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Abstract. We identify 13 problems whose solutions can significantly
enhance our ability to design and analyze firewalls and other packet
classifiers. These problems include the firewall equivalence problem, the
firewall redundancy problem, the firewall verification problem, and the
firewall completeness problem. The main result of this paper is to prove
that every one of these problems is NP-hard. Our proof of this result
is interesting in the following way. Only one of the 13 problems, the so
called slice probing problem, is shown to be NP-hard by a reduction
from the well-known 3-SAT problem. Then, the remaining 12 problems
are shown to be NP-hard by reductions from the slice probing problem.
The negative results of this paper suggest that firewalls designers may
need to rely on SAT solvers to solve instances of these 13 problems or
may be content with probabilistic solutions of these problems.
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1 Introduction

A firewall is a packet filter that is placed at a point where a private computer
network is connected to the rest of the Internet [14]. The firewall intercepts
each packet that is exchanged between the private network and the Internet,
examines the fields of the packet headers, and makes a decision either to discard
the packet or accept it and allow it to proceed on its way. The decision that a
firewall makes to discard or accept a packet depends on two factors:

1. The values of the fields in the packet headers.
2. The sequence of rules in the firewall that are specified by the firewall designer.

A firewall rule consists of a predicate and a decision, which is either accept
or discard. When the firewall receives a packet, the firewall searches its sequence
of rules for the first rule, whose predicate is satisfied by the values of the fields
in the packet headers, and then applies the decision of this rule to the packet.
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Note that there are three sets of packets that are associated with each firewall:
(1) the set of packets that are discarded by the firewall, (2) the set of packets
that are accepted by the firewall, and (3) the set of packets that are neither
discarded nor accepted by the firewall. This third set is usually empty.

The task of designing, verifying, and analyzing a firewall (especially one with
thousands of rules, as usually is the case) is not an easy one [9,11,16]. Performing
this task properly usually requires solving thousands of instances of the following
problems:

1. Firewall Verification:
Show that a given firewall discards or accepts a given set of packets.

2. Firewall Implication:
Show that a given firewall discards (or accepts, respectively) every packet
that is discarded (or accepted, respectively) by another given firewall.

3. Firewall Equivalence:
Show that two given firewalls discard or accept the same set of packets.

4. Firewall Adequacy:
Show that a given firewall discards or accepts at least one packet.

5. Firewall Redundancy:
Show that a given discard (or accept, respectively) rule in a given firewall
can be removed from the firewall without changing the set of packets that are
discarded (or accepted, respectively) by the firewall.

6. Firewall Completeness:
Show that any given firewall discards or accepts every packet.

Efficient algorithms for solving these six problems can benefit the design, ver-
ification, and analysis of firewalls. For example, consider the next three scenarios
that occur frequently during the design phase, verification phase, and analysis
phase of firewalls.

Scenario 1. A firewall designer designs a firewall that is required to accept some
specified sets of packets and to discard other specified sets of packets. After
the firewall design is completed, the designer needs to verify that indeed the
designed firewall accepts every set of packets that it should accept and discards
every set of packets that it should discard. Thus, the designer needs to apply an
algorithm, that solves the above firewall verification problem, on the designed
firewall. Moreover, if the verification shows that the firewall discards a set of
packets that should be accepted or accepts a set of packets that should be dis-
carded, then the designer needs to modify the designed firewall and repeat the
verification.

Scenario 2. A firewall can be designed through a series of refinement steps that
proceeds as follows. Initially, the firewall is designed to accept all packets. Then
at each refinement step, the designer modifies the firewall slightly to make the
firewall discard one more set of packets (that the firewall is required to discard).
To check the correctness of each refinement step, the designer needs to apply
an algorithm, that solves the above firewall implication problem, to check that
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indeed the firewall at the end of the refinement step discards every packet that
is discarded by the firewall at the beginning of the refinement step.

Scenario 3. After a firewall designer completes the design of a firewall, the
designer needs to identify the redundant rules in the designed firewall and remove
them from the firewall. (Note that removing the redundant rules from a firewall
does not affect the sets of packets that are discarded by or accepted by the
firewall.) To identify the redundant rules in the designed firewall, the designer
needs to apply an algorithm that solves the above firewall redundancy problem,
to check whether each rule in the firewall is redundant.

Recognizing the importance of these problems (to the task of designing, ver-
ifying, and analyzing firewalls), many researchers have attempted to develop
efficient algorithms that can solve these problems in polynomial time. But the
efforts of these researchers (including the authors of the current paper) have
failed to develop polynomial algorithms for solving any of these problems. And
the time complexity of the best known algorithm to solve any of these problems
remains exponential.

In this paper, we show that in fact each one of these problems is NP-hard!
This paper is the first to show that any significant problem related to the logical
analysis of firewalls is NP-hard. Note that the paper not only proves that one
or two of these problems are NP-hard but it also proves that many of these
problems are NP-hard.

The rest of this paper is organized as follows. In Sect. 2, we formally define
the four main concepts of firewalls, namely fields, packets, rules, and firewalls. In
Sect. 3, we formally state 13 problems related to the logical analysis of firewalls.
In Sects. 4–10, we prove that each one of the 13 problems in Sect. 3 is NP-hard.
Then in Sect. 11, we outline three research directions that can still enhance
our ability to design and analyze firewalls, in light of these negative results.
Concluding remarks are in Sect. 13.

2 Fields, Packets, Rules, and Firewalls

In this section, we define the four main concepts of firewalls: fields, packets, rules,
and firewalls. We start our presentation by introducing the concept of a field.

A field is a variable whose value is taken from a nonempty interval of con-
secutive integers. This interval is called the domain of the field. A nonempty
interval X of consecutive integers can be written as a pair [y, z], where y is the
smallest integer in interval X, z is the largest integer in X, and X contains only
every integer that is neither smaller than y nor larger than z. Note that if X is
[y, y], then X contains only one integer, y.

In this paper, we assume that each packet has d fields, named f1, f2, · · · , and
fd. The domain of each field fj is denoted D(fj). (Examples of the d fields in
a packet are the source IP address of the packet, the destination IP address of
the packet, the transport protocol of the packet, the source port number of the
packet, and the destination port number of the packet.)
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Formally, a packet p is a tuple (p1, · · · , pd) of d integers, where each integer
pj is taken from the domain D(fj) of field fj .

A rule in a firewall consists of two parts, a < predicate > and a < decision >.
A rule is usually written as

< predicate > → < decision >

The < predicate > of a rule is a conjunction of d conjuncts of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))

where each fj is a field, each Xj is a nonempty interval of consecutive integers
taken from the domain D(fj) of field fj , and ‘∧’ is the logical AND operator.
The value of each conjunct (fj ∈ Xj) is true iff the value of field fj is taken from
the interval Xj .

The < decision > of a rule is either discard or accept. A rule whose decision
is discard is called a discard rule and a rule whose decision is accept is called an
accept rule. A packet (p1, · · · , pd) is said to match a rule of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd)) → < decision >

iff the predicate ((p1 ∈ X1) ∧ · · · ∧ (pd ∈ Xd)) is true.
A firewall is a sequence of rules. A firewall F is said to discard (or accept,

respectively) a packet p iff F has a discard (or accept, respectively) rule rl
such that the following two conditions hold: (a) packet p matches rule rl, and
(b) packet p does not match any rule that precedes rule rl in firewall F .

A firewall F is said to ignore a packet p iff p matches no rule in F . It follows
that for any firewall F and any packet p, exactly one of the following three
statements holds: (a) F accepts p, (b) F discards p, or (c) F ignores p.

Two firewalls F and F ′ are said to be equivalent iff for every packet p,
exactly one of the following three statements holds: (a) both F and F ′ accept p,
(b) both F and F ′ discard p, or (c) both F and F ′ ignore p.

A packet is said to match a firewall F iff the packet matches at least one rule
in F . A firewall F is called complete iff every packet matches F . A rule of the
form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd)) → < decision >

is called an ALL rule iff each interval Xj is the whole domain D(fj) of field fj .
Note that every packet matches each ALL rule. Thus, each firewall that has an
ALL rule is complete.

A property of a firewall has the same form as a rule in a firewall:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd)) → < decision >

where each fj is a field, each Xj is a nonempty interval of consecutive integers
taken from the domain D(fj) of field fj , and < decision > is either discard or
accept. A property whose decision is discard is called a discard property, and a
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property whose decision is accept is called an accept property. A discard property
of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd)) → discard

is said to discard a packet (p1, · · · , pd) iff the predicate ((p1 ∈ X1) ∧ · · · ∧ (pd ∈
Xd)) is true. Similarly, an accept property of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd)) → accept

is said to accept a packet (p1, · · · , pd) iff the predicate ((p1 ∈ X1)∧· · ·∧(pd ∈ Xd))
is true. A firewall F is said to satisfy a property pr iff one of the following two
conditions holds.

(a) pr is a discard property and each packet that is discarded by pr is discarded
by F.

(b) pr is an accept property and each packet that is accepted by pr is accepted
by F.

We end this section by identifying two special classes of firewalls, named
discard slices and accept slices. Later in this paper we show that two problems
concerning these two special firewall classes are NP-hard. From the fact that
these two problems are NP-hard, we show that many problems concerning the
design and analysis of general firewalls are also NP-hard. A firewall that consists
of zero or more accept rules followed by an ALL discard rule is called a discard
slice. Similarly, a firewall that consists of zero or more discard rules followed by
an ALL accept rule is called an accept slice.

3 Firewall Analysis

In this section we identify 13 problems that need to be solved in order to carry
out the logical analysis of firewalls. As discussed below, these problems include
firewall verification, firewall implication, and firewall equivalence. Later, we show
that each one of these 13 problems is NP-hard. These results indicate that the
logical analysis of firewalls is hard, at least theoretically from an asymptotic
worst case analysis perspective.

The 13 problems that we identify in this section can be classified into 7
classes: Problems of Slice Probing, Problems of Firewall Adequacy, Problems
of Firewall Verification, Problems of Firewall Implication, Problems of Firewall
Equivalence, the Problem of Firewall Redundancy, and the Problem of Firewall
Completeness.

Problems of Slice Probing. There are two Slice Probing problems, which we
denote SP-D and SP-A. These two problems are defined as follows.

SP-D: Probing of Discard Slices:
Design an algorithm that takes as input a discard slice S and determines
whether S discards at least one packet.
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SP-A: Probing of Accept Slices:
Design an algorithm that takes as input an accept slice S and determines
whether S accepts at least one packet.

Problems of Firewall Adequacy: There are two Firewall Adequacy problems,
which we denote FA-D and FA-A. These two problems are defined as follows.

FA-D: Discard-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
F discards at least one packet.

FA-A: Accept-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
F accepts at least one packet.

The Problem of Firewall Completeness: The Firewall Completeness prob-
lem, which we denote FC, is defined as follows:

FC: Completeness of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
every packet is either discarded or accepted by F.

Problems of Firewall Verification: There are two Firewall Verification prob-
lems, which we denote FV-D and FV-A. These two problems are defined as
follows.

FV-D: Discard-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and a discard property pr
and determines whether every packet that is discarded by pr is also discarded
by F.

FV-A: Accept-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and an accept prop-
erty pr and determines whether every packet that is accepted by pr is also
accepted by F.

Problems of Firewall Implication: There are two Firewall Implication prob-
lems, which we denote FI-D and FI-A. These two problems are defined as follows.

FI-D: Discard-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether every packet that is discarded by F1 is also discarded by
F2.

FI-A: Accept-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether every packet that is accepted by F1 is also accepted by F2.
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Problems of Firewall Redundancy: There are two Firewall Redundancy
problems, which we denote FR-D and FR-A. These two problems are defined as
follows.

FR-D: Discard-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and a discard rule rl in
F and determines whether the two firewalls F and F \ rl discard the same
set of packets, where F \ rl is the firewall that is obtained after removing
rule rl from firewall F.

FR-A: Accept-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and an accept rule rl
in F and determines whether the two firewalls F and F \ rl accept the same
set of packets, where F \ rl is the firewall that is obtained after removing
rule rl from firewall F.

Problems of Firewall Equivalence: There are two Firewall Equivalence prob-
lems, which we denote FE-D and FE-A. These two problems are defined as
follows.

FE-D: Discard-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether F1 and F2 discard the same set of packets.

FE-A: Accept-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether F1 and F2 accept the same set of packets.

4 Hardness of the Slice Probing

In this section, we show that the first Slice Probing problem SP-D is NP-hard
by a reduction from the 3-SAT problem. We then show that the Slice Probing
problems SP-A is NP-hard by a reduction from SP-D. For convenience, we state
the 3-SAT problem next

3-SAT:
Design an algorithm that takes as input a Boolean formula BF of the form
BF = C1 ∧ C2 ∧ · · · ∧ Cn where each clause Ck is a disjunction of 3 literals
taken from the set of Boolean variables {v1, · · · , vd}, and determines whether
BF is satisfiable (i.e. determines whether there is an assignment of Boolean
values to the variables {v1, · · · , vd} that makes BF true).

The 3-SAT problem is known to be NP-hard [8]. This means that the time
complexity of any algorithm that solves this problem is very likely to require
exponential time of O(n × 2d), where n is the number of clauses and d is the
number of variables in the Boolean formula BF .

(To date, progress in solving the 3-SAT problem has resulted in both deter-
ministic and randomized algorithms with reduced complexity. For example, in



160 E.S. Elmallah and M.G. Gouda

[5] the authors present a deterministic algorithm that runs in O(1.473n) time,
and in [10] the authors present a randomized algorithm that runs in O(1.32113n)
time on average.)

Next, we describe a polynomial translation of any instance of the 3-SAT
problem to an instance of the SP-D problem such that any solution of the 3-
SAT instance yields a solution of the SP-D instance and vice versa. The existence
of this polynomial translation indicates that the SP-D problem is NP-hard and
that the time complexity of any algorithm that solves this problem is very likely
to be exponential. Translating an instance of 3-SAT to an instance of SP-D
proceeds as follows:

1. The 3-SAT instance is defined by a Boolean formula BF and the SP-D
instance is defined by a discard slice S.

2. Each Boolean variable vj that occurs in formula BF is translated to a field
fj in slice S.

3. The domain of values for each variable vj is the set {false, true} and the
domain of values for each field fj is the set {0, 1}. Value false of each variable
vj is translated to value 0 of the corresponding field fj . Similarly, value true
of each variable vj is translated to value 1 of the corresponding field fj .

4. Each clause Ck in formula BF is translated to an accept rule Rk in slice
S as follows. First, if the literal vj occurs in clause Ck, then the conjunct
(fj ∈ [0, 0]) occurs in the predicate of rule Rk. Second, if the literal vj occurs
in clause Ck, then the conjunct (fj ∈ [1, 1]) occurs in the predicate of rule Rk.
Third, if no literal of vj occurs in clause Ck, then the conjunct (fj ∈ [0, 1])
occurs in the predicate of rule Rk.

5. Add an ALL discard rule at the bottom of slice S.

From this translation, an assignment of values (val(v1), · · · , val(vd)) makes a
clause Ck true iff the corresponding packet (val(f1), · · · , val(fd)) does not match
the corresponding accept rule Rk. Thus, we draw the following two conclusions:

(1) If there is an assignment of values (val(v1), · · · , val(vd)) that makes the
Boolean formula BF true, then the corresponding packet (val(f1), · · · ,
val(fd)) does not match any of the accept rules in the discard slice S and
matches only the last ALL discard rule. In other words, if the Boolean for-
mula BF is satisfiable, then the discard slice S discards at least one packet.

(2) If the discard slice S discards at least one packet, then the Boolean formula
BF is satisfiable.

Therefore, any solution of the 3-SAT instance yields a solution of the SP-D
instance and vice versa. This completes our proof of the following theorem.

Theorem 1. Problem SP-D is NP-hard.

Having established that problem SP-D is NP-hard, we can now use this problem
to establish that problem SP-A is also NP-hard.
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Theorem 2. Problem SP-A is NP-hard.

Proof. We describe a polynomial translation of any instance of the SP-D prob-
lem to an instance of the SP-A problem such that any solution of the SP-D
instance yields a solution of the SP-A instance and vice versa. Translating an
instance of SP-D to an instance of SP-A proceeds as follows:

1. An instance of SP-D is defined by a discard slice S.
2. Replacing every discard (or accept, respectively) decision in S by an accept

(or discard, respectively) decision yields an accept slice denoted S′.
3. The accept slice S′ defines an instance of SP-A.

From this translation, packet p is discarded by slice S iff packet p is accepted
by slice S′. Thus, we draw the following two conclusions:

(1) If slice S discards at least one packet, then slice S′ accepts at least one
packet.

(2) If slice S′ accepts at least one packet, then slice S discards at least one
packet.

Therefore, any solution of the SP-D instance yields a solution of the SP-A
instance and vice versa.

5 Hardness of Firewall Adequacy

In this section, we employ problem SP-D, which we have shown to be NP-hard
in the previous section, to show that the two Firewall Adequacy problems FA-D
and FA-A are also NP-hard. First, we assert that the FA-D problem is NP-hard
(by a reduction from the SP-D problem). Then we assert that the FA-A problem
is NP-hard (by a reduction from the FA-D problem). We omit proofs (due to
space limitation), and refer the reader to the details in [7].

Theorem 3. Problem FA-D is NP-hard.

Theorem 4. Problem FA-A is NP-hard.

6 Hardness of Firewall Completeness

In this section, we employ problem SP-D, which we have shown to be NP-hard
in Sect. 4, to show that the Firewall Completeness problem FC is NP-hard.

Theorem 5. Problem FC is NP-hard.

Proof: We describe a polynomial translation of any instance of the SP-D prob-
lem to an instance of the FC problem such that any solution of the SP-D instance
yields a solution of the FC instance and vice versa. Translating an instance of
SP-D to an instance of FC proceeds as follows:
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1. An instance of SP-D is defined by a discard slice S.
2. Let F denote the firewall that results from removing the last (ALL discard)

rule from slice S.
3. Firewall F , which consists entirely of accept rules, defines an instance of FC.

From this translation, we conclude that the discard slice S discards at least
one packet iff firewall F is not complete (i.e., F ignores at least one packet.)
Therefore, any solution of the SP-D instance yields a solution of the FC instance
and vice versa.

7 Hardness of Firewall Verification

In this section, we employ problem SP-A, which we have shown to be NP-hard
in Sect. 4, to show that the two Firewall Verification problems, namely FV-D
and FV-A, are also NP-hard. First, we show that the FV-D problem is NP-hard
by a reduction from the SP-A problem. Then we assert that the FV-A problem
is NP-hard (by a reduction from the FV-D problem).

Theorem 6. Problem FV-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the SP-A prob-
lem to an instance of the FV-D problem such that any solution of the SP-A
instance yields a solution of the FV-D instance and vice versa. Translating an
instance of SP-A to an instance of FV-D proceeds as follows:

1. An instance of SP-A is defined by an accept slice S.
2. Because each accept slice is a special case of a firewall, the accept slice S can

be viewed as a firewall denoted F .
3. Firewall F and the ALL discard property pr together define an instance of

FV-D.

From this translation, we conclude that the accept slice S accepts at least one
packet iff this packet is discarded by property pr and not discarded by Firewall
F . Therefore, any solution of the SP-A instance yields a solution of the FV-D
instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 7. Problem FV-A is NP-hard.

8 Hardness of Firewall Implication

In this section, we employ problem FV-D, which we have shown to be NP-hard
in the previous section, to show that the two Firewall Implication problems,
namely FI-D and FI-A, are also NP-hard. First, we show that the FI-D problem
is NP-hard by a reduction from the FV-D problem. Then we assert that the
FI-A problem is NP-hard (by a reduction from the FI-D problem).
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Theorem 8. Problem FI-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the FV-D prob-
lem to an instance of the FI-D problem such that any solution of the FV-D
instance yields a solution of the FI-D instance and vice versa. Translating an
instance of FV-D to an instance of FI-D proceeds as follows:

1. An instance of FV-D is defined by a firewall F and a discard property pr.
2. Because each property is a special case of a firewall, the discard property pr

can be viewed as a firewall denoted F ′.
3. The two firewalls F and F ′ together define an instance of FI-D.

From this translation, we conclude that every packet that is discarded by
property pr is discarded by firewall F iff every packet that is discarded by firewall
F ′ is discarded by firewall F . Therefore, any solution of the FV-D instance yields
a solution of the FI-D instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 9. Problem FI-A is NP-hard.

9 Hardness of Firewall Redundancy

In this section, we employ problem FV-D, which we have shown to be NP-hard
in Sect. 7, to show that the two Firewall Redundancy problems FR-D and FR-
A are also NP-hard. First, we show that the FR-D problem is NP-hard by a
reduction from the FV-D problem. Then, we assert that the FR-A problem is
NP-hard (by a reduction from the FR-D problem).

Theorem 10. Problem FR-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the FV-D prob-
lem to an instance of the FR-D problem such that any solution of the FV-D
instance yields a solution of the FR-D instance and vice versa. Translating an
instance of FV-D to an instance of FR-D proceeds as follows:

1. An instance of FV-D is defined by a firewall F and a discard property pr.
2. Because each property can be viewed as a rule, the discard property pr can

be viewed as a discard rule denoted rl. Let F ′ denote the firewall that results
from placing rule rl at the top of firewall F . (Note that firewall F is the same
as firewall F ′ \ rl.)

3. Firewall F ′ and its top (discard) rule rl together define an instance of FR-D.

From this translation, we conclude that every packet that is discarded by the
discard property pr is discarded by firewall F iff the two firewalls F and F ′

discard the same set of packets. Therefore, any solution of the FV-D instance
yields a solution of the FR-D instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 11. Problem FR-A is NP-hard.
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10 Hardness of Firewall Equivalence

In this section, we rely on the NP-hardness of the FR-D problem, which is
established in the previous section, to show that the two Firewall Equivalence
problems FE-D and FE-A are also NP-hard. First, we assert that the FE-D
problem is NP-hard (by a reduction from the FR-D problem). Then, we assert
that the FE-A problem is NP-hard (by a reduction from the FE-D problem).
We omit proofs (due to space limitation), and refer the reader to the details in
[7].

Theorem 12. Problem FE-D is NP-hard.

Theorem 13. Problem FE-A is NP-hard.

11 Where We Go from Here

Figure 1 shows an outline of our proof, presented in the five Sects. 4–10, that each
one of the 13 problems in Sect. 3 is NP-hard. This proof outline is a directed
graph where each node represents one problem and where each directed edge
from node P to node P ′ indicates that problem P ′ is shown to be NP-hard by
a reduction from problem P . Note that in this graph, each node P has exactly
one incoming edge labeled by a number k to indicate that the NP-hardness of
problem P is proven in Theorem k.

FE-AFR-A

FE-D

FA-A

FV-A

FR-D

FA-DSP-D

FC

FV-D

SP-A

FI-A

FI-D

3-SAT
1 5
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3
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6

7

8

9

10

11

12

13

Fig. 1. Hardness reductions between 13 firewall analysis problems

From this proof outline, each one of the 13 problems is shown to be NP-hard
by an ultimate reduction from the 3-SAT problem. As mentioned in Sect. 4, the
time complexity of any algorithm that solves the 3-SAT problem is very likely
to be of O(n× 2d), where n is the number of clauses in the Boolean formula and
d is the number of Boolean variables in the Boolean formula.

Thus, assuming that the firewall fields are all binary, the time complexity of
any algorithm that solves any of the 13 problems in Sect. 3 is very likely to be of
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O(n×2d), where n is the number of rules in a firewall, and d is the number of bits
that are checked by the firewall rules in the headers of every packet. For most
firewalls, n is at most 2000 rules, and d is at most 120 bits. Therefore, assuming
that the firewall fields are all binary, the time complexity of any algorithm that
solves any of the 13 problems in Sect. 3 is very likely to be of O(2000 × 2120).

At first, this large time complexity may discourage many researchers from
trying to solve any of the 13 problems in Sect. 3. But it turns out that researchers
can take advantage of the following three techniques in order to avoid this large
complexity in many practical situations.

1. Using SAT-Solvers:
As discussed in [17], each instance of the 13 problems in Sect. 3 can be translated
into an instance of the SAT problem and then can be easily solved (in many
practical situations) using any of the available SAT-solvers, such as Minisat [6].

Indeed the experimental results reported in [17] are impressive. For example,
it is shown that many instances of the Firewall Equivalence problem, the Firewall
Implication problem, and the Firewall Redundancy problem can all be solved
using the Minisat solver [6] and the firewall generator Classbench [15]. More
importantly, solving each of these problem instances, which involves one or two
firewalls of about 2,000 rules each, takes less than 5 s.

2. Adopting Integer Fields:
The large time complexity of O(2000 × 2120) for solving any of the 13 problems
in Sect. 3 is based on our assumption that the firewalls in these problems have
a large number (around 120) of Boolean fields. Technically, this assumption
can be replaced by assuming that the firewalls in these problems have a small
number (around 5) of integer fields. Adopting this new assumption, it is shown
in [1,2,4,12,13] that there are algorithms, whose time complexity is of O(ne+1),
that solve the Slice Probing problem, the Firewall Verification problem, and the
Firewall Redundancy problem. In this case, n is the number of rules in a firewall
and e is the number of integer fields that are checked by the firewall rules in
the headers of every packet. For most firewalls, n is at most 2000 rules, and e
is at most 5 integer fields. Therefore, the time complexity of any algorithm that
solves any of the 13 problems in Sect. 3 is very likely to be of O(20006) which is
much smaller than O(2000 × 2120).

3. Accepting Probabilistic Solutions:
The large time complexity of O(ne+1) for any algorithm to solve any of the 13
problems in Sect. 3 is based on the implicit requirement that the algorithm be
deterministic. It is possible to drastically reduce this time complexity if one is
willing to accept probabilistic algorithms that solve these problems.

For example, a probabilistic algorithm for solving the Firewall Verification
problem is proposed in [3]. This algorithm determines whether any given firewall
satisfies any given property. The time complexity of this algorithm is optimally
linear of O(n × e), where n is the number of rules in the given firewall and
e is the number of integer fields that are checked by the firewall rules in the
headers of each packet. The only problem of this algorithm is that sometimes
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when the algorithm returns a determination that the given firewall satisfies the
given property, the returned determination is incorrect. A large simulation study
showed that the probability of an incorrect determination is negligible.

12 Related Work

The importance of the logical analysis and verification of firewalls has been
recognized since the year 2000 [14]. This recognition has led early on to some
attempts to identify configuration errors and vulnerabilities in firewalls that
were in operation at the time [9,11,16]. These early attempts, though useful
in practice, did not develop into a mature theory for the logical analysis and
verification of firewalls.

Later on, a robust and full theory for the logical analysis and verification of
firewalls was developed [1,2,4,12,13]. The objective of this theory was to design
efficient algorithms that can solve: firewall equivalence problems [12], firewall
redundancy problems [1,13], and firewall verification problems [2,4].

It turns out that the time complexity of each algorithm that was designed
in this theory is exponential! Yet until the current paper, no one was able to
prove that any problem in this theory is NP-hard. The current paper not only
proves that one or two problems in this theory are NP-hard but it also proves
that many problems in the theory are NP-hard.

The fact, that the time complexity of all algorithms in the theory of logical
analysis of firewalls is exponential, was alarming. This alarm led researchers
to propose two new research directions. First, some researchers proposed to
design probabilistic algorithms for solving the problems in the theory [2]. Second,
other researchers proposed to rely on SAT solvers to solve the problems in the
theory [6,17]. The results in the current paper will undoubtedly bolster and
add credence and significance to these new research directions, as discussed in
Sect. 11.

13 Concluding Remarks

In this paper, we identified 13 important problems related to the analysis of
firewalls and showed that each one of these problems is NP-hard. This means
that the time complexity of any algorithm that can solve any of these problems
is very likely to be exponential. Our proofs of these NP-hardness results were
based on reductions from the relatively new problem of Slice Probing. This fact
confirms the central role that the Slice Probing problem plays in the analysis of
firewalls. Future research in the analysis of firewalls should be mindful of this
problem.

Some of the 13 problems discussed in this paper can be shown to be NP
[8]. Examples of these problems are the Slice Probing problems. The remaining
problems can be shown to be co-NP [8]. Example of these problems are the
Firewall Implications problems. It is possible to think of other problems related
to the analysis of firewalls and show that these problems are also NP-hard by
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reductions from the 13 problems in Sect. 3. For example consider the following
problem

Firewall Exclusion: Show that if any given firewall discards (or accepts,
respectively) a packet, then another given firewall does not discard (or does
not accept, respectively) the same packet.

We believe that this problem can be shown to be NP-hard by a reduction from
the Firewall Implication problem. In Sect. 11, we pointed out three research
directions that can be pursued in order to enhance our ability to design and
analyze firewalls, in light of the NP-hardness results in this paper.
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