
high-performance CDCL SAT solvers with very different configuration spaces,
Lingeling and Spear, across three separate sets of industrial target instances,
and using two different configurators, ParamILS and SMAC. We also presented
evidence that the generated Ensemble instances are moderately effective for con-
figuring for the SAT Race 2008 competition instances. Along with our results
for the Circuit-Fuzz instances, this suggests that generating random instances in
the original problem domain (circuits, in these two cases) might be a promising
area for future industrial-like instance generators.

Because our metric does not depend on any specific properties of the genera-
tors or target domains, it should be widely applicable for evaluating the useful-
ness of many different types of instance generators, and on any target instance
set for which there is an appropriate parametric solver (one whose design space
includes good configurations for those target instances). As argued by Selman
et al. [25], generators that can produce instances resembling real-world instances
would be valuable in the development of SAT solvers. By providing an approach
to evaluate candidates for such generators, we hope to spur further research in
this direction. We see the work by Ansótegui et al. [2] as a valuable first step in
this direction, but as indicated by our findings reported here (and also reflected
in the title of their publication), much work remains to be done.

Finally, as our metric can be evaluated automatically, we can in principle use
it to configure instance generators themselves. Generators are typically para-
metrized; it may not be known in advance what settings produce the most
appropriate instances for training. Instead of finding generator settings that
produce difficult instances or that correspond to a phase transition, automatic
algorithm configuration based on Q-score could identify generator settings that
produce instances that make good proxies for interesting classes of real-world
SAT problems.

Acknowledgments. This research has been enabled by the use of computing resources
provided by WestGrid and Compute/Calcul Canada, and funding provided by the
NSERC Canada Graduate Scholarships and Discovery Grants Programs.

60 S. Bayless et al.

References

1. Achlioptas, D., Gomes, C., Kautz, H., Selman, B.: Generating satisfiable problem
instances. In: Proceedings of the National Conference on Artificial Intelligence, pp.
256–261. Menlo Park, CA, Cambridge, MA, London, AAAI Press, MIT Press, 1999
(2000)

2. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT
instances. In: Proceedings of the Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI-09), pp. 387–392 (2009)

3. Ansótegui, C., Bonet, M.L., Levy, J., Manyà, F.: Measuring the hardness of SAT
instances. In: Proceedings of the Twenty-Third National Conference on Artificial
Intelligence (AAAI-08), pp. 222–229 (2008)

4. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007)

5. Babić, D., Hutter, F.: Spear theorem prover. Solver Description, SAT Race 2008
(2008)

6. Armin, B.: Lingeling, Plingeling PicoSAT and PrecoSAT at SAT race. Technical
report 10/1, FMV Report Series, Institute for Formal Models and Verification,
Johannes Kepler University (2010)

7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT
and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175,
pp. 44–57. Springer, Heidelberg (2010)

8. Burg, S., Kottler, S., Kaufmann, M.: Creating industrial-like SAT instances by
clustering and reconstruction. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 471–472. Springer, Heidelberg (2012)

9. Chvátal, V., Szemerédi, E.: Many hard examples for resolution. J. ACM 35(4),
759–768 (1988)

10. Dequen, G., Dubois, O.: An efficient approach to solving random k-SAT problems.
J. Autom. Reason. 37(4), 261–276 (2006)

11. Gomes, C.P., Selman, B., et al.: Problem structure in the presence of perturbations.
In: Proceedings of the National Conference on Artificial Intelligence, pp. 221–226.
Wiley (1997)

12. Haanpää, H., Järvisalo, M., Kaski, P., Niemelä, I.: Hard satisfiable clause sets for
benchmarking equivalence reasoning techniques. J. Satisf. Boolean Model. Comput.
2(1–4), 27–46 (2006)

13. Heule, M.J.H., van Maaren, H.: Whose side are you on? finding solutions in a
biased search-tree. J. Satisf. Boolean Model. Comput. 4, 117–148 (2008)

14. Hoos, H.H.: Programming by optimization. Commun. ACM 55, 70–80 (2011)
15. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization

for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011)

16. Hutter, F., Babić, D., Hoos, H.H., Hu, A.J.: Boosting verification by automatic
tuning of decision procedures. In: Proceedings of the Seventh International Con-
ference on Formal Methods in Computer-Aided Design (FMCAD-07), pp. 27–34
(2007)

17. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

18. Hutter, F., Hoos, H.H., Stützle, T.: Automatic algorithm configuration based on
local search. In: Proceedings of the Twenty-Second National Conference on Artifi-
cial Intelligence (AAAI-07), pp. 1152–1157 (2007)

Evaluating Instance Generators by Configuration 61

19. Järvisalo, M., Kaski, P., Koivisto, M., Korhonen, J.H.: Finding efficient circuits
for ensemble computation. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS,
vol. 7317, pp. 369–382. Springer, Heidelberg (2012)

20. Kautz, H., Selman, B.: Ten challenges Redux : recent progress in propositional rea-
soning and search. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 1–18. Springer,
Heidelberg (2003)

21. KhudaBukhsh, A.R.: SATenstein: automatically building local search SAT solvers
from components. Master’s thesis, University of British Columbia (2009)

22. KhudaBukhsh, A.R., Xu, L., Hoos, H.H., Leyton-Brown, K.: SATenstein: automat-
ically building local search SAT solvers from components. In: Proceedings of the
Twenty-First International Joint Conference on Artificial Intelligence (IJCAI-09),
pp. 517–524 (2009)

23. Li, C.M., Anbulagan, : Look-ahead versus look-back for satisfiability problems. In:
Smolka, G. (ed.) CP 1997. LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg
(1997)

24. Rish, I., Dechter, R.: Resolution versus search: two strategies for sat. J. Autom.
Reason. 24(1), 225–275 (2000)

25. Selman, B., Kautz, H., McAllester, D.: Ten challenges in propositional reasoning
and search. In: Proceedings of the Fifteenth International Joint Conference on
Artificial Intelligence (IJCAI-97), pp. 50–54 (1997)

26. Slater, A.: Modelling more realistic SAT problems. In: McKay, B., Slaney, J.K.
(eds.) AI 2002. LNCS (LNAI), vol. 2557, pp. 591–602. Springer, Heidelberg (2002)

27. Sörensson, N., Eén, N.: Minisat v1.13 - a SAT solver with conflict-clause minimiza-
tion. In: Poster, Eighth International Conference on Theory and Applications of
Satisfiability Testing (SAT-05) (2005)

28. Tompkins, D.A.D., Balint, A., Hoos, H.H.: Captain Jack: new variable selection
heuristics in local search for SAT. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011.
LNCS, vol. 6695, pp. 302–316. Springer, Heidelberg (2011)

29. Tompkins, D.A.D., Hoos, H.H.: Dynamic scoring functions with variable expres-
sions: new SLS methods for solving SAT. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 278–292. Springer, Heidelberg (2010)

30. Zarpas, E.: Benchmarking SAT solvers for bounded model checking. In: Bacchus,
F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 340–354. Springer, Heidelberg
(2005)

An Empirical Study of Off-Line Configuration
and On-Line Adaptation in Operator Selection

Zhi Yuan1(B), Stephanus Daniel Handoko2, Duc Thien Nguyen2,
and Hoong Chuin Lau2

1 Department of Mechanical Engineering, Helmut Schmidt University,
Hamburg, Germany
yuanz@hsu-hh.de

2 School of Information Systems, Singapore Management University,
Singapore, Singapore

{dhandoko,dtnguyen,hclau}@smu.edu.sg

Abstract. Automating the process of finding good parameter settings is
important in the design of high-performing algorithms. These automatic
processes can generally be categorized into off-line and on-line methods.
Off-line configuration consists in learning and selecting the best setting
in a training phase, and usually fixes it while solving an instance. On-line
adaptation methods on the contrary vary the parameter setting adap-
tively during each algorithm run. In this work, we provide an empirical
study of both approaches on the operator selection problem, explore the
possibility of varying parameter value by a non-adaptive distribution
tuned off-line, and incorporate the off-line with on-line approaches. In
particular, using an off-line tuned distribution to vary parameter values
at runtime appears to be a promising idea for automatic configuration.

1 Introduction

The performance of metaheuristics in solving hard problems usually depends
on their parameter settings. This leaves every algorithm designer and user with
a question: how to properly set algorithm parameters? In recent years, many
works on using automatic algorithm configuration to replace the conventional
rule-of-thumb or trial-and-error approaches have been proposed [1–3].

The automatic algorithm configuration methods can generally be catego-
rized into two classes: off-line method and on-line method. The goal of off-line
configuration method, also referred to as parameter tuning, is to find a good
parameter configuration for the target algorithm based on a set of available
training instances [4]. These training instances in practice can be obtained from,
e.g., a simulated instance generator or historical data if the target optimization
problem happens in a recurring manner, for example, to optimize logistic plans

Main part of this research was carried out while Zhi Yuan was working at the School
of Information Systems, Singapore Management University. Zhi Yuan is currently
also a PhD candidate at IRIDIA, CoDE, Université Libre de Bruxelles, Belgium.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 62–76, 2014.
DOI: 10.1007/978-3-319-09584-4 7

An Empirical Study of Off-Line Configuration and On-Line Adaptation 63

on weekly delivery demand, etc. Once the training phase is finished, the target
algorithm is deployed using the tuned configuration to solve future instances.
The off-line tuned configuration deployed is usually fixed when solving each
instance, and across different instances encountered1. Existing approaches to
this aim include, e.g., [6–11]. In contrast with off-line configuration, instead of
keeping a static parameter configuration during the algorithm run, an on-line
configuration method tries to vary the parameter value as the target algorithm
is deployed to solve an instance. Such approaches are also referred to as parame-
ter adaptation [12] or parameter control [13]. The on-line parameter adaptation
problem has attracted many attentions and research efforts, especially in the
field of evolutionary algorithm [14]. The usage of machine learning techniques in
parameter adaptation is also the unifying research theme of reactive search [3].

Although the on-line and off-line methods approach the automatic algorithm
configuration problem differently, they can be regarded as complementary to
each other. For example, the on-line methods usually also have a number of
hyper-parameter to be configured, and this can be fine-tuned by an off-line
method, as done in the design of on-line operator selection method in [15].
Besides, off-line methods can provide a good starting parameter configuration,
which is then further adapted by an on-line mechanism once the instances to be
solved are given. Pellegrini et al. [16] provides an in-depth analysis in this direc-
tion under the context of ant colony optimization algorithms (ACO), but shows
that the on-line methods usually worsen the algorithm performance comparing
with using a fixed configuration tuned off-line. Francesca et al. [17] compared
on-line adaptation in operator selection with a static operator tuned off-line, and
found using a statically tuned operator more preferable in their context. Another
study in [18] shows that instead of adapting the tabu list length on-line as in
reactive tabu search [19], varying the tabu list length by a static distribution
tuned off-line performs better.

In this empirical study, we continue with [17] on the operator selection prob-
lem, and try to challenge the off-line tuned static operator by: (1) varying the
parameter value by a non-adaptive off-line tuned distribution; (2) using off-line
configuration in the design of on-line adaptive approaches; (3) cooperation of the
non-adaptive approaches and the adaptive approaches. We also provide further
analysis on the performance of on-line adaptation mechanisms.

2 The Target Problem and Algorithm

The target problem to be tackled is the quadratic assignment problem (QAP)
[20]. In the QAP, n facilities are assigned to n locations, where the flow fij

between each pair of facilities i, j = 1, . . . , n and the distance dij between each
pair of locations i, j = 1, . . . , n are given. The goal is to find an permutation π

1 There exist off-line configuration approaches called portfolio-based algorithm selec-
tion [5], which returns a portfolio of configurations instead of one fixed configura-
tion, then select a configuration from the portfolio based on the feature of the future
instance. However, each of its configurations remains fixed when solving an instance.

64 Z. Yuan et al.

that assigns to the location i one unique facility πi, such that the cost defined as
the sum of the distances multiplied by the corresponding flows such as follows:

n∑

i=1

n∑

j=1

fπ(i)π(j) · dij (1)

is minimized.
As the target algorithm for the study of off-line and on-line configuration

methods, we focus on the operator selection in the evolutionary algorithm (EA).
Our implementation of EA is inspired by the work described by Merz et al. [21].
In EA, a population of p individuals, each of which represents a QAP solu-
tion, are evolved from iteration to iteration by applying variation operators such
as crossover and mutation. Initially, the p individuals are generated uniformly
at random. Then at each iteration, pc new individuals, dubbed offspring, will
be generated by applying a crossover operator, and pm new individuals will be
generated by applying a mutation operator. All these new individuals may be
refined by applying an optional local search procedure. The best p individuals
among the old and newly generated individuals will be selected to enter the next
iteration.

A crossover operator generates an offspring based on two through recombina-
tion of the chromosomes of two randomly chosen parent solutions. In this study,
we look into the following four different crossover operators:

Cycle crossover (CX) first passes down all chromosomes that are shared by
both parents, Ip1 and Ip2 , to the offspring, Io. The remaining chromosomes of the
offspring are assigned starting from a random one, Io(j). CX first sets Io(j) =
Ip1(j). Then, denoting Ip1(j

′) as the chromosomes where Ip1(j
′) = Ip2(j), CX

sets Io(j′) = Ip1(j
′) and substitutes the index j with j′. This procedure is

repeated until all chromosomes of Io are assigned.
Distance-preserving crossover (DPX) generates an offspring that has the

same distance from both parents. DPX simply passes down to Io all the chromo-
somes that are shared by both Ip1 and Ip2 . Each of the remaining chromosomes,
Io(j), is assigned randomly provided that Io(j) is a permutation and it is differ-
ent from both Ip1(j) and Ip2(j) in some approximate sense.

Partially-mapped crossover (PMX) randomly draws two chromosome loca-
tions of Io, namely j and j′ where j < j′. PMX then sets Io(k) = Ip1(k) for all k
outside the range of [j, j′] and Io(k) = Ip2(k) for all j ≤ k ≤ j′. If the offspring
generated is not a valid permutation, then for each chromosome pair Io(k) and
Io(z) where Io(k) = Io(z) and j ≤ z ≤ j′, PMX sets Io(k) = Ip1(z). This process
is repeated until a valid permutation is obtained.

Order crossover (OX) randomly draws two chromosome locations of Io,
namely j and j′ where j < j′. OX then sets Io(k) = Ip1(k) for all j ≤ k ≤ j′

and assigns in the k-th unassigned chromosomes of Io the k-th chromosomes of
Ip2 that differs from any Io(z), j ≤ z ≤ j′.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 65

3 Operator Selection Strategies

3.1 The Static Operator Strategy

The static operator strategy (SOS) refers to fixing one operator when solving an
instance. Most EA follows this strategy, especially when an off-line configuration
tool is available [17]. Then this amounts to setting a categorical parameter.

3.2 The Mixed Operator Strategy

In contrast with fixing one operator to use, the mixed operator strategy2 (MOS)
assigns a probability to each operator. This allows an operator to be selected
at each iteration of the algorithm under a certain probability. This strategy is
often designed with a uniform probability distribution for each possible operators
in the literature [17,22], and referred to as “naive”. Of course, the probability
of selecting each operator can be set in other ways than uniform, and can be
regarded as a real-valued parameter.3 These parameters can potentially be fine-
tuned in the off-line training phase.

3.3 The Adaptive Operator Selection

Different from the two approaches above, adaptive operator selection strategy
(AOS) try to adjust the parameter values while running the target algorithm
for each instance. As an on-line method, it is able to adapt parameter values
according to different instances and different search stages. The development of
such on-line methods needs to address two issues: the reward function, or credit
assignment [23], which concerns how to measure operator quality according to
operator performance; and the adaptation mechanism that concerns which oper-
ator to use at each time step according to the performance measurement.

Reward Function. Two reward functions were used in our work. Both versions
make reference of the cost of the offspring co to the cost of the current best
solution cb and the better parent solution cp. The first reward function is adopted
from the study of [17], for an operator i that is used to generate a set Ii of
offspring at the current iteration:

Ri
1 =

1
|Ii|

∑

o∈Ii

· cb

co
max{0,

cp − co

cp
}. (2)

A drawback in the reward function R1 is that the relative improvement of the
offspring over its better parent will bias the multiplicative reward value much
2 The term is syntactically and semantically analogous to the term mixed strategy

widely used in game theory.
3 One can even regard the static operator strategy as a degenerate case of a mixed

strategy, in which one operator is selected with probability 1, and each of the others
with probability 0.

66 Z. Yuan et al.

stronger than its relative performance to the current best solution. This may
not be effective especially when the parents are drawn uniformly randomly.
We modify (2) by making the reference to the parent solution and the current
best solution to contribute the same magnitude to the reward function:

Ri
2 =

1
|Ii|

∑

o∈Ii

cb

co
· cp

co
· sign(cp − co), (3)

where sign(x) function returns 1 when x > 0, and returns 0 otherwise.

On-line Adaptation Mechanisms. We considered the three on-line algorithm
adaptation methods studied in [17] for the operator selection problem, namely,
Probability Matching (PM) [24], Adaptive Pursuit (AP) [25] and Multi-Armed
Bandit (MAB) [26]. These three on-line methods update the quality Qi of each
candidate operator i by the formula:

Qi = Qi + α(Ri −Qi) (4)

where 0 ≤ α ≤ 1 is a parameter, and Qi is by default initialized to 1 for each
operator i. Using a PM mechanism, the probability of choosing an operator i is
given by the following formula:

Pi = Pmin + (1− |I|Pmin)
Qi∑

i′∈I Qi′
, (5)

where I is the set of all possible operators. The lower threshold 0 ≤ Pmin ≤ 1 is a
parameter to guarantee that every operator has a chance to show its impact. The
second adaptation method AP differs from PM by using a different probability
update formula than (5):

Pi =

{
Pi + β(Pmax − Pi), if Qi = maxi′Qi′

Pi + β(Pmin − Pi), otherwise,
(6)

where 0 ≤ β ≤ 1 is a parameter, and Pmax = 1− (|I| − 1)Pmin. Over time, the
probability of choosing a promising operator converge to Pmax while all others
descend into Pmin. The third adaptation method MAB selects an operator ī
deterministically by

argmax
i∈I

{
R̄i + γ(

√
2 ln

∑
i′ ni′

ni
)
}

, (7)

where R̄i is the average reward computed since the beginning of the search and
ni is the number of times the crossover operator i is chosen.

4 Experimental Setup

All experiments are conducted on a computing node with 24-core Intel Xeon
CPU X7542 at 2.67 GHz sharing 128 GB RAM. Each run uses single thread.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 67

4.1 Instance Setup

Three classes of QAP instances are considered in our experiments: one heteroge-
neous and two homogeneous sets. For the heterogeneous set (het), we followed
the experimental setup in [17]: 32 instances from QAPLIB [27] with size from 50
to 100.4 For the homogeneous sets, we generated 32 relatively easy homogeneous
instances (hom-easy) and 32 harder homogeneous instances (hom-hard) using
instance generator described in [28]. The instances in hom-easy are uni-size 80,
with Manhattan distance matrix and random (unstructured) flow matrix gener-
ated with the same distribution with 50 % sparsity; while the hom-hard instances
are uni-size 100 with zero sparsity. Both homogeneous instance sets are chosen
with large size (80 and 100), so that the computational overhead of the on-line
adaptation mechanisms can be ignored.5 All three instance classes are divided
in half, 16 instances for training and 16 others for testing. Each instance was run
10 times, resulting in 160 instance runs. Each of the 160 runs is assigned with
a unique random seed. Note that during each run, different algorithms will use
the same random seed. This is to reduce evaluation variance [29].

4.2 Target Algorithm Setup

In [17], three memetic algorithm (MA) schemes were used for experiments: sim-
ple MA with crossover only; intermediate MA with crossover and local search;
and full MA with crossover, mutation, and local search. Three levels of com-
putation time are considered, 10, 31, and 100 s. From our initial experiments,
we found that local search is time-consuming. For an instance of size 100, one
local search took about 1 s. The intermediate and full MA thus performed no
crossover in 10 or 31 s, and only 1 or 2 crossover generations after 100 s.6 With
this observation, and also to better distinguish the performance difference of
crossover operator selection strategies, we excluded the local search as well as
mutation7, and focused on the crossover operation in this study. In such case, the
computation time chosen corresponds to around 9000, 30 000, 90 000 crossover
generations, respectively. For the default parameters in our implemented MA,
we followed exactly [17], setting population size p = 40, crossover population
pc = p/2 = 20. A restart is triggered when the average distance over all pairs
of individuals in the population has dropped below 10 or the average fitness
4 There are in total 33 instances found in the QAPLIB with size from 50 to 100.

We further exclude one of them, esc64a, which is too simple and each algorithm
considered in this work will solve it to optimum. Then it results in a total number
of 32 instances in the heterogeneous set.

5 Comparing with the non-adaptive operator strategy (fixed or mixed strategy), the
computational overhead of the on-line adaptation mechanisms in our implementation
is around 1% on instances of size 100, and around 3 % on instances of size 50.

6 More sophisticated techniques such as don’t look bit or neighborhood candidate list
may speed up local search. However, the development of these techniques is out of
the scope of this study.

7 However, mutation will be used in restart when the population converges.

68 Z. Yuan et al.

of the population has remained unchanged for the past 30 generations. In such
case, each individual except the current best one will be changed by a mutation
operator until it is 30 % of the instance size differ from itself.

4.3 Off-line Configuration Setup

Configuring SOS. The task is to choose one of the four crossover operators
based on the training set. Since the parameter space is small, we assess each
static operator by an exhaustive evaluation in each of the training set, which
consists of 10 runs of 16 instances.

Configuring MOS. Three versions of MOS are presented in this work: an
untrained MOS with uniform probability distribution for each operator, denoted
MOS-u and two automatically tuned versions of MOS, denoted MOS-b and MOS-
w. The two tuned versions differ in how the configuration experiment is designed,
more specifically, in which reference operator to choose: MOS-b chooses the best
operator as reference, while MOS-w chooses the worst. Note that finding the best
or the worst operator requires a priori knowledge such as studied in Sect. 5.1,
or additional tuning effort. However, this additional tuning effort is usually
small, since the parameter space is much smaller comparing with the rest tun-
ing task. Suppose there are n operators, each of which is assigned a parameter
qi, i = 1, . . . , n. After a reference operator r is chosen, in our case, either the
best or worst operator, we fix qr = 1, and try to tune the n − 1 parameters
qi, i = {1, . . . , n} \ {r}. The range of these n − 1 parameters is set to [0, 1.2] in
MOS-b, while in MOS-w, the range is set to [0, 100]. Since the parameter space
is infinite, exhaustive evaluation won’t be feasible, thus we used two state-of-
the-art automatic configuration tool, namely iterated racing [7] and BOBYQA
post-selection [11,30]. We reimplemented both configuration methods in Java,
and integrated them into the framework of AutoParTune [31]. For each of the
configuration methods, maximum 1000 target algorithm runs were allowed as
configuration budget. Then the best configurations found by the both configu-
rators are compared based on their training performance, and the one with the
better training performance is selected. After the tuned configuration is obtained,
the probability pi of each operator i is set to pi = qi∑n

j=1 qj
.

Configuring AOS. We further embarked the off-line algorithm configuration
tools described above to fine-tune the hyper-parameter of the on-line AOS meth-
ods. The AOS parameters with their default parameter values and ranges for
off-line configuration are listed in Table 1.

5 Experimental Results

5.1 The Static Operator Strategy

In each of the 9 training sets (three instance classes with three computation
time), PMX is found to be the best performing operator, thus selected as the

An Empirical Study of Off-Line Configuration and On-Line Adaptation 69

Table 1. The hyper-parameters of the on-line adaptive operator selection: their default
values and their ranges for off-line configuration.

param. name used in default range comment

α PM, AP 0.3 [0.0, 1.0] Adaptation rate

Pmin PM, AP 0.05 [0.0, 0.2] Minimum probability

β AP 0.3 [0.0, 1.0] Learning rate

γ MAB 1.0 [0.0, 5.0] Scaling factor

best off-line tuned static operator. Consider the 16 training instances of the het
set, each with three stopping time, totaling 48 case studies. For each case study,
we rank the four operators on each of the 10 runs and compare the their median
rank. In the het set, PMX is best performing in 41 case studies, followed by CX
in 4 case studies and OX in 3 case studies; in the hom-easy set, PMX performs
best in 44 out of 48 case studies, and CX excels in the other four; PMX is most
dominant in the hom-hard set, topping 47 case studies, while CX stands out in
only one case studies. This shows PMX’s dominance in the training set.

We further applied all the four static operators to the testing set, and their
relative ranking performance in each of the 9 testing sets with a particular run-
time is shown in the first block of each plot in Fig. 1, and their performance
across different runtime in each instance class is shown in Fig. 2. For assessing
the different candidate algorithms in the following, we test the statistical signif-
icance of each pairwise comparison by the Friedman test, and each plot in Fig. 1
shows the median and the 95 % simultaneous confidence intervals of candidate
algorithm regarding these comparisons. If the intervals of two candidate algo-
rithms overlap, then the difference between them is not statistically significant.8

As clearly shown, PMX is dominantly best performing compared to the other
three operators, and the difference is statistical significant in almost every test
case. PMX is also chosen to be the reference in each plot of Figs. 1 and 2 (vertical
dotted line), since it is found to be preferable in [17]. CX, as the runner-up, sig-
nificantly outperforms the other two operators except few cases in the hom-hard
set. DPX turns out to the worst-performing candidate.

5.2 The Mixed Operator Strategy

The ranking performance of the three MOS based approaches is listed in the
second block of each plot in Fig. 1. Firstly, the two tuned versions MOS-b and
MOS-w substantially improves over the default MOS-u with uniform probability
in all case studies. The difference is statistically significant especially when the
8 We further generated the box-plot of the median ranks across 10 trials of each

instance, and the performance comparison in this median-rank box-plot and the
presented confidence-interval plots are almost identical. The confidence-interval plot
is shown here instead of median-rank box-plot since it displays additional information
of statistical significance by the Friedman test.

70 Z. Yuan et al.

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2

MAB−t1
MAB−1

AP−t2
AP−2

AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

10 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

31 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

100 seconds

(a) hom-easy

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2

MAB−t1
MAB−1

AP−t2
AP−2

AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

10 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

31 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

100 seconds

(b) hom-hard

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2

MAB−t1
MAB−1

AP−t2
AP−2

AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

10 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

31 seconds

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

100 seconds

(c) het

Fig. 1. The ranking performance of different operator selection methods (acronyms see
text) with different computation time 10, 31, and 100 s on (a) homogeneous easy (b)
homogeneous hard or (c) heterogeneous instance set.

computation time is small, i.e. 10 or 31 s. MOS-w appears to be a slightly better
way of tuning MOS compared to MOS-b, but the difference between them is never
statistical significant. Both MOS-w and MOS-b perform better than the off-line
tuned static operator PMX, especially when the instances are heterogeneous as

An Empirical Study of Off-Line Configuration and On-Line Adaptation 71

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

all

(a) hom-easy

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2

MAB−t1
MAB−1
AP−t2
AP−2

AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

all

(b) hom-hard

5 10 15 20 25

PM−2r
PM−MOS
MOS−PM

MAB−t2
MAB−2
MAB−t1
MAB−1

AP−t2
AP−2
AP−t1
AP−1

PM−t2
PM−2

PM−t1
PM−1

MOS−w
MOS−b

MOS
PMX

OX
DPX

CX

all

(c) het

Fig. 2. The ranking performance of different operator selection methods (acronyms
see text) across different computation time on (a) homogeneous easy (b) homogeneous
hard or (c) heterogeneous instance set.

in the het set, and when the instances are hard as in the hom-hard set. In these
two sets, the overall ranking difference between MOS-w and PMX across three
computation times is significant. Even the untrained MOS-u can perform better
than the trained static strategy PMX when solving het and hom-hard in 100 s.
This interesting result indicates that, even if an operator that is dominantly
better than the others exists, such as PMX in our case, varying the choice of
operators at runtime can result in significantly better and more robust strategy
than a static choice. This also sheds some light on how off-line configuration
should be conducted: instead of finding one static configuration, varying the
parameter values at runtime by a static distribution trained off-line may be
a better idea. In fact, varying parameter values at runtime by a non-adaptive
distribution is also applied to set the tabu list length in robust tabu search [32],
a state-of-the-art algorithm for QAP.

5.3 The On-line Adaptive Operator Selection

The ranking performance of probability matching (PM), adaptive pursuit (AP),
and multi-armed bandit (MAB) is illustrated in Figs. 1 and 2, at the third,
fourth, and fifth block, respectively. Within each block, the first two boxes refer
to untrained and tuned version with the first reward function R1

c in Eq. (2),
while the latter two boxes with second reward function R2

c in Eq. (3). It appears
that the R2

c benefits PM and AP, while worsens MAB. In general, PM with R2
c

(PM-2), is the best-performing adaptation method. The overall ranking differ-
ences between PM-2 and all the AP and MAB variants are significant for the
heterogeneous instances (het) and hard instances (hom-hard).

The off-line configuration can improve the on-line adaptation methods when
its quality is poor or when computation time is small. For example, the MAB-t2
significantly improves the performance of MAB-2 in terms of overall ranking as
well as ranking in 10-s cases in the set of heterogeneous and hard instances.

72 Z. Yuan et al.

Likewise, AP-t1 significantly improves AP-1. It appears that the performance of
AP and MAB are more sensitive to their parameters and the reward function
used; especially the scaling factor γ in MAB needs to be fine-tuned when the
reward function is changed. So an off-line configuration should be helpful for
these methods. However, the off-line configuration doesn’t seem to be able to
improve the performance of our best on-line method PM. Nevertheless, it is
still recommended to use an off-line configuration, if one is uncertain about the
algorithm performance, faces new problem domain or new setting of reward
function, or the number of total operator generation is small.

Comparing with the static or mixed operator strategies, the ranking perfor-
mance of on-line adaptation methods improve as computation time increases.
Comparing with the off-line selected static operator PMX, PM-2 in general per-
forms better, and the difference is significant when the instance set is heteroge-
neous as in het, and the computation time is long enough (100 s). It is interesting
to see that even our best-performing on-line adaptation methods cannot outper-
form the fine-tuned mixed operator strategy. The difference between PM-2 and
MOS-w and MOS-b is never significant. MOS variants tend to perform better in
the homogeneous instances and at short or medium computation time, and PM-2
appears to be slightly better performing when the instances are heterogeneous
and the computation time is long.

5.4 Combining MOS and AOS

We further investigate the possibility to incorporate both MOS and AOS
together. The best MOS and AOS version found in this work, MOS-w and PM-2,
respectively, are used for this study. Two ways of combination, namely, MOS-PM
and PM-MOS are discussed below, and their results are presented in the second
last block of each plot in Figs. 1 and 2.

MOS-PM. The first hybrid, named MOS-PM, is to tune the MOS-w parameters
qi (the quality vector to generate probability of choosing each operator) in the
training set, and then use this to initialize the quality vector Qi for each operator
i in PM-2 by setting Qi = qi/qargmaxi qi . The scaling by setting the maximum ini-
tial Qi to 1 is to make Qi consistent with the magnitude in the reward function
R2

c . This approach amounts to a biased initial condition for the on-line adap-
tation method by an operator distribution trained off-line. However, MOS-PM
does not bring any improvement to

– MOS-w, which shows that on-line adaptation cannot further improve a well-
tuned non-adaptive mixed operator strategy. This agrees with the study in [16]
that on-line adaptation methods cannot improve an off-line tuned static para-
meter configuration in ACO.

– PM-2 or PM-t2, which shows that either the fine-tuned initial quality Qi does
not interact well with the default setting of α and Pmin in PM, or tuning
initial condition for PM doesn’t pay off in our context. We further ruled out
the first factor by tuning the initial operator quality Qi together with α and

An Empirical Study of Off-Line Configuration and On-Line Adaptation 73

Pmin. However, no noticeable performance improvement can be observed com-
paring with tuning only α and Pmin as in PM-t2. The same observation can
be obtained on MAB and AP, where tuning initial condition doesn’t improve
adaptation performance, as long as its hyper-parameters for adaptation are
already fine-tuned. This may be due to the large number of crossover oper-
ations in our experimental setting. There are already around 9 000 crossover
generations in the 10-s case, where in each generation 20 crossover operations
are performed, totaling 180 000 crossover operations. If the number of opera-
tions are low, such as when local search is applied, an off-line configuration of
the initial conditions may pay off.

PM-MOS. The second hybrid PM-MOS is to apply PM-2 on the training set to
obtain the probability pi of operator i for MOS-w. We first run PM-2 exhaustively
on the training set (10 runs on each of the 16 training instances), keep track of the
number of usage nr

i for operator i in each run r, normalize it into the probability
pr

i = nr
i /

∑
i nr

i of each operator i in run r, then derive pi by averaging pr
i

over all training runs. This amounts to tuning parameters of MOS-w by an on-
line adaptation method PM-2. In the study of [18], the on-line adaptation is
found to perform worse than varying parameter setting randomly by the same
empirical distribution in reactive tabu search [19]. If the same holds for PM-2,
PM-MOS may perform better than PM-2. However, the results disagrees with our
hypothesis. Comparing with PM-2, PM-MOS performs worse in the het set, and
no observable difference on the two homogeneous instance set can be concluded.
The reason for PM-MOS’ inferior performance to PM-2 is further analyzed in
the next section.

5.5 Further Analysis on the Effectiveness of On-line Adaptation

The reason that PM-2 works better than PM-MOS on het set may be due to three
factors: (1) the difference in the training and testing set induces experimental
bias for the trained configuration; (2) the heterogeneity between instances, so
that PM-2 can adapt to different settings for different instances; (3) PM-2, as
an on-line adaptation method, has the ability to adapt the algorithm’s behavior
to local characteristics of the search space when running the algorithm for an
instance [18]. We first took a look into the operator usage frequency in PM-2 on
each instance on both the training and testing set. The operator usage frequency
is actually very close from instance to instance, and no major difference between
the training set and testing set can be observed. We set up experiments inspired
by [18] to test the third factor as follows. For each run on each instance in the
testing set, we keep track of the number of usage ni of operator i in PM-2, and
then randomly generate operators by MOS based on the empirical probability
distribution of PM-2, pi = ni/

∑
i ni. We allowed MOS to run exactly the same

number of total operator generations in the PM-2. In such case, we observed that
MOS may finish around 1 % earlier than PM-2 due to the ease of computational
overhead caused by the adaptation in PM-2. This result of the MOS run is

74 Z. Yuan et al.

denoted as PM-2r as shown at the last block of each plot in Figs. 1 and 2. Note
that the empirical distribution in PM-2r is learned for each run on each instance,
therefore, the first two factors above are ruled out. As shown in Figs. 1 and 2,
we observed that PM-2 and PM-2r have no performance difference in the two
homogeneous instance sets hom-easy and hom-hard. However, in the het set
of real-world benchmark QAP instances, PM-2 has a noticeable advantage over
PM-2r, although the difference is not yet statistically significant. This indicates
that the best adaptive operator selector in our context, PM-2, does adapt well
to the local characteristics of the search space when running on the real-world
benchmark QAP instances, however, it fails to do so for the generated instances
with more random structures.

6 Conclusions and Future Works

In this work, we provide an empirical study of off-line parameter configuration
and on-line parameter adaptation on the operator selection problem in evolu-
tionary algorithm. We extended [17] by incorporating off-line configuration with
the non-static operator selection methods, including: (i) a non-adaptive mixed
operator strategy (MOS), which assigns a probability distribution for selecting
each operator; (ii) three adaptive operator selection (AOS) methods: Probability
Matching, Adaptive Pursuit, and Multi-Armed Bandit. State-of-the-art off-line
algorithm configuration tools are applied to this end, including iterated racing [7]
and post-selection techniques [30]. One major contribution in this study is to
identify an automatically tuned MOS as one of the best performing approaches
for operator selection. The results show that even when a dominantly best choice
of static operator exists, using an automatically tuned operator probability dis-
tribution still significantly outperforms the best static operator approach. This
also sheds some light to the future design of off-line algorithm configuration:
instead of tuning for a static parameter configuration, it may be a better idea
to tune a distribution from which the parameter configurations are randomly
generated and changed during algorithm run. Besides, we also improved the
performance and robustness of on-line AOS methods by considering different
reward function and an off-line configuration of its hyper-parameters. Our inves-
tigation also showed that the best adaptation method adapts well to different
search stages for the benchmark QAP instances.

Our future works aim to extend this study to operator selection problem to
include more than crossover operators: local search operators, mutation opera-
tors, selection criteria operators, etc., or even a combination of different kinds
of operators to test the scalability of the approaches in this work. We also plan
to include other state-of-the-art operator selection techniques such as Dynamic
Multi-Armed Bandit (DMAB) [33]. Since adapting operator choice according to
search stages is found to be crucial for the good performance of the best on-line
method PM-2, applying Markov Decision Process such as in [34] by translating
the local landscape characteristics into different states at each time step and
performing state-based on-line learning becomes a good direction to follow.

An Empirical Study of Off-Line Configuration and On-Line Adaptation 75

Acknowledgments. We sincerely thank Dr. Thomas Stützle for sharing the QAP
instance generator, and for the insightful discussions on the instances and the result pre-
sentation. This work was partially supported by the BMBF Verbundprojekt
E-Motion.

References

1. Hamadi, Y., Monfroy, E., Saubion, F. (eds.): Autonomous Search. Springer, Hei-
delberg (2007)

2. Hoos, H.H.: Programming by optimization. Commun. ACM 55(2), 70–80 (2012)
3. Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization.

Springer, New York (2008)
4. Birattari, M.: Tuning Metaheuristics: A Machine Learning Perspective. Studies in

Computational Intelligence, vol. 197. Springer, Heidelberg (2009)
5. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algo-

rithm selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)
6. Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for con-

figuring metaheuristics. In: Langdon, W.B., et al. (eds.) Proceedings of GECCO,
pp. 11–18. Morgan Kaufmann, San Francisco (2002)

7. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and iterated F-Race:
an overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010)

8. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

9. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 142–157. Springer, Heidelberg (2009)

10. Hutter, F., Bartz-Beielstein, T., Hoos, H.H., Leyton-Brown, K., Murphy, K.:
Sequential model-based parameter optimisation: an experimental investigation of
automated and interactive approaches. In: Bartz-Beielstein, T., et al. (eds.) Empir-
ical Methods for the Analysis of Optimization Algorithms, pp. 363–414. Springer,
Heidelberg (2010)

11. Yuan, Z., Montes de Oca, M., Birattari, M., Stützle, T.: Continuous optimization
algorithms for tuning real and integer parameters of swarm intelligence algorithms.
Swarm Intell. 6(1), 49–75 (2012)

12. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In:
Palaniswami, M., et al. (eds.) Computational Intelligence: A Dynamic Systems
Perspective. IEEE Press, New York (1995)

13. Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in
evolutionary algorithms. In: Lobo, F.G., et al. (eds.) Parameter Setting in Evolu-
tionary Algorithms. SCI, vol. 54, pp. 19–46. Springer, Heidelberg (2007)

14. Lobo, F., Lima, C.F., Michalewicz, Z. (eds.): Parameter Setting in Evolutionary
Algorithms. SCI, vol. 54. Springer, Heidelberg (2007)

15. Fialho, Á., Schoenauer, M., Sebag, M.: Toward comparison-based adaptive opera-
tor selection. In: Proceedings of GECCO, pp. 767–774. ACM (2010)

16. Pellegrini, P., Stützle, T., Birattari, M.: A critical analysis of parameter adaptation
in ant colony optimization. Swarm Intell. 6(1), 23–48 (2012)

76 Z. Yuan et al.

17. Francesca, G., Pellegrini, P., Stützle, T., Birattari, M.: Off-line and on-line tuning:
a study on operator selection for a memetic algorithm applied to the QAP. In:
Merz, P., Hao, J.-K. (eds.) EvoCOP 2011. LNCS, vol. 6622, pp. 203–214. Springer,
Heidelberg (2011)

18. Mascia, F., Pellegrini, P., Birattari, M., Stützle, T.: An analysis of parameter
adaptation in reactive tabu search. Int. Trans. Oper. Res. 21(1), 127–152 (2014)

19. Battiti, R.: The reactive tabu search. ORSA J. Comput. 6, 126–140 (1994)
20. Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Prob-

lems. DIMACS Series. American Mathematical Society, Providence (1994)
21. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the

quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)
22. Krempser, E., Fialho, Á., Barbosa, H.J.C.: Adaptive operator selection at the

hyper-level. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G.,
Pavone, M. (eds.) PPSN 2012, Part II. LNCS, vol. 7492, pp. 378–387. Springer,
Heidelberg (2012)

23. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N.
(eds.) PPSN 2008. LNCS, vol. 5199, pp. 175–184. Springer, Heidelberg (2008)

24. Corne, D.W., Oates, M.J., Kell, D.B.: On fitness distributions and expected fitness
gain of mutation rates in parallel evolutionary algorithms. In: Guervós, J.J.M.,
Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.)
PPSN 2002. LNCS, vol. 2439, p. 132. Springer, Heidelberg (2002)

25. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities.
In: Proceedings of IEEE CEC, pp. 1539–1546. IEEE (2005)

26. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Mach. Learn. 47(2), 235–256 (2002)

27. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - a quadratic assignment problem
library. J. Global Optim. 10(4), 391–403 (1997)

28. Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the exper-
imental analysis of algorithms. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004.
LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)

29. McGeoch, C.: Analyzing algorithms by simulation: variance reduction techniques
and simulation speedups. ACM Comput. Surv. (CSUR) 24(2), 195–212 (1992)

30. Yuan, Z., Stützle, T., Montes de Oca, M.A., Lau, H.C., Birattari, M.: An analysis
of post-selection in automatic configuration. In: Proceeding of GECCO, pp. 1557–
1564. ACM (2013)

31. Lindawati, Yuan, Z., Lau, H.C., Zhu, F.: Automated parameter tuning framework
for heterogeneous and large instances: case study in quadratic assignment problem.
In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 423–437. Springer,
Heidelberg (2013)

32. Taillard, E.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4), 443–455 (1991)

33. Fialho, Á., Da Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits
and extreme value-based rewards for adaptive operator selection in evolutionary
algorithms. In: Stützle, T. (ed.) LION 3. LNCS, vol. 5851, pp. 176–190. Springer,
Heidelberg (2009)

34. Handoko, S.D., Nguyen, D.T., Yuan, Z., Lau, H.C.: Reinforcement learning for
adaptive operator selection in memetic search applied to quadratic assignment
problem. In: Proceedings of GECCO (2014, to appear)

A Continuous Refinement Strategy
for the Multilevel Computation

of Vertex Separators

William W. Hager1, James T. Hungerford1(B), and Ilya Safro2

1 Department of Mathematics, University of Florida, Gainesville, FL, USA
{hager,freerad}@ufl.edu

2 School of Computing, Clemson University, Clemson, SC, USA
isafro@clemson.edu

Abstract. The Vertex Separator Problem (VSP) on a graph is the prob-
lem of finding the smallest collection of vertices whose removal separates
the graph into two disjoint subsets of roughly equal size. Recently, Hager
and Hungerford [1] developed a continuous bilinear programming formu-
lation of the VSP. In this paper, we reinforce the bilinear programming
approach with a multilevel scheme for learning the structure of the graph.

1 Introduction

Let G = (V, E) be an undirected graph with vertex set V and edge set E . Vertices
are labeled 1, 2, . . ., n. We assign to each vertex a non-negative weight ci ∈ R≥0.
If Z ⊂ V, then we let W(Z) =

∑
i∈Z ci be the total weight of vertices in Z.

Throughout the paper, we assume that G is simple; that is, there are no loops
or multiple edges between vertices.

The Vertex Separator Problem (VSP) on G is to find the smallest weight
subset S ⊂ V whose removal separates the graph into two roughly equal sized
subsets A, B ⊂ V such that there are no edges between A and B; that is,
(A× B) ∩ E = ∅. We may formulate the VSP as

min
A,B,S⊂V

W(S)

subject to A ∩ B = ∅, (A× B) ∩ E = ∅, S = V \ (A ∪ B), (1)
�a ≤ |A| ≤ ua, and �b ≤ |B| ≤ ub .

Here, the size constraints on A and B take the form of upper and lower bounds.
Since the weight of an optimal separator S is typically small, in practice the lower
bounds on A and B are almost never attained at an optimal solution, and may be
taken to be quite small. In [2], the authors consider the case where �a = �b = 1
and ua = ub = 2n

3 for the development of efficient divide and conquer algo-
rithms. The VSP has several applications, including parallel computations [3],
VLSI design [4,5], and network security. Like most graph partitioning problems,
the VSP is NP-hard [6]. Heuristic methods proposed include vertex swapping
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 77–81, 2014.
DOI: 10.1007/978-3-319-09584-4 8

78 W.W. Hager et al.

algorithms [5,7], spectral methods [3], continuous bilinear programming [1], and
semidefinite programming [8].

For large-scale graphs, heuristics are more effective when reinforced by a mul-
tilevel framework: first coarsen the graph to a suitably small size; then, solve the
problem for the coarse graph; and finally, uncoarsen the solution and refine it to
obtain a solution for the original graph [9]. Many different multilevel frameworks
have been proposed in the past two decades [10]. One of the most crucial para-
meters in a multilevel algorithm is the choice of the refinement scheme. Most
multilevel graph partitioners and VSP solvers refine solutions using variants of
the Kernighan-Lin [5] or Fidducia-Matheyses [7,11] algorithms. In these algo-
rithms, a low weight edge cut is found by making a series of vertex swaps starting
from an initial partition, and a vertex separator is obtained by selecting vertices
incident to the edges in the cut. One disadvantage of using these schemes is that
they assume that an optimal vertex separator lies near an optimal edge cut.
As pointed out in [8], this assumption need not hold in general.

In this article, we present a new refinement strategy for multilevel separator
algorithms which computes vertex separators directly. Refinements are based on
solving the following continuous bilinear program (CBP):

max
x,y∈Rn

cT(x + y)− γxT(A + I)y (2)

subject to 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, �a ≤ 1Tx ≤ ua, and �b ≤ 1Ty ≤ ub .

Here, A denotes the adjacency matrix for G (defined by aij = 1 if (i, j) ∈ E
and aij = 0 otherwise), I is the n× n identity matrix, c ∈ R

n stores the vertex
weights, and γ := max {ci : i ∈ V}. In [1], the authors show that (2) is equivalent
to (1) in the following sense: Given any feasible point (x̂, ŷ) of (2), one can find
a piecewise linear path to another feasible point (x,y) such that

f(x,y) ≥ f(x̂, ŷ), x,y ∈ {0, 1}n, and xT(A + I)y = 0 . (3)

(see the proof of Theorem 2.1, [1]). In particular, there exists a global solution to
(2) satisfying (3), and for any such solution, an optimal solution to (1) is given
by

A = {i : xi = 1}, B = {i : yi = 1}, S = {i : xi = yi = 0} . (4)

(Note that the fact that (4) is a partition of V with (A×B)∩E = ∅ follows from
the last property of (3).)

In the next section, we outline a multilevel algorithm which incorporates (2)
in the refinement phase. Section 3 concludes the paper with some computational
results comparing the effectiveness of this refinement strategy with traditional
Kernighan-Lin refinements.

2 Algorithm

The graph G is coarsened by visiting each vertex and matching [10] it with
an unmatched neighbor to which it is most strongly coupled. The strength of

A Continuous Refinement Strategy for the Multilevel Computation 79

the coupling between vertices is measured using a heavy edge distance: For the
finest graph, all edges are assigned a weight equal to 1; as the graph is coarsened,
multiple edges arising between any two vertex aggregates are combined into a
single edge which is assigned a weight equal to the sum of the weights of the
constituent edges. This process is applied recursively: first the finest graph is
coarsened, then the coarse graph is coarsened again, and so on. When the graph
has a suitably small size, the coarsening stops and the VSP is solved for the
coarse graph using any available method (the bilinear program (2), Kernighan-
Lin, etc.) The solution is stored as a pair of incidence vectors (xcoarse,ycoarse)
for A and B (see (4)).

When the graph is uncoarsened, (xcoarse,ycoarse) yields a vertex separator for
the next finer level by assigning components of xfine and yfine to be equal to 1
whenever their counterparts in the coarse graph were equal to 1, and similarly
for the components equal to 0. This initial solution is refined by alternately
holding x or y fixed, while solving (2) over the free variable and taking a step
in the direction of the solution. (Note that when x or y is fixed, (2) is a linear
program in the free variable, and thus can be solved efficiently.) When no further
improvement is possible in either variable, the refinement phase terminates and
a separator is retrieved by moving to a point (x,y) which satisfies (3).

Many multilevel algorithms employ techniques for escaping false local optima
encountered during the refinement phase. For example, in [12] simulated anneal-
ing is used. In the current algorithm, local maxima are escaped by reducing the
penalty parameter γ from its initial value of max {ci : i ∈ V}. The reduced
problem is solved using the current solution as a starting guess. If the current
solution is escaped, then γ is returned to its initial value and the refinement
phase is repeated. Otherwise, γ is reduced in small increments until it reaches 0
and the escape phase terminates.

3 Computational Results

The algorithm was implemented in C++. Graph structures such as the adjacency
matrix and the vertex weights were stored using the LEMON Graph Library [13].
For our preliminary experiments, we used several symmetric matrices from the
University of Florida Sparse Matrix Library having dimensions between 1000 and
5000. For all problems, we used the parameters �a = �b = 1, ua = ub = 	0.503n
,
and ci = 1 for each i = 1, 2, . . . , n. We compared the sizes of the separators
obtained by our algorithm with the routine METIS ComputeVertexSeparator
available from METIS 5.1.0. Comparisons are given in Table 1.

Both our algorithm and the METIS routine compute vertex separators using
a multilevel scheme. Moreover, both algorithms coarsen the graph using a heavy
edge distance. Therefore, since initial solutions obtained at the coarsest level
are typically exact, the algorithms differ primarily in how the solution is refined
during the uncoarsening process. While our algorithm refines using the CBP
(2), METIS employs Kernighan-Lin style refinements. In half of the problems
tested, the size of the separator obtained by our algorithm was smaller than

80 W.W. Hager et al.

Table 1. Illustrative comparison between separators obtained using either METIS or
CBP (2)

Problem |V| Sparsity CBP METIS Problem |V| Sparsity CBP METIS

bcspwr09 1723 .0016 8 7 G42 2000 .0059 498 489

netz4504 1961 .0013 17 20 lshp3466 3466 .0017 61 61

sstmodel 3345 .0017 26 23 minnesota 2642 .0009 17 21

jagmesh7 1138 .0049 14 15 yeast 2361 .0024 196 229

crystm01 4875 .0042 65 65 sherman1 1000 .0028 28 32

that of METIS. No correlation was observed between problem dimension and
the quality of the solutions obtained by either algorithm. Current preliminary
implementation of our algorithm is not optimized, so the running time is not
compared. (However, we note that both algorithms are of the same linear com-
plexity.) Nevertheless, the results in Table 1 indicate that the bilinear program
(2) can serve as an effective refinement tool in multilevel separator algorithms.
We compared our solvers on graphs with heavy-tailed degree distributions and
the results were very similar. We found that in contrast to the balanced graph
partitioning [10], the practical VSP solvers are still very far from being optimal.
We hypothesize that the breakthrough in the results for VSP lies in the com-
bination of KL/FM and CBP refinements reinforced by a stronger coarsening
scheme that introduces correct reductions in the problem dimensionality (see
some ideas related to graph partitioning in [10]).

References

1. Hager, W.W., Hungerford, J.T.: Continuous quadratic programming formulations
of optimization problems on graphs. European J. Oper. Res. (2013). http://dx.doi.
org/10.1016/j.ejor.2014.05.042

2. Balas, E., de Souza, C.C.: The vertex separator problem: a polyhedral investigation.
Math. Program. 103, 583–608 (2005)

3. Pothen, A., Simon, H.D., Liou, K.: Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

4. Ullman, J.: Computational Aspects of VLSI. Computer Science Press, Rockville
(1984)

5. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49, 291–307 (1970)

6. Bui, T., Jones, C.: Finding good approximate vertex and edge partitions is NP-
hard. Inf. Process. Lett. 42, 153–159 (1992)

7. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: Proceedings of the 19th Design Automation Conference Las Vegas,
NV, pp. 175–181 (1982)

8. Feige, U., Hajiaghayi, M., Lee, J.: Improved approximation algorithms for vertex
separators. SIAM J. Comput. 38, 629–657 (2008)

9. Ron, D., Safro, I., Brandt, A.: Relaxation-based coarsening and multiscale graph
organization. Multiscale Model. Simul. 9(1), 407–423 (2011)

http://dx.doi.org/10.1016/j.ejor.2014.05.042
http://dx.doi.org/10.1016/j.ejor.2014.05.042

A Continuous Refinement Strategy for the Multilevel Computation 81

10. Buluc, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning (2013) arXiv:1311.3144

11. Leiserson, C., Lewis, J.: Orderings for parallel sparse symmetric factorization. In:
Third SIAM Conference on Parallel Processing for Scientific Computing, pp. 27–31
(1987)

12. Safro, I., Ron, D., Brandt, A.: A multilevel algorithm for the minimum 2-sum
problem. J. Graph Algorithms Appl. 10, 237–258 (2006)

13. Dezső, B., Jüttner, A., Kovács, P.: Lemon - an open source C++ graph template
library. Electron. Notes Theoret. Comput. Sci. 264(5), 23–45 (2011)

http://arxiv.org/abs/1311.3144

On Multidimensional Scaling with City-Block
Distances

Nerijus Galiauskas and Julius Žilinskas(B)

Vilnius University Institute of Mathematics and Informatics,
Akademijos 4, 08663 Vilnius, Lithuania

julius.zilinskas@mii.vu.lt

http://www.mii.vu.lt

Abstract. Multidimensional scaling is a technique for exploratory
analysis of multidimensional data. The essential part of the technique
is minimization of a function with unfavorable properties like multi-
modality, non-differentiability, and invariability with respect to some
transformations. Recently various two-level optimization algorithms for
multidimensional scaling with city-block distances have been proposed
exploiting piecewise quadratic structure of the least squares objective
function with such distances. A problem of combinatorial optimization is
tackled at the upper level, and convex quadratic programming problems
are tackled at the lower level. In this paper we discuss a new reformula-
tion of the problem where lower level quadratic programming problems
seem more suited for two-level optimization.

Keywords: Multidimensional scaling · City-block distances ·Multilevel
optimization · Global optimization

1 Introduction

Multidimensional scaling (MDS) is a technique for exploratory analysis of mul-
tidimensional data widely usable in different applications [2,3,5]. A set of points
in an m-dimensional embedding space is considered as an image of the set of n
objects. Coordinates of points xi ∈ R

m, i = 1, . . . , n, should be found whose
inter-point distances fit the given pairwise dissimilarities δij , i, j = 1, . . . , n. The
points can be found minimizing a fit criterion, e.g. the most frequently used least
squares Stress function:

S(x) =
n∑

i<j

(dr (xi,xj)− δij)
2
, dr(xi,xj) =

(
m∑

k=1

|xik − xjk|r
)1/r

,

where x = (x1, . . . ,xn), xi = (xi1, xi2, . . . , xim), dr(xi,xj) denotes the Minkowski
distance between the points xi and xj . The most frequently used distances are
Euclidean (r = 2), but multidimensional scaling with other Minkowski distances

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 82–87, 2014.
DOI: 10.1007/978-3-319-09584-4 9

On Multidimensional Scaling with City-Block Distances 83

in the embedding space can be even more informative [1]. Here we consider the
city-block distances (r = 1).

Stress function normally has many local minima. It is invariant with respect
to translation and rotation or mirroring. Positiveness of distances at a local min-
imum point imply differentiability of Stress function [4,6] with the Minkowski
distances except city-block: Stress with the city-block distances can be non-
differentiable even at a minimum point [8]. However Stress with the city-block
distances is piecewise quadratic, and such a structure can be exploited for tai-
loring of ad hoc global optimization algorithms. We refer to [5] for a review on
optimization algorithms for city-block MDS.

2 Two-Level Optimization for Multidimensional Scaling
with City-Block Distances

Let us start by describing a reformulation of the Stress function similar to one
presented in [5]. Stress function with city-block distances d1(xi,xj) can be rede-
fined as

S(x) =
n∑

i<j

(
m∑

k=1

|xik − xjk| − δij

)2

.

Let AP denotes a set such that

AP = {x| xik ≤ xjk for pki < pkj , i, j = 1, . . . , n, k = 1, . . . , m} ,

where P = (p1, . . . ,pm), pk = (pk1, pk2, . . . , pkn) is a permutation of 1, . . . , n;
k = 1, . . . ,m. For x ∈ AP, Stress function can be defined as

S(x) =
n∑

i<j

(
m∑

k=1

(xik − xjk) zkij − δij

)2

,

where

zkij =
{

1, pki > pkj ,
−1, pki < pkj .

Since function S(x) is quadratic over polyhedron x ∈ AP the problem

min
x∈AP

S(x)

is a quadratic programming problem.
Taking into account the structure of the minimization problem a two-level

minimization algorithm can be applied [8]: to solve a combinatorial problem at
the upper level and to solve a quadratic programming problem at the lower level:

84 N. Galiauskas and J. Žilinskas

min
P

S(P),

s.t. S(P) = min
x∈AP

S(x) ∼

∼ min
(
−cPTx +

1
2
xTQPx

)
, s.t. Ex = 0, APx ≥ 0. (1)

For the lower level problem a standard quadratic programming method can
be applied. The upper level combinatorial problem can be solved using dif-
ferent algorithms. Small problems can be solved by the explicit enumeration.
A branch-and-bound algorithm for the upper level combinatorial problem is
proposed in [10] and its parallel version in [12]. Evolutionary algorithms seem
perspective for larger problems. A two-level minimization method for the two-
dimensional projection space was proposed in [8], where the upper level combina-
torial problem is tackled by an evolutionary search. A generalized method for an
arbitrary dimensionality of the projection space is developed and experimentally
compared with other approaches in [9]. A multimodal evolutionary algorithm is
proposed in [7].

Indices ·P in the description of the lower level problem (1) indicate that the
coefficients of the quadratic function and inequality constraints depend on the
permutations in P. This means that matrices QP, AP, and vector cP need to be
computed for every lower level problem. If a quadratic programming algorithm
factorizes matrix QP and computes the inverse, this should be done each time
the lower level problem is solved.

3 Reformulation of Optimization Problem
with City-Block Distances

In this paper we present a different formulation where we try to avoid or decrease
required computations of coefficients and factorizations/inversions as well as to
enable warm-starting for lower level problems. Let us introduce non-negative
variables d+ijk and d−

ijk so that

xik − xjk = d+ijk − d−
ijk, 1 ≤ i < j ≤ n, k = 1, . . . ,m. (2)

If d+ijk = 0 or d−
ijk = 0 (d+ijkd

−
ijk = 0), |xik − xjk| = d+ijk + d−

ijk, and

S(d) =
n∑

i<j

(
m∑

k=1

(
d+ijk + d−

ijk

)
− δij

)2

,

where d = (d+121, d
−
121, . . . , d

+
(n−1)nm, d−

(n−1)nm).
Now we can formulate the lower level problem as

min
(
−cTd +

1
2
dTQd

)
, s.t. Ed = 0, d ≥ 0, aP

Td = 0. (3)

On Multidimensional Scaling with City-Block Distances 85

The first system of equality constraints of the lower level problem (3) is
the version of the system (2) after reduction avoiding variables x. The system
of inequality constraints define non-negativity of variables d. The last equality
constraint defines the particular lower level problem:

a+
ijk, a

−
ijk =

{
1, 0, pki < pkj ,
0, 1, pki > pkj ,

where aP = (a+
121, a

−
121, . . . , a

+
(n−1)nm, a−

(n−1)nm). Since either a+
ijk = 1 or a−

ijk =
1, the constraint aP

Td = 0 ensures that either d+ijk = 0 or d−
ijk = 0, therefore

d+ijkd
−
ijk = 0, 1 ≤ i < j ≤ n, k = 1, . . . ,m.

We see that in this formulation only aP depends on the permutations in P.
Therefore, the matrices Q, E and the vector c may be computed once in advance.
Factorization of the matrix Q and inverse may be also performed once in advance.
Moreover new bounds may be built for a branch-and-bound algorithm based on
this formulation if relaxing the constraint d+ijkd

−
ijk = 0, e.g. when aP is chosen

with a smaller number of ones. However the number of variables of quadratic
programming problems has increased from mn to mn(n − 1), but it should be
noted that the matrices Q and E are sparse while in the formulation described
in the previous section the matrix of coefficients is dense.

4 Experimental Investigation

We performed computational experiments with two-level minimization algorithms
for multidimensional scaling with the new formulation of lower level quadratic
problems. The upper level combinatorial problem is solved using explicit enumer-
ation and branch-and-bound.

The results of experiments are shown in Table 1. The numbers of quadratic
programming problems solved (NQPP) and the estimate of the global minimum
found (f∗) are shown for the two-level algorithms with explicit enumeration
(EE) and branch-and-bound (B&B) at the upper level. The same data sets
as in [10] were used. When explicit enumeration is used for the upper level
problem, the results correspond to that presented in [10]: the numbers of lower
level quadratic programming problems solved and the found minima are the
same. Conclusions similar to that presented in [10] can be drawn. The branch-
and-bound algorithm behaves in the worst case scenario when highly symmetric
data sets of simplices [11] are used with m = 1. Branch-and-bound performs
much better than the explicit enumeration for cubes and practical data sets
even when m = 1 and even for simplices when m > 1. Comparing the results of
branch-and-bound with the new formulation to that of [10] one can see that the
numbers of quadratic programming problems solved are a bit smaller.

86 N. Galiauskas and J. Žilinskas

Table 1. Results of experimental investigation

EE B&B B&B [10]

n m NQPP f∗ NQPP f∗ NQPP f∗

Unit simplices

3 1 3 0.00 3 0.00 3 0.00

4 1 12 0.3651 12 0.3651 14 0.3651

5 1 60 0.4140 71 0.4140 73 0.4140

6 1 360 0.4554 430 0.4554 432 0.4554

7 1 2520 0.4745 2949 0.4745 2951 0.4745

8 1 20160 0.4917 23108 0.4917 23110 0.4917

9 1 181440 0.5018 204538 0.5018 204549 0.5018

3 2 6 0.00 6 0.00 6 0.00

4 2 78 0.00 78 0.00 73 0.00

5 2 1830 0.00 942 0.00 662 0.00

6 2 64980 0.1869 15963 0.1869 16076 0.1869

Standard simplices

3 1 3 0.3333 3 0.3333 3 0.3333

4 1 12 0.4082 12 0.4082 14 0.4082

5 1 60 0.4472 71 0.4472 73 0.4472

6 1 360 0.4714 430 0.4714 432 0.4714

7 1 2520 0.4879 2949 0.4879 2951 0.4879

8 1 20160 0.5000 23108 0.5000 23110 0.5000

9 1 181440 0.5092 204547 0.5092 204549 0.5092

3 2 6 0.00 6 0.00 6 0.00

4 2 78 0.00 78 0.00 63 0.00

5 2 1830 0.1907 1317 0.1907 1322 0.1907

6 2 64980 0.2309 27322 0.2309 27255 0.2309

Cubes

4 1 12 0.4082 12 0.4082 14 0.4082

8 1 20160 0.4787 11114 0.4787 11260 0.4787

4 2 78 0.00 78 0.00 73 0.00

Ruusk

8 1 20160 0.2975 643 0.2975 665 0.2975

8 2 203222880 81139 0.1096 82617 0.1096

Hwa12

9 1 181440 0.0107 2167 0.0107 2217 0.0107

Cola

10 1 1814400 0.3642 59599 0.3642 60077 0.3642

Uhlen

12 1 239500800 36251 0.2112 36559 0.2112

Hwa21

12 1 239500800 70583 0.1790 71748 0.1790

On Multidimensional Scaling with City-Block Distances 87

5 Conclusions

A new formulation of optimization problems for multidimensional scaling with
city-block distances is proposed. Two-level algorithms have been built with explicit
enumeration or branch-and-bound at the upper level and convex quadratic pro-
gramming at the lower level. Experiments with geometrical and empirical data
sets have been performed. The experimental investigation revealed that the num-
bers of quadratic programming problems solved are a bit smaller for the new
formulation.

Acknowledgments. This research was funded by a grant (No. MIP-063/2012) from
the Research Council of Lithuania.

References

1. Arabie, P.: Was Euclid an unnecessarily sophisticated psychologist? Psychometrika
56(4), 567–587 (1991). doi:10.1007/BF02294491

2. Borg, I., Groenen, P.J.F.: Modern Multidimensional Scaling: Theory and Applica-
tions, 2nd edn. Springer, New York (2005)

3. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman &
Hall/CRC, Boca Raton (2001)

4. de Leeuw, J.: Differentiability of Kruskal’s stress at a local minimum. Psychome-
trika 49(1), 111–113 (1984). doi:10.1007/BF02294209

5. Dzemyda, G., Kurasova, O., Žilinskas, J.: Multidimensional Data Visualiza-
tion: Methods and Applications. Springer, New York (2013). doi:10.1007/
978-1-4419-0236-8

6. Groenen, P.J.F., Mathar, R., Heiser, W.J.: The majorization approach to multidi-
mensional scaling for Minkowski distances. J. Classif. 12(1), 3–19 (1995). doi:10.
1007/BF01202265

7. Redondo, J.L., Ortigosa, P.M., Žilinskas, J.: Multimodal evolutionary algorithm
for multidimensional scaling with city-block distances. Informatica 23(4), 601–620
(2012)

8. Žilinskas, A., Žilinskas, J.: Two level minimization in multidimensional scaling. J.
Global Optim. 38(4), 581–596 (2007). doi:10.1007/s10898-006-9097-x

9. Žilinskas, A., Žilinskas, J.: A hybrid method for multidimensional scaling using
city-block distances. Math. Methods Oper. Res. 68(3), 429–443 (2008). doi:10.
1007/s00186-008-0238-5

10. Žilinskas, A., Žilinskas, J.: Branch and bound algorithm for multidimensional scal-
ing with city-block metric. J. Global Optim. 43(2–3), 357–372 (2009). doi:10.1007/
s10898-008-9306-x

11. Žilinskas, J.: Reducing of search space of multidimensional scaling problems with
data exposing symmetries. Inf. Technol. Control 36(4), 377–382 (2007)

12. Žilinskas, J.: Parallel branch and bound for multidimensional scaling with
city-block distances. J. Global Optim. 54(2), 261–274 (2012). doi:10.1007/
s10898-010-9624-7

http://dx.doi.org/10.1007/BF02294491
http://dx.doi.org/10.1007/BF02294209
http://dx.doi.org/10.1007/978-1-4419-0236-8
http://dx.doi.org/10.1007/978-1-4419-0236-8
http://dx.doi.org/10.1007/BF01202265
http://dx.doi.org/10.1007/BF01202265
http://dx.doi.org/10.1007/s10898-006-9097-x
http://dx.doi.org/10.1007/s00186-008-0238-5
http://dx.doi.org/10.1007/s00186-008-0238-5
http://dx.doi.org/10.1007/s10898-008-9306-x
http://dx.doi.org/10.1007/s10898-008-9306-x
http://dx.doi.org/10.1007/s10898-010-9624-7
http://dx.doi.org/10.1007/s10898-010-9624-7

A General Approach to Network Analysis
of Statistical Data Sets

Valery A. Kalygin1(B), Alexander P. Koldanov1, and Panos M. Pardalos2

1 Higher School of Economics, National Research University,
Nizhny Novgorod, Russia

{vkalyagin,akoldanov}@hse.ru
2 Center for Applied Optimization, University of Florida, Gainesville, FL, USA

pardalos@ufl.edu

Abstract. The main goal of the present paper is the development of
general approach to network analysis of statistical data sets. First a gen-
eral method of market network construction is proposed on the base of
idea of measures of association. It is noted that many existing network
models can be obtained as a particular case of this method. Next it is
shown that statistical multiple decision theory is an appropriate theo-
retical basis for market network analysis of statistical data sets. Finally
conditional risk for multiple decision statistical procedures is introduced
as a natural measure of quality in market network analysis. Some illus-
trative examples are given.

Keywords: Market network analysis · Statistical data sets · Measures
of association · Multiple decision theory

1 Introduction

Network analysis is a popular and powerful tool of modern analysis of com-
plex systems [14,15]. This analysis is known to be very useful for technological,
social, biological, and other complex system. Nodes (vertices) of the network cor-
respond to the elements of the complex system and links (edges) of the network
correspond to the interaction between elements. Measure of interaction between
nodes gives the weights of the links. Resulting weighted graph represents the
network model of the complex system. The structure of the network is defined
by the data sets that we use to measure the links. In the present paper we con-
sider network models generated by statistical data sets. Important examples are
market networks and brain connectivity networks. The statistical origin of the
data generates error in the decision about network structures. This error can
leads to erroneous interpretation of network analysis. The majority of existing
publications in the field in our knowledge does not pay attention to this problem.

The authors are partly supported by National Research University Higher School
of Economics, Russian Federation Government grant, N. 11.G34.31.0057 and RFFI
14-01-00807.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 88–97, 2014.
DOI: 10.1007/978-3-319-09584-4 10

A General Approach to Network Analysis 89

The main goal of the present paper is to develop a general approach to network
analysis of statistical data sets in order to handle the related statistical errors.

Financial market is known to be a complex system. The complexity of the
system is reflected in the associated complete weighted graph. The minimum
spanning tree (MST) of the graph was studied in [13] to extract the most valuable
information from this complex network. This information can be extended with
the use of planar maximally filtered graph (PMFG) as suggested in [23]. Both
procedures (MST and PMFG) can be considered as a filtering of a complex
graph into a simpler relevant subgraph. Research in this direction is very active
our days (see for example [24] where the state of art is given). Another filtering
procedure was proposed in [3]. As a result of this procedure a market graph
(MG) is constructed. Maximum cliques (MC) and maximum independent sets
(MIS) of the market graph give an interesting information about financial market
structures [4,5] (for calculation of MC and MIS see [17,18]).

The financial market has a large element of randomness. The scientific app-
roach to handle the randomness of the financial market consists among others
of the following connected stages:

– Design of the model of the market network, choice of the filtered structural
characteristic (FSC).

– Identification of FSC from the observations, construction of appropriate sta-
tistical procedures.

– Control of uncertainty of statistical procedures.

It is common knowledge that the prices and returns of stocks of financial mar-
ket are modeled by stochastic process [21]. A complete information about this
process is given by the associated probabilistic space (Ω,�, P). It follows from
the Kolmogorov consistency theorem that the process is defined by the collec-
tions of finite-dimensional joint distributions. To model the associated network
one has to introduce a measure of interaction between stocks. Any measure of
interaction (dependence) between stocks therefore has to be extracted from the
joint distributions. This give rises to the concept of true market network and
true FSC. Once the measure of interaction is defined one can go to the next
stage: identification of the market network and FSC from observations. This
gives rise to the concept of sample market network and sample FSC. Control
of uncertainty can be based now on the analysis of the difference between true
market network and sample market network and true FSC and sample FSC.

In the present paper we develop a general approach which generalizes some
ideas from [1,2,6–9]. First we propose a general approach to design a differ-
ent models for market network on the base of idea of measure of association
introduced in [10] and developed in [11]. We show that existing network models
[13,16,19] can be obtained from this approach. Next we show that statistical
multiple decision theory is an appropriate theoretical basis for identification of
filtered structural characteristic (FSC). Finally we introduce the conditional risk
as a natural measure of quality in market network analysis.

The paper is organized as follows. In Sect. 2 we describe some class of mea-
sures of dependence that we call measures of association. In Sect. 3 we discuss

90 V.A. Kalygin et al.

identification problem for filtered structural characteristics (FSC). In Sect. 4 we
put the market network analysis in the framework of multiple decision theory. In
Sect. 5 we discuss the conditional risk as a measure of quality in market network
analysis and give some illustrative examples.

2 Measures of Association

There are many measures of dependence between two random variables proposed
in the literature: Pearson correlation, Kruskal correlation, Kendall correlation,
Spearman correlation, Fehner correlation and others [22]. Many of them can
be put in the framework of the general concept proposed in [11]. According to
Lehmann, random variables X,Y are positively dependent if

P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y), for all (x, y) ∈ R2 (1)

In terms of the joint distribution function this reads

FX,Y (x, y)− FX(x)FY (y) ≥ 0, for all (x, y) ∈ R2 (2)

Similarly, X,Y are negatively dependent if (1), (2) holds with inequality sign
reversed. The definition of positive dependence compares the probability of the
product of events with the product of probabilities of events in the sense that
small value of Y tends to be associated with small value of X and (see below)
large value of Y with large value of X. Dependence measures based on this
comparison will be called in this paper measures of association. In particular
covariance between two random variables is a measure of association as it follows
from the Hoeffding formula [11]:

Cov(X,Y) =
∫ ∞

−∞

∫ ∞

−∞
[FX,Y (x, y)− FX(x)FY (y)]dxdy (3)

It implies that if two random variables are positively dependent then their covari-
ance and therefore Pearson correlation between them is non negative. Converse
is known to be true for the normal vector (X,Y) [11]. It means that for the nor-
mal case positiveness of the correlation implies the positive dependence of the
random variables. It gives a strong additional justification for the use of Pearson
correlation as a measure of dependence in the normal case.

The condition (1) is equivalent to any of the following conditions

P (X ≤ x, Y ≥ y) ≤ P (X ≤ x)P (Y ≥ y), for all (x, y) ∈ R2

P (X ≥ x, Y ≤ y) ≤ P (X ≥ x)P (Y ≤ y), for all (x, y) ∈ R2

P (X ≥ x, Y ≥ y) ≥ P (X ≥ x)P (Y ≥ y), for all (x, y) ∈ R2

Therefore if two variables X,Y are positively dependent then for any x, y ∈ R
one has

P ((X − x)(Y − y) > 0)− P ((X − x)(Y − y) < 0) ≥ 0

A General Approach to Network Analysis 91

This observation produces a family of different measures of association q(x, y):

qX,Y (x, y) = P ((X − x)(Y − y) > 0)− P ((X − x)(Y − y) < 0) (4)

For example if x = med(X), y = med(Y) than one obtain the q-measure of asso-
ciation of Kruskal (simplest measure of association in terminology by Kruskal).
If x = E(X), y = E(Y) then one gets the sign correlation of Fehner [22]. In
addition as it was proven by Lehmann if two random variables are positively
dependent than its Kendall and Spearman correlations are positive. Therefore
measures of association constitute a large family of measures of dependence
between two random variables. In what follows we will use the notation γX,Y for
any measure of association for two random variables X and Y .

3 Identification Problem in Market Network Analysis

We model the financial market as a family of random variables Xi(t), where
i = 1, 2, . . . , N , t = 1, 2, . . . , n. In this setting N is the number of stocks and
n is a number of observations. Random variable Xi(t) for a fixed i, t describes
the behavior of some numerical characteristic (price, return, volume and so on)
of the stock i at the moment t. For a fixed i the sequence of random variables
(Xi(1),Xi(2), . . . , Xi(n)) describes the behavior of the stock i over the time.
We assume that for a fixed i the random variables Xi(t) are independent and
identically distributed as Xi. This assumption is valid for stocks returns and
many other stocks characteristics. The random vector X = (X1,X2, . . . , XN)
gives a complete description of the market for the given numerical characteristic.

In this paper we consider only market network models based on the pair
wise dependence of stocks. The nodes of the network are the stocks of the mar-
ket and the weighted link between stocks i and j, i �= j is given by a measure
of association γi,j for random variables Xi and Xj : γi,j = γ(Xi,Xj). We call
the obtained network true market network with measure of association γ. For a
given structural characteristic S (MST, PMFG, MG, MC, MIS and others) true
characteristic is obtained by filtration on the true market network. In general
measure of association γ has to reflect a dependence between random variables
associated with stocks. The choice of the measure of association is therefore
connected with the joint distribution of the vector (X1,X2, . . . , XN). The most
popular measure of association used in the literature is Pearson correlation. Pear-
son correlation is known to be the most appropriate measure of association in the
case of multivariate normal distribution of the vector (X1,X2, . . . , XN). When
the distribution of this vector is not known one needs a more universal measure
of association not related with the form of distribution. One such measure of
association is q-measure of Kruskal.

In practice however market networks are constructed from statistical data
sets of observations. Let xi(t) be an observation of the random variable Xi(t), i =
1, 2, . . . , N , t = 1, 2, . . . , n. For a given structural characteristic S (MST, PMFG,
MG, MC, MIS and others) the main problem is to identify true characteristic
(associated with the true market network) from the observations. Traditional

92 V.A. Kalygin et al.

way for this identification used in the literature can be described as follows:
first one has to make estimations γ̂i,j of the measures of association γi,j , next
one constructs the sample network as the weighted complete graph where the
nodes are the stocks of the market and the weighted link between stocks is
given by γ̂i,j . Finally, the structural characteristic S is identified on the sample
market network by the same filtration process as on the true market network.
Described identification process can be considered as statistical procedure for
the identification of S. But this statistical procedure is not only one that can be
considered for identification of S. Moreover it is not clear whether this procedure
is the best possible or even if this procedure is good from statistical point of view.
This question is crucial in our investigation.

4 Multiple Decision Theory

To answer the question above and define optimal statistical procedures for iden-
tification of structural characteristics one needs to formulate this problem in the
framework of mathematical statistics theory. Identification of a given structural
characteristic (MST, PMFG, MG, MC, MIS and others) is equivalent to the
selection of one particular structural characteristic from the finite family of pos-
sible ones. Any statistical procedure of identification is therefore a multiple deci-
sion statistical procedure. Multiple decision theory is nowadays one of the active
branch of mathematical statistics [12,20]. In the framework of this theory the
problem of identification of FSC can be presented as follows. One has L hypoth-
esis H1,H2, . . . , HL corresponding to the family of possible subgraphs associated
with FSC. Multiple decision statistical procedure δ(x) is a map from the sample
space of observations RN×n = {xi(t) : i = 1, 2, . . . , N ; t = 1, 2, . . . , n} to the
decision space D = {(d1, d2, . . . , dL)}, where dj is the decision of acceptance of
the hypothesis Hj , j = 1, 2, . . . , L. Quality of the multiple decision statistical
procedure δ(x) according to Wald [25] is measured by it’s conditional risk. In
our case conditional risk R(Hk, δ) can be written as

R(Hk, δ) =
L∑

j=1

wk,jPk(δ(x) = dj)

where wk,j is the loss from the decision dj when the true decision is dk, wk,k = 0,
Pk(δ(x) = dj) is the probability to take the decision dj when the true decision
is dk. Conditional risk can be used for the comparison of different multiple deci-
sion statistical procedures for structural characteristic identification [7] and it is
appropriate to measure the statistical uncertainty of structural characteristics [6].

Example 1. Market graph. For a given value of threshold γ0 market graph [3]
is obtained from the complete weighted graph (market network) by eliminating
all edges with property γi,j ≤ γ0, where γi,j is the measure of association between
stocks i and j. In this case the set of hypotheses is

A General Approach to Network Analysis 93

H1 : γi,j ≤ γ0,∀(i, j), i < j,
H2 : γ12 > γ0, γi,j ≤ γ0,∀(i, j) �= (1, 2), i < j,
H3 : γ12 > γ0, γ13 > γ0, γi,j ≤ γ0,∀(i, j) �= (1, 2), (i, j) �= (1, 3),
. . .
HL : γi,j > γ0,∀(i, j), i < j,

(5)

where L = 2M with M = N(N − 1)/2. These hypotheses describe all possible
market graphs. To identify the true market graph one needs to construct a
multiple decision statistical procedure δ(x) which will select one hypothesis from
the set H1,H2, . . . , HL.

Example 2. Minimum spanning tree (MST). Minimum spanning tree [13]
is the spanning tree of the complete weighted graph (market network) with
the maximal total associations between included edges. In this case one has
by Caylay formula L = NN−2 and each hypothesis Hs can be associated with
multi-index s = (s1, s2, . . . , sN , sN+1, . . . , s2N), sj ∈ {0, 1} (tree code).

5 Conditional Risk

There are many ways to define the losses wk,j and associated conditional risk.
For example for a given structural characteristic S one can define a conditional
risk by

R(S, δ) =
∑

1≤i<j≤N

[aijP
a
i,j(S, δ) + bijP

b
i,j(S, δ)], (6)

where ai,j is the loss from erroneous inclusion of the edge (i, j) in the structure
S, P a

i,j(S, δ) is the probability that decision procedure δ takes this decision, bi,j
is the loss from erroneous non inclusion of the edge (i, j) in the structure S,
P b
i,j(S, δ) is the probability that decision procedure δ takes this decision. Two

terms in (6) can be considered as type I and type II statistical errors [12]. The
value of conditional risk R(S, δ) essentially depends on the choice of measure of
association γ, distribution of random vector X = (X1,X2, . . . , XN), structural
characteristic S, multiple decision statistical procedure δ(x) for structural char-
acteristic identification and number of observations n. To illustrate this depen-
dence we present below some results of numerical experiments for MST on US
stock market with N = 100, ai,j = bi,j = 1/2. The experiments show some
intriguing properties of associated conditional risk. The Fig. 1 shows the behav-
ior of conditional risk for Pearson correlation, two type of distributions (multi-
variate Normal and Student distributions) and different number of observations.
The Fig. 2 shows the behavior of conditional risk for Kruskal correlation, the
same type of distributions (multivariate Normal and Student distributions) and
different number of observations. In both cases the multiple decision statisti-
cal procedure is the Kruskal algorithm applied to the sample network (we use
classical estimations for Pearson and Kruskal correlations).

The Fig. 1 shows that conditional risk for Pearson correlation has a big depen-
dence on the type of distribution. Pearson correlation is a good measure of

94 V.A. Kalygin et al.

0 1000 2000 3000 4000 50000

10

20

30

40

50

60

70

80

90

100

Fig. 1. Conditional risk as a function of number of observations for Pearson correla-
tion. Solid line corresponds to the normal distribution. Dashed line corresponds to the
Student distribution.

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

80

90

100

Fig. 2. Conditional risk as a function of number of observations for Kruskal correla-
tion. Solid line corresponds to the normal distribution. Dashed line corresponds to the
Student distribution.

A General Approach to Network Analysis 95

Table 1. Conditional risk for MST: Pearson correlation

n Normal Truncated normal Platykurtic Bimodal Stable trend Student

rare risk

25 75.647 88.045 75.806 75.718 78.245 81.428

50 65.858 82.403 65.777 65.865 73.120 75.658

100 55.409 74.977 55.078 54.625 71.409 69.790

200 45.056 66.332 44.494 44.365 70.849 63.674

400 35.587 56.704 35.305 34.802 61.127 57.495

600 30.375 50.923 29.910 29.629 53.221 54.051

800 26.812 46.773 26.435 26.564 48.298 51.527

1000 24.468 43.402 24.172 23.957 44.119 49.588

1200 22.857 40.999 22.506 22.063 41.104 48.342

1600 19.799 37.111 19.814 19.495 36.419 45.798

2000 18.137 34.391 17.698 17.626 33.170 43.582

2500 16.099 31.651 15.830 15.829 30.139 41.946

5000 11.496 23.736 11.320 11.567 21.961 36.697

Table 2. Conditional risk for MST: Kruskal correlation

n Normal Truncated Platykurtic Bimodal Stable trend, Student

normal rare risk

25 89.660 89.753 90.074 90.478 90.055 89.576

50 84.568 84.540 84.947 85.839 81.767 84.477

100 77.667 77.683 78.626 79.643 72.985 77.658

200 69.335 69.500 70.503 72.081 63.605 69.393

400 60.303 59.921 61.548 63.293 53.011 59.899

600 54.377 54.130 55.689 57.310 46.885 53.948

800 50.327 49.960 51.069 53.465 42.851 49.716

1000 46.903 46.583 48.068 50.129 39.664 46.599

1200 44.398 44.246 45.461 47.281 37.597 43.986

1600 40.209 40.187 41.552 43.365 33.948 40.190

2000 37.095 37.306 38.492 40.056 31.363 36.980

2500 34.138 34.482 35.452 37.153 28.858 34.345

5000 26.338 26.028 27.313 28.837 22.269 25.854

association for normal distribution and it is not good for Student distribution.
The Fig. 2 shows that conditional risk for Kruskal correlation is stable with
respect to the type of distribution. At the same time Kruskal correlation is
more appropriate measure of association for Student distribution than Pearson

96 V.A. Kalygin et al.

correlation. It suggests to use the Kruskal measure of association in the case of
distributions with fat tails.

The values of conditional risk for different distributions and number of obser-
vations are presented in the Table 1 (Pearson correlation) and Table 2 (Kruskal
correlation). All multivariate distributions in the tables have the same covari-
ance matrix Σ (covariance matrix for the 100 stocks of US stock market) and
are obtained by transformation X = σ1/2Z, Z = (Z1, Z2, . . . , ZN) being the
vector of normalized independent random variables with the same uni-variate
distribution. This uni-variate distribution are normal, truncated normal, uni-
form distribution (platykurtic), distribution with two modes (bimodal), discrete
distribution with 2 values (stable trend rare risk) and Student distribution with
3 degrees of freedom. Detailed description of these distributions is given in [1].
The Tables 1 and 2 confirm the stability of conditional risk for Kruskal corre-
lation. A comparative analysis of conditional risk for Pearson and sign correla-
tions for the market graph construction is given in [1] where some interesting
observations are described. The problem of optimality of multiple decision sta-
tistical procedures for the market graph identification is discussed in [7]. It was
proven in [7] that it is possible to construct a statistical procedures with lower
conditional risk than the widely used in the literature statistical procedure based
on the sample graph. The dependence of conditional risk on the filtered struc-
tural characteristic is investigated in [6].

6 Concluding Remark

The general approach to market network analysis for statistical data set gives an
appropriate theoretical basis for investigation of different market network mod-
els. It allows to design a statistical procedures of a good quality for identification
of structural characteristics of network.

References

1. Bautin, G., Kalyagin, V.A., Koldanov, A.P.: Comparative analysis of two similarity
measures for the market graph construction. In: Goldengorin, B.I., Kalyagin, V.A.,
Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for Network Analysis.
Springer Proceedings in Mathematics & Statistics, vol. 59, pp. 29–41. Springer,
New York (2013)

2. Bautin, G.A., Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M.:
Simple measure of similarity for the market graph construction. Comput. Manage.
Sci. 10, 105–124 (2013)

3. Boginsky, V., Butenko, S., Pardalos, P.M.: On structural properties of the market
graph. In: Nagurney, A. (ed.) Innovations in Financial and Economic Networks,
pp. 29–45. Edward Elgar Publishing Inc., Northampton (2003)

4. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks.
J. Comput. Stat. Data Anal. 48(2), 431–443 (2005)

5. Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network app-
roach. J. Comput. Oper. Res. 33(11), 3171–3184 (2006)

A General Approach to Network Analysis 97

6. Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M., Zamaraev, V.A.:
Measures of uncertainty in market network analysis. Physica A: Stat. Mech. Appl.
413, 59–70 (2014)

7. Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical pro-
cedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29
(2013)

8. Koldanov, A.P., Koldanov, P.A.: Optimal multiple decision statistical procedure for
inverse covariance matrix. In: Demyanov, V.F., Pardalos, P.M., Batsyn, M. (eds.)
Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and
Its Applications, vol. 87, pp. 205–216. Springer, New York (2014)

9. Koldanov, P.A.: Efficiency analysis of branch network. In: Goldengorin, B.I.,
Kalyagin, V.A., Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for
Network Analysis. Springer Proceedings in Mathematics & Statistics, vol. 59, pp.
71–83. Springer, New York (2013)

10. Kruskal, W.H.: Ordinal Measures of Association. J. Am. Stat. Assoc. 53, 814–861
(1958)

11. Lehmann, T.L.: Some concepts of dependence. Ann. Math. Stat. 37, 1137–1153
(1966)

12. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York
(2005)

13. Mantegna, R.N.: Hierarchical structure in financial market. Eur. Phys. J. Ser. B
11, 193–197 (1999)

14. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, New York
(2010)

15. Newman, M.J.E., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of
Networks. Princeton University Press, Princeton (2006)

16. Onnela, J.-P., Chakraborti, A., Kaski, K., Kertesz, K., Kanto, A.: Dynamics of
market correlations: taxonomy and portfolio analysis. Phys. Rev. E 68, 56–110
(2003)

17. Pardalos, P.M., Rebennack, S.: Computational challenges with cliques, quasi-
cliques and clique partitions in graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol.
6049, pp. 13–22. Springer, Heidelberg (2010)

18. Rebennack S., Maximum Stable Set Problem: A Branch and Cut Solver, Ruprecht-
Karls-Universitt Heidelberg, Fakultt fr Mathematik und Informatik (2006)

19. Shirokikh, J., Pastukhov, G., Boginski, V., Butenko, S.: Computational study of
the US stock market evolution: a rank correlation-based network model. Comput.
Manage. Sci. 10(2–3), 81–103 (2013)

20. Rao, C.V., Swarupchand, U.: Multiple comparison procedures - a note and a bib-
liography. J. Stat. 16, 66–109 (2009)

21. Shiryaev, A.N.: Essentials of Stochastic Finance: Facts, Models, Theory. Advanced
Series on Statistical Science and Applied Probability. World Scientific Publishing
Co., New Jersey (2003)

22. Stuart, A., Ord, J.K., Arnold, S.: Kendalls Advanced theory of Statistics. Classical
Inference and Relationships, vol. 2A. Wiley, London (2004)

23. Tumminello, M., Aste, T., Matteo, T.D., Mantegna, R.N.: A tool for filtering infor-
mation in complex systems. Proc. Nat. Acad. Sci. 102(30), 10421–10426 (2005)

24. Tumminello, M., Lillo, F., Mantegna, R.N.: Correlation, hierarchies and networks
in financial markets. J. Econ. Behav. Organ. 75, 40–58 (2010)

25. Wald, A.: Statistical Decision Function. Wiley, New York (1950)

Multiple Decision Problem for Stock Selection
in Market Network

Petr A. Koldanov1(B) and Grigory A. Bautin2

1 National Research University Higher School of Economics,
Bolshaya Pecherskaya 25, Nizhny Novgorod 603155, Russia

pkoldanov@hse.ru
2 Lab LATNA, National Research University Higher School of Economics,

Rodionova 136, Nizhny Novgorod 603155, Russia
greg.bautin@gmail.com

Abstract. The present paper deals with a problem of stock selection
in market network as a multiple decision problem. The quality of the
multiple decision procedure is measured by conditional risk (mean of the
loss function). Optimal in this sense multiple decision statistical pro-
cedure for stock selection is constructed. Conditional risk behavior is
studied for different number of observations and different significance
levels. The obtained results can be applied to stock selection by various
criteria: returns, volumes, risks.

Keywords: Market network · Stock selection · Multiple decision statis-
tical procedures · Loss function

1 Introduction

Network analysis of financial market has attracted a significant attention in
recent decades (see for example [3–5,12]). Financial market is considered as a
complex network represented by a complete weighted graph. Edge weights of
this graph are calculated from statistical data sets. Network approach in this
setting is related to some filtration of the graph. Typical filtration techniques
that are studied in the literature are minimum spanning tree construction [12],
market graph construction [3,4], and others. From statistical point of view all
these filtrations can be considered as multiple decision statistical procedures.
This approach was first introduced in [7] and used in [2,8,9]. Quality of mul-
tiple decision statistical procedures (according to Wald [1,11,13]) is measured
by conditional risk (expectation or mean of the loss function). Optimal multi-
ple decision statistical procedures and associated conditional risk for the market
graph construction are investigated in [7]. In paper [6] conditional risk is used to

Theoretical results and text of the paper are prepared by P.A. Koldanov, numerical
calculations are made by G.A. Bautin. The authors are partly supported by National
Research University Higher School of Economics, Russian Federation Government
grant, N. 11.G34.31.0057 and RFFI grant 14-01-00807.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 98–110, 2014.
DOI: 10.1007/978-3-319-09584-4 11

Multiple Decision Problem for Stock Selection in Market Network 99

evaluate statistical uncertainty of market network analysis. The results of paper
[6] show that number of observation needed to reach a fixed level of statistical
uncertainty essentially depends on the number of network nodes. For example,
to reach error level of 10 % for the minimum spanning tree on the set of 250
stocks from the US market, one needs more than 100000 daily observations,
which corresponds to 50 years of observation. In practice however the period of
observation can not be very long, so it is necessary to select a subset of stocks
for the market network analysis in order to decrease statistical uncertainty of
obtained results.

In the present paper we consider the problem of selection of stocks by its
returns. First, we put this problem in the framework of multiple decision theory
[10] as a problem of selection of one from the set of hypothesis. We define asso-
ciated generating hypothesis and show their compatibility. Next, we define the
loss function and conditional risk to measure the quality of multiple decision sta-
tistical procedures. Finally, we suggest a multiple decision statistical procedure
for the solution of selection problem, and prove its optimality. We illustrate the
behavior of conditional risk for this optimal procedure by numerical examples.
The same technique can be used for stock selection with respect to other criteria
such as volume of trading or volatility of stocks.

The paper is organized as follows. In Sect. 2 the main definitions and nota-
tions are introduced and stock selection problem is formulated. In Sect. 3 we
study the formulated problem in the framework of multiple decision theory. In
Sect. 4 we discuss the condition of unbiasedness of multiple decision statistical
procedure in detail. In Sect. 5 we construct a multiple decision statistical proce-
dure to solve the selection problem and prove its optimality. In Sect. 6 we study
behavior of conditional risk for different numbers of observations and different
significance levels. The Sect. 7 emphasizes the main results of the paper.

2 Problem Statement

Let N be the number of stocks in the financial market, and n be the number
of observations. Denote by pi(t) the price of stock i for the day t (i=1,. . . ,N;
t=1,. . . ,n) and define the daily return of stock i for the period from (t − 1)
to t as ri(t) = ln(pi(t)/pi(t − 1)). We suppose ri(t) to be an observation of a
random variable Ri(t). We define sample space as RN×n with elements (ri(t)),
and denote the matrix of all observations by r = ||ri(t)||. Random variable Ri(t)
for a fixed i describes the behavior of return of the stock i at the moment t.
We make the following assumptions: random variables Ri(t), t = 1, . . . , n are
independent for fixed i, and have all the same distribution as a random variable
Ri(i = 1, . . . , N). Random vector (R1, R2, . . . , RN) describes the joint behavior
of the stocks 1, . . . , N . We assume that random vector (R1, R2, . . . , RN) has a
multivariate normal distribution with covariance matrix Σ = ‖σij‖ where σij =
cov(Ri, Rj) = E(Ri−E(Ri))(Rj−E(Rj)), and mean vector μ = (μ1, μ2, . . . , μN)
where μi = E(Ri). Denote by Σ−1 the inverse covariance matrix with elements
σi,j , Σ−1 = ‖σij‖.

100 P.A. Koldanov and G.A. Bautin

In this paper we consider the following selection problem: select the stocks
satisfying the condition μi > μ0, where μ0 is a given threshold. The main dif-
ficulties of dealing with this problem are, on the one hand, the multivariate
statistical nature of the problem, and on the other hand, a big choice of the
possible decisions. In the present paper we study the stock selection problem
as a multiple decision problem of the choice of one hypothesis from the set of
hypotheses:

H1 : μi ≤ μ0, i = 1, . . . , N
H2 : μ1 > μ0, μi ≤ μ0, i = 2, . . . , N
H3 : μ1 > μ0, μ2 > μ0, μi ≤ μ0, i = 3, . . . , N
. . .
HL : μi > μ0, i = 1, . . . , N

(1)

where L = 2N is the total number of hypotheses (all possible subsets of selected
stocks). To solve this problem we will construct an optimal multiple decision sta-
tistical procedure δ(r). In our setting, a multiple decision statistical procedure is
a map from the sample space RN×n to the decision space D = {(d1, d2, . . . , dL)},
where the decision dj is the acceptance of hypothesis Hj , j = 1, 2, . . . , L.

3 Multiple Decision Theory Approach

There are different approaches to deal with multiple decision problems:

– a decision-theoretic approach [10]
– a Bayesian approach [14]
– a Neyman-Pearson type approach [16]
– a minimax approach [15].

To study the multiple decision problem (1) we apply the basic concepts of
Lehmann multiple decision theory [10] following the paper [7].

Generating hypotheses. We introduce the following family of generating
hypotheses:

hi : μi ≤ μ0 vs ki : μi > μ0 i = 1, . . . , N (2)

In this case one has
H1 = h1 ∩ h2 ∩ . . . ∩ hN

H2 = k1 ∩ h2 ∩ . . . ∩ hN

H3 = k1 ∩ k2 ∩ h3 ∩ . . . ∩ hN

. . .
HL = k1 ∩ k2 ∩ . . . ∩ kN

(3)

where symbol ∩ means intersection in the parametric space RN of the parameter
μ = (μ1, μ2, . . . , μN).

Note that in this case all intersections (3) of parametric regions for corre-
sponding generating hypotheses (2) are nonempty.

Multiple Decision Problem for Stock Selection in Market Network 101

Compatibility. Let ∂i be the decision of acceptance of hi and ∂−1
i be the deci-

sion of rejection of hi (acceptance of ki). For testing the generating hypotheses
(2) we use the following type of tests:

ϕi(r) =
{

∂i, Ui(r) ≤ ci

∂−1
i , Ui(r) > ci

(4)

where Ui(r) is a test statistic. Note that all intersections (3) of parametric regions
for corresponding generating hypotheses (2) are nonempty. Let

A1
i = {ri : ui(r) ≤ c}, A−1

i = {ri : ui(r) > c}
Suppose that statistics Ui(r) are such that all intersections

N⋂

i=1

Aki
i , ki ∈ {−1, 1}

of sample regions (given by (4)) of acceptance or rejections of corresponding
generating hypotheses (2) are nonempty. In this case there is one to one corre-
spondence between partition generated by (4) in the sample space RN×n and
partition generated by (2) in the parametric space RN . It follows that the family
of tests (4) is compatible with the problem (1) and multiple decision statistical
procedure for the problem (1) can be written as:

δ(r) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d1 : Ui(r) ≤ ci, i = 1, . . . , N
d2 : U1(r) > c1, Ui(r) ≤ ci, i = 2, . . . , N
d3 : U1(r) > c1, U2(r) > c2, Ui(r) ≤ ci, i = 3, . . . , N
. . .
dL : Ui(r) > ci, i = 1, . . . , N

(5)

Loss functions. Let ai be the loss from rejection of hi (acceptance of ki) given
that hi is true, and let bi, i = 1, 2, . . . , N be the loss from acceptance of hi

(rejection of ki) given that hi is false, i = 1, 2, . . . , N . Let wj,k be the loss from
decision dk given that hypothesis Hj is true, j, k = 1, 2, . . . , L. The connection
between losses ai, bi and wj,k is crucial in multiple decision theory and is known
as additivity condition [10]. In our study we assume additivity condition to be
satisfied. It means that the loss from the misclassification of stocks is equal to the
sum of losses from misclassification of individual stocks. Under this condition one
has w12 = a1, because H1 and H2 are different in one component, and generating
hypothesis h1 is supposed to be true, but decision ∂−1

1 is taken. In the same way
w13 = a1 + a2, w31 = b1 + b2, w23 = a2, w32 = b2. In general case one has

wjk =
N∑

i=1

(βjkiai + βkjibi) (6)

where

βjki =
{

1, χji = 1, χki = −1
0, otherwise.

102 P.A. Koldanov and G.A. Bautin

χji =
{

1, Hj ∩ hi �= ∅
−1, Hj ∩ hi = ∅

Conditional risk. The quality of any statistical procedure is measured by con-
ditional risk (according to Wald [13]). In our case the conditional risk is defined
by

risk(Hi, δ) =
L∑

k=1

wikP (δ = dk|Hi), wii = 0

Then
risk(μ, δ) = risk(Hi, δ) if μ ∈ Hi

Under assumption of additivity of the loss function the conditional risk takes
the form:

risk(μ, δ) =
∑N

j=1[ajP (ϕj(r) = ∂−1
j |μj ≤ μ0) + bjP (ϕj(r) = ∂j |μj > μ0)]

=
∑N

j=1 risk(μ, ϕj)
(7)

The main result of the Lehmann theory states: if statistical procedures ϕi(r)
are all unbiased, then the multiple decision statistical procedure δ(r) is unbiased
too, and if ϕi(r) are all optimal in the class of unbiased statistical procedures,
then the multiple decision statistical procedure δ(r) is optimal.

4 Unbiasedness

Denote by W (μ, δ) the loss function for the problem (1)

W (μ, δ) = wik if μ ∈ Hi, δ = dk (8)

A decision function δ is said to be W-unbiased if for all μ and μ′

risk(μ, δ) = EμW (μ, δ) ≤ EμW (μ′, δ) = risk(μ′, δ) (9)

Denote by Wi(μ, ϕ) the loss functions for the problems (2)

Wi(μ, ϕ) =
{

ai, if μi ≤ μ0, ϕ = ∂−1
i

bi, if μi > μ0, ϕ = ∂i
(10)

A decision function ϕ is said to be Wi-unbiased if for all μ and μ′

risk(μ, ϕ) = EμWi(μ, ϕ) ≤ EμWi(μ′, ϕ) = risk(μ′, ϕ) (11)

For the decision function ϕi(r) defined in (4) one has

risk(μ, ϕi(r)) =
{

aiP (ϕi(r) = ∂−1
i |μi), μi ≤ μ0

biP (ϕi(r) = ∂i|μi), μi > μ0
(12)

and

risk(μ′, ϕi(r)) =
{

aiP (ϕi(r) = ∂−1
i |μi), μ′

i ≤ μ0

biP (ϕi(r) = ∂i|μi), μ′
i > μ0

(13)

Multiple Decision Problem for Stock Selection in Market Network 103

Then the condition (11) reads:

aiP (ϕi(r) = ∂−1
i |μi) ≤ biP (ϕi(r) = ∂i|μi)μi ≤ μ0, μ

′
i > μ0

aiP (ϕi(r) = ∂−1
i |μi) ≥ biP (ϕi(r) = ∂i|μi)μi > μ0, μ

′
i ≤ μ0

aiP (ϕi(r) = ∂−1
i |μi) = biP (ϕi(r) = ∂i|μi)μi ≤ μ0, μ

′
i ≤ μ0

aiP (ϕi(r) = ∂−1
i |μi) = biP (ϕi(r) = ∂i|μi)μi > μ0, μ

′
i > μ0

Therefore the decision function ϕi(r) is Wi-unbiased if
{

aiP (ϕi(r) = ∂−1
i) ≤ biP (ϕi(r) = ∂i), μi ≤ μ0

aiP (ϕi(r) = ∂−1
i) ≥ biP (ϕi(r) = ∂i), μi > μ0

(14)

Taking into account

P (ϕi(r) = ∂−1
i) + P (ϕi(r) = ∂i) = 1

one concludes: {
P (ϕi(r) = ∂−1

i) ≤ bi
ai+bi

, μi ≤ μ0

P (ϕi(r) = ∂i) ≤ ai

ai+bi
, μi > μ0

(15)

Using (15) and (13) one can prove that decision function ϕi(r) is Wi-unbiased if
and only if:

risk(μ, ϕi(r)) ≤ aibi

ai + bi

Therefore multiple decision statistical procedure (5) is W-unbiased if and only
if:

risk(μ, δ) ≤
N∑

i=1

aibi

ai + bi
(16)

Note that if ai = a, bi = b then risk(μ, δ) = aE(X1|μ) + bE(X2|μ) where X1 is
a number of errors of the first kind, X2 is a number of errors of the second kind.
In particular

– If ai = bi = 1 then X = X1 + X2 is a number of errors and unbiasedness
condition is risk(μ, δ) = aE(X|μ) ≤ N

2 .
– If ai = bi = 1

2 then unbiasedness condition is risk(μ, δ) = aE(X|μ) ≤ N
4 .

– If ai = 0.95, bi = 0.05, N = 100 then unbiasedness condition is risk(μ, δ) ≤
4.752.

5 Optimal Multiple Decision Statistical Procedure

In this section we prove the optimality of the multiple decision statistical proce-
dure (5) in the case where

Ui(r) =
√

n
(ri − μ0)√

σii
, (17)

104 P.A. Koldanov and G.A. Bautin

with ri = 1
n

∑n
t=1 ri(t) and ci is (1 − αi)-quantile of standard normal distrib-

ution. This fact is known for the one-dimensional case (N = 1), and we apply
theory of unbiased tests for multi-parameter exponential families to prove it in
multidimensional and multiple decision case.

Theorem. Let random vector (R1, . . . , RN) has a multivariate normal distri-
bution N(μ,Σ) with unknown μ and known diag(Σ) . If Ui(r) is defined by
(17) then statistical procedure (5) for problem (1) is optimal in the class of
W-unbiased multiple decision statistical procedures (where W is given by (6)
and (8)) and ci is (1− αi)-quantile of standard normal distribution.

The proof of this theorem is based on the following lemmas.

Lemma 1. Let random vector (R1, . . . , RN) has a multivariate normal distrib-
ution N(μ,Σ), where μ = (μ1, . . . , μN) is unknown vector, Σ = ||σij || is known
matrix. For testing hypothesis h1 : μ1 ≤ μ0 against k1 : μ1 > μ0 there exists an
optimal unbiased test. This test has the following form:

ϕi(r) =
{

∂i, ri ≤ ci(T1, . . . , Ti−1, Ti+1, . . . , TN)
∂−1

i , ri > ci(T1, . . . , Ti−1, Ti+1, . . . , TN)
(18)

where statistics T1, T2, . . . , TN are given by (19) and constant ci for a given αi

is defined from P (ri > ci|T1, . . . , Ti−1, Ti+1, . . . , TN) = αi.

Proof of the Lemma 1. We give the proof for i = 1. The density function in
the space RN×n is:

f(r) = (2π)− 1
2Nn|Σ|− n

2 exp{−1
2

n∑

t=1

(r(t)− μ)Σ−1(r(t)− μ)′}

= (2π)− 1
2Nn|Σ|− n

2 exp{−n

2
(r − μ)Σ−1(r − μ)′}

where
r(t) = (r1(t), r2(t), . . . , rN (t)); r = (r1, r2, . . . , rN)

One has:

exp{−n

2
(r − μ)Σ−1(r − μ)′} = exp{−n

2

N∑

i=1

N∑

j=1

(ri − μi)σij(rj − μj)}

= h(r)g(μ) exp{n
N∑

i=1

N∑

j=1

μirjσ
ij}

where

h(r) = exp{−n

2

N∑

i=1

N∑

j=1

rirjσ
ij}, g(μ) = exp{−n

2

N∑

i=1

N∑

j=1

μiμjσ
ij}

Multiple Decision Problem for Stock Selection in Market Network 105

Let
T1 = σ11r1 + σ12r2 + . . . + σ1NrN

T2 = σ21r1 + σ22r2 + . . . + σ2NrN

. . .
Tk = σk1r1 + σk2r2 + . . . + σkNrN

. . .
TN = σN1r1 + σN2r2 + . . . + σNNrN

(19)

Then

N∑

i=1

N∑

j=1

μirjσ
ij = μ1

N∑

j=1

rjσ
1j + μ2

N∑

j=1

rjσ
2j + . . . + μN

N∑

j=1

rjσ
Nj

= μ1[
σ11T1 +

∑N
i=2 σi1Ti

σ11
] + (μ2 − μ1

σ21

σ11
)T2 + . . . + (μN − μ1

σN1

σ11
)TN

and

N∑

i=1

σi1Ti = r1(σ11σ
11+σ21σ

21+. . .+σN1σ
N1)+r2(σ11σ

12+σ21σ
22+. . .+σN1σ

N2)

+ . . . + rN (σ11σ
1N + σ21σ

2N + . . . + σN1σ
NN) = r1

Therefore
N∑

i=1

N∑

j=1

μirjσ
ij =

μ1

σ11
r1 +

N∑

i=2

(μi − μ1
σi1

σ11
)Ti (20)

It implies

f(r) = g1(μ)h(r) exp(
μ1

σ11
r1 +

N∑

i=2

(μi − μ1
σi1

σ11
)Ti) (21)

where
g1(μ) = (2π)− 1

2Nn|Σ|−n
2 g(μ)

The obtained expression for f(r) allows us to conclude that the optimal test
in the class of unbiased tests for hypothesis testing h1 : μ1 ≤ μ0 vs k1 : μ1 > μ0

has a Neyman structure and can be written as [11]:

ϕ1(r) =
{

∂1, r1 ≤ c1(T2, . . . , TN)
∂−1
1 , r1 > c1(T2, . . . , TN)

where the constant c1 for a given significance level α1 is defined from the condi-
tional distribution of r1 under conditions T2, T3, . . . , TN by the equation

P (r1 > c1|T2, T3, . . . , TN) = α1.

Lemma 2. Let random vector (R1, . . . , RN) has a multivariate normal distrib-
ution N(μ,Σ), where μ = (μ1, . . . , μN) is unknown vector, Σ = ||σij || is known
matrix. The random variables ri and T1, . . . , Ti−1, Ti+1, . . . , TN are independent.

106 P.A. Koldanov and G.A. Bautin

Proof of the Lemma 2. We give the proof for i = 1. Random vector (r1, T2,
. . . , TN) has a multivariate normal distribution, and for k ≥ 2 one has

cov(r1, Tk) = cov(r1,
N∑

j=1

σkjrj) =
N∑

j=1

σkjσ1j = 0.

It implies that random variable r1 and random vector (T2, . . . , TN) are indepen-
dent.

Proof of the Theorem. Lemma 1 implies that the optimal test has a Neyman
structure and Lemma 2 implies that this test can be written as:

ϕi(r) =

{
∂i, Ui(r) =

√
n(ri−μ0)√

σii
≤ ci

∂−1
i , Ui(r) > ci

(22)

Therefore, according to Lehmann’s results statistical procedure (5) is optimal
in the class of W-unbiased multiple decision statistical procedures. Note that
optimal multiple decision statistical procedure (5) depends on diagonal elements
of covariance matrix Σ only.

6 Conditional Risk

In this section we study the behavior of conditional risk by numerical simulations
under the following assumptions:

– ai = a ≥ 0, bi = b ≥ 0, i = 1, 2, . . . , N . a + b = 1. The meaning of a is the
singular loss in case if one stock is absent in the true subset of stocks with
greatest returns, but it is present in the sample subset of stocks with greatest
returns. The meaning of b is the singular loss in case if one stock is present in
the true subset but it is absent in the sample subset.

– N = 100, n = 16, 100.
– The numeric experiment for standard multivariate normal distribution is per-

formed 1000 times using fixed covariance matrix Σ and fixed vector of expec-
tations (μ1, . . . , μN).

– Significance level of tests for generating hypothesis is α = b
a+b , α = 0.05; 0.5.

– Covariance matrix Σ and vector of expectations (μ1, . . . , μN) are calculated
from the real data of the USA stock market (we take 100 companies greatest
by capitalization, and use the returns of their equities for the period from
03.01.2013 until 15.11.2013 - 220 observations in total).

We are interested in the following functions

– Mean of the number of singular losses of type “a”, ma(μ0).
– Mean of the number of singular losses of type “b”, mb(μ0).
– Conditional risk for multiple decision statistical procedure, R(μ0) = ama +

bmb.

Multiple Decision Problem for Stock Selection in Market Network 107

Results of the calculations are shown in Figs. 1, 2, 3, 4, 5 and 6. Analysis of
these figures shows that the behavior of the functions ma, mb, R for the stock
selection problem is similar to their behavior for the market graph construction
problem [7]. In particular, if the significance level α is decreasing, then the num-
ber of singular losses of type “a” is decreasing, and the number of singular losses
of type “b” is increasing. This is an expected result.

Figures 1 and 4 show the rate of change of the number of singular losses of
type “a”, and Figs. 2 and 5 show the rate of change of the number of singular
losses of type “b”. One can see that the rates of changes have a nonlinear con-
nection. This nonlinearity leads to an essential decreasing of conditional risk,
as it is shown in Figs. 3 and 6. This phenomena was already observed in [7],

−6 −5 −4 −3 −2 −1 0 1 2

x 10−3 x 10−3

0

1

2

3

4

5

6

7

8

9

10

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

40

Fig. 1. Function ma(μ0). Number of observations n = 16. Left - significance level
α = 0.05, Right - significance level α = 0.5.

−6 −5 −4 −3 −2 −1 0 1 2

x 10
−3

x 10
−3

0

10

20

30

40

50

60

70

80

90

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

40

Fig. 2. Function mb(μ0). Number of observations n = 16. Left - significance level
α = 0.05, Right - significance level α = 0.5.

108 P.A. Koldanov and G.A. Bautin

and seems to be general for multiple decision statistical procedures. It gives
some possibilities to control the conditional risk by the choice of the loss func-
tion. On the other hand, for a fixed value of significance level, increasing number
of observations leads to the concentration of conditional risk around concentra-
tion point of μi. It is interesting to note that the maximums of functions ma(μ0)
and mb(μ0) are essentially different, in contrast to the results of [7].

−6 −5 −4 −3 −2 −1 0 1 2

x 10−3 x 10−3

0

1

2

3

4

5

6

7

8

9

10

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

35

40

Fig. 3. Function R(μ0). Number of observations n = 16. Left - significance level α =
0.05, Right - significance level α = 0.5.

−6 −5 −4 −3 −2 −1 0 1 2

x 10−3 −3x 10

0

1

2

3

4

5

6

7

8

9

10

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

Fig. 4. Function ma(μ0). Number of observations n = 100. Left - significance level
α = 0.05, Right - significance level α = 0.5.

Multiple Decision Problem for Stock Selection in Market Network 109

−6 −5 −4 −3 −2 −1 0 1 2

x 10−3 x 10−3

0

10

20

30

40

50

60

70

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

Fig. 5. Function mb(μ0). Number of observations n = 100. Left - significance level
α = 0.05, Right - significance level α = 0.5.

−6 −5 −4 −3 −2 −1 0 1 2

x 10−3 x 10−3

0

1

2

3

4

5

6

7

8

9

10

−6 −5 −4 −3 −2 −1 0 1 2
0

5

10

15

20

25

30

Fig. 6. Function R(μ0). Number of observations n = 100. Left - significance level
α = 0.05, Right - significance level α = 0.5.

7 Concluding Remarks

The present paper studies the stock selection problem as a multiple decision.
It is shown that a simple test for generating hypotheses gives rise to the opti-
mal multiple decision statistical procedure. Conditional risk associated with this
procedure can be controlled by the choice of the loss functions.

110 P.A. Koldanov and G.A. Bautin

References

1. Anderson, T.W.: An Introduction to Multivariate Statistical Analysis, 3rd edn.
Wiley-Interscience, New York (2003)

2. Bautin, G., Kalyagin, V.A., Koldanov, A.P.: Comparative analysis of two similarity
measures for the market graph construction. In: Goldengorin, B.I., Kalyagin, V.A.,
Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for Network Analysis.
Springer Proceedings in Mathematics and Statistics, vol. 59, pp. 29–41. Springer,
New York (2013)

3. Boginski, V., Butenko, S., Pardalos, P.M.: Statistical analysis of financial networks.
J. Comput. Stat. Data Anal. 48(2), 431–443 (2005)

4. Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network app-
roach. J. Comput. Oper. Res. 33(11), 3171–3184 (2006)

5. Hero, A., Rajaratnam, B.: Hub discovery in partial correlation graphs. IEEE Trans.
Inf. Theor. 58(9), 6064–6078 (2012)

6. Kalyagin, V.A., Koldanov, A.P., Koldanov, P.A., Pardalos, P.M., Zamaraev, V.A.:
Measures of uncertainty in market network analysis. arXiv:1311.2273. http://arxiv.
org/abs/1311.2273v1.pdf (2013)

7. Koldanov, A.P., Koldanov, P.A., Kalyagin, V.A., Pardalos, P.M.: Statistical pro-
cedures for the market graph construction. Comput. Stat. Data Anal. 68, 17–29
(2013)

8. Koldanov, A.P., Koldanov, P.A.: Optimal multiple decision statistical procedure for
inverse covariance matrix. In: Demyanov, V.F., Pardalos, P.M., Batsyn, M. (eds.)
Constructive Nonsmooth Analysis and Related Topics. Springer Optimization and
Its Applications, vol. 87, pp. 205–216. Springer, New York (2014)

9. Koldanov, P.A.: Efficiency analysis of branch network. In: Goldengorin, B.I., Kalya-
gin, V.A., Pardalos, P.M. (eds.) Models, Algorithms, and Technologies for Network
Analysis. Springer Proceedings in Mathematics and Statistics, vol. 59, pp. 71–83.
Springer, New York (2013)

10. Lehmann, E.L.: A theory of some multiple decision procedures 1. Ann. Math. Stat.
28, 1–25 (1957)

11. Lehmann, E.L., Romano, J.P.: Testing Statistical Hypotheses. Springer, New York
(2005)

12. Tumminello, M., Aste, T., Matteo, T.D., Mantegna, R.N.: A tool for filtering infor-
mation in complex systems. Proc. Natl. Acad. Sci. 102(30), 10421–10426 (2005)

13. Wald, A.: Statistical Decision Function. Wiley, New York (1950)
14. Duncan, D.: Multiple range and multiple F tests. Biometrics 11, 1–42 (1955)
15. Randles, R.H., Hollander, M.: γ-minimax selection procedures in treatments versus

control problems. Ann. Math. Stat. 42, 330–341 (1971)
16. Spjotvoll, E.: On the optimality of some multiple comparison procedures. Ann.

Math. Stat. 43, 398–411 (1972)

http://arxiv.org/abs/1311.2273
http://arxiv.org/abs/1311.2273v1.pdf
http://arxiv.org/abs/1311.2273v1.pdf

Initial Sorting of Vertices in the Maximum
Clique Problem Reviewed

Pablo San Segundo1(&), Alvaro Lopez1, and Mikhail Batsyn2

1 Centre of Automatics and Robotics (UPM-CSIC),
Jose Gutiérrez Abascal, 2, 28006 Madrid, Spain

pablo.sansegundo@upm.es
2 Laboratory of Algorithms and Technologies for Networks Analysis,

National Research University Higher School of Economics,
136 Rodionova, Nizhny Novgorod, Russian Federation

mbatsyn@hse.ru

Abstract. In recent years there have been a number of important improvements
in exact color-based maximum clique solvers, which have considerably enhanced
their performance. Initial vertex ordering is one strategy known to have a sig-
nificant impact on the size of the search tree. Typically, a degenerate sorting by
minimum degree is used; literature also reports different tiebreaking strategies.
A systematic study of the impact of initial sorting in the light of new cutting-edge
ideas (e.g. recoloring [8], selective coloring [13], ILS initial lower bound com-
putation [15, 16] or MaxSAT-based pruning [14]) is, however, lacking. This
paper presents a new initial sorting procedure and relates performance to the new
mentioned variants implemented in leading solver BBMC [9, 10].

Keywords: Search � Branch and bound � Algorithm � Experimental

1 Introduction

A clique is a complete subgraph whose vertices are all pairwise adjacent. For a given
graph, the maximum clique problem (MCP) is an NP-hard problem which consists in
finding a clique with the maximum number of vertices. MCP has found many appli-
cations in a wide scope of fields such as matching related problems which appear in
computational biology [1], robotics [2, 3] or computer vision [4]. A good survey on
applications may be found in [5].

Many improvements have appeared in exact MCP search since the Bron and
Kerbosch algorithm [6] and the primitive branch-and-bound (BnB) algorithm of Car-
raghan and Pardalos [7]. Specifically in the last decade, there has been an outburst of
ideas related to greedy coloring bounds from which MCS [8] and bit optimized BBMC
[9, 10] standout. In the comparison survey [11], BBMC was reported the fastest.

Both MCS and BBMC implement clique enumeration recursively, branching on a
candidate vertex at each step to enlarge a growing clique. The leaf nodes of the
recursion tree construct maximal cliques, and the largest clique found so far during
search is always stored in memory. An important theoretical result by Balas and Yu is
that the number of colors in any vertex coloring of a graph is an upper bound on its

© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 111–120, 2014.
DOI: 10.1007/978-3-319-09584-4_12

clique number [12]. Based on this property, many recent BnB exact solvers implement
bounding using greedy coloring sequential heuristic SEQ at each step. Pruning occurs
at nodes when the size of the current growing clique added to the color upper bound is
not greater than the size of the best maximal clique stored at that moment.

MCS further introduced recoloring, a repair mechanism which attempts to reassign
lower color numbers to a subset of vertices outputted by SEQ at the cost of linear
complexity. In [10], it was reported to improve performance significantly but only in
more difficult dense graphs.

Selective coloring is another new very recent idea, which has been implemented in
the BBMC solver. Instead of computing a full vertex coloring, selective coloring
relaxes SEQ to the minimum partial coloring such that every vertex will be pruned in
the derived child node [13].

In [14], Li and Quan describe a stronger repair mechanism than recoloring. At every
node, the MCP on the SEQ colored graph is reduced to an equivalent MaxSAT problem.
It turns out that the basic inference mechanisms employed by current MaxSAT solvers,
can also be used to produce tighter bounds than SEQ. Moreover, they can even be tighter
then the chromatic number of the graph. We will refer to this idea as logical pruning.

Also recently, a new local search procedure for the maximum independent set
problem was described in [15]. In combination with iterated local search (ILS) meta-
heuristic it shows excellent results in a number of typical benchmarks. In [16], the
authors propose to precompute ILS for the complement graph and use the output as
initial solution to an exact clique procedure. This line of research (ILS0) is very much
open at present, and results are very encouraging.

Besides these four cutting-edge ideas, two decision heuristics standout as critical
for overall performance in the general scheme: (I) vertex selection by decreasing color
number (first described in [17]) and (II) fixing the order of vertices, at the beginning of
the search, as input to sequential coloring [18]. Note that this implies that SEQ will
assign color numbers to vertices in the same relative order at every step of the search.

Independent of previous ideas, initial vertex sorting has long been known to have
significant impact on overall performance. The general strategy is to pick vertices at the
root node by increasing degree, in order to reduce the average branching factor in the
shallower levels of the search tree. A number of variants have been described in
literature [7, 11, 16], but a precise comparison survey is somewhat lacking.

This paper presents a new initial sorting for exact maximum clique search and
reports improved performance w.r.t. a typical sorting procedure over a set of structured
graphs taken from well known public benchmarks. Moreover, the paper also addresses
the impact of initial sorting in recoloring, selective coloring, logical pruning and ILS0.

The paper is structured in 5 sections. Section 2 includes useful definitions and
notation. Section 3 describes the new initial ordering; Sect. 4 presents empirical vali-
dation, and Sect. 5 conclusions and future lines of research.

2 Preliminaries

A simple undirected graph G = (V, E) consists of a finite set of vertices V ¼
fv1; v2; . . .; vng and edges E ⊆ VxV which pair distinct vertices. Two vertices are said to

112 P. San Segundo et al.

be adjacent (alias neighbors) if they are connected by an edge. N(v) refers to the
neighbor set of v. Standard notation used in the paper includes deg(v) for vertex degree,
Δ for graph degree, ω(v) for the clique number and Gv for the induced graph of v in G.

Useful definitions and notation related to vertex orderings are:

– O(V): Any strict ordering of vertices in a simple graph
– Width of a vertex for a given O: the number of outgoing edges from that vertex to

previous vertices in O.
– Width of an ordering: The maximum width of any of its vertices
– Degeneracy ordering: A sorting procedure which achieves a vertex ordering of

minimum width. It does so by iteratively selecting and removing vertices with
minimum degree [19]. In general, let O Vð Þ ¼ v1; v2; . . .; vn be a degeneracy ordering
of the vertices. Then vn is a vertex of minimum degree in G, vn−1 will have minimum
degree in G − {vn}, vn-2 in G − {vn, vn−1} and so on. How to break ties is not
determined.

– Vertex support σ(v): the sum of the degrees of vertices in N(v) (notation is taken from
[16]).

Literature reports degeneracy ordering as successful for exact MCP already in [7]. In
MCS and others, ties are broken using minimum support criteria. For vertices having the
same σ, ties are usually broken first-found or randomly. We denote by MWS (MinWidth
and min Support tiebreak) the latter sorting procedure, which will be considered as
reference. MW stands for MWS without support tiebreak. Pseudocode for MWS is
available in Algorithm 3 of [16]. Worth noting is that degeneracy ordering is defined in a
last-to-first basis. This is consistent with both BBMC and MCS implementations, which
pick vertices in reverse order at the root node (i.e. vertices with smallest degree first).

3 New Initial Sorting

SEQ is reported to produce tighter colorings if vertices with higher degrees are selected
first. BBMC and MCS both keep an initial MWS coloring (actually BBMC uses simple
MW) fixed throughout the search. Vertices are taken in reverse order at the root node,
and in direct order by SEQ at every step. Moreover, while MWS achieves minimum
vertex width looking from back to front, it does not preserve maximum degree at the
other end. The distortion grows with size.

In the light of the above considerations, we propose a new initial sorting MWSI
which can be seen as a repair mechanism to MWS w.r.t. to maximum degree at the
head of the ordering. MWSI takes as input the ordering produced by MWS and sorts,
according to non decreasing degree, a subset of k vertices v1; v2; . . .; vk (ties are broken
first-found). This second ordering is absolute (not degenerate) since it is directed to
improve SEQ. The remaining n - k vertices are not modified and remain sorted by
minimum width.

Parameter k (the number of vertices reordered by non increasing degree) should be
neither too small (a low impact), nor too big (the first minimum width ordering would
be lost). Instead of using k for tuning, we consider a new parameter p related to the total
number of vertices, such that:

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed 113

p ¼ Vj j
k

� �
; p ¼ 2; 3; . . .f g

In practice, MWSI performs best when p ranges between 2 (50 % of the vertices) and
4 (25 % of the vertices). We present an example of MWSI ordering in Table 1. Table 1A
is the simple graph G to be ordered. The number of every vertex uniquely identifies it in
all the figures, but in the case of Table 1A it also indicates the actual ordering. In the
remaining cases, the ordering is the same spatially (i.e. the starting point is the middle
vertex to the right and the rest follow in anticlockwise direction). Vertices are always
picked from G from first to last and ties broken on a first-found basis when necessary.

Table 1. An example of the new MWSI reordering

A) A simple graph G B) MW ordering {5, 4, 0, 3, 2, 1}

C) MWS ordering {5, 4, 0, 2, 1, 3} D) The new MWSI ordering (p = 2)

114 P. San Segundo et al.

Table 1B presents minimum width ordering MW and Table 1C presents reference
ordering MWS. The difference between them lies in the difference in support of ver-
tices {1} and {3} which have lowest degree (2). In the case of MW, ties are broken
first-found, so vertex {1} is placed last in the ordering. In the case of MSW, σ(1) = 7
whereas σ(3) = 6 and σ(5) = 6 so vertex {3} is the one placed at the end. After
removing {3}, two triangles appear: {0, 1, 2} and {0, 4, 5}; vertices {1, 2, 4, 5} all
have minimum degree and support so vertex {1} is picked in second place and so on.

Table 1D presents the new ordering with p = 2 (i.e. the first 3 vertices {5, 4, 0} are
considered for reordering by non increasing degree). Clearly vertex {0} has the highest
degree (deg(0) = 4), then comes {4} (deg(4) = 3) and finally {5} (deg(5) = 2). As a
result vertices {5} and {0} are swapped.

4 A Comparison Survey

In this section, MWSI is validated against a subset of instances from the well known
DIMACS benchmark. Moreover, the report also exposes the impact of initial sorting in
the new variants considered, which is another contribution.

We have used leading BBMC (in particular optimized BBMCI) as starting point for
all new variants. The algorithms considered are:

– BBMCI: The reference leading algorithm [10].
– BBMCL: BBMCI with selective coloring [13].
– BBMCR: BBMCI with recoloring, similar to MCS. It is described in [10].
– BBMCXR: BBMCI with logical pruning and recoloring. The ‘X’ in the name refers

to MaxSAT and the ‘R’ to recoloring. BBMCXR is a new algorithm which adapts
MaxSAT pruning to BBMCI without having to explicitly encode the graphs to
MaxSAT as described in the original paper by Li & Quan. It has been specifically
implemented as an improvement on BBMC and a full description has now been
submitted for publication [20].

The orderings reported are (reference) MWS and new MWSI (with parameter p set
to 4). Reordering the first 25 % of the vertices at the head by non increasing degree
produced best results for the instances considered.

All algorithms have been implemented in C++ (VC 2010 compiler) and optimized
using a native code profiler. The machine employed for the experiments was an Intel i7-
2660@3.40 GHz with a 64-bit Win7 O.S. and 8 GB of RAM. In all experiments the time
limit was set to 900 s and only user time for searching the graph is recorded. The
instances used for the tests are taken from DIMACS1 as well as BHOSHLIB2. Most
graphs which are either too easy or too hard (for the chosen time limit) have not been
reported. The subset under consideration for the tests, grouped by families, is as follows:

• C: 125.9
• Mann: a9 and a27

1 http://cs.hbg.psu.edu/txn131/clique.html
2 http://www.nlsde.buaa.edu.cn/*kexu/benchmarks/graph-benchmarks.htm

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed 115

• brock: 200_1, 400_1, 400_2, 400_3 and 400_4
• dsjc: 500.5
• frb: 30-15-1, 30-15-2, 30-15-3, 30-15-5
• gen: 200_p0.9_44 and 200_p0.9_55
• phat: 300-3, 500-2, 500-3, 700-2, 1000-1, 1500-1
• san: 200_0.9-1, 200_0.9_2, 200_0.9_3, 400_0.7_1, 400_0.7_2, 400_0.7_3
• sanr: 200-0.7, 200_0.9, 400-0.5, 400-0.7

In the case of the frb family, frb30-15-5 was in some cases not solved within the
chosen time limit. It has, therefore, not been included in the tables but is explicitly
mentioned in the related sections. Also frb30-15-4 failed in all cases.

Two setups are considered for the tests:

1. ILS0: A (strong) initial solution is precomputed using ILS heuristic, as in [16] and
used as starting solution in all algorithms

2. An initial solution is precomputed greedily and used as starting solution in all
algorithms. It is constructed by selecting vertices in ascending order (starting from
the first) until a maximal clique is obtained. This allows for a better comparison
between algorithms avoiding noise from divergent initial branches of the search.
The time taken for this initial solution is never greater than 1ms.

4.1 Experiments Without ILS0

Table 2 reports the number of steps (scaled in millions) taken by the different algo-
rithms considering reference MWS and new MWSI orderings. Each step is a call to a
recursive algorithm. Each row reports the total number of steps for each family. The
best result for each algorithm is shown in cursive (ties broken first-found). Note that
steps between algorithms are not comparable, because the pruning effort could have an

Table 2. Cumulative steps (×10−6) for different algorithms and orderings. In italics – best value
for each algorithm.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01
Mann 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01
brock 123.09 122.33 137.21 134.11 66.54 66.47 40.35 39.86

dsjc 0.26 0.26 0.28 0.28 0.17 0.17 0.11 0.11
frb 453.10 379.05 561.92 466.55 232.69 192.93 144.01 122.10

gen 0.22 0.19 0.26 0.27 0.10 0.06 0.05 0.04

phat 5.61 6.00 6.14 6.57 2.85 3.16 1.70 1.89
san 0.09 0.08 0.28 0.33 0.05 0.04 0.04 0.04
sanr 19.29 18.40 21.71 20.33 10.21 9.92 6.22 5.94

Total 601.68 526.35 727.83 628.48 312.63 272.76 192.48 169.99

116 P. San Segundo et al.

even bigger overhead. Table 3 reports total time in seconds taken by each of the
families considered. In contrast to steps, time is comparable between algorithms.
In bold face the best total time and best time for each family.

MWSI is the fastest in 6 out of the 9 families. Moreover it improves performance
significantly in all algorithms considered, as shown by the row of totals. The overall
fastest algorithm, BBMCXR, is improved by more than 10 %. Regarding steps, frb
family is where the impact of MWSI is more significant. Performance is similar in C,
Mann and dsjc, and only p_hat family becomes more difficult with MWSI.

Worth noting is that frb30-15-5 failed in BBMCI and BBMCL with the reference
sorting but was solved with MWSI (BBMCI took 633.4 s and BBMCL 713.2 s). The
other two algorithms solved the problem under the 900 s limit with both orderings. As
mentioned at the beginning of the section, this instance is not computed in the tables.

4.2 Experiments with ILS0

This section covers experiments in which the algorithms benefit from a good initial
solution computed by ILS heuristic. Tables 4 and 5 report results for the same instances
and in the same format as in the previous section.

Regarding MWSI, the trends w.r.t. MWS are similar to those described when ILS
was not employed. It improves performance of all algorithms on average and only phat
shows a bad behaviour towards new MWSI. This validates MWSI also for ILS0. Best
overall performance is achieved by BBMXCR, as in the previous section. Worth noting
is that frb30-15-5 is now solved under the time limit in all cases.

Another interesting comparison is how ILS influences the impact of MWSI. Table 6
reports the percentage of improvement in performance (time) for all algorithms with
and without ILS. With the exception of reference BBMCI, the rest of the algorithms
benefit more of MWSI when fed with a good initial solution. In particular, selective
coloring improves the most (over 15 %).

Table 3. Cumulative time (seconds) for different algorithms and orderings. In italics – best value
for each algorithm. In bold – best value for the row.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.031 0.031 0.016 0.032 0.031 0.031 0.015 0.032
Mann 0.156 0.171 0.156 0.156 0.110 0.109 0.172 0.156
brock 411 405 411 407 458 462 346 335
dsjc 0.670 0.702 0.686 0.655 0.951 0.827 0.718 0.671
frb 3815 3245 4016 3479 3476 3054 2766 2436
gen 0.624 0.516 0.687 0.702 0.670 0.422 0.468 0.390
phat 41.0 43.9 40.5 43.2 45.4 49.7 33.6 36.3
san 0.655 0.594 1.15 1.23 0.592 0.593 0.703 0.656
sanr 58.5 50.3 59.5 50.3 107 90.5 45.7 42.8
Total 4328 3746 4530 3982 4090 3658 3193 2851

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed 117

5 Conclusions and Future Work

A new initial sorting procedure has been described and empirically shown to improve
performance of a leading exact maximum clique solver. The considered cutting-edge
variants have also been improved. Moreover, the paper also compares these variants

Table 4. Cumulative steps (×10−6) for different algorithms, orderings and ILS0. In italics – best
value for each algorithm.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C 0.01 0.01 0.01 0.01 <0.01 <0.01 <0.01 <0.01
Mann 0.02 0.02 0.02 0.02 <0.01 <0.01 <0.01 <0.01
brock 59.56 54.32 65.27 59.62 31.80 28.94 18.40 16.70

dsjc 0.24 0.24 0.26 0.26 0.15 0.15 0.10 0.10
frb 253.05 214.12 316.01 264.26 127.60 108.02 77.77 66.87

gen 0.03 0.03 0.04 0.03 0.01 0.01 <0.01 <0.01
phat 2.78 2.96 3.02 3.21 1.39 1.53 0.81 0.88
san <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
sanr 17.50 16.88 19.45 18.60 9.50 9.29 5.77 5.64

Total 333.18 288.57 404.07 346.01 170.46 147.96 102.85 90.20

Table 5. Cumulative time (seconds) for different algorithms, orderings and ILS0. In italics –
best value for each algorithm. In bold – best value for the row.

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]
MWS MWSI MWS MWSI MWS MWSI MWS MWSI

C <0.001 0.016 0.016 0.015 0.016 0.015 <0.001 0.015
Mann 0.140 0.156 0.140 0.140 0.109 0.109 0.156 0.140
brock 231 216 233 225 266 249 185 177
dsjc 0.640 0.624 0.640 0.634 0.764 0.757 0.650 0.650
frb 2809 2418 3138 2603 2484 2174 1794 1553
gen 0.109 0.094 0.124 0.109 0.063 0.047 0.047 0.032
phat 22.4 24.2 22.2 23.6 24.2 26.3 17.6 18.9
san 0.015 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
sanr 48.5 41.8 48.5 46.5 53.8 54.0 42.3 40.6
Total 3112 2701 3443 2900 2828 2504 2040 1791

Table 6. Improvement in performance (%) caused by the new ordering MWSI

BBMCI [10] BBMCL [13] BBMCR [10] BBMCXR [20]

ILS0 13.2 % 15.8 % 11.5 % 12.2 %
No ILS0 13.4 % 12.1 % 10.5 % 10.7 %

118 P. San Segundo et al.

when a good initial solution (computed by recent ILS heuristic) is known a priori.
The latter is an open line of research, together with the majority of the algorithmic
variants considered.

Acknowledgments. This work is funded by the Spanish Ministry of Economy and Competi-
tiveness (ARABOT: DPI 2010-21247-C02-01) and supervised by CACSA whose kindness we
gratefully acknowledge. Mikhail Batsyn is supported by LATNA Laboratory, National Research
University Higher School of Economics (NRU HSE), Russian Federation government grant, ag.
11.G34.31.0057.

References

1. Butenko, S., Wilhelm, W.E.: Clique-detection models in computational biochemistry and
genomics. Eur. J. Oper. Res. 173, 1–17 (2006)

2. Hotta, K., Tomita, E., Takahashi, H.: A view invariant human FACE detection method based
on maximum cliques. Trans. IPSJ 44(SIG14(TOM9)), 57–70 (2003)

3. San Segundo, P., Rodriguez-Losada, D., Matia, F., Galan, R.: Fast exact feature based data
correspondence search with an efficient bit-parallel MCP solver. Appl. Intell. 32(3), 311–329
(2010)

4. San Segundo, P., Rodriguez-Losada, D.: Robust global feature based data association with a
sparse bit optimized maximum clique algorithm. IEEE Trans. Rob. 29(5), 1332–1339 (2013)

5. Du, D., Pardalos, P.M.: Handbook of Combinatorial Optimization, Supplement, vol.
A. Springer, New York (1999)

6. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun.
ACM 16(9), 575–577 (1973)

7. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem. Oper.
Res. Lett. 9(6), 375–382 (1990)

8. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster
branch-and-bound algorithm for finding a maximum clique. In: Rahman, M., Fujita, S. (eds.)
WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010)

9. San Segundo, P., Rodriguez-Losada, D., Jimenez, A.: An exact bit-parallel algorithm for the
maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

10. San Segundo, P., Matia, F., Rodriguez-Losada, D., Hernando, M.: An improved bit parallel
exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2011)

11. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms 5(4),
545–587 (2012)

12. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15
(4), 1054–1068 (1986)

13. San Segundo, P., Tapia, C.: Relaxed approximate coloring in exact maximum clique search.
Comput. Oper. Res. 44, 185–192 (2014)

14. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT for the
maximum clique problem. In: Proceedings of AAAI-10, pp. 128–133

15. Andrade, D.V., Resende, M.G.C., Werneck, R.F.: Fast local search for the maximum
independent set problem. J. Heuristics 18(4), 525–547 (2012)

16. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.: Improvements to MCS algorithm for
the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

Initial Sorting of Vertices in the Maximum Clique Problem Reviewed 119

17. Tomita, E., Seki, T.: An efficient branch and bound algorithm for finding a maximum clique.
In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731,
pp. 278–289. Springer, Heidelberg (2003)

18. San Segundo, P., Tapia, C.: A new implicit branching strategy for exact maximum clique.
In: ICTAI, ICTAI Press, vol. 1, pp. 352–357 (2010)

19. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. Assoc. Comput. Mach. 30(3), 417–427 (1983)

20. San Segundo, P., Nikolaaev, A., Batsyn, A.: Infra-chromatic bound for exact maximum
clique search (2014). (Manuscript submitted for publication)

120 P. San Segundo et al.

Using Comparative Preference Statements
in Hypervolume-Based Interactive

Multiobjective Optimization

Dimo Brockhoff1(B), Youssef Hamadi2, and Souhila Kaci3

1 INRIA Lille - Nord Europe, DOLPHIN Team, 59650 Villeneuve d’Ascq, France
dimo.brockhoff@inria.fr

2 Microsoft Research, Cambridge, UK
3 Université Montpellier 2, LIRMM, UMR 5506 - CC477,

161 Rue Ada, 34095 Montpellier Cedex 5, France

Abstract. The objective functions in multiobjective optimization prob-
lems are often non-linear, noisy, or not available in a closed form and
evolutionary multiobjective optimization (EMO) algorithms have been
shown to be well applicable in this case. Here, our objective is to facil-
itate interactive decision making by saving function evaluations outside
the “interesting” regions of the search space within a hypervolume-based
EMO algorithm. We focus on a basic model where the Decision Maker
(DM) is always asked to pick the most desirable solution among a set. In
addition to the scenario where this solution is chosen directly, we present
the alternative to specify preferences via a set of so-called comparative
preference statements. Examples on standard test problems show the
working principles, the competitiveness, and the drawbacks of the pro-
posed algorithm in comparison with the recent iTDEA algorithm.

Keywords: Multiobjective optimization · Interactive decision making ·
Evolutionary multiobjective optimization · Preferences

1 Introduction

Multiobjective optimization problems with non-linear objectives which, in addi-
tion, can be noisy or not even given in closed form occur frequently in practical
applications. Evolutionary Multiobjective Optimization (EMO) algorithms have
been shown to be applicable in such cases and are typically used in an a pos-
teriori scenario. Here, the EMO algorithm computes an approximation of the
Pareto front that is then provided to a decision maker (DM) who is supposed
to pick the most desired solution [9]. However, one often has to cope with many
objectives and large search spaces where the current EMO algorithms need many
function evaluations to converge to a good Pareto front approximation. On the

All authors have also been participating in the CNRS-Microsoft chair “Optimization
for Sustainable Development (OSD)” at LIX, École Polytechnique, France.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 121–136, 2014.
DOI: 10.1007/978-3-319-09584-4 13

122 D. Brockhoff et al.

other hand, the DM is most of the time not even interested in finding solu-
tions covering the entire Pareto front but only in finding solutions within certain
interesting regions of it.

In such a scenario, it makes sense to interlace the search for a solution set with
the articulation of preferences by a DM. Several such interactive EMO algorithms
have been proposed in previous years in order to reduce the number of function
evaluations by exploring only the regions of the search space, the DM is interested
in, see for example [12,16,18,20,22]. Most of those interactive algorithms assume
a single preference model and a change in the preference modeling would need
a different algorithm [10,20,22]. An approach which is able to integrate several
preference models is the weighted hypervolume indicator approach [25]. Its main
idea is to define a weight function on the objective space and use the contribution
to the weighted hypervolume indicator as the fitness of each solution within the
EMO algorithm. By defining weight functions that induce lines of equal indicator
values similar to the lines of equal utility for classical preference models and
single solutions, it has been shown that the weighted hypervolume approach can
“simulate” the optimization of several classical preference models [7]. However,
the weighted hypervolume indicator has not been used yet in an interactive
fashion. One goal of this paper is to show how this can be achieved.

To this end, we assume a very basic scenario: In each interaction step, the
DM has to decide on the most preferred solutions within the EMO algorithm’s
current population (or a subset thereof) and the weight function of the weighted
hypervolume indicator within the algorithm W-HypE [7] is adapted accordingly.
The first part of the paper is devoted to the simpler direct preference handling
where the DM defines the most preferred solutions directly while in the last
part of the paper, we show how the most preferred solutions can be specified
indirectly with the help of comparative preference statements [17].

In the following, we briefly recapitulate the weighted hypervolume indicator
and how it is employed in weighted hypervolume based algorithms (Sect. 3). We
then present the proposed framework in which the preference towards a specific
solution in the algorithm’s population is transformed into a weight function for
the hypervolume indicator (Sect. 4). Experiments show how the DM’s interactive
choices affect the search when used within the interactive W-HypE algorithm
(Sect. 5). We also compare the proposed interactive W-HypE algorithm with the
interactive EMO algorithm iTDEA from [18]. Finally, we present how compara-
tive preference statements can be transformed into a preorder on the population’s
solutions and further into a weight function for the indicator (Sect. 6).

2 Preference Articulation and Interactive Optimization
in Evolutionary Multiobjective Optimization

Classical EMO approaches aim at finding an approximation of the Pareto front
while the DM decides a posteriori which solution in the computed set is the
most preferred one [9]. Recently proposed interactive EMO algorithms, on the
other hand, involve the DM already during the search, typically with the need

Using Comparative Preference Statements 123

to present non-Pareto-optimal solutions to the DM [16]. At certain stages of
the optimization that we call “interaction steps” the DM provides some kind
of preference information which is then exploited by the EMO algorithm to
find an approximation of the Pareto front which is biased towards the DM’s
most preferred solutions. The known interactive EMO algorithms thereby differ
mainly in the way the DM’s preference is modeled and used during the search.

According to [16], to which we refer for a broader overview of the topic,
“probably the first interactive multiobjective metaheuristic” has been proposed
as early as in 1993 [21]. In the meantime, several advanced algorithms have been
proposed in the literature of which we briefly discuss the most important here.
Thiele et al. [22], for example, ask the DM to define desired solutions in the
objective space (so-called reference points) and an achievement scalarizing func-
tion [19] towards the current reference point is integrated into a binary quality
indicator within a state-of-the-art algorithm called IBEA. Deb and Kumar [10]
incorporate reference directions into the NSGA-II algorithm while Deb et al. [12]
ask the DM to compare single solutions based on which a polynomial value func-
tion is created and optimized. Köksalan and Karahan [18] build their iTDEA
algorithm around the idea of selecting only the best solution within a presented
subset of the population. This specification of the most preferred solution among
a set of solutions is also the scenario, we build upon in the following. The iTDEA
algorithm is an interactive version of the original territory-defining evolutionary
algorithm (TDEA) and employs in addition to the current population an archive
of non-dominated solutions. Within the steady-state TDEA, the newly gener-
ated offspring solution is introduced into the archive if it is non-dominated with
respect to the archive and at the same time does not fall into the so-called ter-
ritory of the archive’s solution that is closest to the offspring. The territory of
a solution is thereby a hyperbox around the solution’s objective vector with a
given width. The main idea behind the interactive iTDEA is to adapt the sizes
of the territories according to the DM’s preferences: if a solution lies within the
region of the most-preferred solution, the territory size is decreased to allow for
more solutions in this region and stays constant in less-preferred regions.

In [1] and [7], several ways to articulate the DM’s preferences within the class
of weighted hypervolume based EMO algorithms have been presented. Here, we
show that the weighted hypervolume approach can also be used in an interactive
fashion. To this end, the information about the most preferred solutions specified
by the DM is used to define a weight function that has larger values around
the preferred solutions—resulting in populations which accumulate close to the
solutions that were most-preferred in the previous interaction step.

3 The Weighted Hypervolume Indicator
and Hypervolume-Based Selection

Throughout the paper, we assume minimization of k objective functions map-
ping a solution x ∈ X from the search space X to its objective vector f(x) =
(f1(x), . . . , fk(x)) in the so-called objective space Rk. We call a solution x∗

124 D. Brockhoff et al.

Pareto-optimal if there is no other solution x ∈ X such that x∗ is dominated by
x or, more formally, if there is no other x ∈ X such that ∀1≤ i≤k : f(x) ≤ f(x∗)
and ∃1 ≤ i ≤ k : f(x) < f(x∗). The set of all Pareto-optimal solutions is called
Pareto set and its image in objective space is called Pareto front. The weighted
hypervolume indicator is then a set quality measure which assigns a (multi-)set
of solutions A ⊆ X the real number IH,w(A, r) =

∫
Rk w(z)1H(A,r)(z)dz: the

weighted Lebesgue measure of the objective space dominated by solutions in
A, bounded by a reference point r ∈ Rk, and weighted by w : Rk → R [25].
Thereby, H(A, r) = {z ∈ Rk | ∃a ∈ A : f(a) ≤ z ≤ r} and 1S is the indicator
function of a set S, i.e., 1S(s) = 1 if s ∈ S and 1S(s) = 0 otherwise. In case of
w(z) = 1 for all z ∈ Rk, we use the term (standard) hypervolume indicator.

The (weighted) hypervolume indicator is used frequently for performance
assessment of multiobjective optimizers [24] but also in several recent EMO
algorithms as optimization criterion within their selection step [2,4,15]. One of
the main reasons for its popularity is the fact that the (weighted) hypervolume
indicator is compliant with the dominance relation—implying that only Pareto-
optimal solutions are found if the indicator is optimized [13]. However, optimiz-
ing the hypervolume indicator within the selection step of an EMO algorithm
exactly is not always possible due to the complexity of the problem. Hence, state-
of-the-art hypervolume-based EMO algorithms use two independent strategies
to circumvent high computation times in practice: (i) greedy selection instead
of finding the optimal subset of points and (ii) estimation of the integral in the
indicator by means of Monte Carlo sampling. An algorithm that uses both ideas
is HypE [2]. Moreover, HypE uses the idea of the expected hypervolume loss of a
solution a ∈ X as the quality of each solution a if a itself and i other randomly
chosen solutions are deleted. The generalization of HypE to the weighted hyper-
volume indicator of [1,7] is denoted W-HypE. Throughout the paper, we use
10,000 samples in each iteration of W-HypE and refer to [2] and [7] for further
details of the algorithm.

4 Interactive Optimization with Weighted Hypervolume
Based Selection

Basic Concept. The basic idea behind the proposed approach is to ask the
DM to define the most preferred solutions among the current population of the
EMO algorithm at certain iterations. These most preferred solutions can be
either specified directly or indirectly. In the direct case, the DM picks the most
preferred solution from a set of alternative solutions, typically within the EMO
algorithm’s current population. Once the most preferred solutions are known,
they are used as the means of Gaussian weight functions within the W-HypE
algorithm, while the directions of the distributions are determined by the extreme
points of the current population. Together with the selection scheme of HypE,
this will drive the population towards regions with higher weight function values,
thus, towards the solutions preferred by the DM. The W-HypE algorithm follows
the implementation of [7] and the parameters of the used interactive version are
described in more detail in an accompanying technical report [8].

Using Comparative Preference Statements 125

Weight Function. As Gaussian weight functions, which are efficient to sample,
we use the ones proposed in [1]. Let P = {x1, . . . , x|P |} be the current population
and b ∈ P the best solution picked by the DM. Then, m = f(b) shall be the mean
of the Gaussian distribution and t its direction such that the resulting weight
function is w(z) = 1

(2π)k/2|C|1/2 e− 1
2 (z−m)T C−1(z−m), with C := σ2

εI+ σ2
t ttT /||t||2

the covariance matrix, eigenvalues σ2
ε +σ2

t , σ2
ε , . . . , σ2

ε and eigenvectors t2, . . . , tk
taken from an orthogonal basis of the hyperplane orthogonal to t. The determi-
nant of C is denoted as |C|. We propose to choose the direction vector t to be
proportional to the population’s spread as

t =
√

k · (f1(b)− f1,max, . . . , fk(b)− fk,max)√
(f1(b)− f1,max)2 + . . . + (fk(b)− fk,max)2

with k being the number of objectives, and fi,max and fi,min being the maximal
and the minimal values in objective i found in the current population.

In the current implementation, and following preliminary experiments [8],
two overlapping Gaussians with the same mean and direction but different eigen-
values are used: the first one is sampled with 80% and the second with 20% of
the samples. The two variances of the first Gaussian are chosen as σt = 0.5 · �
and σε = 0.01 · � and as σt = 0.5 · � and σε = 0.1 · � for the second where
� = ||(f1,max − f1,min, . . . , fk,max − fk,min)|| is the Euclidean distance between
the current nadir and ideal point. If two or more solutions are preferred equally
by the DM, two Gaussians are defined for each of them and the number of sam-
ples are distributed equally among the preferred points. For numerical stability,
we choose a diagonal direction with a length of 0.01 in case that the population
at the time of the interaction contains only copies of one and the same solution.

Until the first interaction step with the DM, the algorithm is using the stan-
dard hypervolume indicator in order to come up with a good spread of the solu-
tions before the DM’s decisions change the weight function as described above.
In the current implementation, we use a reference point of 111k, the weighted
hypervolume indicator is sampled as above and for the standard hypervolume
we sample within the box [0, 111]k.

Interaction Steps. We follow the suggestion of Köksalan and Karahan [18] to
specify when the DM is supposed to interact with the algorithm. Given the
total number of iterations T of the algorithm and a number of times H, the
DM is going to be asked about the most-desired solution, we perform the first
interactive step after T/3 generations of W-HypE and each later interaction after
additional T

2(H−1) iterations. This results in a final optimization stage of (at least)
T/6 generations in which no interaction is taking place [18]. The algorithm is
therefore able to spend a considerable amount of function evaluations before the
first and after the last interaction with the DM in order to allow the population
to converge as far as possible. Non-integer values are rounded down to the nearest
integer that is smaller than the computed iteration, giving interaction steps at
iterations 166, 249, 332, and 415 for T = 500 and H = 4 for example.

126 D. Brockhoff et al.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

0.08 0.09 0.1 0.11 0.12 0.13
3.75

3.8

3.85

3.9

Fig. 1. Examples of interactive optimization runs on the DTLZ7 test function when
the DM is preferring the solution closest to f1 = 0.1 (left and middle) and on the
DTLZ2 test function when the DM is choosing according to a weighted Chebyshev
utility function with weights (0.1, 0.9) (right). Black line: true Pareto front. Gray dots:
all solutions visited in 10 independent HypE runs with the same amount of 20,000
function evaluations each. Markers depict the W-HypE populations at interaction steps
1 (©, iteration 333), 2 (�, iter. 499), 3 (♦, iter. 665), 4 (+, iter. 831), and after 1000
iterations (�). The middle plot zooms into the left one around the preferred f1 = 0.1.

Implementation Details for Two Example Runs. In order to show that the above
approach is working, we implemented the interactive W-HypE algorithm within
the algorithm package PISA [5]1. Two example test runs are shown here in which
the bi-objective DTLZ2 and DTLZ7 test problems [11] are optimized. The pop-
ulation size is set to μ = λ = 20 and the number of decision variables is 100. We
employ SBX crossover, polynomial mutation with no symmetric recombination
and an individual mutation probability of 1/100 together with 4 interaction steps
in 1000 generations. All other parameters follow the standard PISA setting.

In the first example, shown in the left and middle plot of Fig. 1, the DM
decided that the solution closest to f1 = 0.1 is the most desired solution in each
step. In the second example, shown in the right plot of Fig. 1, the DM decided
according to a weighted Chebyshev utility function [19] with weights (w1, w2) =
(0.1, 0.9), i.e., chose the solution that minimizes max1≤i≤2 wi|fi(x)−f∗

i | at each
interaction step with f∗ = (0, 0) being the ideal point.

What can be seen from both examples of Fig. 1 is that the interactive
W-HypE algorithm follows the directions specified by the DM, i.e., the popula-
tion is moving towards the selected solution as well as towards better solutions
in terms of Pareto dominance. Moreover, we can see that, when compared to the
solutions of 10 independent HypE runs in which the standard hypervolume indi-
cator is optimized, the interactive W-HypE algorithm finds solutions closer to
the true Pareto front. Note that, however, the results shown in Fig. 1 stem from
single algorithm runs which, due to the stochasticity of the algorithm, might not
give an unbiased view on the real behavior of the algorithm. Hence, we inves-
tigate in the following in more detail how the interactive W-HypE algorithm
works in terms of statistically sound results over independent algorithm runs.
1 The source code is available at http://inrialix.gforge.inria.fr/interactive/.

http://inrialix.gforge.inria.fr/interactive/

Using Comparative Preference Statements 127

5 Investigating and Comparing W-HypE in Depth

In the experimental validation of the interactive W-HypE algorithm to follow,
we use scenarios from the study of Köksalan and Karahan [18] in order to be
able to compare our algorithm with their iTDEA. As in [18], we assume that the
DM is choosing the most preferred solution according to a weighted Chebyshev
function max1≤i≤k wi|fi(x)−f∗

i | with varying weights wi and ideal point f∗ = 0.
The interactive steps of the W-HypE algorithm appear as in [18] at generations
T
3 , T

3 + T
2(H−1) ,

T
3 + 2T

2(H−1) , . . ., and T − T
6 if T is the total amount of iterations

of the algorithm and H the number of interactions.
We use the above mentioned PISA [5] implementation of the interactive W-

HypE algorithm as well as the PISA implementations of the DTLZ1, DTLZ2,
and ZDT4 test functions. For the number of decision variables, we follow the
recommendations in [11] (DTLZ1 and DTLZ2) and [9] (ZDT4) that have been
also reported for the results in [18]. For each combination of problem, weight vec-
tor, and number H of interactions, we start 50 independent W-HypE runs with
polynomial mutation (ηm = 20, probability of mutation 1/# decision variables),
non-symmetric SBX crossover (ηc = 20), and standard PISA settings (again, as
in [18]). Table 1 gives further parameter values chosen here and in [18].

In order to compare the algorithms, we report mean and standard devia-
tion of the best Chebyshev utility function value U reached after T generations
of the algorithms. Furthermore, we compare the mean values with respect to
the optimal utility U∗ of a Pareto-optimal solution. To this end, we report the
absolute differences U − U∗ to the best value as well as the relative differences
(U −U∗)/(Uw−U∗) with Uw being the worst utility function value of a Pareto-
optimal solution [18]. Values for U∗ and Uw will be given for each test function
and choice of weight vector. Values for iTDEA have been taken from [18] in the
“no filter” variant as also here, no preprocessing of the data is performed before
the solution sets are shown to the DM.

Table 1. Parameter values used in this study and in [18] where the DTLZ2 problem
has not been used with two objectives.

DTLZ2 ZDT4 DTLZ1

Number of decision variables/objectives 11/2 10/2 7/3

Weights (0.2, 0.8) (0.5, 0.5) (0.7, 0.2, 0.1)

Ideal vector (0, 0) (0, 0) (0, 0, 0)

Population size 50 200 400

Number of interactions H 2, 4, 6, 8 4, 6 4, 6

Number of independent runs 50 50 50

Total number of funevals 25,000 80,000 320,000

128 D. Brockhoff et al.

Table 2. Results for the 2-objective DTLZ2 problem when the DM is acting according
to a weighted Chebyshev utility function with w = (0.2, 0.8). Reported are algorithm
name, number of interaction steps, mean and standard deviation (std) of the reached
Chebyshev utility and the absolute (abs.dev.) and relative deviation (rel.dev.) from the
optimal utility (U∗), given the worst utility (Uw) of a Pareto-optimal solution.

Algorithm Interactions Mean std abs.dev. rel.dev. U∗ Uw

WHypE 2 0.19418 0.000114 0.00016 0.0257 % 0.19403 0.800

WHypE 4 0.19413 0.000064 0.00010 0.0162 % 0.19403 0.800

WHypE 6 0.19411 0.000053 0.00009 0.0142 % 0.19403 0.800

WHypE 8 0.19410 0.000049 0.00007 0.0113 % 0.19403 0.800

HypE 0 0.19728 0.001531 0.00325 0.5365 % 0.19403 0.800

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

HypE
2 interactions
4 interactions
6 interactions
8 interactions
most preferred

0.968 0.9685 0.969 0.9695 0.97 0.9705 0.971
0.241

0.2415

0.242

0.2425

0.243

0.2435

0.244

HypE
2 interactions
4 interactions
6 interactions
8 interactions
most preferred

Fig. 2. Resulting final populations of all HypE and interactive W-HypE runs on the
DTLZ2 test problem for the full true Pareto front (left) and a zoom (right) around the
most desired point (

√
16/17,

√
1/17) (thick diamond) when the Chebyshev function

with weight (0.2, 0.8) is to be optimized. The true Pareto front is depicted in black.

After a first investigation about the influence of the number of interactions
on the algorithm performance in the following section, we compare the W-HypE
algorithm with the iTDEA of [18].

Varying the Number of Interaction Steps. Table 2 shows results on the 2-objective
DTLZ2 function for a weight vector of (0.2, 0.8). Altogether, four different choices
for the number of interaction steps are compared with the original HypE that
uses no interaction and the standard hypervolume indicator for selection.

It is evident from the results that asking the DM about the most preferred
solution and incorporating this knowledge into the W-HypE algorithm is bene-
ficial with respect to the final best solution obtained. The relative error drops
from about 0.54 % for HypE to less than 0.026 % for the interactive W-HypE
variants. Note that the value is that low because the W-HypE runs find solutions
close to the true Pareto front and close to the most desired solution (see Fig. 2).

The main observation is that, in general, more interaction steps decrease
the absolute and relative differences to the most desired point—until the short

Using Comparative Preference Statements 129

Table 3. Results for the 2-objective ZDT4 problem when the DM is acting according to
a weighted Chebyshev utility function with w = (0.5, 0.5). Abbreviations as in Table 2.

Algorithm Interactions Mean std abs.dev. rel.dev. U∗ Uw

W-HypE 4 0.35591 0.203362 0.16493 53.3731% 0.19098 0.500

W-HypE 6 0.36171 0.230273 0.17073 55.2504% 0.19098 0.500

HypE 0 0.51604 0.216195 0.32506 105.1893% 0.19098 0.500

iTDEA, no filter 4 0.19115 0.000132 0.00017 0.0540% 0.19098 0.500

iTDEA, no filter 6 0.19111 0.000099 0.00013 0.0411% 0.19098 0.500

W-HypE, succ. runs 4 0.19100 0.000009 0.00002 0.0049% 0.19098 0.500

W-HypE, succ. runs 6 0.19098 0.000000 0.00000 0.0011% 0.19098 0.500

periods between the interaction steps do not allow for a sufficient optimization
anymore. Although this does not happen here for up to 8 interaction steps, we
will restrict ourselves to H = 4 and H = 6 as in [18] in the following.

Comparison with iTDEA. The DTLZ2 function showed that the interactive
W-HypE algorithm works. However, this was a quite simple test function and
we investigate now what happens on the more complicated ZDT4 problem [9].
Table 3 shows the results.

First of all, we can see that the interactive W-HypE algorithm performs
better than HypE (one-sided Wilcoxon rank-sum tests report statistical differ-
ences in favor of W-HypE in both cases of H = 4 and H = 6; p-value of ≤ 0.05
with Bonferroni correction). However, when compared to the results of [18],
all hypervolume-based algorithms perform much worse. The reason for the bad
Chebyshev values for the hypervolume-based algorithms is that the algorithm is
most of the time stuck on a local Pareto front of which the ZDT4 problem has
many. Interestingly enough, the W-HypE algorithm can find solutions on the
true Pareto front within the given evaluation budget in 9 out of 50 runs for 4
interactions and in 10 runs for 6 interactions. Looking at the data of the success-
ful runs only, one gets immediately performances comparable to or better than
the iTDEA results in [18], cp. Table 3. This observation—and the fact that both
algorithms are run for comparable numbers of function evaluations and simi-
lar variation operators—suggests that the bad results for W-HypE might come
from either the different offspring population sizes (“steady-state” in the case
of iTDEA and “(μ + μ)-selection” in the case of the W-HypE variants) or from
the Monte Carlo sampling of the weighted hypervolume. Further investigations
in this direction are left for future work.

Comparison for More Objectives. Next, we compare the W-HypE algorithm
and HypE with the iTDEA of [18] on the 3-objective DTLZ1 problem. Table 4
shows the results when a Chebyshev utility function with weight vector of w =
(0.7, 0.2, 0.1) is defining the DM’s preferences. Here, the W-HypE as well as the
HypE algorithm are able to reach solutions close to the true Pareto front and
the resulting Chebyshev utility functions for the W-HypE algorithm are better
than the ones reported for iTDEA [18]. As for DTLZ2, allowing for H = 6

130 D. Brockhoff et al.

Table 4. Results for the 3-objective DTLZ1 problem when the DM is acting according
to a weighted Chebyshev utility function with w = (0.7, 0.2, 0.1). Abbreviations as in
Table 2.

Algorithm Interactions Mean std abs.dev. rel.dev. U∗ Uw

WHypE 4 0.03048 0.000069 0.00005 0.0166% 0.03043 0.350

WHypE 6 0.03045 0.000026 0.00002 0.0057% 0.03043 0.350

HypE 0 0.03513 0.001753 0.00470 1.4716% 0.03043 0.350

iTDEA, no filter 4 0.03062 0.000080 0.00019 0.0592% 0.03043 0.350

iTDEA, no filter 6 0.03080 0.000324 0.00037 0.1155% 0.03043 0.350

interaction steps results in better Chebyshev function values than with H = 4
which, interestingly, does not hold for the iTDEA of [18] in this scenario.

Additional Remarks. To conclude, for the experiments with a direct interaction
with the DM, we can say that if the operators and the test problem allow HypE
to find solutions close to the true Pareto front, the corresponding interactive
W-HypE algorithm is comparable if not even better than the iTDEA approach
of [18]. However, using a steady-state selection as in the iTDEA might improve
W-HypE especially for ZDT4 (ongoing work). As to the “real” computational
effort, the Monte Carlo sampling of the interactive W-HypE algorithm with
10,000 samples in each generation is still reasonable if the population size of the
algorithm is not too high: For example, on an Intel Core 2 Duo T9600, max. 0.05 s
are spent per function evaluation in the most expensive 3-objective example with
population size 400—including the overhead of the PISA framework.

6 Defining the Most Preferred Solutions via Comparative
Preference Statements

Sometimes, a DM can define directly which of the solutions (for example within a
sufficiently small set) is the most preferred one as we assumed in the above exam-
ples. However, this way to select preferred solutions may not be feasible in prac-
tice. This is because DMs are generally reluctant (or not able) to choose among
“complete” solutions. In fact, objectives have not necessarily the same impor-
tance which may lead to a large number of incomparable solutions. On the other
hand, DMs are generally keen to abstract their preferences and compare partial
descriptions of solutions called compact preferences. More specifically, instead
of providing preferences over solutions (by pairwise comparison or individual
evaluation), they generally express preferences over partial descriptions of solu-
tions, e.g., “I prefer solutions with low f2 value over solutions with medium f5
value”. The task is then to derive a preference relation (a preorder) over solu-
tions given a set of compact preferences. The order’s minimal elements can be
interpreted as the solutions, most preferred by the DM. Those minimal elements
can then be used again as the means of Gaussian weight functions in W-HypE

Using Comparative Preference Statements 131

to steer the search towards the most preferred solutions. The problem of deriv-
ing a preference relation from a set of compact preferences is well studied in
artificial intelligence (AI) [17]. Our aim in this section is to use insights from AI
to reason about the DM’s preferences. More specifically, we show how compact
preference representation languages developed in AI that represent these par-
tial descriptions of the DM’s preferences can be transformed into a preference
relation (which is a partial/complete (pre)order) on the solutions.

DMs may express compact preferences in different forms. Skipping the details
of a formal presentation of these forms (we refer the reader to [17]), we stress
that compact preferences implicitly or explicitly refer to comparative preference
statements of the form “prefer α to β”.

Comparative Preference Statements and Preference Semantics. Handling a com-
parative preference statement “prefer α to β” is easy when both α and β refer to
a solution. However, this task becomes more complex when α and β refer to sets
of solutions, in particular when they share some solutions. In order to prevent
this situation, Hansson [14] interprets the statement “prefer α to β” as a choice
problem between solutions satisfying α ∧ ¬β and solutions satisfying ¬α ∧ β.
Particular situations are those when α ∧ ¬β (resp. ¬α ∧ β) is a contradiction or
is not feasible in which case it is replaced with α (resp. β). We refer the reader to
[14] for further details. For simplicity, we suppose that both α ∧ ¬β and ¬α ∧ β
are consistent and feasible. Let us also mention that the translation of “prefer
α to β” into a choice between α ∧ ¬β-solutions and ¬α ∧ β-solutions solves the
problem of common solutions; however it does not give an indication on how
solutions are compared. This problem calls for preference semantics.

Given α�β, as we will denote a comparative preference statement like “pre-
fer α to β” for brevity, a preference semantics refers to the way α∧¬β-solutions
and ¬α∧ β-solutions are rank-ordered. Different ways have been studied for the
comparison of two sets of objects leading to different preference semantics. The
most common ones are strong [6], ceteris paribus [14], optimistic [6], pessimistic
[3], and opportunistic semantics [23]. Looking carefully at the definitions of the
different semantics shows that they express more or less requirements on the
way α ∧ ¬β-solutions and ¬α ∧ β-solutions are rank-ordered. As indicated by
its name, strong semantics expresses the most requirements. It states that any
α ∧ ¬β-solution is preferred to any ¬α ∧ β-solution. This semantics has been
criticized in the literature since it generally leads to cyclic preferences when sev-
eral preference statements are considered. Ceteris paribus semantics has been
considered as a good alternative. It weakens strong semantics by comparing
less solutions. Optimistic semantics is a left-hand weakening of strong semantics
in the sense that instead of requiring that any α ∧ ¬β-solution is preferred to
any ¬α ∧ β-solution, it states that at least one α ∧ ¬β-solution is preferred to
any ¬α ∧ β-solution. Pessimistic semantics is a right-hand weakening of strong
semantics and exhibits a dual behavior than the optimistic semantics. Lastly,
opportunistic semantics is both left- and right-hand weakening of strong seman-
tics and therefore the weakest among the semantics since it requires that at
least one α ∧ ¬β-solution should be preferred to at least one ¬α ∧ β-solution.

132 D. Brockhoff et al.

Besides having all their specific advantages and disadvantages, strong and ceteris
paribus semantics are the most natural among the mentioned but they can also
both return unjustified contradictory preferences, i.e., result in cyclic prefer-
ences on solutions [17]. This undesirable case occurs in the presence of defeasible
preferences. Defeasible preferences mean that one has a preference and that pref-
erence is reversed in a particular context. For example we have “prefer α to β”
and “prefer β to α when γ is true”. These two preference statements should be
consistently handled as they are not contradictory. They just require that the
second preference overrides the first one when γ is true. As strong and ceteris
paribus semantics are not suitable to reason about defeasible preferences, opti-
mistic, pessimistic and opportunistic semantics have been defined. Without loss
of generality, one can focus on these three semantics as they capture strong
and ceteris paribus semantics (we skip the details due to space limitation). We
will therefore show with the example of optimistic semantics how comparative
preference statements can be employed in the interactive W-HypE algorithm.

Definition 1 (Optimistic semantics, [6]). Let
⊆ S × S be a preference
relation on a solution set S ⊆ X and the corresponding strict preference relation
≺ defined by ω ≺ ω′ iff ω
 ω′ holds but ω′
 ω does not for all ω, ω′ ∈ S.
Furthermore, let P = α � β be a comparative preference statement. Then, we
say
 satisfies α�β under the optimistic semantics iff ∀ω ∈ nd(α∧¬β,
),∀ω′ ∈
nd(¬α∧β,
) : ω ≺ ω′ where nd(P,
) denotes the set of best solutions according
to
 that satisfy P . Formally, we write nd(P,
) = {ω ∈ S |ω satisfies P and
� ∃ω′ ∈ S : ω′ ≺ ω and ω′ satisfies P}.
Example 1. Assume, we have five solutions a–e with objective vectors f(a) =
(1, 5), f(b) = (2, 2), f(c) = (3, 1), f(d) = (3, 4), and f(e) = (4, 2). When the
DM states that “vectors with f1 < 3 (statement ‘α’) are preferable over vectors
with f2 < 3 (‘β’)”, only solution a satisfies α ∧ ¬β and solutions c and e satisfy
¬α∧β. A transitive relation with a
 b
 c
 d
 e (including the corresponding
induced transitive relations) would be one of the possible preference relations
that satisfies α � β under the optimistic semantics, because nd(α ∧ ¬β,
) =
nd({a},
) = {a}, nd(¬α ∧ β,
) = nd({c, e},
) = {c} and a ≺ c.

The following section deals with the question of how such satisfying preference
relations can be computed from a set of given comparative preference statements.

From Preference Sets to Preference Relations. The question that remains before
using the comparative preference statements within the interactive W-HypE
algorithm is how a preference relation
 on the solutions can be computed which
obeys a certain semantics. Several preference relations may satisfy a preference
set P� but a unique preference relation can always be computed for each seman-
tics given principles from non-monotonic reasoning called specificity principles.
For details we refer the reader to [6,17] and only present Algorithm 1 for the
optimistic semantics and the minimal specificity principle here.

Algorithm 1 computes the final partial preference ordering
= (E1, . . . , El)
on the solutions in a set A equivalence class by equivalence class—starting with

Using Comparative Preference Statements 133

Algorithm 1. Computing a Preference Relation from Preference Statements
Require: set A ⊂ of solutions, comparative preference statements P = {p : α � β}

Let L(p) := {t | t ∈ A s.t. t satisfies α∧¬β} and R(p) := {t | t ∈ A s.t. t satisfies β ∧
¬α} for all p : α � β ∈ P
Let L(P) := {(L(p), R(p)) | p ∈ P}
l = 0
while A �= ∅ do

l = l + 1
El = {t | t ∈ A s.t. � ∃(L(p), R(p)) ∈ L(P) : t ∈ R(p)}
if El = ∅ then

stop (contradictory preferences); l = l − 1

A = A \ El

remove (L(p), R(p)) from L(P) if L(p) ∩ El �= ∅ (remove satisfied preferences)

return
= (E1, . . . , El)

the most preferred solutions in E1. The sets L(p) and R(p) for all preference
statements p : (α �β) ∈ P are computed with L(p) containing all solutions that
satisfy α∧¬β while R(p) contains all solutions satisfying β∧¬α. An equivalence
class contains all solutions for which no preference statement β ∧¬α is satisfied.
The set of not assigned solutions is then updated as is the set of preference
statements to be satisfied. The algorithm stops if either an equivalence class is
empty (and hence the preference statements are contradictory) or all solutions
are assigned to their equivalence classes.

An Example. To show the usefulness of the above approach of specifying the
DM’s preference via comparative preference statements, we perform 10 indepen-
dent W-HypE runs on the DTLZ2 problem with 5 objectives for 1000 generations
(popsize 50). The DM is thereby asked 4 times to specify a set of preference state-
ments (at generations 333, 499, 665, and 831). The same preference statements
p1 : prefer f2 < 0.05 over f3 < 0.05, p2 : prefer f1 < 0.05 over f4 < 0.1, and p3 :
prefer f4 < 0.1 over f5 < 0.5 are used in all 4 interaction steps and interpreted
according to the optimistic semantics. Then, a preorder on the current popula-
tion of W-HypE is computed via Algorithm 1 and the minimal elements in the
computed set E1 are used as means for W-HypE’s Gaussian weight functions.

Results. If the weight function of the interactive W-HypE is adapted according
to the above comparative preference statements, the percentage of population
members that fulfill the defined preference statements increases with each inter-
action. The lefthand side of Fig. 3 shows the corresponding boxplots. In addition
to increasing the number of solutions which fulfill the specified preference state-
ments, W-HypE also optimizes the objective functions which we can see when
looking at all solutions of the 10 independent W-HypE runs at the first interac-
tion step and at the end of the runs (Fig. 3, right).

134 D. Brockhoff et al.

1 2 3 4 5
0

0.5

1

1.5

ob
je

ct
iv

e
va

lu
es

1 2 3 4 5
0

0.5

1

1.5

objectives

ob
je

ct
iv

e
va

lu
es

l

Fig. 3. Results for 10 W-HypE runs on DTLZ2 when the DM articulates comparative
preference statements. Left: boxplots of the number of population members that fulfill
the comparative preference statements at each interaction as well as after the run.
Right: parallel coordinates plots of all solutions in the 10 runs at the first interaction
step (generation 333, top) and in the end of the runs (at generation 1000, bottom).

7 Conclusions

Interactive Evolutionary Multiobjective Optimization (EMO) gained recent
interest within the research community. In such interactive EMO algorithms,
standard set-based EMO algorithms are combined with interactive decision
maker (DM) sessions in which the DM articulates preferences towards solutions
of interests. These solutions are, in turn, employed to steer the search algorithm
towards preferred parts of the search space [16]. The weighted hypervolume
indicator approach has been shown in [1,7,25] to be able to change the opti-
mization goal for a hypervolume based EMO algorithm, which allows to steer
the search. Hence, it is straightforward to use this approach also in an interac-
tive manner. In this work, we presented a simple way to incorporate information
about the DM’s most preferred solutions into the weighted hypervolume based
W-HypE algorithm. We also showed its working principles and the usefulness
of the interactive approach with experiments on several standard test problems
with respect to the proximity of the algorithm’s population to the DM’s most pre-
ferred solution. In comparison with the previously proposed interactive TDEA
approach (iTDEA) of [18], the interactive W-HypE algorithm showed compa-
rable or improving results if the algorithm allows to produce solutions close to
the Pareto front. For the more complicated ZDT4 problem, the interactive W-
HypE algorithm gained results comparable to iTDEA only in about 10 % of the
runs. Finally, we showed an example of how the most preferred solutions of the
DM can be specified indirectly via a set of comparative preference statements—
an approach borrowed from the field of artificial intelligence—within the same
interactive W-HypE algorithm.

Using Comparative Preference Statements 135

References

1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Articulating user preferences in
many-objective problems by sampling the weighted hypervolume. In: Genetic and
Evolutionary Computation Conference (GECCO 2009), pp. 555–562. ACM (2009)

2. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

3. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion
of preferences in the possibilistic logic framework. In: KR’02, pp. 421–432 (2002)

4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

5. Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA – a platform and program-
ming language independent interface for search algorithms. In: Fonseca, C.M.,
Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632,
pp. 494–508. Springer, Heidelberg (2003)

6. Boutilier, C.: Toward a logic for qualitative decision theory. In: KR’94, pp. 75–86
(1994)

7. Brockhoff, D., Bader, J., Thiele, L., Zitzler, E.: Directed multiobjective optimiza-
tion based on the hypervolume indicator. J. Multi-Crit. Decis. Anal. 20(5–6), 291–
317 (2013). doi:10.1002/mcda.1502

8. Brockhoff, D., Hamadi, Y., Kaci, S.: Interactive optimization with weighted hyper-
volume based EMO algorithms: preliminary experiments. Technical report, INRIA
research report RR-8103 (2012)

9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

10. Deb, K., Kumar, A.: Interactive evolutionary multi-objective optimization and
decision-making using reference direction method. In: Genetic and Evolutionary
Computation Conference (GECCO 2007), pp 781–788. ACM (2007)

11. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multi-objective optimization. TIK report 112, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich (2001)

12. Deb, K., Sinha, A., Korhonen, P., Wallenius, J.: An interactive evolutionary multi-
objective optimization method based on progressively approximated value func-
tions. IEEE Trans. Evol. Comput. 14(5), 723–739 (2010)

13. Fleischer, M.: The measure of Pareto optima. Applications to multi-objective meta-
heuristics. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 519–533. Springer, Heidelberg (2003)

14. Hansson, S.: The Structure of Values and Norms. Cambridge University Press,
Cambridge (2001)

15. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective
optimization. Evol. Comput. 15(1), 1–28 (2007)

16. Jaszkiewicz, A., Branke, J.: Interactive multiobjective evolutionary algorithms. In:
Branke, J., Deb, K., Miettinen, K., S�lowiński, R. (eds.) Multiobjective Optimiza-
tion. LNCS, vol. 5252, pp. 179–193. Springer, Heidelberg (2008)

17. Kaci, S.: Working with Preferences: Less Is More. Springer, Berlin (2011)
18. Köksalan, M., Karahan, I.: An interactive territory defining evolutionary algo-

rithm: iTDEA. IEEE Trans. Evol. Comput. 14(5), 702–722 (2010)
19. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
20. Phelps, S., Köksalan, M.: An interactive evolutionary metaheuristic for multiob-

jective combinatorial optimization. Manag. Sci. 49(12), 1726–1738 (2003)

http://dx.doi.org/10.1002/mcda.1502

136 D. Brockhoff et al.

21. Tanino, T., Tanaka, M., Hojo, C.: An interactive multicriteria decision making
method by using a genetic algorithm. In: Conference on Systems Science and Sys-
tems Engineering, pp. 381–386 (1993)

22. Thiele, L., Miettinen, K., Korhonen, P.K., Molina, J.: A preference-based interac-
tive evolutionary algorithm for multiobjective optimization. Evol. Comput. 17(3),
411–436 (2009)

23. van der Torre, L., Weydert, E.: Parameters for utilitarian desires in a qualitative
decision theory. Appl. Intell. 14(3), 285–301 (2001)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M.: Performance assessment of
multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput.
7(2), 117–132 (2003)

25. Zitzler, E., Brockhoff, D., Thiele, L.: The hypervolume indicator revisited: on the
design of Pareto-compliant indicators via weighted integration. In: Obayashi, S.,
Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403,
pp. 862–876. Springer, Heidelberg (2007)

Controlling Selection Area of Useful Infeasible
Solutions in Directed Mating for Evolutionary

Constrained Multiobjective Optimization

Minami Miyakawa(B), Keiki Takadama, and Hiroyuki Sato

Graduate School of Information and Engineering Sciences, The University of
Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
miyakawa@hs.hc.uec.ac.jp, keiki@inf.uec.ac.jp, sato@hc.uec.ac.jp

Abstract. As an evolutionary approach to solve multi-objective opti-
mization problems involving several constraints, recently a MOEA using
the two-stage non-dominated sorting and the directed mating (TNSDM)
has been proposed. In TNSDM, the directed mating utilizes infeasible
solutions dominating feasible solutions in the objective space to generate
offspring. Our previous work showed that the directed mating signifi-
cantly contributed to improve the search performance of TNSDM on
several benchmark problems. However, the conventional directed mating
has two problems. First, since the conventional directed mating selects
a pair of parents based on the conventional Pareto dominance, two par-
ents having different search directions are mated in some cases. Second,
in problems with high feasibility ratio, since the number of infeasible
solutions in the population is low, sometimes the directed mating can-
not be performed. Consequently, the effectiveness of the directed mating
cannot be obtained. To overcome these problems and further improve the
effectiveness of the directed mating in TNSDM, in this work we propose
a method to control selection areas of infeasible solutions by control-
ling dominance area of solutions (CDAS). We verify the effectiveness of
the proposed method in TNSDM, and compare its search performance
with the conventional CNSGA-II on m objectives k knapsacks prob-
lems. As results, we show that the search performance of TNSDM is
further improved by controlling selection area of infeasible solutions in
the directed mating.

Keywords: Evolutionary multi-objective optimization · Constraint-handling ·
Directed mating · Control of dominance area

1 Introduction

Multi-objective evolutionary algorithms (MOEAs) try to find Pareto optimal solu-
tions (POS) showing the trade-off among objective functions in multi-objective
optimization problems (MOPs) [1]. MOEAs are particularly suited to solve MOPs
since they can obtain a set of Pareto optimal solutions (POS) from the popula-
tion in a single run of the algorithm [1–3]. When we address constrained MOPs
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 137–152, 2014.
DOI: 10.1007/978-3-319-09584-4 14

138 M. Miyakawa et al.

(CMOPs) involving several constraints, we need to consider how to handle infea-
sible solutions in MOEAs.

So far, several constraint-handling methods studied for single-objective opti-
mization have been extended for solving CMOPs [4]. As an approach to avoid
special handling of infeasible solutions in the process of evolution, death penalty
methods [5,6] eliminating infeasible solutions from the population have been
introduced in MOEAs [7]. Repair methods modifying infeasible solutions to
satisfy all constraints by using problem specific procedures have also been investi-
gated for multi-objective problems [8,9]. On the other hand, there is another app-
roach to evolve infeasible solutions into feasible ones. The representative penalty
methods [10–12] have been extended for MOEAs [13–15]. In these methods, a
penalty value (e.g., constraint violation values multiplied by a penalty parame-
ter) is added to each objective function value, and the combined values are used
for the parent selection. However, generally, an appropriate penalty parameter
depends on each optimization problem [16]. Other methods evolving infeasible
solutions into feasible ones by independently treating objective and constraint
violation values have been studied, and Constrained NSGA-II (CNSGA-II) [17]
has been known as a representative MOEA employing this approach. We have
also focused on this last approach, and proposed a MOEA using the two-stage
non-dominated sorting and the directed mating (TNSDM) [18].

TNSDM introduces a parents selection based on the two-stage non-dominated
sorting of solutions and the directed mating to improve the convergence of solu-
tions toward Pareto front. In the parents selection, first, we classify the entire
population into several fronts by the non-dominated sorting based on constraint
violation values. Then, we re-classify each obtained front by the non-dominated
sorting based on objective function values, and select the parents population
from upper fronts. In this way, the superiority of solutions on the same non-
dominance level of constraint violation values is determined by non-dominance
levels of objective function values. It leads to find feasible solutions having bet-
ter objective function values in the evolutionary process of infeasible solutions.
Also, to generate one offspring, after we select a primary parent, we pick solu-
tions M dominating the primary parent based on the objective space from the
entire population including infeasible solutions. Then we select a secondary par-
ent from the picked solutions M by using a binary tournament selection, and
apply genetic operators. In this way, the directed mating utilizes valuable genetic
information of infeasible solutions to enhance the convergence of each primary
parent toward its search direction in the objective space.

The search performance of TNSDM has been verified on several benchmark
CMOPs in our previous work [18]. The results showed that the directed mat-
ing significantly contributed to improve the search performance of TNSDM.
However, the conventional directed mating has two problems. First, since the
conventional directed mating picks solutionsM based on the conventional area
of Pareto dominance, two parents having different search directions are mated
in some cases. It would deteriorate the directionality of the solution search in
the directed mating. Second, in problems with high feasibility ratio, the num-

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 139

ber of solutions in M picked by the conventional area of Pareto dominance
becomes low. When the number of solutions in M is less than two, we cannot
perform the directed mating since the binary tournament selection inM cannot
be performed. Consequently, the effectiveness of the directed mating cannot be
obtained.

To overcome these problems in the conventional directed mating and further
improve the effectiveness of the directed mating in TNSDM, in this work we
propose a method to control selection areas of solutionsM by controlling domi-
nance area of solutions (CDAS) [19]. In the proposed method, we pick solutions
M based on a dominance area controlled by CDAS. A selection area ofM con-
tracted by CDAS can pick solutionsM having more similar search directions to
the primary parent. In this way, we can expect to emphasize the directionality of
the solution search in the directed mating. On the other hand, a selection area of
M expanded by CDAS can pick more solutions asM. Therefore, we can expect
to increase the number of directed mating executions during the solutions search.
In this work, we focus on combinatorial constrained multi-objective optimization
problems, and we verify the search performance of TNSDM using the proposed
controlling selection area of solutions M and compare its search performance
with the conventional CNSGA-II [17] on m objectives k knapsacks problems
[20].

2 Constrained Multi-objective Optimization Using
Evolutionary Algorithms

2.1 Constrained Multi-objective Optimization Problems

Constrained MOPs (CMOPs) are concerned with finding solution(s) x maximiz-
ing (or minimizing) m kinds of objective functions fi (i = 1, 2, . . . ,m) subject
to satisfy k kinds of constraints gj (j = 1, 2, . . . , k). CMOP is defined as

{
Maximize/Minimize fi(x) (i = 1, 2, . . . ,m)
subject to gj(x) ≥ 0 (j = 1, 2, . . . , k). (1)

Solutions satisfying all k constraints are said to be feasible, and solutions sat-
isfying not all k constraints are said to be infeasible. The constraint violation
vector v(x) is defined as

vj(x) =
{ |gj(x)|, if gj(x) < 0

0, otherwise (j = 1, 2, . . . , k). (2)

Also, the sum of constraint violation values is Ω(x) =
∑k

j=1 vj(x). Next, Pareto
dominance between x and y in maximization problems is defined as follows: If

∀i : fi(x) ≥ fi(y) ∧ ∃i : fi(x) > fi(y) (i = 1, 2, . . . , m) (3)

is satisfied, x dominates y on objective function values, which is denoted by
x �f y in the following. In the case of minimization problems, the inequalities

140 M. Miyakawa et al.

of Eq. (3) are reversed. Also, a feasible solution x not dominated by any other
feasible solutions is said to be a non-dominated solution. A set of non-dominated
solutions is called Pareto optimal solutions (POS), and the trade-off among
objective functions represented by POS in the objective space is called the Pareto
front.

2.2 MOEAs for Solving CMOPs

To solve CMOPs by using MOEAs, we need to introduce a mechanism to obtain
feasible solutions from infeasible ones in the evolutionary process. In this work,
we focus on an approach to evolve infeasible solutions into feasible ones, and
we pick Constrained NSGA-II (CNSGA-II) [17] as a representative constrained
MOEA.

CNSGA-II is an extended NSGA-II for solving CMOPs. CNSGA-II uses
constraint-dominance [17] instead of Pareto dominance using only objective func-
tion values defined in Eq. (3). A solution x is said to constrained-dominate a
solution y (x �Ω y), if any of the following conditions is true:

1. Solution x is feasible and y is not.
2. Solution x and y are both infeasible, but x has a smaller sum of constraint

violation values (Ω(x) < Ω(y)).
3. Solution x and y are feasible and solution x dominates y on objective function

values (x �f y).

CNSGA-II classifies the entire populationR into several fronts (F1,F2 . . .) by
non-dominance levels of constraint-dominance. Consequently, feasible solutions
in R are classified by dominance on objective function values (�f). Infeasible
solutions in R are ranked by increasing order of the sum of constraint violation
values Ω(x), and assigned to lower fronts than feasible solutions. Then, the
parents population P is selected from upper fronts until filling up the half size
of the entire population R whilst considering crowding distance (CD) [17].

However, since CNSGA-II considers only the sum of constraint violation val-
ues in the evolutionary process of infeasible solutions, objective function values of
obtained feasible solutions would be worse. Also, since infeasible solutions have
less chance to generate offspring than feasible ones, valuable genetic information
of infeasible solutions would not be utilized in the solutions search.

To overcome these problems in CNSGA-II, a MOEA using the two-stage non-
dominated sorting and the directed mating (TNSDM) has been proposed [18].

3 MOEA Using Two-Stage Non-dominated Sorting and
Directed Mating (TNSDM)

Figure 1 shows the block diagram of the conventional TNSDM [18]. TNSDM is
designed based on the framework of NSGA-II [17]. That is, the parents (elites)
population P and the offspring population Q construct the entire population R
(= P ∪Q).

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 141

Fig. 1. The block diagram of the conventional TNSDM [18]

3.1 Two-Stage Non-dominated Sorting

To select the parents population P from the entire population R, TNSDM clas-
sifies R into several fronts by using the two-stage non-dominated sorting based
on constraint violation values and objective function values. TNSDM employs
dominance based on constraint violation values [21,22]. If the following equation
is satisfied, x dominates y on constraint violation values (x �v y).

∀j : vj(x) ≤ vj(y) ∧ ∃j : vj(x) < vj(y) (j = 1, 2, . . . , k) (4)

First the entire population R is classified into several fronts (Fv
1 , Fv

2 , . . .)
based on non-dominance levels of constraint violation values by using Eq. (4).
Since all constraint violation values of feasible solutions are zero (v(x) = {0, 0,
. . . , 0}), feasible solutions are always classified into the uppermost front Fv

1 .
Then, each front Fv

i (i = 1, 2, . . .) is re-classified into sub-fronts (Ff
1 ,Ff

2 , . . .)
based on non-dominance levels of objective function values by using Eq. (3).
In Fig. 1, as an example, Fv

1 is re-classified into Ff
1 ,Ff

2 and Ff
3 , and Fv

2 is
re-classified into Ff

4 ,Ff
5 and Ff

6 . Thus, the superiority of solutions decided by
non-dominance levels of constraint violation values is maintained even after the
re-classification of solutions by non-dominance levels of objective function values.
Next, similar to the conventional CNSGA-II, TNSDM selects the half of solutions
in the entire population R as the parents population P from upper fronts whilst
considering crowding distance (CD) [17].

In this way, the superiority of solutions on the same non-dominance level of
constraint violation values is determined by non-dominance levels of objective
function values. It leads to find feasible solutions having better objective function
values.

142 M. Miyakawa et al.

f1()

f2()

r

1

2

f1 (Maximize)

f 2
(M

ax
im

iz
e)

1

2 Feasible
Infeasible

Fig. 2. The directed mating (conventional selection area: S = 0.5)

3.2 Directed Mating

TNSDM introduces the directed mating to improve the convergence of each
solution toward its search direction in the objective space. Figure 2 shows a con-
ceptual figure of the directed mating. In this figure, all solutions in the entire pop-
ulation R are distributed in the objective space, and feasible solutions belonging
to Ff

1 are the parents population P.
First, we select a primary parent pa from the parents population P by using

crowded tournament selection used in [17]. In the tournament, two solutions are
randomly chosen from P, and the solution belonging to the upper front becomes
parent pa. If both of them belong to the same front, the solution having a larger
crowding distance (CD) becomes parent pa. Next, we pick a set of solutions
M (= {x ∈ R | x �f pa}) dominating pa in the objective space from the
entire population R including infeasible solutions. If pa is infeasible or the size
ofM is less than two (|M| < 2), the directed mating cannot be performed, and
a secondary parent pb is selected from P by using crowded tournament in the
same way of CNSGA-II. Otherwise, we perform the directed mating. In this case,
a secondary parent pb is selected from M dominating the primary parent pa.
To select pb fromM, first, two solutions are randomly chosen fromM, and the
solution belonging to the upper front (with a lower front index number) becomes
pb. If the two solutions belong to the same front, the solution with the larger
CD [17] becomes pb. In the example of Fig. 2, two solutions belonging to Ff

4 and
Ff

5 are randomly chosen fromM, and the solution belonging to Ff
4 becomes pb

to mate with pa.
In CNSGA-II, all matings are performed in the parents population P, and

all parents are feasible after the total number of feasible solutions exceeds the
half size of the entire population R. On the other hand, in the directed mating,
all primary parents are selected from P but secondary parents are selected even
from infeasible solutions discarded in the selection of P if they dominate their

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 143

primary parents in the objective space. As shown in Fig. 2, although secondary
pb is infeasible, there is a possibility that pb has valuable genetic information
to enhance the convergence of primary pa toward the true Pareto front since pb

dominates pa in the objective space.

3.3 Problems in the Conventional Directed Mating

The search performance of TNSDM has been verified on several benchmark
CMOPs in our previous work [18]. The results showed that the directed mating
significantly contributed to improve the search performance of TNSDM. How-
ever, the conventional directed mating has two problems.

First, since the conventional directed mating picks solutions M based on
the conventional area of Pareto dominance, two parents having different search
directions are mated in some cases. It would deteriorate the directionality of the
solution search in the directed mating. To overcome this problem, in this work
we try to pick solutionsM having similar search directions to the primary parent
and further emphasize the directionality of the solution search in the directed
mating.

Second, when the number of solutions in M is less than two, the directed
mating cannot be performed since the crowded binary tournament selection in
M cannot be applied. Consequently, the effectiveness of the directed mating for
the solution search cannot be obtained. To overcome this problem, in this work
we try to pick more solutions as M by expanding selection areas of M and
increase the number of directed mating executions during the solution search.

4 Proposed Method: Controlling Selection Areas of M
in Directed Mating

To further improve the effectiveness of the directed mating in TNSDM, in this
work we propose a method to control selection areas of solutionsM by control-
ling dominance area of solutions (CDAS) [19].

In the proposed method, for each primary parent, we pick solutionsM based
on a dominance area controlled by CDAS in the objective space. In CDAS, we
modify each objective function value by using the user defined parameter S in
the following equation.

f
′
i (x) =

r · sin(ωi + S · π)
sin(S · π)

(i = 1, 2, · · · ,m), (5)

where r is the norm of f (x), fi(x) is the i-th objective function value, ωi is the
declination angle between f (x) and fi(x), S = ϕi/π, and ϕi is the controlled
angle shown in Figs. 2, 3 and 4.

In the work, the controlling dominance area is used only for the directed mat-
ing. That is, the parents population P is selected by the two-stage non-dominated
sorting based on the conventional dominance areas. Before we generate the off-
spring population Q, the objective function values of all solutions in the entire

144 M. Miyakawa et al.

1

2

f1()

f2()

r

f1 (Maximize)

f 2
(M

ax
im

iz
e)

1

2

f ’
1()

f ’
2()

Feasible
Infeasible

Fig. 3. Expanded selection area
(S < 0.5)

1

2

f1()

f2()

r

f1 (Maximize)

f 2
(M

ax
im

iz
e)

1

2

f ’
2()

f ’
1()

Feasible
Infeasible

Fig. 4. Contracted selection area
(S < 0.5)

population R are modified by Eq. (5) with the parameter S. For each primary
parent, we pick solutionsM based on the modified objective function values.

In the case of S = 0.5, as shown in Fig. 2, the dominance area is equivalent
to the conventional dominance area, and the selection area of solutions M is
equivalent to the conventional directed mating [18]. In the example of Fig. 2, four
solutions are picked asM. In the case of S < 0.5, as shown in Fig. 3, the selection
area of solutions M is expanded. In this case, although the directionality of
the solution search is deteriorated, more solutions can be picked as M. In the
example of Fig. 3, six solutions are picked asM. In this way, expanding selection
area of M can expect to increase the number of directed mating executions.
On the other hand, in the case of S > 0.5, the selection area of solutions M
is contracted. As shown in Fig. 4, since only solutions having similar search
directions to the primary parent pa are selected asM, contracting selection area
of M can expect to emphasize the directionality of the solution search in the
directed mating. However, in this case, since the number of solutions in M is
decreased, the directed mating cannot be performed for some primary parents,
then the effectiveness of the directed mating cannot be obtained.

5 Experimental Setup

5.1 Benchmark Problem

In this work, we verify the search performance of TNSDM using the control-
ling selection area of M by varying the parameter S, and compare its search
performance with the conventional CNSGA-II [17] on m objectives k knapsacks
problems (mk-KP) [20]. mk-KP is different from multi-objective 0/1 knapsack
problems [8] often used as a benchmark problem of MOEAs in that mk-KP can

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 145

independently vary the number of objectives m and knapsacks (constraints) k.
mk-KP is defined as

{
Maximize fi(x) =

∑n
l=1 pli · xl (i = 1, 2, . . . ,m)

subject to
∑n

l=1 wlj · xl ≤ cj (j = 1, 2, . . . , k). (6)

In this problem, there are n items and k knapsacks (constraints). Each item l has
m kinds of profits pli (i = 1, 2, . . . , m) and k kinds of weights wlj (j = 1, 2, . . . , k).
The task is to find combinations of items x = {x1, x2, . . . , xn} ∈ {0, 1}n which
maximizes the total of profits on m kinds of objectives subject to the total of
weights does not exceed k kinds of knapsack capacities cj . The capacities of
knapsacks cj are defined as

cj = φj ·
n∑

l=1

wlj (j = 1, 2, . . . , k), (7)

where, φj is the feasibility ratio for each knapsack (constraint), we can control
the difficulty of each constraint by varying φj . In this work, we use a constant
φ for all knapsacks (i.e., φ = φ1 = φ2 = . . . = φk).

5.2 Parameters and Metrics

We use mk-KP with n = 500 items (bits), m = {2, 4, 6} objectives, k = 6
knapsacks (constraints) and feasibility ratios φ = {0.1, 0.3, 0.5}. We set prof-
its and weights of each item to random integers in the interval [10,100]. As
genetic parameters, we use uniform crossover with crossover ratio Pc = 1.0, bit-
flip mutation with mutation ratio Pm = 1/n, and the population size is set to
|R| = 200 (|P| = |Q| = 100). As the termination criterion of optimization, the
total number of generations is set to T = 104 for each run. In the following
experiments, we show average (mean) results of 100 runs.

To evaluate the obtained POS, we use the following three metrics in this
work.

Hypervolume. As a comprehensive metric evaluating both the convergence
and the diversity of the obtained POS, we use Hypervolume (HV) [23], which
measures m-dimensional volume covered by the obtained POS and a reference
point r in the objective space. The obtained POS showing a higher value of HV
can be considered as a better set of solutions in term of both the convergence
and the diversity toward the true Prate front. In this work, r is set to the origin
point in the objective space (r = {0, 0, . . . , 0}).

Maximum Spread. To measure the diversity of the obtained POS, we use
Maximum Spread (MS) [23]. MS measures the length of the diagonal of a
hyperbox formed by the extreme objective function values in the obtained POS.
Higher MS indicates better diversity of the obtained POS in the objective space,
i.e. a widely spread Pareto front.

146 M. Miyakawa et al.

Norm. To measure the convergence of the obtained POS toward the true Pareto
front, we use Norm [24]. Norm measures the average norm of the obtained POS
in the objective space. Higher value of Norm generally means higher conver-
gence to Pareto front. Although Norm cannot precisely reflect local features of
the distribution of the obtained POS, we can observe the general tendency of
the convergence for POS from their values.

6 Experimental Results and Discussion

6.1 Number of Directed Mating Executions by Varying Selection
Area of M

First, we observe the number of directed mating executions when the selection
area of solutionsM is varied by the parameter S. Figure 5 shows the percentage

Fig. 5. Percentage of directed mating executions in all matings during the solution
search

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 147

of directed mating executions in all matings during the solution search. In each
figure, the vertical dot line indicates the conventional directed mating [18] based
on the conventional selection area of M (S = 0.5). Selection areas of M is
expanded by decreasing S from 0.5. Also, selection areas ofM is contracted by
increasing S from 0.5.

From these results, first, we can see that the number of directed mating
executions decreases when S is increased. That is, the number of primary parents
being able to perform the directed mating is decreased by increasing S and
contracting selection areas of M. On the other hand, the number of primary
parents being able to perform the directed mating is increased by decreasing S
and expanding selection areas of M. These results reveal that the number of
directed mating executions changes by varying the parameter S in the proposed
method.

Also, the feasibility ratio φ and the number of objectives m affect to the
number of directed mating executions. In problems with a lower feasibility ratio
φ, the number of directed mating executions becomes large. This is because the
number of infeasible solutions in the population increases in these problems, and
more solutions are picked as M. Also, the number of directed mating execu-
tions decreases when the number of objectives m is increased. This is because it
becomes difficult to satisfy the condition to dominate the primary parent pa by
increasing the number of objectives m.

6.2 HV by Varying the Selection Area of M
To verify the search performance of the proposed controlling selection area of
solutions M in the directed mating, Fig. 6 shows results of HV at the final
generation when we vary the parameter S. All the results are normalized by the
results obtained by the conventional CNSGA-II [17].

From these results, we can see that values of HV are improved by varying S
and controlling selection areas of solutions M from the conventional one (S =
0.5) in all problems except the problem with m = 6 objectives and the feasibility
ratio φ = 0.1. In the following, we discuss these results in detail.

First, we discuss the results of Fig. 6(a) in m = 2 objectives problems. From
the results of the feasibility ratio φ = 0.1 in Fig. 6(a), we can see that values of
HV are monotonically increased by increasing S. In this case, from the results
of the feasibility ratio φ = 0.1 in Fig. 5(a), we can see that almost 100 % of
offspring are generated by the directed mating. Thus, when the number of infea-
sible solutions in the population is large, the directed mating emphasizing the
directionality of the solution search by contracting selection areas of solutions
M achieves high HV . Next, from the results of the feasibility ratio φ = 0.5 in
Fig. 6(a), we can see that there is the optimal parameter S∗ = 0.55 to maximize
HV . Since S > 0.55 decreases HV , we can see that too large S deteriorates
the search performance. In this case, from the results of the feasibility ratio
φ = 0.5 in Fig. 5(a), we can see that the number of directed mating executions
is decreased by increasing S since selection areas of solutions M is contracted.
These results suggest that the deterioration of HV in S > 0.55 is caused by

148 M. Miyakawa et al.

Fig. 6. Results of HV at the final generation

the decrease of the number of directed mating executions. That is, increasing S
has a positive effect to emphasize the directionality of the solution search in the
directed mating and a negative effect to reduce the number of directed mating
executions in the solution search. Therefore, there is an appropriate parameter
S∗ maximizing HV .

Next, we discuss the results of Fig. 6(a) and (c) in m = {4, 6} objectives prob-
lems. From the results of high feasibility ratios φ = {0.3, 0.5} in Fig. 6(b) and
(c), we can see that the optimal parameters to maximize HV become S∗ < 0.5.
That is, in these problems, values of HV are improved when selection areas of
solutionsM are expanded. As we can see in Fig. 5, the number of directed mat-
ing executions is decreased by increasing the number of objectives m and the
feasibility ratio φ. Therefore, expansion of selection areas of solutions M con-
tributes to increase the number of directed mating executions, and it contributes
to improve HV .

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 149

Furthermore, from the results of Fig. 6, we can see that the optimal parame-
ter S∗ is increased when the feasibility ratio φ is increased. In problems with
low feasibility ratio, the number of directed mating executions becomes large
since the number of infeasible solutions in the population is large. In this case,
S∗ becomes relatively high because HV is improved by emphasizing the direc-
tionality of the directed mating with a large S. On the other hand, in problems
with high feasibility ratio, the number of directed mating executions becomes
low since the number of infeasible solutions in the population is few. In this case,
S∗ becomes relatively low because HV is improved by increasing the number of
directed mating executions with a small S.

Fig. 7. Results of MS at the final generation

150 M. Miyakawa et al.

6.3 Diversity and Convergence of POS by Varying Selection Area
of M

Here, we independently analyze the diversity of the obtained POS in the objec-
tive space and the convergence of them toward the true Pareto front.

To verify the diversity of the obtained POS, Fig. 7 shows the results of MS
at the final generation when we vary the parameter S to control selection area
of solutions M. Similar to the previous section, all the results are normalized
by the results of the conventional CNSGA-II. From the results, we can see that
the parameters S maximizing MS in each problem are greater than or equal to
S∗ maximizing HV . Next, to verify the convergence of the obtained POS, Fig. 8
shows the results of Norm at the final generation when we vary the parameter
S. From the results, we can see the tendency that the parameters S maximizing
Norm are smaller than S∗ maximizing HV .

Fig. 8. Results of Norm at the final generation

Controlling Selection Area of Useful Infeasible Solutions in Directed Mating 151

These results reveal that the maximum values of HV in each problem are
achieved by S∗ having an appropriate balance of the diversity (MS) and the
convergence (Norm) of the obtained POS.

7 Conclusions

To further improve the effectiveness of the directed mating in TNSDM for solving
constrained multi-objective optimization problems, in this work we proposed a
method to control selection area of solutions M by using CDAS. Experimental
results showed that HV is improved by controlling selection area of solutionsM.
Also, we showed that the highest HV is achieved by the selection area having
an appropriate balance between the number of directed mating executions and
the strength of the directionality in the directed mating.

As future works, we are studying archive of useful infeasible solutions in the
population to increase the number of directed mating executions. Also, we are
planning to study adaptive control of the parameter S during the solution search.
Furthermore, we will verify the search performance of the proposed method on
continuous constrained multi-objective problems.

References

1. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley,
Chichester (2001)

2. Pardalos, P.M., Resende, M.: Handbook of Applied Optimization. Oxford Univer-
sity Press, Oxford (2002)

3. Chinchuluun, A., Migdalas, A., Pardalos, P.M., Pitsoulis, L.: Pareto Optimality,
Game Theory and Equilibria. Springer, New York (2008)

4. Mezura-Montes, E.: Constraint-Handling in Evolutionary Optimization. Springer,
Heidelberg (2009)

5. Hoffmeister, F., Sprave, J.: Problem-independent handling of constraints by use of
metric penalty functions. In: Proceedings of the 5th Annual Conference on Evolu-
tionary Programming (EP 1996), pp. 289–294 (1996)

6. Bäck, T., Hoffmeister, F., Schwefel, H.: A survey of evolution strategies. In: Pro-
ceedings of the 4th International Conference on Genetic Algorithms, pp. 2–9 (1991)

7. Coello, C.A.C., Christiansen, A.D.: MOSES: a multiobjective optimization tool for
engineering design. Eng. Optim. 31(3), 337–368 (1999)

8. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271
(1999)

9. Ishibuchi, H., Kaige, S.: Effects of repair procedures on the performance of EMO
algorithms for multiobjective 0/1 knapsack problems. In: Proceedings of the 2003
Congress on Evolutionary Computation (CEC’2003), vol. 4, pp. 2254–2261 (2003)

10. Homaifar, A., Lai, S.H.Y., Qi, X.: Constrained optimization via genetic algorithms.
Trans. Soc. Model. Simul. Int. Simul. 62(4), 242–254 (1994)

11. Joines, J., Houck, C.: On the use of non-stationary penalty functions to solve
nonlinear constrained optimization problems with gas. In: Proceedings of the First
IEEE Conference on Evolutionary Computation, pp. 579–584 (1994)

152 M. Miyakawa et al.

12. Farmani, R., Wright, J.A.: Self-adaptive fitness formulation for constrained opti-
mization. IEEE Trans. Evol. Comput. 7(5), 445–455 (2003)

13. Deb, K.: Evolutionary algorithms for multi-criterion optimization in engineering
design. In: Miettinen, K., Makela, M.M., Neittaanmaki, P., Periaux, J. (eds.) Evo-
lutionary Algorithms in Engineering and Computer Science, Chap. 8, pp. 135–161.
Wiley, Chichester (1999)

14. Hazra, J., Sinha, A.K.: ‘A multi-objective optimal power flow using particle swarm
optimization. Eur. Trans. Electr. Power 21(1), 1028–1045 (2011)

15. Woldesenbet, Y.G., Yen, G.G., Tessema, B.G.: Constraint handling in multiobjec-
tive evolutionary optimization. IEEE Trans. Evol. Comput. 13(3), 514–525 (2009)

16. Mezura-Montes, E., Coello, C.A.C.: Constrained optimization via multiobjec-
tive evolutionary algorithms. In: Knowles, J., Corne, D., Deb, K., Chair, D.R.
(eds.) Multiobjective Problem Solving from Nature, Part I, pp. 53–75. Springer,
Heidelberg (2008)

17. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

18. Miyakawa, M., Takadama, K., Sato, H.: Two-stage non-dominated sorting and
directed mating for solving problems with multi-objectives and constraints. In:
Proceedings of 2013 Genetic and Evolutionary Computation Conference (GECCO
2013), pp. 647–654 (2013)

19. Sato, H., Aguirre, H.E., Tanaka, K.: Controlling dominance area of solutions and
its impact on the performance of MOEAs. In: Obayashi, S., Deb, K., Poloni, C.,
Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 5–20. Springer,
Heidelberg (2007)

20. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004)

21. Ray, T., Tai, K., Seow, C.: An evolutionary algorithm for multiobjective optimiza-
tion. Eng. Optim. 33(3), 399–424 (2001)

22. Kukkonen, S., Lampinen, J.: Constrained real-parameter optimization with gener-
alized differential evolution. In: Proceedings of 2006 IEEE Congress on Evolution-
ary Computation (CEC2006), pp. 911–918 (2006)

23. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and
applications, Ph.D. thesis, Swiss Federal Institute of Technology, Zurich (1999)

24. Sato, M., Aguirre, H., Tanaka, K.: Effects of δ-similar elimination and controlled
elitism in the NSGA-II multiobjective evolutionary algorithm. In: Proceedings of
2006 IEEE Congress on Evolutionary Computation (CEC2006), pp. 1164–1171
(2006)

An Aspiration Set EMOA Based on Averaged
Hausdorff Distances

Günter Rudolph1(B), Oliver Schütze2, Christian Grimme3,
and Heike Trautmann3

1 Department of Computer Science, TU Dortmund University,
Dortmund, Germany

guenter.rudolph@tu-dortmund.de
2 Department of Computer Science, CINVESTAV, Mexico City, Mexico

schuetze@cs.cinvestav.mx
3 Department of Information Systems, University of Münster,

Münster, Germany
{christian.grimme,trautmann}@uni-muenster.de

Abstract. We propose an evolutionary multiobjective algorithm that
approximates multiple reference points (the aspiration set) in a single
run using the concept of the averaged Hausdorff distance.

Keywords: Multi-objective optimization · Aspiration set · Preferences

Background. In the following we consider unconstrained multiobjective opti-
mization problems (MOPs) of the form min{f(x) : x ∈ R

n} where f(x) =
(f1(x), . . . , fd(x))′ is a vector-valued mapping with d ≥ 2 objective functions
fi : R

n → R for i = 1, . . . , d that are to be minimized simultaneously. The
optimality of a MOP is defined by the concept of dominance.

Let u, v ∈ F ⊆ R
d where F is equipped with the partial order � defined by

u � v ⇔ ∀i = 1, . . . d : ui ≤ vi. If u ≺ v ⇔ u � v ∧ u �= v then v is said to be
dominated by u. An element u is termed nondominated relative to V ⊆ F if there
is no v ∈ V that dominates u. The set ND(V,�) = {u ∈ V | � ∃ v ∈ V : v ≺ u} is
called the nondominated set relative to V .

If F = f(X) is the objective space of some MOP with decision space X ⊆ R
n

and objective function f(·) then the set F ∗ = ND(f(X),�) is called the Pareto
front (PF). Elements x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and
the set X∗ of all Pareto-optimal points is called the Pareto set (PS). Moreover,
for some X ⊆ R

n and f : X → R
d the set NDf (X,�) = {x ∈ X : f(x) ∈

ND(f(X),�)} contains those elements from X whose images are nondominated
in image space f(X) = {f(x) : x ∈ X} ⊆ R

d.
If we are not interested in finding an approximation of the entire PF a refer-

ence point method [8] can be used to find a solution that is closest to a so-called
reference point gathering the user-given level of aspiration for each objective.
A modified version [1] does not only offer a single solution but also some addi-
tional solutions in its neighborhood, whereas multiple reference points can be
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 153–156, 2014.
DOI: 10.1007/978-3-319-09584-4 15

154 G. Rudolph et al.

used to approximate larger parts of the PF by running the original method in
parallel for each reference point [3]. Here, we propose an alternative method
to approximate only desired parts of the PF (which we call aspiration set)
that is a marriage between a set-based version of the original reference point
method [8] and the averaged Hausdorff distance [6] as selection criterion. The
value Δp(A,B) = max(GDp(A,B), IGDp(A,B)) with p > 0,

GDp(A,B) =

(
1
|A|

∑

a∈A

d(a,B)p
)1/p

and IGDp(A,B) =

(
1
|B|

∑

b∈B

d(b, A)p
)1/p

is termed the averaged Hausdorff distance between sets A and B, where d(u,A)=
inf{‖u− v‖ : v ∈ A} for u, v ∈ R

n and a vector norm ‖ · ‖. In our previous work
[2,4,5,7] we successfully used the concept of the averaged Hausdorff distance in
designing EMOAs that find an evenly spaced approximation of the PF.

Algorithm. The AS-EMOA was designed for approximating the aspiration set:
We applied a weighted normalization for each candidate solution,

f̃(x)j =
f(x)j −minj

maxj −minj
· wj , j ∈ {1, 2}with w1 =

max1−min1

max2−min2
and w2 = 1/w1,

in objective space during Δ1 computation in order to focus on the given aspira-
tion set and to avoid biases due to its orientation in objective space. Here, minj

and maxj denote the minimal and maximal value attained for objective fj over
all elements in the aspiration set. The value p = 1 is recommended due to its
robustness to outlier points [4].

AS-EMOA

Require: aspiration set R
1: initialize population P

with |P | = μ
2: P = NDf (P,�)
3: while termination criterion

not fulfilled do
4: generate offspring x

by variation of parents
from P

5: P = Δ1-update(P, x; R)
6: end while

Δ1-update (line 8: ties are broken at random)

Require: archive set A, new x, aspiration set R
1: A = NDf (A ∪ {x},�)
2: if |A| > NR := |R| then
3: for all a ∈ A do
4: h(a) = Δ1(A \ {a}, R)
5: end for
6: A∗ = {a∗ ∈ A : a∗ = argmin{h(a) : a ∈ A}}
7: if |A∗| > 1 then
8: a∗ = argmin{GD1(A \ {a}, R) : a ∈ A∗}
9: end if

10: A = A \ {a∗}
11: end if

Experiments and Results. The AS-EMOA has been evaluated for four well
known bi-objective test problems (SPHERE: convex, n = 2, DTLZ2: concave,
n = 10, DENT: convex-concave, n = 2, ZDT3: disconnected, n = 20) [4]. Aspira-
tion sets were generated in the utopian objective space (“before PF”) and in the
dominated objective space (“behind PF”), see Fig. 1. AS-EMOA was executed 20
times per test problem and considered aspiration sets for 50,000 function evalua-
tions (FE) with SBX crossover (px = 0.9) and polynomial mutation (pm = 1/n).

An Aspiration Set EMOA Based on Averaged Hausdorff Distances 155

Fig. 1. Exemplary approximation results for applying AS-EMOA to different bi-
objective test problems using various reference sets.

Each plot in Fig. 1 aggregates the results for all applied aspiration sets. The
AS-EMOA closely approximates the aspired region of the PF while reflecting
original structures of the aspiration set, see e.g. Asp. Set 5 in the SPHERE
case and Asp. Set 3 in DTLZ2. Even placing an aspiration set behind the true
PF leads to a good approximation. Depending on the position of the respective
set in objective space, different regions of the true PF come to focus due to the
distance-based selection pressure induced by the Δp indicator: for the DENT case
two separate sets form the best approximation results for Asp. Sets 2 and 3 in
the concave part of the true PF. In fact, the extremal members of the aspiration
set have the smallest distance to the solution sets. In order to comment on the
stability of the proposed approach, we computed the coefficients of variation for
the Δp values of aspiration sets and approximated solutions which are all in the
range from 2.26 · 10−11 to 0.2 with a single outlier of 0.4 for the disconnected
PF (see Table 1). Furthermore, depending on the test problem, AS-EMOA only
needed between 400 and 2,500 FE to reach a good and stable quality level.

156 G. Rudolph et al.

Table 1. Coefficients of variation for all problems and aspiration sets based on 20
experiments each.

Problem Asp. Set 1 Asp. Set 2 Asp. Set 3 Asp. Set 4 Asp. Set 5

SPHERE 2.26 · 10−11 1.48 · 10−2 7.99 · 10−2 1.05 · 10−2 1.98 · 10−1

DTLZ2 3.07 · 10−8 6.20 · 10−3 1.19 · 10−7 – –

DENT 1.76 · 10−2 5.30 · 10−3 2.50 · 10−9 – –

ZDT3 1.88 · 10−1 1.53 · 10−1 4.08 · 10−1 – –

Conclusions. Within the experiments the AS-EMOA successfully approxi-
mated the aspiration sets for different front shapes in 2D. Even suboptimal aspi-
ration sets do not hinder the AS-EMOA from reaching the true Pareto front. The
approach shows promising perspectives for higher dimensions as well; a suitable
normalization within the Δp update procedure is a matter of current research.

References

1. Deb, K., Sundar, J.: Reference point based multi-objective optimization using evo-
lutionary algorithms. In: Proceedings of the Conference on Genetic and Evolution-
ary Computation (GECCO 2006), pp. 635–642. ACM Press (2006)

2. Dominguez-Medina, C., Rudolph, G., Schütze, O., Trautmann, H.: Evenly spaced
pareto fronts of quad-objective problems using PSA partitioning technique. In:
Proceedings of 2013 IEEE Congress on Evolutionary Computation (CEC 2013),
pp. 3190–3197. IEEE Press, Piscataway (2013)

3. Figueira, J., Liefooghe, A., Talbi, E.G., Wierzbicki, A.: A parallel multiple reference
point approach for multi-objective optimization. Eur. J. Oper. Res. 205(2), 390–
400 (2010)

4. Gerstl, K., Rudolph, G., Schütze, O., Trautmann, H.: Finding evenly spaced fronts
for multiobjective control via averaging Hausdorff-measure. In: Proceedings of 8th
International Conference on Electrical Engineering, Computing Science and Auto-
matic Control (CCE), pp. 1–6. IEEE Press (2011)

5. Rudolph, G., Trautmann, H., Sengupta, S., Schütze, O.: Evenly spaced pareto
front approximations for tricriteria problems based on triangulation. In: Purshouse,
R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS,
vol. 7811, pp. 443–458. Springer, Heidelberg (2013)

6. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Haus-
dorff distance as a performance measure in evolutionary multi-objective optimiza-
tion. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

7. Trautmann, H., Rudolph, G., Dominguez-Medina, C., Schütze, O.: Finding evenly
spaced pareto fronts for three-objective optimization problems. In: Schütze, O.,
et al. (eds.) EVOLVE - A Bridge between Probability, Set Oriented Numerics,
and Evolutionary Computation II (Proceedings), pp. 89–105. Springer, Heidelberg
(2013)

8. Wierzbicki, A.: The use of reference objectives in multiobjective optimization. In:
Fandel, G., Gal, T. (eds.) Multiple Objective Decision Making, Theory and Appli-
cation, pp. 468–486. Springer, Heidelberg (1980)

Deconstructing Multi-objective Evolutionary
Algorithms: An Iterative Analysis

on the Permutation Flow-Shop Problem

Leonardo C.T. Bezerra(B), Manuel López-Ibáñez, and Thomas Stützle

IRIDIA, Université Libre de Bruxelles (ULB), Brussels, Belgium
{lteonaci,manuel.lopez-ibanez,stuetzle}@ulb.ac.be

Abstract. Many studies in the literature have applied multi-objective
evolutionary algorithms (MOEAs) to multi-objective combinatorial opti-
mization problems. Few of them analyze the actual contribution of the
basic algorithmic components of MOEAs. These components include the
underlying EA structure, the fitness and diversity operators, and their
policy for maintaining the population. In this paper, we compare seven
MOEAs from the literature on three bi-objective and one tri-objective
variants of the permutation flowshop problem. The overall best and worst
performing MOEAs are then used for an iterative analysis, where each of
the main components of these algorithms is analyzed to determine their
contribution to the algorithms’ performance. Results confirm some pre-
vious knowledge on MOEAs, but also provide new insights. Concretely,
some components only work well when simultaneously used. Further-
more, a new best-performing algorithm was discovered for one of the
problem variants by replacing the diversity component of the best per-
forming algorithm (NSGA-II) with the diversity component from PAES.

1 Introduction

Evolutionary algorithms (EAs) are one of the most widely used metaheuris-
tic algorithms and since a long time attract a large research community. Even
when considering only applications to multi-objective optimization problems,
many different multi-objective EAs (MOEAs) have been proposed [1,3,6,9,11,
19,20]. In fact, MOEAs were among the first metaheuristics applied to multi-
objective combinatorial optimization (MCOP) [16]. Moreover, several relevant
developments in heuristic algorithms for multi-objective optimization have been
advanced in the research efforts targeted to MOEAs. Such developments include
archiving [11], dominance-compliant performance measures [21] and the perfor-
mance assessment of multi-objective optimizers [22].

Despite the large number of MOEAs proposed in the literature, little effort
has been put into understanding the actual impact of specific algorithmic com-
ponents. In general, the efficacy of MOEAs depends on a few main components.
The first, common to single-objective optimization, is the underlying EA struc-
ture, which includes genetic algorithms (GA), evolutionary strategies (ES) and
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 157–172, 2014.
DOI: 10.1007/978-3-319-09584-4 16

158 L.C.T. Bezerra et al.

differential evolution (DE). The other two components, fitness and diversity
operators, have been adapted from single-objective optimization to deal with
search aspects particular to multi-objective problems. In MOEAs, the fitness
operator typically considers the Pareto dominance relations between chromo-
somes in order to intensify the search. Conversely, the diversity operators focus
on spreading the solutions over the objective space in order to find a set of trade-
off solutions representative of various possible preferences. Finally, the policy for
the population management addresses the issue of which individuals to remove
after new ones have been generated by the evolutionary operators (one may call
this also population reduction policy). These policies make use of fitness and
diversity measures, but the frequency with which they are computed may differ
from algorithm to algorithm.

Traditionally, a new MOEA is proposed as a monolithic block that integrates
specific choices for the fitness, diversity, and population reduction. In this way,
it is difficult to understand the actual impact each of these components has on
performance. Often, algorithms that differ only by few such components have not
been compared directly. In this paper, we compare seven different MOEAs on
the permutation flowshop problem (PFSP) to understand their performance. We
consider the three most relevant objective functions used in the PFSP literature,
namely makespan, total flow time, and total tardiness. We then implement and
compare all MOEAs for the three possible bi-objective variants as well as for the
tri-objective variant.

While the performance of some algorithms is consistent across all PFSP vari-
ants, others present major differences. We then analyze on all variants, iteratively
moving from the worst to the best ranked algorithm in the configuration space
of MOEAs. This is done in a fashion akin to path relinking [10] by replacing
component by component in the worst performing algorithm until obtaining the
structure of the best performing one. Such a type of analysis has been proposed
recently by Fawcett and Hoos [8] in the context of automatic algorithm configu-
ration. The goal of our analysis is to identify the algorithm components that, for
a specific problem, contribute most to algorithm performance. The results of the
iterative analysis conducted show that some algorithms can be easily improved
by means of additional convergence pressure. Furthermore, for one of the PFSP
variants the best-performing algorithm can be improved by replacing its diversity
component with the component used by the worst-performing algorithm.

The paper is organized as follows. Section 2 presents the PFSP. Section 3
describes the algorithms we consider in this work, highlighting the differences
between them. The experimental setup is presented in Sect. 4. The comparison of
the MOEAs and the results of the analysis of MOEA components is presented in
Sects. 5 and 6, respectively. Finally, conclusions and possibilities for future work
are discussed in Sect. 7.

2 The Permutation Flowshop Problem

The PFSP is one of the most widely studied scheduling problems in operations
research. It arises in various industries such as chemical, steel, or ceramic tile

Deconstructing Multi-objective Evolutionary Algorithms 159

production where jobs have to be executed by different machines in a given
order. Since each execution takes a different amount of time, the order in which
jobs are processed is of major importance for the efficiency of the process. An
instance of the PFSP consists of a set of n jobs and m machines and a matrix
P of n × m processing times pij , where pij is the processing time of job i on
machine j. For a permutation π that represents the order in which jobs will be
executed, the completion times of all jobs on all machines are defined as

Cπ0,j = 0, j = 1, ...,m, Cπi,0 = 0, i = 1, ..., n, (1)

Cπ,j = max{Cπi−1,j , Cπi,j−1}, i = 1, ..., n, j = 1, ...,m (2)

where πi is the job at position i in the permutation, π0 is a dummy job, and
machine 0 is a dummy machine. Typically, the PFSP has been studied using
various objective functions, the most used being (i) makespan (Cmax), i.e., the
completion time of the last job on the last machine; (ii) total flow time (TFT), i.e.,
the sum of the completion times of each job on the last machine; and (iii) total
tardiness (TT), the difference between the completion times of all jobs in the last
machine and their due dates. In the latter case, a list of due dates is provided,
where di is the due date of job i.

When more than one of these objectives is considered simultaneously, solu-
tions are compared not based on a single objective value, but on an objective
vector. Given a PFSP variant with objectives f i, i = 1, . . . , k, a solution s is
said to be better (or to dominate) another solution s′ if ∀i, f i(s) ≤ f i(s′) and
∃ i, f i(s) < f i(s′). If neither solution dominates the other, they are said to be
nondominated. A typical goal of optimizers designed to solve a multi-objective
problem is to find the set of nondominated solutions w.r.t. all feasible solutions,
the Pareto set. Since this may prove to be computationally unfeasible, multi-
objective metaheuristics have been used to find approximation sets, i.e., sets
whose image in the objective space (called approximation fronts) best approxi-
mate the Pareto set image.

In this paper, we implement the MOEAs to solve the three pos-
sible bi-objective variants that combine Cmax, TFT, and TT, namely
Cmax-TFT, Cmax-TT, and TFT-TT. Moreover, we also consider the tri-objective
variant Cmax-TFT-TT. To ensure the algorithms efficacy, we use the same algo-
rithmic components typically found in the PFSP literature. Solutions are rep-
resented through direct encoding, that is, each individual in the MOEA is a
permutation of the jobs. Initial solutions are generated randomly as tradition-
ally done in MOEAs. The crossover operator applied is the two-point crossover
operator. Finally, two mutation operators are considered: insert, which selects a
job uniformly at random, and reinserts it in a position of the permutation that
is also chosen uniformly at random, and exchange, which swaps two jobs of the
permutation that are also chosen uniformly at random.

160 L.C.T. Bezerra et al.

Table 1. Main algorithmic components of the MOEAs considered in this work. For an
explanation of the table entries we refer to the text.

Algorithm Fitness Diversity Reduction Structure

MOGA [9] dominance rank niche sharing one shot GA

NSGA-II [6] dominance depth crowding distance one shot GA

SPEA2 [20] dominance
strength

k-NN iterative GA

IBEA [19] binary indicator none iterative GA

HypE [1] hypervolume con-
tribution

none iterative GA

PAES [11] none grid crowding one shot (1 + 1)-ES

SMS-EMOA [3] three-way fitness none steady-state (µ + 1)-ES

3 Multi-objective Evolutionary Algorithms

Since the first proposal of a MOEA [16], several algorithmic structures and
components have been devised. To better understand the commonalities and
peculiarities of the most relevant approaches, we review various proposals here.
All MOEAs described below and used in this work are summarized in Table 1.

Many extensions of EAs to multi-objective optimization rely mostly on the
extension of the concepts of fitness and diversity. In a MOEA, the fitness of a
solution is generally calculated by means of dominance compliant metrics, mean-
ing the algorithm will favor solutions according to Pareto dominance. Several
fitness metrics can be found in the literature, such as dominance rank [9], dom-
inance strength [20], and dominance depth [1,6]. Besides fitness measures, the
population is also evaluated according to diversity metrics. In single-objective
optimization, diversity metrics are used to prevent the algorithm from stagnat-
ing by spreading individuals across the decision space. This concept becomes
even more important for multi-objective optimization since multiple solutions
need to be found. In this context, diversity is generally measured in terms of
the objective space, the main concern being to have a well-distributed approxi-
mation to the Pareto front. The most commonly used metrics include crowding
distance [6], niche sharing [17], and k-nearest-neighbor [20]. Finally, algorithms
also differ as to the frequency with which these values are calculated. One shot
algorithms compute fitness and diversity values once before population reduc-
tion and then discard the worst individuals. By contrast, iterative algorithms
re-calculate fitness and diversity values every time a solution is discarded from
the population. Although this second alternative is known to be computationally
more expensive, initial results have shown this strategy to produce better results
when runtime is not an issue [1].

The particular choice of fitness, diversity metrics and how often these are
computed are distinguishing features of different multi-objective EAs. The most

Deconstructing Multi-objective Evolutionary Algorithms 161

relevant algorithms propose their own fitness and diversity strategies. MOGA [9],
for instance, uses dominance ranking and niche sharing. The population reduc-
tion adopts the one shot policy. NSGA-II [6] uses dominance depth and crowding
distance, and also uses one shot population reduction. SPEA2 [20] uses a combi-
nation of dominance count and dominance rank for the fitness computation and
a k-NN metric for diversity, but discards individuals using an iterative reduction
policy. IBEA [19] uses binary quality indicators to compare solutions. The two
most commonly adopted are: (i) the ε-indicator (Iε), that computes the ε value
that would have to be added (or multiplied) to one solution for it to be domi-
nated by another, and; (ii) the hypervolume difference (I−

H), which given a pair
of solutions computes the volume of the subspace one individual dominates that
the other does not. These binary values are computed for each pair of solutions
in the population. The fitness of an individual is then equal to the aggregation
of its indicator w.r.t. the rest of the population.

More recently, the hypervolume indicator has been used to evaluate fitness
and diversity simultaneously during a MOEA run. In this case, it computes the
volume of the objective space dominated by a given approximation set, bounded
by a reference point. The hypervolume used as a fitness metric captures both
concepts of closeness to the Pareto front and spread of the approximation, thus
replacing the explicit diversity measure in other algorithms [1,19]. For example,
HypE [1] is a traditional genetic algorithm (GA) that uses the hypervolume
contribution, that is, the volume of the subspace dominated exclusively by a
given solution. HypE evaluates the fitness of the individuals at two moments:
(i) before mating, when all individuals are assessed, and; (ii) during population
reduction, when a speed-up is employed: the hypervolume contribution is used
as a tie-breaker for the dominance depth approach.

Several MOEAs are based on the structure of evolution strategies (ES).
PAES [11] is a (1+1)-ES that actually resembles a local search procedure. At
each iteration, an incumbent solution is mutated and compared to the popula-
tion of the algorithm, which maintains only nondominated solutions. The actual
efficiency of the algorithm lies in the adaptive procedure used to keep this popula-
tion well-spread and to direct the search towards regions that are little explored.
If the population size has not yet reached the maximum allowed size, the new
solution is accepted as long as it is not dominated by an existing solution. Oth-
erwise, the new solution is only accepted in the population if it either dominates
an existing solution or if it is located in a region of the objective space where
the algorithm still has not found many solutions.

Another multi-objective ES proposal is SMS-EMOA [3], a steady-state ES.
For mating selection, random individuals are uniformly chosen. This algorithm
resembles HypE regarding the population fitness metric, as SMS-EMOA also uses
dominance depth followed by hypervolume contribution for tie-breaking. Partic-
ularly, the combined fitness metric used by this algorithm can be described as
a three-way fitness metric. First, individuals are sorted according to dominance
depth. If all individuals in the population are given the same fitness value, the
hypervolume contribution is used to break ties. Otherwise, all fronts that fit the

162 L.C.T. Bezerra et al.

new population are preserved, and tie-breaking (by means of the dominance rank
metric) is applied for the first front that does not fit fully into the population. As
SMS-EMOA is a steady-state algorithm, the offspring always replaces the worst
individual of the parent population, and the mating selection is always done at
random.

4 Experimental Setup

We use the benchmark set provided by Taillard [18] following previous work
on multi-objective PFSP [7,15]. This benchmark set contains instances with all
combinations of n ∈ {20, 50, 100, 200} jobs and m ∈ {5, 10, 20} machines, except
for n = 200 and m = 5 (200x5). We consider 10 instances of each size, 110
instances in total. The maximum runtime per instance equals t = 0.1 · n · m
seconds. All experiments were run on a single core of Intel Xeon E5410 CPUs,
running at 2.33 GHz with 6 MB of cache size under Cluster Rocks Linux version
6.0/CentOS 6.3.

The MOEAs used in this algorithm were instantiated using the C++
ParadisEO framework [12]. We implemented several algorithmic components
required for our study that were not available in ParadisEO. We also extended
ParadisEO’s PFSP library to handle all PFSP variants considered in this paper.
The original MOEAs were not designed for the PFSP, and, hence, their parame-
ter settings are likely not well suited for this problem. Therefore, we tuned the
parameter settings of all MOEAs using irace [2,13] with a tuning budget of 1000
experiments. As training instances during tuning, we used a different bench-
mark set [7] from the one used in the final analysis. irace was originally designed
for single-objective algorithms, but it has been extended to handle the multi-
objective case by using the hypervolume quality measure. For computing the
hypervolume, we normalize objective values in the range [1, 2] and use (2.1, 2.1)
as the reference point. The parameter space considered for all algorithms is the
same, depicted in Table 2, where pop is the population size, off is the number of
offspring, which can be either 1 or relative to the population size pop; pC is the
crossover probability, and; pmut is the mutation probability used for determining
if an individual will undergo mutation or not. If mutation is applied, a random
uniform flip selects between the exchange operator (if the random number is
below pX) or the insertion operator (else). The additional parameters required
by specific algorithms are below the corresponding MOEA. To overcome known
archiving issues of some MOEAs, we add an unbounded external archive to all.

To compare the tuned MOEAs, we consider the average hypervolume over
10 runs of each algorithm per instance. We then plot parallel coordinate plots of
these results for each problem variant. Concretely, for each variant we produce
11 plots (one per instance size), each depicting the behavior of all MOEAs in
ten different instances. Due to space limitations, few representative results are
shown here. The complete set of results are made available as a supplementary
page [5]. Finally, to select the source and target algorithms for the ablation
analysis, we compute rank sums considering the average hypervolume of the 10
runs per instance size.

Deconstructing Multi-objective Evolutionary Algorithms 163

Table 2. Parameter space for tuning the MOEA parameters.

Parameter pop off pC pmut pX

Domain {10, 20, 30 1 or [0, 1] [0, 1] [0, 1]
50, 80, 100} [0.1, 2]

Algorithm IBEA MOGA PAES SPEA2

Parameter indicator σshare l k
Domain {Iε, I

−
H} [0.1, 1] {1, 2} {1, . . . , 9}

Table 3. Parameter settings chosen by irace for all MOEAs on Cmax-TFT. Column
Other refers to parameters specific to a given MOEA.

Cmax-TFT

MOEA pop off pC pmut pX Other

HypE 30 91% 29% 78% 28% -
IBEA 30 96% 15% 91% 27% Iε

MOGA 50 160% 14% 67% 36% σ = 0.39
NSGA-II 20 123% 38% 90% 37% -

PAES 10 - - - 7% l = 2
SMS-EMOA 10 - 31% 76% 34% -

SPEA2 20 128% 20% 91% 31% k = 3

TFT-TT

MOEA pop off pC pmut pX Other

HypE 100 179% 13% 100% 53% -
IBEA 30 157% 75% 96% 18% Iε

MOGA 20 129% 23% 84% 48% σ = 38
NSGA-II 80 162% 62% 100% 41% -

PAES 30 - - - 21% l = 2
SMS-EMOA 10 - 31% 90% 34% -

SPEA2 20 49% 44% 87% 33% k = 1

Cmax-TT

MOEA pop off pC pmut pX Other

HypE 30 88% 68% 100% 25% -
IBEA 30 109% 44% 97% 17% Iε

MOGA 30 121% 56% 86% 33% σ = 0.32
NSGA-II 20 104% 25% 96% 7% -

PAES 10 - - - 9% l = 2
SMS-EMOA 10 - 14% 93% 14% -

SPEA2 10 128% 47% 86% 38% k = 3

Cmax-TFT-TT

MOEA pop off pC pmut pX Other

HypE 50 158% 82% 96% 29% -
IBEA 30 157% 51% 68% 44% Iε

MOGA 20 120% 69% 96% 36% σ = 0.81
NSGA-II 50 171% 25% 79% 32% -

PAES 10 - - - 19% l = 2
SMS-EMOA 10 - 41% 87% 40% -

SPEA2 10 142% 53% 57% 31% k = 6

5 Comparison of MOEAs

The four variants of the PFSP considered in this paper differ significantly from
each other in the shape of the non-dominated reference fronts and the number
of non-dominated points [7]. As a consequence, both the parameters selected by
irace for the MOEAs and their performance may vary greatly from one variant
to another.

The parameters of the tuned MOEAs are shown in Table 3. Clearly, the para-
meters of each MOEA vary a lot across the variants, with the exception of pop-
ulation size, which is often small. Using small population sizes is advantageous
to MOEAs in the presence of unbounded external archive for two main reasons.
First, by using a small population size the algorithm is able to increase its con-
vergence pressure. The second reason is related to minimizing computational
overheads. Traditionally, the highest computational costs during one generation
in a MOEA are due to (i) function evaluations, (ii) dominance comparisons, and
(iii) fitness/diversity metrics computation both in mating and population reduc-
tion. The latter can be minimized by a reduced population size and a higher
number of offspring produced at each iteration. This way, the number of genera-
tions (and hence of fitness/diversity computations) is reduced, and the algorithm
is able to explore more potential solutions.

164 L.C.T. Bezerra et al.

Table 4. Rank sum analysis: The MOEAs are sorted according to their sum of ranks (in
parenthesis) for each MO-PFSP variant. Lower rank-sums indicate better performance.

Cmax-TFT NSGA-II IBEA HypE SPEA2 MOGA SMS-EMOA PAES

(218) (365) (372) (427) (477) (508) (713)

Cmax-TT NSGA-II HypE SPEA2 IBEA MOGA SMS-EMOA PAES

(284) (316) (350) (386) (411) (602) (731)

TFT-TT NSGA-II MOGA IBEA SPEA2 SMS-EMOA HypE PAES

(252) (348) (400) (407) (469) (537) (664)

Cmax-TFT-TT NSGA-II SPEA2 MOGA IBEA SMS-EMOA HypE PAES

(176) (318) (339) (400) (584) (583) (680)

Next, we computed for each algorithm its rank sum. In particular, we ranked
the average hypervolume of each algorithm on each instance from one (best)
to seven (worst) and then summed the ranks of each algorithm across all 110
instances. The rank sums for all variants are given in Table 4. Two commonalities
can be identified across the variants: NSGA-II always presents the lowest rank
sums, whereas PAES always ranks worst. Given the heterogeneous nature of the
results, we then proceed to further discussion, one variant at a time.

5.1 Cmax-TFT

The parameters found by irace for each MOEA for Cmax-TFT (Table 3) follow
a pattern. As previously discussed, the population sizes are usually small and
the number of offspring is never smaller than 90% of pop, but is often higher
than 100%. Finally, the mutation rate pmut is always very high and the insertion
operator is used much more frequently than the exchange one.

Figure 1 gives parallel coordinate plots for the average hypervolume (given
on the y-axis) measured on each of the 10 instances of size n = 200 and m = 20.
Clearly, the lines representing the performance of the MOEAs intertwine several
times, which shows variability across different instances. Nevertheless, the results
are consistent with the ranks depicted in Table 4: NSGA-II and IBEA are always
among the best performers, whereas PAES and SMS-EMOA are always among
the worst ones. Furthermore, the rank sum difference between IBEA and HypE
is too small for statistical significance, as well as the difference between MOGA
and SMS-EMOA.

5.2 Cmax-TT

The parameters selected by irace for the Cmax-TT variant (Table 3) do not dif-
fer much from those obtained above for the Cmax-TFT variant. If anything, the
tendencies observed for Cmax-TFT are reinforced: population sizes are smaller,
mutation probability now almost equals 100 % and the exchange mutation oper-
ator is used even less often.

Deconstructing Multi-objective Evolutionary Algorithms 165

Cmax−TFT 200.20

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

0.242

0.819

HypE IBEA MOGA NSGA−II PAES SMS−EMOA SPEA2

Fig. 1. Parallel coordinates plot of the average hypervolume for 10 instances of size
200 × 20 of Cmax-TFT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

When assessing the performances via parallel coordinate plots, though, it
is clear in Fig. 2 that the results listed on Table 4 do not match exactly the
performance of the MOEAs in all instances. Particularly, for the largest instances
it is clear that the MOEA with the best performance this time is SPEA2. Once
again, PAES and SMS-EMOA perform rather poorly. The fact that NSGA-II
presents a better rank sum than SPEA2 is due to its performance across the
whole benchmark.

5.3 TFT-TT

Compared to the parameters used for the two previous PFSP variants, the con-
figurations tuned for TFT-TT present two features worth highlighting. First, the
frequency of usage of the exchange operator has generally increased. Second,
the population maintained by the algorithms became much larger, and with
the exception of SPEA2, so has the number of offspring created per generation.
These changes are probably due to the variation operators adopted in this work.
Although these are commonly used in the state-of-the-art of the PFSP, they
have been proposed for optimizing Cmax and may lose efficiency for TFT or TT.

Concerning solution quality, Fig. 3 shows that NSGA-II performs well for this
variant. MOGA also performs well, and again PAES and SMS-EMOA are unable
to generate results to match the other MOEAs. When we consider the whole
benchmark, the algorithm that loses performance the most is HypE, although it
is able to perform almost as many function evaluations as NSGA-II.

166 L.C.T. Bezerra et al.

Cmax−TT 200.20

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

0.312

0.719

HypE IBEA MOGA NSGA−II PAES SMS−EMOA SPEA2

Fig. 2. Parallel coordinates plot of the average hypervolume for 10 instances of size
200 × 20 of Cmax-TT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

TFT−TT 200.20

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

0.0416

0.6072

HypE IBEA MOGA NSGA−II PAES SMS−EMOA SPEA2

Fig. 3. Parallel coordinates plot of the average hypervolume for 10 instances of size
200 × 20 of TFT-TT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

5.4 Cmax-TFT-TT

The variant Cmax-TFT-TT is the only one comprising three objectives. It is
expected that the number of non-dominated solutions be much larger than in
the bi-objective variants. A practical consequence of this problem’s characteristic

Deconstructing Multi-objective Evolutionary Algorithms 167

Cmax−TFT−TT 200.20

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

0.13

1.11

HypE IBEA MOGA NSGA−II PAES SMS−EMOA SPEA2

Fig. 4. Parallel coordinates plot of the average hypervolume for 10 instances of size
200×20 of Cmax-TFT-TT. Each point on the x-axis represents the average hypervolume
obtained over 10 runs on a single instance.

is that the overhead caused by updating the external archives could slow the
algorithms down, allowing a smaller number of function evaluations. This way,
algorithms that converge faster to good solutions are likely to be favored, unless
they stagnate.

The analysis of the MOEAs’ performance on Fig. 4 shows that the tested
algorithms can be split in two distinct groups: (i) the best-performing ones,
comprised by NSGA-II, IBEA, and SPEA2, and; (ii) the worst-performing ones,
with PAES, HypE and SMS-EMOA. The rank sum analysis depicted in Table 4
confirm the most of these observations, except for IBEA. Interestingly, the
hypervolume-based algorithms (HypE and SMS-EMOA) do not perform well,
even given their different underlying EA structure.

Among all algorithms, the biggest change observed is the low rank sum
obtained by NSGA-II. Given that 110 instances are considered for the rank
sum analysis, a rank sum of 176 for NSGA-II means that it was consistently
the or among the top-ranking algorithms. It is then clear that NSGA-II is
a good choice for a practitioner wanting to develop an application for the
Cmax-TFT-TT.

6 Iterative Analysis

The experiments in the previous section showed important differences in MOEA
performance in dependence of particular problems. In this section, we conduct
an iterative analysis to understand which algorithm components cause the main
differences between the best and worst performing MOEA variants, respectively

168 L.C.T. Bezerra et al.

referred to as target and source. This analysis can be seen as a path relinking
in the configuration space and it has been applied in the context of automatic
algorithm configuration before by Fawcett and Hoos [8]. The main motivation
for this analysis is to get insight into the contribution of specific components
on algorithm performance. We do so by generating intermediate configurations
between the two algorithms. At each step, we modify all individual algorithm
components in which the two algorithms differ, and follow the path that has the
maximum impact on performance. In this way, the analysis of the intermediate
configurations allows us to understand the actual contribution of the individual
components to the performance of the algorithm.

We conduct this iterative analysis on the four variants of the PFSP investi-
gated in this work. As source and target algorithms we respectively use PAES
and NSGA-II, the worst and best algorithms according to the rank sum analysis
for all variants. These algorithms differ in all components considered, providing
a rich set of intermediate configurations. Since the EA structure of PAES and
NSGA-II is very different, some clarifications are required. First, PAES does not
keep an internal population, but a bounded internal archive that can accept a
maximum of |pop| solutions. Therefore, a population reduction policy does not
make sense in PAES since a single solution is added at a time. Moreover, since
only one solution is considered for variation, the crossover operator can never be
applied. In this analysis, when switching from the structure used by PAES to
the structure used by NSGA-II, all these subcomponents are changed atomically,
namely (i) using a population instead of a bounded internal archive; (ii) produc-
ing off (or off · pop) individuals per generation, (iii) mating selection via binary
deterministic tournament (as in NSGA-II), and (iv) using the crossover operator.
Moreover, at this point the crossover and mutation probabilities selected by irace
for NSGA-II are used, since PAES did not originally present these parameters.

Apart from the underlying EA structural differences between the source and
target algorithms, we also consider the numerical parameters selected by irace
as a factor that could interfere with the performance of the algorithms. How-
ever, since number of offspring, and crossover and mutation probabilities have
already been considered as part of the underlying EA structure component, this
factor comprises only the population size and the exchange mutation operator
rate (and, consequently, the insertion mutation operator rate).

The analysis conducted showed similar results for Cmax-TFT and Cmax-TFT-
TT, but very different results for the other problems. We hence group the dis-
cussion of the first two variants, and then individually analyze the other two.

6.1 Cmax-TFT and Cmax-TFT-TT

All intermediate configurations tested in the analysis of Cmax-TFT and Cmax-
TFT-TT are shown in Fig. 5 (top row). The y-axis represents the rank sums. The
x-axis contains the steps of the procedure. In step 0, only the source algorithm
is depicted, in this case PAES. In step 1, we modify the four components that
differ between PAES and NSGA-II, as previously explained, thus generating four
new algorithms.

Deconstructing Multi-objective Evolutionary Algorithms 169

As shown in Fig. 5 (top row), the component that leads to the strongest
decrease of the rank sum is the fitness component. This is a rather intuitive
result, given that PAES does not have any component to enforce convergence
other than the dominance acceptance criterion of its internal archive. In step 2,
we have PAES using the fitness component from NSGA-II, and we test chang-
ing its diversity component, its structure, and its numerical parameters, This
time, the underlying EA structure becomes the most important factor. At this
point, this result is rather expected since it is the component that represents the
greater change in the algorithm. Moreover, it also means the diversity compo-
nent of PAES is indeed effective when combined with dominance depth (or, more
generally, with a fitness component). Step 3 modifies the diversity and numerical
components, starting from the best algorithm in step 2. Modifying the diversity
component now leads to a much better rank sum, almost matching the target
algorithm.

6.2 Cmax-TT

All intermediate configurations tested for this variant are shown in Fig. 5 (bot-
tom left). Again, the best-improving changes in steps 1 and 2 are, respectively,
the addition of a fitness component to PAES and changing its structure to a
traditional GA. At step 3, surprisingly, none of the intermediate configurations
achieve a better rank sum than the configuration selected in step 2. This means
that, for this variant, one needs to change both the diversity metric and the
numerical parameters at once to reach the final performance of NSGA-II. This
could likely be explained by the additional parameter used by PAES that reg-
ulates the size of the its grid cells: their sizes may suit the original internal
archive/population size of PAES, but not the one from NSGA-II.

6.3 TFT-TT

Finally, all intermediate configurations tested for the TFT-TT variant are shown
in Fig. 5 (bottom right). As for the previous variants, once again the best-
improving change in step 1 is the addition of a fitness component. At step 2, no
improvements can be devised, although a change in the numerical parameters
does not affect the algorithm significantly. Most interestingly, at step 3 the con-
figuration obtained by changing the structure of the best configuration from step
2 achieves rank sums even lower than those obtained by the target algorithm,
NSGA-II. The only difference between the algorithm at step 3 and NSGA-II is
the diversity measure. This means that, by simply replacing the diversity metric
used by NSGA-II with the one used by PAES, one can devise a better perform-
ing algorithm for this problem variant. It is also interesting that this variant
was the only one where such a better performing configuration was found, thus
reinforcing the idea that it presents peculiar characteristics.

170 L.C.T. Bezerra et al.

40
0

60
0

80
0

10
00

12
00

Steps

R
an

k
su

m
s

PAES 1 2 3 NSGA−II

source/target
diversity
fitness
numerical
structure

20
0

40
0

60
0

80
0

10
00

12
00

Steps

PAES 1 2 3 NSGA−II

source/target
diversity
fitness
numerical
structure

20
0

40
0

60
0

80
0

10
00

12
00

Steps

R
an

k
su

m
s

PAES 1 2 3 NSGA−II

source/target
diversity
fitness
numerical
structure

40
0

60
0

80
0

10
00

12
00

Steps

PAES 1 2 3 NSGA−II

source/target
diversity
fitness
numerical
structure

Fig. 5. Intermediate configurations tested for Cmax-TFT (top left), Cmax-TFT-TT (top
right), Cmax-TT (bottom left), and TFT-TT (bottom right). The line connects the
changes that caused the largest performance improvement.

7 Conclusions and Future work

Traditionally, MOEAs have been seen as monolithic blocks, which is reflected
by the fact that many of these algorithms have been proposed and analyzed as
such. However, for a more detailed analysis it is often preferable to decompose
the algorithms into building blocks or, say, main algorithm components. In this
paper, we have followed this direction and deconstructed MOEAs into four main
components. These components are the underlying EA algorithm, the fitness
and diversity operators, and the population management policy. We believe that
analyzing these components and their contributions to performance is key to
understanding which MOEA works best on each problem and to develop better
MOEAs in the future.

In this work, we deconstructed seven relevant MOEAs, namely HypE, IBEA,
MOGA, NSGA-II, PAES, SMS-EMOA, and SPEA2. We compared them on

Deconstructing Multi-objective Evolutionary Algorithms 171

three bi-objective and one tri-objective variants of the permutation flowshop
problem (PFSP). The results are strongly variant and also problem dependent,
highlighting particular strengths and weaknesses of each MOEA. Overall, NSGA-
II is always able to find good approximation sets. Maybe surprisingly, some algo-
rithms such as HypE are sometimes among the best for some problem variant
while they perform poorly for other problem variants. Furthermore, we conduct
an iterative analysis interpolating between the best and worst performing algo-
rithms for all PFSP variants. We show that, sometimes, algorithms can be easily
improved by changing a single component, leading to a significant improvement
in their performance.

The conclusions drawn from this work confirm the great performance variabil-
ity metaheuristics generally present for combinatorial optimization problems. As
said, the best and worst performing MOEAs can be easily improved by replacing
single components. This fact also motivates the need for a flexible, component-
wise implementation of MOEAs, as well as the specialization of MOEAs to
specific problems through automatic algorithm configuration. Initial results on
flexible, configurable frameworks for other multi-objective search techniques have
shown that this is a very promising path for research [4,14].

Acknowledgments. The research leading to the results presented in this paper has
received funding from the Meta-X ARC project, the COMEX project within the
Interuniversity Attraction Poles Programme of the Belgian Science Policy Office, and
the FRFC project “Méthodes de recherche hybrides pour la résolution de problèmes
complexes”. Leonardo C. T. Bezerra, Manuel López-Ibáñez and Thomas Stützle
acknowledge support from the Belgian F.R.S.-FNRS, of which they are a FRIA doctoral
fellow, a postdoctoral researcher and a senior research associate, respectively.

References

1. Bader, J., Zitzler, E.: HypE: an algorithm for fast hypervolume-based many-
objective optimization. Evol. Comput. 19(1), 45–76 (2011)

2. Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-Race
algorithm: sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa
Aguilera, M.J., Blum, Ch., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.)
HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)

3. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Automatic generation of multi-
objective ACO algorithms for the bi-objective knapsack. In: Dorigo, M., Birattari,
M., Blum, C., Christensen, A.L., Engelbrecht, A.P., Groß, R., Stützle, T. (eds.)
ANTS 2012. LNCS, vol. 7461, pp. 37–48. Springer, Heidelberg (2012)

5. Bezerra, L.C.T., López-Ibáñez, M., Stützle, T.: Deconstructing multi-objective evo-
lutionary algorithms: An iterative analysis on the permutation flowshop: Supple-
mentary material (2013). http://iridia.ulb.ac.be/supp/IridiaSupp2013-010/

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multi-objective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 181–197 (2002)

http://iridia.ulb.ac.be/supp/IridiaSupp2013-010/

172 L.C.T. Bezerra et al.

7. Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: A hybrid TP+PLS algorithm for
bi-objective flow-shop scheduling problems. Comput. Oper. Res. 38(8), 1219–1236
(2011)

8. Fawcett, C., Hoos, H.H.: Analysing differences between algorithm configurations
through ablation. In: Proceedings of MIC 2013, the 10th Metaheuristics Interna-
tional Conference, pp. 123–132 (2013)

9. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization:
Formulation, discussion and generalization. In: Forrest, S. (ed.) ICGA, pp. 416–423.
Morgan Kaufmann Publishers, San Mateo (1993)

10. Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton,
E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, p.
13. Springer, Heidelberg (1998)

11. Knowles, J.D., Corne, D.: Approximating the nondominated front using the Pareto
archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

12. Liefooghe, A., Jourdan, L., Talbi, E.G.: A software framework based on a con-
ceptual unified model for evolutionary multiobjective optimization: ParadisEO-
MOEO. Eur. J. Oper. Res. 209(2), 104–112 (2011)

13. López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., Birattari, M.: The irace
package, iterated race for automatic algorithm configuration. Technical report
TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium (2011)

14. López-Ibáñez, M., Stützle, T.: The automatic design of multi-objective ant colony
optimization algorithms. IEEE Trans. Evol. Comput. 16(6), 861–875 (2012)

15. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS J. Comput. 20(3),
451–471 (2008)

16. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Grefenstette, J.J. (ed.) ICGA-85, pp. 93–100. Lawrence Erlbaum Asso-
ciates, Hillsdale (1985)

17. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evol. Comput. 2(3), 221–248 (1994)

18. Taillard, É.D.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2),
278–285 (1993)

19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao,
X., et al. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg
(2004)

20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto
evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C.,
et al. (eds.) Evolutionary Methods for Design, Optimisation and Control. CIMNE,
Barcelona, Spain, pp. 95–100 (2002)

21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto evolutionary algorithm. IEEE Trans. Evol. Comput.
3(4), 257–271 (1999)

22. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003)

MOI-MBO: Multiobjective Infill for Parallel
Model-Based Optimization

Bernd Bischl1(B), Simon Wessing2, Nadja Bauer1, Klaus Friedrichs1,
and Claus Weihs1

1 Department of Statistics, TU Dortmund, Dortmund, Germany
{bischl,bauer,friedrichs,weihs}@statistik.tu-dortmund.de

2 Department of Computer Science, TU Dortmund, Dortmund, Germany
simon.wessing@tu-dortmund.de

Abstract. The aim of this work is to compare different approaches for
parallelization in model-based optimization. As another alternative aside
from the existing methods, we propose using a multi-objective infill cri-
terion that rewards both the diversity and the expected improvement
of the proposed points. This criterion can be applied more universally
than the existing ones because it has less requirements. Internally, an
evolutionary algorithm is used to optimize this criterion. We verify the
usefulness of the approach on a large set of established benchmark prob-
lems for black-box optimization. The experiments indicate that the new
method’s performance is competitive with other batch techniques and
single-step EGO.

1 Introduction

Efficient optimizers that work on a strictly reduced budget of function evalua-
tions are crucial for parameter optimization of expensive black-box functions,
such as industrial simulators or time-consuming algorithms. Classical optimiza-
tion methods in design of experiments are based on the assumption of a simple
(often linear or quadratic) relationship between input parameters and perfor-
mance output. In this case, the optimal set of evaluation points to fit such a
model can usually be specified in advance.

However, for computer experiments, these simple models often do not suffice,
as their assumptions are often severely violated, leading to unsatisfying results if
they are employed nevertheless. Therefore, general sequential model-based opti-
mization (MBO) is a standard technique for cost expensive simulations nowa-
days. Here, evaluation points are proposed sequentially using an appropriate
surrogate model that allows for nonlinear relationships. After defining an initial
set of evaluation points, e.g., a space-filling latin hypercube design, the basic
procedure of MBO is an iterating loop of the following steps: firstly, a model is
fitted on the evaluated points; secondly, a new evaluation point is proposed by
an infill criterion; and lastly, its performance is evaluated.

In the last decade, many MBO procedures were proposed and compared
relying on kriging models. Kriging is usually employed when only continuous
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 173–186, 2014.
DOI: 10.1007/978-3-319-09584-4 17

174 B. Bischl et al.

inputs are available. But particularly in the context of algorithm configuration,
although kriging has been applied successfully in this domain, see [1] for an
example, recently random forest surrogate models received attention, because
of their capability to handle categorical parameters [2]. For an example how to
integrate model selection into MBO see [3].

Instead of just evaluating one point in each iteration, a batch-sequential exten-
sion, which enables parallel evaluation of several points, is natural because of mod-
ern multi-core architectures. While there are already some recent approaches for
multi-point MBO, the idea proposed in this paper is to use a new multiobjective
perspective by considering multiple infill criteria simultaneously without aggre-
gating them into a single criterion. Instead of searching for one optimal evalua-
tion point, an approximate Pareto front of q points is generated, which contains
a spectrum of trade-offs between the different criteria. Possible single-objective
infill criteria are mean prediction or local uncertainty of the surrogate model, and
we also consider distances of the points in the current batch to each other to ensure
diverse new evaluations.

In Sect. 2, MBO is defined more formally and state-of-the-art approaches are
described, including several ones for parallel MBO. Our proposal using multiob-
jectivization is explained in Sect. 3. In Sect. 4, the conducted comparison exper-
iments are described, and in Sect. 5, their results are presented and interpreted.
Finally, in Sect. 6, the most important findings are summarized.

2 Model-Based Optimization

2.1 The Basic Sequential Algorithm

Let us assume that we aim to minimize an expensive black-box function f :
X ⊂ R

d → R, f(x) = y, x = (x1, . . . , xd)T . Each xi is a continuous parame-
ter with box constraints [�i, ui], X = [�1, u1] × . . . × [�d, ud] is the parameter
space of x, and y is the target value. An important distinction is whether we
are observing a deterministic output y or one that is corrupted by noise, i.e.,
whether our observed target values are actually realizations of a random vari-
able. In this paper, we will only study the noiseless, deterministic case. With
D = (x1, . . . ,xn)T , we will later denote an indexed set (design) of n different
points xi ∈ X and y = (f(x1), . . . , f(xn))T , the vector of associated target
values.

The main idea in model-based optimization is to approximate the expensive
function f(x) in every iteration by a regression model, which is much cheaper
to evaluate. This is also called a meta-model or surrogate. Such a regression
model often not only provides a direct estimation f̂(x) of the true function value
f(x) but also an estimation of the prediction standard error ŝ(x), also called a
local uncertainty measure. This value allows to assess the “trustworthiness” of
the prediction, or, in a more Bayesian terminology, the spread of the posterior
distribution of f̂(x).

An outline of sequential model-based optimization (MBO) is given in Algo-
rithm 1. We start by exploring the parameter space with an initial design, often

Multiobjective Infill for Parallel Model-Based Optimization 175

Algorithm 1. Sequential model-based optimization
1 Generate an initial design D ⊂ X ;
2 Compute y = f(D);
3 while total evaluation budget is not exceeded do

4 Fit surrogate on D and obtain f̂ , ŝ;

5 Get new design point x∗ by optimizing the infill criterion based on f̂ , ŝ;
6 Evaluate new point y∗ = f(x∗);
7 Update: D ← (D,x∗) and y ← (y, y∗);

8 return ymin = min(y) and the associated xmin .

constructed in a space-filling fashion. The main sequential loop can be divided
into two alternating stages: Fitting the response surface to the currently avail-
able design data, then optimizing the so-called infill criterion to propose a new
promising point x∗ for the next expensive evaluation f(x∗).

Quite a few infill criteria exist, both for the deterministic and noisy case.
They are usually constructed point-wise by combining f̂(x) and ŝ(x) in a certain
way. For the former, lower values are more promising, as they indicate a low true
function value f(x). For the latter, higher values indicate less explored regions of
the search space, as our model is less certain about the true landscape, usually
because it lacks training points nearby. The task of many infill criteria is to
balance these two conflicting criteria into one numerical formula.

Probably the simplest infill criterion, which can be used even if no local
uncertainty estimator is available, is just considering the mean prediction f̂(x).
This results in a greedy behavior, where promising regions are exploited at once
and can quickly result in only local convergence.

In their seminal paper, Jones et al. [4] recommended to use Kriging [5], i.e., a
Gaussian process, for regression. This model can fit multimodal landscapes with
satisfying quality, even when only a low amount of data points is available. As a
kernel method, it also offers flexibility, and roughness information regarding the
target function can be encoded into the model via the covariance kernel. The
posterior distribution of f̂(x) is now a univariate N(f̂(x), ŝ(x)2) one. Based on
this, the now standard expected improvement (EI) criterion was proposed, which
supposedly ensures global convergence [6–8]. It is defined as

EI(x) = E[max{0, ymin − f̂(x)}]

= (ymin − f̂(x)) Φ

(
ymin − f̂(x)

ŝ(x)

)

+ ŝ(x) φ

(
ymin − f̂(x)

ŝ(x)

)

,

where φ and Φ are the density and cumulative distribution function of the
standard normal distribution, respectively. Hence, the sought point is x∗ =
arg maxx∈X EI(x).

One further infill criterion which is relevant for this paper is the lower confi-
dence bound (LCB) criterion. LCB combines the predicted mean response with
the estimated standard error through a weighted sum:

176 B. Bischl et al.

x∗ = arg min
x∈X

LCB(x) = arg min
x∈X

f̂(x)− λŝ(x) .

The weighting parameter λ has to be selected by the user and wrong choices
will not guarantee global convergence. Obviously, the LCB criterion has to be
minimized. If λ = 0, LCB coincides with predicted mean value. The larger λ is
chosen, the more attractive the unexplored regions of the search space become.
Further infill criteria are discussed in [7].

2.2 Review of Parallel MBO Strategies

In the standard MBO procedure, only one point x∗ is proposed in each sequential
step (see line 5 of Algorithm 1). However, often dozens or hundreds of CPU cores
are simultaneously available nowadays. In some cases, these processors can be
used to parallelize a single function call of the simulator f(x∗), but in many cases
this is not possible and such an evaluation has to be considered “atomic”. It is
hence essential to exploit this computational potential in a reasonably efficient
way, suggesting a batch-sequential approach. The aim is to propose q (instead
of only 1) new points x∗

1, . . . ,x
∗
q in each iteration so that q expensive function

evaluations can be performed in parallel. Some possibilities have already been
proposed to achieve this parallelization. However, they all introduce drawbacks
that we want to avoid.

Arguably the mathematically most intuitive way to tackle the problem is to
directly extend the EI-criterion for q points (q-EI) [9]. While for the 2-EI case an
analytic solution is provided [9], for q > 2 an expensive Monte-Carlo simulation
was implemented in [9] and [10]. Recently, Chevalier and Ginsbourger [11] pro-
posed an analytic approach to more efficiently compute the q-EI for moderate
values of q ≤ 10.

A simple alternative for multi-point proposal using the EI-criterion is given
by [9], where in the first step the kriging model is fitted based on the real data
and x∗

1 is calculated according to the regular EI-criterion. Then, for i = 2, . . . , q,
a simple “guess” for f(x∗

i) is used to update the model in order to propose the
subsequent point. This estimation could be f̂(x) or even a constant like ymin

or ymax . The first option is called kriging believer, and the constant estimation
of f̂(x) is called constant liar. One should note that although the expensive
re-estimation of the covariance kernel parameters is not performed during the
batch generation but only after its batch evaluation (although without formal
justification), the EI still needs to be optimized sequentially q times, which can
in itself be very time consuming for higher values of d and q.

Hutter et al. [12] introduce another strategy. They use the LCB criterion
and sample a new λ value from an exponential distribution with mean 1 for
each point in the batch. This defines q different infill objective functions, one for
each desired new point, each one – in principle – encoding a different trade-off
between mean and standard error prediction of the model. The simple, inde-
pendent optimization of the single-objective LCB criteria (which can also be
performed in parallel) hence leads to a batch of q promising points. While this

Multiobjective Infill for Parallel Model-Based Optimization 177

approach scales computationally very well with increasing q and is also extremely
simple to implement, there is no guaranteed diversity in the generated batch, so
different values for λ can still lead to very similar global optima locations in the
LCB landscape.

The aim of this article is to propose and compare other strategies for multi-
point MBO, based on multicriteria evolutionary algorithms. The next section
will detail our approach.

3 Proposal

Multiobjective optimization considers itself with the task of finding Pareto-
optimal solutions to a set of objective functions. This methodology has become
a standard tool under the belt of many researchers in black-box optimization,
and a lot of excellent overview literature exists. As an introduction, we would
like to refer the reader to [13].

Infill criteria for model-based optimization often consist of two conflicting
parts: the mean response f̂(x) and the local uncertainty estimation ŝ(x). In
the case of LCB, it is very obvious that these two functions actually constitute
a bicriteria problem. They have simply been scalarized into a weighted sum,
where setting the actual weighting parameter is left up to the experimenter.
This is usually a hard task if no further information is provided, and the best
setting might not even be a constant value, but instead depend on the stage
of the optimization process. For EI one might argue that a formal motivation
exists which dictates the specific formula, but this derivation assumes that all
model assumptions of the Gaussian process hold, which might not be true in
practice. Furthermore, one might want to transfer the principle to other non-
parametric regression models, e.g., because of discrete parameters in the input
space or the disadvantageous runtime scaling behavior of the kriging model fits.
This is already done in the case of SMAC, where a random forest instead of a
kriging model is used in combination with an EI criterion, but there is no reason
to assume that the posterior distribution of forest predictions is really normally
distributed or that the derivation of the EI criterion is still valid.

Instead of dealing with the hassle of appropriately aggregating two or more
objective functions into a single one (as, e.g., for EI or LCB), we simply accept
the multiobjective nature of the problem and use a multiobjective optimizer. As
we want to employ parallelization, we focus on a posteriori methods that return
not only a single point, but a set of points P that approximate the Pareto-
set. We therefore choose |P| = q, the number of points we want to process in
parallel. In this case, it also suggests itself to use evolutionary algorithms (EA), as
they are population-based approaches and can be used easily for multiobjective
optimization.

So far, we have not discussed the fact that we need a set of q distinct points.
Therefore, we add the distance to neighboring solutions as another objective, to
respect the influence of the points on each other. By maximizing this distance,
points are rewarded for being dissimilar to other solutions. The objective function

178 B. Bischl et al.

is thus dynamic, i.e., it depends on the EA’s population and may change in each
iteration of the optimization. If the distance is added as an artificial, secondary
objective to a single-criterion problem, this approach is known under the name
of multiobjectivization. The reason to proceed in such a fashion is that one might
want to obtain a whole spectrum of promising, diverse solutions in the decision
space, which is exactly what we want to achieve for multipoint proposal in MBO.
This approach does not guarantee to result in a simpler problem, as shown by
Brockhoff et al. [14], but gave decent results in practical applications similar
to ours [15–17]. Summing up, the following objective functions are available for
building our multiobjective infill (MOI) criterion:

– mean: mean model prediction f̂(x),
– se: standard error / model uncertainty ŝ(x),
– ei: expected improvement EI(x),
– dist.nn: distance to the nearest neighbor of x in the current population

distnn(x,P) = min{d(x, x̃) | x̃ ∈ P \ {x}}, P ⊂ X ,

– dist.nb: distance to the nearest better neighbor of x,

distnb(x,P) = min{d(x, x̃) | f(x̃) < f(x) ∧ x̃ ∈ P}, P ⊂ X .

The latter distance definition is considered because it proved successful in exper-
iments by Wessing et al. [17]. The distance measure d(x, x̃) used throughout
this paper is simply the euclidean distance ‖x − x̃‖2. As there is in every
set at least one solution x� that has no nearest better neighbor, we define
distnb(x�,P) :=∞.

Our multi-point MBO approach is geared to the evolutionary multiobjective
optimization algorithm proposed by Beume et al. [18]. Algorithm 2 introduces
the resulting optimization procedure.

The Function crossover(x, x̃,X , ηc, pc) is the simulated binary crossover oper-
ator with a distribution index ηc and application probability pc. The latter para-
meter specifies the probability to apply the operator to each variable. crossover
produces one offspring from two parents. The function mutate(x,X , ηm, pm) is
the polynomial mutation operator, which is applied to the offspring. Again, ηm
denotes the distance parameter of the distribution and pm the mutation proba-
bility for each variable. In this work, we fix these parameters to ηc = ηm = 15
and pc = pm = 1.

Lines 9–14 of Algorithm 2 describe the survivor selection. After the distance
values have been incorporated, a non-dominated sorting of all individuals is con-
ducted. Then, the worst individual of the worst non-dominated front is identified,
according either to the hypervolume contribution (hv) [18] or according to the
first single objective (first). The first single objective (see also experimental
setup in Sect. 4,) will always be either mean or ei, as these are obviously most
important to guide the optimization. The individual identified as worst is then
removed from the population.

Table 1 introduces our multiobjective infill (MOI-)MBO strategies. Note,
that the two last approaches simply implement a multiobjectivization of the

Multiobjective Infill for Parallel Model-Based Optimization 179

Algorithm 2. Evolutionary optimization of multiobjective infill criteria
1 Generate an initial population P = {x1, . . . ,xµ} ⊂ X ;
2 Evaluate P;
3 while number of iterations is not exceeded do
4 Sample two individuals (parents): xp1 ∈ P and xp2 ∈ P;
5 Generate a new individual (child): xch = crossover(xp1,xp2,X , ηc, pc);
6 Mutate the new individual: xch := mutate(xch,X , ηm, pm);
7 Evaluate selected infill criteria (except distance) for xch;
8 Update the current population: P := P ∪ {xch};
9 for x ∈ P do

10 Calculate dist(x,P) and append to objective values;

11 Compute non-dominated fronts F1, . . . ,Fk of P;
12 Sort Fk by a selection criterion;
13 xworst = last element of Fk;
14 Update the current population: P := P \ {xworst};
15 return P;

LCB criterion and hence do not use any distance measure. In this case, lines
9–10 of Algorithm 2 should be ignored.

4 Comparison Experiments

In order to study the performances of all variants of our proposed MOI-MBO
and the existing strategies for parallel multi-point infill, we conduct an extensive
benchmark study. We also compare against the usual EGO 1-step algorithm –
which of course works in a purely sequential, non-parallel fashion and is therefore
able to exploit more information during the optimization. Finally, we also include
a simple random search as a baseline comparison method.

Problem Instances and Budget. As problem instances for the benchmark, we
selected all 24 test functions of the black-box optimization benchmark (BBOB)
noise-free test suite [19]. It covers simple unimodal, ill-conditioned and multi-
modal functions. Some of the landscapes of these functions exhibit a strong
global structure which a model-based optimizer can potentially exploit, while
other functions do not have this characteristic. We study these functions in the
dimensions d ∈ {5, 10}. For every function (and each dimension) we create 10
initial designs of size 5 · d. We then run each candidate optimizer 10 times,
using the mentioned designs. Hence, this results in 10 statistical replications for
each problem instance with fair and equal starting conditions for all competing
optimizers. The optimizers are given an additional budget of 40 ·d function eval-
uations on top of the initial design. Parallel optimizers always propose batches
of size q = 5 in our experiments, resulting in 8 · d sequential iterations for them.
As a quality measure, we choose the difference between the function values of
the best obtained point during the optimization and the known global minimum.

180 B. Bischl et al.

Table 1. Proposed MOI-MBO approaches

Single Infill Criterion Sel. Criterion Abbreviation

mean se ei dist first hv

nn nb

× × × × moi mean.se.dist nn first

× × × × moi mean.se.dist nb first

× × × × moi mean.se.dist nn hv

× × × × moi mean.se.dist nb hv

× × × moi ei.dist nn first

× × × moi ei.dist nb first

× × × moi ei.dist nn hv

× × × moi ei.dist nb hv

× × × moi mean.se first

× × × moi mean.se hv

EGO and Constant Liar Variants. To also study the effect of infill opti-
mization methods on the final performance outcome – in EGO this is usually a
sophisticated combination of a gradient-based and an evolutionary/restart mech-
anism, while in multiobjective optimization often a much simpler EA is used –,
we reimplemented EGO with a simple (μ+1) evolutionary algorithm with simu-
lated binary crossover and polynomial mutation as variation operators for opti-
mization of the infill criterion. Here, we set μ = 20. We also include an EGO
variant where we use the mean value f̂(x) as a simple infill criterion.

Software. All of our experiments are conducted in the statistical programming
language R. The BBOB test functions are made available in the R package
soobench [20]. We have implemented all our code regarding model-based opti-
mization (including the below mentioned evolutionary variants of 1-step EGO
and constant liar, all multicriteria methods and parallel LCB) in the experi-
mental R package mlrMBO1. The toolbox allows a generic combination of regres-
sion models and optimization strategies and builds upon the mlr R package
for machine learning from Bischl [21]. The kriging models are fitted via the
DiceKriging package and we compare against the EGO and constant liar imple-
mentations of the popular DiceOptim package implementation. Both Dice pack-
ages are published by Ginsbourger et al. [9].

Summary. In order to provide a succinct overview, we again list all compared
approaches in Table 2.
1 See https://github.com/berndbischl/mlrMBO

https://github.com/berndbischl/mlrMBO

Multiobjective Infill for Parallel Model-Based Optimization 181

Table 2. Overview of compared model-based optimization strategies.

Method Abbreviation R Package Infill optimizer

EGO ego DiceOptim gradient-based rgenoud

EGO ego ea ei mlrMBO simple EA

EGO Infill f̂(x) ego ea mean mlrMBO simple EA

Constant liar par cl DiceOptim gradient-based rgenoud

Constant liar par cl ea mlrMBO simple EA

Parallel LCB par lcb mlrMBO simple EA per LCB function

Multiobj. Infill (see Table 1) moi mlrMBO multicrit EA

Random search random search – –

5 Results

As the test functions differ w.r.t. their respective characteristics, we divide the
BBOB function into the following three sets, using the same numbering as in
[19]:

set1 Unimodal functions: 1, 2, 5–14,
set2 Multimodal functions with adequate global structure: 3, 4, 15–19,
set3 Multimodal functions with weak global structure: 20–24.

To interpret the results, we first rank the considered optimization approaches
among each other for each dimension / test function / replication by their perfor-
mance and subsequently calculate the mean rank for each approach across test
functions and replications (per dimension). Thus, the lower the mean rank, the
better the approach. We also conduct statistical sign tests to analyze whether
differences in performance between candidate algorithms are significant. Here,
we compute for each pair of optimization approaches the performance differ-
ences over all replications for a set of test functions (per dimension). The sign
distribution of this difference vector is then used to decide whether one approach
significantly outperforms the other, which is in essence a binomial test, see [22].
Each test is conducted at the 5 significance level without further adjustment for
multiple testing, as our aim is to use the test as an exploratory tool to provide
a descriptive visualization of the stochastic results.

We illustrate the results using preference relation graphs, containing two
kinds of information: the mean ranks of the optimization approaches on the one
hand and the decisions of pairwise sign tests on the other hand. The results
are presented in Fig. 1, 2, 3 and 4. Each colored node represents an optimization
approach, where its mean rank is given in braces. The main goal is to compare the
different MOI-MBO strategies (yellow nodes) with other parallel approaches (red
nodes). Of these, our most relevant competitor is LCB, as it scales a lot better
with increasing sizes of q than constant liar. For comparison, also non-parallel
approaches are considered (green nodes). But these purely sequential optimizers
are expected to perform better than the parallel ones, as they benefit from a

182 B. Bischl et al.

 1 (6.7)

 10 (6.2)

 11 (13.1)

 12 (7.4)

 13 (13.2)

 14 (7.1)

 15 (8.3)

 16 (7.5)

 17 (15.3)

 2 (8.0)

 3 (5.9)

 4 (9.5)

 5 (9.1)

 6 (9.8)

 7 (10.3)

 8 (7.1)

 9 (8.6)

 1 (6.0) 10 (5.6)

 11 (13.3)

 12 (7.3)

 13 (14.1)

 14 (6.4)

 15 (9.2)

 16 (6.8)

 17 (15.9)

 2 (8.6)

 3 (4.5)

 4 (10.1) 5 (9.7) 6 (10.0)

 7 (11.2)

 8 (6.3)

 9 (8.0)

01: ego
02: ego_ea_ei
03: ego_ea_mean
04: moi_ei.dist_nb_first
05: moi_ei.dist_nb_hv
06: moi_ei.dist_nn_first
07: moi_ei.dist_nn_hv
08: moi_mean.se.dist_nb_first
09: moi_mean.se.dist_nb_hv

10: moi_mean.se.dist_nn_first
11: moi_mean.se.dist_nn_hv
12: moi_mean.se_nn_first
13: moi_mean.se_nn_hv
14: par_cl
15: par_cl_ea
16: par_lcb
17: random_search

Fig. 1. Comparison over all test functions (d = 5 and d = 10) (Color figure online).

higher number of surrogate model fits and can incorporate more information
into the models. Two nodes are connected with an edge if one approach (the
upper one) is significantly better than the other (the lower one). Note that it is
possible that one approach is significantly better than another one, although it
has a (slightly) worse mean rank.

Figure 1 illustrates the results regarding all test functions. Overall, the best
strategy is ego ea mean, even outperforming ego and ego ea ei. This is some-
how surprising, particularly as the same holds true for the set of multimodal
functions (Figs. 3 and 4), where exploration of the parameter space is expected
to be more beneficial than just exploitation of the surrogate function.

Over all test functions, the best parallel approach seems to be moi mean.se.dist
nn first, which has the best mean rank and – with one exception – outperforms

all other parallel strategies according to the sign test. Only slightly worse perform
the strategies moi mean.se.dist nb first and moi mean.se first, which outper-
form all other considered MOI-MBOs. Since all three methods just differ in the
applied distance criterion, this seems to only have a relatively weak influence. In

Multiobjective Infill for Parallel Model-Based Optimization 183

 1 (5.2) 10 (5.5)

 11 (13.8)

 12 (6.4)

 13 (14.4)

 14 (5.9)

 15 (9.4)

 16 (7.2)

 17 (16.2)

 2 (7.9)

 3 (5.7)

 4 (10.0)

 5 (9.4)

 6 (10.5)

 7 (11.1)

 8 (5.8)

 9 (8.6)

 1 (4.5)

 10 (4.9)

 11 (14.0)

 12 (6.0)

 13 (15.2)

 14 (5.2)

 15 (9.7)

 16 (7.4)

 17 (16.4)

 2 (9.1)

 3 (4.0)

 4 (10.5) 5 (10.5)

 6 (11.0)

 7 (12.1)

 8 (5.1)

 9 (7.3)

Fig. 2. Comparison over test functions of set1 (d = 5 and d = 10) (Color figure online).

 1 (6.7)

 10 (7.2)

 11 (12.9)

 12 (8.9)

 13 (12.9)

 14 (6.8) 15 (8.1)

 16 (7.1)

 17 (14.6)

 2 (7.8)

 3 (4.5)

 4 (10.1) 5 (9.0) 6 (10.1) 7 (9.2) 8 (8.9) 9 (8.5)

 1 (6.0) 10 (6.3)

 11 (13.0)

 12 (9.5)

 13 (14.2)

 14 (7.2)

 15 (9.2)

 16 (5.5)

 17 (15.3)

 2 (8.3)

 3 (3.4)

 4 (9.9)

 5 (9.5) 6 (9.4)

 7 (9.6)

 8 (7.8)

 9 (8.9)

Fig. 3. Comparison over test functions of set2 (d = 5 and d = 10) (Color figure online).

contrast, the graphs indicate significant improvements by using the selection cri-
terion first – which focuses more on the first criterion mean or ei – instead of
hv. Regarding our experiments, the best state-of-the-art parallel MBO is par cl,
although this holds in a strong sense (significance of the sign test when we compare
it to par lcb) only for d = 10. While par cl performs approximately as good as
the best MOI-MBO moi mean.se.dist nn first for the unimodal and the multi-
modal functions with adequate global structure (Figs. 2 and 3), our new approach

184 B. Bischl et al.

 1 (10.3)

 10 (6.6)

 11 (11.8)

 12 (7.8)

 13 (10.9) 14 (10.4)

 15 (5.9)

 16 (9.0)

 17 (13.9)

 2 (8.3) 3 (8.3)

 4 (7.4)

 5 (8.4) 6 (7.9) 7 (9.7)

 8 (7.9)

 9 (8.6)

 1 (9.4)

 10 (6.5)

 11 (12.3)

 12 (7.5)

 13 (11.0)

 14 (8.3) 15 (7.9)

 16 (7.0)

 17 (15.3)

 2 (8.0)

 3 (7.0)

 4 (9.2) 5 (8.3) 6 (8.6)

 7 (11.5)

 8 (6.9)

 9 (8.3)

Fig. 4. Comparison over test functions of set3 (d = 5 and d = 10) (Color figure online).

performs better on multimodal functions with weak global structure (Fig. 4). Con-
trary, par cl ea and par lcb – the other two considered state-of-the-art parallel
MBOs – perform quite weakly on unimodal functions (Fig. 2).

6 Conclusion

In this paper, a multiobjective approach for parallel model-based optimization
was introduced. Therefore, ten different strategies – each relying on a reason-
able subset of five infill criteria – were compared with several state-of-the-art
approaches including EGO, parallel LCB and constant liar. While three of the
infill criteria have been applied before, the concept of multiobjectivization and
the consideration of the distance to neighboring points is a new approach in
the context of MBO. Regarding the 24 considered test functions in five and ten
dimensions, a MOI-MBO strategy, which relies on the mean model prediction
f̂(x), the model uncertainty ŝ(x) and the distance to the nearest neighbor as
infill criteria, performs best on average. As shown in the previous section it even
outperforms existing parallel methods in many situations. Additionally, its run-
time behavior is not significantly inhibited if the number of cores q is increased,
as this only results in a larger population size of the EA. Furthermore, the exper-
iment shows a bias in favor of more exploitative methods versus more explorative
ones, although this might be an artefact of the considered benchmark set.

In future comparison studies, also the recent approach of Chevalier and Gins-
bourger [11] should be considered once their code is released. While in the
experiments above all approaches are applied on only five CPU cores ensur-
ing acceptable run times even for the most complex ones, in a next step the
influence of the number of cores regarding the performance should be analyzed.
Furthermore, we also would like to investigate the applicability of MOI-MBO in
the noisy case.

Multiobjective Infill for Parallel Model-Based Optimization 185

Acknowledgements. This paper is based on investigations of the projects B3 and
C2 of the Collaborative Research Center SFB 823, which are kindly supported by
Deutsche Forschungsgemeinschaft (DFG). It is also partly supported by the French
national research agency (ANR) within the Modeles Numeriques project NumBBO.
The authors also thank Tobias Wagner for fruitful discussions of multiobjective infill
criteria.

References

1. Koch, P., Bischl, B., Flasch, O., Bartz-Beielstein, T., Weihs, C., Konen, W.: Tuning
and evolution of support vector kernels. Evol. Intel. 5(3), 153–170 (2012)

2. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol.
6683, pp. 507–523. Springer, Heidelberg (2011)

3. Hess, S., Wagner, T., Bischl, B.: PROGRESS: progressive reinforcement-learning-
based surrogate selection. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol.
7997, pp. 110–124. Springer, Heidelberg (2013)

4. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Global Optim. 13(4), 455–492 (1998)

5. Krige, D.: A statistical approach to some basic mine valuation problems on the
witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52(6), 119–139 (1951)

6. Locatelli, M.: Bayesian algorithms for one-dimensional global optimization. J.
Global Optim. 10(1), 57–76 (1997)

7. Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Global Optim. 21(4), 345–383 (2001)

8. Vazquez, E., Bect, J.: Convergence properties of the expected improvement algo-
rithm with fixed mean and covariance functions. J. Stat. Plann. Infer. 140(11),
3088–3095 (2010)

9. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging is well-suited to parallelize
optimization. In: Tenne, Y., Goh, C.-K. (eds.) Computational Intel. in Expensive
Opti. Prob. ALO, vol. 2, pp. 131–162. Springer, Heidelberg (2010)

10. Janusevskis, J., Le Riche, R., Ginsbourger, D., Girdziusas, R.: Expected improve-
ments for the asynchronous parallel global optimization of expensive functions:
potentials and challenges. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS,
vol. 7219, pp. 413–418. Springer, Heidelberg (2012)

11. Chevalier, C., Ginsbourger, D.: Fast computation of the multi-points expected
improvement with applications in batch selection. In: Nicosia, G., Pardalos, P.
(eds.) LION 7. LNCS, vol. 7997, pp. 59–69. Springer, Heidelberg (2013)

12. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In:
Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 55–70. Springer,
Heidelberg (2012)

13. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for
Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

14. Brockhoff, D., Friedrich, T., Hebbinghaus, N., Klein, C., Neumann, F., Zitzler,
E.: Do additional objectives make a problem harder? In: Proceedings of the 9th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’07, pp.
765–772. ACM (2007)

15. Tran, T.D., Brockhoff, D., Derbel, B.: Multiobjectivization with NSGA-II on the
Noiseless BBOB Testbed. In: GECCO (Companion), Workshop on Black-Box Opti-
mization Benchmarking (BBOB’2013), Amsterdam, Pays-Bas, July 2013

186 B. Bischl et al.

16. Ulrich, T., Thiele, L.: Maximizing population diversity in single-objective optimiza-
tion. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’11, pp. 641–648. ACM, New York (2011)

17. Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neigh-
bor information: Trade-offs and benefits. In: IEEE Congress on Evolutionary Com-
putation (CEC), pp. 103–110 (2013)

18. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection
based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

19. Hansen, N., Finck, S., Ros, R., Auger, A.: Real-parameter black-box optimiza-
tion benchmarking 2009: noiseless functions definitions. Technical report RR-6829,
INRIA (2009). http://hal.inria.fr/inria-00362633/en

20. Mersmann, O., Bischl, B., Bossek, J., Judt, L.: soobench: Single Objective Opti-
mization Benchmark Functions. R package version 1.1-164

21. Bischl, B.: mlr: Machine Learning in R. R package version 1.2
22. Conover, W.: Practical Nonparametric Statistics, 2nd edn. Wiley, New York (1980)

http://hal.inria.fr/inria-00362633/en

Two Look-Ahead Strategies
for Local-Search Metaheuristics

David Meignan1, Silvia Schwarze2(B), and Stefan Voß2

1 Department of Mathematics and Computer Science, University of Osnabrück,
Albrechtstraße 28, 49069 Osnabrück, Germany

meignan.david@uos.de
2 Institute of Information Systems, University of Hamburg,

Von-Melle-Park 5, 20146 Hamburg, Germany
{silvia.schwarze,stefan.voss}@uni-hamburg.de

Abstract. The main principle of a look-ahead strategy is to inspect
a few steps ahead before taking a decision on the direction to choose.
We propose two original look-ahead strategies that differ in the object
of inspection. The first method introduces a look-ahead mechanism at
a superior level for selecting local-search operators. The second method
uses a look-ahead strategy on a lower level in order to detect promising
solutions for further improvement. The proposed approaches are imple-
mented using a hyper-heuristic framework and tested against alterna-
tive methods. Furthermore, a more detailed investigation of the second
method is added and gives insight on the influence of parameter values.
The experiments reveal that the introduction of a simple look-ahead
strategy into an iterated local-search procedure significantly improves
the results over tested problem instances.

Keywords: Metaheuristic · Hyper-heuristic · Look-ahead · Iterated
local-search

1 Introduction

Look-ahead is a search strategy based on the simple idea of selecting next moves
by studying the future performance of a set of potential moves. This basic mech-
anism introduces a compromise between exploration and exploitation tendencies
of the search process. Typically, the implementation of such approaches is quite
straightforward. Our objective within this work is to develop and test heuristic
search strategies based on the concept of look-ahead. We propose and evalu-
ate two heuristic methods and study in particular the inclusion of look-ahead
strategies in metaheuristics and hyper-heuristics.

In combinatorial optimization, look-ahead approaches have been mainly stud-
ied in the context of tree-search and constructive heuristics, see, e.g., [1,6,12].
The basic principle of a look-ahead mechanism is to guide the search with an
evaluation of future moves. When choosing the next step, a look-ahead method
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 187–202, 2014.
DOI: 10.1007/978-3-319-09584-4 18

188 D. Meignan et al.

does not only evaluate the outcome obtained by this single step. Rather a look-
ahead mechanism carries out further steps and inspects the obtained solutions.
The next move is decided on the basis of the potential outcome of future steps.

The look-ahead mechanism is not only a general mechanism for constructive
heuristics. It has been studied in the context of trajectory metaheuristics as
well as hyper-heuristics. In [5] the authors apply the concept of look-ahead to
constructive heuristics as well as to local-search. In the latter case, moves that
are evaluated are defined by a neighborhood structure. Hence, a move is a local
modification of a complete solution, in contrast to constructive heuristics where a
move fixes the value of one or more decision variables of a solution. More recently,
a look-ahead strategy has been investigated as a hyper-heuristic in [11]. In the
latter case, it is the application of different low-level heuristic procedures that is
evaluated by a look-ahead mechanism.

Motivated by the promising results of look-ahead mechanisms applied to
metaheuristics and hyper-heuristics, this work develops a simple approach that
allows to enhance existing methods. The goal is to improve performance and
robustness of those methods while supporting simplicity to keep the impact on
implementation efforts as small as possible. Consequently, we do not focus on
comparing the performance of the enhanced methods with general methods,
rather we study the impact of the look-ahead extension on the original method.
In order to understand the effects of the look-ahead concept in detail, at first
a pure Iterated Local-Search (ILS) is addressed and two look-ahead extensions
of ILS are studied. The first direction is method-based and evaluates the future
performance of particular local-search procedures in order to choose the most
promising ones. The second approach is solution-based and looks at the poten-
tial outcome of different solutions in order to choose a good starting point for
a local-search procedure. Both approaches extend the ILS template [8]. ILS is a
simple trajectory-based metaheuristic that iteratively performs two steps until
a stopping criterion is met. The first step diversifies the search by perturbing
the current solution, and the second step improves the perturbed solution by
local-search. This approach has been chosen for the generality of the ILS frame-
work [2] which makes it a good candidate for extension to other metaheuristics
or hyper-heuristics.

The two look-ahead approaches have been implemented using the HyFlex
framework [9]. This framework allows fast prototyping and testing of meta-
heuristics and hyper-heuristics. The computational evaluation has been made
using the set of problem instances of the Cross-domain Heuristic Search Chal-
lenge (CHeSC) held in 2011 [3]. The evaluation of the proposed approaches is
based on a comparison with the results obtained during this competition as well
as a comparison with three additional heuristic search methods. The first method
is Pilot-D1, a look-ahead hyper-heuristic proposed in [11]. The second one is a
standard ILS procedure, and the last one is a random-walk procedure.

The remainder of the paper is organized as follows. In Sect. 2, the first app-
roach, which focuses on the selection of low-level local-search procedures, is pre-
sented. In Sect. 3, the second approach is investigated. In this second approach

Two Look-Ahead Strategies for Local-Search Metaheuristics 189

the look-ahead mechanism is intended to improve the search over the solution
space instead of searching among different strategies. An extensive computa-
tional study is presented in Sect. 4 and a conclusion and perspectives are given
in Sect. 5.

2 Look-Ahead Hyper-Heuristic

In this section we introduce the first of the two novel look-ahead strategies. This
first approach is realized based on the idea of hyper-heuristics. Following [4], “A
hyper-heuristic is an automated methodology for selecting or generating heuris-
tics to solve hard computational search problems.” In our approach, we address
the first of these two alternatives, i.e., the selection of heuristic procedures. The
main concept is that a hyper-heuristic is able to control a method toolbox by
applying problem-dependent heuristics, called low-level heuristics or operators.
Moreover, hyper-heuristics usually evaluate the solution history in order to guide
the solution process in a problem-independent manner. Thus, a hyper-heuristic is
designed to be a generic approach that can be directly applied to different prob-
lem domains. The high-level strategy does not require to be re-implemented. The
idea of hyper-heuristics is realized by the HyFlex software framework [9]. HyFlex
provides test instances and search operators developed for different combinator-
ial optimization problems. The intention of the software framework is to provide
an interface for designing problem-independent hyper-heuristics. To that end,
HyFlex offers four types of search operators. Three operator types work on a
single solution, namely mutational, ruin-and-recreate, and local-search operators
(LS operators). The fourth type, crossover operators, requires an input of two
solutions. Notations are given in Table 1.

Table 1. Notations

MLS = {mi
LS}i=1,...,nLS

Set of LS operators

MMRR = {mi
MRR}i=1,...,nMRR

Set of mutational and ruin-recreate operators

nLS := |MLS |, nMRR := |MMRR| Number of available operators

x, f(x) Feasible solution, objective function value

x′ = m(x) Apply operator m ∈ MLS ∪ MMRR to solution x

2.1 Application of the Concept

In the Hyper-Heuristic with probing phase approach (HH-probe), we focus on
the detection of well performing search operators by setting up a competition
between them. In particular, we focus on LS operators and we consequently
assume the existence of those operators. Within each global iteration, a winning
LS operator is identified during a probing phase and applied during an intensifi-
cation phase. In particular, to initialize the probing phase, nLS different starting
solutions are generated. These solutions are computed during a diversification

190 D. Meignan et al.

Algorithm 1. Look-ahead hyper-heuristic, HH-probe
Data: Time limit T , search operators MLS , MMRR with nLS = |MLS |
Result: Best found solution x∗

// Generation of the initial solution

1 x← generateSolution()
2 x∗ ← x
3 while time limit T not reached do

// Perturbation

4 for i← 1 to nLS do
5 mM ← pickAtRandom(MMRR)

6 xi ← mM (x)

7 end
// Probing

8 tmax ← 0
9 for i← 1 to nLS do

10 tstart ← currentT ime()

11 xi ← mi
LS(mi

LS(xi)) // Applies twice the ith LS operator

12 tiprob ← currentT ime()− tstart
13 tmax ← max(tmax, t

i
prob)

14 end
15 for i← 1 to nLS do // Complete to max. probing time

16 while tiprob < tmax do
17 tstart ← currentT ime()

18 xi ← mi
LS(xi)

19 tiprob ← tiprob + currentT ime()− tstart
20 end

21 end
22 p∗ ← 1 // Probe selection

23 for i← 1 to nLS do

24 if f(xi) < f(xp∗
) then p∗ ← i

25 end
// Local-search

26 if f(xp∗
) < f(x∗) then

27 x̂← mp∗
LS(xp∗

)

28 while f(x̂) < f(xp∗
) do

29 xp∗ ← x̂

30 x̂← mp∗
LS(xp∗

)

31 end

32 end
// Acceptance criteria

33 if f(x̂) < f(x∗) then x∗ ← x
34 x← x∗

35 end

Two Look-Ahead Strategies for Local-Search Metaheuristics 191

step where we apply nLS randomly chosen mutation or ruin-and-recreate opera-
tors. In order to compensate possible different running times of the LS operators
during the probing phase, a time limit is fixed, equal to the time that is needed
to apply the slowest LS operator twice. After this probing phase, a winning LS
operator is selected and used for an intensification phase.

The right-hand side of Fig. 1 illustrates the approach. A standard ILS app-
roach is depicted on the left-hand side. For HH-probe, nLS = 3 LS operators
are tested against each other. LS operator Ls2 is the most time consuming one
and thus determines the time spent for the probing phase. After finishing the
probing phase, operator Ls3 turns out to be the winning strategy and thus is
applied during an intensification phase until the improvement is below a given
small threshold. Afterwards a new global iteration is initialized with nLS = 3
solutions.

Fig. 1. Standard ILS strategy (on the left) and HH-probe (on the right)

The technical details of the HH-probe approach are given in Algorithm 1.
After generating a random initial solution, the method starts with a global while-
loop that ensures the time limit. Within this global loop, the three major parts
diversification, probing, and intensification are repeated.

2.2 Design Choices

HH-probe prepares the basis for various extensions. First, in the diversification
phase, the number of generated solutions, chosen as nLS in Algorithm 1, could
be adapted during running time. One possibility could be the computation of
the relative usage of search operators during intensification and the sorting out
of rarely used operators. Secondly, the length of the probing phase could be
modified. For the current approach, the slowest LS operator is applied twice.
Finally, the stopping criterion during the intensification phase could be adapted.
One possibility is to run the intensification until a local optimum is found, or
to have a variable improvement threshold based on the history of the previous
iterations.

192 D. Meignan et al.

3 Iterated Local-Search with Probing Phase

Next, a second look-ahead strategy is proposed. In contrast to HH-probe, in
which the look-ahead mechanism confronts the set of LS operators to explore
different strategies, this second look-ahead mechanism is based on the explo-
ration of the solution space.

3.1 Application of the Concept

The Iterated Local-Search with probing phase (ILS-probe) method is an exten-
sion of ILS with a look-ahead mechanism that identifies promising solutions for
the local-search step. The main steps of an ILS procedure are depicted in the
left-hand side of Fig. 2. In ILS-probe, an additional probing mechanism is intro-
duced within the ILS template. This extension is depicted in the right-hand side
of Fig. 2. Contrary to an ILS procedure, the perturbation procedure is applied
several times to the initial solution to produce a set of potential starting points
for the local-search procedure. Then, the probing step is performed. A few local-
search moves are applied on perturbed solutions in order to identify the most
promising starting point for the local-search step. Finally, the full local-search
procedure is applied on the solution selected at the end of the probing phase.

Fig. 2. Standard ILS procedure (on the left), and ILS-probe (on the right)

In the proposed algorithm the look-ahead mechanism allows selecting promis-
ing solutions to be improved by local-search. Several directions in the search
space are explored in parallel, and then results after few moves are compared
in order to select the most promising direction for the local-search. Look-ahead
width and depth for this procedure correspond to the number of explored direc-
tions and the number of probing moves, respectively.

The implemented ILS-probe procedure is detailed in Algorithm 2. The proce-
dure starts by generating and improving an initial solution (lines 1 to 3). The rest
of the algorithm is an iterative process containing five steps. The first step is the
perturbation of the initial solution (lines 5 to 8). A set of solutions is generated
by applying the same perturbative operator on the initial solution. Although

Two Look-Ahead Strategies for Local-Search Metaheuristics 193

Algorithm 2. ILS-probe
Data: Time limit T , search operators MLS , MMRR, look-ahead depth and

width d, w
Result: Best found solution x∗

// Generation of the initial solution

1 x← generateSolution()
2 x← variableNeighborhoodDescent(x,MLS)
3 x∗ ← x
4 while time limit T not reached do

// Perturbation

5 mM ← pickAtRandom(MMRR)
6 for i← 1 to w do
7 xi ← mM (x)
8 end

// Probing

9 for j ← 1 to d do
10 mLS ← pickAtRandom(MLS)
11 for i← 1 to w do
12 xi ← mLS(xi)
13 end

14 end
// Candidate selection

15 x← x1

16 for i← 2 to w do
17 if f(xi) < f(x) then x← xi

18 end
// Local-search

19 x← variableNeighborhoodDescent(x,MLS)
// Acceptance criteria

20 if f(x) < f(x∗) then x∗ ← x
21 x← x∗

22 end

the same procedure is applied to the same initial solution, resulting solutions
are different due to the random nature of mutational and ruin-and-recreate pro-
cedures. The number of perturbed solutions is determined by the look-ahead
width, denoted by w. The second step is the probing phase (lines 9 to 14). The
same sequence of LS operators is applied to each perturbed solution. The length
of the “probing sequence” corresponds to the look-ahead depth, denoted by d.
The most promising solution is selected in the next step (lines 15 to 18). The
selection criterion implemented is based on the cost of the solutions after the
probing phase. The selected solution is further improved by local-search (line
19). The procedure used for the local-search is a variable neighborhood descent
procedure [7] described in Algorithm 3. Finally, an acceptance criterion is applied
to determine whether the solution obtained in this iteration is selected for the

194 D. Meignan et al.

Algorithm 3. Variable Neighborhood Descent
Data: Low-level LS operators MLS with nLS = |MLS |, solution to improve x
Result: Best found solution x∗

1 x∗ ← x
2 k ← 1
3 while k ≤ nLS do

4 x← mk
LS(x∗) // Applies the kth LS operator

5 if f(x) < f(x∗) then
6 x∗ ← x
7 k ← 1

8 else
9 k ← k + 1

10 end

11 end

next iteration (lines 20 and 21). The implemented criterion only accepts better
solutions. The next iteration thus always starts with the best solution found
so far.

The rationale for this look-ahead strategy is that some perturbation moves
lead to areas of the search space that might not be interesting to explore. The
probing sequence allows gathering information about the solution’s neighbor-
hood, and then possibly cut the search to avoid spending time exploring unin-
teresting areas of the search space. Identifying when to cut the local-search would
be difficult with an exploration using one solution at a time. In ILS-probe, the
selection of a promising search direction is facilitated by a direct comparison of
several probing solutions. This strategy is based on two basic ingredients of the
look-ahead mechanism. First, the choice of a direction is based on a comparison
of a set of possible alternatives. Second, the evaluation of these alternatives is
based on the possible outcome several steps ahead.

The look-ahead mechanism in ILS-probe assumes that the time spent in
the probing phase is compensated by the exploitation of the most promising
candidate solution. We can hypothesize that this strategy is beneficial when a full
local-search is expensive in terms of computation time. In addition, the success
of the probing mechanism is conditioned by the fact that pertinent heuristic
information can be extracted from the different probes in order to identify the
most promising solution to improve. These assumptions are tested in Sect. 4 by
a comparison between ILS-probe and a standard ILS procedure.

3.2 Design Choices

Several design choices have been made for implementing ILS-probe. Most of
these choices have been made for the sake of simplicity, as well as for being
able to compare the proposed approach with a standard ILS procedure. Some
alternatives discussed below appear to be promising extensions to ILS-probe.

Two Look-Ahead Strategies for Local-Search Metaheuristics 195

First, a different criterion for selecting the most promising solution after
the probing phase could be considered. In the implemented algorithm, the solu-
tion with the lowest cost is selected for the local-search phase. This criterion is
based on the heuristic (in the sense of “rule of thumb”) that the best solution
obtained after the probing phase should result in a good solution after a full
local-search. However, the probing phase could reveal additional clues on the
potential improvement of probing solutions. For instance, the selection criterion
can use: the distance to the initial solution, the distance variation during the
probing phase, the relative improvement during the probing phase, or relative
computation time of applying LS operators. A recent extension of the HyFlex
framework, proposed in [10], supports additional operations that can be used for
implementing such a selection criterion.

A second design choice concerns the selection of search operators within
sets MMRR and MLS for perturbation, probing and local-search phases. In the
proposed implementation, operators are randomly selected for the perturbation
and probing phase, and randomly ordered for the variable neighborhood descent
procedure. Contrary to HH-probe whose goal is to select appropriate search
operators, the focus of ILS-probe is the exploration of the solution space. The
ILS-probe approach can be implemented with a single perturbation procedure,
and only one neighborhood structure for the probing and local-search. The ran-
dom selection of search operators in Algorithm 2 is a simple way to put aside
the question of operators’ selection. However, it would be interesting to combine
the look-ahead mechanism of ILS-probe with a hyper-heuristic strategy which
identifies the most efficient perturbative and LS operators.

Finally, the look-ahead strategy implemented in ILS-probe can be extended
to other trajectory based metaheuristics. The adoption of the ILS template has
been driven by the simplicity of the method in terms of structure, implementa-
tion, and parameter setting. A similar look-ahead strategy could be applied to
metaheuristics such as tabu-search, simulated annealing, guided local-search, or
variable neighborhood search. The extension of variable neighborhood search and
guided local-search with a probing phase would be rather straightforward since
these two approaches have distinct phases of intensification and diversification
similar to the ILS procedure.

4 Numerical Study

The purpose of the numerical study is twofold. In a first analysis, we compare the
two proposed approaches HH-probe and ILS-probe against three other methods
to assess the contribution of look-ahead mechanisms. As we identify ILS-probe
as a promising method within this first investigation, we carry out a detailed
analysis of ILS-probe by varying the probing size in a second study. The objective
is to evaluate the robustness of ILS-probe according to its parameter setting. In
the first part of the numerical study, parameters’ values of ILS-probe are w = 10
and d = 2.

We implement the new methods within the HyFlex framework [9]. In order to
compare the results with other approaches we use the benchmark of the CHeSC

196 D. Meignan et al.

held in 2011 [3]. The list of problem instances used during the CHeSC’2011
competition and adopted for this evaluation is summarized in Table 2. Problem
domains are Max-Satisfiability (SAT), Bin Packing (BP), Personnel Schedul-
ing (PS), Permutation Flow Shop Problem (FSP), Traveling Salesman Problem
(TSP), and Vehicle Routing Problem (VRP). Computational tests have been car-
ried out on a multiprocessor computer (Linux Server with Intel Xeon Processor
X5570 and 32 GB RAM); however, only one thread has been used for individual
runs. In order to obtain computation times comparable to the time limit of 10
minutes used during the CHeSC’2011 competition, we evaluated the computer
performance with the benchmarking program provided for the competition1. The
time limit adopted for the following results is 415 s. In addition, reported results
are averages over 10 runs per instances.

Table 2. Instances of the CHeSC’2011 benchmark

Domain Instance Domain Instance Domain Instance
SAT 3, 5, 4, 10, 11 PS 5, 9, 8, 10, 11 TSP 0, 8, 2, 7, 6
BP 7, 1, 9, 10, 11 FSP 1, 8, 3, 10, 11 VRP 6, 2, 5, 1, 9

4.1 Evaluation on CHeSC’2011 Benchmark

In this first part of the numerical study, HH-probe and ILS-probe are com-
pared against three reference methods: ILS, Pilot-D1, and random-walk. The
ILS method is a simple implementation of the ILS template that uses randomly
chosen perturbative operators for the perturbation step, and a variable neigh-
borhood descent procedure for the local-search step. This ILS method is the
equivalent of ILS-probe with a look-ahead width of 1 (parameter w in Algo-
rithm 2), and a look-ahead depth of 0 (parameter d in Algorithm 2). The second
method, Pilot-D1, has been proposed in [11]. It is a direct mapping of the look-
ahead strategy for selecting the next search operator. At each step, all operators
are tested on the current solution, and the best resulting solution is accepted.

Table 3. Results using CHeSC’2011 scoring method (shortened)

Score Method Rank

38 HH-probe 11

36 ILS-probe 12

28 ILS 15

16 PilotD1 20

1 Random 24

1 The benchmark for determining the time limit is available at: http://www.asap.cs.
nott.ac.uk/external/chesc2011/benchmarking.html, (Accessed November 2013).

http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html
http://www.asap.cs.nott.ac.uk/external/chesc2011/benchmarking.html

Two Look-Ahead Strategies for Local-Search Metaheuristics 197

Pilot-D1 and HH-probe exploit the look-ahead strategy in a similar way. Both
approaches are hyper-heuristics in the sense that they confront different oper-
ators in search of an adequate strategy. The third method is a random-walk
strategy where randomly chosen search operators are applied to the current
solution, and the resulting solution is always accepted. This last method serves
as a reference to identify failure of advanced search strategies.

Table 3 gives the results of the five considered methods using the CHeSC’2011
scoring system [3]. The scores and ranks are computed by including the proposed
methods to the results of the 20 participants of the CHeSC’2011 competition.
The scoring system is based on median values of runs per instances. For each
instance, the top eight methods received a score of 10, 8, 6, 5, 4, 3, 2, and 1
point, respectively. The final score of a method is obtained by summing the
scores obtained for each problem instance.

Results reported in Table 3 give a first estimate of the relative performance of
proposed approaches. The ranks of HH-probe and ILS-probe, 11 and 12, respec-
tively, are in fact quite promising considering the simplicity of the two methods.
Note that it is not the objective in this study to challenge the best methods
submitted to the CHeSC’2011 competition. Those methods generally contain
a larger set of parameters or design choices, manage additional parameters of
operators, and include some “tricks” for boosting the performance (e.g., restarts
after a time period, additional intensification steps on best found solutions) that
have been avoided for the implementation of HH-probe and ILS-probe in order
to have an unbiased evaluation of look-ahead mechanisms.

The fact that the scores of HH-probe and ILS-probe, 38 and 36, respectively,
are better than the scores of ILS and Pilot-D1, suggests that the inclusion of
a look-ahead mechanism within the ILS template has a positive impact on the
results. A more thorough analysis of the results was carried out to confirm this
result. In this second analysis only the results of the five methods are considered.
Figures 3 and 4 give box-plots of the ranks of individual runs of the five methods.

Fig. 3. Box-plot of the ranks of individual runs over all problem domains

198 D. Meignan et al.

Fig. 4. Box-plot of the ranks of individual runs per problem domains

Figure 3 is the box-plot over all problem domains, and Fig. 4 gives the box-
plot separated by problem domains. These box-plots are obtained by ranking
individual runs for each problem instance. A run can take a value between 1 and
50 considering that it is ranked among the 50 runs carried out on the instance (5
methods and 10 runs per instances). Center lines on box-plots represent median
ranks, and the additional dots in Fig. 3 give the means. For instance, in Fig. 3
the median values for HH-probe and ILS-probe indicate that half of the runs of
HH-probe are ranked between 1 and 21, and half of the runs of ILS-probe are
ranked between 1 and 13.

The box-plots give another picture of the results, more accurate than the
CHeSC’2011 scoring system. The small advantage of HH-probe over ILS-probe
is inverted, and the gap between HH-probe and ILS is not visible anymore. It
is worth noting that the CHeSC’2011 scoring system is, to some extent, limited
outside the context of a competition. It is based on median values and does not
take into account variances. In addition, the non-linearity of score rewards per
instance favor focused performances instead of robust performances.

The box-plot in Fig. 3 confirms the advantage of HH-probe and ILS-probe
over Pilot-D1. Contrary to HH-probe and ILS-probe, the Pilot-D1 approach
has no explicit intensification and diversification phases. These observations
suggest that a look-ahead mechanism which extends a general diversification-
intensification pattern is more appropriate than a pure look-ahead approach at
this level of granularity for search operators (i.e., for operators that perform few
local-search moves).

As previously mentioned, the box-plot in Fig. 3 does not reveal clear differ-
ences between HH-probe, ILS-probe, and ILS. A t-test per instance has been per-
formed to compare HH-probe against ILS, and ILS-probe against ILS. The level
for statistical significance has been fixed at 5%. A summary of the results is pre-
sented in Table 4. The first line of values is the number of problem instances for
which HH-probe and ILS-probe performed significantly better than ILS. The sec-
ond line is for significantly worse results than ILS, and the last line indicates
the number of problem instances for which results are not significantly different.

Two Look-Ahead Strategies for Local-Search Metaheuristics 199

Table 4. Summary of t-tests comparing HH-probe vs. ILS and ILS-probe vs. ILS

HH-probe vs. ILS ILS-probe vs. ILS

Significantly better than ILS 7 10

Significantly worse than ILS 8 0

No significant difference with ILS 15 20

Note that no adjustment for repeated tests has been applied, thus small differ-
ences in the reported sums cannot be considered as significant.

For HH-probe, Table 4 shows similar results between HH-probe and ILS.
Looking at the results separated by problem domain, the only problem where
HH-probe has significantly better or equal results than ILS is PS. This result is
visible in Fig. 4 where HH-probe obtains the best results on PS. It is interesting
to note that for this problem domain, the number of iterations is limited due
to the high computational cost of search operators. A direct consequence of this
strong time constraint is that the random-walk strategy obtains relatively good
results. Moreover, the fact that HH-probe obtains the best results on PS could
be related to the strategy for selecting operators. Contrary to ILS-probe and ILS
where LS operators are considered as complementary, in HH-probe, LS operators
compete with each other during the probing phase. This look-ahead strategy in
HH-probe seems more adequate when the time constraint is strong.

For ILS-probe, Table 4 provides strong evidence that ILS-probe outperforms
ILS. The results of ILS-probe are significantly better than ILS on 10 problem
instances, and no result is significantly worse than ILS. These results confirm
the efficiency of the look-ahead strategy in ILS-probe.

4.2 Impact of the Look-Ahead Width in ILS-Probe

Based on Table 4, the method ILS-probe shows the most promising results. Thus
we focus in this second part of our numerical study on a detailed investigation
of ILS-probe. More specifically, we analyze the impact of the number of probing
solutions in ILS-probe. This parameter corresponds to the look-ahead width
denoted w in Algorithm 2. The introduction of two parameters, w and d which
control the extent of the probing phase, is the main drawback of the look-ahead
strategy in ILS-probe. After a preliminary analysis, it appeared that the number
of probing solutions w is the most difficult parameter to fix in comparison to the
probing depth d.

Table 5 presents a comparison between different configurations of ILS-probe.
In the set of configurations, the number of probing solutions varies between 1 and
20. The first configuration with a probing size of 1 corresponds to ILS. Pairwise
comparisons between each configuration are performed using a t-test (α = 5%)
and the number of comparisons with significantly better and significantly worse
results is reported in the table. Columns labeled “>” indicate the number of
significantly better results than other configurations, and columns “<” are for

200 D. Meignan et al.

Table 5. Performance comparison of varying probing sizes for ILS-probe

Dom. Inst. ILS 2 4 6 8 10 12 14 16 18 20

< > < > < > < > < > < > < > < > < > < > < >

SAT 3 6 0 0 6 0 3 0 3 0 3 1 2 1 1 1 1 0 2 4 0 8 0

5 4 0 0 4 0 5 0 5 0 4 0 3 0 2 2 2 7 0 5 0 7 0

4 5 0 0 9 1 4 0 1 1 3 1 1 1 0 3 0 1 0 3 0 2 0

10 10 0 0 8 0 4 0 4 1 3 1 3 1 2 6 1 3 1 1 1 5 1

11 9 0 0 1 0 5 0 1 0 1 1 1 1 0 0 1 0 1 1 1 1 1

BP 7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0

1 0

9 0 0 0 0 1 0 1 0 0 0 0 0 0 4 1 0 0 0 0 0 1 0

10 4 2 0 9 1 7 0 7 1 6 3 3 4 2 4 2 5 2 9 0 9 0

11 0 4 0 2 0 2 0 1 0 2 0 2 1 1 0 1 1 0 5 0 8 0

PS 5 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0

8 0 0 0 5 0 3 0 0 0 2 1 0 0 3 1 0 4 0 3 0 4 0

10 0 4 0 6 0 1 2 0 0 1 0 0 4 0 1 0 1 0 2 0 2 0

11 0

FSP 1 3 0 0 0 0 2 0 2 0 0 0 2 0 0 0 0 0 0 3 0 0 0

8 0 1 0 0 0 4 1 0 0 0 1 0 0 0 0 0 1 0 2 0 0 0

3 1 0 0 5 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

10 7 0 0 5 0 1 0 2 0 2 0 0 0 1 1 1 3 0 1 1 1 0

11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 2 0 0

TSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

8 10 0 0 1 0 2 0 2 0 2 0 2 0 2 0 2 8 1 0 2 0 2

2 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 3 0 0 0 0 1 0 3 0 3 2 0 0 0 0 0 0 0 0 0 2 0

6 0 2 0 2 0 2 0 2 0 2 0 2 7 0 0 0 7 0 0 2 0 0

VRP 6 4 1 0 9 0 9 2 6 2 6 4 1 2 2 4 0 4 1 8 0 5 0

2 9 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1

5 10 0 8 1 3 1 0 2 0 2 0 3 0 3 0 2 0 3 0 2 0 2

1 8 0 0 1 0 1 0 1 0 2 0 1 0 1 0 1 1 0 0 1 0 0

9 10 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Avg. 3.4 0.5 0.3 2.6 0.2 2.0 0.3 1.5 0.2 1.5 0.5 0.9 0.8 0.9 0.9 0.5 1.5 0.5 1.6 0.5 1.8 0.3

worse results. For instance, the ILS configuration on SAT-3 performs significantly
worse than six other configurations, and never performs significantly better than
the other configurations. Values in bold font indicate the cases where the number
of significantly better results is superior to significantly worse results.

We observe from average values given at the end of Table 5 that all configu-
rations of ILS-probe with a probing size between 2 and 20 outperform ILS. The
worse configuration of ILS-probe corresponds to a probing size of 20, with an
average of 1.8 significantly worse and 0.3 significantly better results against 3.4
worse and 0.5 better results for ILS. This result has been confirmed by pairwise
t-tests between only ILS and the 10 configurations of ILS-probe. The main con-
clusion is that ILS-probe is robust for a large range of values of the parameter w.
Additional comparisons between ILS-probe and HH-probe, ILS, and Random-
walk indicate that a probing size between 4 and 6 gives the better results on the
CHeSC’2011 benchmark.

Two Look-Ahead Strategies for Local-Search Metaheuristics 201

5 Conclusion

We have introduced two novel look-ahead methods, first a method-based, and
second a solution-based one. Both approaches are trajectory-based methods,
more precisely, extensions of ILS. For realizing the two look-ahead metaheuris-
tics, we used the concept of problem independence coming from hyper-heuristics,
in particular we implemented the methods within the HyFlex software frame-
work. We first pointed out that the look-ahead method ILS-probe outperforms
the pure ILS approach which leads to the conclusion that the time spent in a
probing phase is compensated. Moreover, we showed that our approaches lead to
better results than a basic look-ahead approach published in an earlier work [11].
This leads to the observation that a pure look-ahead approach can be improved
by adding intensification and diversification activities. Moreover, our results rec-
ommend the application of statistical methods such as t-tests for evaluating
the results of hyper-heuristics. Compared to the scoring system proposed for
the CHeSC’2011 competition [3] much more detailed conclusions can be drawn.
Finally, we have a particular focus on ILS-probe and investigate the influence of
the probing size. This again confirms the superior results obtained by ILS-probe
compared against a pure ILS. Moreover, the success of particular probing sizes
gives raise to the idea of implementing adaptive probing sizes.

Motivated by the positive outcomes obtained through the inclusion of look-
ahead strategies, a future step will be to apply a similar enhancement to fur-
ther methods. In addition, another promising extension of the presented work
is to combine the two levels of look-ahead incorporated in HH-probe and ILS-
probe, respectively, within a hybrid approach. It was noted that HH-probe per-
formed well when local-search is expensive with respect to time budget, and such
hybridization may be interesting to adapt the search strategy according to time
restrictions.

References

1. Bertsekas, D.P., Tsitsiklis, J.N., Wu, C.: Rollout algorithms for combinatorial opti-
mization. J. Heuristics 3, 245–262 (1997)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

3. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa, G.,
Parkes, A.J., Petrovic, S.: The cross-domain heuristic search challenge – an inter-
national research competition. In: Coello, C.A.C. (ed.) LION 5. LNCS, vol. 6683,
pp. 631–634. Springer, Heidelberg (2011)

4. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A
classification of hyper-heuristic approaches. In: Gendreau, M., Potvin, J.-Y. (eds.)
Handbook of Metaheuristics. International Series in Operations Research & Man-
agement Science, vol. 146, pp. 449–468. Springer, Heidelberg (2010)

5. Duin, C., Voß, S.: The pilot method: a strategy for heuristic repetition with appli-
cation to the Steiner problem in graphs. Networks 34, 181–191 (1999)

202 D. Meignan et al.

6. Frost, D., Dechter, R.: Look-ahead value ordering for constraint satisfaction prob-
lems. In: Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, pp. 572–578 (1995)

7. Hansen, P., Mladenović, N., Brimberg, J., Pérez, J.A.M.: Variable neighborhood
search. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. Inter-
national Series in Operations Research & Management Science, vol. 146, pp. 61–86.
Springer, New York (2010)

8. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. International Series in
Operations Research & Management Science, vol. 57, pp. 320–353. Springer,
Heidelberg (2003)

9. Ochoa, G., et al.: HyFlex: a benchmark framework for cross-domain heuristic
search. In: Hao, J.-K., Middendorf, M. (eds.) EvoCOP 2012. LNCS, vol. 7245,
pp. 136–147. Springer, Heidelberg (2012)

10. Ochoa, G., Walker, J., Hyde, M., Curtois, T.: Adaptive evolutionary algorithms
and extensions to the hyflex hyper-heuristic framework. In: Coello, C.A.C., Cutello,
V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part II. LNCS,
vol. 7492, pp. 418–427. Springer, Heidelberg (2012)

11. Schwarze, S., Voß, S.: Look ahead hyper heuristics. In: Fink, A., Geiger, M. (eds.)
Proceedings of the 14th EU/ME Workshop, pp. 91–97 (2013)

12. Voß, S., Fink, A., Duin, C.: Looking ahead with the pilot method. Ann. Oper. Res.
136, 285–302 (2005)

An Evolutionary Algorithm
for the Leader-Follower Facility Location

Problem with Proportional Customer Behavior

Benjamin Biesinger(B), Bin Hu, and Günther Raidl

Institute of Computer Graphics and Algorithms, Vienna University of Technology,
Favoritenstraße 9-11/1861, 1040 Vienna, Austria

{biesinger,hu,raidl}@ads.tuwien.ac.at

Abstract. The leader-follower facility location problem arises in the
context of two non-cooperating companies, a leader and a follower, com-
peting for market share from a given set of customers. In our work we
assume that the firms place a given number of facilities on locations taken
from a discrete set of possible points. The customers are assumed to
split their demand inversely proportional to their distance to all opened
facilities. In this work we present an evolutionary algorithm with an
embedded tabu search to optimize the location selection for the leader.
A complete solution archive is used to detect already visited candidate
solutions and convert them into not yet considered ones. This avoids
unnecessary time-consuming re-evaluations, reduces premature conver-
gence and increases the population diversity at the same time. Results
show significant advantages of our approach over an existing algorithm
from the literature.

Keywords: Competitive facility location · Evolutionary algorithm ·
Solution archive · Bi-level optimization

1 Introduction

We consider a competitive facility location problem in which two decision makers,
a leader and a follower, compete for market share. They choose given numbers of
facility locations from a finite set of possible positions in order to satisfy clients,
whereas the leader starts by placing all of his facilities. Each customer has a
fixed demand which is assumed to be fulfilled by all opened facilities together
inversely proportional to their distance. In this respect the considered model is
for many real-world scenarios more precise than simpler leader-follower location
problems where a customer’s whole demand is assumed to be satisfied by its
closest facility only. Demands correspond to the buying power of the customers,
so the turnover of the competing firms increases with the amount of fulfilled
demand.

This work is supported by the Austrian Science Fund (FWF) under grant P24660.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 203–217, 2014.
DOI: 10.1007/978-3-319-09584-4 19

204 B. Biesinger et al.

We propose an evolutionary algorithm (EA) that tries to find best possible
facility locations for the leader so that his turnover is maximized with respect to
a follower who is assumed to place his facilities optimally, i.e., aiming at lowering
the leader’s revenue. Therefore, for a given set of facility locations of the leader
we have to find an optimal set of facility locations of the follower in order to
obtain an accurate revenue value the leader can achieve. This makes the problem
a bi-level optimization problem. Finding the optimal locations for the follower,
which can be seen as evaluating a candidate leader solution, unfortunately is
a time-consuming procedure so we want to avoid unnecessary computations.
Consequently, we employ a complete solution archive which is a data structure
that stores all generated candidate solutions and converts created duplicates
into guaranteed not yet considered solutions. Using this archive together with a
tabu-search for locally improving solutions within the EA, we are able to reduce
premature convergence, loss of diversity and, as already mentioned before, costly
re-evaluations of duplicates.

In Sect. 2 we define the problem more formally. Related work is presented
in Sect. 3, which is followed by a description of a mathematical model for the
leader-follower facility location problem with proportional customer behavior
in Sect. 4. Section 5 introduces our evolutionary algorithm and its extensions.
Section 6 discusses our computational results and compares our method to an
approach from the literature. Finally, we draw conclusions in Sect. 7 and give an
outlook on further promising research questions.

2 Problem Definition

In the following we will formally define the leader-follower facility location prob-
lem with proportional customer behavior. Given are the numbers r ≥ 1 and
p ≥ 1 of facilities to be opened by the leader and follower, respectively, and a
weighted complete bipartite graph G = (I, J,E) where I = {1, . . . , m} repre-
sents the set of potential facility locations, J = {1, . . . , n} represents the set of
customers, and E = I × J , is the set of edges indicating corresponding assign-
ments. Let wj > 0,∀j ∈ J , be the demand of each customer, which corresponds
to the turnover to be earned by the serving facilities, and dij ≥ 0,∀(i, j) ∈ E,
be the distances between customers and potential facility locations. The goal for
the leader is to choose exactly p locations from I for opening facilities in order to
maximize her turnover under the assumption that the follower in turn chooses
r locations for his facilities optimally maximizing his turnover.

Each customer j splits her demand over all opened facilities. The amount
of demand that a facility fulfills is inversely proportional to its distance to the
customer. In the following we give a formal definition of a candidate solution
and the turnover computation. Let (X,Y) be a candidate solution to our leader-
follower facility location problem, where X ⊆ I, |X| = r, is the set of locations
chosen by the leader and Y ⊆ I, |Y | = p, is the associated set of follower loca-
tions. Furthermore, let xi = 1 if i ∈ X and xi = 0 otherwise, and yi = 1 if i ∈ Y
and yi = 0 otherwise, ∀i ∈ I. Then, the turnover of the follower is

An EA for the Leader-Follower Facility Location Problem 205

pf =
∑

j∈J

wj

∑

i∈I

1
dij+1xi

∑

i∈I

1
dij+1xi +

∑

i∈I

1
dij+1yi

and the turnover of the leader is

pl =
∑

j∈J

wj − pf .

Note that one is added to the original distances dij just to avoid numerical
problems with zero distances which might occur when considering the same
locations for facilities and customers.

3 Related Work

Competitive facility location problems are an old type of problem introduced
by Hotelling [8] in 1929. He considers two sellers placing one facility each on a
line. In the last years many variations were considered that differ in the way the
competitors can open their facilities and in the behavior of the customers. Kress
and Pesch give an overview of competitive location problems in networks in [11].

The discrete (r|p)-centroid problem is a competitive facility location problem
introduced by Hakimi [7]. In this problem two decision makers can place given
numbers of facilities on specific locations and each customer’s demand is always
fulfilled by the closest facility. Alekseeva et al. [1–3] present several heuristic and
exact solution approaches. Laporte and Benati [13] developed a tabu search and
Roboredo and Pessoa [17] describe a branch-and-cut algorithm.

The leader-follower facility location problem with proportional customer
behavior which we consider here differs only in the way how customer demands
are satisfied. For this frequently more realistic problem variant not much previ-
ous work exists, and unfortunately it is not trivial to extend existing approaches
for the (r|p)-centroid problem. Kochetov et al. [10] developed a matheuristic for
a more general problem variant that contains our problem as a special case. They
assume that for each location several so-called design scenarios are possible. All
of a location’s design scenarios have different fixed costs and different attractive-
ness for the customers. Both competitors have a fixed budget and must choose
the facility locations and the design scenarios for these locations in order to max-
imize their profit. In their work the customers split their demand proportionally
to the attractiveness of a facility and inversely proportional to the distance to
each facility. The authors suggest an alternating heuristic to solve this problem
which is derived from an alternating heuristic developed for the (r|p)-centroid
problem with continuous facility locations in [4]. Based on a starting solution
for the leader they find the optimal facility locations for the follower. This fol-
lower solution is subsequently chosen as leader solution and the optimal follower
solution is found again. This procedure is repeated until a solution is obtained
which has already been generated. In Sect. 6 we compare our approach to their
algorithm.

206 B. Biesinger et al.

Vega et al. [21] give an overview on the different customer choice rules of
competitive multifacility location problems. They consider six different scenarios
of customer behavior, including binary, partially binary, proportional as well as
essential and unessential goods. The authors assume that the facilities can be
placed anywhere on the plane and give discretization results for several customer
choice rules.

Fernández and Hendrix [5] study recent insights in Huff-like competitive facil-
ity location and design problems. In their survey article they compared three dif-
ferent articles [12,19,20] describing all the same basic model. In all three papers,
for each facility a quality level has to be determined similar to the design scenar-
ios used in Kochetov [10] and fixed costs for opening facilities incur. Küçükaydin
et al. [12] and Saidani et al. [19] assume that the competitor is already in the
market and in Sáiz et al. [20] focus on finding a nash equilibrium of two com-
petitors entering a new market opening only one facility each.

4 Mathematical Model

We present a mathematical non-linear bi-level model for our problem which
is derived from Kochetov et al. [10]. Let vij = 1

dij+1 be the attractiveness of
location i for customer j. The upper level problem (leader’s problem) is:

max
∑

j∈J

wj

∑

i∈I

vijxi

∑

i∈I

vijxi +
∑

i∈I

vijy∗
i

(1)

s.t.
∑

i∈I

xi = p (2)

xi ∈ {0, 1} ∀i ∈ I (3)

where (y∗
1 , . . . , y

∗
m) is an optimal solution to the lower level problem (follower’s

problem):

max
∑

j∈J

wj

∑

i∈I

vijyi
∑

i∈I

vijxi +
∑

i∈I

vijyi
(4)

s.t.
∑

i∈I

yi = r (5)

yi ∈ {0, 1} ∀i ∈ I (6)

The objective functions (1) and (4) maximize the sum of the fulfilled demand
by the leader and the follower, respectively, considering the splitting over the
facilities inversely proportional to their distances. Constraint (2) ensures that

An EA for the Leader-Follower Facility Location Problem 207

the leader opens exactly p facilities and, similarly, constraint (5) guarantees
that the follower places exactly r facilities. Note that the follower in principle
is allowed to open facilities at the same locations as the leader. All of the xi

variables are considered constants in the follower’s problem.
In order to be able to solve the follower’s problem more efficiently Kochetov

et al. [10] suggest a linear transformation of this model, which is as follows. First,
we introduce two new kinds of variables:

zj =
1

∑

i∈I

vijxi +
∑

i∈I

vijyi
∀j ∈ J (7)

and

yij = wjzjvijyi ∀i ∈ I, j ∈ J. (8)

Variables yij have the intuitive meaning that they are the demand of customer
j that is supplied by the follower facility at location i. It is obvious that if we
are able to model the non-linear equation (8) in a linear way such that equation
(7) is valid we get a model that is equivalent to (4–6). This is realized by the
following mixed integer linear program (MIP):

max
∑

j∈J

∑

i∈I

yij (9)

s.t. (5), (6) and
∑

i∈I

yij + wjzj
∑

i∈I

vijxi ≤ wj ∀j ∈ J (10)

yij ≤ wjyi ∀i ∈ I, j ∈ J (11)
yij ≤ wjvijzj ≤ yij + W (1− yi) ∀i ∈ I, j ∈ J (12)
yij ≥ 0, zj ≥ 0 ∀i ∈ I, j ∈ J (13)

Objective function (9) maximizes the turnover obtained by the follower. Con-
straints (10) set the variables yij by restricting them not exceed the total demand
of customer j minus the demand captured by the leader. The fact that a facility
location i can only get some turnover from customer j when the follower opens
a facility there is ensured by constraints (11). Finally, equation (8) is fulfilled
because of constraints (12).

Constant W is chosen large enough, so that an optimal solution to this
model satisfies equations (7), i.e., W = max

j∈J
(wj) · max

i∈I,j∈J
(vij) ·max

j∈J
(zj), where

max
j∈J

(zj) ≤ max
j∈J

(1/
∑

i∈I

vijxi) because of constraints (10). Due to constraint (12)

with its W , the linear programming (LP) relaxation of this model unfortunately
is relatively weak, therefore finding an optimal solution to this model using a gen-
eral purpose mixed integer programming solver like CPLEX is time-consuming
even for small instances. Nevertheless, this model is still easier to solve than
(4–6) directly.

208 B. Biesinger et al.

5 Evolutionary Algorithm

In this section we present an EA that aims to find the optimal solution to
the leader’s problem. We use an incomplete solution representation only storing
the facilities of the leader indicated by the binary vector x = (x1, . . . , xm).
For augmenting the incomplete leader solution, which can also be seen as the
evaluation of a candidate leader solution, the follower’s problem has to be solved.
As solving this problem exactly is time-consuming, a greedy evaluation procedure
is used for approximating the quality of intermediate leader solution candidates,
which is described in the next section. Only at the end of the EA the best solution
found is evaluated using the MIP of Sect. 4 to get an exact objective value.
After explaining the greedy solution evaluation we will introduce the EA with
its variation operators, the complete solution archive, and finally the embedded
tabu-search-based local improvement method.

5.1 Greedy Solution Evaluation

The greedy evaluation procedure tries to find a near-optimal solution to the
follower’s problem in short time. It performs by iteratively selecting a locally best
possible position for opening a facility, until all r follower facilities are placed.
A currently best possible location is determined by computing the turnover of
the follower for all possible locations using a function similar to the objective
function of the leader’s problem (4):

pf(y) =
∑

j∈J

wj

∑

i∈I

vijyi
∑

i∈I

vijxi +
∑

i∈I

vijyi
, (14)

where y = (y1, . . . ym) is the partial solution vector of the follower containing
all so far opened facilities and additionally the candidate location. Then, a loca-
tion with the highest turnover is chosen; ties are broken randomly. The value
obtained from this procedure is a lower bound to the follower’s problem and
therefore

∑

j∈J

wj − pf(y) is an upper bound to the objective value of the leader’s

solution.

5.2 Initial Population/EA Framework and Variation Operators

The EA’s initial population is created by choosing p different facility locations
uniformly at random to ensure a high diversity at the beginning. We employ
a steady-state genetic algorithm in which exactly one new candidate solution
is derived in each iteration. It always replaces the worst individual of the pop-
ulation. Binary tournament selection with replacement is used to choose two
candidate solutions for recombination. Offsprings further undergo mutation.

Recombination works as follows. Suppose that we have two candidate solu-
tions X1 ⊂ I and X2 ⊂ I. Then an offspring X ′ of X1 and X2 is derived by

An EA for the Leader-Follower Facility Location Problem 209

adopting all locations from S = X1 ∩ X2 and adding p − |X1 ∩ X2| further
locations from (X1 ∪X2) \ S chosen uniformly at random.

Mutation is based on the swap neighborhood structure, which is also known
from the p-Median problem [22]. A swap move closes a facility and re-opens it
at a different, so far unoccupied position. Our mutation applies μ random swap
moves, where μ is determined anew at each EA-iteration by a random sample
from a Poisson distribution with mean value one.

5.3 Solution Archive

Several methods for duplicate detection in genetic algorithms have been proposed
in the literature [14,15,18]. In contrast to simple hashing-based approaches, there
exist a few works where the archive is not just used to recognize duplicates, but
more importantly to also efficiently convert them into similar not yet considered
solutions. Such an operation can also be considered as “intelligent mutation”.
Yuen and Chow [23] present such an approach for continuous optimization prob-
lems. For the application to our problem a variation of the trie-based complete
solution we proposed in [16] is most suitable. Tests on benchmark problems with
binary solution representations, including NK landscapes and Royal Road func-
tions as well as the Generalized Minimum Spanning Tree Problem [9] proved
that such an archive is able to boost an EAs performance substantially, espe-
cially when the solution evaluation is costly.

A complete solution archive is a data structure that stores all generated can-
didate solutions in a compact way. An evolutionary algorithm can benefit from
such an archive because an on-the-fly conversion of already visited solutions
increases diversity in the population, reduces the danger of premature conver-
gence and re-evaluations of already visited solutions are avoided completely.
Another rather theoretical property of such an archive-enhanced EA is that in
principle it is a complete optimization approach yielding a guaranteed optimal
solution in bounded time after considering all solutions of the search space. In
practice, however, such an EA usually will be terminated earlier, still yielding
only a heuristic solution.

For the underlying data structure we use an indexed trie, which is a tree
data structure often applied in dictionary applications [6]. For the performance
of a solution archive it is important that inserting, searching and converting
a solution can be performed efficiently. A trie is exceptionally good for this
purpose because all these operations can be implemented in O(m) time, where
m is the length of the solution representation, i.e., independent of the number
of solutions it contains. In general each trie node consists of |A| pointers to
successor nodes, indexed by the elements of A, where A is the domain of a
solution vectors elements, i.e., A = {0, 1} in our case. The maximum height of
the trie is determined by the length of the solution vector m.

We combine the EA and the solution archive as follows: Each time a candidate
solution is created, we check if this solution is already contained in the archive. In
case it is a duplicate it is converted on-the-fly into a not yet considered solution.

210 B. Biesinger et al.

Then the new solution is inserted into the archive and transferred back to the
EA, where it is integrated into the population.

Trie Operations. We now describe the problem-specific trie operations which
are based on the general methods described in [16]. For inserting a solution into
the trie we start at the root node of the trie with the first element x1 of the
solution vector. On each level i = 1, . . . ,m− 1 of the trie we follow the pointer
indexed by xi. At the lowest level m − 1, a special constant pointer “C”, also
called complete, is stored to finally represent the solution. Intermediate nodes
are always only created when needed and null -pointers (“/”) indicate empty
subtries. Note that such a trie also has a strong relationship to an explicitly
stored branch-and-bound tree, as each node divides the search space into two
subspaces. Additionally, a subtrie can be pruned if it contains only solutions
that have already been visited, i.e., if both of its children are complete then
this node is deleted and the corresponding entry in the parent node is set to
complete. On the lefthand side of Fig. 1 a sample trie for a small instance with
m = 7 and p = 3 is shown. This trie contains the solutions (0, 0, 1, 1, 0, 0, 1),
(0, 1, 0, 1, 1, 0, 0), and (0, 0, 1, 0, 1, 1, 0). The crossed out trie node is pruned by
invalidity, which is explained in the next paragraph.

Apart from this basic insertion procedure we use some modifications for our
type of problem, exploiting the fact that exactly p variables must be set to

level 1

level 2

level 3

level 4

level 5

level 6

level 7

root

/ /

/

/

/

/

/

0 1

0 1

0 1 0 1

0 1 0 1

0 1 0 10 1

0 1 0 1

0 1

/

/

root

/

/

/

/

/

/

0 1

0 1

0 1

0 1

0 1

0 1

0 1

/
0 1

0 10 1

0 1 0 1

deviation position

/

/

Fig. 1. Solution archive with some inserted solutions on the lefthand side and a sample
conversion of (0, 0, 1, 1, 0, 0, 1) into the new solution (0, 1, 1, 1, 0, 0, 0) on the righthand
side.

An EA for the Leader-Follower Facility Location Problem 211

one in any feasible solution. First, we can stop the insertion procedure already
when encountering the p-th one by storing a “C”. All remaining elements of the
solution must be set to zero. This explains the different depths of the branches
in Fig. 1. The second adjustment is that we prune the trie by cutting off subtries
containing only invalid solutions. Whenever a one is considered for a solution to
be inserted, we check if enough facilities would still fit if instead a zero would be
chosen. If this is not the case, a corresponding pointer indexed by zero is set to
complete to indicate that there are no valid solutions in that subtrie. In Fig. 1
this is done at the crossed out trie node. These modifications ensure that the
trie always is as compact as possible.

The search procedure is similar to the insertion described above because we
also start at the root and follow the child nodes corresponding to the solution
vector but we are not modifying any trie node. Instead, we conclude that the
solution is contained in the trie when we encounter a complete pointer and that
the solution is new if we reach a null -pointer, respectively.

For converting a contained solution (x1, . . . , xm) into a similar but not yet
stored one we first choose a position where we will alter the solution. This is
done by first determining all feasible deviation positions i ∈ I, for which the
corresponding trie nodes at the search path do not contain complete for 1− xi.
From these possibilities, one deviation position is then selected uniformly at
random. Should no feasible deviation position exist anymore, we know that the
whole search space has been covered and we can stop the whole optimization with
the so far best solution being an optimum. In this case the whole trie has been
reduced to a single complete pointer. Otherwise, we change the element at the
deviation position from one to zero or the other way around which corresponds
to closing or opening a facility at location i, respectively. In contrast to previous
trie-based solution archives, we have to make another change at a later position
for ensuring that p variables are set to one again. There are two possible cases
depending on the pointer at the deviation position.

– If it is a null -pointer, we know that the corresponding subspace has not been
explored yet, which means that any feasible solution from this point on is a
new one. Therefore, if we have to close a facility, we choose randomly from
the set of open facilities with an index greater than i, set the corresponding
variable xi to zero, and insert the remaining solution as usual into the new
trie branch. The case when we have to open a facility is handled analogously.

– If the pointer at the deviation position points towards a successive trie node,
we go to this node and consider its pointers. If one of them is complete, we
have no choice but to follow the other one. Otherwise, we prefer the pointer
corresponding to the original solution’s variable value, i.e., we follow at level
j the pointer indexed by xj , and repeat the process until we end up in a
null -pointer. From there we proceed analogously as in the first case and apply
the remaining necessary modification(s) randomly to the remaining solution
elements. This procedure is guaranteed to terminate with a feasible solution
because there must be at least one null -pointer in each subtrie.

212 B. Biesinger et al.

On the righthand side of Fig. 1 an example of a conversion is illustrated. Sup-
pose that the already existing solution x = (0, 0, 1, 1, 0, 0, 1) shall be converted
and inserted. Upon reaching the complete pointer, a deviation point is chosen
randomly – in this case i = 2. Since the alternative entry at 1 − x2 points to
another trie node, we follow it to the corresponding branch. There we replace
the null pointer at position one by inserting a new subtrie branch because the
element of the original solution x3 = 1. Then we close a random facility with an
index greater than 3 – in this case facility at location 7 is chosen – which results
in the new solution (0, 1, 1, 1, 0, 0, 0).

Since the conversion procedure can only change solution elements from the
deviation position on, it might induce an undesirable bias, i.e., positions with
higher indices tend to be changed more often than elements with lower indices. In
order to handle this problem, a technique called trie randomization is employed,
which was already used in [16] and is described in detail there. Instead of dividing
the search space at level i ∈ {1, . . . , m} according to the value of element xi,
we decide randomly for each trie-node which remaining element is used for this
purpose. The elements’ index is then stored along with the trie node. Figure 2
shows an example of a randomized trie. Although this technique does not avoid
biasing completely, it is substantially reduced.

5.4 Local Improvement

Each new candidate solution derived in the EA via recombination and mutation
whose objective value lies within a certain distance from the so far best solution
value further undergoes a local improvement step. It is based on a local search
applying the swap neighborhood structure already used for mutation. The best
improvement step function is used, so all neighbors of a solution that are reach-
able via one swap move are considered and evaluated and the best one is selected
for the next iteration. This procedure terminates when no superior neighbor can
be found.

In cooperation with the solution archive this basic local improvement pro-
cedure is extended to a tabu search variant where the solution archive acts as

Fig. 2. A randomized trie

An EA for the Leader-Follower Facility Location Problem 213

tabu list. When enumerating the swap neighborhood of a candidate solution,
we check for each neighbor solution if it has already been visited before, i.e.,
is contained in the solution archive. Only so far unvisited solutions are evalu-
ated and the best one is selected for the next iteration, even if it is worse than
the original solution; ties are broken randomly. This process is repeated for α
iterations without improving the objective value or until there is no more unvis-
ited neighbor solution. Note that our approach differs from classical tabu search
implementations since we do not consider move attributes to be black-listed in
a tabu list of limited length but are using the solution archive instead.

6 Computational Results

In this section we present computational results of our approach and compare
them to results from the literature. We consider instances from the Discrete
Location Problems library1 which are also used by Kochetov et al. [10]. In these
instances each customer location corresponds to a possible facility location, i.e.,
I = J . There are 50 such locations and they are chosen randomly on an Euclidean
plane of size 100× 100. The demand of each customer is randomly drawn from
{1, . . . , 10} and the number of facilities to be opened is taken from {2, . . . , 5} for
the follower and {2, . . . , 10} for the leader. We further generated larger instances2

with same properties but 100 locations, i.e., m = n = 100. In total we considered
72 test instances.

The EA has a population size of 100 and has been terminated after 3000
iterations without improvement or after 300 seconds. The termination parameter
α for the tabu-search-based local search is set to five. Local search/tabu search
is called for each candidate solution whose objective value lies within 1% of
the best solution found so far. After the EA finishes, the final best solution is
evaluated exactly by solving the MIP from Sect. 4 and using the best greedy
solution as starting solution with CPLEX 12.5. All tests are performed on a
single core of an Intel Xeon Quadcore with 2.54 GHz.

First we evaluate the impact of the solution archive on the results in Table 1.
We compare following algorithms:

– The EA variant where the final best solution is not evaluated with the MIP.
This means that the corresponding objective values are not exact, but only
approximate values from the greedy evaluation method.

– The Alternating Heuristic (AH) by Kochetov et al. [10].
– The EA variant (EA+MIP) that does not employ the archive and utilizes the

basic local search only; the final best solution is evaluated with MIP.
– The EA variant (EA+SA+MIP) that uses the solution archive and the tabu

search as local improvement method; the final best solution is evaluated with
MIP.

1 http://math.nsc.ru/AP/benchmarks/Design/design en.html
2 www.ads.tuwien.ac.at/w/Research/Problem Instances#

Competitive Facility Location Problems

http://math.nsc.ru/AP/benchmarks/Design/design_en.html
www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems
www.ads.tuwien.ac.at/w/Research/Problem_Instances#Competitive_Facility_Location_Problems

214 B. Biesinger et al.

Table 1. Results on small instances with m = n = 50 locations. We compare the
EA before the exact evaluation (EA), the Alternating Heuristic (AH), the EA with
exact evaluation (EA+MIP) and the EA with exact evaluation and solution archive
(EA+SA+MIP).

r p EA AH EA + MIP EA + SA + MIP

obj′ sd t[s] obj t[s] obj sd t[s] obj sd t[s]

2 2 127,000 0,00 8 127,000 62 127,000 0,00 27 127,000 0,00 22

2 3 153,000 0,00 10 153,000 395 153,000 0,00 18 153,000 0,00 18

2 4 170,471 0,00 10 170,471 3172 170,471 0,00 18 170,471 0,00 18

2 5 183,338 0,00 15 (182,665) >36000 182,665 0,00 21 182,665 0,00 21

3 2 101,000 0,00 12 101,000 734 101,000 0,00 353 101,000 0,00 337

3 3 127,000 0,00 13 127,000 246 127,000 0,00 103 127,000 0,00 101

3 4 145,478 0,07 21 145,508 1458 145,478 0,07 54 145,508 0,00 49

3 5 159,717 0,00 21 159,112 9144 159,112 0,00 66 159,112 0,00 65

4 2 83,529 0,00 16 83,529 6830 83,529 0,00 3022 83,529 0,00 3018

4 3 108,492 0,00 18 108,492 2468 108,492 0,00 1265 108,492 0,00 1264

4 4 126,962 0,14 29 127,000 1004 126,962 0,14 809 127,000 0,00 795

4 5 140,850 0,03 33 140,891 5490 140,850 0,03 399 140,891 0,00 316

5 2 71,177 0,00 19 (71,177) >36000 71,177 0,00 20296 71,177 0,00 20388

5 3 95,140 0,00 22 94,888 19337 94,888 0,00 9621 94,888 0,00 9860

5 4 113,092 0,09 34 113,109 11060 113,092 0,09 6969 113,109 0,00 7022

5 5 126,983 0,04 55 127,000 9015 126,983 0,04 3020 127,000 0,00 2878

In this table we use small instances with 50 locations and customers where r
and p are chosen from {2, . . . , 5}. Mean objective values of 30 independent runs
are given in columns obj and corresponding standard deviations in columns sd.
Times until termination are listed under t[s] in seconds. For the variant where
no MIP is used, obj′ denotes approximate objective values.

We observe that although the run-time of the EA without archive is in many
cases slightly higher, on all instances the EA with archive performs better or as
good as the EA without archive. Furthermore, AH produces the same results as
our EA with solution archive but requires much more time. The low standard
deviations of the EA indicate that our approach is robust at least for small
instances.

Apart from the short run-times we notice that the objective values obtained
by evaluating the best solution found by the EA using the greedy evaluation
are very close to those obtained by the exact evaluation. The run-time of all
configurations that incorporate the exact evaluation increases steadily with r
because of the quickly growing complexity of the MIP. For larger r this evaluation
is the dominant part of the algorithm, which takes more than five hours in case
of r = 5 and p = 2, while the actual EA usually terminates within one minute.
On this instance and on the instance with r = 2 and p = 5, AH is not even
able to terminate after 10 hours, therefore we show the objective value obtained

An EA for the Leader-Follower Facility Location Problem 215

Table 2. Results on the full set of instances. We compare the modified Alternating
Heuristic (MAH) with our EA with solution archive (EA+SA).

n r p MAH EA + SA n r p MAH EA + SA

obj t[s] obj sd t[s] obj t[s] obj sd t[s]

50 2 2 127,000 19 127,000 0,00 22 100 2 2 277,942 667 278,736 0,00 600

50 2 3 153,000 9 153,000 0,00 18 100 2 3 334,233 535 337,228 0,00 625

50 2 4 170,471 8 170,471 0,00 18 100 2 4 373,665 503 374,425 0,00 674

50 2 5 182,665 7 182,665 0,00 21 100 2 5 399,208 260 401,781 0,00 505

50 2 6 191,771 7 191,771 0,00 23 100 2 6 419,920 275 421,091 0,15 586

50 2 7 198,074 5 198,073 0,00 63 100 2 7 431,803 272 436,123 0,00 440

50 2 8 203,655 5 204,277 0,00 80 100 2 8 446,474 158 448,192 0,18 440

50 2 9 207,761 5 208,698 0,00 190 100 2 9 455,788 166 458,905 0,37 529

50 2 10 211,942 4 212,743 0,00 305 100 2 10 463,211 173 467,055 0,16 416

50 3 2 101,000 322 101,000 0,00 337 100 3 2 (223,153) <1 (223,194) 0,00 27

50 3 3 127,000 87 127,000 0,00 101 100 3 3 276,818 5959 279,000 0,00 6397

50 3 4 145,508 31 145,508 0,00 49 100 3 4 319,427 4128 319,819 0,00 3956

50 3 5 158,68 49 159,112 0,00 65 100 3 5 349,471 3867 349,793 0,00 2703

50 3 6 169,767 22 169,767 0,00 58 100 3 6 372,760 3453 373,836 0,12 2777

50 3 7 178,835 20 178,835 0,00 76 100 3 7 391,314 2086 391,894 0,39 2658

50 3 8 185,516 14 185,419 0,00 139 100 3 8 407,623 1721 407,765 0,08 3148

50 3 9 191,456 11 191,371 0,00 150 100 3 9 419,985 1709 420,305 0,18 2424

50 3 10 196,442 12 196,659 0,00 198 100 3 10 430,465 1299 431,578 0,33 2670

50 4 2 83,529 2839 83,529 0,00 3018 100 4 2 (183,223) <1 (183,223) 0,00 38

50 4 3 108,492 1163 108,492 0,00 1264 100 4 3 (239,527) <1 (239,628) 0,00 83

50 4 4 127,000 716 127,000 0,00 795 100 4 4 (280,336) <1 (280,549) 0,08 126

50 4 5 140,891 256 140,891 0,00 316 100 4 5 (313,041) <1 (313,041) 0,00 157

50 4 6 152,390 199 152,660 0,00 324 100 4 6 (337,158) <1 (337,540) 0,12 242

50 4 7 162,238 138 162,443 0,00 255 100 4 7 (356,575) <1 (358,233) 0,18 267

50 4 8 170,230 99 170,230 0,00 184 100 4 8 (374,436) <1 (375,031) 0,04 300

50 4 9 176,866 80 176,735 0,00 165 100 4 9 (387,975) <1 (389,837) 0,12 300

50 4 10 182,363 54 182,458 0,00 211 100 4 10 (400,421) 1 (401,428) 0,13 300

50 5 2 71,177 19288 71,177 0,00 20388 100 5 2 (156,538) <1 (156,538) 0,00 44

50 5 3 94,888 8985 94,888 0,00 9860 100 5 3 (207,682) <1 (208,025) 0,00 112

50 5 4 113,109 6356 113,109 0,00 7022 100 5 4 (244,959) <1 (248,663) 0,06 212

50 5 5 127,000 2715 127,000 0,00 2880 100 5 5 (279,889) <1 (281,522) 0,00 194

50 5 6 138,819 1674 138,819 0,00 1875 100 5 6 (305,488) <1 (307,129) 0,13 300

50 5 7 148,715 986 147,928 0,00 1884 100 5 7 (327,357) <1 (328,314) 0,05 300

50 5 8 157,348 835 157,348 0,00 1010 100 5 8 (345,947) <1 (346,254) 0,12 300

50 5 9 164,347 612 164,347 0,00 800 100 5 9 (360,572) <1 (362,159) 0,31 300

50 5 10 170,215 322 170,515 0,00 723 100 5 10 (374,737) 1 (374,556) 0,24 300

so far in parentheses. Note that the solution space of instances with p = 2 is
relatively small, so by using the solution archive we are able to enumerate all
possible solutions in the archive.

In order to get a more meaningful comparison between AH and our EA with
solution archive, we compare results on the full instance set with up to n = 100
locations in Table 2. For these tests, we use a modified AH algorithm (MAH)
which solves the follower’s problem with the greedy solution evaluation procedure
and only evaluates the final best solution exactly via MIP in the end. This speeds
up the algorithm significantly so that it is applicable for larger instances and
the run-times become comparable. On small instances with n = 50 and p ≤ 5
we observe that this modification has no negative effects on the results of the

216 B. Biesinger et al.

algorithm at all, therefore we assume that this is a viable approach. On instances
with n = 100, r ≥ 4, even this simplification is not enough since a single exact
solution evaluation using MIP does not terminate within 10 hours. Therefore we
rely on approximations again by using the greedy evaluation method for MAH
and EA and put the objective values in parentheses. In these cases MAH runs
faster than the EA but produces worse results on almost all instances. We also
observe that for small n, r and p values the standard deviations of the EA are
zero, which confirms that our approach is very robust even for larger instances.

7 Conclusions and Future Work

In this work we developed an evolutionary algorithm for the leader-follower facil-
ity location problem with proportional customer behavior incorporating a com-
plete solution archive. We used an incomplete solution representation based on
the leader facilities only and described a MIP and a greedy procedure to evaluate
a candidate solution. Both of the methods are used in our algorithm. The solu-
tion archive is able to significantly improve the results of the otherwise rather
simple EA. Furthermore, we observed the alternating heuristic of Kochetov et al.
is very time-consuming when the follower’s problem is solved exactly. The run-
time can be decreased by using the greedy procedure instead which does not
have a significant negative impact on the results. However, our EA is able to
find solutions that are equally good or even better than those of the Alternating
Heuristic for most of the instances.

Here we considered only the variant where customers split their demand
proportionally among all facilities. There exist several other variants with respect
to customer behaviors in the literature including binary and partially binary
choice. It would be interesting to examine the performance of our approach
when applied to different customer behavior. Another approach for such discrete
competitive facility location problems is to only solve the linear programming
(LP) relaxation of the follower’s problem, which results in a lower bound on the
turnover for a leader solution. When combined with a greedy evaluation, which
yields an upper bound to a leader solution, it is possible to omit some exact or
LP evaluations if the greedy value is lower than the exact or LP solution value
of the best solution found so far.

References

1. Alekseeva, E., Kochetov, Y.: Matheuristics and exact methods for the discrete
(r |p)-centroid problem. In: Talbi, E.-G., Brotcorne, L. (eds.) Metaheuristics for
bi-level Optimization. SCI, vol. 482, pp. 189–220. Springer, Heidelberg (2013)

2. Alekseeva, E., Kochetova, N., Kochetov, Y., Plyasunov, A.: A hybrid memetic
algorithm for the competitive P-median problem. In: Bakhtadze, N., Dolgui, A.
(eds.) Information Control Problems in Manufacturing, vol. 13, pp. 1533–1537.
International Federation of Automatic Control, Boston (2009)

An EA for the Leader-Follower Facility Location Problem 217

3. Alekseeva, E., Kochetova, N., Kochetov, Y., Plyasunov, A.: Heuristic and exact
methods for the discrete (r |p)-centroid problem. In: Cowling, P., Merz, P. (eds.)
EvoCOP 2010. LNCS, vol. 6022, pp. 11–22. Springer, Heidelberg (2010)

4. Bhadury, J., Eiselt, H., Jaramillo, J.: An alternating heuristic for medianoid and
centroid problems in the plane. Comput. Oper. Res. 30(4), 553–565 (2003)

5. Fernández, J., Hendrix, E.M.: Recent insights in huff-like competitive facility loca-
tion and design. Eur. J. Oper. Res. 227(3), 581–584 (2013)

6. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

7. Hakimi, S.: On locating new facilities in a competitive environment. Eur. J. Oper.
Res. 12(1), 29–35 (1983)

8. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)
9. Hu, B., Raidl, G.: An evolutionary algorithm with solution archives and bound-

ing extension for the generalized minimum spanning tree problem. In: Soule, T.
(ed.) Proceedings of the 14th Annual Conference on Genetic and Evolutionary
Computation (GECCO 2012), pp. 393–400. ACM Press, Philadelphia (2012)

10. Kochetov, Y., Kochetova, N., Plyasunov, A.: A matheuristic for the leader-follower
facility location and design problem. In: Lau, H., Van Hentenryck, P., Raidl,
G. (eds.) Proceedings of the 10th Metaheuristics International Conference (MIC
2013), Singapore, pp. 32/1-32/3 (2013)

11. Kress, D., Pesch, E.: (r|p)-centroid problems on networks with vertex and edge
demand. Comput. Oper. Res. 39, 2954–2967 (2012)

12. Küçükaydin, H., Aras, N., Altınel, I.K.: Competitive facility location problem with
attractiveness adjustment of the follower: a bilevel programming model and its
solution. Eur. J. Oper. Res. 208(3), 206–220 (2011)

13. Laporte, G., Benati, S.: Tabu Search Algorithms for the (r|Xp)-medianoid and
(r|p)-centroid Problems. Location Sci. 2, 193–204 (1994)

14. Louis, S., Li, G.: Combining robot control strategies using genetic algorithms with
memory. In: Angeline, P.J., McDonnell, J.R., Reynolds, R.G., Eberhart, R. (eds.)
EP 1997. LNCS, vol. 1213, pp. 431–441. Springer, Heidelberg (1997)

15. Mauldin, M.: Maintaining diversity in genetic search. In: Brachman, R.J. (ed.) Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-84), Austin,
Texas, USA, pp. 247–250 (1984)

16. Raidl, G.R., Hu, B.: Enhancing genetic algorithms by a trie-based complete solu-
tion archive. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp.
239–251. Springer, Heidelberg (2010)

17. Roboredo, M., Pessoa, A.: A branch-and-cut algorithm for the discrete (r|p)-
centroid problem. Eur. J. Oper. Res. 224(1), 101–109 (2013)

18. Ronald, S.: Preventing diversity loss in a routing genetic algorithm with hash
tagging. Complex. Int. 2, 548–553 (1995)

19. Saidani, N., Chu, F., Chen, H.: Competitive facility location and design with reac-
tions of competitors already in the market. Eur. J. Oper. Res. 219(1), 9–17 (2012)

20. Sáiz, M.E., Hendrix, E.M., Pelegŕın, B.: On nash equilibria of a competitive
location-design problem. Eur. J. Oper. Res. 210(3), 588–593 (2011)

21. Suárez-Vega, R., Santos-Peñate, D., Pablo, D.G.: Competitive multifacility loca-
tion on networks: the (r|Xp)-medianoid problem. J. Reg. Sci. 44(3), 569–588 (2004)

22. Teitz, M.B., Bart, P.: Heuristic methods for estimating the generalized vertex
median of a weighted graph. Oper. Res. 16(5), 955–961 (1968)

23. Yuen, S.Y., Chow, C.K.: A non-revisiting genetic algorithm. In: Proceedings of the
IEEE Congress on Evolutionary Computation, (CEC 2007), pp. 4583–4590. IEEE
Press, Singapore (2007)

Towards a Matheuristic Approach for the Berth
Allocation Problem

Eduardo Ańıbal Lalla-Ruiz1(B) and Stefan Voß2

1 Department of Computer Engineering, University of La Laguna,
Santa Cruz de Tenerife, Spain

elalla@ull.es
2 Institute of Information Systems, University of Hamburg, Hamburg, Germany

stefan.voss@uni-hamburg.de

Abstract. The Berth Allocation Problem aims at assigning and schedul-
ing incoming vessels to berthing positions along the quay of a container
terminal. This problem is a well-known optimization problem within
maritime shipping. For solving it, we propose two POPMUSIC (Partial
Optimization Metaheuristic Under Special Intensification Conditions)
approaches that incorporate an existing mathematical programming for-
mulation. POPMUSIC is an efficient metaheuristic that may serve as
blueprint for matheuristics approaches once hybridized with mathemat-
ical programming. In this regard, the use of exact methods for solv-
ing the sub-problems defined in the POPMUSIC template highlight an
interoperation between metaheuristics and mathematical programming
techniques, which provide a new type of approach for this problem. Com-
putational experiments reveal excellent results.

1 Introduction

Large optimization problems usually require significant computational effort. A
natural way to solve these problems is by decomposing them into independent
sub-problems that are treated with an appropriate procedure. In doing so, [9] pro-
pose the POPMUSIC framework. Its basic idea is to locally optimize sub-parts
of a solution, ‘a posteriori,’ once a solution to the problem is available. These
local optimizations are repeated until a local optimum is found. POPMUSIC
may be viewed as a local search working with a special, large neighbourhood.

In this paper, we study the application of POPMUSIC for solving the discrete
Dynamic Berth Allocation Problem (DBAP) proposed by [4]; for a general survey
on berth allocation problems see [1]. In the DBAP, we are given a set of incoming
ships N and a set of berths M . Each ship i ∈ N has to be assigned to an empty
berth j ∈M within their (berth and ship) time windows. The main goal of this
problem is to minimize the sum of the ships service times, i.e. the time required
to serve a ship from its arrival. This problem has been modeled as a Generalized
Set-Partitioning Problem (GSPP) [3], its implementation in CPLEX allows to
solve small-sized problem instances within reasonable computational times [6].
However, as the size of the instances becomes larger, it runs out of memory.
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 218–222, 2014.
DOI: 10.1007/978-3-319-09584-4 20

Towards a Matheuristic Approach for the Berth Allocation Problem 219

The GSPP formulation is as follows. A column represents a feasible assign-
ment of a ship to a berth. The set of columns is denoted by Ω. Two matrices
A and B are defined, both containing |Ω| columns. Matrix A = (Aiω) contains
a row for each ship, and Aiω = 1, if and only if column ω represents an assign-
ment of ship i ∈ N to a berth. Each column of A contains exactly one non-zero
element. Matrix B = (Bpω) contains a row per (berth, time) position. The rows
of B are indexed by the set P , with |P | =

∑
k∈M (ek − sk), where sk and ek

are the start and end of the availability of berth k, respectively. The entry Bpω

is equal to 1, if and only if, position p ∈ P is contained in the assignment that
column ω represents. The cost cω of any column ω ∈ Ω is the service time of the
respective position assignment. With these definitions the GSPP formulation of
the DBAP presented in [2] is as follows.

min
∑
w∈Ω

cwxw (1)

∑
w∈Ω

Aiwxw = 1, ∀i ∈ N (2)

∑
w∈Ω

Bpwxw ≤ 1, ∀p ∈ P (3)

xw ∈ {0, 1}, ∀w ∈ Ω (4)

The objective function (1) minimizes the service time of the vessels. The set of
constraints (2) ensures that all vessels are served. Finally, the constraints (3)
guarantee that at a time interval, in a berth, only one vessel can be served.

2 POPMUSIC Approach for the DBAP

The POPMUSIC approach for the DBAP considers a solution S by means of its
scheduling order, where the solution is represented as an integer string and each
berth is delimited by a 0. An example of a solution structure for 3 berths and 6
ships is as follows, S = {1, 0, 2, 4, 6, 0, 3, 5}. In this case, ship 3 is the first ship
to be served at berth 3; once it departs, the next ship to be served is ship 5.

Algorithm 1 shows the POPMUSIC approach for the DBAP. The initial
solution S is randomly generated by applying a random-greedy method (R-G)
proposed by [4]. The solution is divided into h parts depending on the number
of berths. The seed part, sseed, is selected at random from the set of parts, H.
Once a solution part is selected, the sub-problem R is established by joining the
sseed and its r neighbour parts according to the id of the part. Two parts are at
distance 1, if they are consecutive, e.g. part1 and part2. The GSPP mathematical
formulation of R is solved using CPLEX. The POPMUSIC-G differs from the
original in the way the set of parts O is fulfilled when there is an improvement.
That is, if a sub-problem is improved, all its composing parts (sseed and its
neighbour parts) are included in O.

Once the POPMUSIC process is over, all the solution parts are joined. The
information obtained from them is used for determining a reduced problem

220 E. Lalla-Ruiz and S. Voß

Algorithm 1. POPMUSIC framework
1 Generate an initial solution s at random using R-G
2 Decompose S in M parts according to the number of berths,

H = {part1, ..., partM}
3 Set O = ∅
4 while O �= {part1, ..., partM} do
5 Select a seed part sseed ∈ H at random
6 Build a sub-problem R composed of sseed and its r nearest parts
7 Optimize R through solving its GSPP mathematical formulation
8 if R has been improved then
9 Update solution S

10 O ← ∅
11 else
12 Include sseed in O

instance that will be provided to CPLEX. Similarly to the corridor method [7]
this narrow problem allows CPLEX to solve the complete problem to optimality.

The computational experiments carried out in this work are conducted on
a computer equipped with an Intel 3.16 GHz and 4 GB of RAM. The problem
instances used for evaluating the proposed algorithm are a representative set
of the largest instances provided by [4] and a representative set of instances
proposed by [6]. For the latter set of instances the GSPP implemented in CPLEX
using a standard computer runs out of memory. Moreover, we make a comparison
among the best approximate approaches for each set of instances, namely, (i)
Clustering-Search with Simulated-Annealing (CS-SA) [5], (ii) Particle Swarm
Optimization (PSO) [8], (iii) T 2S∗+PR Tabu Search with Path-Relinking [6].

Table 1 illustrates the results for the instances of [4]. Regardless of the selec-
tion of the parameter r, POPMUSIC and POPMUSIC-G provide optimal solu-
tions in all cases. This characteristic points out that recognizing ‘useless’ or
‘time-consuming’ parameters of the problem parameter space can be narrowed
through using the information provided by exactly solving the sub-problems.
POPMUSIC-G running times are meaningful compared to those of the approx-
imate solution approaches. Note that, although CS-SA and PSO are able to
provide optimal solutions for these cases, they cannot guarantee optimality.

Table 2 shows the results obtained for some large instances proposed by [6].
As can be seen, CPLEX runs out of memory as the size of the instances is larger.
In this sense, thanks to the POPMUSIC template, the problem can be narrowed
and solved to optimality. This feature is relevant when assessing the behaviour
of the best solution approach employed for these instances, T 2S∗+PR, where
the evaluation of its performance could not be done because CPLEX runs out of
memory without providing an upper bound. Evidently, for some of the instances
we are able to improve the best solution results to date.

Towards a Matheuristic Approach for the Berth Allocation Problem 221

Table 1. Results for the instances provided by [4]

GSPP [3] POPMUSIC POPMUSIC-G
T2S∗+PR [6] CS-SA [5] PSO [8]

r=1, 2, 3, 4 r=1, 2, 3, 4 r=1, 2, 3, 4

opt. t(s.) obj. val t(s.) obj. val t(s.) obj. val gap (%) t(s.) obj. val gap (%) t(s.) obj. val gap (%) t(s.)

i01 1409 33.20 1409 34.2 1409 11.47 1410 0.07 1.41 1409 0.00 12.47 1409 0.00 11.11
i02 1261 29.18 1261 54.21 1261 12.61 1261 0.00 1.26 1261 0.00 12.59 1261 0.00 7.89
i03 1129 28.17 1129 33.79 1129 13.89 1129 0.00 1.13 1129 0.00 12.64 1129 0.00 7.48
i04 1302 29.20 1302 35.68 1302 13.65 1302 0.00 1.30 1302 0.00 12.59 1302 0.00 6.03
i05 1207 27.93 1207 28.14 1207 11.57 1207 0.00 1.21 1207 0.00 12.68 1207 0.00 5.84
i06 1261 29.75 1261 36.6 1261 15.15 1261 0.00 1.26 1261 0.00 12.56 1261 0.00 7.67
i07 1279 32.89 1279 26.73 1279 12.2 1279 0.00 1.28 1279 0.00 12.63 1279 0.00 7.5
i08 1299 30.19 1299 57.12 1299 15.56 1299 0.00 1.30 1299 0.00 12.57 1299 0.00 9.94
i09 1444 30.89 1444 54.2 1444 13.59 1444 0.00 1.45 1444 0.00 12.58 1444 0.00 4.25
i10 1213 29.14 1213 26.57 1213 12.29 1213 0.00 1.21 1213 0.00 12.61 1213 0.00 5.2

Table 2. Results for the instances provided by [6]

GSPP [3]
POPMUSIC POPMUSIC-G

T2S∗+PR [6]
r = 1, 2, 3, 4 r = 1, 2, 3, 4

opt. t(s.) obj. val. t(s.) obj. val. t(s.) best gap (%) t(s.)

40x5-01 2301 41.51 2301 166.46 2301 53.07 2303 0.09 0.90
40x5-02 2829 59.89 2829 118.72 2829 55.23 2834 0.18 1.09
40x5-03 2880 99.20 2880 116.76 2880 59.06 2880 0.00 0.50
40x7-03 — — 2119 122.78 2119 62.09 2119 0.00 1.17
55x5-03 — — 5499 371.92 5499 106.71 5499 0.00 2.67
55x7-03 — — 3825 196.18 3825 129.37 3833 0.21 5.57
55x7-05 — — 3797 337.76 3797 151.00 3801 0.11 3.56

3 Conclusions

In this paper we have provided a POPMUSIC adaptation to the Discrete
Dynamic Berth Allocation Problem. By using a given mathematical program-
ming formulation together with the decomposition approach inherent to POP-
MUSIC we were able to solve large scale instances from the literature to
optimality or close to optimality that had been out of reach for optimal solution
before.

While additional experimentation is still needed, the results provided in this
work highlight the application of POPMUSIC for solving large-sized problems.
In this regard, the POPMUSIC approaches proposed in this work have a great
potential for ‘recognizing’ relaxed constraints in the parameter space of the prob-
lem through leveraging the information obtained by solving the sub-problems.
This also incorporates an explicit learning mechanism towards having an autoad-
aptive control of the size of the sub-problems to be solved.

References

1. Bierwirth, C., Meisel, F.: A survey of berth allocation and quay crane scheduling
problems in container terminals. Eur. J. Oper. Res. 202(3), 615–627 (2010)

2. Buhrkal, K., Zuglian, S., Ropke, S., Larsen, J., Lusby, R.: Models for the discrete
berth allocation problem: a computational comparison. Transp. Res. Part E 47(4),
461–473 (2011)

222 E. Lalla-Ruiz and S. Voß

3. Christensen, C.G., Holst, C.T.: Berth allocation in container terminals. Master’s
thesis, Technical University of Denmark (2008)

4. Cordeau, J.F., Laporte, G., Legato, P., Moccia, L.: Models and tabu search heuristics
for the berth-allocation problem. Transp. Sci. 39, 526–538 (2005)

5. de Oliveira, R.M., Mauri, G.R., Lorena, L.A.N.: Clustering search for the berth
allocation problem. Expert Syst. Appl. 39(5), 5499–5505 (2012)

6. Lalla-Ruiz, E., Melián-Batista, B., Moreno-Vega, J.M.: Artificial intelligence hybrid
heuristic based on tabu search for the dynamic berth allocation problem. Eng. Appl.
Artif. Intell. 25(6), 1132–1141 (2012)

7. Sniedovich, M., Voß, S.: The corridor method: a dynamic programming inspired
metaheuristic. Control Cybern. 35(3), 551–578 (2006)

8. Ching-Jung, T., Kun-Chih, W., Hao, C.: Particle swarm optimization algorithm for
the berth allocation problem. Expert Syst. Appl. 41, 1543–1550 (2014)

9. Taillard, É., Voß, S.: POPMUSIC - partial optimization metaheuristic under special
intensification conditions. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys
in Metaheuristics, pp. 613–629. Kluwer, Boston (2002)

GRASP with Path-Relinking for the Maximum
Contact Map Overlap Problem

Ricardo M.A. Silva1(B), Mauricio G.C. Resende2, Paola Festa3,
Filipe L. Valentim4, and Francisco N. Junior1

1 Centro de Informática, Universidade Federal de Pernambuco, Recife, PE, Brazil
{rmas,fnj}@cin.ufpe.br

2 AT&T Labs Research, Florham Park, NJ, USA
mgcr@research.att.com

3 Department of Mathematics and Applications “R. Caccioppoli”,
University of Napoli FEDERICO II, Naples, Italy

paola.festa@unina.it
4 Biology Department, Federal University of Lavras, Lavras, MG, Brazil

felipe.flv@gmail.com

Abstract. This paper proposes a hybrid Greedy Randomized Adaptive
Search Procedure with path-relinking for the maximum contact map
overlap problem, an NP-hard combinatorial optimization problem that
arises in computational biology. Preliminary experimental results illus-
trate the effectiveness and efficiency of the algorithm.

Keywords: Maximum contact map overlap · GRASP · Path-relinking

1 Introduction

Knowledge about the function of a given protein can be attained by verifying
any similarities between that protein and other proteins whose functions are
already known. One promising way of accomplishing this task is to evaluate the
alignment of their contact maps. A contact map consists of either a graph or a
two-dimensional matrix (binary or real). In the graph representation, the contact
map is a graph with a sequence of nodes corresponding to the sequence of residues
and an edge for each pair of non-consecutive residues whose distance is below a
given threshold. Given two contact maps GA = (VA, EA) and GB = (VB , EB)
such that |VA| = n and |VB | = m, the Maximum Contact Map Overlap

Problem (MAX-CMO) [9] is an NP-hard problem consisting in finding two
subsets SA ⊆ VA and SB ⊆ VB with |SA| = |SB | and an order preserving
bijection f between SA and SB such that the cardinality of the overlap set
L(SA, SB , f) = {(u, v) ∈ EA : u, v ∈ SA, (f(u), f(v)) ∈ EB} is maximized. A
solution (SA, SB , f) of the contact map overlap problem can be represented as
an assignment vector p of size n such that pu = v if (u, v) ∈ L(SA, SB , f); or
nil, otherwise. The MAX-CMO was introduced in 1992 [9]. Since then, several
heuristic and exact algorithms have been proposed [2,10]. In a recent paper
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 223–226, 2014.
DOI: 10.1007/978-3-319-09584-4 21

224 R.M.A. Silva et al.

algorithm GRASP-PR (CA, CB)
1 P ← ∅;
2 while (stopping criterion not satisfied) →
3 p ← GreedyRandomized(·);
4 p ← ApproximateLocalSearch(p);
5 if (P is full) then
6 Randomly select a solution q ∈ P ;
7 r ← PathRelinking(p, q);
8 r ← ApproximateLocalSearch(r);
9 if (c(r) > max{c(s) : s ∈ P}) then
10 t ← argmin{Δ(r, s) : s ∈ P}; P ← P ∪ {r} \ {t};
11 else if (c(r) > min{c(s) : s ∈ P} and r �≈ P) then
12 t ← argmin{Δ(r, s) : s ∈ P : c(s) < c(r)}; P ← P ∪ {r} \ {t};
13 endif
14 else
15 if (P = ∅) then P ← {p};
16 else if (p �≈ P) then P ← P ∪ {p};
17 endif
18 endif
19 endwhile
20 return(p∗ = argmax{c(s) : s ∈ P});
end GRASP-PR

Fig. 1. Pseudo-code of the GRASP-PR heuristic for the MAX-CMO.

appeared in 2011 [1], Andronov et al. proposed a Branch & Bound approach
that is based on a novel and more performing Lagrangian relaxation, but that
can be used only to solve small sized instances of the problem.

2 GRASP with Path-Relinking for the MAX-CMO

A GRASP heuristic [3–5,7] is a multi-start procedure where at each iteration a
greedy randomized solution is constructed to be used as a starting solution for
local search. The best local optimum found over all GRASP iterations is output
as the solution. In GRASP with path-relinking [6,8,11], an elite set of diverse
good-quality solutions is maintained and updated. At each GRASP iteration,
the current local optimal solution is combined with a randomly selected solution
from the elite set using the path-relinking operator. The combined solution is a
candidate for inclusion in the elite set and is added to the elite set if it meets
quality and diversity criteria.

Figure 1 shows pseudo-code for the GRASP with path-relinking heuristic for
the MAX-CMO (GRASP-PR). The algorithm takes as input two contact maps
CA and CB of proteins A and B, with n and m residues (m > n), respectively.
It outputs an array p∗ of length n, with p∗

i = nil, if node i ∈ CA representing
residue i ∈ A is not aligned, and p∗

i = j, if node i ∈ CA is aligned with node
j ∈ CB . After initializing the elite set P as empty in line 1, the GRASP with
path-relinking iterations are computed in lines 2 to 19 until a stopping crite-
rion is satisfied. This criterion could be, for example, a maximum number of
iterations, a target solution quality, or a maximum number of iterations without
improvement. During each iteration, a greedy randomized solution p is generated
in line 3 and tentatively improved in line 4 with an approximate local search.

GRASP with Path-Relinking 225

Table 1. Test instances: Prot. is the PDB code for the protein; Res. is the number of
residues; Contacts is the number of contacts in the contact map at 7 Å; Target is the
optimal value used as stopping criteria for the algorithms.

ID Prot.1 Res. Contacts Prot.2 Res. Contacts Target

1 1gzi 58 110 9msi 59 112 106

2 1fh3 54 86 1ptx 54 93 57

3 3chy 128 378 4tmy 118 366 323

 0.6 0.8 1 1.2 1.4 1.6 1.8 2
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

0.9

 1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

time to target

Protein pair: pdb1gzi pdb9msi Target = 106

VNS
GRASP-PR

LAGR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

time to target

Protein pair: pdb1fh3 pdb1ptx Target = 57

VNS
GRASP-PR

LAGR

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 d

is
tri

bu
tio

n

time to target

Protein pair: 1PLA 2PCY Target = 253

VNS
GRASP-PR

LAGR

Fig. 2. Time to target distributions comparing GRASP-PR, VNS, and LAGR.

If the elite set P is empty, solution p is added to it in line 15. If P is not empty,
then while it is not full, solution p is added to it in line 16 if it is sufficiently dif-
ferent from the solutions already in the elite set. To define the term “sufficiently
different” more precisely, let Δ(p, q) denote the number of assignments in p that
are different from those in q. For a given level of difference δ, we say p is suffi-
ciently different from all elite solutions in P if Δ(p, q) > δ for all q ∈ P , which
we indicate with the notation p �≈ P . If the elite set P is full, then path-relinking
is applied in line 7 between p and some elite solution q randomly chosen from
P in line 6, resulting in solution r. In line 8, r is updated by an approximate
local minimum in its neighborhood. If r is the best solution found so far, then
it replaces t, the solution most similar to it, computed in line 10. Otherwise, if r
is better than the worst solution in P and r �≈ P , then it replaces t, the solution
most similar to it, computed in line 12.

3 Experimental Results

All experiments with GRASP-PR were run on a Dell PE1950 computer with
dual quad core processors and 16 Gb of memory, running Red Hat Linux nesh
version 5.1.19.6 (CentOS release 5.2, kernel 2.6.18-53.1.21.el5). GRASP-PR was
implemented in Java and compiled into bytecode with javac version 1.6.0 05.
The random-number generator is an implementation of the Mersenne Twister
algorithm from the COLT1 library.
1 COLT is a open source library for high performance scientific and technical comput-

ing in Java.

226 R.M.A. Silva et al.

Three pairs of proteins were randomly selected from the dataset used by
Caprara and Lancia [2] as summarized in Table 1. Each heuristic was run 200
times on each pair of proteins in Table 1, using as target solution the values
given in column Target. For each of the 200 runs, the random number generator
was initialized with a distinct seed and, therefore, the runs are assumed to be
independent. For each instance/target pair, the running times were sorted in
increasing order. We associated with the i-th sorted running time ti a probability
pi = (i − 1/2)/n and plot the points zi = [ti, pi], i = 1, . . . , n. Then, Time-to-
target (TTT) plots display the probability that an algorithm will find a solution
at least as good as a given target value within a given running time. Figure 2
shows the time-to-target plots for the algorithms. GRASP-PR has achieved the
target values on all instances, always having the best performance in comparison
with a Variable Neighborhood Search [10] (VNS) and a Lagrangian Relaxation
based algorithm [2] (LAGR).

Looking at this preliminary experiments, GRASP-PR seems to be a well-
suited approach for the MAX-CMO.

References

1. Andronov, R., Malod-Dognin, N., Yanev, N.: Maximum contact map overlap revis-
ited. J. Comput. Biol. 18(1), 27–41 (2011)

2. Caprara, A., Lancia, G.: Structural alignment of large-size proteins via lagrangian
relaxation. In: Proceedings of the Sixth Annual International Conference on Com-
putational Biology, pp. 100–108. ACM Press (2002)

3. Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. J.
Glob. Optim. 6(2), 109–133 (1995)

4. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - Part I: Algo-
rithms. Int. Trans. Oper. Res. 16(1), 1–24 (2009)

5. Festa, P., Resende, M.G.C.: An annotated bibliography of GRASP - Part II: Appli-
cations. Int. Trans. Oper. Res. 16(2), 131–172 (2009)

6. Festa, P., Resende, M.G.C.: Hybrid GRASP heuristics. Stud. Comput. Intell. 203,
75–100 (2009)

7. Festa, P., Resende, M.G.C.: GRASP: basic components and enhancements.
Telecommun. Syst. 46(3), 253–271 (2011)

8. Festa, P., Resende, M.G.C.: Hybridizations of GRASP with path-relinking. Stud.
Comput. Intell. 434, 135–155 (2013)

9. Godzik, A., Kolinski, A., Skolnick, J.: Topology fingerprint approach to the inverse
protein folding problem. J. Mol. Biol. 227(1), 227–238 (1992)

10. Pelta, D.A., Gonzalez, J.R., Vega, M.M.: A simple and fast heuristic for protein
structure comparison. BMC Bioinf. 9(1), 1–16 (2008)

11. Resende, M.G.C., Ribeiro, C.C.: GRASP with path-relinking: recent advances
and applications. In: Ibaraki, T., Nonobe, K., Yagiura, M. (eds.) Metaheuristics:
Progress as Real Problem Solvers, pp. 29–63. Springer, New York (2005)

What is Needed to Promote an Asynchronous
Program Evolution in Genetic Programing?

Keiki Takadama1(B), Tomohiro Harada1,2, Hiroyuki Sato1,
and Kiyohiko Hattori1

1 The University of Electro-Communications, Tokyo, Japan
{keiki,hattori}@inf.uec.ac.jp,

harada@cas.hc.uec.ac.jp, sato@hc.uec.ac.jp

http://www.cas.hc.uec.ac.jp
2 Japan Society for the Promotion of Science DC, Kyoto, Japan

Abstract. Unlike a synchronous program evolution in the context of
evolutionary computation that evolves individuals (i.e., programs) after
evaluations of all individuals in each generation, this paper focuses on an
asynchronous program evolution that evolves individuals during
evaluations of each individual. To tackle this problem, we explore the
mechanism that can promote an asynchronous program evolution by
selecting a good individual without waiting for evaluations of all indi-
viduals, and investigates its effectiveness in genetic programming (GP)
domain. The intensive experiments have revealed the following implica-
tions: (1) the program asynchronously evolved with the proposed mecha-
nism can be completed with the shorter execution steps than the
program asynchronously evolved without the proposed mechanism; and
(2) the program asynchronously evolved with the proposed mechanism
can be completed with mostly the same or shorter execution steps than
the program synchronously evolved by the conventional GP.

Keywords: Genetic programming · Asynchronous evolution · Tierra

1 Introduction

The synchronous evolution, which evolves individuals (i.e., solutions) through a
comparison with all of them, is generally employed in the conventional Evolu-
tionary Algorithms (EAs) such as Genetic Algorithm (GA) [4] and Genetic Pro-
gramming (GP) [7]. In this approach, all (or mostly all) individuals have to
be evaluated to select the parent as the good individuals and to delete the bad
individuals for the next population generation. This requires to wait for the
slowest evaluation of a certain individual, which increases the computational
time. For this issue, the asynchronous evolution (e.g., [3,9]) has a great poten-
tial of overcoming the problem of the synchronous evolution. This is because the
asynchronous evolution evolves individuals independently, which should not wait
for the evaluations of other individuals. Examples include Differential Evolution
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 227–241, 2014.
DOI: 10.1007/978-3-319-09584-4 22

228 K. Takadama et al.

(DE) [14] and MOEA/D [15], which create a child independently from one or a
few other individual(s) to generate the next population.

From the viewpoint of the program evolution, in particular, the asynchronous
evolution is essential because it continues to evolve individuals (i.e., programs)
even if individuals cannot complete their evaluation (e.g., due to an infinite
loop). However, the conventional asynchronous EAs including DE and MOEA/D
cannot be easily applied to the program evolution because they are not designed
for the program evolution. To tackle this problem, Tierra-based Asynchronous
Genetic Programming (TAGP) [5,6,11] was proposed as the asynchronous-based
GP, which can asynchronously evolves the programs. Concretely, TAGP employs
the idea of a biological evolution, Tierra [12].

However, the current version of TAGP cannot guarantee to select the good
individuals as the parents from a population due to a lack of a comparison with
other individuals, i.e., the individuals which complete to execute their instruc-
tions become to be the parent in TAGP. To overcome this problem, this paper
proposes the mechanism that selects the good individual without waiting for
evaluations of all individuals. Concretely, the winner of the current and previous
parents are mated with the winner of the previous and two times previous par-
ents in the crossover operation. Such a minimum set of the tournament selection
contributes to selecting good individual as the parent (Hereafter, we call this
mechanism as the temporal difference (TD) tournament selection). Note that
this mechanism cannot guarantee to select best individual, but the selection of
a good individual has a great potential of appropriate pressure for the program
evolution. To investigate the asynchronous evolution ability of TAGP with the
proposed mechanism, we investigate its program evolution in the assembly lan-
guage program as the machine-code program.

This paper is organized as follows. Section 2 explains a biological evolution
simulator, Tierra, which idea is employed in TAGP, and Sect. 3 shows the algo-
rithm of TAGP with/without the proposed mechanism. The testbed problems in
the assembly language program are explained in Sect. 4. Section 5 conducts the
experiment, and Sect. 6 discusses their results. Finally, our conclusion is given
in Sect. 7.

2 Tierra

In Tierra [12] as the biological evolution simulator, the digital creatures are
evolved through a cycle of the self-reproduction, deletion, and genetic operators
such as a crossover or a mutation. The digital creatures live in a memory space
corresponding to land on earth, and they are implemented by a linear structured
computer program such as the assembly language. The aim of the digital crea-
tures is to reproduce themselves to a vacant memory space for surviving as long
as possible like actual creatures. The CPU time corresponding to energy is given
to each creature, and it allows the digital creatures to execute their instructions
within the allocated CPU time. Since given CPU time (i.e., a time for executing
a few instructions) is generally designed to be shorter than the execution time

What is Needed to Promote an Asynchronous Program Evolution 229

of all instructions in the program, all programs can be executed in parallel. All
programs are inserted in a queue (named as reaper queue) when they are created,
and their lifespan are determined by the reaper mechanism. This means that (1)
all instructions sometimes can/cannot be correctly executed in Tierra, which
lengthens/shortens the lifespan of the problem; and (2) the oldest program is
deleted when a memory space is filled. The following sequence indicates the brief
algorithm of Tierra.

1. Start from one program (i.e., digital creatures) composed of the correct
instructions.

2. The program that the CPU time is assigned executes a few instructions.
3. The program that can correctly execute its instruction moves to the lower

(younger) position in the reaper queue, while one that cannot correctly exe-
cute its instruction moves to the upper (older) position.

4. The program is reproduced when executing all of its instructions, and the
reproduced program is added to the lowest (youngest) in the reaper queue.
The crossover or mutation operators are applied in a certain percentage when
reproducing the program.

5. When a memory space is filled, the program located at the most upper (old-
est) position in the reaper queue is deleted.

6. Return to 2.

By the above algorithm, the programs which cannot execute all of their
instructions within the allocated CPU time (due to some incorrect or unnec-
essary instructions) are deleted because of no chance to reproduce themselves,
while the ones which can execute all of their instructions within the allocated
CPU time have a lot of chance to reproduce themselves, which contributes to
propagating themselves in the memory. As results of such an evolution, the pro-
grams that have the short program size composed of the correct instructions are
generated as emergent phenomena [8], which requires less CPU time than an
initial program to reproduce themselves.

3 Tierra-Based Asynchronous Genetic Programming

3.1 Overview

Although Tierra can asynchronously evolve programs (i.e., digital creatures), its
aim is to evolve all programs by reproducing themselves, which means that any
other aims cannot be assigned to the programs. This is serious problem because
the programs in Tierra cannot solve any given problems from the engineering
viewpoint. To evolve the programs that can solve a given task in the framework of
Tierra, we proposed the new GP based on Tierra mechanism, named as Tierra-
based Asynchronous Genetic Programming (TAGP) [5,6,11], which introduces
the fitness commonly used in EAs to evaluate the programs. In TAGP, the
programs are reproduced or deleted according to their fitness values.

230 K. Takadama et al.

The overview of TAGP is shown in Fig. 1. While Tierra starts one program
composed of the correct instructions, TAGP starts from a certain number of the
programs that completely solve the given task (Note that these initial programs
are regarded as the population in the conventional EAs). These programs consist
of instructions with some registers, IP (Initial Pointer), and ALU (Arithmetic
and Logic Unit), and they are stored in a memory space (i.e., the programs from
A to E are stored in Fig. 1, i.e., the program F is stored later). All programs
are inserted in the reaper queue in order of the program C (upper), E, D, A,
and B (lower) (i.e., the program F is inserted later), and they execute a few
instructions in turn for a parallel execution. When all instructions in one program
are completely executed, its fitness is calculated according to its result, and the
program is reproduced asynchronously according to its fitness value (e.g., the
program D reproduces the program F, and the program D moves to the lower
(younger) position in the reaper queue. When the memory is filled with the
programs, the program located at the most upper in the reaper queue (e.g., the
program C) is removed from the memory.

Fig. 1. Overview of TAGP

3.2 Algorithm

Algorithm 1 shows the algorithm of TAGP employing the following procedures:
(1) selection and reaper queue control, (2) reproduction, and (3) deletion. In
this algorithm, the variables prog, prog.f , and prog.facc respectively indicate
the program, its fitness, and its accumulated fitness. The variables pre-prog and
prepre-prog respectively indicate the previous parent and two times previous
parent. The variable fmax indicates the maximum value of the fitness, while
rand(0, 1) indicates the random real value between 0 to 1. Finally, the variables
Pdown and Pup are described later.

(1) Selection and Reaper Queue Control. To select a parent asynchro-
nously, TAGP employs an accumulated fitness, termed as prog.facc. When one

What is Needed to Promote an Asynchronous Program Evolution 231

Algorithm 1. The algorithm of TAGP
1: prog.facc ← prog.facc + prog.f
2: if prog.facc ≥ fmax then
3: prog.facc ← prog.facc − fmax

4: repeat
5: down reaper queue position
6: until rand(0, 1) < Pdown(prog.f)
7: [TAGP without the TD tournament selection]

generate an offspring by mating prog with pre-prog through genetic operators
or

[TAGP with the TD tournament selection]
generate an offspring by mating the winner of prog and pre-prog with the
winner of pre-prog and prepre-prog through genetic operators

8: prepre-prog ← pre-prog, pre-prog ← prog
9: delete the program located the most upper in repair queue

10: else
11: repeat
12: up reaper queue position
13: until rand(0, 1) > Pup(prog.f)
14: end if

program is completely executed, its fitness is calculated and the calculated fit-
ness is added to an accumulated fitness prog.facc (line 1 in Algorithm 1). If the
accumulated fitness of the program exceeds fmax, it is selected as a reproduction
candidate, and fmax is subtracted from its accumulated fitness (line 2 and 3).
If not, the program is not selected as a reproduction candidate. Note that the
program having a high fitness has a high probability to be selected as a reproduc-
tion candidate because the accumulated fitness frequently exceeds fmax, while
the program having a low fitness is hard to satisfy this condition.

After that, the position in the reaper queue of the program selected as the
reproduction candidate becomes lower than the current one, i.e., its deletion
probability decreases (which means to survive long) (line 4–6), while the posi-
tion of the program not selected as the reproduction candidate becomes upper,
i.e., its deletion probability increases (which means to be easily removed) (line
11–13). The lower/upper distance is determined by the probability Pdown and
Pup which are calculated as the following equation based on fitness, where Pr is
the maximum probability of Pdown and Pdown, which is predetermined.

Pdown(f) =
f

fmax
× Pr, Pup(f) =

fmax − f

fmax
× Pr (1)

(2) Reproduction. To reproduce the program asynchronously, the previous
TAGP (i.e., TAGP without the TD tournament selection) generates an off-
spring by mating prog with pre-prog through the genetic operators such as a
crossover, a mutation, an instruction insertion/deletion operations as shown in
Fig. 2(a) (line 7). As mentioned in Sect. 1, however, the programs selected as the

232 K. Takadama et al.

reproduction candidate does not always good ones. This is because the pro-
grams that quickly complete their evaluations have a high possibility to increase
the accumulated fitness even though they have a low fitness (i.e., they are not
good ones). To overcome this problem, TAGP with the TD tournament selec-
tion generates an offspring by mating the winner of prog and pre-prog with the
winner of pre-prog and prepre-prog through the genetic operators as shown in
Fig. 2(b) (line 7). Such a minimum set of the tournament selection contributes
to selecting good parent programs. The main difference between the conventional
tournament selection and TD tournament selections is that the individuals are
randomly selected in the former selection while they are determined as the cur-
rent, previous, two times previous parents in the latter selection. Related to this
issue, this mechanism can be easily extended to select the four individuals (i.e.,
the current, previous, two times previous, three times previous parents) as the
same as the number of the individuals selected in the conventional tournament
selection, but this mechanism starts from the three parents rather than four
parents to increase the asynchronous degree.

(a) TAGP without TD tournament selection (Previous TAGP)

(b) TAGP with TD tournament selection (Proposed TAGP)

Fig. 2. Without/with TD tournament selection

For the genetic operators in both TAGPs, the crossover operator combines
two programs at two different crossover point, while the mutation operator ran-
domly changes one instruction in the program. The instruction insertion operator
inserts one instruction into a random point of the program, while the instruction
deletion operator removes one instruction from the program. Finally, as the end
of the reproduction operation, the programs of pre-prog and prepre-prog are
copied from those prog and pre-prog (line 8).

(3) Deletion. Both TAGPs with/without the TD tournament selection con-
duct a deletion operator when an offspring is generated (9 line). Concretely, the

What is Needed to Promote an Asynchronous Program Evolution 233

program located at the most upper in the reaper queue (i.e., the program with
the low fitness) is removed. Unlike Tierra which deletes the individual when a
memory space is filled, both TAGPs delete the individual whenever the child is
generated.

4 Problem Description

4.1 Testbed Problem

We employ the testbed problems shown in Table 1, which are classified into
the following two types: (1) the arithmetic problems that requires the numeric
calculations and (2) the Boolean problem that requires the logical calculation.
We employ these different types of the problems to investigate an applicability
of the proposed method in a wide range of the problem types (from numeric
to logical calculation). Note that # data in Table 1 indicates the number of the
input data, e.g., 16 data (x1, · · · , x16) are the input value for A1 testbed, while
256 data (i.e., all combination of 8 bits) are the input value for B1 testbed.

Table 1. Testbed problems in this experiment

atad#citemhtirA

A1 f(x) = x4 + x3 + x2 + x 16
A2 f(x) = x5 − 2x3 + x 16
A3 f(x) = x6 − 2x4 + x2 16
A4 f(x, y) = xy 25

Boolean #data

B1 8bit-Parity 256 (=28)
B2 7bit-DigitalAdder 128 (=27)
B3 6bit-Multiplexer 64 (=26)
B4 7bit-Majority 128 (=27)

4.2 Evaluation Criteria

The individuals are evaluated from the viewpoint of (1) the fitness (i.e., the
correct percentage of the given problems) and (2) the execution step. In the above
problems, the program having the 100 % correct of given tasks with the minimum
execution steps is the best one. Regarding the fitness, in particular, the following
fitness functions (farith and fbool) are respectively employed for the arithmetic
and Boolean problems, where ŷi indicates the ith output value of a program, y∗

i

indicates the ith target value, and the n indicates the number of data.

farith = fmax − 1
n

n∑

i=1

|ŷi − y∗
i | (2)

fbool = fmax − 2
n

n∑

i=1

δ(ŷi, y∗
i), δ(x, y) =

{
0 x = y

1 x �= y
(3)

234 K. Takadama et al.

5 Experiment

5.1 Cases

To investigate the effectiveness of TAGP with the TD tournament selection, we
employ Linear GP (LGP) [1,2] using an actual machine code, and conduct the
following experiments:

– Case 1: TAGP with the TD tournament selection (TAGP-TD) vs. TAGP
without it (TAGP-NoTD)

– Case 2: TAGP with the TD tournament selection (TAGP-TD) vs. the steady-
state GP (SSGP) [13] as the simple synchronous-based GP

LGP is employed because (1) an individual in LGP has the variable length
chromosome; and (2) the individuals including the infinite loop can be gener-
ated, which should be tackled by the proposed mechanism in the asynchronous
program evolution. As an actual machine-code program, we employ an instruc-
tion set embedded on PIC10 [10] developed by Microchip Technology Inc., which
consists of 12 bits 33 instructions.

5.2 Parameter Settings

Table 2 summaries the parameters in TAGP with/without the TD tournament
selection and SSGP. In SSGP, in particular, the maximum execution step is
set to 50, 000 because the program evolved by SSGP has the possibility of not
completing its program due to an infinite loop. If a program does not complete
in this maximum execution step, its fitness is evaluated as −∞. Regarding the
parameter setting, we have already confirmed that the experimental results do
not drastically change by the other

In each experiment, 30 independent trials are conducted, and the execution
steps averaged from 30 trials are evaluated. Note that the fitness (i.e., the correct
percentage of the given problems) is not evaluated in this time because the best
program evolved by these GPs has 100 % correctness.

Table 2. Parameters

Parameter Value Parameter Value

Number of evaluations 106 Crossover rate 0.7

Max. program size 256 Mutation rate 0.1

Pop. size 100 Insertion rate 0.1

fmax 100 Deletion rate 0.1

What is Needed to Promote an Asynchronous Program Evolution 235

5.3 Results

• Case 1: TAGP with TD Tournament Selection vs. TAGS Without
TD Tournament Selection. Figure 3 shows the execution steps averaged from
30 trials in TAGP-NoTD and TAGP-TD in A1 testbed. In this figure, the hori-
zontal and vertical axes indicate the number of the evaluations and the average
execution steps of the maximum fitness program, respectively. The dotted and
solid lines respectively show the result of TAGP-NoTD and TAGP-TD, and the
bars in the line indicate the standard deviation of the execution steps. As men-
tioned in the previous section, all evolved programs can correctly solve the given
problem. As shown in Fig. 3, the average execution steps in TAGP-TD is smaller
than TAGP-NoTD. Furthermore, the upper execution steps (average + std) in
TAGP-TD is shorter than the lower execution steps (average− std) in TAGP-
NoTD. This result indicates that TAGP-TD has better evolution ability than
TAGP-NoTD in asynchronous program evolution. In other words, the selection
of good individuals by the TD tournament selection contributes to providing the
appropriate pressure for the program evolution.

Note that this tendency is also found in other testbeds from A2 to A4 and
from B1 to B4.

Fig. 3. The average execution steps (30 trials) in TAGP with/without the TD tourna-
ment selection: A1 problem

• Case 2: TAGP with TD Tournament Selection vs. SSGP. Table 3 shows
the average execution steps (30 trials) after the maximum number of evaluations
in SSGP and TAGP-TD. In this table, the shorter execution steps in each test-
bed are indicated as bold style and a value in the parentheses indicates the

236 K. Takadama et al.

standard deviation (std) of the execution steps. From these results, TAGP-TD
outperforms SSGP except for the A4 testbed. Concretely, in the arithmetic prob-
lems, TAGP-TD reduces the execution steps around 30 % (A1, A2, A3 testbeds)
or derives mostly the same execution steps (A4 testbed) in comparison with
SSGP. In Boolean problem, on the other hand, TAGP-TD reduces the execu-
tion steps from 15 % (B4 testbed) to 37 % (B3 testbed) or derives mostly the
same execution steps (B1, B2 testbeds) in comparison with SSGP. These are
the amazing results because TAGP-TD outperforms SSGP or derives mostly
the same performance of SSGP, even though TAGP-TD utilizes the fitness of
only the three individuals (i.e., the current, previous, two times previous par-
ents) while SSGP can utilizes the fitness of all individuals which enables to select
the best individual. In order words, TAGP-TD has better evolution ability than
SSGP, even though TAGP-TD does not have an enough information in compar-
ing with SSGP.

Table 3. The average execution step after the maximum evaluations (30 trials) in
SSGP and TAGP with the TD tournament selection

Problem SSGP TAGP with TD tournament selection Reduction rate

A1 4659 (524) 3293 (753) 29 % down

A2 4734 (498) 3314 (557) 29 % down

A3 4928 (494) 3369 (757) 32 % down

A4 4780 (1705) 4900 (2298) 3 % up

B1 4873 (187) 4838 (159) 1 % down

B2 4774 (112) 4661 (156) 2 % down

B3 1762 (221) 1114 (275) 37 % down

B4 18492 (3752) 15757 (3056) 15 % down

To investigate these results in detail, Figs. 4 and 5 show the average execution
steps (30 trials) over the generation in A1 and A4 testbeds. We choose A1 testbed
for the case where TAGP-TD derives better result than SSGP, while we choose
A4 testbed for the case where TAGP-TD and SSGP derive similar results. In
these figures, the horizontal and vertical axes and the bars in the line have the
same meaning of the previous figure. The solid and dotted lines respectively
show the result of TAGP-TD and that of SSGP. As mentioned in the previous
section, all evolved programs can correctly solve the given problem.

As shown in Fig. 4, the average execution steps in TAGP-TD are shorter
than SSGP. Like Fig. 3, the upper execution steps (average + std) in TAGP-
TD is shorter than the lower execution steps (average − std) in SSGP. These
results indicate that TAGP-TD shows the high evolution ability in comparison
with SSGP. As shown in Fig. 5, on the other hand, the std ranges in TAGP-TD
and SSGP are mostly the same, but the average execution steps in TAGP-TD
becomes short quickly in comparison with those in SSGP in A4 testbed, even

What is Needed to Promote an Asynchronous Program Evolution 237

Fig. 4. The average execution step after the maximum evaluations (30 trials) in SSGP
and TAGP with the TD tournament selection: A1 testbed

Fig. 5. The average execution step after the maximum evaluations (30 trials) in SSGP
and TAGP with the TD tournament selection: A4 testbed

238 K. Takadama et al.

though the result in A4 testbed is similar from Table 3. This result indicates that
TAGP-TD has a potential of the quick search ability and high evolution ability
in comparison with SSGP. In total, TAGP-TD shows the high ability in both
the arithmetic and Boolean problems.

6 Discussion

This section explores the reason why TAGP-TD outperforms SSGP or derives
similar results in comparison with SSGP from the viewpoint of the averaged
execution steps. For this purpose, we investigate a part of the evolved programs
in A1 testbed as shown in Fig. 6. This part of the evolved programs calculates x2

in f(x) = x4 + x3 + x2 + x, where x is implemented by four bits. In the evolved
programs, R1, R2, R5, R6, and R7 indicate the general purpose register, while
W indicates the working register. The input variable is set to R1 register, while
the output result is set to R2 register. “< −” indicates substitution and “>> 1”
indicates 1 bit shift right.

From the evolved program in SSGP as shown in Fig. 6(a), the registers are
initially set in line 1–6, the calculations on the lowest, the second lowest, the third
lowest, and fourth lowest bits are respectively conducted in line 7–11, line 12–16,
line 17–21, and line 22–25. Note that four bits calculations are needed because
x is implemented by four bits. The output result is calculated by repeating four
instructions as the loop program in line 26–31. From the evolved program in
TAGP-TD as shown in Fig. 6(b), on the other hand, the registers are initially set
in line 1–3, the calculations on the lowest, the second lowest, the third lowest,
and fourth lowest bits are respectively conducted in line 4–7, line 8–11, line
12–15, and line 16–18. The output result is calculated by repeating the same
shift instruction in line 19–46. The main difference of the evolved programs
between SSGP and TAGP-TD is summarized as follows:

– With/without loop instructions
The program size of the program evolved by TAGP-TD (46 size) is larger
than the one evolved by SSGP (31 size), but this is not an essential problem
because the execution steps of TAGP-TD (3293 steps) is shorter than those
of SSGP (4659 steps) as shown in Table 3. This is because the loop program
(the lines from 26 to 31) in SSGP is executed many time until 4659 steps,
while no loop program in TAGP-TD contributes to reducing the execution
steps (3293 steps).

– With/without additional register and label
The program evolved by SSGP requires the R6 resister for a counter of the
bit shift (the lines 5, 11, 16, 21, 25, 28, and 30) and the loop instructions (the
lines 26 and 31), while the one evolved by TAGP-TD does not have such a
register and instructions, which contributes to reducing the execution steps.
If a certain register (R6 in SSGP) is added, some instructions related to the
register (the seven numbers of the bit shift in SSGP) are also added, which
increases the execution steps. Furthermore, even the level in the line 31 in the
program of SSGP requires the same time for executing one instruction.

What is Needed to Promote an Asynchronous Program Evolution 239

(a)SSGP

(b)TAGP with the TD tournament selection

Fig. 6. The evolved programs in SSGP and TAGP with the TD tournament selection
in A1 testbed

240 K. Takadama et al.

These different features suggest that TAGP-TD has a great potential of
reducing the execution steps. Additionally, the program structure of SSGP seems
to be more smart or higher level than that of TAGP-TD because the loop instruc-
tion is included. However, it is dangerous to evolve the programs with the loop
instructions because such programs are easily to become the infinite loop pro-
grams or the fitness values of such programs drastically change by mutating the
counter for the loop instruction. From this viewpoint, TAGP-TD avoids such a
dangerous program evolution.

7 Conclusion

Unlike a synchronous program evolution in the context of evolutionary computa-
tion that evolves individuals (i.e., programs) after evaluations of all individuals
in each generation, this paper focused on an asynchronous program evolution
that evolves individuals during evaluations of each individual. To tackle this
problem, we explored the mechanism that can promote an asynchronous pro-
gram evolution by selecting a good individual without waiting for evaluations
of all individuals. Concretely, this paper proposed the temporal difference (TD)
tournament selection, where the winner of the current and previous parents is
mated with the winner of the previous and two times previous parents in the
crossover operation. Such a minimum set of the tournament selection contributes
to selecting good individual as the parent.

To investigate the effectiveness of the proposed mechanism, this paper evalu-
ate it in the two types of problems (i.e., the arithmetic and Boolean problems) in
the GP domain. The intensive experiments have revealed the following implica-
tions: (1) the program asynchronously evolved with the TD tournament selection
can be completed with the shorter execution steps than the program asynchro-
nously evolved without it; and (2) the program asynchronously evolved with the
TD tournament selection can be completed with mostly the same or shorter exe-
cution steps than the program synchronously evolved by the simple steady-state
GP (SSGP).

What should be noticed here is that these results have only been obtained
from two types of problem, i.e., arithmetic and Boolean problems. Therefore,
further careful qualifications and justification, such as an analysis of results using
other problems such as symbolic regression or classification problem, are needed
to generalize the effectiveness of the proposed mechanism. As the other issue,
the parents selected by the TD tournament selection become the same when the
fitness of the previous parents is higher than that of the current and two times
previous parents. Since this weak point of the proposed mechanism decreases its
evolution ability, this issue should be solved. These important directions must
be pursued in the near future in addition to the following future research: (1) an
improvement of the proposed mechanism in A4 testbed; and (2) an extension of
TAGP with the proposed mechanism not to set the parameter fmax.

What is Needed to Promote an Asynchronous Program Evolution 241

References

1. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic Programming: An
Introduction: on the Automatic Evolution of Computer Programs and Its Appli-
cations. Morgan Kaufmann Publishers Inc., San Francisco (1998)

2. Brameier, M.F., Banzhaf, W.: Linear Genetic Programming, vol. 117. Springer,
New York (2007)

3. Glasmachers, T.: A natural evolution strategy with asynchronous strategy updates.
In: The Fifteenth Annual Conference on Genetic and Evolutionary Computation
Conference (GECCO 2013), pp. 431–438. ACM (2013)

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co. Inc., Boston (1989)

5. Harada, T., Otani, M., Matsushima, H., Hattori, K., Sato, H., Takadama, K.:
Robustness to bit inversion in registers and acceleration of program evolution in
on-board computer. J. Adv. Comput. Intell. Intell. Inf. (JACIII) 15(8), 1175–1185
(2011)

6. Harada, T., Otani, M., Matsushima, H., Hattori, K., Takadama, K.: Evolving com-
plex programs in tierra-based on-board computer on UNITEC-1. In: 2010 61st
World Congress on International Astronautical Congress (IAC) (2010)

7. Koza, J.: Genetic Programming on the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

8. Langton, C.G.: Artificial Life. Addison-Wesley, Redwood City (1989)
9. Lewis, A., Mostaghim, S., Scriven, I.: Asynchronous multi-objective optimisation

in unreliable distributed environments. In: Lewis, A., Mostaghim, S., Randall,
M. (eds.) Biologically-Inspired Optimisation Methods. SCI, vol. 210, pp. 51–78.
Springer, Heidelberg (2009)

10. Microchip Technology Inc.: PIC10F200/202/204/206 Data Sheet 6-Pin, 8-bit Flash
Microcontrollers. Microchip Technology Inc. (2007). http://ww1.microchip.com/
downloads/en/DeviceDoc/41239D.pdf

11. Nonami, K., Takadama, K.: Tierra-based space system for robustness of bit inver-
sion and program evolution. In: SICE 2007 Annual Conference, pp. 1155–1160
(2007)

12. Ray, T.S.: An approach to the synthesis of life. In: Langton, C.G., Taylor, C.,
Farmer, J.D., Rasmussen, S. (eds.) Artificial Life II, vol. XI, pp. 371–408. Addison-
Wesley, Redwood City (1991)

13. Reynolds, C.W.: An evolved, vision-based behavioral model of coordinated group
motion. In: 2nd International Conference on Simulation of Adaptive Behavior, pp.
384–392. MIT Press (1993)

14. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997).
http://dx.doi.org/10.1023/A:1008202821328

15. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

http://ww1.microchip.com/downloads/en/DeviceDoc/41239D.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/41239D.pdf

A Novel Hybrid Dynamic Programming
Algorithm for a Two-Stage Supply Chain

Scheduling Problem

Jun Pei1,2(B), Xinbao Liu1,3, Wenjuan Fan1,4, Panos M. Pardalos2,
and Lin Liu1,3

1 School of Management, Hefei University of Technology, Hefei 230009, China
feiyijun.ufl@gmail.com, lxinbao@126.com, wfan3@ncsu.edu,

liulinmail@163.com
2 Center for Applied Optimization, Department of Industrial and Systems

Engineering, University of Florida, Gainesville 32601, USA
pardalos@ufl.edu

3 Key Laboratory of Process Optimization and Intelligent Decision-making
of Ministry of Education, Hefei 230009, China

4 Department of Computer Science, North Carolina State University, Raleigh
27695-7534, USA

Abstract. This study addresses a two-stage supply chain scheduling
problem, where the jobs need to be processed on the manufacturer’s ser-
ial batching machine and then transported by vehicles to the customer for
further processing. The size and processing time of the jobs are varying
due to the differences of types, and setup time is needed before processing
one batch. For the problem with minimizing the makespan, we formalize
it as a mixed integer programming model. In addition, the structural
properties and lower bound of the problem are provided. Based on the
analysis above, a novel hybrid dynamic programming algorithm, com-
bining dynamic programming and heuristics, is proposed to solve the
problem. Furthermore, its time complexity is also analyzed. By compar-
ing the experimental results of our proposed algorithm with the heuristics
BFF and LFF , we demonstrate that our proposed algorithm has better
performance and can solve the problem in a reasonable time.

Keywords: Supply chain scheduling · Batching · Dynamic program-
ming · Heuristic algorithm

1 Introduction

In recent years, effective supply chain management and optimization have
be-come more and more important along with the integration of global coop-
eration. The development of information technologies, especially the Internet of
things provides a great opportunity for an enterprise to learn the scheduling
details of its upstream and downstream enterprises. However, it is still difficult
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 242–257, 2014.
DOI: 10.1007/978-3-319-09584-4 23

A Novel Hybrid Dynamic Programming Algorithm 243

for them to make an effective schedule for the whole supply chain due to the
large-scale feature of the complex problem, and until now most enterprises still
even rely on human experience to make manufacturing schedules. The poor
scheduling performance on schedules reduces the competitiveness of the supply
chain. Therefore, a research on supply chain scheduling is imperative.

In this paper, we study a two-stage supply scheduling problem, which arises
from the real scenario under the aluminium production supply chain. In the
first stage, the manufacturer (extrusion factory) produces the jobs ordered by
the customer; and in the second stage, the vehicle deliveries the jobs from the
manufacturer to the customer. Besides, we also consider the specific interaction
modes of the production in the manufacturer.

This paper is organized as follows: we start Sect. 2 with literature review. The
problem description is presented in Sect. 3. In Sect. 4, we propose a mathematical
model of the supply chain scheduling problem. In Sect. 5, we derive and prove
the structural properties and the lower bound for the problem. In Sect. 6, the
DP-H algorithm is designed to solve it, and then the time complexity of the
proposed algorithm is analyzed. In Sect. 7, the computational experiments are
presented to evaluate the effectiveness of the proposed algorithm compared with
two other heuristics. We conclude the paper with a summary and give future
research directions in Sect. 8.

2 Literature Review

In this section, we review the literature on dynamic programming and heuristics
applied in supply chain scheduling problems.

2.1 Dynamic Programmings

Hall and Potts [1] first put forward the concept of supply chain scheduling.
In their work, they considered a variety of scheduling, batching, and delivery
problems that arose in an arborescent supply chain where a supplier made deliv-
eries to several manufacturers and a manufacturer also made deliveries to sev-
eral customers. They also derived efficient dynamic programming algorithms
for each problem, and identified incentives and mechanisms for the cooperation.
Afterwards, there are more and more papers applying dynamic programming for
supply chain scheduling problems [2–5]. Recently, Yeung et al. [6] considered a
two-echelon supply chain scheduling problem in which a manufacturer received
orders from retailers and then ordered supplies from the supplier to produce
the product. Some dominance properties were derived, and some theorems were
also established in their research. They also developed fast pseudo-polynomial
dynamic algorithms to optimally solve the problem based on their results. Hwang
et al. [7] addressed the problem of scheduling n jobs in a two-machine flow shop
for minimizing the total completion time, where the jobs were processed in the
same fixed sequence. They suggested a new concept of optimal block and uti-
lized it to develop polynomial time dynamic programming algorithms to solve

244 J. Pei et al.

the problem. Hwang and Lin [8] discussed a two-stage assembly-type flowshop
scheduling problem with batching considerations subject to a fixed job sequence.
They considered four regular performance metrics, i.e., the total completion
time, maximum lateness, total tardiness, and number of tardy jobs. A two-phase
algorithm was developed by coupling a problem transformation procedure with
dynamic programming.

2.2 Heuristics

A lot of related researches have focused on the heuristics for supply chain schedul-
ing problems [9–12]. Averbakh and Xue [13] considered supply chain scheduling
problems in which a manufacturer had to process the jobs and delivered them
to the customers. The jobs were released on-line, i.e., there was no information
on the number, release and processing times of future jobs at any time. The
objective is to minimize the sum of the total flow time and the total delivery
cost. They presented an on-line two-competitive algorithm to solve the problem
for the single customer and also considered an extension of the algorithm for the
case of multiple customers. Kim et al. [14] studied a new integrated model for
production planning and scheduling for multi-item and multi-level production,
where detailed scheduling constraints and practical planning criteria were incor-
porated. They proposed a heuristic solution procedure to solve the problem. You
and Hsieh [15] investigated the combinational problem of assembly scheduling
and transportation scheduling, which was formulated as a constrained mixed-
integer nonlinear programming problem. They developed a heuristic algorithm
to deal with it in a reasonable computational time. Mehravaran and Logendran
[16] considered a flowshop scheduling problem with sequence-dependent setup
times. Their bicriteria objectives are to minimize the work-in-process inventory
for the producer and maximize service level of the customers. They developed a
metasearch heuristic employing a newly developed concept known as the Tabu
Search with embedded progressive perturbation (TSEPP) to solve the problem.

In summary, various algorithms have been proposed for solving supply chain
scheduling problems based on dynamic programming or heuristics. However, a
few researches are conducted on specific production processes in real factories.
Especially previous dynamic programming algorithms cannot solve the large-
scale problem efficiently, which is an obstacle for the real applications. In this
study, we consider practical production patterns in extrusion factory and propose
a hybrid dynamic programming algorithm to solve the large-scale problem, which
is proved to be efficient in our comparison experiments.

3 Problem Description

The practical production system is very complicated in the aluminium product
supply chain, which is consisted of several participating enterprises. In this paper,
we focus on the supply chain scheduling problem between the manufacturer (i.e.,
extrusion factory) and the customer. The layout of the scheduling problem is

A Novel Hybrid Dynamic Programming Algorithm 245

Fig. 1. The layout of the supply chain scheduling between the manufacturer and the
customer

shown in Fig. 1. A set J = {J1, J2, , JN} of N independent jobs is available to
be processed by the manufacturer. Totally there are n types of the jobs, and
the set of the lth type jobs is indicated by J l, i.e., J = J1 ∪ J2 ∪ ...J l ∪ ...Jn.
The processing time and size of the jobs, denoted by pi and si(i = 1, 2, ..., N),
may vary due to the differences of types. All jobs are processed in batches,
and once a batch is initiated, no job can be released until the whole batch is
completely processed. The problem involves 2 stages, i.e., the production stage on
the manufacturer’s machine and the transportation stage from the manufacturer
to the customer.

(1) In the first stage, jobs are processed on the manufacturer’s serial batching
machine. Suppose the capacity of the serial batching machine is c, i.e., the total
size of the jobs in a batch cannot be larger than c. Before a batch is processed,
all jobs in the batch should share the setup time t. Let pi and Pk represent the
processing time of job i and batch k on the manufacturer’s machine, respectively.
In the serial batch production, jobs are processed one after another, so that the
processing time of batch k is represented by the sum of the processing time of
all the jobs in the batch k, i.e., Pk =

∑
Jj ∈ bk

pi(i = 1, 2, ..., N).
(2) In the second stage, all batches are transported by vehicles to the cus-

tomer for further processing. The vehicle’s one-way trip time is assumed to be
a constant T . It is also assumed that the capacity of vehicles is the same as the
capacity of the machine of the manufacturer, and it can carry any batch from
the manufacturer in one shipment.

The objective is to minimize the makespan. By adopting the three-field notion
of Graham et al. [17], the problem can be denoted as M → C, 1|b = c, tk =
T,
∑

Ji ∈ bk
si ≤ c | Cmax. In this notation, M and C stand for the manufacturer

and customer respectively, and 1 represents that the number of the manufac-
turer’s machines is one. The conditions that b = c and tk = T indicate that the
manufacturer’s machine is a serial batching machine with capacity c and the one-
way trip time of the batch k between the manufacturer and customer is equal to
T , respectively. The condition that

∑
Ji∈bk

si≤c implies that the total size of the
jobs in a batch cannot exceed the machine capacity. The symbol Cmax means
that the objective of the scheduling problem is to minimize the completion time
of the last job. For simplicity, we denote the problem as ϕ.

To illustrate this problem, an example is given in Fig. 2, where a set of four
jobs with c = 7, t = 1, T = 6, J1 = {J1, J2}, J2 = {J3, J4}, p1 = p2 = 3,
p3 = p4 = 2, s1 = s2 = 4, and s3 = s4 = 2 is considered. Figure 2 shows that

246 J. Pei et al.

Fig. 2. An example of the scheduling problem

the schedule π containing two batches, B1 = {J1, J3}, B2 = {J2, J4}, and the
makespan is 18.

The following assumptions are considered for the problem formulation:

• All the facilities (machine and vehicles) are all available at time zero in the
usage time.
• A setup is needed before a batch is processed on the machine of the manufac-

turer.
• The machine capacity is larger than the size of any job.
• There are enough vehicles to transport the job batches to the customer as

soon as they are completed on the manufacturer’s machine.
• The setup time on the machine is independent of the jobs sequence and

batching.
• Pre-emption is prohibited, i.e., once the processing of a batch has begun, it

cannot be stopped.

4 Problem Formulation

The notations used for the problem formulation are defined and the model is
given as follows:

Parameters
N : total number of the jobs;
n: total number of the job types;
q: total number of the vehicles;
i, j: index of jobs, i, j = 1, 2, ..., N ;
l: index of the job types, l = 1, 2, ..., n;
pi: processing time of job i on the manufacturer’s machine;
si: size of job i;
c: the capacity of the batching machine and corresponding vehicles;
h: total number of the batches, �∑N

i=1 si/c� ≤ h ≤ N ;
k, f : index of the batches, k, f = 1, 2, ..., h;
t: setup time on the manufacturer’s machine;
ml: total number of the lth type jobs, l = 1, 2, ..., n;
nk: the number of jobs in batch k, k = 1, 2, ..., h;
J : set of all jobs, J = {J1, J2, ..., JN};
bk: set of all jobs in bk, k = 1, 2, ..., h;
r: index of the vehicles, r = 1, 2, ..., q;

A Novel Hybrid Dynamic Programming Algorithm 247

T : the vehicles’ one-time trip time;
M : a large enough positive constant.
Decision variables
xik: 1, if job i is in batch k; 0, otherwise;
yil: 1, if job i belongs to the lth type jobs, otherwise;
zij : 1, if job i is processed before job j on the manufacturer’s machine; 0,

otherwise;
dkr: 1, if batch k is transported by vehicle r; 0, otherwise;
S1i: starting time of job i on the manufacturer’s machine;
C1i: completion time of job i on the manufacturer’s machine;
S2i: departure time of job i on the vehicle;
C2i: arrival time of job i at the customer.
Mixed integer programming model

Minimize Cmax (1)

Subject to

∑h
k=1 xik = 1, i = 1, 2, ..., N (2)

∑N
i=1 si ∗ xik ≤ c, k = 1, 2, ..., h (3)

∑h
k=1

∑nk

i=1 xik ∗ yil = ml, l = 1, 2, ..., n (4)
∑h

k=1

∑N
i=1 xik = N (5)

∑q
r=1 dkr = 1, k = 1, 2, ..., h (6)

S1i = C1j + t, Ji ∈ bk+1, Jj ∈ bk, i, j = 1, 2, ..., N, k = 1, 2, ..., h− 1 (7)
C1i = S1i +

∑
Ji ∈ bk

pi, k = 1, 2, ..., h (8)
S2i = S2j , Ji, Jj ∈ bk, i, j = 1, 2, ..., N, k = 1, 2, ..., h (9)

C2i = S2i + T, i = 1, 2, ..., N (10)
C2i − C2j + pj − (1− zij)M ≤ 0, (11)

Ji ∈ bk, Jj ∈ bf , i, j = 1, 2, ..., N, k, f = 1, 2, ..., h, i 	= j, k 	= f

Ci ≤ Cmax, i = 1, 2, ..., N (12)
xik, yil, zij , dkr ∈ {0, 1},∀i, j, k, l, r (13)

The objective function (1) minimizes the makespan. Constraint (2) guarantees
that any one job should belong to only one batch. Constraint (3) ensures that the
total size of jobs in a batch cannot exceed the capacity of the batching machine
and corresponding vehicles. Constraint (4) indicates that the total number of
any type jobs in all batches is equal to the total number of the jobs of that type.
Constraint (5) ensures that the total number of jobs in all batches is equal to
the total number of all jobs. Constraint (6) guarantees that any batch can be
transported only by one vehicle. Constraint (7) specifies that each batch requires
setup time before being processed on the manufacturer’s machine. Constraint
(8) indicates the completion time of each job on the manufacturer’s machine

248 J. Pei et al.

and ensures that all jobs in a batch have the same completion time on the
machine. Constraint (9) ensures that any two jobs in a batch should depart at
the same time on the vehicle. Constraint (10) defines the arrival time of the
jobs at the customer. Constraint (11) guarantees that there is no overlapping
situation between any two jobs in different batches. Constraint (12) indicates the
property of the maximum completion time. Constraint (13) defines the range of
the variables.

5 The Structural Properties and Lower Bound
for the Problem ϕ

5.1 The Structural Properties

Lemma 1. There exists a schedule π = (b1, b2, ..., bf , .., bg, ..., bh) for the prob-
lem ϕ, in which the solutions remain unchanged when: (1) any two jobs in a
batch are swapped; (2) any two batches are swapped; (3) any job is transferred
to another batch; (4) any two jobs from different batches are swapped.

Proof. The leftover machine capacity of bk and makespan of the schedule π are
indicated by rk and Cmax, respectively.

(1) Without loss of generality, we assume that there are Ji, Jj ∈ bf in π.
When Ji is processed before Jj on the manufacturer’s machine, the makespan is
Cmax =

∑f−1
k=1(t+Pk)+t+(p1+p2+...+pi+...+pj+...+pnf

)+
∑h

k=f+1(t+Pk)+T .
After Ji and Jj are swapped, the result of the new solution is represented by
C ′

max. It is easy to see that C ′
max =

∑f−1
k=1(t + Pk) + t + (p1 + p2 + ... + pj + ... +

pi + ... + pnf
) +

∑h
k=f+1(t + Pk) + T = Cmax. It can also be proven when Ji is

processed after Jj on the manufacturer’s machine.
(2) Without loss of generality, we assume that there are bf and bg in π.

When bf is processed before bg on the manufacturer’s machine, the makespan is
Cmax =

∑f−1
k=1(t+Pk)+(t+Pf)+

∑g−1
k=f+1(t+Pk)+(t+Pg)+

∑h
k=g+1(t+Pk)+T .

After bf and bg are swapped, we denote the result of the new solution as C ′
max.

It is easy to see that C ′
max =

∑f−1
k=1(t + Pk) + (t + Pg) +

∑g−1
k=f+1(t + Pk) + (t +

Pf) +
∑h

k=g+1(t + Pk) + T = Cmax. It can also be proven when bf is processed
after bg on the manufacturer’s machine.

(3) Without loss of generality, we assume that there are bf and bg in π,
and Ji ∈ bf . There exists rg ≥ si, so Ji can be transferred to the batch bg.
When bf is processed before bg on the manufacturer’s machine, the makespan is
Cmax =

∑f−1
k=1(t+Pk)+(t+Pf)+

∑g−1
k=f+1(t+Pk)+(t+Pg)+

∑h
k=g+1(t+Pk)+T .

After Ji is transferred to the batch bg, the schedule π is updated to a new
schedule π

′
= (bi, b2, ..., bf/{Ji}, ..., bg ∪ {Ji}, ..., bh). The result of the schedule

π
′

is indicated by C
′
max, we have C

′
max =

∑f−1
k=1(t + Pk) + (t + Pf − pi) +

∑g−1
k=f+1(t + Pk) + (t + Pg + pi) +

∑h
k=g+1(t + Pk) + T = Cmax. It can also be

proven when bf is processed after bg on the manufacturer’s machine.

A Novel Hybrid Dynamic Programming Algorithm 249

(4) Without loss of generality, we assume that there are bf and bg in π,
Ji ∈ bf , Jj ∈ bg, and f 	= g. If Ji and Jj can be swapped, there exist si ≤ sj + rg
and sj ≤ si + rf . When bf is processed before bg on the manufacturer’s machine,
Cmax =

∑f−1
k=1(t+Pk)+(t+Pf)+

∑g−1
k=f+1(t+Pk)+(t+Pg)+

∑h
k=g+1(t+Pk)+T .

After they are swapped, the schedule π is changed to a new schedule π
′
. The

result of the schedule π
′

is denoted by C
′
max, and we can get that C

′
max =∑f−1

k=1(t + Pk) + (t + Pf − pi + pj) +
∑g−1

k=f+1(t + Pk) + (t + Pg + pi − pj) +
∑h

k=g+1(t + Pk) + T = Cmax. It can also be proven when bf is processed after
bg on the manufacturer’s machine.

Lemma 2. The makespan is Cmax =
∑N

i=1 pi + ht + T .

Proof. Without loss of generality, we assume that there exists a schedule (b1,
b2, . . . , bk, . . . , bh). We can get that Cmax =

∑h
k=1(t + Pk) + T =

∑h
k=1 Pk +

∑h
k=1 t + T =

∑N
i=1 pi + ht + T .

Lemma 3. There exists better solution with less batches for the problem ϕ.

Proof. Assume that there are two schedules π and π
′
. The numbers of batches

in π and π
′

are indicated as h and h
′

respectively, and the makespan of π
′

is represented by C
′
max. When h ≥ h

′
, we can get that Cmax =

∑N
i=1 pi +

ht + T and C
′
max =

∑N
i=1 pi + h

′
t + T based on Lemma 2. This implies that

∑N
i=1 pi + ht + T ≥ ∑N

i=1 pi + h
′
t + T . Thus, we obtain Cmax ≥ C

′
max. It can

also be proven when h ≤ h
′
.

Lemma 4. For the optimal schedule, (1) there exist multiple optimal schedules
for the problem ϕ, (2) the number of the batches in the optimal schedule is the
least in all schedules.

Proof
(1) It is easy for us to obtain multiple optimal schedules due to Lemma 1.
(2) By contradiction. Without loss of generality, we assume that there exist

a schedule π and an optimal schedule π∗. The numbers of schedule π and π∗

are denoted by h and h∗, respectively, and we assume that h < h∗. Then, we
can get that Cmax =

∑N
i=1 pi + ht + T and C∗

max =
∑N

i=1 pi + h∗t + T based
on Lemma 2. It is easy to see that

∑N
i=1 pi + ht + T <

∑N
i=1 pi + h∗t + T ,

such that Cmax < C∗
max. However, it is obvious that Cmax ≥ C∗

max, which is a
contradiction. Thus, we obtain h∗ ≤ h.

5.2 Lower Bound

Theorem 1 The lower bound for the problem ϕ is LB =
∑N

i=1 pi + t ∗
�∑N

i=1 si/c�+ T .

Proof The minimum number of the batches is denoted by h
′
, i.e., h

′
= �∑N

i=1 si/c�,
which implies that ht ≥ t ∗ �∑N

i=1 si/c�. We can get that Cmax =
∑N

i=1 pi+ht+T

based on Lemma 2. It is easy to see that
∑N

i=1 pi + ht + T ≥ ∑N
i=1 pi + t ∗

�∑N
i=1 si/c�+ T . Therefore, we have LB =

∑N
i=1 pi + t ∗ �∑N

i=1 si/c�+ T .

250 J. Pei et al.

6 The Proposed Hybrid Dynamic Programming
Algorithm

As it is well known to all, it costs significant time to solve the practical large-scale
problem with dynamic programming which is hardly directly applied in the real
industrial applications. Therefore, we propose a novel hybrid dynamic program-
ming algorithm combining dynamic programming and constructive heuristics
based on the properties above. For simplicity, the hybrid algorithm is denoted
as DP −H.

Algorithm DP −H:
Step 1: Initialization. Set q = 0. Update an unscheduled job set Ju =

{J1, J2, ..., JN}. The job number of Ju is denoted by nu, i.e., nu = N . Calculate
the job number nl(l = 1, 2, ..., n) of each type.

Step 2: Set q = q + 1. Apply dynamic programming to obtain an optimal
combination from Ju as a batch. The optimal combination is indicated as Oq.
The function value of the maximum used capacity of the machine capacity v
within the first i jobs is denoted by g(i, v), which is attained from those partial
schedules associated with state (i, v), for 1 ≤ i ≤ N and 1 ≤ v ≤ c. The details
of dynamic programming are as follows.

Initialization:

For each i from 1 up to N do

For each v from 1 up to v do

g(i, v) = 0
Recursive equations:

For each i from 1 up to N do

For each v from 1 up to c do

gi, v =
{

g(i− 1, v), si > v
max{g(i− 1, v), g(i− 1, v − si) + si}, else

The optimal solution value is equal to g(N, c), and the corresponding schedule
can be found by backtracking.

Step 3: Calculate the job number of each type in Oq, which is denoted as
nl
q(l = 1, 2, ..., n).

A Novel Hybrid Dynamic Programming Algorithm 251

Step 4: Calculate the execution number dq of the combination Oq.
dq = minl=1,2,...,n�nl/nl

q.
Step 5: Update Ju, nu, and nl(l = 1, 2, ..., n). Set Ju = Ju/Jq , where the

set Jq represents the jobs of all combinations of Oq.
nu = nu − dq ∗

∑n
l=1 nl

q.
For each l from 1 up to n do
nl = nl − dq ∗ nl

q.
Step 6: If Ju = ∅, then go to step 7; otherwise, go to step 2.
Step 7: Output the result matrix σ of the generated batches, where the

first column Ox(x = 1, 2, ..., q) denotes the jobs combination of the xth iteration
and the second column dx(x = 1, 2, ..., q) represents the number of the jobs
combination of the xth iteration.

σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

O1 d1
O2 d2
...

...
Ox dx
...

...
Oq dq

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Step 8: Based on Lemma 1, Cmax is independent of the batch sequence.
Therefore, we can obtain the result of the jobs scheduling according to the gen-
eration sequence of the batches.

The detailed flowchart of the proposed DP −H is shown in Fig. 3.

Theorem 2 The time complexity of the proposed algorithm DP − H is O
(N2c + Nn).

Proof Since there are no more than O(Nc) and O(n) iteration times in steps 2
and 5 of DP-H, each step requires O(Nc + n). Besides, the maximum iteration
time in each step is also no more than N . Thus, the overall time complexity is
O(N2c + Nn).

7 Computational Experiments

In this section, we present computational experiments to evaluate the perfor-
mance of our proposed algorithm DP − H, heuristic BFF [18], and heuristic
LFF [19] for the problem f. The test problems are randomly generated based
on the real aluminium production as Table 1.

In order to analyze the factors’ impact on the proposed approaches perfor-
mance, a factorial experiment including two factors (i.e., n and c) is designed.
15 different sizes of the job types’ number are generated, and two levels of the
capacity with c = 30 and c = 35 are tested. We compare the results obtained
from the proposed algorithm and two heuristics with the lower bound derived
above. For combination (n, c), 30 different problems are randomly generated for
the test.

252 J. Pei et al.

Fig. 3. Procedure of the proposed DP −H algorithm

In order to compare the performance of the proposed algorithm DP − H,
we measure the relative gaps of the algorithm DP − H, heuristic BFF , and
heuristic LFF with LB on the test problem instances, and denote the results
of DP − H, BFF , and LFF as CDP−H

max , CBFF
max , and CLFF

max , respectively. The
relative gaps are defined as follows:

rDP−H = [CDP−H
max − LB]/LB;

rBFF = [CBFF
max − LB]/LB;

rLFF = [CLFF
max − LB]/LB.

All algorithms are coded in PowerBuilder 9.0 language and their code is run
on a Pentium(R)-4, 300 MHz PC with 2GB of RAM. The experimental results
are shown in Tables 2, 3 and Figs. 4, 5, 6, 7.

Tables 2 and 3 report the computational results of different job types’ number
with c = 30 and c = 35. For these two levels of the capacity, it is observed that
the number of batches generated by DP − H is less than those generated by
BFF and LFF . Figures 4 and 5 provide the results of the relative gaps with
c = 30 and c = 35. As seen from the figures, the relative gap generated by
DP − H is smaller than those of the other heuristics in each run of different

A Novel Hybrid Dynamic Programming Algorithm 253

Table 1. Parameters setting

Parameter Description Value

n Number of the job types 10, 20, 30, 40, 50, 60, 70, 80,
90, 100, 110, 120, 130,
140, 150

c Capacity of the batching
machine and the vehicles

30, 35

si Job size U [9, 15]

nl Number of each type jobs U [5, 15]

pi Job processing time on the
manufacturer’s serial
batching machine

U [1, 10]

t Setup time on the
manufacturer’s serial
batching machine

U [10, 15]

T Transportation time between
the manufacturer and
customer

U [20, 30]

Table 2. Computational results of three approaches for c = 30

n N LB DP − H BFF LFF

h LB h CDP−H
max rDP−H h CBFF

max rBFF h CLFF
max rLFF

10 106 44 1032 46 1052 1.94 47 1062 2.91 47 1062 2.91

20 220 86 2087 92 2147 2.87 94 2167 3.83 94 2167 3.83

30 317 124 3009 134 3109 3.32 138 3149 4.65 137 3139 4.32

40 413 162 3914 174 4034 3.07 179 4084 4.34 179 4084 4.34

50 508 202 4851 219 5021 3.50 225 5081 4.74 225 5081 4.74

60 613 246 5852 269 6082 3.93 275 6142 4.96 275 6142 4.96

70 714 287 6842 314 7112 3.95 322 7192 5.12 321 7182 4.97

80 808 326 7696 361 8046 4.55 369 8126 5.59 368 8116 5.46

90 917 371 8710 412 9120 4.71 420 9200 5.63 419 9190 5.51

100 1004 405 9586 450 10036 4.69 460 10136 5.73 459 10126 5.63

110 1098 443 10542 493 11042 4.74 504 11152 5.79 502 11132 5.60

120 1189 478 11425 533 11975 4.81 545 12095 5.86 544 12085 5.78

130 1284 513 12259 575 12879 5.06 588 13009 6.12 586 12989 5.95

140 1393 557 13281 627 13981 5.27 640 14111 6.24 638 14091 6.10

150 1499 598 14243 677 15033 5.55 690 15163 6.46 688 15143 6.32

problem configurations. Therefore, our proposed algorithm is considered more
efficient than the heuristics of BFF and LFF .

Figures 6 and 7 show the running time of DP − H in solving the problem
with c = 30 and c = 35, respectively. All the instances can be solved in 209

254 J. Pei et al.

Table 3. Computational results of three approaches for c = 35

n N LB DP −H BFF LFF

h LB h CDP−H
max rDP−H h CBFF

max rBFF h CLFF
max rLFF

10 106 38 972 42 1012 4.12 46 1052 8.23 46 1052 8.23

20 220 74 1967 78 2007 2.03 90 2127 8.13 86 2087 6.10

30 317 106 2829 110 2869 1.41 122 2989 5.66 122 2989 5.66

40 413 139 3684 145 3744 1.63 159 3884 5.43 159 3884 5.43

50 508 173 4561 183 4661 2.19 199 4821 5.70 198 4811 5.48

60 613 211 5502 224 5632 2.36 241 5802 5.45 240 5792 5.27

70 714 246 6432 261 6582 2.33 281 6782 5.44 279 6762 5.13

80 808 280 7236 298 7146 2.49 320 7636 5.53 315 7586 4.84

90 917 318 8180 343 8430 3.06 365 8650 5.75 356 8560 4.65

100 1004 348 9016 374 9276 2.88 394 9476 5.10 390 9436 4.66

110 1098 379 9902 409 10202 3.03 430 10412 5.15 424 10352 4.54

120 1189 410 10745 442 11065 2.98 459 11235 4.56 458 11225 4.47

130 1284 440 11529 474 11869 2.95 493 12059 4.60 490 12029 4.34

140 1393 477 12481 521 12921 3.53 536 13071 4.73 529 13001 4.17

150 1499 513 13393 563 13893 3.73 575 14013 4.63 565 13913 3.89

Fig. 4. Relative gaps of three approaches for c = 30

Fig. 5. Relative gaps of three approaches for c = 35

seconds, which indicates that the proposed algorithm DP −H can solve large-
scale problems in a reasonable time.

A Novel Hybrid Dynamic Programming Algorithm 255

Fig. 6. Running time for the approach DP −H with c = 30

Fig. 7. Running time for the approach DP −H with c = 35

8 Conclusions and Future Work

In this paper, we have studied a two-stage supply chain scheduling problem in
which a set of jobs of different types is scheduled on a serial batching machine in
the manufacturer and then delivered in batches to a customer. The processing
time and the size of the jobs are different due to the differences of types. For
the problem with minimizing the makespan, we provide its lower bound. The
structural properties of the problem are carefully investigated through a number
of proven propositions. Furthermore, based on these results, we have developed
an effective algorithm DP − H by combining dynamic programming and the
heuristics.

To evaluate the effectiveness of the proposed DP −H, we conducted experi-
ments with various test problems generated randomly. The experimental results
have proven that DP −H outperforms BFF as well as LFF and is capable of
solving problems of large scale in a reasonable time.

There are many interesting topics for further exploration. Firstly, we can
combine other objective functions into the model, such as minimizing the sum of
completion time and minimizing maximum lateness. Secondly, the model includ-
ing multiple manufacturers can be investigated to extent applications. Last but
not least, we need develop efficient intelligent algorithms and heuristics to solve
the problems more efficiently and effectively.

256 J. Pei et al.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (Nos. 71231004, 71171071, 71131002). Panos M. Pardalos is par-
tially supported by LATNA laboratory, NRU HSE, RF government grant, ag. 11.G34.
31.0057.

References

1. Hall, N.G., Potts, C.N.: Supply chain scheduling: batching and delivery. Oper. Res.
51(4), 566–584 (2003)

2. Alcali, E., Geunes, J., Pardalos, P.M., Romeijn, H.E., Shen, Z.J.: Applications of
Supply Chain Management and E-commerce Research in Industry. Kluwer Acad-
emic Publishers, Dordrecht (2004)

3. Gordon, V.S., Strusevich, V.A.: Single machine scheduling and due date assignment
with positionally dependent processing times. Eur. J. Oper. Res. 198(1), 57–62
(2009)

4. Cheng, T.C.E., Wang, X.: Machine scheduling with job class setup and delivery
considerations. Comput. Oper. Res. 37(6), 1123–1128 (2010)

5. Li, S., Ng, C.T., Cheng, T.C.E., Yuan, J.: Parallel-batch scheduling of deteriorating
jobs with release dates to minimize the makespan. Eur. J. Oper. Res. 210(3), 482–
488 (2011)

6. Yeung, W.K., Choi, T.M., Cheng, T.C.E.: Supply chain scheduling and coordi-
nation with dual delivery modes and inventory storage cost. Int. J. Prod. Econ.
132(2), 223–229 (2011)

7. Hwang, F.J., Kovalyov, M.Y., Lin, B.M.T.: Total completion time minimization
in two-machine flow shop scheduling problems with a fixed job sequence. Discret.
Optim. 9(1), 29–39 (2012)

8. Hwang, F.J., Lin, B.M.T.: Two-stage assembly-type flowshop batch scheduling
problem subject to a fixed job sequence. J. Oper. Res. Soc. 63(6), 839–845 (2012)

9. Geunes, J., Pardalos, P.M.: Supply Chain Optimization. Kluwer Academic Pub-
lishers, Dordrecht (2003)

10. Agrawal, V., Chao, X., Seshadri, S.: Dynamic balancing of inventory in supply
chains. Eur. J. Oper. Res. 159(2), 296–317 (2004)

11. Pardalos, P.M., Shylo, O.V., Vazacopoulos, A.: Solving job shop scheduling prob-
lems utilizing the properties of backbone and “big valley”. Comput. Optim. Appl.
47(1), 61–76 (2010)

12. Gong, H., Tang, L.: Two-machine flowshop scheduling with intermediate trans-
portation under job physical space consideration. Comput. Oper. Res. 38(9), 1267–
1274 (2011)

13. Averbakh, I., Xue, Z.: On-line supply chain scheduling problems with preemption.
Eur. J. Oper. Res. 181(1), 500–504 (2007)

14. Kim, H., Jeong, H., Park, J.: Integrated model for production planning and schedul-
ing in a supply chain using benchmarked genetic algorithm. Int. J. Adv. Manuf.
Technol. 39(11), 1207–1226 (2008)

15. You, P.S., Hsieh, Y.C.: A heuristic approach to a single stage assembly problem
with transportation allocation. Appl. Math. Comput. 218(22), 11100–11111 (2012)

16. Mehravaran, Y., Logendran, R.: Non-permutation flowshop scheduling in a supply
chain with sequence-dependent setup times. Int. J. Prod. Econ. 135(2), 953–963
(2012)

A Novel Hybrid Dynamic Programming Algorithm 257

17. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic machine scheduling: a survey. Ann. Discret.
Math. 5, 287–326 (1979)

18. Gottlieb, J., Raidl, G.R. (eds.): EvoCOP 2006. LNCS, vol. 3906. Springer,
Heidelberg (2006)

19. Koh, S.G., Koo, P.H., Kim, D.C., Hur, W.S.: Scheduling a single batch processing
machine with arbitrary job sizes and incompatible job families. Int. J. Prod. Econ.
98(1), 81–96 (2005)

A Hybrid Clonal Selection Algorithm
for the Vehicle Routing Problem with Stochastic

Demands

Yannis Marinakis1(B), Magdalene Marinaki1, and Athanasios Migdalas2,3

1 School of Production Engineering and Management,
Technical University of Crete, 73100 Chania, Greece
marinakis@ergasya.tuc.gr, magda@dssl.tuc.gr

2 Department of Civil Engineering, Aristotle University of Thessalonike,
54124 Thessalonike, Greece

samig@civil.auth.gr
3 Industrial Logistics, Lule̊a Technical University, 97187 Lule̊a, Sweden

athmig@ltu.se

Abstract. The Clonal Selection Algorithm is the most known algo-
rithm inspired from the Artificial Immune Systems and used effectively
in optimization problems. In this paper, this nature inspired algorithm
is used in a hybrid scheme with other metaheuristic algorithms for suc-
cessfully solving the Vehicle Routing Problem with Stochastic Demands
(VRPSD). More precisely, for the solution of this problem, the Hybrid
Clonal Selection Algorithm (HCSA) is proposed which combines a Clonal
Selection Algorithm (CSA), a Variable Neighborhood Search (VNS), and
an Iterated Local Search (ILS) algorithm. The effectiveness of the orig-
inal Clonal Selection Algorithm for this NP-hard problem is improved
by using ILS as a hypermutation operator and VNS as a receptor edit-
ing operator. The algorithm is tested on a set of 40 benchmark instances
from the literature and ten new best solutions are found. Comparisons of
the proposed algorithm with several algorithms from the literature (two
versions of the Particle Swarm Optimization algorithm, a Differential
Evolution algorithm and a Genetic Algorithm) are also reported.

Keywords: Clonal selection algorithm · Variable neighborhood search ·
Iterated local search · Vehicle routing problem with stochastic demands

1 Introduction

Artificial Immune Systems (AIS) [7,9] are inspired by the workings of the natural
immune system and take ideas from it in order to use them for constructing
computational models to solve real-world problems. The natural immune system
has a number of capabilities, including the ability of distinguishing between
self and foreign/non-self, the ability of recognizing and destroying a number
of pathogens, the ability of maintaining a memory of previous invaders and

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 258–273, 2014.
DOI: 10.1007/978-3-319-09584-4 24

A Hybrid Clonal Selection Algorithm 259

the ability of protecting the organism from misbehaving cells in the body [3].
Taking into account the distinct features of the natural immune system, the AIS
algorithms are classified into three categories [3] which are the Positive/Negative
Selection algorithm [14], the Clonal Expansion and Selection algorithm [10,11]
and the Network Algorithms [28]. For information about natural and artificial
immune systems please see [3,7–9,12,13,27].

One of the main algorithms based on clonal selection theory is the CLON-
ALG algorithm [10]. In [10], the clonal selection algorithm is used for a binary
character recognition task, for a multi-modal optimization task and for solving
a 30 cities instance of the Traveling Salesman Problem. The clonal selection
algorithm has been used for many real world problems, for example in [33] an
improved clonal selection algorithm is used for solving the traveling salesman
problem, in [18] an adaptive clonal selection algorithm is used for the edge link-
ing of images, in [32] a clonal selection based memetic algorithm is proposed for
solving job shop scheduling problems, in [6,20] a clonal selection algorithm is
used for solving the Vehicle Routing Problem, in [29,30] a clonal selection algo-
rithm is used for the solution of facility layout problems, in [25] a clonal selection
principle is used to solve the constrained economic load dispatch (ELD) problem,
in [5] a clonal selection principle is used for the automatic detection of multi-
ple circular shapes from complicated and noisy images with no consideration
of the conventional Hough transform principles and in [15] a Baldwinian clonal
selection algorithm is proposed to deal with optimization problems.

This paper presents a novel approach to solve the Vehicle Routing Prob-
lem with Stochastic Demands using a hybridized version of the Clonal Selection
Algorithm (CSA) with the Variable Neighborhood Search (VNS) [17] and the
Iterated Local Search (ILS) [19] algorithms. These are utilized within the CSA in
the role of the receptor editing operator and the hypermutation operator respec-
tively. The use of these two algorithms is intended to improve the exploration
and the exploitation abilities of the hybrid CSA by employing two very powerful
metaheuristics within an evolutionary framework provided by the CSA.

The Vehicle Routing Problem with Stochastic Demands (VRPSD) is a well
known NP-hard problem. In this problem, the customers demands are known
only when the vehicle arrives to them. This is in contrast to the Capacitated
Vehicle Routing Problem (CVRP) where all the customer demands are known
beforehand. In a VRPSD an a priori tour [1] is performed, i.e. a vehicle with
finite capacity leaves from the depot with full load, visits each customer exactly
once and returns to the depot. However, returns from nodes, which are sto-
chastic points [26], to the depot are also included in the final route when the
vehicle needs replenishment. Based on the demand of the next customer in the
a priori tour, the vehicle can either proceed to the depot for restocking or it
can go to the next customer. Many times although the expected demand of the
customer is less than the load of the vehicle, a preventive restocking is chosen.
This means that the vehicle returns to the depot for replenishment in order
to avoid the risk of visiting the next customer without having sufficient load.
Concerning the solution of the VRPSD, a number of algorithms have been pro-
posed in the literature [1,2,4,16,21–23].

260 Y. Marinakis et al.

The rest of the paper is organized as follows: Sect. 2 presents detailed deriva-
tion of the proposed algorithm. Section 3 the computational results obtained are
given and commented. Section 4 concludes the paper and discusses some future
research directions.

2 Hybrid Clonal Selection Algorithm for the Vehicle
Routing Problem with Stochastic Demands

In this section, the proposed algorithm for the solution of the VRPSD, the
Hybrid Clonal Selection Algorithm (HCSA), is presented in detail. The Clonal
Selection Algorithm (CSA) [11] is inspired by the clonal selection and affinity
maturation process of B cells. B cells in the natural immune system are a type
of lymphocytes, where lymphocytes are a type of leukocytes (white blood cells)
that are responsible for identifying and killing pathogens [3] once the immune
system has detected their presence, where pathogens are foreign bodies includ-
ing viruses, bacteria, multi-cellular parasites, and fungi [3]. In a clonal selection
algorithm, a large quantity of antibodies is created, where the antibodies in the
natural immune system are glycoproteins (protein+carbohydrate) secreted into
the blood in response to an antigenic stimulus that neutralise the antigen by
binding specifically to it [3]. The antibodies will bind strongly to a specific anti-
gen, where antigens are foreign molecules expressed by a pathogen that trigger
an immune system response [3].

In the algorithm, an antibody corresponds to a solution while an antigen
represents the optimization problem. The degree of binding between the anti-
body and the antigen (affinity) represents the objective function to be optimized.
The objective is to start from an initial population of solutions (antibodies) and
using the algorithm iteratively, to improve the quality of the solutions in the
population. A variant of this algorithm is to be developed subsequently.

Initially, we have to choose the population (NP) of the antibodies. Each
antibody is randomly placed in the n-dimensional space as a candidate solution
(in the VRPSD n corresponds to the number of nodes). Every solution in the
HCSA is mapped using the path representation of the tour, that is the specific
sequence of the nodes. Afterwords, the fitness (expected length of the a priori
tour) of each antibody is calculated using the following equations [1]:

fj(q) = Minimum{fp
j (q), fr

j (q)}, (1)

where

fp
j (q) = dj,j+1 +

∑

k≤q

fj+1(q − k)pj+1,k+

∑

k>q

[2dj+1,0 + fj+1(q + Q− k)]pj+1,k, (2)

and

fr
j (q) = dj,0 + d0,j+1 +

K∑

k=1

fj+1(Q− k)pj+1,k (3)

A Hybrid Clonal Selection Algorithm 261

with boundary condition:

fn(q) = dn,0, q ∈ Ln, (4)

where G = (V,A,D) is a complete graph, V = {0, 1, ..., n} is the set of nodes
with node 0 being the depot, A = {(i, j) : i, j ∈ V, i �= j} is the set of arcs,
D = {dij : i, j ∈ V, i �= j} is the travel distance between node i and j, Q is the
vehicle’s capacity and ξi, i = 1, ..., n are the customer demands. The demand
follows a discrete probability distribution pik = Prob(ξi = k), k = 0, 1, 2, ...,K ≤
Q and it does not exceed Q, s = (0, 1, ..., n) is an a priori tour, q is the vehicle’s
remaining load after serving customer j, fj(q) is the expected cost from the
customer j onward (f0(q) is the expected cost of the a priori tour), fp

j (q) is the
expected cost of the route when the vehicle does not return to the depot but goes
to the next customer and fr

j (q) is the expected cost when the vehicle returns
to the depot for preventive restocking. Due to the random behavior of customer
demands, a route failure may occur, i.e. the final demand of any route may
exceed the actual vehicle capacity. In order to avoid a route failure, a threshold
value may be chosen [31] such that if the residual load after servicing a customer
is greater than or equal to this value, then the next customer is visited. However,
if the residual load is lower than the threshold value, a return to the depot for
preventive restocking is chosen.

From the initial population NP , the best F solutions are selected. The
selected antibodies are cloned and mutated to construct new candidate pop-
ulation of antibodies. The F antibodies generate Fc clones proportional to their
fitness function (affinities). The fittest antibodies create larger number of clones.
The number of cloned antibodies is given from the following equation:

Fc =
F∑

i=1

round
βF

i
, (5)

where β is a multiplying factor. Subsequently, the hypermutation operator is
applied.

In this paper, two different hypermutation operators are used. The first one
is the classic hypermutation operator (to be described below) while the second
one is a metaheuristic, an Iterated Local Search algorithm (see Sect. 2.2).

The first mutation operator selects the bits of the clone to be mutated ran-
domly. Initially, a mutation operator number (Cr) which controls the fraction
of bits to be mutated is selected. The value of Cr is compared to the value
returned by a random number generator randi(0, 1). If the random number is
less or equal to Cr, then, the corresponding bit is to be mutated, otherwise the
corresponding bit remains unchanged. Hence, the choice of the Cr-value is criti-
cal since if its chosen value is close to or equal to 1, then, most of the bits of the
clone are mutated. However, if the chosen value is close to 0, then, almost none
of the bits are mutated. In the classic CSA, the hypermutation rate of clones
is inversely proportional to their fitness function (antigenic affinity). The higher
is the affinity, the smaller is the mutation rate. In the proposed algorithm, in

262 Y. Marinakis et al.

addition to the previous procedure, the clones produced from a common anti-
body have different hypermutation rates. This change is introduced in order to
impose diversity of the clones.

Finally, a receptor editing step is applied. The receptor editing is used as
a diversification phase of the algorithm. Two different receptor editing opera-
tors are used: One is the classic receptor editing operator (to be described in
the following) while the other is metaheuristic algorithm based on the Variable
Neighborhood Search (see Sect. 2.1). Hence, if a clone gets stuck at a local opti-
mum, the receptor editing phase of the algorithm introduces the possibility of
escaping from the local optimum. When the receptor editing is called, then a
search of unexplored places in the solution space is performed by reversing bits
of the clone.

In contrast to the classic Clonal Selection Algorithm, the proposed algorithm
applies either a hypermutation operator or a receptor editing operator to a clone.
This is an attempt to generate the largest possible number of different clones. In
order to decide whether a receptor editing operator or a hypermutation operator
should be applied to a cloned antibody, a maturate operator number (Mr) is
selected. The value of Mr is compared to the value of a random number generator
randi(0, 1). If the random number is less or equal to the Mr for the corresponding
clone, a hypermutation operator is applied, otherwise a receptor editing operator
is applied.

The population of the clones is evaluated and the best among them (S) are
selected in order to be added to the original population. Finally, new randomly
generated solutions (R) are created that replace the worst antibodies of the
population (NP) according to a specified percentage. In the next generation,
the antibodies that belong to the subset NP survive and all the other clones or
antibodies (subsets F , Fc, S and R) are removed. A pseudocode of the proposed
algorithm is as follows:

Algorithm HCSA
Definition of parameters used in the main phase of the algorithm

Definition of the maximum number of iterations
Definition of the maximum number of antibodies (NP)
Definition of numbers R and S
Definition of the number of Cr, Mr and β

Initialization Phase
Generation of the initial population (NP) of the antibodies
Calculation of the fitness function of each antibody
Sorting of the antibodies according to their fitness’ functions

Main Phase
do while the maximum number of iterations has not been reached

Selection of a subset F of the solutions from NP
For each member of F create a set of clones Fc

for each clone
if rand(0, 1) ≤Mr

Call the hypermutation operator

A Hybrid Clonal Selection Algorithm 263

else
Call the receptor editing operator

endif
endfor
Calculation of the fitness function of each clone
Sorting of the clones according to their fitness’ functions
Selection of a subset S of the clones from Fc

Generation of random solutions R
Calculation of the fitness function of each random solution
Replacement of the worst members of the NP with better solutions

from S and R
Survival of the P subset into the next iteration
Removal of all the other subsets (F , Fc, S and R) from the population

enddo
return The best antibody (best solution found)

2.1 Variable Neighborhood Search

A Variable Neighborhood Search (VNS) [17] algorithm is applied in order to
optimize the antibodies. The basic idea of the method is the successive search in
a number of different neighborhoods of a solution. The search is applied either
in a random or in a more systematic manner and aims at escaping from a local
minimum in one neighborhood by switching to a another neighborhood. In this
paper, the VNS algorithm is utilized in the following way. Initially, a number of
local search algorithms based on different neighborhoods are listed. In the case
of the Vehicle Routing Problem with Stochastic Demands, such algorithms are
the 2-opt, 1-0 insert, 2-0 insert, 1-1 interchange, and 2-2 interchange.

In order to keep the complexity of the algorithm manageable, only one local
search combination is applied to each antibody per iteration. Hence, a VNS
operator number CV NS determines which local search algorithm is selected.
The value of CV NS is compared to the output of a random number generator,
randi(0, 1). Given the list of local search algorithms, if the random number is
less than or equal to the CV NS , then, the first algorithm is used. If the random
number is less than or equal to the 2 ∗ CV NS , then, the second algorithm is
used, and so on. In this implementation, CV NS is set equal to 0.1. Since a
combination of local search algorithms is preferable to a simple local search, the
list of selectable algorithms is enlarged with several combinations (2-opt and 1-1
interchange, 2-opt and 1-0 insert, 1-0 insert and 2-2 interchange, 2-0 insert and
1-1 interchange and, finally, 2-opt, 1-1 interchange, 1-0 insert, 2-2 interchange
and 2-0 insert) which are added to the five simple local search algorithms listed
previously.

264 Y. Marinakis et al.

2.2 Iterated Local Search

The purpose of the Iterated Local Search (ILS) algorithm is to improve
previously produced local optima [19,24,27]. In this method, a perturbation is
applied to each solution in order to produce new current solution. The pertur-
bation can be thought as a large random move in the solution space.

There are a number of different ways to perform this perturbation. Thus,
either a static perturbation can be applied where the length of the perturba-
tion is fixed or a dynamic perturbation can be applied where the length of the
perturbation is determined dynamically without using any memory of previous
perturbations. Finally, an adaptive perturbation can be applied where the length
of the perturbation is adapted during the iterations based on memory of previous
good perturbations. The ILS can be thought of as an hypermutation operator
as it changes every clone in a different way.

All three kinds of perturbations are applied in order to improve the explo-
ration and exploitation abilities of the hybrid algorithm. In the static case, the
length is fixed but the indices that it is applied upon vary. In the dynamic case,
each clone is different as the length of the applied perturbation is not fixed.
Finally, in the adaptive case, a number of good previous perturbations are used.

As an example, suppose that we have the following antibody (route):
1 2 3 4 5 6 7 8 9 10.
In order to produce 5 clones we can use the static version in which an initial

perturbation length of, say, 5 is selected. Subsequently two indices, say, 4 and
10 are selected. The 5 nodes (customers) of the given route between the indices
4 and 10 are then perturbed. Thus, one possible new clone is then

1 2 3 4 9 7 8 5 6 10.
Yet another clone could be:

1 2 3 4 7 9 6 8 5 10.
If different indices are selected, for instance, the indices 2 and 8, then, a

completely different clone is produced:
1 2 7 5 3 6 4 8 9 10.
In the dynamic version, not only the indices but also the perturbation length

changes. Thus, if the length is 3 and the indices are 2 and 6, then, one possible
clone is

1 2 5 3 4 6 7 8 9 10,
and yet another is

1 2 4 5 3 6 7 8 9 10.

3 Results and Discussion

Two different approaches are mainly used in the literature in order to deal with
the route failure in the VRPSD. Both approaches have as a goal the minimization
of the expected cost. In one approach [4,16], vehicles follow their assigned routes
until a route failure occurs. Then a replenishment is performed at the depot
and subsequently the vehicle returns to the customer where the route failure

A Hybrid Clonal Selection Algorithm 265

occurred and resumes the servicing. In this approach, a set of vehicles can be
used. The second approach uses a “preventive restocking strategy” [1,21,31].
In this approach, in order to avoid the route failure, a threshold value is used.
If the residual load after servicing a customer is greater than or equal to this
threshold value, then the vehicle proceeds to the next customer, otherwise it
returns to the depot for replenishment. In this case, only one vehicle is used.

Considering these issues, the proposed hybrid is tested for the benchmark
in [4,16,34]. Note, however, that the obtained results are not be directly com-
parable to those of [4,16] due to different handling of route failure. We use the
same transformation of the customers demands as the one proposed by [4,16]
and therefore we assume customer demands to be independent Poisson random
variables with the mean demand for each customer equal to the deterministic
value of the demand given in the corresponding VRP problem.

Table 1. Parameters for all algorithms

PSO CENTPSO DE GA HCSA

particles/individuals/antibodies (NP) 80 80 200 150 100

iterations 3500 3500 3500 3500 3500

F - - - - 0.25NP

R - - - - 0.1NP

S - - - - 0.2NP

lsiter 100 100 100 100 100

c1,min = c2,min 2 2 - - -

c1,max = c2,max 5 5 - - -

w1 - 0.8 - - -

w2 - 0.9 - - -

ubound 4 4 - - -

lbound −4 −4 - - -

Cr - - 0.8 - 0.7

Mr - - 0.8 - 0.6

β - - 0.5 - 0.4

Probability of crossover - - - 0.8 -

Probability of mutation - - - 0.2 -

Four algorithms are compared to the proposed HCSA. All algorithms were
implemented in modern Fortran and compiled with the Lahey f95 compiler. The
chosen algorithm parameters are presented in Table 1. The first column of the
table lists the names of the parameters. All algorithms share the same number of
iterations and the same number of local search iterations. In Table 1, whenever
the symbol − appears in a column, the parameter is not used by the corre-
sponding algorithm. The parameters for Particle Swarm Optimization (PSO),

266 Y. Marinakis et al.

Combinatorial Expanding Neighborhood Topology Particle Swarm Optimization
(CENTPSO), Differential Evolution (DE) and Genetic Algorithm (GA) are bor-
rowed from the papers [21–23]. We have followed the similar to these method-
ology for the choice of parameter values for the HCSA. Thus, many different
alternative values were tested and those finally selected gave the best results
w.r.t. solution quality and the computational time needed in order to obtain it.
Once the final parameter values were selected, 10 different runs were performed
for each problem instance.

In Table 2, the results of the proposed hybrid algorithm for a set of forty
benchmark instances [4,16] are presented. The first column of Table 2 gives the
names of the instances, which, in turn, include the number of nodes and the
number of vehicles. For example, the instance name A-n32-k5 specifies 32 nodes
and 5 vehicles. The number of nodes is in the range from 16 to 60. The second
column lists the capacity of the vehicles in each problem instance. Column 3
lists the Best Known Solutions (BKS) from the literature. These solutions are
based on the preventive restocking approach for the route failure. Column 4 lists
the best cost obtained (S), column 5 the obtained solution quality (ω), column
6 gives the average (av) cost over the 10 runs, column 7 presents the standard
deviation (stdev), column 8 the variance (var), column 9 gives the median cost
(md) and, finally, column 10 gives the average CPU time (in seconds) for these
runs. The solution quality is given in terms of the relative deviation from the
best known solution (BKS). Hence for the HCSA we have:

ω =
(cHCSA − cBKS)

cBKS
% (6)

where cHCSA denotes the cost of the solution found by the HCSA and cBKS

is the cost of the best known solution for the specific problem instance. As it
can be seen, the proposed algorithm gives in 10 instances new best solutions
for the Vehicle Routing Problem with Stochastic Demands. The improvement in
the quality of the solutions to these instances is between 0.03 % and 1.01 %. The
average deviation of the best known solution is 0.83 %. In sixteen out of forty
instances the quality of the solutions is less than 1 %, in seven is between 1 %
to 2 % and in seven instances is more than 2 % with the worst quality equal to
4.07 %. The algorithm in all runs gave very good results with small differences
between them as the variance is in the range [0.11, 1.25], with the average vari-
ance being equal to 0.61, and as the standard deviation is in the range [0.33,
1.12], with the average standard deviation equal to 0.77. In seven instances, the
average values over the ten runs are less than the corresponding best known solu-
tion which demonstrates the effectiveness of the proposed algorithm. For these
instances, the quality has improved by 0.02 % up to 0.73 %. For the rest of the
instances, the average quality over the ten runs is between 0.01 % and 4.15 %,
with the average quality being between 0 % and 1 % for seventeen instances,
between 1 % and 2 % for eight instances and more than 2 % for eight instances.

As it would be interesting in addition to the results of the proposed algorithm
(HCSA) to present results of how each one of the modifications of the initial
version of the Clonal Selection Algorithm (CSA) affects the proposed algorithm,

A Hybrid Clonal Selection Algorithm 267

Table 2. Results of the proposed algorithm using the second approach of dealing with
the issue of the route failure occurrence

Instance Q BKS S ω av stdev var md CPU (sec)

A-n32-k5 100 820.44 822.93 0.30 823.80 0.69 0.48 823.82 215.8

A-n33-k5 100 684.2 689.44 0.77 690.38 0.90 0.81 690.16 238.2

A-n33-k6 100 762.39 763.07 0.09 763.94 0.85 0.71 763.63 241.5

A-n34-k5 100 788.7 798.39 1.23 799.29 0.84 0.70 799.19 242.4

A-n36-k5 100 826.21 822.71 −0.42 823.43 0.80 0.63 823.20 245.8

A-n37-k5 100 693.18 700.89 1.11 701.78 0.87 0.75 701.50 249.2

A-n37-k6 100 995.22 1007.3 1.21 1008.26 0.91 0.82 1008.07 248.1

A-n38-k5 100 752.2 752.98 0.10 753.88 1.00 1.00 753.59 251.4

A-n39-k5 100 853.002 859.53 0.77 860.54 0.67 0.45 860.71 263.5

A-n39-k6 100 845.25 850.17 0.58 851.04 0.70 0.48 850.97 259.8

A-n44-k6 100 977.0056 1016.8 4.07 1017.56 0.61 0.37 1017.57 264.5

A-n45-k6 100 988.12 1007.4 1.95 1008.37 0.72 0.53 1008.41 268.4

A-n45-k7 100 1175.45 1186.4 0.93 1187.31 0.83 0.69 1187.10 269.2

A-n46-k7 100 976.84 977.19 0.04 978.19 0.70 0.49 978.23 275.8

A-n48-k7 100 1132.15 1145 1.14 1145.99 0.78 0.60 1146.04 301.5

A-n53-k7 100 1094.2 1098.15 0.36 1099.07 0.96 0.93 1098.56 317.8

A-n54-k7 100 1217.2 1255.7 3.16 1256.39 0.51 0.26 1256.49 324.5

A-n55-k9 100 1118.4 1149.1 2.74 1150.10 0.80 0.64 1150.19 329.8

A-n60-k9 100 1436.5 1479.8 3.01 1480.59 0.78 0.60 1480.53 405.1

E-n22-k4 6000 378.56 376.02 −0.67 376.99 1.12 1.25 376.43 875.5

E-n33-k4 8000 847.38 848.95 0.19 849.41 0.33 0.11 849.43 918.7

E-n51-k5 160 544.86 549.25 0.81 550.13 0.91 0.84 549.67 457.2

P-n16-k8 35 441.98 437.51 −1.01 438.54 0.86 0.74 438.72 85.6

P-n19-k2 160 207.46 213.05 2.69 213.93 0.73 0.54 213.92 142.5

P-n20-k2 160 224.25 226.29 0.91 227.34 0.85 0.72 227.12 157.8

P-n21-k2 160 218.13 216.46 −0.77 217.37 0.74 0.55 217.20 162.5

P-n22-k2 160 223.06 225.67 1.17 226.60 0.76 0.58 226.45 165.8

P-n22-k8 3000 586.91 586.71 −0.03 587.47 0.89 0.80 587.10 358.2

P-n23-k8 40 532.82 532.12 −0.13 532.86 0.52 0.27 532.69 97.8

P-n40-k5 140 471.11 468.67 −0.52 469.59 0.87 0.75 469.41 314.2

P-n45-k5 150 527.9 527.27 −0.12 528.20 0.77 0.59 528.06 358.4

P-n50-k10 100 724.6 736.69 1.67 737.74 0.87 0.76 737.46 347.5

P-n50-k7 150 570.94 575.12 0.73 575.68 0.41 0.17 575.68 398.5

P-n50-k8 120 654.87 660.92 0.92 661.69 0.78 0.61 661.43 372.5

P-n51-k10 80 773.48 789.39 2.06 790.28 0.78 0.61 790.39 205.2

P-n55-k10 115 720.67 726.22 0.77 727.18 0.81 0.65 727.15 298.5

P-n55-k15 70 999.94 1002 0.21 1002.77 0.90 0.81 1002.51 194.2

P-n55-k7 170 587.95 587.14 −0.14 587.94 0.53 0.28 588.04 265.5

P-n60-k10 120 772.86 790.62 2.30 791.56 0.73 0.54 791.20 278.5

P-n60-k15 80 1012.9 1005.9 −0.69 1006.63 0.52 0.27 1006.62 215.5

268 Y. Marinakis et al.

Table 3. Comparison of the proposed algorithm with three other versions of CSA

BKS CSA CSA-ILS CSA-VNS HCSA

S ω S ω S ω S ω

A-n32-k5 820.44 851.15 3.74 824.69 0.52 825.11 0.57 822.93 0.30

A-n33-k5 684.20 703.82 2.87 689.93 0.84 691.18 1.02 689.44 0.77

A-n33-k6 762.39 785.25 3.00 763.99 0.21 763.47 0.14 763.07 0.09

A-n34-k5 788.70 819.37 3.89 799.32 1.35 799.24 1.34 798.39 1.23

A-n36-k5 826.21 855.15 3.50 822.92 −0.40 822.89 −0.40 822.71 −0.42

A-n37-k5 693.18 707.35 2.04 701.91 1.26 703.16 1.44 700.89 1.11

A-n37-k6 995.22 1028.15 3.31 1008.12 1.30 1007.54 1.24 1007.30 1.21

A-n38-k5 752.20 772.15 2.65 753.12 0.12 755.39 0.42 752.98 0.10

A-n39-k5 853.00 868.25 1.79 860.06 0.83 861.04 0.94 859.53 0.77

A-n39-k6 845.25 869.35 2.85 851.99 0.80 850.90 0.67 850.17 0.58

A-n44-k6 977.01 1024.19 4.83 1017.60 4.15 1017.27 4.12 1016.80 4.07

A-n45-k6 988.12 1019.36 3.16 1007.45 1.96 1009.89 2.20 1007.40 1.95

A-n45-k7 1175.45 1259.25 7.13 1186.94 0.98 1186.67 0.95 1186.40 0.93

A-n46-k7 976.84 1001.19 2.49 977.28 0.04 977.76 0.09 977.19 0.04

A-n48-k7 1132.15 1185.14 4.68 1147.57 1.36 1146.03 1.23 1145.00 1.14

A-n53-k7 1094.20 1117.19 2.10 1098.70 0.41 1099.96 0.53 1098.15 0.36

A-n54-k7 1217.20 1284.36 5.52 1256.07 3.19 1256.88 3.26 1255.70 3.16

A-n55-k9 1118.40 1177.26 5.26 1149.30 2.76 1151.28 2.94 1149.10 2.74

A-n60-k9 1436.50 1527.43 6.33 1479.82 3.02 1480.71 3.08 1479.80 3.01

E-n22-k4 378.56 408.57 7.93 376.11 −0.65 378.50 −0.02 376.02 −0.67

E-n33-k4 847.38 850.15 0.33 849.67 0.27 849.18 0.21 848.95 0.19

E-n51-k5 544.86 551.15 1.15 549.40 0.83 549.58 0.87 549.25 0.81

P-n16-k8 441.98 511.75 15.78 439.25 −0.62 438.06 −0.89 437.51 −1.01

P-n19-k2 207.46 223.22 7.59 214.14 3.22 214.66 3.47 213.05 2.69

P-n20-k2 224.25 232.15 3.52 227.07 1.26 228.86 2.05 226.29 0.91

P-n21-k2 218.13 218.92 0.36 218.42 0.13 218.24 0.05 216.46 −0.77

P-n22-k2 223.06 230.26 3.23 226.01 1.32 227.90 2.17 225.67 1.17

P-n22-k8 586.91 675.15 15.04 587.09 0.03 589.54 0.45 586.71 −0.03

P-n23-k8 532.82 608.25 14.16 532.65 −0.03 533.79 0.18 532.12 −0.13

P-n40-k5 471.11 471.41 0.06 469.53 −0.34 469.76 −0.29 468.67 −0.52

P-n45-k5 527.90 532.15 0.81 527.32 −0.11 527.70 −0.04 527.27 −0.12

P-n50-k10 724.60 758.92 4.74 737.32 1.76 737.00 1.71 736.69 1.67

P-n50-k7 570.94 581.42 1.83 575.89 0.87 575.59 0.81 575.12 0.73

P-n50-k8 654.87 668.25 2.04 661.51 1.01 662.21 1.12 660.92 0.92

P-n51-k10 773.48 807.13 4.35 790.82 2.24 789.59 2.08 789.39 2.06

P-n55-k10 720.67 742.22 2.99 726.84 0.86 727.83 0.99 726.22 0.77

P-n55-k15 999.94 1065.35 6.54 1002.75 0.28 1002.93 0.30 1002.00 0.21

P-n55-k7 587.95 588.49 0.09 587.18 −0.13 588.41 0.08 587.14 −0.14

P-n60-k10 772.86 802.31 3.81 792.73 2.57 792.19 2.50 790.62 2.30

P-n60-k15 1012.90 1082.12 6.83 1007.44 −0.54 1006.30 −0.65 1005.90 −0.69

A Hybrid Clonal Selection Algorithm 269

Table 4. Comparison of the proposed algorithm with other evolutionary algorithms
from the literature

Instance BKS PSO GA DE CENTPSO HCSA

S ω S ω S ω S ω S ω

A-n32-k5 820.44 821.65 0.15 836.07 1.91 820.5 0.01 820.44 0.00 822.93 0.30

A-n33-k5 684.2 687.04 0.42 693.4 1.34 684.2 0.00 687.04 0.42 689.44 0.77

A-n33-k6 762.39 769.62 0.95 762.4 0.00 762.6 0.03 762.39 0.00 763.07 0.09

A-n34-k5 788.7 789.88 0.15 812.3 2.99 788.7 0.00 789.88 0.15 798.39 1.23

A-n36-k5 826.21 836.05 1.19 833.3 0.86 835.1 1.08 826.21 0.00 822.71 −0.42

A-n37-k5 693.18 693.18 0.00 707.65 2.09 702 1.27 693.18 0.00 700.89 1.11

A-n37-k6 995.22 999.72 0.45 1018 2.29 1008.2 1.30 995.22 0.00 1007.3 1.21

A-n38-k5 752.2 756.56 0.58 755.5 0.44 752.2 0.00 755.2 0.40 752.98 0.10

A-n39-k5 853.002 853.08 0.01 858.7 0.67 862.6 1.13 853.002 0.00 859.53 0.77

A-n39-k6 845.25 847.92 0.32 867.12 2.59 845.7 0.05 845.25 0.00 850.17 0.58

A-n44-k6 977.0056 978.83 0.19 1005.9 2.96 980.6 0.37 977.0056 0.00 1016.8 4.07

A-n45-k6 988.12 997.41 0.94 1007.9 2.00 996.86 0.88 988.12 0.00 1007.4 1.95

A-n45-k7 1175.45 1175.45 0.00 1239.4 5.44 1213.1 3.20 1175.45 0.00 1186.4 0.93

A-n46-k7 976.84 984.98 0.83 976.84 0.00 979.7 0.29 978.23 0.14 977.19 0.04

A-n48-k7 1132.15 1132.15 0.00 1182.3 4.43 1146.7 1.29 1132.15 0.00 1145 1.14

A-n53-k7 1094.2 1096.6 0.22 1117.8 2.16 1100.2 0.55 1094.2 0.00 1098.15 0.36

A-n54-k7 1217.2 1223.23 0.50 1283.9 5.48 1279.5 5.12 1217.2 0.00 1255.7 3.16

A-n55-k9 1118.4 1124.3 0.53 1168.1 4.44 1150.9 2.91 1118.4 0.00 1149.1 2.74

A-n60-k9 1436.5 1454.15 1.23 1517.25 5.62 1483.2 3.25 1436.5 0.00 1479.8 3.01

E-n22-k4 378.56 390.99 3.28 385.12 1.73 379.16 0.16 378.56 0.00 376.02 −0.67

E-n33-k4 847.38 847.38 0.00 849.35 0.23 848.25 0.10 847.38 0.00 848.95 0.19

E-n51-k5 544.86 544.86 0.00 550.15 0.97 549.18 0.79 544.86 0.00 549.25 0.81

P-n16-k8 441.98 455.21 2.99 443.98 0.45 444.55 0.58 441.98 0.00 437.51 −1.01

P-n19-k2 207.46 213.51 2.92 216.66 4.43 215.04 3.65 207.46 0.00 213.05 2.69

P-n20-k2 224.25 226.79 1.13 225.89 0.73 224.25 0.00 226.13 0.84 226.29 0.91

P-n21-k2 218.13 218.13 0.00 218.38 0.11 218.52 0.18 218.13 0.00 216.46 −0.77

P-n22-k2 223.06 229.45 2.86 223.06 0.00 229.45 2.86 229.45 2.86 225.67 1.17

P-n22-k8 586.91 590.72 0.65 587.32 0.07 589.89 0.51 586.91 0.00 586.71 −0.03

P-n23-k8 532.82 536.34 0.66 536.07 0.61 545.26 2.33 532.82 0.00 532.12 −0.13

P-n40-k5 471.11 471.24 0.03 471.11 0.00 472.15 0.22 471.24 0.03 468.67 −0.52

P-n45-k5 527.9 530.52 0.50 531.29 0.64 527.9 0.00 529.16 0.24 527.27 −0.12

P-n50-k10 724.6 739.51 2.06 755.15 4.22 724.6 0.00 738.94 1.98 736.69 1.67

P-n50-k7 570.94 570.94 0.00 580.34 1.65 575.92 0.87 570.94 0.00 575.12 0.73

P-n50-k8 654.87 659.19 0.66 658 0.48 664.02 1.40 654.87 0.00 660.92 0.92

P-n51-k10 773.48 795.43 2.84 805.8 4.18 789.04 2.01 773.48 0.00 789.39 2.06

P-n55-k10 720.67 737.87 2.39 742.4 3.02 730.15 1.32 720.67 0.00 726.22 0.77

P-n55-k15 999.94 1008.6 0.87 1002.6 0.27 1016.4 1.65 999.94 0.00 1002 0.21

P-n55-k7 587.95 587.95 0.00 588.34 0.07 588.47 0.09 587.95 0.00 587.14 −0.14

P-n60-k10 772.86 772.86 0.00 803.18 3.92 790.55 2.29 772.86 0.00 790.62 2.30

P-n60-k15 1012.9 1021.58 0.86 1068.6 5.50 1067.6 5.40 1012.9 0.00 1005.9 −0.69

we present in Table 3 the results of the classic CSA, of a CSA with ILS and of a
CSA with VNS. As it can be observed the results of the proposed algorithm are
better than the results of the other three implementations. The results of the
initial version of the CSA are inferior than the results of all the other implemen-

270 Y. Marinakis et al.

tations. These results prove that the addition of each one of the modifications
is very important for the effectiveness of the algorithm and each one helps the
algorithm to improve its results. The next question that we have to answer is
which of the two modifications helps the algorithm more. As it can be observed
none of them outperforms clearly from the other. The CSA-ILS gives better
results from the CSA-VNS in 24 instances (worst in 16 instances). The aver-
age quality of the CSA is 4.36 %, of the CSA-ILS is 0.97 %, of the CSA-VNS
is 1.07 % while the average quality of the proposed algorithm is 0.84 %. Thus,
the inclusion of the two modifications is necessary for the effectiveness of the
proposed algorithm.

Table 4 presents a comparison of HCSA with four other evolutionary opti-
mization algorithms: a constriction Particle Swarm Optimization (PSO) algo-
rithm [21], a Differential Evolution (DE) algorithm [23], a Genetic Algorithm
(GA) [23], and the Combinatorial Expanding Neighborhood Topology Particle
Swarm Optimization (CENTPSO) [22]. The first column of the table, as before,
gives the instance name. Columns two and three present the best cost over ten
runs and the quality of the solutions produced by the PSO algorithm. Columns
four and five give the corresponding values for the GA. Similarly, columns six and
seven present the results obtained by the DE algorithm while columns eight and
nine are dedicated to the CENTPSO algorithm. Finally, the last two columns
show the results obtained by the new HCSA.

The new hybrid algorithm finds, as previously noticed, new best solutions
in ten out of forty instances. The average quality of the obtained solutions is
0.18 % for the CENTPSO, 0.83 % for the HCSA, 0.83 % for the PSO, 1.22 %
for the DE, and 2.02 % for the GA. Compared to the CENTPSO the proposed
algorithm finds better solutions in fourteen instances, compared to the PSO the
proposed algorithm finds better solutions in twenty instances, compared to the
DE the proposed algorithm finds better solutions in twenty six instances and,
finally, compared to the GA the proposed algorithm finds better solutions in
thirty three instances. The proposed algorithm outperforms both DE and GA
on all instances. The performance of the new HCSA is similar to that PSO
as both algorithms produce better than the best known solutions for twenty
instances and both correspond to an average quality of 0.83 %. The results of
the HCSA are slightly inferior than those of the CENTPSO algorithm as the
proposed hybrid finds 10 new best solutions but CENTPSO maintains 23 of the
30 best solutions it had previously obtained for the same instances.

4 Conclusions

In this paper, a new hybridized algorithm based on Clonal Selection Algorithm
for the solution of the Vehicle Routing Problem with Stochastic Demands has
been proposed. The purpose of this hybridization has been to improve the effec-
tiveness of the original Clonal Selection Algorithm for this NP-hard problem.
Hence, the Iterated Local Search algorithm was introduced as a hypermuta-
tion operator and the Variable Neighborhood Search algorithm as a receptor

A Hybrid Clonal Selection Algorithm 271

editing operator. The resulting hybrid algorithm was tested on a set of bench-
mark instances and gave new best solutions in ten out of forty instances with an
average quality equal to 0.83 %. The experimentation has also showed that the
new hybrid is competitive with other evolutionary algorithms and that it may
even outperform them w.r.t. solution quality. Indeed, the new hybrid found 10
new best solutions and showed better results on all benchmark instances than
the classic versions of Differential Evolution and Genetic Algorithms. The new
hybrid performs equally to the constriction PSO and it is only slightly inferior
than a more involved version of PSO, the Combinatorial Expanding Neighbor-
hood Topology Particle Swarm Optimization. Our future research will be focused
on the application of this algorithm to other difficult routing problems.

References

1. Bianchi, L., Birattari, M., Manfrin, M., Mastrolilli, M., Paquete, L., Rossi-Doria,
O., Schiavinotto, T.: Hybrid metaheuristics for the vehicle routing problem with
stochastic demands. J. Math. Model. Algorithms 5(1), 91–110 (2006)

2. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287
(2009)

3. Brabazon, A., O’Neill, M.: Biologically Inspired Algorithms for Financial Modeling.
Natural Computing Series. Springer, Berlin (2006)

4. Christiansen, C.H., Lysgaard, J.: A branch-and-price algorithm for the capacitated
vehicle routing problem with stochastic demands. Oper. Res. Lett. 35, 773–781
(2007)

5. Cuevas, E., Osuna-Enciso, V., Wario, F., Zaldί var, D., Pérez-Cisneros, M., : Auto-
matic multiple circle detection based on artificial immune systems. Expert Syst.
Appl. 39, 713–722 (2012)

6. Dabrowski, J.: Clonal selection algorithm for vehicle routing. In: Proceedings of
the 2008 1st International Conference on Information Technology, IT 2008 19–21
May 2008, Gdansk, Poland (2008)

7. Dasgupta, D. (ed.): Artificial Immune Systems and their Application. Springer,
Heidelberg (1998)

8. Dasgupta, D., Niño, L.F.: Immunological Computation: Theory and Applications.
CRC Press, Taylor and Francis Group, Boca Raton (2009)

9. De Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational
Intelligence Approach. Springer, Heidelberg (2002)

10. De Castro, L.N., Von Zuben, F.J.: The clonal selection algorithm with engineering
applications. In: Workshop on Artificial Immune Systems and Their Applications
(GECCO00), Las Vegas, NV, pp. 36–37 (2000)

11. De Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal
selection principle. IEEE Trans. Evol. Comput. 6(3), 239–251 (2002)

12. Engelbrecht, A.P.: Computational Intelligence: An Introduction, 2nd edn. Wiley,
New York (2007)

13. Flower, D., Timmis, J. (eds.): In Silico Immunology. Springer, New York (2007)
14. Forrest, S., Perelson, A. Allen, L., Cherukuri, R.: Self-nonself discrimination in a

computer. In: Proceedings of the 1994 IEEE Symposium on Research in Security
and Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)

272 Y. Marinakis et al.

15. Gong, M., Jiao, L., Zhang, L.: Baldwinian learning in clonal selection algorithm
for optimization. Inf. Sci. 180, 1218–1236 (2010)

16. Goodson, J.C., Ohlmann, J.W., Thomas, B.W.: Cyclic-order neighborhoods with
application to the vehicle routing problem with stochastic demand. Eur. J. Oper.
Res. 217, 312–323 (2012)

17. Hansen, P., Mladenovic, N.: Variable neighborhood search: principles and applica-
tions. Eur. J. Oper. Res. 130, 449–467 (2001)

18. Li, F., Gao, S., Wang, W., Tang, Z.: An adaptive clonal selection algorithm for
edge linking problem. IJCSNS Int. J. Comput. Sci. Netw. Secur. 9(7), 57–65 (2009)

19. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F.,
Kochenberger, G. (eds.) Handbook of Metaheuristics. Operations Research and
Management Science, vol. 57, pp. 321–353. Kluwer Academic Publishers, Dordrecht
(2002)

20. Ma, J., Shi, G., Gao, L.: An Improved immune clonal selection algorithm and its
applications for VRP. In: Proceedings of the IEEE International Conference on
Automation and Logistics Shenyang, China, August 2009 (2009)

21. Marinakis, Y., Iordanidou, G.R., Marinaki, M.: Particle swarm optimization for
the vehicle routing problem with stochastic demands. Appl. Soft Comput. 13,
1693–1704 (2013)

22. Marinakis, Y., Marinaki, M.: Combinatorial expanding neighborhood topology par-
ticle swarm optimization for the vehicle routing problem with stochastic demands.
In: GECCO: 2013, Genetic and Evolutionary Computation Conference, Amster-
dam, The Netherlands, 6–10 July 2013

23. Marinakis, Y., Marinaki, M., Spanou, P.: A memetic differential evolution algo-
rithm for vehicle routing problem with stochastic demands. In: Fister, I., Fister,
I. Jr. (eds.) Adaptation in Computational Intelligence, Adaptation Learning and
Optimization (2014). (accepted)

24. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the traveling
salesman problem. Complex Syst. 5(3), 299–326 (1991)

25. Panigrahi, B.K., Yadav, S.R., Agrawal, S., Tiwari, M.K.: A clonal algorithm to
solve economic load dispatch. Electr. Power Syst. Res. 77, 1381–1389 (2007)

26. Stewart, W.R., Golden, B.L.: Stochastic vehicle routing: a comprehensive app-
roach. Eur. J. Oper. Res. 14, 371–385 (1983)

27. Talbi, E.-G.: Metaheuristics : From Design to Implementation. Wiley, New York
(2009)

28. Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis.
In: Timmis, J., Neal, M. (eds.) Research and Development in Intelligent Systems,
vol. 14, pp. 19–32. Springer, London (2000)

29. Ulutas, B.H., Islier, A.A.: A clonal selection algorithm for dynamic facility layout
problems. J. Manuf. Syst. 28, 123–131 (2009)

30. Ulutas, B.H., Kulturel-Konak, S.: An artificial immune system based algorithm to
solve unequal area facility layout problem. Expert Syst. Appl. 39(5), 5384–5395
(2012)

31. Yang, W.H., Mathur, K., Ballou, R.H.: Stochastic vehicle routing problem with
restocking. Transp. Sci. 34, 99–112 (2000)

32. Yang, J.-H., Sun, L., Lee, H.P., Qian, Y., Liang, Y.-C.: Clonal selection based
memetic algorithm for job shop scheduling problems. J. Bionic Eng. 5, 111–119
(2008)

A Hybrid Clonal Selection Algorithm 273

33. Zhu, Y., Gao, S., Dai, H., Li, F., Tang, Z.: Improved clonal algorithm and its
application to traveling salesman problem. IJCSNS Int. J. Comput. Sci. Netw.
Secur. 7(8), 109–113 (2007)

34. http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/Vrp-All.tgz

http://www.coin-or.org/SYMPHONY/branchandcut/VRP/data/Vrp-All.tgz

Bayesian Gait Optimization
for Bipedal Locomotion

Roberto Calandra1(B), Nakul Gopalan2, André Seyfarth3,
Jan Peters1,4, and Marc Peter Deisenroth1,5

1 Department of Computer Science, Intelligent Autonomous Systems Lab,
TU Darmstadt, Darmstadt, Germany

calandra@ias.tu-darmstadt.de
2 Department of Computer Science, Brown University, Providence, USA

ngopalan@cs.brown.edu
3 Institute of Sport Science, Locomotion Lab, TU Darmstadt, Darmstadt, Germany

seyfarth@sport.tu-darmstadt.de
4 Max Planck Institute for Intelligent Systems, Tübingen, Germany

mail@jan-peters.net
5 Department of Computing, Imperial College London, London, UK

m.deisenroth@imperial.ac.uk

Abstract. One of the key challenges in robotic bipedal locomotion is find-
ing gait parameters that optimize a desired performance criterion, such as
speed, robustness or energy efficiency.Typically, gait optimization requires
extensive robot experiments and specific expert knowledge. We propose to
apply data-driven machine learning to automate and speed up the process
of gait optimization. In particular, we use Bayesian optimization to effi-
ciently find gait parameters that optimize the desired performance metric.
As a proof of concept we demonstrate that Bayesian optimization is near-
optimal in a classical stochastic optimal control framework. Moreover, we
validate our approach to Bayesian gait optimization on a low-cost and frag-
ile real bipedal walker and show that good walking gaits can be efficiently
found by Bayesian optimization.

Keywords: Bayesian optimization · Gait optimization · Bipedal
locomotion

1 Introduction

Bipedal walking and running are versatile and fast locomotion gaits. Despite its
high mobility, bipedal locomotion is rarely used in real-world robotic applica-
tions. Key challenges in bipedal locomotion include balance control, foot place-
ment, and gait optimization. In this paper, we focus on gait optimization, i.e.,
finding good parameters for the gait of a robotic biped.

Due to the partially unpredictable effects and correlations among the gait
parameters, gait optimization is often an empirical, time-consuming and strongly
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 274–290, 2014.
DOI: 10.1007/978-3-319-09584-4 25

Bayesian Gait Optimization for Bipedal Locomotion 275

robot-specific process. In practice, gait optimization often translates into a trial-
and-error process where choosing the parameters is either an educated guess
by a human expert or a systematic search, such as grid search. As a result,
gait optimization may require considerable expert knowledge, engineering effort
and time-consuming experiments. Additionally, the effectiveness of the resulting
gait is restricted by the assumptions made during the controller design process,
regarding the environment, the hardware and the performance criterion. There-
fore, a change in the environment (e.g., different floor surfaces), a variation in
the hardware response (e.g., decline in performances of the hardware, replace-
ment of a motor or differences in the calibration) or the choice of a performance
criterion (e.g., walking speed, energy efficiency, robustness), which differs from
the one used during the controller design process, often requires searching for
new, more appropriate, gait parameters.

Fig. 1. The bio-inspired dynamical bipedal
walker Fox. Using Bayesian optimization,
we found reliable and fast walking gaits
with a velocity of up to 0.45 m/s.

The search for appropriate gait
parameters can be formulated as an
optimization problem. Such a prob-
lem formulation in conjunction with
an appropriate optimization method
allows to automate the search for opti-
mal gait parameters. Therefore, it is
a valuable and principled approach to
designing controllers and reduces the
need for engineering expert knowledge.
To date, automatic optimization meth-
ods, such as gradient descent meth-
ods [28] and genetic algorithms [7],
have been used for designing effi-
cient gaits for locomotion. However,
gradient descent based methods [28]
might not find the optimal solution
for an objective function with multiple
local minima, and the computation of
the gradient is required. Furthermore,
many global optimization approaches
require a large number of interac-
tions and are, therefore, impractical
to apply to fragile robots. For exam-
ple, genetic algorithms evaluate multi-
ple sets of parameters from the popula-
tion in each iteration [7]. Since a large

number of interactions can wear the robot out, extensive experiments may be
economically infeasible or require an impractical amount of time. Hence, in prac-
tice, it is often essential to keep the number of interactions with the robot as
small as possible.

276 R. Calandra et al.

To overcome this practical limitation on the number of possible interactions,
we propose to use Bayesian optimization for efficient bipedal gait optimization.
Bayesian optimization is a state-of-the-art global optimization method [14,17,21]
that can be applied to problems where it is vital to optimize a performance crite-
rion while keeping the number of evaluations of the system small, e.g., when an
evaluation requires an expensive interaction with a robot. Bayesian optimization
has been successfully applied to sensor-set selection [9] and gait optimization for
quadrupeds [18] and snake robots [29]. Bayesian optimization makes efficient
use of past interactions (experiments) by learning a probabilistic (surrogate)
model of the function to optimize. Subsequently, the learned surrogate model
is used for finding optimal parameters without the need to evaluate the expen-
sive (true) function. By exploiting the learned model, Bayesian optimization,
therefore, often requires fewer interactions, i.e., evaluations of the true objective
function, than other optimization methods [14]. Bayesian optimization can also
make good use of prior knowledge, such as expert knowledge or data from related
environments or hardware, by directly integrating it into the prior of the learned
surrogate model. Moreover, unlike most optimization methods, it can re-use any
collected interaction data set, e.g., whenever we want to change the performance
criterion.

In this paper, we demonstrate that Bayesian optimization is a promising
approach for gait optimization. In Sect. 3.1, as a proof of concept, we apply
Bayesian optimization to a well-studied stochastic optimal control task, i.e.,
stochastic Linear-Quadratic Regulation (LQR) [3], where an optimal solution
can be computed. We demonstrate that Bayesian optimization successfully finds
near-optimal solutions for the stochastic LQR problem quickly, reproducibly and
reliably. In Sect. 3.2, we show that Bayesian optimization can be used for imita-
tion of trajectories in the context of bipedal walking. Given a reference trajectory
we find controller parameters that result in a gait that closely resembles the refer-
ence trajectory. In Sect. 3.3, we apply Bayesian optimization to gait optimization
for robotic bipedal locomotion. Experimental results on the bio-inspired biped
Fox (Fig. 1) demonstrate that Bayesian optimization finds good gait parame-
ters in a small number of experiments. Moreover, the learned controller results
in a better gait compared to previous hand-crafted controllers. The use of an
efficient gait optimization method for bipedal locomotion greatly alleviates the
need for extensive parameter search and reduces the requirement of expert
knowledge.

2 Efficient Gait Optimization

The search for appropriate parameters for a controller and/or trajectory
representation can be formulated as an optimization problem, such as the
minimization

minimize
θ∈Rd

f(θ) (1)

of an objective function f with respect to the parameters θ. In the case of gait
optimization, θ are the parameters of the gait controller, while the objective

Bayesian Gait Optimization for Bipedal Locomotion 277

function f is a performance criterion, such as the walking speed, energy con-
sumption or robustness. Note that evaluating the objective function f for a
given set of parameters requires a physical interaction with the robot.

The considered gait optimization problem has the following properties:

1. Zero-order objective function. When evaluating the objective function f
the value of the function f(θ) is available, but not the gradient information
df(θ)/dθ with respect to the parameters. The use of gradient information is
generally desirable in local optimization as it leads to faster convergence than
zero-order methods. Thus, it is common to approximate the gradient using
finite differences. However, finite differences require evaluating the objec-
tive function f multiple times. Since each evaluation requires interactions
with the robot, the number of robot experiments quickly becomes exces-
sive, rendering the whole family of efficient gradient descent-based methods
(e.g., gradient descent, conjugate gradient, L-BFGS [5]) undesirable for our
task.

2. Stochastic objective function. The evaluation of the objective function is
inherently stochastic due to noisy measurements and variable initial condi-
tions. Therefore, any suitable optimization method needs to take into consid-
eration that two evaluations of the same parameters θ can yield two different
values f1(θ) �= f2(θ).

3. Global solution. Ideally, we strive to find the global minimum of the objec-
tive function. However, no assumption can be made about the presence of
multiple local minima or about the convexity of the objective function.

All these characteristics make
this family of problems a very
challenging optimization task. A
classical way of dealing with this
family of problems is to evalu-
ate the objective function f at an
evenly-spaced grid in the parame-
ter space. Sequentially, the grid
search is refined in the most
promising intervals of the space.
Another possibility is to use ran-
dom search, which can perform
well [2], e.g., when the objective
function has an intrinsic lower dimensionality. However, both methods typically
require an impractical number of function evaluations/robot interactions to find
good gait parameters. In contrast, Bayesian optimization [17] naturally deals
with this family of optimization problems and finds solutions in a small number
of evaluations of the objective function.

278 R. Calandra et al.

Fig. 2. Example of the Bayesian optimization process for minimizing an unknown
1-D objective function f (red curve). The 95% confidence bounds of the model pre-
diction are represented by the blue area. The model is initialized with 4 previously
evaluated parameters θ and corresponding function values f(θ). The location of the
next parameters θ∗ to be evaluated is represented by the green dashed line. At each
iteration, the model is updated using all the previous evaluations of the parameters θ
(red dots). After a few iterations, Bayesian optimization found the global minimum of
the unknown objective function (Color figure online).

2.1 Bayesian Optimization

Bayesian optimization, as summarized in Algorithm 1, is an iterative model-
based global optimization method [4,14,17,21,26]. After each evaluation of the
objective function f , a surrogate model of f is built (line 3 of Algorithm 1).
In particular, the model maps parameters θ to corresponding function evalua-
tions f(θ). From the resulting model the response surface f̂(θ) is computed (line
4) and used for a “virtual” optimization process

minimize
θ∈Rd

f̂(θ) . (2)

In this context, “virtual” indicates that optimizing the response surface f̂(θ)
with respect to the parameters θ does not need interactions with the real system,
but only evaluations of the learned model. Only when a new set of parameters θ∗

has been selected from the virtual optimization process of the response surface
f̂(θ), they are evaluated on the real objective function f (line 7). The new data
{θ∗, f(θ∗)} is used to update the model of the objective function (line 8).

A variety of different models, such as linear functions or splines [14], have
been used in the past to map θ �→ f(θ). However, the use of a probabilistic
model allows to model noisy observations and to explicitly take the uncertainty

Bayesian Gait Optimization for Bipedal Locomotion 279

about the model itself into account. Additionally, such a probabilistic framework
allows to use priors that encode available expert knowledge or information from
related systems, such as optimal parameter priors to a change in the system,
e.g., after replacing a motor or changing the walking surface. In this paper,
we use Gaussian processes (GPs) as the probabilistic model for the Bayesian
optimization.

When using a probabilistic model, the response surface f̂(θ) is a probability
distribution and cannot directly be optimized. Instead, the acquisition function
α(·) is used for the virtual optimization of the probabilistic GP. The purpose of
the acquisition function is two-fold: First, it maps the GP onto a single surface,
the acquisition surface α(θ) to be optimized.1 Second, the GP expresses model
uncertainty, which is used to trade off exploration and exploitation. Thereby,
the minimization of the objective function from Equation (1) can be rephrased
as the minimization of the acquisition surface

minimize
θ∈Rd

α(θ). (3)

As summarized in Algorithm 1, in Bayesian optimization, a GP model θ �→
p(f(θ)) is learned from the parameters θ to the corresponding measurements
f(θ) of the objective function (line 3 of Algorithm 1). This model is used to
predict the response surface f̂(θ) (line 4 of Algorithm 1) and the corresponding
acquisition surface α(θ) (line 5 of Algorithm 1), once the response surface f̂(θ)
is mapped through the acquisition function α. Using a global optimization tech-
nique, the minimum θ∗ = argminθα(θ) of the acquisition surface α is computed
(line 6 of Algorithm 1) without any evaluation of the true objective function f ,
e.g., no robot interaction is required, see Eq. (3). The optimal parameters θ∗ are
evaluated (line 7 of Algorithm 1) on the robot and, together with the resulting
measurement f(θ∗), added to the dataset D (line 8 of Algorithm 1). Past evalu-
ations can be used to initialize the dataset D (line 1 of Algorithm 1), as well as
the prior of the GP model (line 2 of Algorithm 1).

Figure 2 illustrates the Bayesian optimization process for a 1-D function.
The horizontal axis represents the parameter space. The red curve shows the
true, but unknown, objective function f and the blue area represents the 95 %
confidence bound of the GP model of f . The GP model is trained on a small
data set, represented by the red dots. From this model the acquisition function is
computed. The minimum of the acquisition function determines the next para-
meter set θ to be evaluated (dashed green line). Subsequently, the GP model
of the objective function is updated, and the process is restarted. After a few
iterations, Bayesian optimization found the global minimum.

2.2 Gaussian Process Model for Objective Function

To create the model that maps θ �→ f(θ), we make use of Bayesian, non-
parametric Gaussian Process regression [23]. Such a GP is a distribution over
functions
1 The correct notation would be α(f̂(θ)), but we use α(θ) for notational convenience.

280 R. Calandra et al.

f(θ) ∼ GP (mf , kf) (4)

and fully defined by a mean mf and a covariance function kf . As prior mean
we choose mf ≡ 0, while the chosen covariance function kf is the squared
exponential with automatic relevance determination and Gaussian noise

k(θp,θq) = σ2
f exp(−1

2 (θp−θq)TΛ−1(θp−θq))+σ2
wδpq

with Λ = diag([l21, ..., l
2
D]). Here, li are the characteristic length-scales, σ2

f is the
variance of the latent function f and σ2

w the measurement noise variance. The
GP predictive distribution at a test input θ∗ is

p(f(θ∗)|D,θ∗) = N (
μ(θ∗), σ2(θ∗)

)
, (5)

μ(θ∗) = kT
∗K

−1y , σ2(θ∗) = k∗∗ − kT
∗K

−1k∗ . (6)

Given n training inputs X = [θ1, ...,θn] and corresponding training targets
y = [f(θ1), ..., f(θn)], we define the training data set D = {X,y}. Moreover, K
is the matrix composed as Kij = k(θi,θj), k∗∗ = k(θ∗,θ∗) and k∗ = k(X,θ∗).
In our experiments, we compute the hyperparameters [li, σf σw] of the covariance
function by evidence maximization [23].

2.3 Acquisition Function

A number of acquisition functions α(θ) exists, such as probability of improve-
ment [17], expected improvement [19], upper confidence bound [8] and entropy-
based improvements [12]. In this paper, we use the upper confidence bound (UCB)
where the acquisition surface is defined as

α(θ) = μ(θ)− κσ(θ) , (7)

where κ is a free parameter that trades off exploration and exploitation. We
determine κ automatically according to the GP-UCB [1,27] algorithm, which also
allows to compute regret bounds. An extensive comparison of other acquisition
functions with the biped considered in Sect. 3.3 can be found in [6].

2.4 Optimizing the Acquisition Surface

Once the acquisition surface in Eq. (7) is computed (line 5 of Algorithm 1), it is
still necessary to find the parameters θ∗ of its minimum (line 6 of Algorithm 1).
To find this minimum, we use a standard global optimizer. Note that the global
optimization problem in Eq. (3) is different from the original global optimization
problem defined in Eq. (1): First, the measurements in Eq. (3) are noise free
because the objective function in Eq. (7) is an analytical model. Second, there
is no restriction in terms of how many evaluations we can perform: Evaluating
the acquisition surface only requires to evaluate the model, but no interactions
with the physical system (e.g., the robot). Third, we can compute the derivatives
of any order, either with finite differences or analytically. Therefore, we are no

Bayesian Gait Optimization for Bipedal Locomotion 281

longer restricted to the use of zero-order optimization methods. As a result, any
global optimizer that fulfills these characteristics can be used. In particular, in
our experiments we used DIRECT [15] to find the approximate global minimum,
followed by L-BFGS [5] to refine it.

3 Experimental Set-up and Results

In this section, we present the experiments performed and results obtained to
validate Bayesian optimization for automatic gait optimization. First, we eval-
uate Bayesian optimization on a classical stochastic optimal control problem: a
discrete-time stochastic linear-quadratic regulator (LQR). Since an optimal solu-
tion to the stochastic LQR system can be computed analytically, we evaluate the
quality of the solution found by Bayesian optimization to this baseline. Second,
we apply Bayesian optimization to a trajectory imitation problem in the context
of bipedal walking. Given a reference trajectory, we demonstrate that Bayesian
optimization finds suitable parameters of rhythmic motor primitives (RMPs) to
replicate the trajectory. We consider the case of demonstrated gait trajectories
of a simulated biped. Third, we present and discuss the experimental results of
Bayesian optimization applied to gait optimization for bipedal locomotion on
the robot shown in Fig. 1.

3.1 Proof of Concept: Stochastic Linear-Quadratic Regulator

The linear-quadratic regulator is a classical stochastic optimal control problem.
The discrete-time stochastic LQR problem consists of a linear dynamical system

xt+1 = Atxt +Btut +wt, t = 0, 1, ..., N − 1 , (8)

and a quadratic cost

J = xT
NQNxN +

∑N−1

t=0

(
xT

t Qtxt + uT
t Rtut

)
, (9)

where the noise wt ∼ N
(
0,Σ

)
and the matrices Rt > 0, Qt ≥ 0, At, Bt are

given and, in this paper, assumed to be time invariant. The objective is to find
controls u0, . . . ,uN−1 that minimize Eq. (9). The optimal control signal ut is a
linear function of the state xt, computed for each time step as

ut = Ltxt ,

where Lt is a gain matrix. An analytical optimal solution to minimize the
quadratic cost J exists for the stochastic linear-quadratic regulator [3].

To assess the performance of Bayesian optimization, we consider a stochastic
LQR system with x ∈ R2, u ∈ R4. The stationary gain matrix L ∈ R4×2 defines
a set of 8 free parameters to be determined by Bayesian optimization. We com-
pare our solution with the corresponding analytical solution for the stationary
gain matrix L. For Bayesian optimization, we define the objective function as

f(θ) = log(J/N) , (10)

282 R. Calandra et al.

Table 1. Performance of Bayesian optimization compared to the exact solution for the
stochastic LQR problem. After 50 experiments the average cost incurred by Bayesian
optimization is nearly-optimal compared to the analytical solution

Cost incurred by the analytical solution −5.57 ± 0.01

Cost incurred by Bayesian optimization −5.54 ± 0.01

Fig. 3. Average over 50 experiments of the best parameters found during the minimiza-
tion process for a stochastic LQR using Bayesian optimization. The average objective
value function (red curve) during the optimization process and the average analytical
solution (green dashed line) are shown (Color figure online).

where the parameters θ to optimize are the stationary gain matrix L ∈ R4×2. To
initialize Bayesian optimization, 15 uniformly randomly sampled gain matrices
L were used. Moreover, the initial state x0 ∼ N

(
0, I

)
and the matrices A, B,

Q and R were fixed.
We performed 50 independent experiments: For each experiment, we selected

the best parameters found after 200 steps of Bayesian optimization. These para-
meters were then evaluated on the stochastic LQR system 100 times. Table 1
shows the mean value for the objective function and its standard deviation for
both the analytical solutions and the ones obtained through Bayesian optimiza-
tion. We conclude that Bayesian optimization finds near-optimal solutions for the
stochastic LQR problem. Additionally, as shown in Fig. 3, the average over the
50 experiments of the best parameters found so far in the optimization process
suggests that Bayesian optimization reliably quickly finds a near-optimal solu-
tion. In Fig. 4, an example of the minimization process of Bayesian optimization
for the stochastic LQR problem is shown. The objective function is shown as a
function of the number of evaluations. Each evaluation requires to compute the
objective function f in Eq. (10) for the current parameters θ = L. The analyti-
cal minimum is shown by the green dashed line, the shaded area shows the 95 %
confidence bound of the predicted objective function p(f(θ)) for the parameters
selected in the ith evaluation. The red line shows the actual measured func-
tion value f(θ). Initially, the model was relatively uncertain. With an increasing
number of experiments the model became more certain, and the optimization
process converged to the optimal solution.

Bayesian Gait Optimization for Bipedal Locomotion 283

Fig. 4. Example of Bayesian optimization for a stochastic LQR. The objective value
function (red curve) and the 95 % confidence of the model prediction (blue area) are
shown during the optimization process, additionally, the analytical solution (green
dashed line) is shown as a reference (Color figure online).

We conclude that Bayesian optimization can efficiently find gain matrices L
that solve the stochastic LQR problem. Additionally, with Bayesian optimization
it is possible to find stationary solutions for cases with a short time horizon N
where no analytical optimal solution is available: The algebraic Riccati equa-
tion is not applicable for finite time horizons N , and the discrete time Riccati
equation, which can be applied, does not produce a stationary solution.

3.2 Bayesian Optimization for Trajectory Imitation

In the following, we apply Bayesian optimization to learning gaits for bipedal
robots based on trajectory imitation. Given a reference trajectory, the objective
is to find gait parameters such that the biped’s trajectory closely resembles the
desired reference trajectory. Gait trajectories are modeled by rhythmic motor
primitives. The parameters of the rhythmic motor primitives are typically found
by imitation learning [20]. In this paper, we pose this type of trajectory imita-
tion as a Bayesian optimization problem to find the rhythmic motor primitives
parameters.

Rhythmic Motor Primitives (RMPs) are parametrizable dynamical systems
that model and generate rhythmic trajectories [13]. RMPs have been used to
model and learn bipedal trajectories [10,20] and other rhythmic trajectories,
such as drumming [22] and ball paddling [16]. An RMP models a rhythmic
trajectory as a modulated limit cycle

τ2q̈ = αz(βz(g − q)− τ q̇)
︸ ︷︷ ︸

Attractor function

+ θψr
︸︷︷︸

Forcing function

, (11)

where q, q̇ and q̈ can be the joint angles of a robot and their first and second-
order derivatives. The attractor function is a limit cycle with timing constants
αz and βz. The time period of the rhythmic action is τ and can be extracted
by frequency analysis of the demonstrations. The amplitude signal r is used
to modulate or scale the amplitude of the learned trajectory. The parameter
g is the baseline of the rhythmic trajectory. The forcing function modulates the

284 R. Calandra et al.

Fig. 5. Gait imitation using Bayesian opti-
mization. Example of desired trajectory τ
including random noise (blue circle curve)
compared with the trajectory generated by
the RMP with optimized parameters (red
crosses curve). The two curves are almost
identical (Color figure online).

attractor function to generate the
desired trajectory. The forcing func-
tion consists of weight vectors θ and
nonlinear basis functions ψ. To model
a trajectory using RMPs, we opti-
mize the weight vectors that modulate
the attractor function, such that the
RMP generates the desired reference
trajectory.

The biped used in simulation is
an under-actuated three link biped
(two links for limbs and one for torso)
with five degrees of freedom, two of
which are actuated. The dynamics are
given in [11]. The demonstrated tra-
jectories τ for the lower limbs were
assumed sinusoidal between +10 ◦ to
−10 ◦, such that at each time instant they were equal in magnitude but opposite
in sign. The torso’s desired trajectory was assumed constant, bending forward
at +30 ◦. We used RMPs with 5 basis functions to model each trajectory. In
this set-up, we optimized only the RMP weight vectors θ in Eq. (11) using the
objective

f(θ) = exp
(‖τ − RMP(θ)‖2) , (12)

which penalizes the distance between the trajectory generated by the model
RMP(θ) and a noisy demonstrated trajectory τ . Equation (12) was evaluated
using 10 cycles of the trajectory. Bayesian optimization converged after about 50
evaluations. The resulting trajectory generated by the optimized RMP parame-
ters closely resembled the desired reference trajectory as shown in Fig. 5. Using
the generated parameters the biped walked smoothly.

While other approaches (such as least squares and locally weighted regres-
sion) exist to solve trajectory imitation for RMPs, our result suggests that also
Bayesian optimization is suitable for trajectory imitation. For a given trajectory
Bayesian optimization can automatically learn the parameters of an RMP to
replicate it.

3.3 Gait Optimization for a Bio-Inspired Biped

In the following, we consider the case where a reference trajectory is no longer
available. Instead, gait parameters for a bipedal walker are learned directly to
maximize walking speed and robustness. In this section, we introduce the hard-
ware of the bipedal robot Fox, see Fig. 1, used to evaluate Bayesian gait opti-
mization. Moreover, we present experimental results of the gait optimization and
analyze the quality of the learned gaits.

Bayesian Gait Optimization for Bipedal Locomotion 285

Fig. 6. The Fox controller is a finite
state machine with four states. Each
of the four joints, left hip (LH), left
knee (LK), right hip (RH) and right
knee (RK), can perform one of three
actions: flexion (Flex), extension (Ext)
or holding (Hold). When a joint reaches
the maximum extension or flexion, its
state is changed to holding. The tran-
sition between the states and the con-
trol signals applied during flexion and
extension are determined by the con-
troller parameters θ.

Fig. 7. Hip and knee angle refer-
ence frames (red dashed) and rota-
tion bounds (blue solid). The hip joint
angles’ range lies between 135◦ forward
and 205◦ backward. The knee angles
range from 185◦ when fully extended to
60◦ when flexed backward (Color figure
online).

Hardware and Controller Description To validate our Bayesian gait opti-
mization approach we used the dynamic bipedal walker Fox, shown in Fig. 1.
The walker is mounted on a boom that enforces planar, circular motion. This
robot consists of a trunk, two legs made of rigid segments connected by knee
joints to telescopic leg springs, and two spheric feet with touch sensors [25].
Fox is equipped with low-cost metal-gear DC motors at both hip and knee joints.
Together they drive four actuated degrees of freedom. Moreover, there are six
sensors on the robot: two on the hip joints, two on the knee joints, and one under
each foot. The sensors on the hip and knee joints return voltage measurements
corresponding to angular positions of the leg segments, as shown in Fig. 7. The
touch sensors return binary ground contact signals. An additional sensor in the
boom measures the angular position of the walker, i.e., the position of the walker
on the circle.

The controller of the walker is a finite state machine (FSM), shown in Fig. 6,
with four states: two for the swing phases of each leg [24]. These states control the

286 R. Calandra et al.

actions performed by each of the four actuators, which were extension, flexion
or holding of the joint. The transitions between the states are regulated by
thresholds based on the angles of the joints.

For the optimization process, we identified eight parameters of the controller
that are crucial for the resulting gait. These gait parameters consist of four
threshold values of the FSM (two for each leg) and the four control signals applied
during extension and flexion (separately for knees and hips). It is important to
notice that a set of parameters that proved to be efficient with some motors
could be ineffective with a different set of motors (e.g., if one or more motors are
replaced), due to slightly different mechanical properties. Therefore, automatic
and fast gait optimization techniques are essential for this robot.

Gait Optimization Results We applied Bayesian optimization to find suitable
parameters for a walking gait of Fox. The objective function f to be minimized
was

f(θ) = − 1
N

N∑

i=1

Vi(θ) , (13)

i.e., the negative average walking velocities Vi over N = 3 experiments with
the robot for a given set of gait parameters θ. Minimizing the performance
criterion in Eq. (13) maximizes the walking distance in the given time horizon.
Moreover, this criterion does not only guarantee a fast walking gait but also
reliability, since the gait must be robust to noise and the initial configurations
across multiple experiments. Each experiment was initialized from similar initial
configurations and lasted 12 seconds starting from the moment when the foot
of the robot initially touched the ground. To initialize Bayesian optimization,
three uniformly randomly sampled parameter sets were used.

In Fig. 8, the Bayesian optimization process for gait learning is shown. Ini-
tially, the learned GP model could not adequately capture the underlying objec-
tive function. Average velocities below 0.1 m/s typically indicate a fall of the
robot after the first step. Large parts of the first 60 experiments were spent to
learn that the control signals applied on the hips had to be sufficiently high
in order to swing the leg forward (i.e., against gravity and friction). Once this
knowledge was acquired, the produced gaits were typically capable of walking
but were rather unstable and fell after few steps. After 80 experiments, the model
became more accurate (the function evaluations shown in red lied within the 95
confidence bound of the prediction), and Bayesian optimization found a stable
walking gait. The resulting gait2 was evaluated for a longer period of time, and
it proved sufficiently robust to walk continuously for 2 min without falling, while
achieving an average velocity of 0.45 m/s. This average velocity was close to the
maximum velocity this hardware set-up can achieve [25]. Notably, the parame-
ters obtained trough Bayesian optimization that correspond to the values of the
thresholds were slightly asymmetrical for the two legs. We explain the superior
2 Videos are available at http://www.ias.tu-darmstadt.de/Research/Fox.

http://www.ias.tu-darmstadt.de/Research/Fox

Bayesian Gait Optimization for Bipedal Locomotion 287

Fig. 8. Average walking speed during the gait optimization process of Fox using
Bayesian optimization. The objective value function (red curve) and the 95% con-
fidence of the model prediction (blue area) are shown during the optimization process.
Three evaluations are used to initialize Bayesian optimization and are not shown in
the plot. After 80 evaluations, Bayesian optimization finds an optimum corresponding
to a stable walking gait with an average speed of 0.45 m/s (Color figure online).

performance of asymmetrical parameters by the smaller radius of the walking
circle for the inner leg.

From our experience with the biped Fox, hand-tuning the gait parameters
can be a very time-consuming process. Using a (uniform) grid search is infeasible
as the number of required experiments would be N8 where 8 is the number of
free parameters that we consider and N is the resolution along each parame-
ter dimension. In the most basic case, when we evaluate each parameter only
at two points, the final number of evaluations would be 28 = 256, which is
already twice the number of evaluations Bayesian optimization needed. Addi-
tionally, only a small part of the parameter space leads to walking gaits, and
the influence and the interaction of the parameters is not trivial. Hence, more
than two points for each free parameter would be required. Expert manual para-
meter search typically yielded inferior gaits compared to the ones obtained by
Bayesian optimization, in both walking velocity and robustness. Additionally,
Bayesian optimization sped up the parameter search from days to hours. For a
comparison against other optimization techniques and an evaluation of different
acquisition functions, in the case of a smaller number of parameters, we refer
the reader to [6].

4 Conclusion

Gait optimization for bipedal locomotion is a time-consuming and complex task.
Manual gait optimization is an empirical process, which requires extensive expe-
rience and knowledge. Automatic optimization methods circumvent the need for
expert knowledge, but they might require a larger number of robot interactions.
In a context such as bipedal locomotion, where interacting with the robot can be
time consuming and cause wear and tear on the robot, experimentally-inefficient
optimization methods are impractical. In this paper, we proposed to use Bayesian

288 R. Calandra et al.

optimization to address both these issues by automatically optimizing gaits in
only a small number of interactions with the robot.

As a proof of concept, we have shown that Bayesian optimization applied to
a stochastic LQR problem can find near-optimal stationary solutions. Moreover,
we have demonstrated that Bayesian optimization can be successfully applied for
trajectory imitation. Given a desired reference trajectory, Bayesian optimization
found parameters for rhythmic motor primitives that accurately reproduced it.
Finally, we applied Bayesian optimization to gait optimization for a real bio-
inspired dynamic bipedal walker. Even in the presence of severe noise, our app-
roach found good gaits fully automatically in a small number of experiments with
the bipedal robot. The resulting performance was superior to manually designed
gaits. From a practical perspective, Bayesian optimization allowed us to find
good gait parameters in hours, whereas manual parameter search required days.

In practice, Bayesian optimization has some limitations. First, Bayesian opti-
mization is currently limited to optimizing 10–20 parameters. The reason for this
limitation is that model building with high-dimensional parameter spaces but
only sparse data is very challenging. Second, the goodness of the optimization
strongly depends on the quality of the learned model. In future, we will explore
Bayesian optimization for higher-dimensional problems and improvements of
the expressiveness of the GP model. Moreover, we will develop a continuation of
efficient bipedal gait design, such as the evaluation of various gait performance
criteria (especially robustness) and comparisons of learned gaits with human
gaits.

Acknowledgements. R.C. thanks his father, Enrico Calandra, and Giuseppe Lo
Cicero for the invaluable lessons they provided in, among others, life, mechanics and
electronics. “Always double-check; then check again.”

The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007–2013) under grant agreements
#270327 (CompLACS) and #600716 (CoDyCo) and the Department of Computing,
Imperial College London.

References

1. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach.
Learn. Res. (JMLR) 3, 397–422 (2003)

2. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. (JMLR) 13, 281–305 (2012)

3. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena
Scientific, Belmont (2007)

4. Brochu, E., Cora, V.M., De Freitas, N.:. A tutorial on Bayesian optimization of
expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)

5. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound
constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

http://arxiv.org/abs/1012.2599

Bayesian Gait Optimization for Bipedal Locomotion 289

6. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: An experimental com-
parison of Bayesian optimization for bipedal locomotion. In: Proceedings of 2014
IEEE International Conference on Robotics and Automation (ICRA), pp. 1951–
1958 (2014)

7. Chernova, S., Veloso, M.: An evolutionary approach to gait learning for four-legged
robots. In: Proceedings of Intelligent Robots and Systems (IROS), vol. 3, pp. 2562–
2567. IEEE (2004)

8. Cox, D.D., John, S.: SDO: a statistical method for global optimization. In: Alexan-
drov, N., Hussaini, M.Y. (eds.) Multidisciplinary Design Optimization: State of the
Art, pp. 315–329. SIAM, Philadelpha (1997)

9. Garnett, R., Osborne, M.A., Roberts, S.J.: Bayesian optimization for sensor set
selection. In: Information Processing in Sensor Networks, pp. 209–219. ACM (2010)

10. Gopalan, N., Deisenroth, M.P., Peters, J.: Feedback error learning for rhythmic
motor primitives. In: Proceedings of the IEEE International Conference on Robot-
ics and Automation (ICRA) (2013)

11. Grizzle, J.W., Abba, G., Plestan, F.: Asymptotically stable walking for biped
robots: analysis via systems with impulse effects. IEEE Trans. Autom. Control
46(1), 51–64 (2001)

12. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimiza-
tion. J. Mach. Learn. Res. 13, 1809–1837 (2012)

13. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor landscapes for learning
motor primitives. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in
Neural Information Processing Systems (NIPS), vol. 15. MIT Press, Cambridge
(2003)

14. Jones, D.R.: A taxonomy of global optimization methods based on response sur-
faces. J. Global Optim. 21(4), 345–383 (2001)

15. Jones, D.R., Perttune, C.D., Stuckman, B.E.: Lipschitzian optimization without
the Lipschitz constant. J. Optim. Theor. Appl. 79(1), 157–181 (1993)

16. Kober, J., Peters, J.: Learning motor primitives for robotics. In: International
Conference on Robotics and Automation (ICRA) (2009)

17. Kushner, H.J.: A new method of locating the maximum point of an arbitrary
multipeak curve in the presence of noise. J. Basic Eng. 86, 97 (1964)

18. Lizotte, D., Wang, T., Bowling, M., Schuurmans, D.: Automatic gait optimization
with Gaussian process regression. In: Proceedings of International Joint Confer-
ences on Artificial Intelligence (IJCAI), pp. 944–949 (2007)

19. Mockus, J., Tiesis, V., Zilinskas, A.: The application of Bayesian methods for
seeking the extremum. Towards Global Optim. 2, 117–129 (1978)

20. Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., Kawato, M.: Learning
from demonstration and adaptation of biped locomotion. Robot. Autonom. Syst.
47(2), 79–91 (2004)

21. Osborne, M.A., Garnett, R., Roberts, S.J.: Gaussian processes for global optimiza-
tion. In: 3rd International Conference on Learning and Intelligent Optimization
(LION3), pp. 1–15 (2009)

22. Pongas, D., Billard, A., Schaal, S.:. Rapid synchronization and accurate phase-
locking of rhythmic motor primitives. In: Proceedings of Intelligent Robots and
Systems (IROS), pp. 2911–2916. IEEE (2005)

23. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The
MIT Press, Cambridge (2006)

24. Renjewski, D., Seyfarth, A.: Robots in human biomechanics - a study on ankle
push-off in walking. Bioinspir. Biomimetics 7(3), 036005 (2012)

290 R. Calandra et al.

25. Renjewski, D.: An engineering contribution to human gait biomechanics. Ph.D.
Thesis, TU Ilmenau (2012)

26. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems
(NIPS) (2012)

27. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Gaussian process optimization in
the bandit setting: no regret and experimental design. In: Proceedings of Interna-
tional Conference on Machine Learning (ICML), pp. 1015–1022 (2010)

28. Tedrake, R., Weirui Zhang, T., Sebastian Seung, H.: Learning to walk in 20
minutes. In: Proceedings of the 14th Yale Workshop on Adaptive and Learning
Systems (2005)

29. Tesch, M., Schneider, J., Choset, H.: Using response surfaces and expected improve-
ment to optimize snake robot gait parameters. In: Proceedings of Intelligent Robots
and Systems (IROS), pp. 1069–1074. IEEE (2011)

Robust Support Vector Machines
with Polyhedral Uncertainty of the Input Data

Neng Fan1(B), Elham Sadeghi1, and Panos M. Pardalos2

1 Department of Systems and Industrial Engineering, University of Arizona,
Tucson, AZ 85721, USA

{nfan,sadeghi}@email.arizona.edu
2 Center for Applied Optimization, Department of Industrial and Systems

Engineering, University of Florida, Gainesville, FL 32611, USA
pardalos@ise.ufl.edu

Abstract. In this paper, we use robust optimization models to formu-
late the support vector machines (SVMs) with polyhedral uncertainties
of the input data points. The formulations in our models are nonlinear
and we use Lagrange multipliers to give the first-order optimality con-
ditions and reformulation methods to solve these problems. In addition,
we have proposed the models for transductive SVMs with input uncer-
tainties.

Keywords: Support vector machines · Robust optimization · Polyhe-
dral uncertainty · Nonlinear programming · Classification

1 Introduction

Support vector machines (SVMs) are a set of related supervised learning meth-
ods used for classification and regression. Given a set of training data points,
each marked as belonging to one of two classes, an SVM training algorithm
builds a model that predicts whether a new example falls into one class or the
other. Mathematically, a support vector machine constructs a hyperplane or set
of hyperplanes in a high or infinite dimensional space, which can be used for
classification, regression, etc. Intuitively, a good separation by the hyperplane
should have the largest distance to the nearest training data points of any class,
as the larger margin usually implies the lower error of the classifier.

For given points each belonging to one of two classes, the task is to decide
which class a new data point will be in. In SVM models, assume that the data
point is given as a p-dimensional vector, and we want to know whether we can
separate such points with a (p−1)-dimensional hyperplane. This is called a “lin-
ear classifier”. The best hyperplane normally represents the largest separation,
or margin, between the two classes. So we choose the hyperplane such that the
distance from it to the nearest data point on each side is maximized. If such a
hyperplane exists, it is known as the maximum-margin hyperplane. The linear
SVM can be formulated as a quadratic program. Transductive SVMs extend
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 291–305, 2014.
DOI: 10.1007/978-3-319-09584-4 26

292 N. Fan et al.

SVMs in that they could also treat partially labeled data in semi-supervised
learning. It can be formulated as a zero-one quadratic program.

The SVMs and transductive SVMs are important techniques in data min-
ing and machine learning [1]. However, the data always appear with noise, or
with uncertainties. For example, a data point can be in a range or within some
region. In the literature, the support vector machines with interval uncertainty
have been studied in [2–6], while the robust models of SVMs with ellipsoidal
uncertainty have been studied in [7]. The thesis [8] by Yang studied different
types of uncertainties.

Additionally, data noises in some other extensions of SVM have been consid-
ered in the literature. Twin support vector machine (TWSVM) is kind of SVM
in which it seeks two nonparallel hyperplanes and requires to solve two smaller
quadratic programs. In [9], ellipsoidal uncertainty for TWSVM is considered
and solved by second order cone programming method. Knowledge based-SVM
in which prior knowledge is incorporated in the classification. In [10], robust
optimization of SVM with uncertain knowledge sets was studied.

The equivalence between regularized support vector machines and robust
optimization for ellipsoidal uncertainty is studied in [11]. In [12], robust opti-
mization to the regularized generalized eigenvalue classification is considered
to handle the ellipsoidal uncertainty. The SVM is not the only method for
binary classification and there are other ones such as MPM (minimax prob-
ability machine), FDA (Fisher discriminant analysis). In [13], based on robust
optimization models, they considered a unified classification model that includes
SVM, MPM and FDA. Recently, chance-constrained robust optimization models
were also used for studying uncertain classification (see [14]).

In this paper, we consider the robust optimization models for SVMs with
polyhedral uncertainties of input data. In mathematical programming, the robust
optimization is an approach to deal with uncertainties with unknown probabili-
ties. The robust optimization has been studied widely by Ben-Tal and Nemirovski
[15,16] and Bertsimas et al. [17]. We propose Lagrange multipliers based first-
order optimality conditions and equivalent formulations for SVM and transduc-
tive SVMs with polyhedral uncertainties. As a special case, we consider the
SVMs with interval uncertainties and their properties and relations to chance-
constrained SVMs.

The rest of this paper is organized as follows: In Sect. 2, we present some brief
reviews for models of SVMs; In Sect. 3, we present the polyhedral uncertainties,
construct the robust optimization models and present methods for solving these
problems; Sect. 4 includes the numerical experiments for our proposed models
and methods and Sect. 5 concludes this paper.

2 Support Vector Machine for Classification

2.1 Support Vector Machines

In SVM, we are given a training data set D , consisting of n points in the form

D = {(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}ni=1,

Robust Support Vector Machines with Polyhedral Uncertainty 293

where each xi is a p-dimensional real vector and ci indicates the class of the
point xi belongs to. The ci for the point xi can be considered as a label of xi.

The points with ci = 1 form one class while the points with ci = −1 form
another class. The proposed hyperplane wTx = b with the set of points x can
divide the points {xi}ni=1 according to ci with the maximum-margin. The opti-
mization model for SVM, to find best hyperplane with parameters w, b, is pre-
sented as follows:

min
w,b

1
2
‖w‖2 (1)

s.t. ci(wTxi − b) ≥ 1, i = 1, · · · , n

This program (1) is quadratic and can be solved by quadratic programming
methods. Additionally, this Lagrange function of this program can be expressed
by nonnegative Lagrange multipliers αi as

L(w, b, α) =
1
2
‖w‖2 −

n∑

i=1

αi[ci(wTxi − b)− 1].

By KKT conditions, the solution w can be expressed as the linear combination
of xi’s as

w =
n∑

i=1

αicixi.

Assume NSV = {i : αi > 0, i = 1, · · · , n}, the parameter b can be decided by

b =
1

|NSV |
∑

i∈NSV

(wTxi − ci).

The Lagrange multipliers αi can be computed from the dual form of (1), and
the dual form for SVM is as follows,

max
αi

n∑

i=1

αi − 1
2

n∑

i,j=1

αiαjcicjκ(xi,xj) (2)

s.t. αi ≥ 0, i = 1, · · · , n
n∑

i=1

αici = 0,

where the kernel κ(xi,xj) = xi
Txj. If the kernel defined in different forms,

for example, polynomial, radial basis function, Gaussian radial basis function,
hyperbolic tangent, the SVM becomes nonlinear classification.

If there is no hyperplane that can split the points, the soft margin method
will be used by introducing the slack variables ξi, which measures the degree of
misclassification of the datum xi. The optimization program for such problem

294 N. Fan et al.

with a penalty function g(C, ξ) can be stated as follows:

min
1
2
‖w‖2 + g(C, ξ) (3)

s.t. ci(wTxi − b) ≥ 1− ξi, i = 1, · · · , n

The program (1) for general SVM and the program (3) for SVM with soft
margin are the nominal forms for SVMs when we consider robust forms in the
following sections. The uncertainties appear in the training data set D .

2.2 Transductive SVMs

Transductive SVMs extend SVMs in that they could also treat partially labeled
data in semi-supervised learning. Besides the training data set D , we are also
given a test data set

D∗ = {x∗
j |x∗

j ∈ Rp}mj=1,

where the point x∗
i is unclassified. The optimization model for transductive SVM

can be formulated as

min
w,b,c∗

j

1
2
‖w‖2

s.t. ci(wTxi − b) ≥ 1, i = 1, · · · , n
c∗
j (w

Txj
∗ − b) ≥ 1, j = 1, · · · ,m

c∗
j ∈ {−1, 1}, j = 1, · · · ,m

where the decision variable c∗
j is used to classify the point x∗

j in the test data
set.

This formulation is a mixed integer quadratic program. The soft margin form
can be constructed for transductive SVM similarly.

3 Uncertainties and Robust Optimization Models

3.1 Uncertainties

Next, we present our assumptions for the polyhedral uncertainties. Assume the
data point xi is expressed as xi = (xi1, · · · , xip)T . The ellipsoidal uncertain
region for xi is bounded by the inequality ‖Qxi‖ ≤ ρ, where the parameters Q, ρ
are pre-given. For example, ‖xi − x0

i ‖2 ≤ ρ produces a circle region with center
x0
i and radius ρ (see an example in Fig. 1(a)).

In the following, we use a set of inequalities to denote the polyhedral uncer-
tainty for xi. The data point xi is said to be polyhedral uncertain if it satisfies
that

Dixi ≤ di,

Robust Support Vector Machines with Polyhedral Uncertainty 295

1

Fig. 1. SVM with different uncertainties of training data sets

where the matrix Di has dimension q × p and the vector di has length q, i.e.,
Di = (Dijk)q×p and di = (di1, · · · , diq)T .

For real data sets in SVMs, the uncertainties for each data point do not have
to be bounded by the same number of inequalities. Without loss of generality,
we can add zeros vectors to obtain the same number q of inequalities for all data
points. Thus, q is the largest dimension of the uncertainties of all the points. For
example, in Fig. 1(b), the polyhedral uncertain for every data point has q = 3;
in Fig. 1(c), the uncertainty for every point can be considered as polyhedron
as q = 4. More generally, in Fig. 2, we present an example with polyhedral
uncertainties with dimension 3, 4 or 5 and we choose q = 5.

Remark: The interval uncertainty can be considered as a special case of poly-
hedral uncertainty. Each point xi = (xi1, · · · , xip)T appears in the region such
that xik ∈ [x0

ik−δik, x0
ik +δik] for all k = 1, · · · , p. For i = 1, · · · , n, let δi denote

δi = (δi1, · · · , δip)T and then xi is in the region [x0
i − δi,x0

i + δi].
The Fig. 1 shows the three kinds of uncertainties for a training data set. The

line in each figure is a possible hyperplane for classification of these data points.

3.2 Robust Optimization Models for SVMs

Following the robust optimization models with polyhedral uncertainty in [15,16],
we can construct the robust counterpart of an uncertain SVM with polyhedral
uncertainty for data points as follows:

min
w,b

1
2
‖w‖2 (4)

s.t. min
{xi:Dixi≤di}

ci(wTxi − b) ≥ 1, i = 1, · · · , n

This formulation is the robust models for SVMs with polyhedral uncertainty
of input data. Observing the constraints, for example the point with ci = −1,
we have that the minimum value ci(wTxi − b) in the region {xi : Dixi ≤ di} is
larger than 1, or equivalently, the maximum value of (wTxi − b) in the region
{xi : Dixi ≤ di} is less than −1, which is to obtain a separation hyperplane in
the worst case for this point. For example, in Fig. 1(b), the point 1 has uncer-
tainty shown in a triangle region, and the optimal point A to min{xi:Dixi≤di}

296 N. Fan et al.

ci(wTxi − b) for fixed w, b is the one that closest to the hyperplane wTx = b.
Therefore, this robust optimization model for SVM will identify a hyperplane
such that the whole uncertain region is classified into one of two classes.

By duality, we can eliminate the nonlinear part in the constraints of formu-
lation (4), and we present the results in the following theorem. Additionally, in
the following, we assume that the given uncertain region {xi : Dixi ≤ di} for
xi ensure the strong duality for the linear program min{xi:Dixi≤di} ci(wTxi − b)
and its dual.

Theorem 1. The formulation (4) for robust support vector machines with poly-
hedral uncertainty of input data is equivalent to the following formulation:

min
w,b,y

1
2
‖w‖2 (5)

s.t. di
Tyi + cib ≤ −1

DT
i yi + ciw = 0

yi = (yi1, · · · , yiq)T , yij ≥ 0
i = 1, · · · , n, j = 1, · · · , q.

Proof. The constraint in (4) for 1 ≤ i ≤ n is equivalent to

max
{xi:Dixi≤di}

(−ciwTxi) + cib ≤ −1.

For i = 1, · · · , n, considering the uncertainty of xi, the first part of the left-hand-
side of this constraint is equivalent to the following program

max − ciwTxi (6)
s.t. Dixi ≤ di.

The duality of this formulation is as follows:

min di
Tyi (7)

s.t. DT
i yi = −ciw

yi = (yi1, · · · , yiq)T , yij ≥ 0
i = 1, · · · , n, j = 1, · · · , q.

By strong duality, the objective values of the programs (6), (7) coincide. Assume
that xi

∗ and yi
∗ are optimal solutions of (6) and (7), respectively, we

have −ciwTxi
∗ = di

Tyi
∗. Thus, plug (7) into the original problem, we finish

the proof. ��
The formulation in (5) is a quadratic program. We can use similar method as

we solve the SVM in (1). The constraints in the formulation (5) are linear while
the objective is quadratic and convex. The explicit formulation of the Lagrange
function is

Robust Support Vector Machines with Polyhedral Uncertainty 297

L(w, b,y;λ, μ) =
1
2

p∑

k=1

w2
k +

n∑

i=1

λi

⎛

⎝
q∑

j=1

dijyij + cib + 1

⎞

⎠

+
n∑

i=1

p∑

k=1

μik

⎛

⎝
q∑

j=1

Dijkyij + ciwk

⎞

⎠ , (8)

where y = (y1, · · · ,yn), and λ(≥ 0), μ are Lagrange multipliers. Part of the
KKT conditions can be expressed in the following system of inequalities:

∇Lwk
= wk +

n∑

i=1

μikci = 0, k = 1, · · · , p (9)

∇Lyij
= λidij +

p∑

k=1

μikDijk = 0, i = 1, · · · , n, j = 1, · · · , q (10)

∇Lb =
n∑

i=1

λici = 0 (11)

λi

⎛

⎝
q∑

j=1

dijyij + cib + 1

⎞

⎠ = 0, i = 1, · · · , n (12)

λi ≥ 0, i = 1, · · · , n (13)

From the Eq. (9), we have

wk = −
n∑

i=1

μikci. (14)

Additionally, from (12), if λi > 0 for some i, b can be expressed by b =
(−∑q

j=1 dijyij−1)/ci = −ci(
∑q

j=1 dijyij+1), where yi can be obtained from pri-
mal constraint DT

i yi+ciw = 0. Therefore, b can also be expressed by Lagrangian
multipliers λ, μ.

By plugging (14) into the Eqs. (10) and (11), the Lagrange function in (8) is
formulated as

n∑

i=1

λi − 1
2
wTw =

n∑

i=1

λi − 1
2

p∑

k=1

(
n∑

i=1

ciμik)2,

which is quadratic with respect to μ. Thus, we have the following theorem, which
is similar to the αi in (2).

Theorem 2. The duality of the program (5) in Theorem 1 can be formulated as
follows:

298 N. Fan et al.

max
λ,μ

n∑

i=1

λi − 1
2

p∑

k=1

(
n∑

i=1

ciμik)2 (15)

s.t. λidij +
p∑

k=1

μikDijk = 0, i = 1, · · · , n, j = 1, · · · , q
n∑

i=1

λici = 0

λi ≥ 0, i = 1, · · · , n
Considering misclassification of some data points, we have an immediately

property of Theorem 1 for SVMs with soft margins in the following.

Corollary 1. The robust optimization models of SVMs with soft margins and
the penalty function g(C, ξ), in the case of polyhedral uncertainty of the input
data, can be formulated as follows:

min
w,b,y

1
2
‖w‖2 + g(C, ξ) (16)

s.t. di
Tyi + cib ≤ −1 + ξi

DT
i yi + ciw = 0

yi = (yi1, · · · , yiq)T , yij ≥ 0
ξi ≥ 0

i = 1, · · · , n, j = 1, · · · , q.

3.3 Robust SVMs for Interval Uncertainty

Considering the interval uncertainty of the data point xi within the region [x0
i −

δi,x0
i + δi], the robust optimization model for SVMs is formulated as

min
w,b

1
2
‖w‖2 (17)

s.t. min
xi∈[x0

i −δi,x0
i +δi]

ci(wTxi − b) ≥ 1, i = 1, · · · , n.

Defining

Di =
(

I
−I

)
and di =

(
x0
i + δi

−x0
i + δi

)
, (18)

we have that

{xi : xi ∈ [x0
i − δi,x0

i + δi]} = {xi : Dxi ≤ di},
which shows that interval uncertainty for xi is a special polyhedral uncertainty.
Therefore, all methods discussed in Sect. 3.2 can be used to deal problems with
such types of uncertainty.

Robust Support Vector Machines with Polyhedral Uncertainty 299

Now, we assume that each element xik (k = 1, · · · , p) in the xi is modeled as
independent, symmetric and bounded variable and takes value in [x0

ik−δik, x0
k +

δik] (i = 1, · · · , n, k = 1, · · · , p). For every i = 1, · · · , n, let Ji = {k : δik > 0, k =
1, · · · , p}, and we introduce Γi ∈ [0, |Ji|] for robustness propose. Next, following
the robust optimization formulations in [18,19], we introduce the models to
control the degree of conservatism of the solution in terms of probabilistic bounds
on constraint violation as follows:
min
w,b

1

2
‖w‖2 (19)

s.t. ci(w
T
x
0
i − b) + ci·

⎛

⎝ min
{Si∪{ti}:Si⊆Ji,|Si|≤�Γi�,ti∈Ji\Si}

⎧
⎨

⎩

∑

k∈Si

|wk|δik + (Γi − �Γi�)|wk|δik

⎫
⎬

⎭

⎞

⎠ ≥ 1, i = 1, · · · , n

Since unlikely all xik’s are changing in the same time. Here the Γi is used to
control the number of changes in xi. Up to 	Γi
 of all elements in xi are allowed
to change and one element xit changes by at most (Γi − 	Γi
)xit. If Γi = 0 for
all i = 1, · · · , n, the above formulation reduces to the one employing the means
of uncertain data points. If Γi = |Ji|, all uncertainties in data points in xi are
considered. Following the proof of Theorem 1 in [18], the formulation in (19) can
be reformulated as follows.

Theorem 3. The formulation in (19) is equivalent to the following formulation

min
w,b,y,z,p

1
2
‖w‖2 (20)

s.t. ci(wTx0
i − b) + ci(ziΓi +

∑

k∈Ji

pik) ≥ 1

zi + pik ≥ δikyk, i = 1, · · · , n, k ∈ Ji

pik ≥ 0, i = 1, · · · , n, k ∈ Ji

yk ≥ 0, k ∈ Ji

zi ≥ 0, i = 1, · · · , n
− yk ≤ wk ≤ yk, k ∈ Ji

Also, in papers [18,19], the probability that an uncertain point is misclassified
is bounded (Theorem 2, [18]), i.e.,

Prob(ci(w
Txi − b) < 1) (21)

≤ 1

2|Ji|

⎧⎪⎨
⎪⎩(1− Γi + |Ji|

2
+ �Γi + |Ji|

2
�)

|Ji|∑
l=� Γi+|Ji|

2 �

(
|Ji|
l

)
+ (

Γi + |Ji|
2

− �Γi + |Ji|
2

�)

|Ji|∑
l=� Γi+|Ji|

2 �+1

(
|Ji|
l

)⎫⎪⎬
⎪⎭ ,

whose value can be approximated by a normal distribution (see [18]).

300 N. Fan et al.

On the other side, in [14], chance-constrained SVM is proposed for mis-
classification of data points with uncertainty as follows

min
w,b

1
2
‖w‖2 (22)

s.t. Prob(ci(wTxi − b) ≥ 1) ≥ 1− ε, i = 1, · · · , n

where ε is a given parameter close to 0, denoting an upper bound for misclas-
sification error made on uncertain xi. This formulation is relaxed to a second
order cone program, which can be efficiently solved by interior point method
(see details in [14]).

3.4 Robust Optimization Models for Transductive SVMs

First, we consider only polyhedral uncertainties of the training data set. For any
training data point xi (i = 1, · · · , n), assume the uncertainty of xi is restricted in
the region {xi : Dixi ≤ di}. The test data set has no uncertainty. Following the
robust optimization models in [15,16], the formulation for transductive SVMs
with polyhedral uncertainty of the training data is expressed as follows:

min
w,b,c∗

j

1
2
‖w‖2 (23a)

s.t. min
{xi:Dixi≤di}

ci(wTxi − b) ≥ 1, i = 1, · · · , n (23b)

c∗
j (w

Txj
∗ − b) ≥ 1, j = 1, · · · ,m (23c)

c∗
j ∈ {−1, 1}, j = 1, · · · ,m. (23d)

By the similar method in Theorem 1, we have an equivalent formulation
with linear constraints of (23) in the following theorem. Moreover, since both
cj and w = (w1, · · · , wp)T are unknown, and c∗

j ∈ {−1, 1} and w is continuous,
we can use the inequalities to linearize c∗

jwk in (23c) by introducing a variable
ejk = c∗

jwk (k = 1, · · · , p) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ejk ≥ wk + l
2 (1− c∗

j)
ejk ≥ −wk + l

2 (1 + c∗
j)

ejk ≤ wk + u
2 (1− c∗

j)
ejk ≤ −wk + u

2 (1 + c∗
j),

k = 1, · · · , p (24)

where l/2(< 0) and u/2(> 0) are lower and upper (small or large enough) bounds
of wk, respectively. Let ej denote ej = (ej1, · · · , ejp)T .

Theorem 4. Theformulation (23) forrobust transductivesupportvectormachines
with polyhedral uncertainty of the training data is equivalent to the following
formulation:

Robust Support Vector Machines with Polyhedral Uncertainty 301

min
w,b,y,c∗

j

1
2
‖w‖2 (25)

s.t. di
Tyi + cib ≤ −1

DT
i yi + ciw = 0, i = 1, · · · , n, k = 1, · · · , q

yi = (yi1, · · · , yiq)T , yik ≥ 0

(ejTx∗
j − c∗

j b) ≥ 1

Constraints in (24) for ej
c∗
j ∈ {−1, 1}, j = 1, · · · ,m.

In this formulation, all constraints are linear and c∗
j is binary. To solve this

mixed integer nonlinear program, piecewise linearization method can be used to
linearize the quadratic terms in the object so the program can be transformed
into a mixed integer linear program (MILP). The software such as CPLEX can
solve such MILPs. Moreover, some decomposition methods can also be used to
solve this problem.

Similarly, considering misclassification of some data points, we have the prop-
erty of Theorem 4 for transductive SVMs with soft margins in the following.

Corollary 2. The robust optimization models of transductive SVMs with soft
margins and the penalty function g(C, ξ), in the case of polyhedral uncertainty
of the training data, can be formulated as follows:

min
w,b,y,c∗

j

1
2
‖w‖2 + g(C, ξ) (26)

s.t. di
Tyi + cib ≤ −1 + ξi

DT
i yi + ciw = 0

yi = (yi1, · · · , yim)T , yik ≥ 0
i = 1, · · · , n, k = 1, · · · , q

(ejTx∗
j − c∗

j b) ≥ 1

Constraints in (24) for ej
c∗
j ∈ {−1, 1}

ξi ≥ 0
j = 1, · · · ,m.

If the penalty function g(C, ξ) is chosen as linear or quadratic function, this
formulation is quadratic objective with linear constraints. The methods used to
solve (25) can also be used to solve this problem.

Next, for uncertainty in the test data sets, assume that the uncertainty region
of data point xj

∗ can be expressed similarly by a polyhedron set {xj
∗ : D∗

jxj
∗ ≤

dj
∗}. The corresponding robust constraint to replace (23c) will be

min
{xj

∗:D∗
j xj

∗≤dj
∗}

c∗
j (w

Txj
∗ − b) ≥ 1, j = 1, · · · ,m

302 N. Fan et al.

and it can be reformulated as those two sets of constraints in (25) for xi. We omit
them here. Similarly, for interval uncertainties on xi’s and xj

∗’s, parameters Γi

and Γ ∗
i can also be introduced to control the robustness as introduced in Sect. 3.3.

4 Numerical Experiments

Based on Theorem 1, the steps of the algorithms solving robust support vector
machines with polyhedral uncertainty of the input training data are listed in
Table 1.

Table 1. Algorithms for robust SVMs with polyhedral uncertainty

Here in steps 3 and 4, we can also change to construct the model (15) in
Theorem 2, and solve the constructed formulation (15) to obtain λ, μ and finally
w and b.

In this section, we randomly generated n = 14 points in training data set.
The uncertain regions for the data points include triangles, quadrangles, and
pentagons (see Fig. 2). The parameters Di,di (i = 1, · · · , 14) for these data
points by step of the algorithm are listed in Table 2. In Matlab, we use the
fmincon to solve this quadratic program. The optimal solutions are w1 = 2,
w2 = −1, b = 3.

Robust Support Vector Machines with Polyhedral Uncertainty 303

Fig. 2. An example of SVMs with polyhedral uncertainties (n = 14, p = 2, q = 5)

Table 2. Input training data sets with polyhedral uncertainty

304 N. Fan et al.

5 Conclusions

In this paper, we have developed the robust optimization models for support
vectors machines with polyhedral uncertainty of the input data set. We proved
that the interval uncertainty of the input data is a special case of our model. The
first-order optimality conditions are proposed to solve the quadratic program of
the robust SVMs. Moreover, for transductive SVMs with polyhedral uncertainty
of the training data set, we constructed a robust optimization model and for-
mulated as a mixed linear constrained program. All models we proposed can be
extended for SVMs with soft margin for misclassification of the training data
points. In the future, some decomposition methods can be used for the robust
transductive SVMs to obtain efficient solutions. Applications of our proposed
models include classification of data with noise.

References

1. Steinwart, I., Christmann, A.: Support Vector Machines. Springer, New York
(2008)

2. Bi, J., Zhang, T.: Support vector classification with input data uncertainty. In:
Advances in Neural Information Processing System (NIPS’04), vol. 17, pp. 161–
168 (2004)

3. Trafalis, T.B., Gilbert, R.C.: Robust classification and regression using support
vector machines. Eur. J. Oper. Res. 173, 893–909 (2006)

4. Trafalis, T.B., Gilbert, R.C.: Robust support vector machines for classification and
computational issues. Optim. Meth. Softw. 22(1), 187–198 (2007)

5. Ghaoui, L.E., Lanckriet, G.R.G., Natsoulis, G.: Robust Classification with Interval
Data, Technical report No. UCB/CSD-03-1279, October 2003

6. Niaf, E., Flamary, R., Lartizien, C., Canu, S.: Handling uncertainties in SVM
classification. In: Proceedings of IEEE Workshop on Statistical Signal Processing,
Nice, France, pp 757–760 (2011)

7. Bhattachrrya, S., Grate, L., Mian, S., El Ghaoui, L., Jordan, M.: Robust sparse
hyperplane classifiers: application to uncertain molecular profiling data. J. Comput.
Biol. 11(6), 1073–1089 (2003)

8. Yang, J.: Classification under input uncertainty with support vector machines.
Ph.D. Thesis, University of Southampton (2009)

9. Qi, Z., Tian, Y., Shi, Y.: Robust twin support vector machine for pattern classifi-
cation. Pattern Recogn. 46(1), 305–316 (2013)

10. Jeyakumar, V., Li, G., Suthaharan, S.: Support vector machine classifiers with
uncertain knowledge sets via robust optimization. Optim. A J. Math. Prog. Oper.
Res. (2012). doi:10.1080/02331934.2012.703667

11. Xu, H., Caramanis, C., Mannor, S.: Robustness and regularization of support vec-
tor machines. Mach. Learn. Res. Arch. 10, 1485–1510 (2009)

12. Xanthopoulos, P., Guarracino, M.R., Pardalos, P.M.: Robust generalized eigen-
value classifier with ellipsoidal uncertainty. Ann. Oper. Res. (2013). doi:10.1007/
s10479-012-1303-2

13. Takeda, A., Mitsugi, H., Kanamori, T.: A unified robust classification model.
Neural Comput. 25(3), 759–804 (2013)

http://dx.doi.org/10.1080/02331934.2012.703667
http://dx.doi.org/10.1007/s10479-012-1303-2
http://dx.doi.org/10.1007/s10479-012-1303-2

Robust Support Vector Machines with Polyhedral Uncertainty 305

14. Ben-Tal, A., Bhadra, S., Bhattacharyya, C., Nath, J.S.: Chance constrained uncer-
tain classification via robust optimization. Math. Program. Ser. B 127, 145–173
(2011)

15. Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Oper.
Res. Lett. 25(1), 1–13 (1999)

16. Ben-Tal, A., Nemirovski, A.: Robust optimization-methodology and applications.
Math. Program. Ser. B 92, 453–480 (2002)

17. Bertsimas, D., Brown, D., Caramanis, C.: Theory and applications of robust opti-
mization. SIAM Rev. 53, 464–501 (2011)

18. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math.
Program. Ser. B 98, 49–71 (2003)

19. Bertsimas, D., Sim, M.: The price of robustness. Oper. Res. 52(1), 35–53 (2004)

Raman Spectroscopy Using a Multiclass
Extension of Fisher-Based Feature Selection

Support Vector Machines (FFS-SVM)
for Characterizing In-Vitro Apoptotic Cell

Death Induced by Paclitaxel

Michael Fenn1,5(&), Mario Guarracino2, Jiaxing Pi3,5,
and Panos M. Pardalos3,4,5

1 Department of Biomedical Engineering, Florida Institute of Technology,
Melbourne, FL, USA
mfenn@fit.edu

2 Department of High Performance Computing and Networking,
National Research Council, Naples, Italy

mario.guarracino@cnr.it
3 J. Crayton Pruitt Family Department of Biomedical Engineering,

University of Florida, Gainesville, FL, USA
jason5915@gmail.com, pardalos@ise.ufl.edu

4 Department of Industrial and Systems Engineering, University of Florida,
Gainesville, FL, USA

5 Center for Applied Optimization, University of Florida, Gainesville, USA

Abstract. Raman microspectroscopy combined with advanced data mining
methods are used to demonstrate proof-of-concept for the development of a non-
invasive, real-time in vitro assay platform for the classification and character-
ization of anti-cancer agents. Breast cancer cells were investigated over a 48 h
time course of treatment with Paclitaxel. Raman spectroscopic analysis is used
with a multiclass One-versus-One Support Vector Machines classification
algorithm to classify cell death over a 48 h period. The Fisher-based Feature
Selection method provides discriminative features descriptive of the apoptotic
process during time-course. Spectral datasets collected at each of the time-points
during a separate 48 h 3-point time course study are used as the testing datasets.
The features, or spectral peaks, output directly as wavenumbers are correlated to
corresponding biochemical species for each time point yielding an analysis of
the biochemical compositional changes. Conventional assay methods are
employed to validate and confirm results of the Raman spectroscopic analysis.

Keywords: Raman spectroscopy � Breast cancer � Support vector machines �
Feature selection � Paclitaxel

1 Introduction

Raman spectroscopy has demonstrated the ability to significantly aid in oncology
research and cancer diagnosis [1–3]. The information rich spectra generate large

© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 306–323, 2014.
DOI: 10.1007/978-3-319-09584-4_27

datasets commonly requiring advanced data mining methods for complete analysis of
the high-dimensional spectral data, such as for classification tasks, and furthermore to
allow for biological assessment of spectral features. A great need exist for improved
pre-clinical anti-cancer agent in vitro or cell culture-based assay methods for investi-
gating anti-cancer agent efficacy, toxicity and even understanding the mode of action
(MOA) in a non-invasive fashion [4, 5]. There is particular interest in the improvement
and development of current cell-culture based assay techniques used for initial anti-
cancer agent screening and testing, as well as further downstream development based
on optical or biophotonics methods for live cell imaging and analysis [6, 7]. Current
methods for drug discovery often utilize one or several multiplexed biological markers
(e.g. antibodies) with conjugated fluorophores and are detected both qualitatively and
quantitatively through the use of fluorescence microscopy, flow cytometry, microplate
assays, western blots, and many others [8]. All of these methods have a number of
advantages and disadvantages, but a common thread in terms of disadvantages in
regards to these methods is the unnatural, non-native biological environment that is
created by introducing such targeting molecules [9]. This therefore increases the
chances of undocumented or unknown interactions among the cells and the effects of
the actual anti-cancer agent under study, which is of increasing importance as more
complex therapeutics and drug delivery platforms are being designed and employed
[10–12]. As a means to circumvent these pitfalls, the use of non-invasive, optical-based
techniques, that do not require the addition of fluorophores or other targeting agents
allow for an improved understanding of the complex interactions of anti-cancer agents
with cells and the biochemistry of the tumor-microenvironment. Furthermore, the use
of non-invasive biophotonics methods allow for overcoming many of the disadvan-
tages of traditional assays while doing so in unperturbed biological in vitro environ-
ment, and therefore we are investigating the use of Raman spectroscopy combined with
advanced data-mining and chemometrics to accomplish this task.

The ultimate goal stemming from the work shown in this initial study is to develop
a functional Raman spectroscopic-based tool for the in vitro evaluation of anti-cancer
agents, which can accurately classify cell death, as well as provide spectral biomarkers
corresponding to significant correlations of validated biological phenomena. Under-
standing the spectral feature patterns, or spectral biomarkers, of cell death observed
in vitro is essential to the development of new anti-cancer agents; as well as improving
our understanding of the effects of current conventional anti-cancer agents [13]. Such
biochemical compositional information could potentially allow for more effective
dosing, therapeutic formulations or improved combined therapies [14, 15]. Gaining a
complete understanding of the biochemical alterations cells undergo when treated with
an anti-cancer agent can allow for complex interactions to be studied and better
understood. In recent years, much attention has focused on targeted drug development
founded on proteomic and genomic-based biomarkers, but focusing on these highly
specific pathways (i.e. protein signaling, gene transcription, and epigenetics) has
diminished focus on the many other highly important classes of molecules such as
lipids, carbohydrates and small molecule metabolites that are potential targets for
cancer therapeutics [16–22]. These molecules are important for both structural and
morphological aspects of cells, as well as being involved in critical signal transduction
pathways. Furthermore, recent investigations have demonstrated that most anti-cancer

Raman Spectroscopy Using a Multiclass Extension 307

agents induce apoptosis via direct or indirect alterations in cell membrane fluidity
[23–27]. The architectural structure of the membrane has been demonstrated to dictate
cell-line specific functionality as well as intra/extra-cellular activities. Therefore,
understanding these relationships and interactions of the cell membrane is crucial to
developing effective anti-cancer agents. This is an area of particular importance in
which the proposed Raman-based system could potentially dramatically help improve
and progress understanding for translation into therapeutic development and possible
discovery of new biomarkers [28].

Basic detection and classification of cell death based on the type (apoptosis versus
necrosis), stage (early, intermediate, late), and extent of death or cytotoxicity, using
current conventional assay methods, is anything but straightforward. All currently
employed assay methods (e.g. flow cytometry, fluorescence microscopy, immuno-
blotting, etc.) suffer from various drawbacks and disadvantages; being time consuming,
relatively expensive, and prone to error based on operator experience. Although
evaluation by simple light microscopy can provide a relatively accurate assessment of
cell death by morphological characterization, this method requires extensive knowl-
edge and expertise, and importantly lacks biochemical information at the molecular
level. Changes at the molecular level are associated with cell death at the very onset,
long before any morphological distinctions are evident. These molecular level events
give rise to changes in the biochemical composition of the cells as changes in gene
expression and protein synthesis ultimately bring about variations in metabolic activity
and structure. Proteins, lipids, DNA/RNA, as well as metabolites such as glucose all
participate in the transformation of viable proliferating cells under assault by death
inducing agents, as has been observed in cells treated with anti-cancer agents through a
variety of intertwined and complex mechanisms and signaling pathways [23, 24, 27,
29–31].

The summation of the discussion above provides justification for the need to
develop a noninvasive method that can evaluate the effects and interactions of anti-
cancer agents on cellular components at the biochemical level. In this proof-of-concept
study, the in vitro effects of the popular chemotherapeutic agent of Paclitaxel is per-
formed by collecting Raman spectra from MDA-MB-231 breast cancer cells and the
results are provided by a novel set of optimized data mining methods. Paclitaxel was
chosen for this proof-of-concept study as it is commonly used for the treatment of
breast cancer, is efficacious against MDA-MB-231, and furthermore has a well-char-
acterized mechanism of action that was hypothesized to allow for the observation of the
drug’s effects based on the biological relevance of feature selection results. Pax is
classified as an anti-microtubule agent, but unlike other anti-microtubule agents, such
as vinca alkaloids which inhibit or destroy microtubules, Pax induces the polymeri-
zation and stabilization of tubulin of which the microtubules are composed [32]. By
polymerizing the tubulin building blocks of the microtubules, and stabilizing a nor-
mally highly dynamic process of microtubule construction and deconstruction of the
mitotic spindles necessary for cell division during mitosis, as well as other cellular
processes such as motility, this induces apoptosis to occur in the dividing cell [32].

Here we present the results from a Raman-based time-course study of Paclitaxel
(Pax) on MDA-MB-231 breast cancer cells using a multiclass extension of our novel
Fisher-based Feature Selection Support Vector Machines model (FFS-SVM) [33].

308 M. Fenn et al.

SVM has been shown to provide high accuracy classification results when combined
with Raman spectroscopy for the classification and characterization of cancer cells and
tumor tissue [34–37]. In this proof-of-concept study we utilized SVM, and combined it
with a powerful feature selection technique in order to achieve an output of features that
are obtained directly from the original feature subspace directly as wavenumber peak
values. The features provided directly as wavenumbers are then correlated to known
literature values and corresponding biological relevance [38, 39]. The FFS feature
selection technique provides discriminative spectral features, which correlate well with
the progression of apoptosis as observed at each time point and also corroborate well
with apoptotic pathways involved in Pax-induced apoptotic cell death.

2 Materials and Methods

Initially a Trypan Blue exclusion assay was conducted to determine the approximate
appropriate range of concentrations of Paclitaxel, which was further investigated using
the MTS assay with the MDA-MB-231 cells. The Trypan Blue exclusion assay was
completed for the MDA-MB-231 cell line after treatment with Pax at 10 µM, 1 µM,
0.1 µM, 0.01 µM and 0.001 µM and triplicate counts were made at 12, 24, 48 and 72 h
(data not shown). The Trypan Blue assay also provided a method to verify that the
healthy cells had a high viability (greater than or equal to 95 %) and the necrotic/dead
cells had viability of less than 5 %. MTS assays were also then performed over 5-fold
concentration range from 10 µM to 1 nM, and viability based on cellular metabolic
activity was measured spectrophotometric ally at 12, 24, 48 and 72 h time-points.
Based on the results from the MTS assay, the concentration of 10 µM of Pax after 24 h
was shown to reduce metabolic activity of the MDA-MB-231 cells by 46.8 % and a
standard deviation of <5 %, which was observed across all 24 h time points. This being
the lowest observed standard deviations of all the time points assessed per each of the
concentrations of Pax tested.

Raman spectra were acquired from the cells in situ using a Renishaw In-Via Raman
Spectrometer coupled to a Leica Microscope with a 63x water-immersion objective and
heated stage. The breast cancer cell line MDA-MB-231 were cultured at 37 °C and 5 %
CO2 in complete growth media on MgF2 chips. Spectra collection was performed using
a 785 nm diode laser (*50 mW) and an acquisition time of 15 s. Raman spectra were
collected from Paclitaxel treated cells for the development of the training sets and
subsequent testing sets based on the time-points at 12, 24 and 48 h post-treatment.

Collection of spectra for the Healthy control training sets was performed by col-
lecting 35 spectra from healthy MDA-MB-231 cells grown in complete media at 37 °C
on MgF2 chips after placing them into a Delta-T® dish to allow for collection of spectra
at physiological temperature using the heated stage. Collection of spectra for the
Necrotic/Dead cell training set was performed by replacing the culture media with
media containing 1 mM H202 for 2 h to induce a complete necrotic death via chem-
icophysical insult to the cells and thus causing the membrane of the cells to degrade.
For collection of the Raman spectra used for developing the apoptotic training set the
cells were treated with 10 µM Pax for 24 h. Spectra were then collected from the a new
populations of cells after 12, 24, and 48 h of treatment with paclitaxel to collect three

Raman Spectroscopy Using a Multiclass Extension 309

testing datasets for SVM classification and characterization based on FFS feature
selection.

Data analysis was conducted on a 2 GHz Intel Core 2 Duo©, 8 GB of RAM
running OSX using MatLab© version 7.10, and SVM was performed using LIBSVM
package. All spectra were pre-processed prior to feature selection and subsequent
classification using the same method we have developed for use as shown in previous
publications [33, 37]. A brief explanation of the steps involved in data preprocessing
and analysis of Raman spectra is provided to help understand the general procedures
involved. For a more detailed treatment of these method please refer to our previous
work [33, 37]. To begin the extraction of information from Raman spectra, the data
must first undergo several pre-processing steps to improve signal to noise ratio (SNR)
and remove spurious artifacts such as ‘cosmic peaks’, as well as standardize spectra
collected between samples and on different days. The preprocessing procedure
includes: x-axis standardization, normalization, background fluorescence subtraction
and smoothing. All cosmic peaks were removed during the collection of the spectra
using the Wire® 2.0 software ‘Zap’ feature, which allows for the typically 1-3 wave-
number wide extraneous cosmic peaks to be removed and the adjacent data points
automatically interpolated.

First, the x-axis must be standardized such that peaks from sample to sample line up
properly to allow for proper comparisons when evaluating one sample against another.
This is done by applying a linear interpolation algorithm to calculate values at specific
and regular x-axis positions, which is accomplished by a clustering method which is
reviewed in detail in [30]. This is then followed by applying a 10 point Savitsky-Golay
smoothing to the spectra to increase SNR. Then the removal of the fluorescence
background is performed by baseline correction methods [40, 41]. This polynomial is
then subtracted from the original spectra data under study, and thus provides a standards
means for background correction [42, 43]. A least-squares based polynomial is first
fitted to the raw spectrum and then the data points generated by the fit that have an
intensity value higher than the corresponding raw spectrum value are reassigned to the
original intensity. This process is repeated until all the Raman bands are eliminated or
until all of the generated curve intensity values are equal or lower than the corresponding
smoothed spectrum intensities. During the preprocessing procedure the spectra are also
normalized such that every feature intensity value will have zero mean and unit variance
for all the data points of the spectral dataset. This is a standard preprocessing method in
supervised learning and is applied in order to ensure that features (wavelengths) with
higher arithmetic values will not contribute to the classifier more than the others. Once
the entire spectral preprocessing procedure is complete, the data is then ready for further
‘post-processing’ via feature selection and classification by SVM.

Applying the methods from our previously presented data analysis framework for
Raman spectroscopy called ‘Fisher-based Feature Selection Support Vector Machines’
(FFS-SVM), we extended the classifier from a binary classifier to a multiclass classifier
using a one-versus-one (OVO) voting scheme [33, 37]. In order to extend the Feature
based Feature Selection Support Vector Machine (FFS-SVM) to multi-class classifier,
we developed and present a one-versus-one (OVO) SVM classification schemes, and
also obtain the Fisher scores for the FFS selected features. For a complete and detailed
treatment of the FFS algorithm please refer to the supplemental information from our

310 M. Fenn et al.

previous publication [33]. For each classification scheme, one class was selected to run
against the other class in a pairwise manner for iterations of all datasets. The SVM was
validated using k-fold cross-validation method. Using OVO-SVM, the algorithm is run
mðm� 1Þ=2 times and each time two classes were selected pairwise. For the Fisher-
based feature selection, we scale the Fisher score to unit length after each run:

Jl;k ¼ Ji;k
Ri 2 sJi;k

; k 2 p

where S is the set of all features, P is the set of all pairs of classes and Ji;m is the Fisher
score for the ith feature and mth pair of classes. Then the final Fisher score is calculated
by the mean of all Jl;ms.

For multi-class support vector machine, we adopted an OVO method as it was
introduced in [44]. For training data from the ith and jth classes, we solved the fol-
lowing binary classification problem:

min
wij;bij;nij

1
2
ðwijÞTwij þ C

X
t

nijt

s:t: sign ðwijÞT/ðxtÞ þ bij
� �� 1� nijt ; if yt ¼ i

ðwijÞT/ðxtÞ þ bij � � 1þ nijt ; if yt ¼ j

nijt � 0

Then, the following voting strategy [45] is used for future testing: if signð wijð ÞT/ xð Þ þ
bijÞ indicates that x is in the ith class, then the vote for class I is added by one,
otherwise, class j is increased by one.

The selected features (i.e. wavenumbers) were ranked based on class differentiation
ability based on the weight of each of the features ranked in order of their discrimi-
native ability. The top-ten features were then selected as these provide >90 % of the
discriminative information, and are thus used for providing a measurement of the
feature’s biological relevance in terms of ranking and corresponding wavenumber to
biochemical species from previous literature Raman peak values [33, 38, 39]. Selected
features are used by the FFS-SVM framework for dimensionality reduction as well as
classification of the most significant features for each cell classification. The top-ten
most discriminative features for the apoptotic class were used for assessing the bio-
chemical compositional changes associated with apoptosis induced by paclitaxel.

For comparison and validation of the results from the Raman spectral analysis using
FFS-SVM, live cell fluorescence microscopy and flow cytometry of cells treated with
Pax under the same conditions as the training datasets and also for those at each of the
time points at 12, 24, and 48 h was performed in order to observe and validate the
extent and type of cell death that occurred. The PromoKine Healthy/Apoptotic/Necrotic
Detection Kit® (PromoKine, Heidelberg, Germany) was used, which consist of FITC-
Annexin V, ethidium homodimer III and Hoechst 33342 stains for staining. The
fluorescence images and flow cytometry data were used as a comparison of the FFS-
SVM classification results for the percentage of cells healthy, apoptotic, or dead/-
necrotic. All live cell fluorescence microscopy images were collected from cells plated

Raman Spectroscopy Using a Multiclass Extension 311

and stained on Nunc® #42 Lab-Tek 4-well chamber slides at the McKnight Brain
Institute (MBI) Cell and Tissue In vitro Imaging Core Lab using the Olympus IX70
Inverted Fluorescent Microscope System. All flow cytometry samples were run on BD
Biosciences LSR-II Flow Cytometer and FACS system with FACS Diva 6.1 software
(BD Biosciences, San Jose, CA) Flow Cytometry Core Lab in the MBI (University of
Florida, Gainesville, Florida, USA).

3 Results and Discussion

After collection of all Raman spectra, the spectral datasets were preprocessed prior to
being fed into the FFS and SVM algorithms. For visualization of the difference among
the average spectra from each dataset the average spectra for the training sets are shown
in Fig. 1 and the average spectra obtained for each of the respective time points are
shown in Fig. 2.

The three classes defined as healthy, apoptotic and necrotic cells, were evaluated
using the FFS-SVM method extended to by applying the OVO-SVM multiclass
classifier and FFS for providing the feature outputs relevant to the apoptotic cell death
process at each testing time point. The training model, consisting of the training data
for each of the three classes, was internally validated for the OVO-SVM classification
results using a 10-fold cross validation with the results taken from the average of 100

Fig. 1. Overlay of the mean average spectra for healthy cell control training set, apoptotic cell
training set, and necrotic cell training set.

312 M. Fenn et al.

iterations. The cross-validation results gave a 97.50 % training accuracy when the first
ten, or top-ten, selected features were used for the three-class training model composed
of the spectra used to develop the multiclass FFS-SVM method. Table 1 shows the
results obtained from the classification of the testing data at each time point for 12, 24,
and 48 h. The top-ten features ranked in order, are shown for 12, 24 and 48 h time
points in Tables 2 and 3, and 4 respectively, after treatment with Pax along with the
related biochemical changes associated with the selected features.

The results shown in Table 1 for the testing data classification at each time-point
post-treatment are shown as a percentage of the spectra, or cells, classified as healthy,
apoptotic or necrotic. As would be expected, the percentage of healthy cells decreased
at each time point post-treatment with Pax, and the cells were progressively classified
as apoptotic, and eventually after 48 h the majority of the cells were classified as dead/
necrotic. The increase in apoptosis should be observed over the time course as Pac-
litaxel induced apoptotic death in increasing amounts of cells. Furthermore, as is
observed in Table 1, between 24 and 48 h after treatment with Pax, the cells began to
progress from the ‘dying’ state of apoptosis towards end-stage cell death, denoted by
the increase necrotic, membrane compromised state after 48 h of treatment. The pro-
gression of cells from healthy or unaffected status, to undergoing apoptosis induced by
the Pax treatment, and then finally progressing to the end-state necrotic cell death status
is expected. This was confirmed by the validation assays using flow cytometry and
fluorescence microscopy shown in Fig. 3(A.–D.). This is the normal expected behavior

Fig. 2. Overlay of mean average spectra for testing data sets for MDA-MB-231 cells treated
with 0.1 µM Paclitaxel and spectra collected at 12, 24 and 48 h post-treatment.

Raman Spectroscopy Using a Multiclass Extension 313

Table 1. Classification of testing datasets for spectra collected at each time point of 12, 24 and
48 h post-treatment using the FFS-SVM model constructed from the healthy, apoptotic and
necrotic training data. Shows percentage (%) of total cells classified per each class name at each
time point.

Percent of cells classified as healthy/apoptotic/nercrotic pasclitaxel 0.1 µM
Post-treatment time point 12 h 24 h 48 h

Healthy cells (%) 92.0 6.1 3.4
Apoptotic cells (%) 8.0 81.8 27.6
Necrotic cells (%) 0.0 12.1 69.0

Table 2. Top ten most significant features selected by FFS-SVM for the 12 h post-treatment
time-point. Features are shown as wavenumbers (cm−1), and corresponding biomolecules or
biochemical moieties associated with Raman vibrational modes.

Feature rank Feature (cm−1) Corresponding biomolecular Raman vibrational modes

1st 1448 CH2-CH3 deformation of lipids

2nd 1088 C-C single bond stretch of lipids

3rd 1308 CH2- twisting of lipids

4th 1611 NH2-, tyrosine and cytosine (protein)

5th 806 Phosphodiester stretching, phospholipid head groups

6th 1159 Aromatic C-O/C-N stretch in DNA

7th 1764 C = O stretch of lipids

8th 1175 Tyrosine, phenylanlanine, -C-H- bend of proteins

9th 1273 CH2 rocking of phospholipids, C = C/C-N of fatty acids

10th 1005 Phenylalanine, indicator of overall protein content

Table 3. Top ten most significant features selected by FFS-SVM for the 24 h post-treatment
time-point. Features are shown as wavenumbers (cm−1), and corresponding biomolecules or
biochemical moieties associated with Raman vibrational modes.

Feature
rank

Feature
(cm−1)

Corresponding biomolecular Raman vibrational modes

1st 1308 Aromatic amine stretch (protein)

2nd 1273 CH bond rocking, C = C unsaturated fatty acids

3rd 1254 C-N bond in plane stretching (protein)

4th 1339 C-C stretch of phenylalanine, C3-CO bend in nucleic acids

5th 750 Indicator of various DNA nucleic acids, aromatic ring

6th 1452 Structural proteins: collagen, elastin, actin

7th 940 Proline and valine (amino acids common in structural proteins)

8th 769 Phosphatidylinositol, pyrimidine ring breathing mode in DNA

9th 1622 Beta-sheet protein structure, C = C stretch in amino acids
(tryptophan)

10th 828 DNA phosphate backbone stretch

314 M. Fenn et al.

of cancer cells when treated with an anti-cancer agent such as Pax over a 48 h time-
course. This type of study is similar to the time-course studies which are performed for
all anti-cancer agents and potential anti-cancer agents to understand the cytotoxicity
and efficacy profile such a treatment has on the cancer cells.

As fluorescence microscopy allows for direct observation of the cells on the ‘single
cell’ level and furthermore that many of the fluorescent stains are compatible with
‘live’, or unfixed cells, it thus provided the best means of observing, in situ, the effects
of anti-cancer agents on cells. Furthermore, live cell fluorescence microscopy is most
similar to the in situ collection of Raman spectra from live cells using Raman spec-
troscopy. Therefore, based on the studies in this work, it was concluded that this
method provides the best means of validation and comparison of the results from the
Raman spectroscopic analysis of the cells treated with Pax. The PromoKine Healthy/
Apoptotic/Necrotic Assay® was used, which consist of FITC-Annexin V, Ethidium
Homodimer III and Hoechst 33342 stains for staining and fluorescence microscopy live
cell imaging. The FITC-Annexin V stain allows for the identification of apoptotic cells
in the early to mid-stages of apoptosis, and can be observed as a bright green color
indicating the exposure of PS on the outer leaflet of the cell membrane. The ethidium
homodimer III stain, is cell impermeant, and stains the nuclear DNA red of dead/
necrotic cells, or cells in the final stage of apoptosis (secondary necrosis) in which the
membrane has broken down. The Hoechst 33342 stain is cell permeant and stains the
DNA of all cells, thus allowing for the identification of healthy cell, as well as the stage
of apoptosis based on the state of the DNA or chromatin.

At the 12 h time point, 92.0 % of the cells were classified as healthy, and only 8 %
classified as apoptotic. The FFS-SVM classification results agree qualitatively with the
fluorescence microscopy results shown in Fig. 5(A.). These images indicate mainly
healthy cells, stained only blue with Hoechst 33342, and a small amount of the cells
beginning to undergo the apoptotic death process, as indicated by the low degree of
green Annexin-V staining. The images were collected from cells that were in a live,
unfixed state, and thus show similar behavior and morphology to that observed under

Table 4. Top ten most significant features selected by FFS-SVM for the 48 h post-treatment
time-point. Features are shown as wavenumbers (cm−1), and corresponding biomolecules or
biochemical moieties associated with Raman vibrational modes.

Feature rank Feature (cm−1) Corresponding biomolecular Raman vibrational modes

1st 1453 Structural proteins, actin, elastin, collagen

2nd 1160 Stretching mode of aromatic proteins, tryptophan

3rd 1610 Cytosine (DNA base)

4th 1097 Phosphate backbone stretching

5th 1005 Phenylalanine, indicator of overall protein content

6th 811 Phosphate backbone stretching, Z-DNA marker

7th 1662 Tryptophan, β-sheet secondary protein structure

8th 691 Guanine and cytosine (DNA bases)

9th 1128 C-N stretch related to amino acids and nucleic acids

10th 751 Indicator of various DNA nucleic acids, aromatic ring

Raman Spectroscopy Using a Multiclass Extension 315

the Raman microscope. Additionally, the flow cytometry results as shown in Fig. 4(A.)
indicate that most of the population of cells remained unstained with Annexin V or
ethidium homodimer, and thus most of the cells analyzed by flow were deemed healthy
after 12 h post-treatment with Pax. The corresponding wavenumber associations from
the FFS results correlating to specific biochemical species for the 12 h time period are
listed in order of ranking feature significance in Table 2.

In terms of the selected features at 12 h, the majority of the top ten selected features
were found to be associated with lipids and phospholipid head groups, as well as some
to amino acid residues and protein vibrational modes. These resulting associations
correlate with the initial processes that occur during apoptosis, as observed in the
fluorescence microscopy images indicating membrane asymmetry with the exposure of
PS from the inner cellular membrane leaflet to the outer cellular membrane leaflet,
among other changes in the membrane that occur during apoptosis [14]. Overall, during
these early stages of apoptosis as is indicated to be occurring at the 12 h time point, the

Fig. 3. Representative images of live cell fluorescence microscopy of (A.) healthy MDA-MB-
231 cells as used for the healthy cell training set and of (B.) the MDA-MB-231 cells after dosing
with 10 µM Pax for 24 h used for the apoptotic training set are shown in (C.) and (D.). (Images
A. and C. shown at 200x magnification and Figures B. and D. at 400x magnification)

316 M. Fenn et al.

top ten features are dominated by wavenumbers associated with changes in lipids and
phospholipid head groups [38, 39, 46]. The specific information on the Raman peaks
and biochemical species being affected can be seen in Table 2.

As compared to the 12 h time point, the 24 h time point classification results
indicate a significant percentage of the cells are classified as apoptotic, with 81.8 %
classified as apoptotic. The classification results for the 24 h time point show a sig-
nificantly higher percentage of the cells being classified as apoptotic as seen in Table 1.
The fluorescence microscopy images in Fig. 5(B.) show that most of the cells at 24 h
are in some stage of apoptosis from the earliest stages of onset with light Annexin-V
staining to complete apoptosis resulting secondary necrosis and cell death. The features
selected to be most significant at 24 h correlate to changes in proteins and amino acids,
DNA as well as associated wavenumbers with lipids and fatty acids [38, 39]. The fatty
acid and lipid associated vibrational modes are most likely due to the advancing
changes in the cellular membrane as cell death progresses. Remarkably, several of the
wavenumbers selected indicate changes in structural proteins such as collagen, tubulin
and actin, as well as the β-sheet secondary protein structure which are affected during
apoptosis. This is noteworthy as it demonstrates the sensitivity of the changes that
Raman spectroscopic analysis is capable of detecting, particularly as these biochemical
changes are likely due to the MOA of Pax, which causes polymerization of microtu-
bules and affects cytoskeletal structure as would be expected [47–50]. The stabilization
of the microtubules has been shown to cause an increase in the concentration of these
protein structures as apoptosis begins and progresses when Pax binds to the tubulin
dimer [47]. Thus Pax induced apoptosis resulting in stabilized microtubules, which are
made of tubulin, and therefore at this stage the Pax-stabilized microtubules might
account for the significance of the selected features that correlate to these secondary
protein structural effects [47–49].

Moreover, as it was observed in the fluorescence microscopy images that many of
the cells seem to be in the intermediate stages of apoptosis and progressing towards the
latter stages of apoptosis; at which point, protein production changes in the cells.
In addition to protein and amino acids, features corresponding to wavenumbers
indicative of DNA were also selected for in by FFS at 24 h. The intermediate stages of

Fig. 4. Flow cytometry results for testing set data. (A.) MDA-MB-231 treated with Pax for 12 h;
(B.) MDA-MB-231 treated with Pax for 24 h; (C.) MDA-MB-231 treated with Pax for 48 h.

Raman Spectroscopy Using a Multiclass Extension 317

apoptosis are denoted by the initial changes in DNA, such as DNA compaction, which
is one of the main morphological indicators of apoptosis. In the intermediate stages of
apoptosis chromatin condenses and the nuclei appear to be smaller and rounded, which
can be observed by the Hoechst stained nuclei in Fig. 5(B.). As can be seen in the
fluorescence microscopy images most of the cells have some degree of Annexing V
staining (green) at 24 h, as well as some cells can be seen with smaller condensed
nuclei with some red ethidium homodimer III staining of the nuclei beginning to occur
due to the rupture of cellular membranes indicating the end stages of cells death. This
likely provides justification for the 12 % of the cells classified as necrotic by FFS-SVM
classification at 24 h.

The results from the FFS-SVM classification of the Raman spectra after 48 h post-
treatment show that the majority of the cells have been classified as necrotic, or
completely dead, with 69 % classified in the necrotic class by the model as shown in
Table 1. The remaining cells are classified as 27.6 % apoptotic and only 3 % remaining
healthy. The top ten features selected by FFS at 48 h post-treatment are shown ranked
in order of significance in Table 3. The majority of the features selected are

Fig. 5. Representative images of live cell fluorescence microscopy results for the three testing
data time points. (A.) 12 h post-treatment; (B.) 24 h post-treatment; (C.) 48 h post-treatment.
(Magnification 200x)

318 M. Fenn et al.

wavenumbers associated with changes in DNA, as well as structural proteins [38, 39,
46, 50]. The correlating fluorescence microscopy images for the 48 h time point results
are shown in Fig. 4(C.) and in the flow cytometry results shown in Fig. 5(C.). The
significance of the DNA wavenumbers is most likely due to the fact that in the latter
stages of apoptosis and into the progression of cell death the DNA fragments and
breaks down. This is a hallmark of late stage apoptosis, as the cells begins to fragment
into smaller pieces known as apoptotic bodies. It can be seen that in the fluorescence
microscopy images in Fig. 5(C.) that virtually all of the cells are stained with green
Annexin-V and most are also stained to varying degrees with red ethidium homodimer
III indicating late stage apoptosis and secondary necrosis (classified as necrotic). The
flow cytometry results in Fig. 4(C.) show that approximately 67 % of the cells are in
the upper two quadrants indicating apoptosis and secondary necrosis, correlating to the
FFS-SVM results. It should be noted that the term necrosis used for the FFS-SVM
classifier can be indicative of cells in the latest stages of apoptosis, or cells which have
completely died and membrane lysis has occurred.

It was demonstrated that FFS-SVM can be used to classify cells which have been
treated with an apoptosis inducing anti-cancer agent as healthy, apoptotic or necrotic.
Although, the classification results obtained for the 48 h time point indicate that most of
the cells are dead, although it really maybe that most of the cell are in latter stages of
apoptosis, even though the necrotic class is overwhelmingly the majority of classified
cells. This again may indicate the need to develop a classier with an increased number
of intermediate classes capable of classifying cells as healthy, and also early, inter-
mediate or late stage apoptosis, as well as those which are truly dead or necrotic. Such a
classifier is a goal for future study.

4 Conclusion

The datasets collected from Raman spectroscopic analysis of biological samples are
large and complex. Discerning meaningful differences between spectra and regions of
interest within spectra requires the development and use of powerful, cutting edge
mathematical techniques to allow for the complete extraction and correlation of the
Raman spectral data. As the applications of Raman spectroscopy increases in intricacy
so does the complexity of datasets and the computational power required for data
analysis. Therefore, one of the many areas of focus in regards to moving Raman
spectroscopy into clinical application is the development of appropriate data mining
and analysis methods which can then be put into a user-friendly software interface.
This study has provided proof-of-concept that a time-course of an anti-cancer agent can
be performed on the same cell population using Raman spectroscopy by collecting
spectra at different time points, but is only possible with the application of advanced
machine learning and optimization methods. Furthermore, the information gained from
the FFS selected features, directly listed as wavenumbers, were shown to have bio-
logical relevance related to the progression of cell death. Based on this, these features
could potentially act as biomarkers, or fingerprints, for cell death and even lead dif-
ferentiation or evaluation of potential unknown mechanisms of cell death. This study
has shown that the combination of Raman spectroscopy with the use of the FFS-SVM

Raman Spectroscopy Using a Multiclass Extension 319

framework provides a unique platform for the analysis of cancer cells and biochemical
changes that occur during treatment with anti-cancer agents. This study provides evi-
dence that such a platform has the potential to one day become a regularly utilized
instrument for the pre-clinical drug development, drug discovery and in vitro drug
screening.

Acknowledgements. The Authors would like to acknowledge the University of Florida
Research Foundation and the UF Seed Opportunity Fund for providing funding for this work.
The Authors would also like to thank the Particle Engineering Research Center and the Center for
Applied Optimization at the University of Florida, Gainesville, Florida for allowing this work to
be carried out in these laboratories respectively.

References

1. Fenn, M.B., Xanthopoulos, P., Pyrgiotakis, G., Grobmyer, S.R., Pardalos, P.M., Hench, L.
L.: Raman spectroscopy for clinical oncology. Adv. Opt. Technol. 2011, 1–20 (2011)

2. Stone, N., Kendall, C.A.: Raman spectroscopy for early cancer detection, diagnosis and
elucidation of disease-specific biochemical changes. In: Matousek, P., Morris, M.D. (eds.)
Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields,
pp. 315–346. Springer, Heidelberg (2010)

3. Ellis, D.I., Cowcher, D.P., Ashton, L., O’Hagan, S., Goodacre, R.: Illuminating disease and
enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14), 3871–
3884 (2013)

4. Bertotti, A., Trusolino, L.: From bench to bedside: does preclinical practice in translational
oncology need some rebuilding? J. Natl Cancer Inst. 105(19), 1426–1427 (2013)

5. Limame, R., Wouters, A., Pauwels, B., Fransen, E., Peeters, M., Lardon, F., de Wever, O.,
Pauwels, P.: Comparative analysis of dynamic cell viability, migration and invasion
assessments by novel real-time technology and classic endpoint assays. PLoS ONE 7(10),
e46536 (2012)

6. Antony, P.M.A., Trefois, C., Stojanovic, A., Baumuratov, A.S., Kozak, K.: Light
microscopy applications in systems biology: opportunities and challenges. Cell Commun.
Signal. 11(1), 1–19 (2013)

7. Isherwood, B., Timpson, P., McGhee, E.J., Anderson, K.I., Canel, M., Serrels, A., Brunton,
V.G., Carragher, N.O.: Live cell in vitro and in vivo imaging applications: accelerating drug
discovery. Pharmaceutics 3(2), 141–170 (2011)

8. Michelini, E., Cevenini, L., Mezzanotte, L., Coppa, A., Roda, A.: Cell-based assays: fuelling
drug discovery. Anal. Bioanal. Chem. 398(1), 227–238 (2010)

9. Sumantran, V.N.: Cellular chemosensitivity assays: an overview. In: Cree, I.A. (ed.) Cancer
Cell Culture, pp. 219–236. Humana Press, Totowa (2011)

10. Mody, N., Tekade, R.K., Mehra, N.K., Chopdey, P., Jain, N.K.: Dendrimer, liposomes,
carbon nanotubes and PLGA nanoparticles: one platform assessment of drug delivery
potential. AAPS PharmSciTech 15(2), 388–399 (2014)

11. Zhang, Y., Chan, H.F., Leong, K.W.: Advanced materials and processing for drug delivery:
the past and the future. Adv. Drug Deliv. Rev. 65(1), 104–120 (2013)

12. Venditto, V.J., Szoka Jr, F.C.: Cancer nanomedicines: so many papers and so few drugs!
Adv. Drug Deliv. Rev. 65(1), 80–88 (2013)

320 M. Fenn et al.

13. Fenn, M.B., Pappu, V.: Data mining for cancer biomarkers with Raman spectroscopy
(chapter 8). In: Pardalos, P.M., Xanthopoulos, P., Zervakis, M. (eds.) Data Mining for
Biomarker Discovery, pp. 143–168. Springer, New York (2012)

14. Fermor, B.F., Masters, J.R., Wood, C.B., Miller, J., Apostolov, K., Habib, N.A.: Fatty acid
composition of normal and malignant cells and cytotoxicity of stearic, oleic and sterculic
acids in vitro. Eur. J. Cancer 28(6), 1143–1147 (1992)

15. Troester, M.A., Hoadley, K.A., Sørlie, T., Herbert, B.S., Børresen-Dale, A.L., Lønning, P.
E., Shay, J.W., Kaufmann, W.K., Perou, C.M.: Cell-type-specific responses to
chemotherapeutics in breast cancer. Cancer Res. 64(12), 4218–4226 (2004)

16. Ponnusamy, S., Meyers-Needham, M., Senkal, C.E., Saddoughi, S.A., Sentelle, D., Selvam,
S.P., Salas, A., Ogretmen, B.: Sphingolipids and cancer: ceramide and sphingosine-1-
phosphate in the regulation of cell death and drug resistance. Future Oncol. 6(10), 1603–
1624 (2010)

17. Zoli, W., Ricotti, L., Barzanti, F., Dal Susino, M., Frassineti, G.L., Milri, C., Casadei
Giunchi, D., Amadori, D.: Schedule-dependent interaction of doxorubicin, paclitaxel and
gemcitabine in human breast cancer cell lines. Int. J. Cancer 80(3), 413–416 (1999)

18. Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N.,
Coppe, J.P., Tong, F., Speed, T., Spellman, P.T., DeVries, S., Lapuk, A., Wang, N.J., Kuo,
W.-L., Stilwell, J.L., Pinkel, D., Albertson, D.G., Waldman, F.M., McCormick, F., Dickson,
R.B., Johnson, M.D., Lippman, M., Ethier, S., Gazdar, A., Gray, J.W.: A collection of breast
cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10(6),
515–527 (2006)

19. Kenny, P.A., Lee, G.Y., Myers, C.A., Neve, R.M., Semeiks, J.R., Spellman, P.T., Lorenz,
K., Lee, E.H., Barcellos-Hoff, M.H., Petersen, O.W., Gray, J.W., Bissell, M.J.: The
morphologies of breast cancer cell lines in three-dimensional assays correlate with their
profiles of gene expression. Mol. Oncol. 1(1), 84–96 (2007)

20. Fuster, M.M., Esko, J.D.: The sweet and sour of cancer: glycans as novel therapeutic targets.
Nat. Rev. Cancer 5(7), 526–542 (2005)

21. Swinnen, J.V., Brusselmans, K., Verhoeven, G.: Increased lipogenesis in cancer cells: new
players, novel targets. Curr. Opin. Clin. Nutr. Metabol. Care 9(4), 358–365 (2006)

22. Hsu, P.P., Sabatini, D.M.: Cancer cell metabolism: Warburg and beyond. Cell 134(5), 703–
707 (2008)

23. Le Moyec, L., Tatoud, R., Eugene, M., Gauville, C., Primot, I., Charlemagne, D., Calvo, F.:
Cell and membrane lipid analysis by proton magnetic resonance spectroscopy in five breast
cancer cell lines. Br. J. Cancer 66(4), 623 (1992)

24. Baritaki, S., Apostolakis, S., Kanellou, P., Dimanche-Boitrel, M.T., Spandidos, D.A.,
Bonavida, B.: Reversal of tumor resistance to apoptotic stimuli by alteration of membrane
fluidity: therapeutic implications. Adv. Cancer Res. 98, 149–190 (2007)

25. Li, X., Yuan, Y.J.: Lipidomic analysis of apoptotic hela cells induced by paclitaxel. OMICS:
J Integr. Biol. 15(10), 655–664 (2011)

26. Meacham, W.D., Antoon, J.W., Burow, M.E., Struckhoff, A.P., Beckman, B.S.:
Sphingolipids as determinants of apoptosis and chemoresistance in the MCF-7 cell model
system. Exp. Biol. Med. 234(11), 1253–1263 (2009)

27. Kaur, J., Sanyal, S.N.: Alterations in membrane fluidity and dynamics in experimental colon
cancer and its chemoprevention by diclofenac. Mol. Cell. Biochem. 341(1–2), 99–108
(2010)

28. Schlaepfer, I.R., Hitz, C.A., Gijón, M.A., Bergman, B.C., Eckel, R.H., Jacobsen, B.M.:
Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Mol.
Cell. Endocrinol. 363(1), 111–121 (2012)

Raman Spectroscopy Using a Multiclass Extension 321

29. Oakman, C., Tenori, L., Biganzoli, L., Santarpia, L., Cappadona, S., Luchinat, C., Di Leo,
A.: Uncovering the metabolomic fingerprint of breast cancer. Int. J. Biochem. Cell Biol. 43
(7), 1010–1020 (2011)

30. Zhou, M., Liu, Z., Zhao, Y., Ding, Y., Liu, H., Xi, Y., Xiong, W., Li, G., Lu, J., Fodstad, O.,
Riker, A.I., Tan, M.: MicroRNA-125b confers the resistance of breast cancer cells to
paclitaxel through suppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression.
J. Biol. Chem. 285(28), 21496–21507 (2010)

31. Martinkova, J., Gadher, S.J., Hajduch, M., Kovarova, H.: Challenges in cancer research and
multifaceted approaches for cancer biomarker quest. FEBS Lett. 583(11), 1772–1784 (2009)

32. Peter, M.E.: Programmed cell death: apoptosis meets necrosis. Nature 471(7388), 310–312
(2011)

33. Fenn, M.B., Pappu, V., Georgeiv, P.G., Pardalos, P.M.: Raman spectroscopy utilizing
Fisher-based feature selection combined with support vector machines for the
characterization of breast cell lines. J. Raman Spectrosc. 44(7), 939–948 (2013)

34. Pyrgiotakis, G., Kundakcioglu, O.E., Finton, K., Pardalos, P.M., Powers, K., Moudgil, B.
M.: Cell death discrimination with Raman spectroscopy and support vector machines. Ann.
Biomed. Eng. 37(7), 1464–1473 (2009)

35. Guarracino, M.R., Xanthopoulos, P., Pyrgiotakis, G., Tomaino, V., Moudgil, B.M.,
Pardalos, P.M.: Classification of cancer cell death with spectral dimensionality reduction and
generalized eigenvalues. Artif. Intell. Med. 53(2), 119–125 (2011)

36. Widjaja, E., Zheng, W., Huang, Z.: Classification of colonic tissues using near-infrared
Raman spectroscopy and support vector machines. Int. J. Oncol. 32(3), 653–662 (2008)

37. Fenn, M.B., Pappu, V., Xanthopoulos, P., Pardalos, P.M.: Data mining and optimization
applied to Raman spectroscopy for oncology applications. In: International Symposium on
Mathematical and Computational Biology, 5–10 November 2011

38. Movasaghi, Z., Rehman, S., Rehman, I.U.: Raman spectroscopy of biological tissues. Appl.
Spectrosc. Rev. 42(5), 493–541 (2007)

39. De Gelder, J., De Guessem, K., Vandenabeele, L.M.: Reference database of Raman spectra
of biological molecules. J. Raman Spectrosc. 38, 1133–1147 (2007)

40. Zhao, J., Carrabba, M.M., Allen, F.S.: Automated fluorescence rejection using shifted
excitation Raman difference spectroscopy. Appl. Spectrosc. 7, 834–845 (2002)

41. Zhao, J., Lui, H., McLean, D.I., Zeng, H.: Automated autofluorescence background
subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61(11), 1225–
1232 (2007)

42. Beier, B.D., Berger, A.J.: Method for automated background subtraction from Raman
spectra containing known contaminants. Analyst 134(6), 1198–1202 (2009)

43. Lieber, C.A., Mahadevan-Jansen, A.: Automated method for subtraction of fluorescence
from biological Raman spectra. Appl. Spectrosc. 57(11), 1363–1367 (2003)

44. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure
for building and training a neural network. In: Soulié, F.F., Hérault, J. (eds.)
Neurocomputing, pp. 41–50. Springer, Heidelberg (1990)

45. Cutzu, F.: Polychotomous classification with pairwise classifiers: a new voting principle. In:
Windeatt, Terry, Roli, Fabio (eds.) MCS 2003. LNCS, vol. 2709, pp. 115–124. Springer,
Heidelberg (2003)

46. Frank, C.J., McCreery, R.L., Redd, D.C.: Raman spectroscopy of normal and diseased
human breast tissues. Anal. Chem. 67(5), 777–783 (1995)

47. Jordan, M.A., Leslie, W.: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4,
253–265 (2004)

48. Wang, T.H., Wang, H.S., Soong, Y.K.: Paclitaxel-induced cell death. Cancer 88(11), 2619–
2628 (2000)

322 M. Fenn et al.

49. Blajeski, A.L., Kotte, T.J., Kauffmann, S.H.: A multistep model for paclitaxel-induced
apoptosis in human breast cancer cell lines. Exp. Cell Res. 270(2), 277–288 (2001)

50. Liu, Z., Brattain, M.G., Appert, H.: Differential display of reticulocalbin in the highly
invasive cell line, MDA-MB-435, versus the poorly invasive cell line, MCF-7. Biochem.
Biophys. Res. Commun. 231(2), 283–289 (1997)

Raman Spectroscopy Using a Multiclass Extension 323

HIPAD - A Hybrid Interior-Point Alternating
Direction Algorithm for Knowledge-Based

SVM and Feature Selection

Zhiwei Qin1, Xiaocheng Tang2, Ioannis Akrotirianakis3(B),
and Amit Chakraborty3

1 Columbia University, New York, NY, USA
zq2107@columbia.edu

2 Lehigh University, Bethlehem, PA, USA
xit210@lehigh.edu

3 Siemens Corporation, Corporate Technology, Princeton, NJ, USA
{ioannis.akrotirianakis,amit.chakraborty}@siemens.com

Abstract. We consider classification tasks in the regime of scarce
labeled training data in high dimensional feature space, where specific
expert knowledge is also available. We propose a new hybrid optimiza-
tion algorithm that solves the elastic-net support vector machine (SVM)
through an alternating direction method of multipliers in the first phase,
followed by an interior-point method for the classical SVM in the second
phase. Both SVM formulations are adapted to knowledge incorporation.
Our proposed algorithm addresses the challenges of automatic feature
selection, high optimization accuracy, and algorithmic flexibility for tak-
ing advantage of prior knowledge. We demonstrate the effectiveness and
efficiency of our algorithm and compare it with existing methods on a
collection of synthetic and real-world data.

Keywords: Support vector machine · Alternating direction method of
multipliers · Interior point methods · Elastic net · Domain knowledge

1 Introduction

Classification tasks on data sets with large feature dimensions are very common
in real-world machine learning applications. Typical examples include microar-
ray data for gene selection and text documents for natural language processing.
Despite the large number of features present in the data sets, usually only small
subsets of the features are relevant to the particular learning tasks, and local cor-
relation among the features is often observed. Hence, feature selection is required
for good model interpretability. Popular classification techniques, such as sup-
port vector machine (SVM) and logistic regression, are formulated as convex
optimization problems. An extensive literature has been devoted to optimization
algorithms that solve variants of these classification models with sparsity regular-
ization [13,17]. Many of them are based on first-order (gradient-based) methods,
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 324–340, 2014.
DOI: 10.1007/978-3-319-09584-4 28

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 325

mainly because the size of the optimization problem is very large. The advantage
of first-order methods is that their computational and memory requirements at
each iteration are low and as a result they can handle the large optimization
problems occurring in classification problems. Their major disadvantage is their
slow convergence, especially when a good approximation of the feature support
has been identified. Second-order methods exhibit fast local convergence, but
their computational and memory requirements are much more demanding, since
they need to store and invert the Newton matrix at every iteration. It is therefore
very important to be able to intelligently combine the advantages of both the
first and the second order optimization methods in such a way that the resulting
algorithm can solve large classification problems efficiently and accurately. As we
will demonstrate in this paper such combination is possible by taking advantage
of the problem structure and the change in its size during the solution process.
In addition, we will also show that our algorithmic framework is flexible enough
to incorporate prior knowledge to improve classification performance.

1.1 Related Work

The above requirements demand three features from a learning algorithm: 1. it
should be able to automatically select features which are possibly in groups and
highly correlated; 2. it has to solve the optimization problem in the training
phase efficiently and with high accuracy; and 3. the learning model needs to be
flexible enough so that domain knowledge can be easily incorporated. Existing
methods are available in the literature that meet some of the above require-
ments individually. For enforcing sparsity in the solution, efficient optimization
algorithms such as that proposed in [9] can solve large-scale sparse logistic regres-
sion. On the other hand, the L1-regularization is unstable with the presence of
highly correlated features - among a group of such features, essentially one of
them is selected in a random manner. To handle local correlation among groups
of features, the elastic-net regularization [22] has been successfully applied to
SVM [20] and logistic regression [15]. However, incorporating domain knowledge
into the logistic regression formulation is not straightforward. For SVM, includ-
ing such knowledge in the optimization process has been demonstrated in [5].
Recently, an Alternating Direction Method of Multipliers (ADMM) has been
proposed for the elastic-net SVM (ENSVM) [21]. ADMM is quick to find an
approximate solution to the ENSVM problem, but it is known to converge very
slowly to high accuracy optimal solutions [2]. The interior-point methods (IPM)
for SVM are known to be able to achieve high accuracy in their solutions with a
polynomial iteration complexity, and the dual SVM formulation is independent
of the feature space dimensionality. However, the classical L2-norm SVM is not
able to perform automatic feature selection. Although the elastic-net SVM can
be formulated as a QP (in the primal form), its problem size grows substantially
with the feature dimensionality. Due to the need to solve a Newton system in
each iteration, the efficiency of IPM quickly deteriorates as the feature dimension
becomes large.

326 Z. Qin et al.

1.2 Main Contributions

In this paper we propose a new hybrid algorithmic framework for SVM to address
all of the above challenges and requirements simultaneously. Our framework
combines the advantages of a first-order optimization algorithm (through the use
of ADMM) and a second-order method (via IPM) to achieve both superior speed
and accuracy. Through a novel algorithmic approach that is able to incorporate
expert knowledge, our proposed framework is able to exploit domain knowledge
to improve feature selection, and hence, prediction accuracy. Besides efficiency
and generalization performance, we demonstrate through experiments on both
synthetic and real data that our method is also more robust to inaccuracy in the
supplied knowledge than existing approaches.

2 A Two-Phase Hybrid Optimization Algorithm

As previously mentioned, for data sets with many features, the high dimension-
ality of the feature space still poses a computational challenge for IPM. Fortu-
nately, many data sets of this kind are very sparse, and the resulting classifier w
is also expected to be sparse, i.e. only a small subset of the features are expected
to carry significant weights in classification. Naturally, it is ideal for IPM to train
a classifier on the most important features only.

Inspired by the Hybrid Iterative Shrinkage (HIS) [16] algorithm for training
large-scale sparse logistic regression classifiers, we propose a two-phase algorithm
to shrink the feature space appropriately so as to leverage the high accuracy of
IPM while maintaining efficiency. Specifically, we propose to solve an elastic-
net SVM (ENSVM) or doubly-regularized SVM (DrSVM) [20] problem during
the first phase of the algorithm. The elastic-net regularization performs feature
selection with grouping effect and has been shown to be effective on data sets
with many but sparse features and high local correlations [22]. This is the case for
text classification, microarray gene expression, and fMRI data sets. The support
of the weight vector w for ENSVM usually stabilizes well before the algorithm
converges to the optimal solution. Taking advantage of that prospect, we can
terminate the first phase of the hybrid algorithm early and proceed to solve a
classical SVM problem with the reduced feature set in the second phase, using
an IPM solver.

2.1 Solving the Elastic Net SVM Using ADMM

SVM can be written in the regularized regression form as

min
w,b

1
N

N∑

i=1

(1− (yi(xT
i w + b)))+ +

λ

2
‖w‖22, (1)

where the first term is an averaged sum of the hinge losses and the second term
is viewed as a ridge regularization on w. It is easy to see from this form that

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 327

the classical SVM does not enforce sparsity in the solution, and w is generally
dense. The ENSVM adds an L1 regularization on top of the ridge regularization
term, giving

min
w,b

1
N

N∑

i=1

(1− yi(xT
i w + b))+ + λ1‖w‖1 +

λ2

2
‖w‖22. (2)

Compared to the Lasso (L1-regularized regression) [18], the elastic-net has the
advantage of selecting highly correlated features in groups (i.e. the grouping
effect) while still enforcing sparsity in the solution. This is a particularly attrac-
tive feature for text document data, which is common in the hierarchical classi-
fication setting. Adopting the elastic-net regularization as in (2) brings the same
benefit to SVM for training classifiers.

To approximately solve problem (2), we adopt the alternating direction method
of multipliers (ADMM) for elastic-net SVM recently proposed in [21]. ADMM
has a long history dating back to the 1970s [6]. Recently, it has been successfully
applied to problems in machine learning [2]. ADMM is a special case of the inex-
act augmented Lagrangian (IAL) method [14] for the structured unconstrained
problem

min
x

F (x) ≡ f(x) + g(Ax), (3)

where both functions f(·) and g(·) are convex. We can decouple the two functions
by introducing an auxiliary variable y and convert problem (3) into an equivalent
constrained optimization problem

min
x,y

f(x) + g(y), s.t. Ax = y. (4)

This technique is often called variable-splitting [3]. The IAL method approxi-
mately minimizes in each iteration the augmented Lagrangian of (4) defined by
L(x, y, γ) := f(x) + g(y) + γT (y − Ax) + μ

2 ‖Ax − y‖22 , followed by an update
to the Lagrange multiplier γ ← γ − μ(Ax − y). The IAL method is guaran-
teed to converge to the optimal solution of (3), as long as the subproblem of
approximately minimizing the augmented Lagrangian is solved with an increas-
ing accuracy [14]. ADMM can be viewed as a practical implementation of IAL,
where the subproblem is solved approximately by minimizing L(x, y; γ) with
respect to x and y alternatingly once. Eckstein and Bertsekas [4] established the
convergence of ADMM for the case of two-way splitting. Now applying variable-
splitting and ADMM to problem (2), [21] introduced auxiliary variables (a, c)
and linear constraints so that the non-smooth hinge loss and L1-norm in the
objective function are decoupled, making it easy to optimize over each of the
variables. Specifically, problem (2) is transformed into an equivalent constrained
form

min
w,b,a,c

1
N

N∑

i=1

(ai)+ + λ1‖c‖1 +
λ2

2
‖w‖22 (5)

s.t. a = e− Y (Xw + be) and c = w

328 Z. Qin et al.

where xT
i is the i-th row of X, and Y = diag(y). The augmented Lagrangian

L(w, b,a, c, γ1, γ2) :=
1
N

N∑

i=1

ai + λ1‖c‖1 +
λ2

2
‖w‖22 + γT

1 (e− Y (Xw + be)− a)

(6)

+ γT
2 (w− c) +

μ1

2
‖e− Y (Xw + be)− a‖22 +

μ2

2
‖w− c‖22

is then minimized with respect to (w, b),a, and c sequentially in each itera-
tion, followed by an update to the Lagrange multipliers γ1 and γ2. The original
problem is thus decomposed into three subproblems consisting of computing the
proximal operator of the hinge loss function (with respect to a), solving a spe-
cial linear system (with respect to (w, b)), and performing a soft-thresholding
operation (with respect to c), which can all be done in an efficient manner. Due
to lack of space in the paper, we have included the detailed solution steps in the
Appendix (see Algorithm A.1 ADMM-ENSVM), where we define by Sλ(·) the
proximal operator associated with the hinge loss

Sλ(ω) =

⎧
⎨

⎩

ω − λ, ω > λ;
0, 0 ≤ ω ≤ λ;
ω, ω < 0.

and Tλ(ω) = sgn(ω)max{0, |ω| − λ} is the shrinkage operator.

2.2 SVM via Interior-Point Method

Interior Point Methods enjoy fast convergence rates for a wide class of QP prob-
lems. Their theoretical polynomial convergence (O(n log 1

ε)) was first established
by Mizuno [12]. In addition, Andersen et al. [1] showed that the number of iter-
ations needed by IPMs to converge is O(log n), which demonstrates that their
computational effort increases in a slower rate than the size of the problem.

Both the primal and the dual SVM are QP problems. The primal formulation
of SVM [19] is defined as

(SVM-P) min
w,b,ξ,s

1
2
wTw + ceT ξ

s.t. yi(wTxi − b) + ξi − si = 1, i = 1, . . . , N,

s ≥ 0, ξ ≥ 0.

whereas the dual SVM has the form

(SVM-D) min
α

1
2
αT Qα− eT α

s.t. yT α = 0, and 0 ≤ αi ≤ c, i = 1, · · · , N,

where Qij = yiyjxT
i xj = X̄X̄T . By considering the KKT conditions of (SVM-

P) and (SVM-D), the optimal solution is given by w = X̄T α =
∑

i∈SV αiyixi,

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 329

where SV is the set of sample indices corresponding to the support vectors.
The optimal bias term b can be computed from the complementary slackness
condition αi(yi(xT

i w + b)− 1 + ξi) = 0.
Whether to solve (SVM-P) or (SVM-D) for a given data set depends on its

dimensions as well as its sparsity. Even if X is a sparse matrix, Q in (SVM-D) is
still likely to be dense, whereas the Hessian matrix in (SVM-P) is the identity.
The primal problem (SVM-P), however, has a larger variable dimension and more
constraints. It is often argued that one should solve (SVM-P) when the number
of features is smaller than the number of samples, whereas (SVM-D) should be
solved when the number of features is less than that of the samples. Since in the
second phase of Algorithm A.1 we expect to have identified a small number of
promising features, we have decided to solve (SVM-D) by using IPM. Solving
(SVM-D) is realized through the OOQP [7] software package that implements a
primal-dual IPM for convex QP problems.

2.3 The Two-Phase Algorithm

Let us keep in mind that the primary objective for the first phase is to appropri-
ately reduce the feature space dimensionality without impacting the final pre-
diction accuracy. As we mentioned above, the suitability of ADMM for the first
phase depends on whether the support of the feature vector converges quickly or
not. On an illustrative dataset from [21], which has 50 samples with 300 features
each, ADMM converged in 558 iterations. The output classifier w contained
only 13 non-zero features, and the feature support converged in approximately
50 iteration (see Fig. 1 in the Appendix for illustrative plots showing the early
convergence of ADMM). Although the remaining more than 500 iterations are
needed by ADMM in order to satisfy the optimality criteria, they do not offer
any additional information regarding the feature selection process. Hence, it is
important to monitor the change in the signs and indices of the support and ter-
minate the first phase promptly. In our implementation, we adopt the criterion
used in [16] and monitor the relative change in the iterates as a surrogate of the
change in the support, i.e.

‖wk+1 −wk‖
max(‖wk‖, 1)

< εtol. (7)

We have observed in our experiments that when the change over the iterates is
small, the evolution of the support indices stabilizes too.

Upon starting the second phase, it is desirable for IPM to warm-start from
the corresponding sub-vector of the solution returned by ADMM. It should also
be noted that we apply IPM during the second phase to solve the classical L2-
regularized SVM (1), instead of the ENSVM (2) in the first phase. There are
two main reasons for this decision. First, although ENSVM can be reformulated
as a QP, the size of the problem is larger than the classical SVM due to the
additional linear constraints introduced by the L1-norm. Second, since we have
already identified (approximately) the feature support in the first phase of the

330 Z. Qin et al.

algorithm, enforcing sparsity in the reduced feature space becomes less critical.
The two-phase algorithm is summarized in Algorithm 2.1.

Algorithm 2.1. HIPAD (Hybrid Interior Point and Alternating Direction
method)
1. Given w0, b0,a0, c0,u0, and v0.
2. PHASE 1: ADMM for ENSVM
3. (wADMM, bADMM)← ADMM-ENSVM(w0, b0,a0, c0,u0,v0)
4. PHASE 2: IPM for SVM
5. w̃← non-zero components of wADMM

6. (X̃, Ỹ)← sub-matrices of (X, Y) corresponding to the support of wADMM

7. (w, b)← SVM-IPM(X̃, Ỹ , w̃), through (SVM-D).
8. return (w, b)

3 Domain Knowledge Incorporation

Very often, we have prior domain knowledge for specific classification tasks.
Domain knowledge is most helpful when the training data does not form a com-
prehensive representation of the underlying unknown population, resulting in
poor generalization performance of SVM on the unseen data from the same
population. This often arises in situations where labeled training samples are
scarce, while there is an abundance of unlabeled data.

For high dimensional data, ENSVM performs feature selection along with
training to produce a simpler model and to achieve better prediction accuracy.
However, the quality of the feature selection depends entirely on the training
data. In pathological cases, it is very likely that the feature support identified
by ENSVM does not form a good representation of the population. Hence, when
domain knowledge about certain features is available, we should take it into
consideration during the training phase and include the relevant features in the
feature support should them be deemed important for classification.

In this section, we explore and propose a new approach to achieve this objec-
tive. We consider domain knowledge in the form of class-membership information
associated with features. We can incorporate such information (or enforce such
rules) in SVM by adding equivalent linear constraints to the SVM QP problem
(KSVM) [5,10]. To be specific, we can model the above information with the
linear implication

Bx ≤ d ⇒ wTx + b ≥ 1, (8)

where B ∈ R
k1×m and d ∈ R

k1 . It is shown in [5] that by utilizing the non-
homogeneous Farkas theorem of the alternative, (8) can be transformed into the
following equivalent system of linear inequalities with a solution u

BTu + w = 0, dTu− b + 1 ≤ 0, u ≥ 0. (9)

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 331

Similarly, for the linear implication for the negative class membership we have:

Dx ≤ g⇒ wTx + b ≤ −1, D ∈ R
k2×m, g ∈ R

k2 , (10)

which can be represented by the set of linear constraints in v

DTv−w = 0, gTv + b + 1 ≤ 0, v ≥ 0. (11)

Hence, to incorporate the domain knowledge represented by (8) and (10) into
SVM, Fung et al. [5] simply add the linear constraints (9) and (11) to (SVM-
P). Their formulation, however, increases both the variable dimension and the
number of linear constraints by at least 2m, where m is the number of features
in the classification problem we want to solve. This is clearly undesirable when
m is large, which is the scenario that we consider in this paper.

In order to avoid the above increase in the size of the optimization problem,
we choose to penalize the quadratics ‖BTu + w‖22 and ‖DTv −w‖22 instead of
their L1 counterparts considered in [5]. By doing so the resulting problem is still
a convex QP but with a much smaller size. Hence, we consider the following
model for domain knowledge incorporation.

(KSVM-P) min
w,b,ξ,u,v,ηu,ηv

1
2
wTw + ceT ξ +

ρ1
2
‖BTu + w‖22

+ρ2ηu +
ρ3
2
‖DTv−w‖22 + ρ4ηv

s.t. yi(wTxi + b) ≥ 1− ξi, i = 1, · · · , N,

dTu− b + 1 ≤ ηu,

gTv + b + 1 ≤ ηv,

(ξ,u,v, ηu, ηv) ≥ 0.

We are now ready to propose a novel combination of ENSVM and KSVM, and
we will explain in the next section how the combined problem can be solved in our
HIPAD framework. The main motivation behind this combination is to exploit
domain knowledge to improve the feature selection, and hence, the generalization
performance of HIPAD. To the best of our knowledge, this is the first method
of this kind.

3.1 ADMM Phase

Our strategy for solving the elastic-net SVM with domain knowledge incorpo-
ration is still to apply the ADMM method. First, we combine problems (2) and
(KSVM-P) and write the resulting optimization problem in an equivalent uncon-
strained form (by penalizing the violation of the inequality constraints through
hinge losses in the objective function)

(ENK-SVM) min
w,b,u≥0,v≥0

F (w, b,u,v),

332 Z. Qin et al.

where F (w, b,u,v) ≡ λ2
2 ‖w‖22+λ1‖w‖1+ 1

N

∑N
i=1(1−yi(xT

i w+b))++ ρ1
2 ‖BTu+

w‖22+ρ2(dTu−b+1)++ ρ3
2 ‖DTv−w‖22+ρ4(gTv+b+1)+. We then apply variable-

splitting to decouple the L1-norms and hinge losses and obtain the following
equivalent constrained optimization problem:

min
w,b,u,v,a,c,p,q

F (w, b,u,v,a, c, p, q) (12)

s.t. a = e− (X̄w + yb), c = w,

q = dTu− b + 1, p = gTv + b + 1,

u ≥ 0, v ≥ 0.

with F (w, b,u,v,a, c, p, q) ≡ λ2
2 ‖w‖22 + λ1‖c‖1 + 1

N eT (a)+ + ρ1
2 ‖BTu + w‖22 +

ρ2(q)+ + ρ3
2 ‖DTv−w‖22 +ρ4(p)+. As usual, we form the augmented Lagrangian

L of problem (12),

L := F (w, b,u,v,a, c, p, q) + γT
1 (e− (X̄w + yb)− a) +

μ1

2
‖e− (X̄ + yb)− a‖22

+ γT
2 (w− c) +

μ2

2
‖w− c‖22 + γ3(dTu− b + 1− q) +

μ3

2
‖dTu− b + 1− q‖22

+ γ4(gTv + b + 1− p) +
μ4

2
‖gTv + b + 1− p‖22

and minimize L with respect to w, b, c,a, p, q,u,v individually and in order. For
the sake of readability, we do not penalize the non-negative constraints for u
and v in the augmented Lagrangian.

Given (ak, ck, pk, qk), solving for (w, b) again involves solving a linear system
(

κ1I + μ1X
T X μ1X

Te
μ1eT X μ1N + κ2

)(
wk+1

bk+1

)
=
(
rw
rb

)
, (13)

where κ1 = λ2 + μ2 + ρ1 + ρ3, κ2 = μ3 + μ4, rw = XT Y γk
1 + μ1X

T Y (e −
ak)− γk

2 + μ2ck + ρ3D
Tvk − ρ1B

Tuk and rb = eT Y γk
1 + μ1eT Y (e− ak) + γk

3 +

μ3(dTuk +1− qk)−γk
4 −μ4(gTvk +1−pk). Similar to solving the linear system

in Algorithm A.1 ADMM-ENSVM, we can compute the solution to the above
linear system through a few PCG iterations, taking advantage of the fact that
the left-hand-side matrix is of low-rank.

To minimize the augmented Lagrangian with respect to u, we need to solve
a convex quadratic problem with non-negative constraints

min
u≥0

ρ1
2
‖BTu + wk+1‖22 + γk

3d
Tu +

μ3

2
‖dTu− bk+1 + 1− qk‖22. (14)

Solving problem (14) efficiently is crucial for the efficiency of the overal algo-
rithm. We describe a novel way to do so. Introducing a slack variable s and
transferring the non-negative constraint on u to s, we decompose the problem
into two parts which are easy to solve. Specifically, we reformulate (14) as

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 333

min
u,s≥0

ρ1
2
‖BTu + wk+1‖22 + γk

3d
Tu +

μ3

2
‖dTu− bk+1 + 1− qk‖22

s.t. u− s = 0.

Penalizing the linear constraint u − s = 0 in the new augmented Lagrangian,
the new subproblem with respect to (u, s) is

min
u,s≥0

ρ1
2
‖BTu + wk+1‖22 + γk

3d
Tu

+
μ3

2
‖dTu− bk+1 + 1− qk‖22 + γT

5 (s− u) +
μ5

2
‖u− s‖22. (15)

Given an sk ≥ 0, we can compute uk+1 by solving a k1 × k1 linear system

(ρ1BBT + μ3ddT + μ5I)uk+1 = ru, (16)

where ru = −ρ1Bwk+1+μ3dbk+1+μ3d(qk−1)−dγk
3 +γ5+μ5sk. We assume that

B has full row-rank. This is a reasonable assumption since otherwise there is at
least one redundant domain knowledge constraint and we can simply remove it.
The number of domain knowledge constraints (k1 and k2) are usually small, so
the system (16) can be solved exactly and efficiently by Cholesky factorization.

Solving for sk+1 corresponding to uk+1 is easy, observing that problem (15)
is separable in the elements of s. For each element si, the optimal solution to the
one-dimensional quadratic problem with a non-negative constraint on si is given
by max(0, ui − (γ5)i

μ5
). Writing in the vector form, sk+1 = max(0,uk+1 − γk

5
μ5

).
Similarly, we solve for vk+1 by introducing a non-negative slack variable t and
solve the linear system

(ρ3DDT + μ4ggT + μ6I)vk+1 = rv, (17)

where rv = ρ3Dwk+1 − μ4gbk+1 − gγk
4 − μ4g(1 − pk) + γ6 + μ6tk, and tk+1 =

max(0,vk+1 − γk
6

μ6
).

Now given (wk+1, bk+1,uk+1,vk+1), the solutions for a and c are exactly the
same as in Lines 4 and 5 of Algorithm A.1, i.e.

ak+1 = S 1
Nμ1

(
e +

γk
1

μ1
− Y (Xwk+1 + bk+1e)

)
,

ck+1 = Tλ1
μ2

(
γk
2

μ2
+ wk+1

)
.

The subproblem with respect to q is

min
q

ρ2(q)+ − γk
3 q +

μ3

2
‖dTuk − bk+1 + 1− q‖22 ≡

ρ2(q)+ +
μ3

2
‖q − (dTuk − bk+1 + 1 +

γk
3

μ3
)‖22. (18)

334 Z. Qin et al.

The solution is given by a (one-dimensional) proximal operator associated with
the hinge loss

qk+1 = S ρ2
μ3

(
dTuk − bk+1 + 1 +

γk
3

μ3

)
. (19)

Similarly, the subproblem with respect to p is

min
p

ρ4(p)+ − γk
4p +

μ4

2
‖gTvk + bk+1 + 1− p‖22,

and the solution is given by

pk+1 = S ρ4
μ4

(
gTvk + bk+1 + 1 +

γk
4

μ4

)
. (20)

Due to lack of space in the paper, we summarize the detailed solution steps in
the Appendix (see Algorithm A.2 ADMM-ENK)

Although there appears to be ten additional parameters (six ρ’s and four
μ’s) in the ADMM method for ENK-SVM, we can usually set the ρ’s to the
same value and do the same for the μ’s. Hence, in practice, there is only one
additional parameter to tune, and our computational experience in Sect. 4.2 is
that the algorithm is fairly insensitive to the μ’s and ρ’s.

3.2 IPM Phase

The second phase for solving the knowledge-based SVM problem defined by
(KSVM-P) follows the same steps as that described in Sect. 2.2. Note that in the
knowledge-based case we have decided to solve the primal problem. This decision
was based on extensive numerical experiments with both the primal and dual
formulation which revealed that the primal formulation is more efficient.

We found in our experiments that by introducing slack variables and trans-
forming the above problem into a linearly equality-constrained QP, Phase 2 of
HIPAD usually requires less time to solve.

3.3 HIPAD with Domain Knowledge Incorporation

We formally state the new two-phase algorithm for the elastic-net KSVM in
Algorithm 3.1.

4 Numerical Results

We present our numerical experience with the two main algorithms proposed in
this paper: HIPAD and its knowledge-based version HIPAD-ENK. We compare
their performance with their non-hybrid counterparts, i.e., ADMM-ENSVM and
ADMM-ENK, which use ADMM to solve the original SVM problem. The transi-
tion condition at the end of Phase 1 is specified in (7), with εtol = 10−2. The stop-
ping criteria for ADMM are as follows: |F k+1−F k|

max{1,|F k|} ≤ ε1, ‖a− (e− X̄w−yb)‖2 ≤
ε1, ‖c−w‖2 ≤ ε1 and ‖wk+1−w‖2

‖wk‖2
≤ ε2, with ε1 = 10−5, and ε2 = 10−3.

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 335

Algorithm 3.1. HIPAD-ENK
1. Given w0, b0,a0, c0,u0,v0, p0, q0, s0 ≥ 0, t0 ≥ 0.
2. PHASE 1: ADMM for ENK-SVM
3. (w, b,u,v)←ADMM-ENK(w0, b0,a0, c0,u0,v0, p0, q0, s0, t0)
4. PHASE 2: IPM for KSVM
5. w̃← non-zero components of w
6. (X̃, Ỹ)← sub-matrices of (X, Y) corresponding to the support of w
7. η0

u ← dTu− b + 1
8. η0

v ← gTv + b + 1
9. (w, b)← SVM-IPM(X̃, Ỹ , w̃, b,u,v, η0

u, η0
v)

10. return (w, b)

4.1 HIPAD vs ADMM

To demonstrate the practical effectiveness of HIPAD, we tested the algorithm on
nine real data sets which are publicly available. rcv1 [11] is a collection of man-
ually categorized news wires from Reuters. The original multiple labels have
been consolidated into two classes for binary classification. real-sim contains
UseNet articles from four discussion groups, for simulated auto racing, simu-
lated aviation, real autos, and real aviation. Both rcv1 and real-sim have large
feature dimensions but are highly sparse. The rest of the seven data sets are all
dense data. rcv1 and real-sim are subsets of the original data sets, where we
randomly sampled 500 training instances and 1,000 test instances. gisette is a
handwriting digit recognition problem from NIPS 2003 Feature Selection Chal-
lenge, and we also sub-sampled 500 instances for training. (For testing, we used
the original test set of 1,000 instances.) duke, leukemia, and colon-cancer
are data sets of gene expression profiles for breast cancer, leukemia, and colon
cancer respectively. fMRIa, fMRIb, and fMRIc are functional MRI (fMRI)
data of brain activities when the subjects are presented with pictures and text
paragraphs. The data was compiled and made available by Tom Mitchell’s neu-
roinformatics research group1. Except the three fMRI data sets, all the other
data sets and their references are available at the LIBSVM website2.

The parameters of HIPAD, ADMM-ENSVM, and LIBSVM were selected
through cross validation on the training data. We summarize the experiment
results in Table 1. Clearly, HIPAD produced the best overall predication perfor-
mance. In order to test the significance of the difference, we used the test sta-
tistic in [8] based on Friedman’s χ2

F , and the results are significant at α = 0.1.
In terms of CPU-time, HIPAD consistently outperformed ADMM-ENSVM by
several times on dense data. The feature support sizes selected by HIPAD were
also very competitive or even better than the ones selected by ADMM-ENSVM.
In most cases, HIPAD was able to shrink the feature space to below 10 % of the
original size.
1 http://www.cs.cmu.edu/tom/fmri.html
2 http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

http://www.cs.cmu.edu/tom/fmri.html
http://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets

336 Z. Qin et al.

Table 1. Experiment results of HIPAD and ADMM-ENSVM on real data. The best
prediction accuracy for each data set is highlighted in bold.

Data set HIPAD ADMM-ENSVM LIBSVM

Accuracy (%) Support size CPU (s) Accuracy (%) Support size CPU (s) Accuracy

(%)

rcv1 86.9 2,037 1.18 86.8 7,002 1.10 86.1

real-sim 94.0 2,334 0.79 93.9 2,307 0.31 93.4

gisette 94.7 498 8.96 63.1 493 45.87 93.4

duke 90 168 1.56 90 150 5.52 80

leukemia 85.3 393 1.70 82.4 717 6.35 82.4

colon-

cancer

84.4 195 0.45 84.4 195 1.34 84.4

fMRIa 90 157 0.25 90 137 2.17 60

fMRIb 90 45 0.23 90 680 0.75 90

fMRIc 90 321 0.14 90 659 1.58 90

4.2 Simulation for Knowledge Incorporation

We generated synthetic data to simulate the example presented at the beginning
of Sect. 3 in the high dimensional feature space. Specifically, four groups of multi-
variate Gaussians K1, · · · ,K4 were sampled fromN (μ+

1 ,Σ1), · · · ,N (μ+
4 ,Σ4) and

N (μ−
1 ,Σ1), · · · ,N (μ−

4 ,Σ4) for fourdisjointblocksof featurevalues(xK1 , · · · ,xK4).
For positive class samples, μ+

1 = 2, μ+
2 = 0.5, μ+

3 = −0.2, μ+
4 = −1; for negative

class samples, μ−
1 = −2, μ−

2 = −0.5, μ−
3 = 0.2, μ−

4 = 1. All the covariance matri-
ces have 1 on the diagonal and 0.8 everywhere else. The training samples contain
blocks K2 and K3, while all four blocks are present in the test samples. A random
fraction (5 %–10 %) of the remaining entries in all the samples are generated from
the standard Gaussian distribution.

The training samples are apparently hard to separate because the values of
blocks K2 and K3 for the two classes are close to each other. However, blocks
K1 and K4 in the test samples are well-separated. Hence, if we are given infor-
mation about these two blocks as general knowledge for the entire population,
we could expect the resulting SVM classifier to perform much better on the test
data. Since we know the mean values of the distributions from which the entries
in K1 and K4 are generated, we can supply the following information about
the relationship between the block sample means and class membership to the
KSVM: 1

L1

∑
i∈K1

xi ≥ 4 ⇒ x ∈ A+, and 1
L4

∑
i∈K4

xi ≥ 3 ⇒ x ∈ A− where
Lj is the length of the Kj , j = 1, · · · , 4, A+ and A− represent the positive and
negative classes, and the lowercase xi denotes the i-th entry of the sample x.
Translating into the notation of (KSVM-P), we have

B =

⎛

⎜
⎝

0 − e
L1

T

︸ ︷︷ ︸
0 0 0 0

K1

⎞

⎟
⎠ , d = −4, and D =

⎛

⎜
⎝

0 0 0 0 − e
L4

T

︸ ︷︷ ︸
0

K4

⎞

⎟
⎠ , g = −3.

The information given here is not precise, in that we are confident that a sam-
ple should belong to the positive (or negative) class only when the corresponding

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 337

Table 2. Experiment results of HIPAD-ENK and ADMM-ENK on synthetic data. The
best prediction accuracy for each data set is highlighted in bold.

Data set HIPAD-ENK ADMM-ENK LIBSVM

Accuracy (%) Support size CPU (s) Accuracy (%) Support size CPU (s) Accuracy

(%)

ksvm-s-10 k 99 200 1.99 97.25 200 3.43 86.1

ksvm-s-50 k 98.8 200 8.37 96.4 198 20.89 74.8

block sample mean well exceeds the distribution mean. This is consistent with
real-world situations, where the domain or expert knowledge tends to be conser-
vative and often does not come in exact form.

We simulated two sets of synthetic data for ENK-SVM as described above, with
(Ntrain = 200, Ntest = 400,mtrain = 10, 000) for ksvm-s-10 k and (Ntrain =
500, Ntest = 1, 000,mtest = 50, 000) for ksvm-s-50 k. The number of features in
each of the four blocks (K1,K2,K3,K4) is 50 for both data sets. Clearly, HIPAD-
ENKisveryeffective in termsof speed, feature selection, andpredictionaccuracyon
these two data sets. Even though the features in blocks K1 and K4 are not discrimi-
nating inthetrainingdata,HIPAD-ENKwasstill able to identifyall the200 features
in the four blocks correctly and exactly. This is precisely what we want to achieve
as we explained at the beginning of Sect. 3. The expert knowledge not only helps
rectify the separating hyperplane so that it generalizes better on the entire popula-
tion, but also makes the training algorithm realize the significance of the features
in blocks K1 and K4 (Table 2).

5 Conclusion

We have proposed a two-phase hybrid optimization framework for solving the
ENSVM, in which the first phase is solved by ADMM, followed by IPM in the
second phase. In addition, we have proposed a knowledge-based extension of
the ENSVM which can be solved by the same hybrid framework. Through a
set of experiments, we demonstrated that our method has significant advantage
over the existing method in terms of computation time and the resulting pre-
diction accuracy. The algorithmic framework introduced in this paper is general
enough and potentially applicable to other regularization-based classification or
regression problems.

338 Z. Qin et al.

A Appendix

Algorithm A.1. ADMM-ENSVM
1. Given w0, b0,a0, c0, γ0

1 , and γ0
2 .

2. for k = 0, 1, · · · , K − 1 do

3. (wk+1, bk+1) ← PCG solution of:

(
(λ2 + μ2)I + μ1X

T X μ1X
T e

μ1e
T X μ1N

)(
wk+1

bk+1

)
=

(
XT Y γk

1 − μ1X
T Y (ak − e)− γk

2 + μ2c
k

eT Y γk
1 − μ1e

T Y (ak − e)

)

4. ak+1 ← S 1
Nμ1

(
e +

γk
1

μ1
− Y (Xwk+1 + bk+1e)

)

5. ck+1 ← Tλ1
μ2

(
γk
2

μ2
+ wk+1

)
6. γk+1

1 ← γk
1 + μ1(e− Y (Xwk+1 + bk+1e)− ak+1)

7. γk+1
2 ← γk

2 + μ2(w
k+1 − ck+1)

8. end for
9. return (wK , bK)

Algorithm A.2. ADMM-ENK
1. Given w0, b0,a0, c0,u0,v0, p0, q0, s0 ≥ 0, t0 ≥ 0, γ0

i , and the parameters
λ1, λ2, ρi, i = 1, · · · , 6.

2. for k = 0, 1, · · · , K − 1 do
3. (wk+1, bk+1)← PCG solution of the structured linear system (13)

4. uk+1 ← the solution of the linear system (16); sk+1 ← max(0,uk+1 − γk
5

μ5
)

5. vk+1 ← the solution of the linear system (17); tk+1 ← max(0,vk+1 − γk
6

μ6
)

6. ak+1 ← S 1
Nμ1

(
e +

γk
1

μ1
− Y (Xwk+1 + bk+1e)

)
; ck+1 ← Tλ1

μ2

(
γk
2

μ2
+ wk+1

)

7. qk+1 ← S ρ2
μ3

(
dTuk − bk+1 + 1 +

γk
3

μ3

)
; pk+1 ← S ρ4

μ4

(
gTvk + bk+1 + 1 +

γk
4

μ4

)
8. γk+1

1 ← γk
1 +μ1(e−Y (Xwk+1 + bk+1e)−ak+1); γk+1

2 ← γk
2 +μ2(w

k+1−ck+1)
9. γk+1

3 ← γk
3 + μ3(d

Tuk+1− bk+1 + 1− qk+1); γk+1
4 ← γk

4 + μ4(g
Tvk+1 + bk+1 +

1− pk+1)
10. γk+1

5 ← γk
5 + μ5(s

k+1 − uk+1); γk+1
6 ← γk

6 + μ6(t
k+1 − vk+1)

11. end for
12. return (wK , bK)

HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm 339

Fig. 1. Illustration of the early convergence (in approximately 50 iterations) of the
feature support for ADMM.

References

1. G. J. Andersen, A., Meszaros, C., Xu, X.: Implementation of interior point methods
for large scale linear programming. In: Terlaky, T. (ed.) Interior point methods in
mathematical programming, pp. 189–252. Kluwer Academic Publishers (1996)

2. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1), 1–122 (2011)

3. Combettes, P., Pesquet, J.: Proximal splitting methods in signal processing. In:
Bauschke, H.H., Burachik, R.S., Combettes, P.L., Elser, V., Luke, D.R., Wolkowicz,
H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
pp. 185–212. Springer, New York (2011)

4. Eckstein, J., Bertsekas, D.: On the douglasrachford splitting method and the prox-
imal point algorithm for maximal monotone operators. Math. Program. 55(1),
293–318 (1992)

5. Fung, G, Mangasarian, O., Shavlik, J.: Knowledge-based support vector machine
classifiers. In: Advances in Neural Information Processing Systems, pp. 537–544
(2003)

6. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Comput. Math. Appl. 2(1), 17–40
(1976)

7. Gertz, E., Wright, S.: Object-oriented software for quadratic programming. ACM
Trans. Math. Softw. (TOMS) 29(1), 58–81 (2003)

8. Iman, R.L., Davenport, J.M.: Approximations of the critical region of the fbietkan
statistic. Commun. Stat.-Theory Meth. 9(6), 571–595 (1980)

9. Koh, K., Kim, S., Boyd, S.: An interior-point method for large-scale l1-regularized
logistic regression. J. Mach. learn. Res. 8(8), 1519–1555 (2007)

10. Lauer, F., Bloch, G.: Incorporating prior knowledge in support vector machines
for classification: a review. Neurocomputing 71(7–9), 1578–1594 (2008)

340 Z. Qin et al.

11. Lewis, D., Yang, Y., Rose, T., Li, F.: Rcv1: a new benchmark collection for text
categorization research. J. Mach. Learn. Res. 5, 361–397 (2004)

12. Mizuno, S.: Polynomiality of infeasible interior point algorithms for linear pro-
gramming. Math. Program. 67, 109–119 (1994)

13. Pardalos, P.M., Hansen, P.E.: Data Mining and Mathematical Programming.
American Mathematical Society, Providence (2008)

14. Rockafellar, R.: The multiplier method of hestenes and powell applied to convex
programming. J. Optim. Theory Appl. 12(6), 555–562 (1973)

15. Ryali, S., Supekar, K., Abrams, D., Menon, V.: Sparse logistic regression for whole-
brain classification of fmri data. NeuroImage 51(2), 752–764 (2010)

16. Shi, J., Yin, W., Osher, S., Sajda, P.: A fast hybrid algorithm for large-scale l
1-regularized logistic regression. J. Mach. Learn. Res. 11, 713–741 (2010)

17. Sra, S., Nowozin, S., Wright, S.: Optimization for Machine Learning. MIT Press,
Cambridge (2011)

18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Series B (Methodological) 58(1), 267–288 (1996)

19. Vapnik, V.: The nature of statistical learning theory. Springer, New York (2000)
20. Wang, L., Zhu, J., Zou, H.: The doubly regularized support vector machine. Sta-

tistica Sinica 16(2), 589–615 (2006)
21. Ye, G.-B., Chen, Y., Xie, X.: Efficient variable selection in support vector machines

via the alternating direction method of multipliers. In: International Conference
on Artificial Intelligence and Statistics, pp. 832–840 (2011)

22. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R.
Stat. Soc. Series B (Statistical Methodology) 67(2), 301–320 (2005)

Efficient Identification of the Pareto
Optimal Set

Ingrida Steponavičė1(B), Rob J. Hyndman2, Kate Smith-Miles1,
and Laura Villanova3

1 School of Mathematical Sciences, Monash University, Clayton, Australia
{ingrida.steponavice,kate.smith-miles}@monash.edu
2 Department of Econometrics and Business Statistics,

Monash University, Clayton, Australia
rob.hyndman@monash.edu

3 Ceramic Fuel Cells Limited, Noble Park, Australia
laura.villanova@cfcl.com.au

Abstract. In this paper, we focus on expensive multiobjective opti-
mization problems and propose a method to predict an approximation
of the Pareto optimal set using classification of sampled decision vec-
tors as dominated or nondominated. The performance of our method,
called EPIC, is demonstrated on a set of benchmark problems used in
the multiobjective optimization literature and compared with state-of
the-art methods, ParEGO and PAL. The initial results are promising
and encourage further research in this direction.

Keywords: Multiobjective optimization · Classification · Expensive black-
box function

1 Introduction

Many real-world optimization applications in engineering involve problems where
analytical expression of the objective function is unavailable. Such problems usu-
ally require either an underlying numerical model or expensive experiments to
be conducted. In an optimization setting, where objective functions are evalu-
ated repeatedly, evaluation demands may result in unaffordably high cost for
obtaining solutions. Therefore, the number of function evaluations is limited by
available resources. Consequently, the solution of such global optimization prob-
lems is challenging because many global optimization methods require a large
number of function evaluations.

This task becomes even more difficult in the case of multiple conflicting
objectives, where there is no single optimal solution optimizing all objective
functions simultaneously. Rather there exists a set of solutions representing the
best possible trade-offs among the objectives — the so-called Pareto optimal
solutions forming a Pareto optimal set. Unreasonably high evaluation costs could
also prevent designers from comprehensively exploring the decision space and
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 341–352, 2014.
DOI: 10.1007/978-3-319-09584-4 29

342 I. Steponavičė et al.

learning about possible trade-offs. In these cases, it is essential to find reliable
and efficient methods for estimating the Pareto optimal set within a limited
number of objective function evaluations.

Recently, researchers have developed methods to solve expensive problems by
exploiting knowledge acquired during the solution process [1]. Knowledge of past
evaluations can be used to build an empirical model, called a surrogate model,
that approximates the objective function. This approximation can then be used
to predict promising new solutions at a smaller evaluation cost than that of the
original problem [2]. Commonly used surrogate models include Gaussian process
(or Kriging) models [3,4], polynomial response surface models [5], radial basis
functions [6], support vector regression [7], and local polynomial [8].

One of the state-of-art methods for expensive multiobjective optimization
problems, named ParEGO, was developed by Knowles [9]. It is essentially a
multiobjective translation of the efficient global optimization (EGO) method [1],
where multiple objectives are converted to a single objective using a scalarization
function with different parameter values at each step.

The Pareto active learning (PAL) method for predicting the Pareto optimal
set at low cost has been proposed in [10]. Like ParEGO, it employs a Gaussian
process (GP) model to predict objective function values. PAL classifies all sam-
pled decision vectors as Pareto optimal or not based on the predicted objective
function values. The classification accuracy is controlled by a parameter defined
by the user which enables a trade-off between evaluation cost and predictive
accuracy.

The main disadvantage of employing a GP is that model construction can be
a very time-consuming process [11], where the time increases with the number of
evaluated vectors used to model the GP. To overcome this issue, ParEGO uses
a subset of the evaluated vectors to build the GP model, thus attempting to
balance model accuracy and computation time. Moreover, using a GP becomes
increasing problematic in high dimensional spaces [7], so these methods do not
scale well as the dimension of the problem increases.

In this paper, we propose an efficient Pareto iterative classification (EPIC)
method which approximates the Pareto optimal set with a limited number of
objective function evaluations. At the core of the proposed method is the clas-
sification of decision vectors to be either dominated or nondominated without
requiring any knowledge about the objective space. The method iteratively clas-
sifies sampled decision vectors to one of the two classes until a stopping criterion
is met. It returns the set of decision vectors predicted to be nondominated. A
major advantage of this method is that it does not use any statistical model of
the objective function, such as GP, and so it involves more modest computational
requirements, and scales easily to handle high dimensional spaces.

The paper is organized as follows. Section 2 introduces the main concepts
involved in multiobjective optimization. The EPIC method is described in Sect. 3.
In Sect. 4, we outline an experiment setup, demonstrate the performance of EPIC
on benchmark problems, and compare our experimental results with that of the
ParEGO and PAL methods. Section 5 draws some conclusions and briefly dis-
cusses some future research directions.

Efficient Identification of the Pareto Optimal Set 343

2 Background

A multiobjective optimization problem has the form [12]

min f(x) =
(
f1(x), . . . , fk(x)

)T

subject to x ∈ S,
(1)

where S ⊂ R
n is the feasible set and fi :→ R, i = 1, . . . , k (k ≥ 2), are objective

functions that are to be minimized simultaneously. All objective functions are
represented by the vector-valued function f : S → R

k. A vector x ∈ S is called
a decision vector and a vector z = f(x) ∈ R

k an objective vector.
In multiobjective optimization, the objective functions f1, . . . , fk in (1) are

typically conflicting. In that case, there does not exist a decision vector x̄ ∈ S
such that x̄ minimizes fi in S for all i = 1, . . . , k, but there exists a number
(possibly infinite) of Pareto optimal solutions. In mathematical terms, a decision
vector x̄ ∈ S and its image z̄ = f(x̄) are said to be Pareto optimal or nondom-
inated if there does not exist a decision vector x ∈ S such that fi(x) ≤ fi(x̄)
for all i = 1, . . . , k and fj(x) < fj(x̄) for some j = 1, . . . , k. If such a decision
x ∈ S does exist, x̄ and z̄ are said to be dominated by and its image z = f(x),
respectively.

Sometimes in the literature, Pareto optimal and nondominated solutions are
regarded as synonyms. However, in this paper, nondominated solutions refer to
solutions which are not dominated by any other solution in the set of evaluated
solutions. If an objective vector z1 = f(x) does not dominate an objective vector
z2 = f(x̄), this does not imply that z2 dominates z1 (e.g., they can be both
nondominated in a given set). Moreover, this does not imply Pareto optimality
as nondominance is defined subject to the set of available objective vectors.

3 The EPIC Method

The EPIC method is designed for expensive multiobjective optimization prob-
lems where the number of possible objective function evaluations is limited due
to time, financial, or other costs. The main idea behind the proposed method is
the classification of a set of sampled decision vectors into two classes: dominated
and nondominated. The method comprises five steps: (i) evaluation of an initial
set; (ii) training a classifier; (iii) predicting labels for unevaluated decision vec-
tors; (iv) checking stopping conditions; and (v) selection of a decision vector to
evaluate next. Steps (ii)–(v) are repeated until stopping conditions are satisfied.
The pseudocode of EPIC is given in Algorithm 1.

Given a set of decision vectors S which can be generated using any sampling
technique (e.g., Hammersley sequence or Latin hypercube sampling), the EPIC
method selects and evaluates expensive objective functions for a small number of
decision vectors called an initial set Xinit. Then the evaluated decision vectors,
which comprise the set of all evaluated decision vectors E, are checked for non-
dominance and divided into dominated and nondominated classes. The decision

344 I. Steponavičė et al.

Algorithm 1. EPIC pseudocode
Input: sampled decision space S, pnext, pnond
Output: predicted Pareto optimal set P

E = Xinit, XU = S\E, i = 0
while i ≤ n do

i = i + 1, P = ∅
obtain labels for all x ∈ E
train a classifier
calculate the probability p of each x ∈ XU

for all x ∈ XU do
if p ≥ pnond then P = P ∪ {x}
end if

end for
xe = arg minx∈XU |p− pnext|
E = E ∪ {xe}, XU = XU\{xe}

end while

vectors and their labels “nondominated” and “dominated” are used to train a
classifier, for example, support vector machines or a Naive Bayes classifier. After
a classifier is trained, unevaluated decision vectors comprising a set XU are given
as an input to the classifier to predict their labels. The classifier provides prob-
ability p for each decision vector x that it belongs to the nondominated class.
If the probability of nondominance p is not lower than a predefined probability
pnond, the decision vector is included in a predicted Pareto optimal set P . Then
a new decision vector xe is selected for evaluation. The implemented selection
strategy in this paper is simply to select a decision vector xe whose probability
of nondominance p is closest to a predefined value pnext. Next, the evaluated
set E and its labels are updated and used to retrain the classifier. The method
continues until the number of evaluations reaches a predefined limit n.

If the sampling of the design space is sufficiently dense, and the number of
evaluations n is sufficiently large, then EPIC should provide a good approx-
imation of the Pareto optimal set. The efficiency of EPIC is determined by
the classification quality and the strategy for determining which decision vector
should be evaluated next.

It is clear that the next vector to be evaluated should be selected based on the
maximal information gain or uncertainty reduction which would help to improve
classification. We assume that evaluating a decision vector near to the boundary
that separates the two classes is most likely to provide more information and
improve classifier performance. An obvious choice is to set pnext = 0.5. However,
further thought suggests that alternative values of pnext may be preferred. The
initial set used to train the classifier is a small subset of the sampled decision
space and the vectors labelled “nondominated” might be mis-classified since they
are assigned with respect to the evaluated vectors. Therefore it may be better to
first evaluate decision vectors that are most likely nondominated (i.e., pnext >
0.5) in order to get a better representation of the nondominated class. Later, it
may be better to concentrate on uncertainty related to the boundary separating

Efficient Identification of the Pareto Optimal Set 345

the two classes. Alternatively, selecting several decision vectors based on different
pnext values and evaluating them simultaneously could improve classification
resulting in better overall method performance.

One more parameter that has to be chosen is the probability pnond, used to
determine which decision vectors will be included in the predicted Pareto optimal
set. The prediction of the Pareto optimal set is made at each iteration, with the
predicted set obtained in the previous iteration replaced by the newly predicted
set. A higher value of pnond will result in a smaller set of vectorss classified to be
nondominated. Again, the value of this parameter needs to be selected carefully
in order to control the efficiency of the algorithm in determining the Pareto
optimal set.

We leave the optimal selection of pnext and pnond to future research. In this
paper, we have selected pnond = 0.6, and have considered several values of pnext =
{0.6, 0.7, 0.8, 0.9}.

The main advantages of the EPIC method are: (i) simplicity to implement,
(ii) computational speed; (iii) multiple decision vectors can be selected at each
iteration; and (iv) has no limitations on high dimensional problems.

4 Experimental Results

4.1 Experimental Setup

To assess the performance of EPIC, we compare it to PAL and ParEGO. For
that we need to have some performance measures. One of the measures is based
on a hypervolume (HV) metric [13] that describes the spread of the solutions
over the Pareto optimal set in the objective space as well as the closeness of
the solutions to it. Moreover, HV is the only measure that reflects the Pareto
dominance [14]. That is, if one set entirely dominates another, the HV of the
former will be greater. As PAL and EPIC are based on classification, the quality
of prediction is also measured by the percentage of correctly classified decision
vectors. We calculated other metrics as well such as set coverage. However, they
are not so informative and we do not include them in this work.

EPIC and PAL differ from ParEGO as they do not generate new decision
vectors but rather select them from the sampled decision space. We used Latin
hypercube sampling to sample the decision space for both EPIC and PAL. The
sampling size selected for all problems is 500 decision vectors. ParEGO and EPIC
were allowed to evaluate 200 or 250 decision vectors, while PAL was running
until all the decision vectors were assigned to one of the classes. As the method
performance depends on the initial set, we ran the methods with 100 different
initial sets and calculated the average values of the performance metrics. All
the methods were run with the same initial sets consisting of 11d − 1 decision
vectors, where d is the dimension of the decision space, as proposed in [1].

The performance of the methods was measured at every iteration to assess the
progress obtained after each decision vector evaluation. We calculated the HV
metric of evaluated decision vectors for all the methods. For ease of comparison,
we considered the ratio between the HV obtained by each method and the HV of

346 I. Steponavičė et al.

the true Pareto optimal set. It should be noted the HV value calculated using the
evaluated vectors does not decrease with an increasing number of evaluations.
For the average HV metric calculation, when for some runs the PAL method
terminated earlier and did not used the maximum number of iterations, we
used the same nondominated set evaluated at the last iteration for the rest of
iterations.

The methods were tested on the following set of standard benchmark prob-
lems in multiobjective optimization with different features:

OKA2 [15]. This problem has two objective functions and three decision vari-
ables. Its true Pareto optimal set in the objective space is a spiral shaped
curve and the density of the Pareto optimal solutions in the objective space
is low. (The reference point is R = (6.00, 6.0483).)

Kursawe [16]. This problem has two objective functions and a scalable number
of decision variables. In our experiment, three decision variables were used.
Its Pareto optimal set in the decision space is disconnected and symmetric,
and disconnected and concave in the objective space. (The reference point
is R = (−3.8623, 25.5735).)

ZDT3 [17]. This has two objective functions and three decision variables. The
Pareto optimal set in the objective space consists of several noncontiguous
convex parts. However, there is no discontinuity in the decision space. (The
reference point R = (2.0000, 2.6206).)

Viennet [18]. This consists of three objective functions and two decision vari-
ables. This problem has not been solved with the PAL algorithm as we used
an implementation provided by the authors which is suitable only for prob-
lems with two objective functions. (The reference point is R = (9.249, 62.68,
1.1964).)

DTLZ4 [19]. This problem is scalable and has M objective functions and k +
M − 1 of decision variables, where k = 10 as recommended by the authors.
We solved this problem consisting of 5, 6 and 7 objectives and, respectively,
14, 15 and 16 decision variables. (The reference points for the problem with
5, 6 and 7 objectives is R = (3.9324, 3.2452, 3.4945, 3.4114, 3.3022), R =
(3.9943, 3.2319, 3.3666, 3.1851, 3.3236, 3.2196) and R = (3.7703, 3.3593,
3.3192, 3.3825, 3.4326, 3.2446, 3.3209), respectively.)

To classify decision vectors as dominated and nondominated we applied a
support vector machine (SVM) [20]. The basic idea of SVM classifiers is to
choose the hyperplane that has the maximum distance between itself and the
nearest example of each class [20,21]. SVMs are computationally deficient clas-
sifiers and can deal with both linear and nonlinear as well as separable and
nonseparable problems. We used SVM with a radial basis function kernel allow-
ing to capture nonlinear relation between class labels and features by mapping
data to a higher dimensional space. The drawback of using SVMs is that they
do not directly produce probability estimates. However, these can be calculated
using different strategies, for example, Platt’s method [22] or isotonic regression
[23]. For EPIC implementation we used LIBSVM, a library for SVMs [24], which
provides probability estimates.

Efficient Identification of the Pareto Optimal Set 347

We experimented with different pnext values: 0.6, 0.7, 0.8, and 0.9. However,
we did not find any appreciable performance differences as well as no single pnext
value provided the best results for all considered problems.

4.2 Methods Comparison

All of the experiments were repeated 100 times and the average metrics are pre-
sented in Figs. 1, 2, 3, 4, 5, 6 and 7. Looking at the plots of correct classification,
it can be noted that at the very first iterations, EPIC classification is not as
good as that of PAL, but its classification improves fast and within 20 iterations
EPIC outperforms PAL for all three problems. This can be explained by the
fact that when the training set (consisting of evaluated vectors) increases, the
classifier learns about the boundary separating the two classes.

The HV metric plots show that the performance of the methods is problem
dependent. For example, we cannot distinguish any method to be best when
considering OKA2 and ZDT3 problems as the HV curves overlap. However,
when solving DTLZ4 problem with 5, 6 and 7 objectives, the HV measure clearly
indicates that EPIC outperforms ParEGO.

0 20 40 60 80 100 120 140 160
97

98

99

100

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

OKA2

0 20 40 60 80 100 120 140 160
55

60

65

70

75

80

Iterations

H
V

, %

PAL EPIC ParEGO

Fig. 1. Comparative performance on the OKA2 problem

348 I. Steponavičė et al.

0 20 40 60 80 100 120 140 160
97.5

98

98.5

99

99.5

100

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

Kursawe

0 20 40 60 80 100 120 140 160
60

70

80

90

100

Iterations

H
V

, %

PAL EPIC ParEGO

Fig. 2. Comparative performance on the Kursawe problem

0 20 40 60 80 100 120 140 160
80

85

90

95

100

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

ZDT3

0 20 40 60 80 100 120 140 160
92

94

96

98

100

Iterations

H
V

, %

PAL EPIC ParEGO

Fig. 3. Comparative performance on the ZDT3 problem

Efficient Identification of the Pareto Optimal Set 349

0 20 40 60 80 100 120 140 160
80

85

90

95

100
Viennet

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

0 20 40 60 80 100 120 140 160

90

92

94

96

98

100

Iterations

H
V

, %

EPIC ParEGO

Fig. 4. Comparative performance on the Viennet problem

0 10 20 30 40 50 60 70 80 90
77

78

79

80

81

82
DTLZ4: obj = 5

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

0 10 20 30 40 50 60 70 80 90
82

84

86

88

Iterations

H
V

, %

EPIC ParEGO

Fig. 5. Comparative performance on the DTLZ4 problem with 5 objectives

350 I. Steponavičė et al.

0 10 20 30 40 50 60 70 80
50

55

60

65
DTLZ4: obj = 6

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

0 10 20 30 40 50 60 70 80
83

84

85

86

87

88

Iterations

H
V

, %

EPIC ParEGO

Fig. 6. Comparative performance on the DTLZ4 problem with 6 objectives

0 10 20 30 40 50 60 70
47

48

49

50

51

52
DTLZ4: obj = 7

Iterations

C
or

re
ct

 c
la

ss
ifi

ca
tio

n,
 %

0 10 20 30 40 50 60 70
84

85

86

87

88

Iterations

H
V

, %

EPIC ParEGO

Fig. 7. Comparative performance on the DTLZ4 problem with 7 objectives. (Note:
here, HV is calculated using an approximation method not exactly.)

Efficient Identification of the Pareto Optimal Set 351

5 Conclusions and Future Works

5.1 Conclusions

Multiobjective black-box optimization problems appear in many engineering
applications whose function evaluations are very expensive with respect to time
or money and therefore are limited by available or affordable resources. To deal
with such problems, we propose a simple method called EPIC to approximate
the Pareto optimal set using a limited number of function evaluations. The key
idea is to use a classifier to classify decision vectors into two classes — nondom-
inated and dominated — and then predict the Pareto optimal set using only
information about the decision space and without evaluating the rest of sam-
pled decision vectors. The initial experimental results demonstrate that our new
method, EPIC, is competitive with existing methods PAL and ParEGO, and
even outperforms it on some problems. The results of all methods seem quite
dependent on the characteristics of the problem though, and this dependence is
worthy of further investigation to understand the strengths and weaknesses of
the different approaches.

5.2 Future Works

Possible future research includes developing a strategy for selecting more than
one decision vector at each iteration for evaluation. It might consider some clus-
tering approach to choose more diverse vectors in the objective space in order to
ensure a better approximation of the Pareto optimal set in the sense of uniform
distribution of the vectors in the objective space. Also, we need to explore the
influence of the probability values pnext and pnond used to select and classify
decision vectors, and to investigate how these can be chosen in an automatic
way based on knowledge about the problem at hand.

References

1. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive
black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

2. Santana-Quintero, L.V., Montaño, A.A., Coello, C.A.C.: A review of techniques
for handling expensive functions in evolutionary multi-objective optimization. In:
Tenne, Y., Goh, C.-K. (eds.) Computational Intel. in Expensive Opti. Prob. ALO,
vol. 2, pp. 29–59. Springer, Heidelberg (2010)

3. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and analysis of computer
experiments. Stat. Sci. 4(4), 409–423 (1989)

4. Martin, J.D., Simpson, T.W.: Use of kriging models to approximate deterministic
computer models. AIAA J. 43(4), 853–863 (2005)

5. Box, G.E., Draper, N.R.: Empirical Model-building and Response Surfaces. Wiley,
New York (1987)

6. Fang, H., Horstemeyer, M.F.: Global response approximation with radial basis
functions. Eng. Optim. 38(4), 407–424 (2006)

352 I. Steponavičė et al.

7. Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization.
Prog. Aerosp. Sci. 45(1–3), 50–79 (2009)

8. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods.
Math. Comput. 37(155), 141–158 (1981)

9. Knowles, J.: Parego: a hybrid algorithm with on-line landscape approximation
for expensive multiobjective optimization problems. IEEE Trans. Evol. Comput.
10(1), 50–66 (2006)

10. Zuluaga, M., Krause, A., Sergent, G., Püschel, M.: Active learning for multi-
objective optimization. In: Proceedings of the 30th International Conference on
Machine Learning (2013)

11. Jin, R., Chen, W., Simpson, T.: Comparative studies of metamodelling techniques
under multiple modelling criteria. Struct. Multi. Optim. 23(1), 1–13 (2001)

12. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L.: Pareto Optimality,
Game Theory and Equilibria, 2nd edn. Springer, New York (2008)

13. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms
- a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

14. Azevedo, C., Araujo, A.: Correlation between diversity and hypervolume in evolu-
tionary multiobjective optimization. In: IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 2743–2750 (2011)

15. Okabe, T., Jin, Y., Olhofer, M., Sendhoff, B.: On test functions for evolutionary
multi-objective optimization. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol.
3242, pp. 792–802. Springer, Heidelberg (2004)

16. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel,
H.-P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 193–197. Springer,
Heidelberg (1991)

17. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

18. Viennet, R., Fonteix, C., Marc, I.: New multicriteria optimization method based
on the use of a diploid genetic algorithm: example of an industrial problem. In:
Alliot, J.-M., Ronald, E., Lutton, E., Schoenauer, M., Snyers, D. (eds.) AE 1995.
LNCS, vol. 1063, pp. 120–127. Springer, Heidelberg (1996)

19. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimiza-
tion test problems. In: Congress on Evolutionary Computation (CEC 2002), pp.
825–830. IEEE Press (2002)

20. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, New
York (1999)

21. Bennett, K.P., Bredensteiner, E.J.: Duality and geometry in SVM classifiers. In:
Proceedings of 17th International Conference on Machine Learning, pp. 57–64.
Morgan Kaufmann (2000)

22. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods. In: Smola, A.J., Bartlett, P.L., Schölkopf, B.,
Schurmans, D. (eds.) Advances in Large Margin Classifiers, pp. 61–74. MIT Press,
Cambridge (1999)

23. Zadrozny, B., Elkan, C.: Transforming classifier scores into accurate multiclass
probability estimates. In: Proceedings of the International Conference on Knowl-
edge Discovery and Data Mining, pp. 694–699 (2002)

24. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM
Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)

GeneRa: A Benchmarks Generator
of Radiotherapy Treatment Scheduling Problem

Juan Pablo Cares1, Maŕıa-Cristina Riff1(B), and Bertrand Neveu2

1 Departamento de Informática, Universidad Técnica Federico Santa Maŕıa,
Valparáıso, Chile

{jcares,maria-cristina.riff}@inf.utfsm.cl
2 LIGM, Université Paris Est, Paris, France

bertrand.neveu@enpc.fr

Abstract. The radiotherapy scheduling problems are hard constrained
problems which involve many resources like doctors, patients and
machines. These problems have varying structures in different institu-
tions even within the same country. Due to the lack of standard bench-
marks, the algorithms proposed in the literature are very specific ones
and they are neither easily comparable nor adaptable. In this paper we
describe the radiotherapy scheduling problem in different countries in
order to identify common components. Our goal is to provide exchange-
able benchmarks for this problem. The benchmark generator is available
online.

Keywords: Radiotherapy scheduling · Benchmarks generator

1 Introduction

We are currently involved in a project whose goal is to propose strategies to
assist the decision-making process of radiotherapy treatment planers. In gen-
eral, patients are divided according to the complexity of their treatments. Each
kind of patient is required to plan a different number of sessions. Currently,
several algorithms exist which can be used to solve the radiotherapy schedul-
ing problem. Such techniques have been proposed, however, to solve particular
cases in different countries, which differ in many aspects. They differ at least
in the following conditions: the kind of available machines as well as the num-
ber of these machines, the number of working hours, the number of patients,
the number of sessions, and the patients categorization. Given the well-known
question proposed in [3] about “Which benchmark instances are useful for dis-
criminating between candidate designs?”, in the algorithm design context, to
evaluate alternative designs we need various types of benchmark instances. In

This work is supported by the Fondecyt Project 1120781. Maria Cristina Riff is
partially supported by the Centro Cient́ıfico Tecnológico de Valparáıso (CCTVal) N
FB0821.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 353–361, 2014.
DOI: 10.1007/978-3-319-09584-4 30

354 J.P. Cares et al.

this paper, we describe the Radiotherapy Scheduling Problem in several coun-
tries in order to provide a benchmark generator for this problem. In the following
section, we briefly explain the radiotherapy scheduling problem and the well-
known approaches to solve it. In Sect. 3, we present the different characteristics
of the problems reported in the literature in Italy, France, and the UK, and we
also introduce our problem in Chile. We discuss the components of the instances
generator and its configuration to generate cases having different structures. We
also present different instances generated to illustrate the versatility of the gen-
erator. In the last section, we present the conclusions and give some ideas for
future work.

2 Radiotherapy Scheduling Problem

The problem of scheduling radiotherapy treatments for patients with cancer has
been studied in several works.

A first approach can be found in [6], conducted by the Department of Onco-
logical Radiation in Manitoba, Canada. The main objectives of the proposed
system were (1) to generate, in a reasonable time, a radiotherapy scheduling; (2)
cheap to implement; (3) easy to use; and (4) capable of managing around 100–
150 patients each month. It was also hoped that the system offered flexibility to
changes which may occur in the already generated schedules. This application
was developed using Excel macros.

According to [11], the British Government claimed that it is important to
reduce the patients waiting time in order to reach an effective treatment. The
authors of the work reported that survival rates in England and Wales are low
in comparison to what happened in the rest of Western Europe. Thus, the delay
of the start of the treatment is crucial. The authors proposed a different cate-
gorization which improved the expected survival rate of the patients included in
the study.

In relation to Australia and New Zeland a similar study has been reported
in [7]. In this work, the authors claim that there are two crucial aspects to take
into account in order to improve the patients rate of survival: (1) a good patient
prioritization and (2) a reduction of the waiting time. In [2], the authors also
conclude that the survival rate is directly related to patient waiting time for
treatment.

In 2006, Petrovic et al. [10], proposed two algorithms for scheduling radio-
therapy treatments. The algorithms are As Soon As Possible (ASAP) and Just
In Time (JIT). They work with a list of patient priorities. Patients with a more
advanced level of the disease are privileged. The allocation of patients depends
on the priority list. The main difference between the algorithms ASAP and JIT is
that JIT assigns patients from the last feasible day while ASAP assigns patients
from the first feasible day in the planning. The experiments were carried out
using real data corresponding to a health center in the United Kingdom.

From the results obtained in this work, JIT obtained a schedule which gives
a higher satisfaction rate for patients categorized as palliative and the algorithm
ASAP, had a higher satisfaction rate for patients categorized as radical.

GeneRa: A Benchmarks Generator 355

Authors in [9] propose a Greedy Randomized Adaptive Search Procedure
(GRASP) for solving the problem without priorities. In [8], another work based
on metaheuristics is proposed. It consists of three multiobjective genetic algo-
rithms with two objectives: (1) to reduce the patients average waiting time and
(2) to minimize the average time spent between sessions. The results show an
improvement for the patients classified as urgent.

For more details about scheduling radiotherapy treatments problems refer to
the review of Kapamara et al. [5].

3 The Scheduling Radiotherapy Problem in Different
Countries

The task of the generator is to define the values for the model parameters that
correspond to the specific problem to be solved. Thus, these model parameters
define the output of the generator. In the following sections we describe the most
important constraints involved in the studied cases from France, UK, Italy and
Chile. We also explain their common aspects as well as their differences. Each
case defines a different configuration for the instances generator.

3.1 The Scheduling Radiotherapy Problem in Italy

The problem of scheduling radiotherapy in Italy reported in Conforti’s work,
[1], consists of finding a feasible plan for N patients per week. He distinguishes
patients according to a Priority level: A, B, C and D, from the most urgent to
the less urgent.

The most important constraints of this problem are:

– c1: The planning horizon considers six consecutive week-days (from Monday
To Saturday).

– c2: Each patient can only be assigned to one shift per day.
– c3: The treatment sessions have to be carried out in consecutive days.
– c4: The capacity of each machine must not be exceeded.
– c5: Only one patient can be assigned to one machine.
– c6: The availability of each patient must be satisfied.

3.2 The Scheduling Radiotherapy Problem in France

The French model reported in [4], also classifies the patients into four categories
A, B, C and D. The most important difference between the Italian and the
French model is constraint four. In the French case, the patients are able to be
more precise in their time availability, i.e., a patient can be explicit in which
shift he/she can go to a session.

They consider the following constraints:

– c1: The planning horizon coincides with six consecutive week-days (from Mon-
day To Saturday).

356 J.P. Cares et al.

– c2: Each patient can only be assigned to one shift per day.
– c3: The prescribed treatment sessions have to be carried out within consecu-

tive days.
– c4: The availability of each patient must be satisfied.
– c5: Only one machine can be assigned to each patient.
– c6: The capacity of each linac must not be exceeded.

3.3 The Scheduling Radiotherapy Problem in United Kingdom

The problem of scheduling radiotherapy in United Kingdom [8], consists of find-
ing a feasible planning for N patients. In this case, there are three categories of
patients: Emergency, Palliative and Radicals.

The constraints of the problems are:

– c1: The first treatment session of patients has to be set after his/her release
date.

– c2: Palliative and radical patients are not treated on weekends.
– c3: Emergency patients can be treated on any day of the week.
– c4: Radical patients do not start treatment on Fridays, so that at least two

treatments are given before the first (weekend) treatment interruption.
– c5: If the number of treatment sessions is less than or equal to five, the

treatment must not have an interruption, i.e. the treatment must take place
in a single week of contiguous days.

– c6: If the number of treatment sessions is greater that five, patients can have
a maximum of Imax

n interruptions-weekdays without treatment.
– c7: No two treatments can be booked on the same linac at the same time.
– c8: The capacity of each linac must not be exceeded.
– c9: Two sessions of one patient treatment cannot be booked in the same day.

3.4 The Scheduling Radiotherapy in Chile

The problem of scheduling radiotherapy treatments, addressed in Chile, consists
of finding a feasible daily scheduling for N patient treatments. In this case there
are three categories of patients Nc: Radical, Palliative and Urgent. We considered
the following constraints:

– c1: The treatment for a patient i must begin at least the day ri of the schedule.
– c2: The treatment for a patient i must begin at most the day di of the schedule.
– c3: Fi treatment sessions have to be scheduled for each patient i.
– c4: A patient cannot have two treatment sessions on the same day.
– c5: There are no sessions on weekends.
– c6: A maximum of Imax

i interruptions days are allowed for a patient i (not
including weekends). In particular, patients with less than 5 treatment sessions
have no interruption days.

– c7: A patient i must be treated by a high (resp. low) energy machine depend-
ing on the patient classification (urgent and palliative patients are treated
by high energy machines while radical patients are treated by low energy
machines).

GeneRa: A Benchmarks Generator 357

– c8: The high energy machines can perform a maximum of Vh daily sessions.
– c9: The low energy machines can perform a maximum of Vl daily sessions.
– c10: Patients must have at least two sessions in the first treatment week.

3.5 Discussion

From the studied cases, both Italy and France classify their patients into four cat-
egories, whereas the UK and Chile consider three categories of patients. Another
important difference is the available treatment days. In Italy and France, they
considered planning a six day week, and in the UK some kinds of patients could
be assigned to a session on Sunday, so they considered a seven day week. In
Chile patients must be scheduled only on the five week days. The number of ses-
sions is also a difference and it is related to the treatment assigned to a patient.
In Chile, the schedule is dynamic by day, instead of the other countries, where
planning is generated weekly, usually on Sunday. From the generator point of
view that means that each day some patients can arrive to be included on the
current scheduling.

4 Instances Generator

The initial configuration of our generator requires specific input data as shown
in the Table 1.

The generator requires the definition of the number of days to be planned, the
maximum number of patients that can arrive each day, and relation to machines,
both their number and type. It also needs the day shifts for cases that take into
account the patient availability. All cases studied define a patient categorization.
The number and the type of categories are not the same for all the cases. Thus,
we consider their values as parameters to be included in the initial configuration.
The patients belonging to a category can follow different treatments, and each
of these treatments could consider a specific number of sessions. The generator
requires the definition of the number of treatments by patients category, the
number of sessions for each treatment, and also a probability for each patient of
a category to be assigned to each treatment.

Another important characteristic of the radiotherapy problem is related to
the type of machines to be used in the treatments. Patients belonging to the same
category could require different type of machines, according to their treatment.
To generate a case, the generator needs the definition of the probability for a
patient of a category to require a specific type of machine.

An important parameter to be defined is the delay by patient category. The
delay for a patient is the maximum number of days that he/she can wait for
his/her first treatment session. This value is used by the generator to specify
the release date. This date corresponds to the next day after the patient arrived.
The due date is computed as the release date plus the delay. The delay is the
maximum time between the due date and the release date.

358 J.P. Cares et al.

Table 1. Input generator configuration

Parameter Description

days Number of days to simulate

working days Number of working days

shifts Number of day shifts

total pat Maximum number of patients that can be scheduled in a single day

n cat Number of categories

time Machine time available per day

type mach Number of available types of machines

machj Number of machines of type j, j ∈ [1, type mach]

pi Percentage of patients of category i, i ∈ [1, n cat]

prob inti Maximum percentage of interruptions for patients in category i

time session Duration of sessions

first time Additional time for the first session

delayi Maximum acceptable waiting time for the category i

treatmentsi Number of types of treatments for patients of category i

sesik Numbers of sessions for treatment k for patients in category

i, k ∈ [1, treatmenti]

prob sesik Probability of the treatment k of patients in category

i, k ∈ [1, treatmenti]

prob machinesij Probability of a patient of category i to be assigned to a machine type

j, j ∈ [1, type mach]

The generator also considers the problems where a number of treatment
interruptions are allowed. In the UK case treatment interruptions during a week
are allowed, but not in Chile. The simplest case can consider just one machine
and one patient category. In this case, in order to generate different instances,
we can use various treatments as well as a different number of sessions for treat-
ments. As the generator manages interruptions as a probability, each patient
data can also be different. Algorithm 1 shows the pseudocode. In order to con-
struct the problem structure, the procedure randomly generates a number of
patients arriving by day. The patient is classified into a category, according to a
probability. The release date is the next day and the delay is used to compute
the patient due date. For each patient, the generator defines both the number
of sessions and the number of interruptions, as well as the type of machine. The
next steps are related to the information of the patient availability. Finally, the
information is included in an ordered patient list by category. The benchmark
data is completed by including general data as days, working days, shifts, time
and both number and type of machines.

GeneRa: A Benchmarks Generator 359

Algorithm 1. Generator
1: procedure Generator
Input: days, total pat, n cat, time, type mach, machj , pi, prob inti, time session,

first time, delayi, treatmentsi, sesi, prob sesi, prob machinesi, working days,
shifts

2: for d := 1 to days do
3: pat day ← random(0, total pat)
4: for p := 1 to pat day do
5: r ← random(0, 1)
6: prob← 0
7: for i := 1 to n cat do
8: prob← prob + pi
9: if r ≤ prob then

10: category ← i
11: release date← d + 1
12: due date← release date + delay i
13: sessions← sessions pat(treatmentsi, sesik, prob sesik)
14: interruption← random(0, prob inti ∗ treatments)
15: machine← set machine(type mach, prob machinesij)
16: for w := 1 to working days do
17: do
18: for s := 1 to shifts do
19: availablews ← random(0 or 1)
20: end for
21: while sum(availablews) < 1
22: end for
23:
24: end if
25: end for
26: new patient← category, release date, due date, sessions, interruption,

machine,
27: first time, time session, availablews

28: list patientsd = list patientsd ∪ new patient
29: order patients category(list patientsd)
30: end for
31: Patients = Patients ∪ list patientsd
32: end for
33: return days, type mach, Patients, time, machj , working days, shifts
34: end procedure

4.1 An Example

In this example we consider a plan for 7 days, 5 working days, two shifts, max-
imum number of patients per day 5, one patient category, one machine type,
two machines, 70% of interruptions and a one day delay, the available time for
machines is 480 min, and four treatments for one category. Their parameter val-
ues are shown in the Table 2. In the Table 3 we show two patients generated
using the parameters. Both patients belong to category one. Patient 1 is fol-

360 J.P. Cares et al.

Table 2. Category and treatments

treatment1 ses1k prob ses1k

1 2 0.1

2 3 0.4

3 1 0.3

4 4 0.2

Table 3. Example with 2 patients of one category

Category Release Due Sessions Interruptions Machine type Availability

1 4 5 3 1 1 1 1 0 1 0 1 1 1 1 1

1 4 5 1 0 1 1 1 1 1 0 1 1 1 0 1

lowing treatment 2 and patient 2 treatment 3, according to the Table 2. Only
patient 1 has an interruption. The availability information is divided according
to the number of shifts. The first five values correspond to the first shift for the
5 working days, and the last five values are for the second shift for the these
days.

5 Conclusion

Many algorithms have been proposed in the literature to solve radiotherapy
scheduling problems, but their evaluation is generally done using specific and
confidential data, which is not available for the research community. GeneRa
has been designed in order to facilitate the algorithm comparison and evaluation
between radiotherapy scheduling researchers. To define the GeneRa input data,
we have studied the problem in four different countries, and we think that our
generator can deal with these kinds of problems. We expect that researchers and
practitioners will consider using this generator in their work and that this will
lead to further discussions and improvements to GeneRa. This should lead to
the development of better and/or more general algorithms to solve radiotherapy
scheduling problems.
The generator is available from http://www.inf.utfsm.cl/∼jcares/genera.

References

1. Conforti, D., Guerriero, F., Guido, R.: Non-block scheduling with priority for radio-
therapy treatments. Eur. J. Oper. Res. 201(1), 289–296 (2010)

2. Dodwell, D., Crellin, A.: Waiting for radiotherapy. BMJ (Clinical research ed.)
332(7533), 107–109 (2006)

3. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Tradeoffs in the empirical evaluation of
competing algorithm designs. Ann. Math. Artif. Intell. 60(1–2), 65–89 (2010)

http://www.inf.utfsm.cl/~jcares/genera

GeneRa: A Benchmarks Generator 361

4. Jacquemin, Y., Marcon, E., Pommier, P.: Towards an improved resolution of
radiotherapy, scheduling. In: 2010 IEEE Workshop on Health Care Management
(WHCM), February 2010, pp. 1–6 (2010)

5. Kapamara, T., Sheibani, K., Haas, O.C.L., Reeves, C.R., Petrovic, D.: A review
of scheduling problems in radiotherapy. In: Proceedings of the International Con-
trol Systems Engineering Conference (ICSE 2006). Coventry University Publishing
(2006)

6. Larsson, S.: Radiotherapy patient scheduling using a desktop personal computer.
Clin. Oncol. 5(2), 98–101 (1993)

7. Lim, K.S.H., Vinod, S.K., Bull, C., Brien, P.O., Kenny, L.: Prioritization of radio-
therapy in Australia and New Zealand. Australas. Radiol. 49(6), 485–488 (2005)

8. Petrovic, D., Morshed, M., Petrovic, S.: Multi-objective genetic algorithms for
scheduling of radiotherapy treatments for categorised cancer patients. Expert Syst.
Appl. 38(6), 6994–7002 (2011)

9. Petrovic, S., Leite-Rocha, P.: Constructive and grasp approaches to radiotherapy
treatment scheduling. In: Proceedings of the Advances in Electrical and Electronics
Engineering - IAENG Special Edition of the World Congress on Engineering and
Computer Science, WCECS, Washington, DC, USA, , pp. 192–200. IEEE Com-
puter Society (2008)

10. Petrovic, S., Leung, W., Song, X., Sundar, S.: Algorithms for radiotherapy treat-
ment booking. In: Proceedings of the 25th Workshop of the UK Planning and
Scheduling Special Interest Group (PlanSIG), Nottingham, UK, 14–15 December
2006, pp. 105–112 (2006)

11. Spurgeon, P., Barwell, F., Kerr, D.: Waiting times for cancer patients in England
after general practitioners’ referrals: retrospective national survey. BMJ 320(7238),
838–839 (2000)

The Theory of Set Tolerances

Gerold Jäger1(B), Boris Goldengorin2, and Panos M. Pardalos2

1 Department of Mathematics and Mathematical Statistics,
University of Ume̊a, Ume̊a, Sweden

gerold.jaeger@math.umu.se
2 Department of Industrial and Systems Engineering,

Center for Applied Optimization, University of Florida, Gainesville, USA
{goldengorin,pardalos}@ufl.edu

Abstract. The theory of single upper and lower tolerances for com-
binatorial minimization problems has been formalized in 2005 for the
three types of cost functions sum, product and maximum, and since then
shown to be rather useful in creating heuristics and exact algorithms for
the Traveling Salesman Problem and related problems. In this paper for
these three types of cost functions we extend this theory from single to
set tolerances and the related reverse set tolerances. In particular, we
characterize specific values of (reverse) set upper and lower tolerances
as positive and infinite, and we present a criterion for the uniqueness
of an optimal solution to a combinatorial minimization problem. Fur-
thermore, we present formulas or bounds for computing (reverse) set
upper and lower tolerances using the relation to their corresponding sin-
gle tolerance counterparts. Finally, we give formulas for the minimum
and maximum (reverse) set upper and lower tolerances using again their
corresponding single tolerance counterparts.

1 Introduction

The notion of tolerances origins from sensitivity analysis of combinatorial min-
imization problems [6,7,14,19,32], which is a well-established topic in linear
programming [7] and mixed integer programming [14]. The notion of single tol-
erance corresponds to the most elementary topic of sensitivity analysis, namely
the special case when the value of a single element in a feasible solution is subject
to an additive change. More precisely, for an element in a given optimal solution,
its single upper tolerance determines the maximum additive increase of the indi-
vidual costs of this given element preserving the optimality of this solution, while
keeping the costs of other elements unchanged. Analogously, for an element not
in a given optimal solution, its single lower tolerance determines the maximum
additive decrease of the individual costs of this given element preserving the
optimality of this solution, while keeping the costs of other elements unchanged.
So the tolerance is a measure for stability of optimal solutions. Tolerances for
concrete combinatorial minimization problems have been computed for the Min-
imum Spanning Tree Problem [3,18,33], the Traveling Salesman Problem [23],
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 362–377, 2014.
DOI: 10.1007/978-3-319-09584-4 31

The Theory of Set Tolerances 363

the Linear Assignment Problem [35], network flow problems [15,31], and shortest
path problems [28]. The first successful implicit application of (upper) tolerances
in algorithm design has appeared in the so-called Vogel’s Approximation Method
for the Transportation Simplex Problem [29]. Furthermore, it has been used for
a straightforward enumeration of the k-best solutions for some natural k for the
Linear Assignment Problem [25] and the Traveling Salesman Problem [27] as well
as a base of the Max-Regret heuristic for solving the Three-Index Assignment
Problem [1].

The theory of single tolerances has been formalized by Goldengorin, Jäger,
Molitor [10,11] for three different types of cost function, namely of type sum,
product and maximum. The following relations hold, where some of them are
only valid for some of the three types of cost functions.

The single upper and lower tolerance are well defined, i. e., do not depend
on the corresponding optimal solution. Whereas the elements in each and no
feasible solution are exactly the elements with infinite single upper and lower
tolerance, respectively, the elements in each and no optimal solution are exactly
the elements with positive single upper and lower tolerance, respectively.

The single upper and lower tolerance of an element can be computed by
calculating the solutions of two (for MAX only one) instances of a combinatorial
minimization problem. The elements contained in one, but not in each optimal
solution are exactly the elements with single upper and lower tolerance equal 0.
Provided that no feasible solution is a subset of another feasible solution the
minimum single upper and lower tolerance equal. Under stronger assumptions
the maximum single upper and lower tolerance equal.

Based on this theory, we have created and implemented effective heuristics
and exact algorithms for the Traveling Salesman Problem [4,8,9,12,13,21,30,34],
and related problems [2,5,16,17,22], proving the usefulness of the concept of
tolerances. Recently, further progress in the theory of tolerances has been reached
by Libura [24].

The purpose of this work is to extend the theory of single tolerances to so-
called set tolerances and reverse set tolerances, where the upper tolerances are
defined for a set of elements in a given optimal solution, and the lower tolerances
are defined for a set of elements not in a given optimal solution. The set tolerance
is defined as the maximum sum of values, which have to be added to the elements
of the set so that the given optimal solution keeps optimal, and the reverse set
tolerance is defined as the corresponding infimum sum of values so that the given
optimal solution is not optimal any more. Observe that – in contrast to single
tolerances – the set tolerance and the corresponding reverse set tolerance do
not equal in general. Clearly, the reverse set tolerance is not larger than the
corresponding set tolerance. We reach the following results, where again some of
them are only valid for some of the three types of cost functions.

The (reverse) set upper and lower tolerance are well defined, i. e., do not
depend on the corresponding optimal solution. Whereas the sets contained in
each feasible solution are exactly the sets with infinite reverse set upper tolerance,
the sets overlapping with no feasible solution are exactly the sets with infinite

364 G. Jäger et al.

reverse set lower tolerance. Furthermore, the sets overlapping with each feasible
solution are exactly the sets with infinite set upper tolerance, and the sets not
contained in the union of all feasible solutions are exactly the sets with infinite
set lower tolerance.

Whereas the sets contained in all optimal solutions are exactly the sets with
positive reverse set upper tolerance, the sets overlapping with no optimal solution
are exactly the sets with positive reverse set lower tolerance. The uniqueness of
an optimal solution (see e.g., [26]) can be described by set upper and lower
tolerances as well as by reverse set upper and lower tolerances.

The (reverse) set upper and lower tolerances can be bounded by their corre-
sponding single tolerance counterparts. The relations are completely different for
the three types of cost function. Finally, the minimum and maximum (reverse)
set upper and lower tolerances can be computed or bounded by their correspond-
ing single tolerance counterparts.

This paper is organized as follows. In Sect. 2, the notions of combinatorial
minimization problem and single upper and lower tolerance are given. In Sect. 3,
the theory of set upper tolerances and in Sect. 4, the theory of set lower tolerances
is presented. In Sect. 5 applications of the theory of set tolerances are presented,
namely to the Linear Assignment Problem and to the Asymmetric Bottleneck
Traveling Problem. This paper closes with some suggestions for future work in
Sect. 6. Regarding the proofs of all statements we refer to [20].

2 Notations and Definitions

2.1 Combinatorial Minimization Problems

A combinatorial minimization problem P is given by a tuple (E ,D, c, fc), where
E is a finite ground set of elements, D ⊆ 2E \ {∅} is the set of feasible solutions,
c : E → R is the cost function, which assigns costs to each single element of E ,
fc : D → R is the objective (cost) function, which depends on the function c
and assigns costs to each feasible solution D.

Then the problem is to find a feasible solution with costs as small as pos-
sible. Of course, analogous considerations can be made if the costs have to be
maximized, i. e., for combinatorial maximization problems.

S� ⊆ E is called an optimal solution of P if S� is a feasible solution and the
costs fc(S�) of S� are minimum, i. e., S� ∈ D and fc(S�) = min {fc(S) | S ∈ D}.
We denote the set of optimal solutions by D�. There are some particular cost
functions which often occur in practice, namely the cost function fc : D → R of
type

∑
if for all S ∈ D : fc(S) =

∑
e∈S c(e) holds, the cost function fc : D → R

of type
∏

if for all S ∈ D : fc(S) =
∏

e∈S c(e) holds and for all e ∈ E : c(e) > 0
holds, and the cost function fc : D → R of type MAX if for all S ∈ D :
fc(S) = max {c(e) | e ∈ S} holds. The latter cost function is also called bottleneck
function.

Cost functions of type
∑

,
∏

, MAX are monotonically increasing in a single
element e ∈ E , i. e., the costs of a subset of E do not become cheaper, if the costs

The Theory of Set Tolerances 365

of e increase. Furthermore, cost functions of type
∑

,
∏

, MAX are continuous
when changing cost values. In the following we only consider combinatorial min-
imization problems P = (E ,D, c, fc) which fulfill the following three conditions:

Condition 1. The set D of feasible solutions of P is independent of the cost
function c.

Condition 2. There is at least one optimal solution of P, i. e., D� �= ∅.
Condition 3. The cost function fc : D → R is of type

∑
,
∏
, or MAX.

Let a combinatorial minimization problem P = (E ,D, c, fc) be given.
We obtain a new combinatorial minimization problem if we add some constant
α ∈ R to the costs of e ∈ E . We will denote the new problem by Pcα,e

=

(E ,D, cα,e, fcα,e
), which is formally defined by cα,e(ē) =

{
c(ē), if ē �= e

c(ē) + α, if ē = e
for all ē ∈ E . Note that fcα,e

is of the same type as fc, unless the cost function
is of type

∏
and α ≤ −c(e).

fc(P) denotes the costs of an optimal solution S� of P. For M ⊆ D, fc(M)
denotes the costs of the best solution included in M . The costs fc(M) for M = ∅
is defined as infinite, i. e., +∞. Obviously, for all M ⊆ D it holds fc(P) ≤ fc(M).
Let e ∈ E . D−(e) denotes the set of feasible solutions of D each of which does
not contain e ∈ E , i. e., D−(e) = {S ∈ D | e ∈ E \ S}. Analogously, D+(e)
denotes the set of feasible solutions of D each of which contains e ∈ E , i. e.,
D+(e) = {S ∈ D | e ∈ S}.

Now we generalize our considerations from a single element e ∈ E to a subset
E ⊆ E with E = {e1, e2, . . . , ek} and k ≥ 1, where e1, e2, . . . , ek are in a fixed
order.

Let α = (α1, α2, . . . , αk) ∈ R
k. We also obtain a new combinatorial mini-

mization problem if for all l ∈ N with 1 ≤ l ≤ k we add αl ∈ R to the costs of el.
We will denote the new problem by Pcα,E

= (E ,D, cα,E , fcα,E
), which is formally

defined by cα,e(ē) =
{

c(ē), if ē ∈ E \E
c(ē) + αl, if ē = el

for all ē ∈ E . Note that fcα,E
is

of the same type as fc, unless the cost function is of type
∏

and αl ≤ −c(el) for
at least one l ∈ {1, 2, . . . , k}.

Here we shortly define the single tolerances, as these definitions are needed
in the following. The corresponding theory of single tolerances can be found in
[10,11].

2.2 Single Upper Tolerances

LetP be an instance, S� an optimal solution ofP and e ∈ S�. Then the single upper
tolerance uS�(e) of e with respect to S� is defined as the supremum by which the
costs of e can be increased such that S� remains optimal, provided that the costs
of all other elements ē ∈ E \{e} remain unchanged, i. e., the single upper tolerance
of e is defined as uS�(e) := sup {α ∈ R

+
0 | S� is an optimal solution ofPcα,e

}.

366 G. Jäger et al.

Because of the monotonicity and the continuity of cost functions of type
∑

,
∏

,
MAX, it holds:

uS�(e) = inf {α ∈ R
+
0 | S� is not an optimal solution of Pcα,e

}.

It holds that uS�(e) is either an element of R
+
0 or infinite. Because of the conti-

nuity of the cost function, for all e ∈ S� with 0 ≤ uS�(e) < +∞, it holds:

uS�(e) = max {α ∈ R
+
0 | S� is an optimal solution of Pcα,e

}.

As because of [10,11, Theorem 2], for an instance P the single upper tolerance
does not depend on a particular optimal solution of P, we refer to the upper
tolerance of e with respect to an optimal solution S� as upper tolerance of e
with respect to P, uP(e). Let UTEP := {e ∈ E | ∃S� ∈ D� : e ∈ S�} be the
set of elements in E for which the upper tolerance is defined with respect to P.
Obviously, it holds: UTEP =

⋃
S�∈D� S�.

Finally, let uP,min := min {uP(e) | e ∈ UTEP } be the smallest single
upper tolerance with respect to P and uP,max := max {uP(e) | e ∈ UTEP }
be the largest single upper tolerance with respect to P.

2.3 Single Lower Tolerances

Let P be an instance, S� an optimal solution of P and e ∈ E \S�. We ask for the
supremum by which the costs of e ∈ E can be decreased such that S� remains
optimal, provided that the costs of all other elements remain unchanged. Note
that if the cost function is of type

∏
, the costs of the elements are larger than 0

Let δ(e) :=
{

+∞, if the cost function is of type
∑

or MAX
c(e), if the cost function is of type

∏ .

δ(e) is the supremum by which e ∈ E can be decreased such that the cost
function remains of type

∑
,
∏

, or MAX. The single lower tolerance of e with
respect to S� is defined as follows:

lS�(e) := sup {α ∈ R
+
0 | S� is an optimal solution of Pc−α,e

}.

Because of the monotonicity and the continuity of the cost function, it holds:

lS�(e) = inf {α ∈ R
+
0 | S� is not an optimal solution of Pc−α,e

}.

For all e ∈ E \ S�, it holds that lS�(e) is either an element of R
+
0 or infinite.

More precisely, it holds 0 ≤ lS�(e) ≤ δ(e). Because of the continuity of the
cost function, for all e ∈ E \ S� and each 0 ≤ lS�(e) < δ(e), it holds:

lS�(e) = max {α ∈ R
+
0 | S� is an optimal solution of Pc−α,e

}.

As because of [10,11, Theorem 8], for an instance P the single lower tolerance
does not depend on a particular optimal solution of P, we refer to the lower
tolerance of e with respect to an optimal solution S� as lower tolerance of e with

The Theory of Set Tolerances 367

respect to P, lP(e). Let LTEP := {e ∈ E | ∃S� ∈ D� : e ∈ E \ S�} be the
set of elements in E for which the lower tolerance is defined with respect to P.
Obviously, it holds: LTEP = E \⋂

S�∈D� S�.
Finally, let lP,min := min { lP(e) | e ∈ LTEP } be the smallest single lower

tolerance with respect to P and lP,max := max { lP(e) | e ∈ LTEP } be the
largest single lower tolerance with respect to P.

3 Set Upper Tolerances

Let P be an instance, S� an optimal solution of P and E = {e1, e2, . . . , ek} ⊆ S�.
Extending the single upper tolerance, define the set upper tolerance uS�(E) of
E with respect to S� as the supremum of all those α such that the costs of
all elements e ∈ E are not decreased, the sum of all increases equals α and
S� remains optimal, provided that the costs of all elements ē ∈ E \ E remain
unchanged, i. e., the set upper tolerance of E is defined as follows:

uS�(E) := sup
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

α1, α2, . . . , αk ≥ 0, S� is an optimal solution of Pcα,E

}
.

In contrast to the case of a single element, the corresponding infimum does not
equal to this supremum in general. Thus we define the reverse set upper tolerance
as follows:

ūS�(E) := inf
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

α1, α2, . . . , αk ≥ 0, S� is not an optimal solution of Pcα,E

}
.

By definition, it holds:

ūS�(E) ≤ uS�(E),
uS�({e}) = ūS�({e}) = uS�(e).

It holds that uS�(E) and ūS�(E) are either elements of R
+
0 or infinite. Because

of the continuity of the cost function, for all E ⊆ S� with uS�(E) < +∞, it
holds:

uS�(E) = max
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

α1, α2, . . . , αk ≥ 0, S� is an optimal solution of Pcα,E

}
.

The following theorem is crucial for the theory of set tolerances.

368 G. Jäger et al.

Theorem 1. Let P be an instance. The set upper tolerances do not depend on
a particular optimal solution of P. More precisely,

(a) ∀S1, S2 ∈ D� ∀E ⊆ S1 ∩ S2 : uS1(E) = uS2(E).
(b) ∀S1, S2 ∈ D� ∀E ⊆ S1 ∩ S2 : ūS1(E) = ūS2(E).

We refer to the set upper tolerances of E with respect to an optimal solution
S� as set upper tolerances of E with respect to P, and denote it by uP(E) and
ūP(E). Let UTSP := {E ⊆ E | ∃S� ∈ D� : E ⊆ S�} be the set of subsets of E
for which the set upper tolerances are defined with respect to P. By definition,
it holds:

e ∈ UTEP ⇔ {e} ∈ UTSP ,

E ∈ UTSP ⇒ ∀e ∈ E : e ∈ UTEP .

The following theorem gives a criterion for the reverse set upper tolerance
being infinity.

Theorem 2. Let P be an instance and E = {e1, e2, . . . , ek} ∈ UTSP . Then the
following statements are equivalent:

(a) E ⊆ ⋂
S∈D S.

(b) ūP(E) = +∞.
(c) mink

l=1 {uP(el)} = +∞.

Theorem 3. Let P be an instance, E = {e1, e2, . . . , ek} ∈ UTSP with uP(E) �=
+∞. Furthermore, let α = (α1, α2, . . . , αk), α =

∑k
l=1 αl with αl ≥ 0 for

l = 1, 2, . . . , k and α > uP(E). Then E is not a subset of any optimal solution
of Pcα,E

.

The following theorem gives exact formulas and bounds for the (reverse) set
tolerances.

Theorem 4. Let P be an instance and E = {e1, e2, . . . , ek} ∈ UTSP . Then the
following inequalities hold:

(a) ūP(E) ≤ mink
l=1 {uP(el)} ≤ maxk

l=1 {uP(el)} ≤ uP(E).
(b) If the cost function is of type

∑
or

∏
, uP(E) ≤ ∑k

l=1 uP(el).
(c) If the cost function is of type

∑
, ūP(E) = mink

l=1 {uP(el)}.
(d) If the cost function is of type

∏
, ūP(E) ≥

(
k

√
mink

l=1

{
uP(el)
c(el)

}
+ 1− 1

)
·

mink
l=1 {c(el)}.

(e) If the cost function is of type MAX, ūP(E) = mink
l=1 {uP(el)}.

(f) If the cost function is of type MAX,
∑k

l=1 uP(el) ≤ uP(E).

The following theorem presents a criterion for the set upper tolerance being
infinity.

The Theory of Set Tolerances 369

Theorem 5. Let P be an instance, where the cost function is of type
∑

or
∏
.

Let E = {e1, e2, . . . , ek} ∈ UTSP . Then the following statements are equivalent:

(a) E ∩⋂
S∈D S �= ∅.

(b) uP(E) = +∞.
(c) maxk

l=1 {uP(el)} = +∞.

The following two theorems give criteria for the (reverse) set upper tolerance
being positive.

Theorem 6. Let P be an instance and E ∈ UTSP . Let the cost function be of
type

∑
or

∏
. Then E ⊆ ⋂

S�∈D� S� ⇔ ūP(E) > 0.

Remark 1. For a cost function of type MAX the direction “⇒” of Theorem 6
holds.

Theorem 7. Let P be an instance and E ∈ UTSP . Then E ⊆ ⋂
S�∈D� S� ⇒

uP(E) > 0.

The following theorem gives criteria for the uniqueness of optimal solutions.

Theorem 8. Let P be an instance, where the cost function is of type
∑

or
∏
.

Then the following statements are equivalent:

(a) Only one optimal solution of P exists.
(b) ūP(E) > 0 for all E ∈ UTSP .
(c) uP(E) > 0 for all E ∈ UTSP .

Let UP,min := min {uP(E) | E ∈ UTSP } be the smallest set upper
tolerance and ŪP,min := min { ūP(E) | E ∈ UTSP } be the smallest reverse
set upper tolerance. Furthermore, let UP,max := max {uP(E) | E ∈ UTSP }
be the largest set upper tolerance and ŪP,max := max { ūP(E) | E ∈ UTSP }
be the largest reverse set upper tolerance. The following theorem gives relations
between these smallest and largest values.

Theorem 9. Let P be an instance. Then the following inequalities hold:

(a) ŪP,min ≤ UP,min = uP,min ≤ uP,max = ŪP,max ≤ UP,max.
(b) If the cost function is of type

∑
or MAX, ŪP,min = UP,min.

4 Set Lower Tolerances

Let P be an instance, S� an optimal solution of P and E = {e1, e2, . . . , ek} ⊆
E \S�. Extending the single lower tolerance, define the set lower tolerance lS�(E)
of E with respect to S� as the supremum of all those α such that the costs of
all elements e ∈ E are not increased, the cost function remains of type

∑
,
∏

,
or MAX, the sum of all decreases equals α and S� remains optimal, provided
that the costs of all elements ē ∈ E \ E remain unchanged, i. e., the set lower
tolerance of E is defined as follows:

370 G. Jäger et al.

lS�(E) := sup
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

0 ≤ α1 < δ(e1), 0 ≤ α2 < δ(e2), . . . , 0 ≤ αk < δ(ek),

S� is an optimal solution of Pc−α,E

}
.

In contrast to the case of a single element, the corresponding infimum does not
equal to this supremum in general. Thus we define the reverse set lower tolerance
as follows:

l̄S�(E) := inf
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

0 ≤ α1 < δ(e1), 0 ≤ α2 < δ(e2), . . . , 0 ≤ αk < δ(ek),

S� is not an optimal solution of Pc−α,E

}
.

By definition, it holds:

l̄S�(E) ≤ lS�(E),
lS�({e}) = l̄S�({e}) = lS�(e).

It holds that lS�(E) and l̄S�(E) are either elements of R
+
0 or infinite. More

precisely, it holds for all E ⊆ E \ S� that 0 ≤ lS�(E) ≤ ∑k
l=1 δ(el) and 0 ≤

l̄S�(E) ≤ mink
l=1 {δ(el)}. For a cost function of type

∑
or MAX, it holds for all

E ⊆ E \ S� with lS�(E) < +∞,

lS�(E) = max
{

α ∈ R | α =
k∑

l=1

αl, α = (α1, α2, . . . , αk),

α1, α2, . . . , αk ≥ 0, S� is an optimal solution of Pc−α,E

}
.

The following theorems are statements for the set lower tolerances, which are
similar to the statements for the set upper tolerances from Sect. 3.

Theorem 10. Let P be an instance. The set lower tolerances do not depend on
a particular optimal solution of P. More precisely,

(a) ∀S1, S2 ∈ D� ∀E ⊆ E \ (S1 ∪ S2) : lS1(E) = lS2(E).
(b) ∀S1, S2 ∈ D� ∀E ⊆ E \ (S1 ∪ S2) : l̄S1(E) = l̄S2(E).

We refer to the set lower tolerances of E with respect to an optimal solution
S� as set lower tolerances of E with respect to P, and denote it by lP(E) and
l̄P(E). Let LTSP := {E ⊆ E | ∃S� ∈ D� : E ⊆ E \S�} be the set of subsets of
E for which the set lower tolerances are defined with respect to P. By definition,
it holds:

e ∈ LTEP ⇔ {e} ∈ LTSP ,

E ∈ LTSP ⇒ ∀e ∈ E : e ∈ LTEP .

The Theory of Set Tolerances 371

Theorem 11. Let P be an instance, where the cost function is of type
∑

. Fur-
thermore, let E = {e1, e2, . . . , ek} ∈ LTSP . Then the following statements are
equivalent:

(a) E ⊆ E \⋃
S∈D S.

(b) l̄P(E) = +∞.
(c) mink

l=1 {lP(el)} = +∞.

Theorem 12. Let P be an instance, where the cost function is of type
∏
. Fur-

thermore, let E = {e1, e2, . . . , ek} ∈ LTSP . Then it holds:

(a) E ⊆ E \⋃
S∈D S ⇒ l̄P(E) = mink

l=1 {c(el)}.
(b) E ⊆ E \⋃

S∈D S ⇔ lP(E) =
∑k

l=1 c(el).

Theorem 13. Let P be an instance, where the cost function is of type MAX.
Furthermore, let E ∈ LTSP . Then it holds:

(a) E ⊆ E \⋃
S∈D S ⇒ l̄P(E) = +∞.

(b) E ⊆ E \⋃
S∈D S ⇒ lP(E) = +∞.

Theorem 14. Let P be an instance, E = {e1, e2, . . . , ek} ∈ LTSP with lP(E) �=
+∞. Furthermore, let α = (α1, α2, . . . , αk), α =

∑k
l=1 αl with 0 ≤ αl < δ(el)

for l = 1, 2, . . . , k and α > lP(E). Then E overlaps with each optimal solution
of Pc−α,E

.

Theorem 15. Let P be an instance and E = {e1, e2, . . . , ek} ∈ LTSP . Then
the following inequalities hold:

(a) l̄P(E) ≤ mink
l=1 {lP(el)} ≤ maxk

l=1 {lP(el)} ≤ lP(E) ≤ ∑k
l=1 lP(el).

(b) If the cost function is of type
∑

or
∏
, l̄P(E) = mink

l=1 {lP(el)}.
(c) If the cost function is of type MAX, lP(E) =

∑k
l=1 lP(el).

Theorem 16. Let P be an instance, where the cost function is of type
∑

. Fur-
thermore, let E = {e1, e2, . . . , ek} ∈ LTSP . Then the following statements are
equivalent:

(a) E �

⋃
S∈D S.

(b) lP(E) = +∞.
(c) maxk

l=1 {lP(el)} = +∞.

Theorem 17. Let P be an instance and E ∈ LTSP . Let the cost function be of
type

∑
or

∏
. Then E ⊆ E \⋃

S�∈D� S� ⇔ l̄P(E) > 0.

Remark 2. For a cost function of type MAX the direction “⇒” of Theorem 17
holds.

Theorem 18. Let P be an instance and E ∈ LTSP . Then E ⊆ E\⋃S�∈D� S� ⇒
lP(E) > 0.

372 G. Jäger et al.

Theorem 19. Let P be an instance, where the cost function is of type
∑

or
∏
.

Then the following statements are equivalent:

(a) Only one optimal solution of P exists.
(b) l̄P(E) > 0 for all E ∈ LTSP .
(c) lP(E) > 0 for all E ∈ LTSP .

Let LP,min := min { lP(E) | E ∈ LTSP } be the smallest set lower tolerance
and L̄P,min := min { l̄P(E) | E ∈ LTSP } be the smallest reverse set lower
tolerance. Furthermore, let LP,max := max { lP(E) | E ∈ LTSP } be the largest
set lower tolerance and L̄P,max := max { l̄P(E) | E ∈ LTSP } be the largest
reverse set lower tolerance.

Theorem 20. Let P be an instance. Then the following inequalities hold:

(a) L̄P,min ≤ LP,min = lP,min ≤ lP,max = L̄P,max ≤ LP,max.
(b) If the cost function is of type

∑
or

∏
, L̄P,min = LP,min.

5 Applications

5.1 Linear Assignment Problem

Consider the Linear Assignment Problem (LAP), which is defined as follows.
Let n ∈ N and V := {v1, v2, . . . , vn}. Furthermore, let c : V × V → R be a cost
function. Then the aim is to find a one-to-one function φ : V → V such that∑n

i=1 c(vi, φ(vi)) is minimized. Clearly, the LAP has a cost function of type
∑

.

Example 1. Let n = 3 and the cost function c : V × V → R be defined as
c(v1, v2) = 4, c(v1, v3) = 5, c(v2, v3) = 6, c(v2, v1) = 7, c(v3, v1) = 8, c(v3, v2) =
9, and c(v1, v1) = c(v2, v2) = c(v3, v3) = 0.

Each feasible solution contains exactly three elements from V × V . Obvi-
ously, S1 := {(v1, v1), (v2, v2), (v3, v3)} is the only optimal solution with costs 0.
As {(v1, v2), (v2, v1), (v3, v3)} with costs 11 is the best solution not containing
(v1, v1) and also the best solution not containing (v2, v2). As {(v1, v3), (v2, v2),
(v3, v1)} with costs 13 is the best solution not containing (v3, v3), it holds because
of [10,11, Theorem 4]:x uP((v1, v1)) = uP((v2, v2)) = 11, uP((v3, v3)) = 13. Sim-
ilarly, it holds because of [10,11, Theorem 11]: lP((v1, v2)) = lP((v2, v1)) = 11,
lP((v2, v3)) = lP((v3, v2)) = 15, lP((v1, v3)) = lP((v3, v1)) = 13.

– Let E = {(v1, v1), (v3, v3)} ⊆ S1, e1 = (v1, v1), e2 = (v3, v3).

Note that increasing the costs of (v1, v1) by α1 = 6 and increasing the costs
of (v3, v3) by α1 = 7 does not change the optimality of S1. As {(v1, v3),
(v2, v2), (v3, v1)} with costs 13 is the best solution which does not contain
(v1, v1) and does not contain (v3, v3), it follows uP((v1, v1), (v3, v3)) = 13.
With Theorem 4c) we have:

ūP(E) = min {uP((v1, v1)), uP((v3, v3))} = 11
< max {uP((v1, v1)), uP((v3, v3))} = uP(E) = 13
< uP((v1, v1)) + uP((v3, v3)) = 24.

The Theory of Set Tolerances 373

– Let E = {(v1, v2), (v3, v2)} ⊆ E \ S1, e1 = (v1, v2), e2 = (v3, v2). As {(v1, v2),
(v2, v1), (v3, v3)} with costs 11 is the best solution containing (v1, v2), as
{(v1, v1), (v2, v3), (v3, v2)} with costs 15 is the best solution containing (v3, v2)
and no feasible solution exists containing both, (v1, v2) and (v3, v2), it follows
lP((v1, v2), (v3, v2)) = 11 + 15 = 26. With Theorem15b) we have:

l̄P(E) = min {lP((v1, v2)), lP((v3, v2))} = 11
< max {lP((v1, v2)), lP((v3, v2))} = 15
< lP((E)) = lP((v1, v2)) + lP((v3, v2)) = 26.

Note that increasing the costs of (v1, v1) by α1 = 6, increasing the costs of
(v2, v2) by α2 = 6 and increasing the costs of (v3, v3) by α3 = 6 does not
change the optimality of S1. As {(v1, v2), (v2, v3), (v3, v1)} with costs 18 is the
best solution which does not contain (v1, v1), (v2, v2) and (v3, v3), it follows
UP,max = uP((v1, v1), (v2, v2), (v3, v3)) = 18.

Note that if we change the costs of each of the elements which are not
contained in S1, namely (v1, v2), (v1, v3), (v2, v1)}, (v2, v3), (v3, v1), (v3, v2)}, to
costs 0, S1 keeps optimal. However, if one of the costs is decreased to a negative
value, S1 is not optimal any more. Thus it follows:

LP,max = lP((v1, v2), (v1, v3), (v2, v1), (v2, v3), (v3, v1), (v3, v2))
= 4 + 5 + 6 + 7 + 8 + 9 = 39.

Thus we have (compare Theorems 9 and 20):

ŪP,min = UP,min = uP,min = 11 ≤ uP,max = ŪP,max = 15 < UP,max = 18,

L̄P,min = LP,min = lP,min = 11 ≤ lP,max = L̄P,max = 15 < LP,max = 39.

5.2 Asymmetric Bottleneck Traveling Salesman Problem

Consider the Asymmetric Bottleneck Traveling Salesman Problem, which is
defined as follows. Let G = (V,E) be a directed graph with vertex set V :=
{v1, v2, . . . , vn} and arc set E. Furthermore, let c : E → R be a cost function
on the set of arcs. Then the aim is to find a tour (vj1 , vj2 , . . . , vjn

, vj1) such that
max

{
c(vjn

, vj1),maxn−1
i=1 {c(vji

, vji+1)}
}

is minimized. Clearly, the Asymmetric
Bottleneck Traveling Salesman Problem has a cost function of type MAX.

Example 2. Let n = 4 and the cost function c : E → R be defined as c(v1, v2) =
1, c(v1, v3) = 2, c(v1, v4) = 11, c(v2, v3) = 4, c(v2, v4) = 5, c(v3, v4) = 7,
c(v2, v1) = 3, c(v3, v1) = 12, c(v3, v2) = 6, c(v4, v1) = 8, c(v4, v2) = 9, c(v4, v3) =
10.

S1 := {(v1, v2, v3, v4, v1) and S2 := {(v1, v3, v2, v4, v1) are the optimal solu-
tions with costs 8. It holds because of [10,11, Theorem 4]:

uP((v1, v2)) = 7, uP((v2, v3)) = 4, uP((v3, v4)) = 1, uP((v4, v1)) = 1,
uP((v1, v3)) = 6, uP((v3, v2)) = 2, uP((v2, v4)) = 3.

374 G. Jäger et al.

It holds because of [10,11, Theorem 11]:

lP((v1, v2)) = lP((v1, v3)) = lP((v1, v4)) = +∞,

lP((v2, v1)) = lP((v2, v3)) = lP((v2, v4)) = +∞,

lP((v3, v1)) = lP((v3, v2)) = lP((v3, v4)) = +∞,

lP((v4, v2)) = 1, lP((v4, v3)) = +∞.

– Let E = {(v1, v3), (v4, v1)} ⊆ S2, e1 = (v1, v3), e2 = (v4, v1). As {(v1, v4, v3,
v2, v1) with costs 11 is the best solution which does not contain (v1, v3) and
(v4, v1), it follows uP((v1, v3), (v4, v1)) = (11 − 2) + (11 − 8) = 12. With
Theorem 4e) we have:

ūP(E) = min {uP((v1, v3)), uP((v4, v1))} = 1 < max {uP((v1, v3)), uP((v4, v1))}
= 6 < uP((v1, v3)) + uP((v4, v1)) = 7 < uP(E) = 12.

– Let E = {(v1, v4), (v4, v3)} ⊆ E\S1, e1 = (v1, v4), e2 = (v4, v3). As lP((v1, v4))
= lP((v4, v3)) = +∞ and {(v1, v4, v3, v2, v1) with costs 11 is the best solu-
tion which contains (v1, v4) and (v4, v3) and as the costs of (v3, v2) and
(v2, v1) are smaller than the cost value of the optimal solution 8, it follows
l̄P((v1, v4), (v4, v3)) = (11− 8) + (10− 8) = 5.
With Theorem 15c) we have:

l̄P(E) = 5 < min {lP((v1, v4)), lP((v4, v3))} = +∞
= max {lP((v1, v4)), lP((v4, v3))} = +∞
= lP((E)) = lP((v1, v4)) + lP((v4, v3)) = +∞.

As we have two optimal solutions S1 = (v1, v2, v3, v4, v1) and S2 = (v1, v3, v2,
v4, v1), it holds: UP,max =

{uP((v1, v2), (v2, v3), (v3, v4), (v4, v1)), uP((v1, v3), (v3, v2), (v2, v4), (v4, v1))}
As S3 := (v1, v4, v3, v2, v1) with costs 11 is the only feasible solution which
has no common arc with S1, the costs of all arcs of S1 cannot be increased
to larger than 11. On the other hand, increasing the costs of all arcs of S1

to 11 keeps S1 optimal. Thus we have uP((v1, v2), (v2, v3), (v3, v4), (v4, v1)) =
(11− 1) + (11− 4) + (11− 7) + (11− 8) = 24.

As S4 := (v1, v4, v2, v3, v1) with costs 12 is the only feasible solution which
has no common arc with S2, the costs of all arcs of S2 cannot be increased
to larger than 12. On the other hand, increasing the costs of all arcs of S2

to 12 keeps S2 optimal. Thus we have uP((v1, v3), (v3, v2), (v2, v4), (v4, v1)) =
(12−2)+(12−6)+(12−5)+(12−8) = 27. It follows UP,max = 27. Clearly, the
smallest infimum decrease of costs that makes S1 or S2 non-optimal is changing
the costs of (v4, v2) from 9 to 8. Thus it holds L̄P,min = l̄P((v4, v2)) = 1. Thus
we have (compare Theorems 9 and 20):

ŪP,min = UP,min = uP,min = 1 ≤ uP,max = ŪP,max = 7 < UP,max = 27,

L̄P,min = LP,min = lP,min = 1 ≤ lP,max = L̄P,max = LP,max = +∞.

The Theory of Set Tolerances 375

6 Future Work

After a formal introduction of set tolerances it is reasonable to create set tol-
erance based algorithms for NP-hard combinatorial optimization problems like
the TSP. More precisely, we suggest to investigate (reverse) set tolerances with
respect to the Minimum Spanning Tree Problem (MST) and the LAP, which are
expected to improve algorithms for the STSP (symmetric TSP) and the asym-
metric TSP (ATSP), respectively. Whereas computing all single lower tolerances
with respect to the MST can be computed in O(n2) time and with O(n2) space
[18], all single (upper and lower) tolerances with respect to the LAP are com-
putable in complexity O(n3) [35]. The question is how these procedures can be
extended to set tolerances.

For set tolerances with respect to MST, LAP, TSP, Bottleneck TSP and to
other combinatorial minimization problems it could be interesting to know how
the (upper and lower) set tolerances and reverse set tolerances can be exactly
computed and what the complexity is of this computation, which version of both
set tolerances is easier to compute, and which has a larger practical relevance,
how the computation and its complexity depend on the cardinality of the set, and
whether the upper and lower bounds from this paper are sharp for the specific
example.

References

1. Balas, E., Saltzman, M.J.: An algorithm for the three-index assignment problem.
Oper. Res. 39, 150–161 (1991)

2. Bekker, H., Braad, E.P., Goldengorin, B.: Selecting the roots of a small system
of polynomial equations by tolerance based matching. In: Nikoletseas, S.E. (ed.)
WEA 2005. LNCS, vol. 3503, pp. 610–613. Springer, Heidelberg (2005)

3. Chin, F., Hock, D.: Algorithms for updating minimal spanning trees. J. Comput.
Syst. Sci. 16, 333–344 (1978)

4. Dong, C., Jäger, G., Richter, D., Molitor, P.: Effective tour searching for TSP by
contraction of pseudo backbone edges. In: Goldberg, A.V., Zhou, Y. (eds.) AAIM
2009. LNCS, vol. 5564, pp. 175–187. Springer, Heidelberg (2009)

5. Fischer, A., Fischer, F., Jäger, G., Keilwagen, J., Molitor, P., Grosse, I.: Exact
algorithms and heuristics for the quadratic traveling salesman problem with an
application in bioinformatics. Discrete Appl. Math. 166, 97–114 (2014)

6. Gal, T.: Sensitivity Analysis, Parametric Programming, and Related Topics:
Degeneracy, Multicriteria Decision Making Redundancy. de Gruyter W., New York
(1995)

7. Gal, T., Greenberg, H.J. (eds.) Advances in Sensitivity Analysis and Parametric
Programming. International Series in Operations Research & Management Science
6. Kluwer Academic Publishers, Boston (1997)

8. Germs, R., Goldengorin, B., Turkensteen, M.: Lower tolerance-based branch and
bound algorithms for the ATSP. Comput. Oper. Res. 39(2), 291–298 (2012)

9. Ghosh, D., Goldengorin, B., Gutin, G., Jäger, G.: Tolerance-based algorithms
for the traveling salesman problem. In: Neogy, S.K., Bapat, R.B., Das, A.K.,
Parthasarathy, T. (eds.) Mathematical Programming and Game Theory for Deci-
sion Making, pp. 47–59. World Scientific, New Jersey (2008). Chapter 5

376 G. Jäger et al.

10. Goldengorin, B., Jäger, G., Molitor, P.: Some basics on tolerances. In: Cheng,
S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 194–206. Springer,
Heidelberg (2006)

11. Goldengorin, B., Jäger, G., Molitor, P.: Tolerances applied in combinatorial opti-
mization. J. Comput. Sci. 2(9), 716–734 (2006)

12. Goldengorin, B., Jäger, G., Molitor, P.: Tolerance based contract-or-patch heuristic
for the asymmetric TSP. In: Erlebach, T. (ed.) CAAN 2006. LNCS, vol. 4235, pp.
86–97. Springer, Heidelberg (2006)

13. Goldengorin, B., Sierksma, G., Turkensteen, M.: Tolerance based algorithms for
the ATSP. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS,
vol. 3353, pp. 222–234. Springer, Heidelberg (2004)

14. Greenberg, H.J.: An annotated bibliography for post-solution analysis in mixed
integer and combinatorial optimization. In: Woodruff, D.L. (ed.) Advances in Com-
putational and Stochastic Optimization, Logic Programming, and Heuristic Search,
pp. 97–148. Kluwer Academic Publishers, Dordrecht (1998)

15. Gusfield, D.: A note on arc tolerances in sparse minimum-path and network flow
problems. Networks 13, 191–196 (1983)

16. Gutin, G., Goldengorin, B., Huang, J.: Worst case analysis of Max-Regret, Greedy
and other heuristics for multidimensional assignment and traveling salesman prob-
lems. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp.
214–225. Springer, Heidelberg (2007)

17. Gutin, G., Goldengorin, B., Huang, J.: Worst case analysis of Max-Regret, Greedy
and other heuristics for multidimensional assignment and traveling salesman prob-
lems. J. Heuristics 14, 169–181 (2008)

18. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

19. Van Hoesel, S., Wagelmans, A.P.M.: On the complexity of postoptimality analysis
of 0/1 programs. Discrete Appl. Math. 91, 251–263 (1999)

20. Jäger, G.: The theory of tolerances with applications to the traveling salesman
problem. Habilitation thesis, Christian Albrechts University of Kiel, Germany
(2011)

21. Jäger, G., Dong, C., Goldengorin, B., Molitor, P., Richter, D.: A backbone based
TSP heuristic for large instances. J. Heuristics 20(1), 107–124 (2014)

22. Jäger, G., Molitor, P.: Algorithms and experimental study for the traveling sales-
man problem of second order. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA
2008. LNCS, vol. 5165, pp. 211–224. Springer, Heidelberg (2008)

23. Libura, M.: Sensitivity analysis for minimum Hamiltonian path and traveling sales-
man problems. Discrete Appl. Math. 30, 197–211 (1991)

24. Libura, M.: A note on robustness tolerances for combinatorial optimization prob-
lems. Inf. Process. Lett. 110(16), 725–729 (2010)

25. Murty, K.G.: An algorithm for ranking all the assignments in order of increasing
cost. Oper. Res. 16, 682–687 (1968)

26. Pardalos, P.M., Jha, S.: Complexity of uniqueness and local search in quadratic 01
programming. Oper. Res. Lett. 11(2), 119–123 (1992)

27. Van der Poort, E.S., Libura, M., Sierksma, G., van der Veen, J.A.A.: Solving the
k-best traveling salesman problem. Comput. Oper. Res. 26, 409–425 (1999)

28. Ramaswamy, R., Orlin, J.B., Chakravarti, N.: Sensitivity analysis for shortest path
problems and maximum capacity path problems in undirected graphs. Math. Pro-
gram. Ser. A 102, 355–369 (2005)

29. Reinfeld, N.V., Vogel, W.R.: Mathematical Programming. Prentice-Hall, Engle-
wood Cliffs (1958)

The Theory of Set Tolerances 377

30. Richter, D., Goldengorin, B., Jäger, G., Molitor, P.: Improving the efficiency of
Helsgaun’s Lin-Kernighan heuristic for the symmetric TSP. In: Janssen, J., Pra�lat,
P. (eds.) CAAN 2007. LNCS, vol. 4852, pp. 99–111. Springer, Heidelberg (2007)

31. Shier, D.R., Witzgall, C.: Arc tolerances in minimum-path and network flow prob-
lems. Networks 10, 277–291 (1980)

32. Sotskov, Y.N., Leontev, V.K., Gordeev, E.N.: Some concepts of stability analysis
in combinatorial optimization. Discrete Appl. Math. 58, 169–190 (1995)

33. Tarjan, R.E.: Sensitivity analysis of minimum spanning trees and shortest path
trees. Inf. Process. Lett. 14(1), 30–33 (1982)

34. Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-based
branch and bound algorithms for the ATSP. Eur. J. Oper. Res. 189(3), 775–788
(2007)

35. Volgenant, A.: An addendum on sensitivity analysis of the optimal assignment.
Eur. J. Oper. Res. 169, 338–339 (2006)

Strategies for Spectrum Allocation in OFDMA
Cellular Networks

Bereket Mathewos Hambebo(B), Marco Carvalho, and Fredric Ham

Intelligent Communication and Information Systems Laboratory,
Florida Institute of Technology, 150 W. University Blvd.,

Melbourne, FL 32901, USA
bmathewos2008@my.fit.edu,
{mcarvalho,fmh}@fit.edu

Abstract. The use of orthogonal frequency division multiple access
(OFDMA) in Long Term Evolution (LTE) and WiMax cellular systems
mitigates downlink intra-cell interference by the use of sub-carriers that
are orthogonal to each other. Intercell interference, however, limits the
downlink performance of cellular systems. In order to mitigate inter-cell
interference, various techniques have been proposed. These techniques
are generally divided into static and dynamic techniques. In static tech-
niques, resources allocated for base stations are fixed, while they are
adaptively allocated in the dynamic techniques. Although static and
dynamic frequency reuse techniques, address the issue of interference,
they do not have any mechanism to sustain a disruption or to main-
tain a allocation in a distributed manner. Hence, the need for distrib-
uted frequency allocation. In this paper we briefly discuss the merits
of distributed spectrum allocation algorithms for cellular networks and
also present an assessment of static interference schemes, and evaluate
overall performance of the system in terms of the SINR, and spectral
efficiency by adjusting different input parameters. In addition, we study
an adaptive frequency reuse algorithm presented by and compare it with
the static techniques.

Keywords: OFDMA · Inter cell interference · FFR · SFR · Adaptive
frequency reuse

1 Introduction

Emerging wireless mobile systems, such as the 3GPP Long Term Evolution (LTE)
and Mobile WiMax aim at providing higher data rate and enhanced spectral effi-
ciency. To achieve that goal, they use orthogonal frequency division multiple access
(OFDMA) in their downlink air interfaces [1]. OFDMA offers a high spectral effi-
ciency and a scalable bandwidth for cellular systems. It uses orthogonal frequency
division multiplexing (OFDM), which is a multi-carrier modulation scheme that
divides a frequency band into a group of mutually orthogonal narrow band sub-
carriers whose bandwidth is smaller than the coherence bandwidth of the channel.
c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 378–382, 2014.
DOI: 10.1007/978-3-319-09584-4 32

Strategies for Spectrum Allocation in OFDMA Cellular Networks 379

The sub-carriers’ orthogonality in OFDMA mitigates any inter-carrier interfer-
ence among the sub-carriers. However, co-channel interference (ICI) or inter-cell
interference (ICI) will be incurred in adjacent cells that share the same spectrum.
The ICI decreases the signal to interference and noise ratio (SINR), which causes
a decrease in the spectral efficiency and data rate of the system [2]. Hence, the
need for interference mitigation schemes.

In this work, we consider inter-cell interference coordination/avoidance tech-
niques. These techniques require some form of coordination between different
cells to restrict/allow resources in order to improve SINR and coverage [3]. Var-
ious inter-cell avoidance techniques have been studied in the past. These tech-
niques generally fall into two categories: static or dynamic techniques. In static
inter-cell interference coordination/avoidance techniques, allocated resource and
power levels of transmitter for base stations are fixed. In the dynamic schemes, on
the other hand, the resources are dynamically or adaptively allocated and power
levels adjustments are made depending on the channel condition and capacity
demand of the cells. In this paper, we present an assessment of static interference
schemes, and evaluate overall performance of the system in terms of the SINR,
and spectral efficiency by adjusting different input parameters. In addition, we
study an adaptive frequency reuse algorithm presented by [10] and compare it
with the static techniques.

Although interference avoidance/coordination techniques, specifically static
and dynamic frequency reuse techniques, address the issue of interference, they
do not have any mechanism to sustain a disruption. This is due to the fact
that there needs to be some type of coordination between the base stations.
If a base station or a coordinator base station that coordinates the allocation
of spectrum among the cells fails to function due to disruption, for example in
case of a major disaster, there will not be a fair spectrum reuse among the cells.
Distributed mechanisms solve this problem. In addition to addressing disruption,
distributed schemes allocate resources at base station level with no coordination
between cells. Base stations assign channels to its users independently. This
approach is a work in progress, and we present the advantages of using this
scheme and briefly compare it with the other techniques discussed above in
Sect. 4.

2 Static Frequency Reuse Techniques

2.1 Reuse-1

In this approach the entire bandwidth is reused in multiple cells. Upon deploy-
ment of the cellular network, all base stations are allowed to use the same cellular
spectrum. It targets higher system capacity and spectrum efficiency by reusing
the scarce resource in all cells. However, it causes considerable inter-cell interfer-
ence when adjacent cells allocate the same frequency. This interference greatly
limits the capacity and spectral efficiency of users by significantly reducing the
SINR of users, especially that are located at the edge of cells.

380 B.M. Hambebo et al.

2.2 Reuse-n

In reuse-n the available bandwidth is split into n orthogonal sub-bands and each
cell transmits on non interfering sub-bands. This ensures that the spectrum
is reused at distant cells. One example of Reuse-n is the Reuse-3 where the
whole frequency band is divided into three equal and orthogonal sub-bands.
This scheme provides improved inter-cell interference by avoiding using the same
frequency bands in adjacent cells. By increasing the reuse factor, interference
can be further reduced. However, interference avoidance comes at the expense
of bandwidth [4]. Each cell will have only a fraction of the available spectrum,
resulting in a reduction in the number of resource blocks provided for users in
each cell. This in turn will reduce the capacity and spectral efficiency of the
system.

2.3 Fractional Frequency Reuse (FFR)

Fractional frequency reuse [5] partitions the whole spectrum into two parts;
namely, one with reuse factor 1, and one with reuse factor n, usually n = 3.
The key idea behind FFR is to employ a reuse factor of unity for cell-center
regions and a reuse factor of 3 for cell-edge regions. As a result of splitting
the spectrum for inner and outer regions of a cell so that interior users do
not share any spectrum with exterior users, significant inter-cell interference
reduction, particularly for cell-edge users, is achieved [6]. However, the spectrum
is underutilized in FFR since the cell-edge user can only use part of the total
spectrum [7]. In addition, the implementation of a reuse factor at a cell edge
results in lower system throughput [8].

2.4 Soft Frequency Reuse (SFR)

Similarly to FFR, the basic idea of soft frequency reuse (SFR) is to apply Reuse-
1 at the inner cell region and a higher frequency reuse (Reuse-n) at the outer or
edge cell region. Unlike FFR, however, SFR reduces inter-cell interference with-
out reducing spectrum efficiency [9]. SFR splits the available band two regions:
cell-edge or outer band and cell-center or inner band. The cell is also divided into
two zones; a center zone where all of the spectrum is available and a cell-edge
zone where only a portion of the spectrum is available. The cell-edge band is
transmitted with a higher power level whereas the cell-center band is transmitted
with a reduced power level.

3 Adaptive Frequency Reuse (AFR)

Unlike the static techniques where allocation of spectrum is fixed, adaptive fre-
quency reuse techniques adapts to its environment, such as traffic loads and
interference. An example of these techniques is presented in [10]. In this tech-
nique, number of sub-carrier and transmit power for each base station is opti-
mized based on traffic load to maximize the total system throughput. Similar

Strategies for Spectrum Allocation in OFDMA Cellular Networks 381

to SFR, subcarriers are divided into two groups inner and outer subcarriers
each having different transmit power levels. Therefore, AFR finds the number of
outer and inner subcarriers as well as their transmit power for a given cell itera-
tively until it finds the number and power level that satisfies a certain data rate
requirement. Each cell determines these parameters by exchanging information
with neighboring cells.

4 Distributed Frequency Reuse

The techniques we have seen so far have limitations in that they are either fixed
during deployment or they require some form of coordination between base sta-
tions. Therefore, if a base station or a coordinator base station that coordinates
the allocation of spectrum among the cells fails to function due to disruption, for
example disaster, the performance of the cellular system will be highly affected.
Distributed allocation schemes tackle this problem by relying only on their local
information without having coordination as an important requirement. By elim-
inating the need for a central coordinator between base stations, distributed
schemes provide an independent, fast, and self organized frequency allocation
for cellular network. Although their benefit is firmly understood, there is a very
limited work done in distributed allocation for cellular networks so far. We have
an ongoing research in applying this concept and plan to present it in the near
future.

5 Results and Conclusion

An LTE based cellular system is simulated. We consider 19 cells in a hexagonal
layout, where 608 users are randomly distributed, and evaluated the overall
throughput and user SINR of the static schemes and they adaptive scheme that
are described in Sects. 2 and 3. As seen from Table 1, the results obtained show
that AFR provides a better overall system throughput while Reuse-1 provides
the lowest system throughput. That is due to the high interference caused by
reusing spectrum in adjacent cells in Reuse-1. On the other hand, Reuse-3 avoids
interference by reusing spectrum far apart and has the highest SINR. However,
the smaller number of available spectrum means lower throughput than FFR

Table 1. Results

Scheme System throughput (Mbps)

Reuse-1 6.99

Reuse-3 10.33

FFR 11.03

SFR 12.78

AFR 13.1

382 B.M. Hambebo et al.

and SFR. In sum, reducing interference, by avoiding frequency reuse in adjacent
cells, and using the right number of inner cell and outer cell sub-carriers, system
throughput is improved. To further decrease interference and increase capacity,
future work will be focused on employing distributed frequency allocation. In
addition to the benefits of increased capacity, distributed frequency allocation
can sustain system disruption since it relies solely on cells’ local information.

References

1. Srikanth, S., Murugesa Pandian, P.A., Fernando, X.: Orthogonal frequency division
multiple access in WiMAX and LTE: a comparison. IEEE Commun. Mag. 50, 153–
161 (2012)

2. Katzela, I., Naghshineh, M.: Channel assignment schemes for cellular mobile
telecommunication systems: a comprehensive survey. IEEE Pers. Commun. 3, 10–
31 (1996)

3. 3GPP, TR25.814 V1.0.2: Physical layer aspects for Evolved UTRA (2006)
4. Chang, R.Y., Tao, Z., Zhang, J., Kuo, C.-C.J.: Dynamic fractional frequency reuse

(D-FFR) for multicell OFDMA networks using a graph framework. Wireless Com-
mun. Mob. Comput. 13, 12–27 (2013)

5. Sternad, M., Ottosson, T., Ahlen, A., Svensson, A.: Attaining both coverage and
high spectral efficiency with adaptive OFDM downlinks. In: Vehicular Technology
Conference (2003)

6. Ericsson : R1–050764: Inter-cell interference handling for E-UTRA. 3GPP TSG
RAN WG1 Meeting #42 (2005)

7. Hamza, A., Khalifa, S., Hamza, H., Elsayed, K.: A survey on inter-cell interference
coordination techniques in OFDMA-based cellular networks. IEEE Commun. Surv.
Tutorials 15, 1642–1670 (2013)

8. He, C., Liu, F., Yang, H., Chen, C., Sun, H., May, W., Zhang, J.: Co-Channel Inter-
ference Mitigation in MIMO-OFDM System. In: International Conference on Wire-
less Communications, Networking and Mobile Computing, WiCom 2007 (2007)

9. Huawei : R1–050507: Soft frequency reuse scheme for UTRAN LTE. 3GPP TSG
RAN WG1 Meeting #42 (2005)

10. Qian, M., Hardjawana, W., Li, Y., Vucetic, B., Shi, J., Yang, X.: Inter-cell interfer-
ence coordination through adaptive soft frequency reuse in LTE networks. In: 2012
IEEE Wireless Communications and Networking Conference (WCNC), (2012)

A New Existence Condition for Hadamard
Matrices with Circulant Core

Ilias S. Kotsireas1(B) and Panos M. Pardalos2

1 Department of Physics and Computer Science,
Wilfrid Laurier University, Waterloo, Canada

ikotsire@wlu.ca
2 Industrial and Systems Engineering Department,
Center for Applied Optimization, Gainesville, USA

pardalos@ufl.edu

Abstract. We derive a new existence condition for Hadamard matrices
with circulant core, in terms of resultants, Hall polynomials and cyclo-
tomic polynomials. The derivation of this condition is based on a formula
for the determinant of a circulant matrix and properties of resultants.

Keywords: Hadamard matrices · Resultants · Cyclotomic polynomials

1 Introduction

A Hadamard matrix of order n is an n × n matrix Hn with elements ±1 such
that HnHT

n = HT
n Hn = nIn, where In is the n×n identity matrix and T stands

for matrix transposition. A well-known necessary condition for the existence of
a Hadamard matrix is that either n = 1, 2, or n ≡ 0 (mod 4). The sufficiency of
this condition is the:

Hadamard Conjecture. There exists a Hadamard matrix of order n for every
n such that n ≡ 0 (mod 4).

Hadamard [5] proved that if Hn = (hij) is an n × n matrix with (complex
number) elements from the unit disk (i.e. that satisfy |hij | ≤ 1), then

|det Hn| ≤ n
n
2 .

Hadamard matrices can alternatively be described as those matrices that attain
equality in Hadamard’s bound, i.e. for any Hadamard matrix H of order n we
have

|det Hn| = n
n
2 . (1)

The smallest order n for which a Hadamard matrix of order n is not known, is
n = 668, see [3,15]. For additional information on Hadamard matrices see the
books [6,7,13,15–17].

This research is partially supported by NSF, AirForce and NSERC grants.

c© Springer International Publishing Switzerland 2014
P.M. Pardalos et al. (Eds.): LION 2014, LNCS 8426, pp. 383–390, 2014.
DOI: 10.1007/978-3-319-09584-4 33

384 I.S. Kotsireas and P.M. Pardalos

Hadamard matrices arise in several applications in Statistics, Coding Theory,
Telecommunications Signal processing, Error-control codes and other areas. See
[1,12], for more detailed descriptions of applications of Hadamard matrices. One
of the most well-known early applications of Hadamard matrices in spacecraft
communications, namely the construction of a Hadamard matrix of order 92 in
1961 by JPL and Caltech Mathematicians, is described in http://blogs.jpl.nasa.
gov/tag/hadamard-matrix/.

2 Hadamard Matrices with Circulant Core

There are several different constructions for Hadamard matrices. A classical
construction uses the quadratic character of the finite field Fq, for q ≡ 3 (mod 4),
to construct a Hadamard matrix of order q+1, see [10]. Moreover, if q is a power
of an odd prime and q ≡ 1 (mod 4), then a Hadamard matrix of order 2(q + 1)
exists, see [16].

In this paper we shall be concerned with a particular kind of Hadamard
matrices called Hadamard matrices with circulant core. This kind of Hadamard
matrices are constructed via a circulant matrix and we shall derive a new condi-
tion for the circulant matrices that can be used to construct Hadamard matrices
with circulant core.

Definition 1. A n×n matrix C(a1, . . . , an) = (aij) is called a circulant matrix
of order n, if each row can be obtained from the previous row by a right cyclical
shift by one, aij = a1,j−i+1(mod n).

A circulant matrix of order n is specified (or generated) by its first row:

C(a1, . . . , an) =

⎛

⎜
⎜
⎜
⎝

a1 · · · an

an a1 an−1

...
...

...
a2 · · · a1

⎞

⎟
⎟
⎟
⎠

Definition 2. A Hadamard matrix with circulant core is a Hadamard matrix
H4k of order 4k which can be written as

H4k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 · · · 1
1 a1 · · · an

1 an a1 an−1

...
...

...
...

1 a2 · · · a1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 1 · · · 1
1
... C(a1, . . . , an)
1

⎞

⎟
⎟
⎟
⎠

(2)

where C(a1, . . . , an) is a circulant matrix of order n = 4k − 1.

In the context of the above definition, it is easy to see that the following linear
equation must be satisfied:

a1 + · · ·+ an = −1. (3)

http://blogs.jpl.nasa.gov/tag/hadamard-matrix/
http://blogs.jpl.nasa.gov/tag/hadamard-matrix/

A New Existence Condition for Hadamard Matrices 385

Four families of Hadamard matrices with circulant core are known to exist,
see [8] and references therein. Exhaustive searches for Hadamard matrices with
circulant core for the 12 orders 4, 8, . . . , 48 have been performed in [8] using
Computational Algebra and Supercomputing techniques. In particular, it was
found that there are no Hadamard matrices with circulant core for the two
orders 28 and 40, while such matrices have been found by exhaustive search for
the remaining ten orders. In this paper, it is also shown that for a specific order
4k, the set of all ±1 sequences of length 4k− 1 that can be used as first rows of
circulant matrices to construct Hadamard matrices with circulant core, exhibits
a dihedral group structure, assuming that this set in non-empty.

2.1 The Determinant of a Circulant Matrix

We mention two explicit expressions for the determinant of a circulant matrix.
Let A = [a1, . . . , an] be a sequence of n indeterminates. Denote by C(a1, . . . , an)
the circulant matrix whose first row is given by the sequence A.

Definition 3. The Hall polynomial associated with the sequence A = [a1, . . . , an]
is defined by

H(a1, . . . , an) = a1 + a2x + · · ·+ anxn−1 =
n∑

i=1

aix
i−1.

The notation H(A) is also used for the Hall polynomial.

See [2] for the (classical) definition of the resultant ρ of two polynomials in x,
w.r.t. x.

Theorem 1 (see [4,14])

det C(a1, . . . , an) = ρ(xn − 1,H(a1, . . . , an)).

Theorem 2 (see [9])

det C(a1, . . . , an) =
n∏

m=1

n∑

h=1

ahω(m−1)(h−1)

where ω = e(2πi/n) is the primary n-th root of unity.

The formula in Theorem 2 is expanded as detC(a1, . . . , an)

= (a1+ · · ·+an)(a1+a2ω+ · · ·+anωn−1) · · · (a1+a2ω
n−1+ · · ·+anω(n−1)(n−1))

386 I.S. Kotsireas and P.M. Pardalos

The equivalence of the two expressions for detC(a1, . . . , an) given in Theorems 1
and 2 can be easily deduced from the well-known resultant factorization formula

ρ(A,B) = bn
m

m∏

j=1

A(yi)

where n is the degree of the polynomial A, bm is the highest order coefficient of
the polynomial B and y1, . . . , ym are the m roots of the polynomial B, see [2]
for instance.

3 A New Condition for the Existence of Hadamard
Matrices with Circulant Core

In this section we derive a new condition for the existence of Hadamard matrices
with circulant core.

Theorem 3. A necessary and sufficient condition for the±1 sequence [a1, . . . , an]
(satisfying the property a1 + · · ·+ an = −1) to be a generator of the circulant core
of a Hadamard matrix H4k of the form (2) is that

|ρ(xn − 1,H(a1 − 1, . . . , an − 1))| = (4k)2k.

Proof. For a Hadamard matrix with circulant core H4k or order 4k, the basic
property (1) of the determinant of a Hadamard matrix implies that

|det H4k| = (4k)(2k). (4)

Moreover, the determinant of a Hadamard matrix with circulant core H4k is
equal to the determinant of its shifted (by one) circulant core C(a1 − 1, . . . ,
an− 1). This can be easily seen by subtracting the first column of H4k from the
remaining 4k − 1 columns. The resulting matrix will be

G4k =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
1 a1 − 1 · · · an − 1
1 an − 1 a1 − 1 an−1 − 1
...

...
...

...
1 a2 − 1 · · · a1 − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and expanding the determinant along the first row of G4k we obtain

det H4k = det G4k = det C(a1 − 1, . . . , an − 1). (5)

The condition of the theorem is a direct consequence of Eqs. (4), (5) and
Theorem 1. ��

A New Existence Condition for Hadamard Matrices 387

Remark 1. The condition of Theorem 3 may not be a very practical way to
search for Hadamard matrices with circulant core, due to the high complexity
of the resultant calculation. However, the connection with resultants is quite
important, because it can be used in conjunction with cyclotomy to derive a
simpler condition in some special cases.

Remark 2. The Hall polynomials of the two sequences [a1, . . . , an] and [a1 −
1, . . . , an − 1] are related by

H(a1 − 1, . . . , an − 1) = H(a1, . . . , an)−
n−1∑

m=0

xm

Remark 3. Resultants of Hall polynomials can sometimes be computed explic-
itly:

ρ(x− 1,H(a1, . . . , an)) =
n∑

i=1

ai

ρ(x + 1,H(a1, . . . , an)) =
n∑

i=1

(−1)(i+1)ai

ρ(x− 1,H(a1 − 1, . . . , an − 1)) =

(
n∑

i=1

ai

)

− n

(6)

Remark 4. We note that if we make use of Theorem 2 instead of Theorem 1,
then we obtain the existence condition

∣
∣
∣
∣
∣

n∏

m=1

n∑

h=1

bhω(m−1)(h−1)

∣
∣
∣
∣
∣
= (4k)2k

where [b1, . . . , bn] = [a1 − 1, . . . , an − 1], which is simply a way to recast the
well-known power spectral density criterion:

|b1 + b2 + · · ·+ bn| = 4k

|b1 + b2ω + · · ·+ bnωn| = √4k
...∣

∣b1ωn−1 + b2ω
2(n−1) + · · ·+ bnω(n−1)(n−1)

∣
∣ =
√

4k

i.e. the fact that the square magnitudes of the elements of the discrete Fourier
transform associated to the binary sequence [b1, . . . , bn], must be equal to a
constant.

3.1 Numerical Examples

We illustrate the existence condition of Theorem 3 with two numerical examples.
We denote +1 by + and −1 by −.

k = 8, n = 4k − 1 = 31. The following sequence A = [a1, . . . , a31]

= [−−−−−+−−−+ + +−+−+−−+−+ + + +−−+ +−+ +]

388 I.S. Kotsireas and P.M. Pardalos

can be used as the first row of a circulant C(A) to yield a particular Hadamard
matrix H32 with circulant core. Note that a1 + · · · + a31 = −1 in accordance
with (3). The following relationships hold:

det H32 = −280, |ρ(x31 − 1,H(a1 − 1, . . . , a31 − 1))| = (4 · 8)2·8.

k = 9, n = 4k − 1 = 35. The following sequence A = [a1, . . . , a35]

= [−−−−−+−−−+ +−+ + + +−+−+−−+ +−+ +−+−−−+ + +]

can be used as the first row of a circulant C(A) to yield a particular Hadamard
matrix H36 with circulant core. Note that a1 + · · · + a35 = −1 in accordance
with (3). The following relationships hold:

det H36 = −236336, |ρ(x35 − 1,H(a1 − 1, . . . , a35 − 1))| = (4 · 9)2·9.

3.2 Cyclotomic Polynomials

The condition of Theorem 3 can be simplified using properties of cyclotomic
polynomials. We illustrate this by proving the following theorem.

Theorem 4. Let n = 4k−1 be a prime number denoted by p. Then a necessary
condition for the ±1 sequence A = [a1, . . . , ap] to give rise to a Hadamard matrix
H4k with circulant core is

|ρ(Φp(x),H(a1, . . . , ap))| = (4k)2k−1.

Proof. A well-known product formula for cyclotomic polynomials states that

xn − 1 =
∏

d|n
Φd(x) (7)

where the product extends over all divisors of n and Φd(x) denotes the cyclotomic
polynomial of order d, see [2]. It is also well-known that Φd(x) is a polynomial
with integer coefficients of degree φ(d) where φ denotes the Euler totient func-
tion, see [2].

In view of the product formula (7) and using a multiplicative property of the
resultant, the condition of Theorem 3 can be stated as

∣
∣
∣
∣
∣
∣

∏

d|n
ρ(Φd(x),H(a1 − 1, . . . , an − 1))

∣
∣
∣
∣
∣
∣
= (4k)2k. (8)

Since n = p, a prime, there are only two divisors d, namely d = 1 and d = p and
we have

Φ1(x) = x− 1, Φp(x) = xp−1 + · · ·+ x + 1.

A New Existence Condition for Hadamard Matrices 389

Therefore formula (8) becomes

|ρ(x− 1,H(a1 − 1, . . . , ap − 1))| · |ρ(Φp(x),H(a1 − 1, . . . , ap − 1))| = (4k)2k.

The first term ρ(x−1,H(a1−1, . . . , ap−1)) is equal to a1+ · · · ap−p = −1−p =
−4k according to (6) and (3), which automatically implies that

|ρ(Φp(x),H(a1 − 1, . . . , ap − 1))| = (4k)2k−1.

In addition, Remark 2 gives

H(a1 − 1, . . . , ap − 1) = H(a1, . . . , ap)− Φp(x),

so that finally we have

|ρ(Φp(x),H(a1, . . . , ap)− Φp(x))| = (4k)2k−1

which simplifies to

|ρ(Φp(x),H(a1, . . . , ap))| = (4k)2k−1.

��
Coming back to example 3.1, where k = 8 and n = 31, a prime, we see that we
do indeed have

|ρ(Φ31(x),H(a1, . . . , a31))| = (4 · 8)2·8−1.

It would be of interest to carry out a similar analysis in the case when n is a
product of two primes, n = p · q, assuming without loss of generality that p < q
and using the expressions

Φp(x) = xp−1 + · · ·+ x + 1, Φq(x) = xq−1 + · · ·+ x + 1.

It would also be of interest to investigate the relationship of our results and the
point of view of [11] where sequences with ideal autocorrelation are realized via
trace functions in finite fields.

4 Applications

In this section we show how our resultant-based existence condition can be used
to furnish independent proofs of non-existence results for Hadamard matrices
with circulant core. In particular, it was shown in [8] that there do not exist
Hadamard matrices with circulant core of orders 28 (i.e. k = 7) and 40 (i.e.
k = 10). These two facts can be verified independently using Theorem 3. In the
case of order 28, keeping in mind that (3) must be satisfied, we performed the(

27
(27−1)/2

)
(i.e. approximately 20 million) resultant calculations entailed by Theo-

rem 3 and didn’t find any solutions, as expected. In the case of order 40, keeping
in mind that (3) must be satisfied, we performed the

(
39

(39−1)/2

)
(i.e. approxi-

mately 69 billion) resultant calculations entailed by Theorem 3 and didn’t find
any solutions, as expected. As pointed out by one of the referees, the condition
of Theorem 3 can be re-expressed in terms of the original Hall polynomial of the
core, which could improve the corresponding calculations significantly.

390 I.S. Kotsireas and P.M. Pardalos

5 Conclusion and Acknowledgement

In this paper we prove a new existence condition for Hadamard matrices with
circulant core, based on resultants. We also show how this condition can be
simplified via properties of cyclotomic polynomials, in the case where the order
of the matrix is equal to p+1, where p is a prime number. The authors thank the
referees for the their pertinent comments that contributed toward an improved
version of the paper.

References

1. Agaian, S.S.: Hadamard Matrices and their Applications. Lecture Notes in Math-
ematics, vol. 1168. Springer, Berlin (1985)

2. Apostol, T.M.: Resultants of cyclotomic polynomials. Proc. Amer. Math. Soc. 24,
457–462 (1970)

3. Djokovic, D.Z.: Hadamard matrices of order 764 exist. Combinatorica 28(4), 487–
489 (2008)

4. Fee, G., Granville, A.: The prime factors of Wendt’s binomial circulant determi-
nant. Math. Comp. 57(196), 839–848 (1991)

5. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci.
Math. 17, 30–31 (1893)

6. Hall, M.: Combinatorial Theory. Wiley Classics Library. Wiley, New York (1998)
7. Horadam, K.J.: Hadamard Matrices and their Applications. Princeton University

Press, Princeton (2007)
8. Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Hadamard ideals and Hadamard

matrices with circulant core. J. Combin. Math. Combin. Comput. 57, 47–63 (2006)
9. Lehmer, D.H.: Some properties of circulants. J. Number Theor. 5, 43–54 (1973)

10. Lidl, R., Niederreiter, H.: Finite fields. Encyclopedia of Mathematics and its Appli-
cations, vol. 20, 2nd edn. Cambridge University Press, Cambridge (1997). (With a
foreword by P. M. Cohn)

11. No, J.-S., et al.: Binary pseudorandom sequences of period 2n − 1 with ideal auto-
correlation. IEEE Trans. Inform. Theory 44(2), 814–817 (1998)

12. Seberry, J., Wysocki, B., Wysocki, T.: On some applications of Hadamard matrices.
Metrika 62, 221–239 (2005)

13. Seberry, J., Yamada, M.: Hadamard matrices, sequences, and block designs. In:
Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of
Surveys, pp. 431–560. Wiley, New York (1992)

14. Stern, M.A.: Einige Bemerkungen über eine Determinante. J. Reine Angew. Math.
73, 374–380 (1871)

15. Stinson, D.R.: Combinatorial Designs, Constructions and Analysis. Springer, New
York (2004)

16. van Lint, J.H., Wilson, R.M.: A Course in Combinatorics, 2nd edn. Cambridge
University Press, Cambridge (2001)

17. Wallis, W.D., Street, A.P., Wallis, J.S.: Combinatorics: Room Squares, Sum-
Free Sets, Hadamard Matrices. Lecture Notes in Mathematics, vol. 292. Springer,
Heidelberg (1972)

Author Index

Akrotirianakis, Ioannis 324
Amadini, Roberto 21

Bauer, Nadja 173
Bautin, Grigory A. 98
Batsyn, Mikhail 111
Bayless, Sam 47
Bezerra, Leonardo C.T. 157
Biesinger, Benjamin 203
Bischl, Bernd 173
Brockhoff, Dimo 121

Calandra, Roberto 274
Cares, Juan Pablo 353
Carvalho, Marco 378
Cauwet, Marie-Liesse 1
Chakraborty, Amit 324

Deisenroth, Marc Peter 274

Fan, Neng 291
Fan, Wenjuan 242
Fawcett, Chris 36
Fenn, Michael 306
Festa, Paola 223
Friedrichs, Klaus 173

Gabbrielli, Maurizio 21
Galiauskas, Nerijus 82
Geschwender, Daniel 41
Goldengorin, Boris 362
Gopalan, Nakul 274
Grimme, Christian 153
Guarracino, Mario 306

Hager, William W. 77
Ham, Fredric 378
Hamadi, Youssef 121
Hambebo, Bereket Mathewos 378
Handoko, Stephanus Daniel 62
Harada, Tomohiro 227
Hattori, Kiyohiko 227
Hoos, Holger H. 36, 41, 47
Hu, Bin 203
Hungerford, James T. 77
Hutter, Frank 36, 41
Hyndman, Rob J. 341

Jäger, Gerold 362
Junior, Francisco N. 223

Kaci, Souhila 121
Kalygin, Valery A. 88
Koldanov, Alexander P. 88
Koldanov, Petr A. 98
Kotsireas, Ilias S. 383
Kotthoff, Lars 16, 41

Lalla-Ruiz, Eduardo Aníbal 218
Lau, Hoong Chuin 62
Leyton-Brown, Kevin 36, 41
Lindauer, Marius 36
Liu, Jialin 1
Liu, Lin 242
Liu, Xinbao 242
Lopez, Alvaro 111
López-Ibáñez, Manuel 36, 157

Malitsky, Yuri 41
Marinaki, Magdalene 258
Marinakis, Yannis 258
Mauro, Jacopo 21
Meignan, David 187
Migdalas, Athanasios 258
Miyakawa, Minami 137

Neveu, Bertrand 353
Nguyen, Duc Thien 62

Pardalos, Panos M. 88, 242, 291,
306, 362, 383

Pei, Jun 242
Peters, Jan 274
Pi, Jiaxing 306

Qin, Zhiwei 324

Raidl, Günther 203
Resende, Mauricio G.C. 223
Riff, María-Cristina 353
Rudolph, Günter 153

Sadeghi, Elham 291
Safro, Ilya 77
Sato, Hiroyuki 137, 227
Schütze, Oliver 153

Schwarze, Silvia 187
Segundo, Pablo San 111
Seyfarth, André 274
Silva, Ricardo M.A. 223
Smith-Miles, Kate 341
Steponavičė, Ingrida 341
Stützle, Thomas 36, 157

Takadama, Keiki 137, 227
Tang, Xiaocheng 324
Teytaud, Olivier 1

Tompkins, Dave A.D. 47
Trautmann, Heike 153

Valentim, Filipe L. 223
Villanova, Laura 341
Voß, Stefan 187, 218

Weihs, Claus 173
Wessing, Simon 173

Yuan, Zhi 62

Žilinskas, Julius 82

392 Author Index

	Preface
	Organization
	Contents
	Algorithm Portfolios for Noisy Optimization: Compare Solvers Early
	1 Introduction
	1.1 Noisy Optimization
	1.2 Algorithm Selection
	1.3 Outline of This Paper

	2 Noisy Optimization Solvers
	3 Algorithms and Analysis
	3.1 Definitions and Notations
	3.2 Simple Case: Uniform Portfolio NOPA
	3.3 Theoretical Analysis: The Log(M)-Shift
	3.4 Real World Constraints and Introducing Sharing

	4 Experimental Results
	5 Conclusion
	6 Appendix
	References

	Ranking Algorithms by Performance
	1 Introduction
	2 Organizing Predictions
	2.1 Empirical Evaluation

	3 Results and Conclusion
	References

	Portfolio Approaches for Constraint Optimization Problems
	1 Introduction
	2 Solution Quality Evaluation
	3 Methodology
	3.1 Solvers, Dataset, and Features
	3.2 Portfolio Composition
	3.3 Portfolio Approaches
	3.4 Validation

	4 Results
	4.1 Average Score
	4.2 Percentage of Optima Proven
	4.3 Average Optimization Time

	5 Related Work
	6 Conclusions and Extensions
	References

	AClib: A Benchmark Library for Algorithm Configuration
	1 Introduction
	2 Design Criteria and Summary of Benchmarks
	3 Future Work
	References

	Algorithm Configuration in the Cloud: A Feasibility Study
	1 Introduction and Related Work
	2 Experimental Setup
	3 Results
	4 Conclusion
	References

	Evaluating Instance Generators by Configuration
	1 Introduction and Background
	2 Quantitative Assessment of Instance Set Utility
	3 Experimental Setup
	4 Results and Analysis
	5 Conclusions and Future Work
	References

	An Empirical Study of Off-Line Configuration and On-Line Adaptation in Operator Selection
	1 Introduction
	2 The Target Problem and Algorithm
	3 Operator Selection Strategies
	3.1 The Static Operator Strategy
	3.2 The Mixed Operator Strategy
	3.3 The Adaptive Operator Selection

	4 Experimental Setup
	4.1 Instance Setup
	4.2 Target Algorithm Setup
	4.3 Off-line Configuration Setup

	5 Experimental Results
	5.1 The Static Operator Strategy
	5.2 The Mixed Operator Strategy
	5.3 The On-line Adaptive Operator Selection
	5.4 Combining MOS and AOS
	5.5 Further Analysis on the Effectiveness of On-line Adaptation

	6 Conclusions and Future Works
	References

	A Continuous Refinement Strategy for the Multilevel Computation of Vertex Separators
	1 Introduction
	2 Algorithm
	3 Computational Results
	References

	On Multidimensional Scaling with City-Block Distances
	1 Introduction
	2 Two-Level Optimization for Multidimensional Scaling with City-Block Distances
	3 Reformulation of Optimization Problem with City-Block Distances
	4 Experimental Investigation
	5 Conclusions
	References

	A General Approach to Network Analysis of Statistical Data Sets
	1 Introduction
	2 Measures of Association
	3 Identification Problem in Market Network Analysis
	4 Multiple Decision Theory
	5 Conditional Risk
	6 Concluding Remark
	References

	Multiple Decision Problem for Stock Selection in Market Network
	1 Introduction
	2 Problem Statement
	3 Multiple Decision Theory Approach
	4 Unbiasedness
	5 Optimal Multiple Decision Statistical Procedure
	6 Conditional Risk
	7 Concluding Remarks
	References

	Initial Sorting of Vertices in the Maximum Clique Problem Reviewed
	Abstract
	1 Introduction
	2 Preliminaries
	3 New Initial Sorting
	4 A Comparison Survey
	4.1 Experiments Without ILS0
	4.2 Experiments with ILS0

	5 Conclusions and Future Work
	Acknowledgments
	References

	Using Comparative Preference Statements in Hypervolume-Based Interactive Multiobjective Optimization
	1 Introduction
	2 Preference Articulation and Interactive Optimization in Evolutionary Multiobjective Optimization
	3 The Weighted Hypervolume Indicator and Hypervolume-Based Selection
	4 Interactive Optimization with Weighted Hypervolume Based Selection
	5 Investigating and Comparing W-HypE in Depth
	6 Defining the Most Preferred Solutions via Comparative Preference Statements
	7 Conclusions
	References

	Controlling Selection Area of Useful Infeasible Solutions in Directed Mating for Evolutionary Constrained Multiobjective Optimization
	1 Introduction
	2 Constrained Multi-objective Optimization Using Evolutionary Algorithms
	2.1 Constrained Multi-objective Optimization Problems
	2.2 MOEAs for Solving CMOPs

	3 MOEA Using Two-Stage Non-dominated Sorting and Directed Mating (TNSDM)
	3.1 Two-Stage Non-dominated Sorting
	3.2 Directed Mating
	3.3 Problems in the Conventional Directed Mating

	4 Proposed Method: Controlling Selection Areas of M in Directed Mating
	5 Experimental Setup
	5.1 Benchmark Problem
	5.2 Parameters and Metrics

	6 Experimental Results and Discussion
	6.1 Number of Directed Mating Executions by Varying Selection Area of M
	6.2 HV by Varying the Selection Area of M
	6.3 Diversity and Convergence of POS by Varying Selection Area of M

	7 Conclusions
	References

	An Aspiration Set EMOA Based on Averaged Hausdorff Distances
	References

	Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem
	1 Introduction
	2 The Permutation Flowshop Problem
	3 Multi-objective Evolutionary Algorithms
	4 Experimental Setup
	5 Comparison of MOEAs
	5.1 Cmax-TFT
	5.2 Cmax-TT
	5.3 TFT-TT
	5.4 Cmax-TFT-TT

	6 Iterative Analysis
	6.1 Cmax-TFT and Cmax-TFT-TT
	6.2 Cmax-TT
	6.3 TFT-TT

	7 Conclusions and Future work
	References

	MOI-MBO: Multiobjective Infill for Parallel Model-Based Optimization
	1 Introduction
	2 Model-Based Optimization
	2.1 The Basic Sequential Algorithm
	2.2 Review of Parallel MBO Strategies

	3 Proposal
	4 Comparison Experiments
	5 Results
	6 Conclusion
	References

	Two Look-Ahead Strategies for Local-Search Metaheuristics
	1 Introduction
	2 Look-Ahead Hyper-Heuristic
	2.1 Application of the Concept
	2.2 Design Choices

	3 Iterated Local-Search with Probing Phase
	3.1 Application of the Concept
	3.2 Design Choices

	4 Numerical Study
	4.1 Evaluation on CHeSC'2011 Benchmark
	4.2 Impact of the Look-Ahead Width in ILS-Probe

	5 Conclusion
	References

	An Evolutionary Algorithm for the Leader-Follower Facility Location Problem with Proportional Customer Behavior
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Mathematical Model
	5 Evolutionary Algorithm
	5.1 Greedy Solution Evaluation
	5.2 Initial Population/EA Framework and Variation Operators
	5.3 Solution Archive
	5.4 Local Improvement

	6 Computational Results
	7 Conclusions and Future Work
	References

	Towards a Matheuristic Approach for the Berth Allocation Problem
	1 Introduction
	2 POPMUSIC Approach for the DBAP
	3 Conclusions
	References

	GRASP with Path-Relinking for the Maximum Contact Map Overlap Problem
	1 Introduction
	2 GRASP with Path-Relinking for the MAX-CMO
	3 Experimental Results
	References

	What is Needed to Promote an Asynchronous Program Evolution in Genetic Programing?
	1 Introduction
	2 Tierra
	3 Tierra-Based Asynchronous Genetic Programming
	3.1 Overview
	3.2 Algorithm

	4 Problem Description
	4.1 Testbed Problem
	4.2 Evaluation Criteria

	5 Experiment
	5.1 Cases
	5.2 Parameter Settings
	5.3 Results

	6 Discussion
	7 Conclusion
	References

	A Novel Hybrid Dynamic Programming Algorithm for a Two-Stage Supply Chain Scheduling Problem
	1 Introduction
	2 Literature Review
	2.1 Dynamic Programmings
	2.2 Heuristics

	3 Problem Description
	4 Problem Formulation
	5 The Structural Properties and Lower Bound for the Problem
	5.1 The Structural Properties
	5.2 Lower Bound

	6 The Proposed Hybrid Dynamic Programming Algorithm
	7 Computational Experiments
	8 Conclusions and Future Work
	References

	A Hybrid Clonal Selection Algorithm for the Vehicle Routing Problem with Stochastic Demands
	1 Introduction
	2 Hybrid Clonal Selection Algorithm for the Vehicle Routing Problem with Stochastic Demands
	2.1 Variable Neighborhood Search
	2.2 Iterated Local Search

	3 Results and Discussion
	4 Conclusions
	References

	Bayesian Gait Optimization for Bipedal Locomotion
	1 Introduction
	2 Efficient Gait Optimization
	2.1 Bayesian Optimization
	2.2 Gaussian Process Model for Objective Function
	2.3 Acquisition Function
	2.4 Optimizing the Acquisition Surface

	3 Experimental Set-up and Results
	3.1 Proof of Concept: Stochastic Linear-Quadratic Regulator
	3.2 Bayesian Optimization for Trajectory Imitation
	3.3 Gait Optimization for a Bio-Inspired Biped

	4 Conclusion
	References

	Robust Support Vector Machines with Polyhedral Uncertainty of the Input Data
	1 Introduction
	2 Support Vector Machine for Classification
	2.1 Support Vector Machines
	2.2 Transductive SVMs

	3 Uncertainties and Robust Optimization Models
	3.1 Uncertainties
	3.2 Robust Optimization Models for SVMs
	3.3 Robust SVMs for Interval Uncertainty
	3.4 Robust Optimization Models for Transductive SVMs

	4 Numerical Experiments
	5 Conclusions
	References

	Raman Spectroscopy Using a Multiclass Extension of Fisher-Based Feature Selection Support Vector Machines (FFS-SVM) for Characterizing In-Vitro Apoptotic Cell Death Induced by Paclitaxel
	Abstract
	1 Introduction
	2 Materials and Methods
	3 Results and Discussion
	4 Conclusion
	Acknowledgements
	References

	HIPAD - A Hybrid Interior-Point Alternating Direction Algorithm for Knowledge-Based SVM and Feature Selection
	1 Introduction
	1.1 Related Work
	1.2 Main Contributions

	2 A Two-Phase Hybrid Optimization Algorithm
	2.1 Solving the Elastic Net SVM Using ADMM
	2.2 SVM via Interior-Point Method
	2.3 The Two-Phase Algorithm

	3 Domain Knowledge Incorporation
	3.1 ADMM Phase
	3.2 IPM Phase
	3.3 HIPAD with Domain Knowledge Incorporation

	4 Numerical Results
	4.1 HIPAD vs ADMM
	4.2 Simulation for Knowledge Incorporation

	5 Conclusion
	A Appendix
	References

	Efficient Identification of the Pareto Optimal Set
	1 Introduction
	2 Background
	3 The EPIC Method
	4 Experimental Results
	4.1 Experimental Setup
	4.2 Methods Comparison

	5 Conclusions and Future Works
	5.1 Conclusions
	5.2 Future Works

	References

	GeneRa: A Benchmarks Generator of Radiotherapy Treatment Scheduling Problem
	1 Introduction
	2 Radiotherapy Scheduling Problem
	3 The Scheduling Radiotherapy Problem in Different Countries
	3.1 The Scheduling Radiotherapy Problem in Italy
	3.2 The Scheduling Radiotherapy Problem in France
	3.3 The Scheduling Radiotherapy Problem in United Kingdom
	3.4 The Scheduling Radiotherapy in Chile
	3.5 Discussion

	4 Instances Generator
	4.1 An Example

	5 Conclusion
	References

	The Theory of Set Tolerances
	1 Introduction
	2 Notations and Definitions
	2.1 Combinatorial Minimization Problems
	2.2 Single Upper Tolerances
	2.3 Single Lower Tolerances

	3 Set Upper Tolerances
	4 Set Lower Tolerances
	5 Applications
	5.1 Linear Assignment Problem
	5.2 Asymmetric Bottleneck Traveling Salesman Problem

	6 Future Work
	References

	Strategies for Spectrum Allocation in OFDMA Cellular Networks
	1 Introduction
	2 Static Frequency Reuse Techniques
	2.1 Reuse-1
	2.2 Reuse-n
	2.3 Fractional Frequency Reuse (FFR)
	2.4 Soft Frequency Reuse (SFR)

	3 Adaptive Frequency Reuse (AFR)
	4 Distributed Frequency Reuse
	5 Results and Conclusion
	References

	A New Existence Condition for Hadamard Matrices with Circulant Core
	1 Introduction
	2 Hadamard Matrices with Circulant Core
	2.1 The Determinant of a Circulant Matrix

	3 A New Condition for the Existence of Hadamard Matrices with Circulant Core
	3.1 Numerical Examples
	3.2 Cyclotomic Polynomials

	4 Applications
	5 Conclusion and Acknowledgement
	References

	Author Index

