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Message from the General Chairs

The recent development of the Internet as well as mobile networks, together with the
progress of cloud computing technology, has changed the way people perceive com-
puters, communicate, and do business. Today’s Internet carries huge volumes of per-
sonal, business, and financial data, much of which are accessed wirelessly through
mobile devices. In addition, cloud computing technology is providing a shared pool of
configurable computing resources (hardware and software: e.g., networks, servers,
storage, applications, and services) that are delivered as services over a diversity of
networks technologies. Advances in Web technologies, social networking, and mid-
dleware platforms have provided new opportunities for the implementation of novel
applications and the provision of high-quality services over connected devices. This
allows participatory information sharing, interoperability, and collaboration on the
World Wide Web. All these technologies can be gathered under the umbrella of
networked systems.

After the great success of the First International Conference on Networked Systems,
NETYS 2013, NETYS 2014 took place during May 15–17, 2014, in Marrakech,
Morocco. It provided a forum for presenting best practices and novel algorithms,
results, and techniques on networked systems. The conference gathered researchers and
experts from all over the world to address the challenging issues related to networked
systems such as multi-core architectures, concurrent and distributed algorithms, mid-
dleware environments, storage clusters, social networks, peer-to-peer networks, sensor
networks, wireless and mobile networks, as well as privacy and security measures to
protect such networked systems and data from attack and abuse.

We would like to express our cordial thanks to our partners and sponsors for their
trust and support. A special thanks goes to Springer-Verlag, which has ensured that the
proceedings, since the first edition of NETYS, have reached a wide readership
throughout the world. We are grateful to the Program Committee co-chairs, the session
chairs and the Program Committee members for their excellent work and we wish to
take this opportunity to congratulate all the authors for the high quality displayed in
their papers and to thank all the participants for their support and interest. Finally, no
conference can be a success without the precious contribution of the Organizing
Committee, which we thank for their dedication and hard work to make this conference
a success.

July 2014 Mohammed Erradi
Rachid Guerraoui



Message from the Program Committee Chairs

The International Conference on Networked Systems (NETYS) is establishing itself as
a high-quality forum bringing together researchers and engineers from both the theory
and practice of networked systems.

NETYS 2014 was fortunate to attract a high interest among the community, and
received 80 submissions from 15 countries and four continents. These figures indicate
that NETYS has gained worldwide visibility. This fairly high number of submissions
provided an excellent opportunity for a high-quality program, but also called for a
demanding and laborious paper evaluation process. The 31 members of the Technical
Program Committee worked efficiently and responsibly under tight time constraints to
produce a total of 183 reviews that provided the basis for the final paper selection. As a
result of this process, 20 regular papers, and six short papers, were finally selected for
presentation at the main conference. The program was further enriched by two keynote
presentations offered by world-renowned researchers in the field: Professor Mohamed
G. Gouda (UT Texas), who gave a talk on “Communication Without Repudiation,” and
Professor Seif Haridi (KTH Royal Institute of Technology, Stockolm), who gave a talk
on “Big Data and Cloud Computing.” A special thank you to both of them.

We are grateful to all authors who trusted us with their work; without them there
would be no conference. The final result would not have been possible without the
dedication and hard work of many colleagues. Special thanks are due to members of
the Program Committee, and to all external referees for the quality and depth of the
reviews, and their sense of responsibility and responsiveness under very tight dead-
lines. Last but not least, a warm thanks to the conference chairs, Mohammed Erradi
(ENSIAS, Rabat) and Rachid Guerraoui (EPFL), for their continuous help and
friendship.

Guevara Noubir
Michel Raynal
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Communication Without Repudiation:
The Unanswered Question

Mohamed G. Gouda

University of Texas at Austin, Austin, TX 78712, USA
gouda@cs.utexas.edu

Abstract. A non-repudiation protocol is to be executed by two parties, say S and
R, in order to (1) enable S to send some text to R then receive some non-
repudiated evidence that R has indeed received the text, and (2) enable R to
receive both the sent text from S and some non-repudiated evidence that this text
was indeed sent from S to R. Since 1995, tens of non-repudiation protocols have
been proposed, but every one of these protocols seems to suffer from one or
more well-known problems. For example, most protocols assume the existence
of a third party that is trusted by both S and R. This observation reminds us that
the following core question has never been answered. Can there be a non-
repudiation protocol that does not suffer from any of these problems?



Research Challenges in Data-Intensive
Cloud Computing

Seif Haridi

KTH Royal Institute of Technology, Sweden
haridi@kth.se

Abstract. I will focus in this talk on what is next in the area of cloud computing
and data-intensive computational frameworks. In particular as cloud computing
in data centers is becoming today’s technology, research efforts are shifting to
the challenges in multi data-centers cloud environments, especially in distrib-
uted services across multiple data centers. Also for big data applications, the
tools are changing from simple Map-Reduce frameworks into full fledged data
analytic stacks for processing and querying large data sets in various forms.
These new tools make it much easier for application developers to create value
out of data. We will present the current state of research in these areas and
outline the related research challenges.
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Keynote Talk: Communication Without
Repudiation: The Unanswered Question

Mohamed G. Gouda(B)

University of Texas at Austin, Austin, TX 78712, USA
gouda@cs.utexas.edu

Abstract. A non-repudiation protocol is to be executed by two parties,
say S and R, in order to (1) enable S to send some text to R then
receive some non-repudiated evidence that R has indeed received the
text, and (2) enable R to receive both the sent text from S and some
non-repudiated evidence that this text was indeed sent from S to R.
Since 1995, tens of non-repudiation protocols have been proposed, but
every one of these protocols seems to suffer from one or more well-known
problems. For example, most protocols assume the existence of a third
party that is trusted by both S and R. This observation reminds us that
the following core question has never been answered. Can there be a non-
repudiation protocol that does not suffer from any of these problems?

1 Introduction

The Internet supports many security services that are well-established and well-
utilized. These services can be invoked by different parties, as these parties com-
municate over the Internet, in order to ensure that the communications between
the parties remain secure. An example list of these services is as follows:

– Availability services (to defend against denial of service attacks)
– Authentication services (to defend against one party impersonating a second

party while it communicates with a third party)
– Confidentiality services (to defend against eavesdropping attacks)
– Integrity services (to defend against the corruption of a message after the

message is constructed and sent by its original source and before it is received
by its ultimate destination)

– Freshness services (to defend against message replay attacks)
– Access control services (to defend against intrusion attacks)
– Anonymity services (to defend against identifying which party is communicat-

ing with which other party)

Famously absent from such a list is a “non-repudiation service”, which defends
against repudiation attacks where one party sends a message then repudiates
that it has sent the message or where a second party receives the message
then repudiates that it has ever received the message. The absence of a well-
established non-repudiation service over the Internet is troubling, especially since
such a service has been proposed and promoted since 1995. See for example [1,2].
c© Springer International Publishing Switzerland 2014
G. Noubir and M. Raynal (Eds.): NETYS 2014, LNCS 8593, pp. 1–8, 2014.
DOI: 10.1007/978-3-319-09581-3 1



2 M.G. Gouda

One possible reason that no non-repudiation service has ever been well-
established over the Internet is that every “non-repudiation protocol” that has
been proposed to implement such a service has suffered from one or more of the
following three problems:

(a) Trusted Third Party:
Most non-repudiation protocols assume the existence of a third party that
can be trusted by all parties that invokes the non-repudiation service. Even
worse, some non-repudiation protocols assume the existence of a very inva-
sive trusted third party, one that participates in transmitting (i.e. sending or
receiving) every message that is transmitted during every execution of these
protocols.

(b) No Tolerance of Message Loss or Corruption:
Some non-repudiation protocols assume that some specified messages that
are transmitted during the execution of the protocol can neither be lost nor
corrupted.

(c) Synchronized Clocks:
Some non-repudiation protocols assume that their parties have tightly syn-
chronized clocks.

For example, the well-cited non-repudiation protocols of Zhou and Gollmann
[3,4] suffer from problems (a) and (c), whereas the protocol of Markowitch and
Roggeman [5] suffers from problem (b). More recently, the protocol of Hernandez-
Ardieta, Gonzalez-Tablas, and Alvarez [6] suffers from problems (a) and (c). In
fact, every non-repudiation protocol that has been proposed in the past seems
to suffer from one or more of these three problems; see for example [7].

These observations remind us that the following core question concerning non-
repudiation protocols have never been answered. Can there be a non-repudiation
protocol that does not suffer from any of the three problems (a), (b), and (c) stated
above?

From past experience, the effort needed to show that the answer to such a
question is “Yes” is much less than the effort needed to show that the answer
is “No”. Therefore, naturally, one should first attempt to show that the answer
to this question is “Yes”. Only when all these attempts fail should one consider
showing that the answer to this question is “No”.

To show that the answer to this core question is “Yes”, one merely needs to
exhibit a non-repudiation protocol that satisfies the following three conditions.

1. The exhibited protocol does not involve a trusted third party.
2. The exhibited protocol tolerates the loss and corruption of sent messages.
3. The exhibited protocol does not require the participating parties to have

tightly synchronized clocks.

But before we venture into exhibiting a non-repudiation protocol, we need first
to present our specification of non-repudiation protocols.
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2 Specification of Non-repudiation Protocols

In this section, we present our specification of non-repudiation protocols. Any
correct design of a non-repudiation protocol is required to satisfy this specifica-
tion.

A non-repudiation protocol is to be executed by two parties, say S and R.
This protocol is required to satisfy the following five conditions.

(a) Guaranteed Termination:
Every execution of the protocol, by both S and R, is guaranteed to terminate
in a finite time.

(b) Termination of S:
Party S terminates only after S sends some text to R and only after S
receives some non-repudiated evidence that R has indeed received the sent
text.

(c) Termination of R:
Party R terminates only after R receives both the sent text from S and some
non-repudiated evidence that this text was indeed sent from S to R.

(d) Opportunism of S:
If during the protocol execution, party S reaches a state st after it has
received the non-repudiated evidence that R has indeed received the sent
text, then S can neither send nor receive any message at state st.

(e) Opportunism of R:
If during the protocol execution, party R reaches a state st after it has
received the non-repudiated evidence that the text was indeed sent from S
to R, then R can neither send nor receive any message at state st.

3 Preliminary Design of a Non-repudiation Protocol

In this section, we outline our first attempt to showing that the answer to the
core question stated in Sect. 1 is “Yes”. In this first attempt, we exhibit a non-
repudiation protocol that, we hoped, satisfies the three properties (1) through
(3) stated in Sect. 1.

Unfortunately, it turns out that this initial protocol, called the NR-1 pro-
tocol, suffers from two problems. First, the NR-1 protocol does not satisfy our
specification of non-repudiation protocols stated in Sect. 2. (In other words, the
NR-1 protocol is an erroneous non-repudiation protocol that needs to be cor-
rected.)

Second, although the NR-1 protocol satisfies the two properties (1) and (3)
stated in Sect. 1, it does not satisfy property (2).

Therefore, the first task of our future research agenda is to modify the NR-1
protocol so that it no longer suffers from these two problems while maintaining
the fact that it satisfies the two properties (1) and (3) stated in Sect. 1.

Our design of the NR-1 protocol is based on three simple ideas: message
alternation, message acceptance, and collected evidence. Next, we describe each
one of these ideas in some detail.
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(a) Message Alternation:
Party S sends its text to party R in a sequence of n txt messages.
When R receives the next expected txt message from S, R sends back an
ack message to S acknowledging the reception of the txt message.
When S receives an ack message from R acknowledging the reception of the
latest txt message, S executes exactly one of the following two actions. First,
if the latest txt message is not (yet) the n-th txt message to R, then S sends
the next txt message to R. Second, if the latest txt message is the n-th txt
message to R, then S terminates.
The flow of messages in the NR-1 protocol can be outlined as follows:

S −→R : txt1

S ←−R : ack1

S −→R : txt2

S ←−R : ack2

...

S −→R : txtn

S ←−R : ackn

Each txt message is of the form:

txt(S,R, ss, sq,< text >,< sign.by S >)

– txt is the message type
– S is the identity of message sender R is the identity of message receiver
– ss is an identifier of the current protocol session between S and R
– sq is the sequence number of the message in the sequence of n txt messages
– < text > is the sent text in the message.
– < sign.byS > is the message signature using the private key of the message

sender S
Each ack message is of the form:

ack(R,S, ss, sq,< text >,< sign.by R >)

– ack is the message type
– R is the identity of message sender
– S is the identity of message receiver
– ss is an identifier of the current protocol session between S and R
– sq is the sequence number of the txt message being acknowledged by this

ack message
– < text > is the text in the txt message being acknowledged by this ack

message
– < sign.by R > is the message signature using the private key of the mes-

sage sender R
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(b) Message Acceptance:
During each execution of the NR-1 protocol, S keeps track of the latest sent
txt message from S to R and R keeps track of the latest sent ack message
from R to S.
Initially, S constructs the first txt message whose sequence number is 1,
sends this message to R, and makes this message the latest sent txt message
from S to R. Also initially, R constructs an ack message whose sequence
number is 0 and whose text is empty and makes this message the latest sent
ack message from R to S (even though this message was never sent from R
to S).
When S receives an ack message from R, S compares the latest sent txt
message with the received ack message and determines, based on this com-
parison, whether or not to accept the received ack message.
Let the latest sent txt message and the received ack message be as follows:

txt(S,R, ss, sq,< text >,< sign.by S >)

ack(R,S, ss′, sq′, < text′ >,< sign.by R >)

Then S accepts the received ack message iff the following four conditions
hold:
– ss = ss′

– sq = sq′

– < text >=< text′ >
– < sign.byR > is the correct signature of the ack message using the private

key of R
If S accepts the received ack message, then S executes one of the following
two actions. First, if the sequence number of the latest sent txt message is
n, then S terminates. Second, if the sequence number of the latest sent txt
message is less than n, then S constructs the next txt message and sends
it to R. (Now, this txt message becomes the latest sent txt message from S
to R.)
If S does not accept the received ack message, then S discards this message
and sends the latest txt message to R.
Similarly, when R receives a txt message from S, R compares the latest sent
ack message with the received txt message and determines, based on this
comparison, whether or not to accept the received txt message.
Let the latest sent ack message and the received txt message be as follows

ack(R,S, ss, sq,< text >,< sign.by R >)

txt(S,R, ss′, sq′, < text′ >,< sign.by S >)

Then R accepts the received txt message iff the following three conditions
hold:
– ss = ss′

– sq + 1 = sq′
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– < sign.byS > is the correct signature of the txt message using the private
key of S

If R accepts the received txt(S,R, ss′, sq′, < text′ >,< sign.byS >) message,
then R constructs the message ack(R,S, ss′, sq′, < text′ >,< sign.by R >)
and sends it to S. (Now, this ack message is the latest sent ack message.)
If R does not accept the received txt message, then R discards this message.

(c) Collected Evidence:
During the execution of the NR-1 protocol, S needs to collect non-repudiated
evidence that R has indeed received the text that is sent from S to R. This
collected evidence consists simply of the sequence of n ack messages that were
sent by R and received and accepted by S. Note that R cannot repudiate
this evidence because these messages contain the correct session identifier
and correct sequence numbers and are signed by the private key of R, which
only R knows.
Also during the execution of the NR-1 protocol, R needs to collect non-
repudiated evidence that S is the one that had sent the text to R. This
collected evidence simply consists of the sequence of n txt messages that were
sent by S and received and accepted by R. Note that S cannot repudiate
this evidence because these messages contain the correct session identifier
and correct sequence numbers and are signed by the private key of S, which
only S knows.

As mentioned earlier, the NR-1 protocol suffers from two problems. First, it
does not satisfy our specification of non-repudiation protocols stated in Sect. 2.
Second, this protocol does not tolerate message loss and corruption. Therefore,
as mentioned earlier, the first task in our research agenda is to modify the NR-1
protocol so that it no longer suffers from these two problems and to verify the
correctness of the modified protocol.

(Verifying the correctness of a non-repudiation protocol is not a trivial task.
In fact, as discussed in [8,9], several non-repudiation protocols were shown to be
incorrect after these protocols were published in the literature.)

4 A General Non-repudiation Protocol

As specified in Sect. 2 above, a non-repudiation protocol involves two parties,
named S and R. Recall that the goal of this protocol is to achieve non-repudiation
when party S sends some text to party R.

Clearly, one can envision a more general non-repudiation protocol that involves
(k + 1) parties, named S,R.1, . . . , and R.k. The goal of this more general proto-
col is to achieve non-repudiation when party S sends the same text to each of the
parties R.1 through R.k.

Two well-known general non-repudiation protocols are presented in [10,11].
Unfortunately both of these protocols assume the existence of a trusted third
party.

Therefore, the second task in our research agenda is to exhibit a general non-
repudiation protocol that satisfies the three properties (1) through (3) stated in
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Sect. 1. In other words, the exhibited protocol (1) will not involve a trusted third
party, (2) will tolerate the loss and corruption of sent messages, and (3) will not
require the participating parties to have tightly synchronized clocks.

Our design of this general non-repudiation protocol can use as a “module”
our design of the 2-party non-repudiation protocol in the first task in our research
agenda.

5 A Certified Email Service Without a Trusted Party

Non-repudiation protocols can be used in implementing certified email services
[12,13]. Recently several certified mail services have been deployed over the Inter-
net [14,15]. Examples of these services are as follows:

1. The Austrian Document Delivery System (or DDS for short) was deployed in
2004

2. The Italian Posta Elettronica Certificata (or PEC for short) service was
deployed in 2005

3. The German De-Mail service was deployed in 2010
4. The Slovenian Moja.Posta.Si service is deployed and currently being operated

by the Slovenian Post
5. Several companies, e.g. “CertifiedMail”, “ReturnReceipt”, “ZixMail”, and

“PrivaSphere”, have offered certified email services in 2007.

Unfortunately, each one of these services is based on a 2-party non-repudiation
protocol that involves a very invasive trusted third party, one that participates in
transmitting (i.e. sending or receiving) every message that is transmitted during
any execution of the protocol.

Therefore, the third task in our research agenda is to plan a certified mail
service that does not rely on the existence of a trusted third party or relies on
a least invasive trusted party. In fact, this planned certified mail service can be
based on the 2-party non-repudiation protocol which we will design in the first
task in our research agenda.

6 Concluding Remarks

Despite many published papers on non-repudiation protocols, the following core
question concerning these protocols has remained unanswered. Can there be a
non-repudiation protocol that does not suffer from three well-known problems
(namely the need for a trusted third party, the intolerance of message loss and
corruption, and the need for tightly synchronized clocks)? We believe (at least
till now) that the answer to this question is “Yes”. And in this presentation, we
have described our early efforts that we hope will lead to answering this question.

Acknowledgement. The presentation in this paper has originated from extensive
discussions with my two Ph.D. students Mr. Muqeet Ali and Ms. Rezwana Reaz. I am
grateful for all their help.
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Abstract. Considering the case of homonyms processes (some processes
may share the same identifier) on a ring, we give here a necessary and
sufficient condition on the number of identifiers to enable leader election.
We prove that if l is the number of identifiers then message-terminating
election is possible if and only if l is greater than the greatest proper
divisor of the ring size even if the processes do not know the ring size.
If the ring size is known, we propose a process-terminating algorithm
exchanging O(n log(n)) messages that is optimal.

1 Introduction

The goal of the model of homonym processes [10] is to be an extension of the
classical model in which every process has its own unique identity and the model
in which the processes are fully anonymous. With homonyms, processes have an
identifier coming from a set of identifiers L and as we always assume that each
identifier is the identifier of at least one process, if |L| is equal to the number of
processes n each process has its own identity and |L| is 1, the processes are fully
anonymous. But the cases where 0 < |L| < n are rather natural and useful. For
example in communication signatures [9], signatures are identifiers and process
groups share the same signature to maintain some kind of privacy (it could be
impossible to distinguish between processes with the same identifier). Moreover
it is generally very costly to assign unique identities to processes and some
mechanisms for this (e.g. name servers, hash function) do not avoid to have sites
with the same identifier.

Until now homonyms have been mainly studied in the context of process
failures (Byzantine, omission, crash) for the Consensus problem [4,10–12] and it
has been proved that in many cases unique identifiers are not needed.

A classical and fundamental problem in distributed algorithms is the leader
election problem. The main purpose of our paper is to study the leader election
problem in the framework of homonyms processes and determine in which way
identifiers are needed. In this paper we restrict ourselves to ring topologies (of
known or unknown size). We give necessary and sufficient conditions on |L| the
number of identifiers enabling to solve the leader election problem.

From years, many results have been proved concerning the leader election
problem depending on the network topology (e.g. [2,5,7,22,23]). Clearly some
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of our results, in particular impossibility results, in the framework of homonyms
may be deduced from those results. Nevertheless the results and algorithms
given in this paper are rather simple and neat. Moreover they depend only on
the number of identifiers and not on their layout.

More than thirty years ago it has been proved that with anonymous processes
there is, in general, no deterministic solution for the leader election problem [2].

To avoid impossibility results, randomization is a well known technique to
break symmetry and randomized election algorithms have been considered on
a variety of network topology (e.g. ring, tree, complete graph) in, for example,
[1,17,21], but in this paper we do consider only deterministic algorithms.

The main purpose of our work is to study how to break symmetry with
homonymous and not the properties of communication graphs. Hence we restrict
ourselves to leader election in (bidirectional) rings with homonyms.

Concerning anonymous processes in rings, Dijkstra [13] observed that, with
a particular communication model called central demon, a deterministic leader
election algorithm cannot exist if the ring size is a composite number. Several
papers [6,16] present leader election algorithms for anonymous rings of prime
size with some kinds of demons. In this paper we consider asynchronous mes-
sage passing and with this model of communication it is easy to verify that
no deterministic election algorithm is possible with anonymous processes. On
the other hand, if each process has its own identity the election on a ring is
easy. Between these extremes, weakening anonymous condition with homonyms
processes, it is interesting to determine how many identifiers are sufficient and
necessary to have a deterministic election algorithm.

More precisely we directly prove that there are deterministic solutions for
election on a ring if and only if the number of identifiers is strictly greater than
the greatest proper divisor of the ring size and we explicitly give a solution. For
example, if the ring size is a prime number, then there is a deterministic election
algorithm if and only there are at least two identifiers.

An interesting point is the fact that this necessary and sufficient condition
on the number of identifiers holds even if the ring size is not known by processes
when we consider deterministic message terminating algorithms (i.e. processes
do not terminate but only a finite number of messages are exchanged). More-
over in the last section when the number of identifiers is known, we propose
a deterministic process terminating election algorithm exchanging 0(n log(n))
messages. This message complexity is clearly optimal [19].

2 Model and Definition

We consider a distributed message-passing system of n processes (n ≥ 2). There
are neither process failures nor link failures. In the following, we establish some
results assuming that process knows n and some results without this knowledge.
Each process gets an identifier from a set of identifiers L = {1, 2, . . . , l}. We
assume that each identifier is assigned to at least one process, that knows it, but
some processes may share the same identifier. Processes with the same identifier
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have the same deterministic algorithm. In our paper, we sometimes refer to
individual processes using names like p, but these names cannot be used by the
processes themselves in their algorithm. The identifier of a process p is denoted
Id(p).

Message-passing communication between processes is asynchronous. Processes
are organized in a bidirectional ring, so that a process can send messages to its
two neighbors. The communication channels are reliable and Fifo. The distance
from p to q, say d(p, q), is 1 plus the number of processes between p and q in the
clockwise ring. Note that if p0, ..., pk−1 are any k different processes in the ring
∑i=k−1

i=0 d(pi, pi+1 mod k) = n
A sequence of n identifiers represents a ring of size n. For example < 1, 2, 3, 3,

1, 2, 3, 3 > is the ring of Fig. 1. All rotations or reflections of this sequence rep-
resent the same ring (i.e. < 2, 3, 3, 1, 2, 3, 3, 1 > denotes also the ring of Fig. 1).

We consider the leader election problem. Each process has a boolean variable
Leader and a process is elected if its variable Leader is equal to true.

Definition 1. A process p is a leader if eventually it is elected forever: there is
a time τ after which the variable Leader of p is forever equal to true.

An algorithm solves the leader election problem if there is a unique leader.
We consider two variants of this problem process-terminating and message-
terminating. In the case of process-terminating, eventually all processes termi-
nate, in a case of message-terminating, eventually there is no message exchanged.

Definition 2. An algorithm solves process-terminating leader election problem
for n processes if for any ring of size n: (1)(leader) there is a unique leader, and
(2)(process-terminating) eventually all processes terminate.

Note that process-terminating leader election problem is equivalent to the
problem where each process takes an irrevocable decision to be leader or not.

Definition 3. An algorithm solves message-terminating leader election problem
for n processes if for any ring of size n : (1)(leader) there is a unique leader,
and (2)(message-terminating) eventually there is no exchanged message.

Definition 4. If x is an integer, the greatest proper divisor of x, gpd(x), is the
greatest divisor of x excluding x itself.

Note that if x is prime, gpd(x) = 1. From this definition we get:

Proposition 1. If x ≥ 2, then x/gpd(x) ≥ 2.

3 Impossibility Results

To strengthen our results, we prove them when the communication is synchro-
nous. So we can assume that we have a round model in which in each round a
process (1) may send a message to its two neighbors, (2) waits δ (during this
time it receives the messages sent by its neighbors if any), and (3) computes its
new state according to its current state and the received messages.
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3.1 Size n Known by Processes

The following result can be deduced from [5,8,22], but in our case it is easier to
show it directly.

Theorem 1. Assuming that n is known by all processes and |L| ≤ gpd(n),
process-terminating leader election for n processes is unsolvable.

Fig. 1. An example: n = 8, |L| = 3.

Proof. We show this theorem by contradiction. Assume that there exists an
algorithm Alg that solves process-terminating leader election problem for n
processes. We construct a ring of size n in which process terminating leader
election problem is unsolvable. If |L| = 1, all processes have the same identifier
and we are in an anonymous system. From the classical result [2], process ter-
minating leader election is unsolvable in an anonymous ring and in synchronous
case. Thus the proposition holds. Now, consider that |L| ≥ 2.

Let k be gpd(n). We call a k-segment a sequence of k processes positioned
in the clockwise direction as follows: the process with identifier 1 is positioned
at the first position of the segment, the process with identifier 2 at the second
position of the segment,..., process having identifier (|L| − 1) at the (|L| − 1)th
position of the segment. k− |L|+1 remaining processes having identifier |L| are
positioned from the |L|th to the kth position. We can construct a ring of size
n by n/k continuous segments. They are symmetrically distributed in the ring.
For example, n = 8, |L| = 3 (see Fig. 1).

It is straightforward to verify, by induction on the number of rounds, that in
every round, the n/k processes with the identical positions on the segments are
in identical states. (All processes with identical positions on the segments have
the same identifier, they start in the same state and execute the same code).

Consider the round τ , at which all processes have terminated, they end up
in the same state.

If one process in some segment is leader then every process with the identical
position of another segment is also leader. Then n/k processes are leader. By
Proposition 1, n/k is greater than 2, contradicting the fact that Alg solves the
leader election problem and we must have a unique leader.
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Theorem 2. Assuming that n is known by all processes and |L| ≤ gpd(n),
message-terminating leader election for n processes is unsolvable.

Proof. We show this theorem by contradiction. Assume that there exists an algo-
rithm that solves message terminating leader election problem for n processes.
The proof is the same that the proof of Theorem1 but instead of considering the
round τ , at which all processes have terminated, we consider the round τ after
which no message are exchanged.

3.2 Size n Unknown by Processes

If n is unknown, that means that the algorithm for a process with some identifier
is the same for any values of n.

Theorem 3. Even if |L| > gpd(n), there exists no algorithm for process-
terminating leader election if the processes don’t know the ring size.

Proof. Assume there is an algorithm Alg that solves process-terminating leader
election for n processes.

Let S =< i1, i2, ...., in > be a ring of size n, consider an execution e of Alg
on this ring. By hypothesis, there exists r such that after r rounds all processes
have terminated and exactly one process in S is leader.

We consider the ring S′ =< j1, ...., jm > of size 2n that is composed by
< i1, i2, ...., in > 2 times. s1, s2 denotes these 2 segments. Consider now an
execution of Alg on S′. After r rounds, the kth process of segment s1 and the
kth process of segment s2 is at each end of round in the same state that the
kth process of S in the execution e. Then after r rounds, all processes in s1 and
s2 terminate. As in execution e there is exactly one leader, in the execution of
Alg on S′ there are at least 2 leaders contradicting the fact that Alg solves the
leader election problem.

4 Deterministic Leader Election with Homonyms

4.1 The Simple Protocol

The model we consider in this subsection is essentially a model of population
protocol [3], the only difference is that here the state of an agent is an integer
and hence an agent is not a finite state automaton. We present a very simple
election protocol in this model.

In the simple protocol we consider a set, A, of fully anonymous agents, each
agent a is described by an automaton. The state of an agent is an integer initial-
ized at some value va > 0 for agent a. As in population protocol, two agents may
meet together, in this case if agent a meets agent b then they both change their
states following the rule R (sx denote the state of agent x before the meeting
and s′x the state for agent x after the meeting):

if sa > sb then s′a = sb + sa and s′b = 0
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If sa = sb the states of the agents are not modified.
A global state, S of the system is the states of each agent: for global state S

and agent a, S(a) is the value of sa in this state.
Let V = Σa∈Ava. An easy induction proves that the sum of the states of

each agent is invariant, hence for each global state S of the system, we have
Σa∈AS(a) = V .

On the other hand, assuming that each agent meets infinitely often all the
other agents, it is easy to verify that eventually a global state will be reached such
that all agent states are either equal to 0 or to some common value M . Moreover
after such a global state T , any meeting between agents will not change T . Hence,
the protocol converges to a global state T such that there is a M for all a ∈ A
we have T (a) = M or T (a) = 0.

Remark that M ≥ max{va|a ∈ A}. If Lead is the set of agents with state
equal toM in global state T , then from the invariant (Σa∈AS(a) = V ) we deduce
M × |Lead| = V and hence M and |Lead| divide V .

To summarize:

Lemma 1. The simple protocol converges to a global state T such that there
is an integer M and a set Lead of agents such that for all a ∈ Lead we have
T (a) = M and for all a ∈ A \ Lead we have T (a) = 0.

The set Lead may be considered as the set of the leaders and:

Lemma 2. The simple protocol is a leader election if and only if max{va ∈
A} > gpd(V ). Moreover the state of the leader is equal to V .

In particular, if V is prime and there are at least two agents a and b such that
va �= vb, then Lead is a singleton and hence the simple protocol is a leader
election.

4.2 Message-Terminating Leader Election in a Ring
with Homonyms

Assuming that the number of identifiers is strictly larger than the greatest proper
divisor of the ring size, we propose a message-terminating leader election in a
ring of unknown size with homonyms. The algorithm is described in Fig. 2.

Consider a ring of n processes with homonymous processes and let L be the
set of identifiers. Assuming that the ring is oriented, in the following, next (resp.
previous) will denote the next process (resp. previous process) for the clockwise
direction.

We first give some intuitions about the algorithm. Roughly speaking, the
algorithm realizes in parallel leader elections for each set of processes having
the same identifier. These elections are based on the same principles as in the
simple protocol and when the election converges the chosen processes have an
estimate est of the ring size. For each identifier i, at least one process (but
perhaps several) is eventually elected, and eventually each leader for identifier l
has the same estimate est of the ring size. Moreover, these estimates of the ring



Leader Election in Rings with Homonyms 15

var: Id, state = active, est = 0, Leader = false, ∀i ∈ L L[i] = 0;
1 procedure Compute()
2 begin
3 /* compute distance to the next active process with identifier Id*/
4 send(right, Id) to next
5 receive(ALeft, Id, v) from next
6 est = v
7 /* compute distance to the previous active process with identifier Id */
8 send(left, Id) to previous
9 receive(Aright, Id, v) from previous
10 leftest := v
11 if est < leftest then
12 state = passive
13 send(restart) to next
14 send(restart) to previous
15 else if est = leftest then send(publish, Id, est) to next
16 end of procedure

initially
17 Compute()

messages
18 on receive(left, i) from previous
19 if state = active ∧ i = Id then send(ARight, i, 1) to previous
20 else send (left, i) to next
21 on receive(right, i) from next
22 if state = active ∧ i = Id then send(ALeft, i, 1) to next
23 else send (right, i, v) to next
24 on receive(Aright, i, v) from previous ∧(state = passive ∨ i �= Id)
25 send(ARight, i, v + 1) to next
26 on receive(Aleft, i, v) from next ∧(state = passive ∨ i �= Id)
27 send(Aleft, i, v + 1) to previous
28 on receive(restart)
29 Compute()
30 on receive(publish, i, v)
31 if L[i] < v then
32 L[i] = v
33 send(publish, i, v) to next
34 (∗, j) = max{(L[j], j)|j ∈ L}
35 if (j = Id) ∧ state = active
36 then Leader = true
37 else Leader = false

Fig. 2. Message-terminating leader election algorithm for identifier Id.

size are strictly lower than n if more than one leader is elected, and is equal to
n when there is only one leader for identifier i.

We now describe more precisely the leader election for processes with the
same identifier i. A process is initially active and may become definitely passive.
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Only an active process may be a leader. Each active process having i as identifier
computes the distance to the next (Lines 3–6) and the previous (Lines 8–10)
active process with the same identifier. This computation is easy: a process p with
identifier i sends a message right and a message left to respectively its successor
and its predecessor on the ring. These messages are retransmitted (in the same
direction) by all passive processes or processes with identifier different from i.
When the first active process with identifier i receives one of these messages it
sends back a message (Aleft, respectively Aright) with a counter to the initiator
of the message. The counter is incremented in each node that retransmits the
message until the message reaches p. When received by p, the counter associated
with a message Aleft gives the distance between p and the next active process
with identifier i. This distance is recorded by p in its variable est. In the same
way, p will get the distance to its previous active process and stores it in variable
leftest.

If the estimate est is strictly lower than leftest then p becomes passive
(Line 11) and sends message restart to next and previous active processes with
identifier i (Lines 13 and 14) these messages lead to a computation of the dis-
tances for these processes (Lines 28–29).

The point is here that the behaviour of the nodes emulates the simple proto-
col. For this, considering the ring with the processes having the same identifier
i, and let the state sp of p for the simple protocol be the value of est for p. We
obtain an emulation of the simple protocol. Indeed, as est is the distance to the
next process with identifier i, the sum of all the sp is equal to n. When a process
becomes passive we may consider that it sets sp to 0 and that the previous active
process q updates sq to sq + sp. Hence the moves of the algorithm emulate the
rule R of the simple algorithm.

From Lemma 1 the election for identifier i stabilizes to a set Lead of processes
that we call leaders for identifier i, of agents having the same estimate est.
Moreover, if the cardinality of L is greater than the greatest proper divisor of n,
for at least one identifier, say l, from Lemma 2 the leader election for identifier i
eventually gives only one leader for i. It remains to choose one identifier among
the identifiers leading to one leader. This is done by choosing the identifier whose
the estimate is the biggest (using order of identifiers if more than one identifier
is the biggest). Then a process leader with this identifier considers itself as the
global leader (variable Leader Lines 30–37).

An active process with identifier i may be a leader for this identifier only
if the values est and leftest are the same (else the election is not “stabilized”
for this identifier). To collect information about leaders for each identifier, when
est equals to leftest, an active process with identifier i sends a message publish
with its estimation of the ring size (Line 15) that will circulate on the ring (in
such a way that at most n messages are generated). All active processes in the
ring maintain an array L containing for each identifier the best estimation of
the ring size. Then each active process chooses (s, i) as the max among all the
(T [j], j) (ordered by (a, b) < (a′, b′) if and only if a < a′ or a = a′ and b < b′)
and considers itself as the (global leader) if its identifier is i.
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Proposition 2. If |L| > gpd(n), algorithm of Fig. 2 is a message-terminating
election algorithm with homonyms.

Proof. We only give the main steps of the proof.
Adapting the proof of Lemma1 we get the main Lemma:

Lemma 3. For each identifier i, there is a non empty set Li of processes with
identifier i and there is v > 0 such that (1) there is a time after which Li is the
set of active processes with identifier i, (2) v is greater or equal the maximum
of distance on the ring between processes with identifier i, and (3) n = v × |Li|.
Under the condition of this previous lemma, we say that the election on identifier
i converges to Li with estimate v for the size of the ring.

Lemma 4. If the election for identifier i converges to estimate e then for any
estimate est of processes with identifier i, e ≤ est.
If the election for identifier i converges to set Li and p ∈ Li, p eventually sends a
publish message. As publish messages reach all processes with Lemma 4 we get:

Lemma 5. If the election for identifier i converges to estimate e then eventually
at each process L[i] = e.

We say that process p chooses identifier i as leader if after Line 30 for some x
(e, j) = (x, i). Call a process with variable Leader equal to true a winner, and a
process with variable Leader equal to false a looser.

Lemma 6. Eventually all processes choose the same identifier i as leader. Then
eventually all processes with identifiers different from i are forever looser and
only active processes with identifiers equal to i are forever winner.

Lemma 7. If |L| > gpd(n), then for at least one identifier i, there are p and q
with identifier i such that the distance from p to q is greater than gpd(n).

Proof. Indeed let G(i) be the set of processes with identifier i and di(p) be the
distance on the ring to the next process with identifier i (if the next such process
is p itself di(p) = n) clearly

∑
p∈G(i) di(p) = n.

Let M = {i ∈ L|max{di(p)|p ∈ G(i)} > gpd(n)}. By contradiction assume
that M = ∅, then for all i ∈ L:

∑
p∈G(i) di(p) = n ≤ gpd(n) · |G(i)|. Thus

gpd(n) · n = gpd(n) · (
∑

i∈L
|G(i)|) =

∑

i∈L
gpd(n) · |G(i)| ≥ |L|n

Hence gpd(n) ≥ |L| a contradiction.

Then from Lemma 3:

Lemma 8. If |L| > gpd(n) then for at least one i ∈ L the election converges to
a singleton with estimate n.
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From Lemmas 8 and 6, we deduce that eventually only one process is winner and
all other processes are looser. A simple verification enables to proves that only a
finite number of messages are exchanged, finishing the proof of the proposition.

If n, the ring size, is known algorithm of Fig. 2 may easily be changed to get
a process-terminating leader election algorithm. Essentially for each identifier
active processes verifies that there is only one leader for the identifier by sending
a message Probe. Details are given in Fig. 3.

/* replace Line 15 of Algorithm of Figure 2 */
if (est = leftest) then

if est = n then send(publish, Id, n)
else send(Probe, Id, est, true, 1) to next

/* replace Line 30 to 37 of Algorithm of Figure 2 */
on receive(publish, i, v)

L[i] = v
if ∀k ∈ L L[k] �= 0 then

if (Id = max{j ∈ L|L[j] = n}) ∧ (state = active) then
Leader = true
send(Terminate)
terminate

send(publish, i, v) to next

/* code for messages Terminate */
on receive(Terminate)

Leader = False
send(Terminate)
terminate

/* code for messages Probe */
on receive(Probe, i, v, b, c)

if (c = n) ∧ (b = true) then send(publish, i, v)
else if (c < n) then

if ((Id �= i) ∨ (state = passive)) then send(Probe, i, v, b, c + 1) to next
else

if est = v then send (Probe, l, v, b, c + 1)
else send (Probe, i, v, false, c + 1)

Fig. 3. From message-terminating to process-terminating.

Proposition 3. If |L| > gpd(n) and n is known by processes, algorithm of Fig. 3
is a process-terminating election algorithm with homonyms.

Remarks. It is only for simplify the code that we refer in the algorithm to L. L
is used only in algorithm Fig. 2 for array L indexed by identifiers in Lines 30–34.
Instead of array L it is possible to deal with an ordered list without a pri-
ori knowledge of the set of identifiers. Hence we get a deterministic message-
terminating election algorithm with neither the knowledge of the ring size neither
the knowledge of the number of identifiers.
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In the same way, if |L| > gpd(n), if n is not a prime number, n is lower
or equal to |L|2. With the knowledge of |L| we get a bound on n, it is easy
to adapt the algorithm of Fig. 3 in such a way we obtain process-terminating
election algorithm with only the knowledge of |L|.

5 A Process Terminating Leader Election Algorithm
with O(n × log(n)) Messages

5.1 Definitions

We encode in a multi-sequence, a number of processes and a set of identifiers.
A multi-sequence is a sequence ((a1, i1), (a2, i2), ..., (au, iu)), where for each 1 ≤
h ≤ u, ih is an identifier, ah is the multiplicity of ih, and i1 < i2 < ... < iu. For
a multi-sequence I = ((a1, i1), (a2, i2), ..., (au, iu)), Id(I) = {i1, i2, ..., iu} and
nb(I) = a1 +a2 + ...+au. We define a total order on such multi-sequences. Given
two sequences I = ((a1, i1), (a2, i2), ..., (au, iu)) and J = ((b1, j1), (b2, j2), ...,
(bv, jv)), we say that I < J if

– it exists k ≤ min{u, v} such that
• for every 0 ≤ h < k: iu−h = jv−h and au−h = bv−h

• iu−k < jv−k or (iu−k = jv−k and au−k < bv−k)
or

– u < v and for every 0 ≤ h < u: iu−h = jv−h and au−h = bv−h

It can be easily verified that we have defined a total order between multi-
sequence. In the following <> denotes the empty multi-sequence and ⊕ is the
operator adding an element to a multi-sequence.

5.2 Algorithm

Our leader election algorithm uses a similar approach to the ones in [15,20],
where processes have distinct identifiers. Recall that in their algorithms, each
process is initially active. Processes that are passive, simply forward the message
they receive. At each step, an active process sends a message with its identifier to
its both neighbors and receives messages from its both nearest active neighbors.

If one of the received messages contains an identifier greater than its own
identifier then it becomes passive. Otherwise, it starts a new step. If a process
receives its own message (i.e. a message with its own identifier) then the process
becomes leader. The algorithm terminates after O(log(n)) steps, and each step
requires 2n messages.

In our algorithm, we keep the idea that each process is initially active and,
at each step, each remaining active process p will exchange messages with its
two nearest active neighbors and it will determine if it becomes passive (as for
the previous algorithm).

But to determine if a process p becomes passive we use not only the identifiers
of its two nearest active neighbors q and s but also the distances d(p, q) and
d(p, s) and the identifiers of the processes between p and q and p and s.
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We encode these two last information in multi-sequence and we use the total
order on these multi-sequences.

The algorithm ensures that p and q are active and neighbors then the infor-
mation they get each other are the same: if p receives from its left (Id(q),DL)
then q receives from its right (Id(p),DR) with DR = DL.

After the exchange of messages, p compares (Id(q),DL) and (Id(s),DR) that
it received from its two nearest active neighbors. If the number of processes
between itself and its neighbors is the size of the ring, this process is the only
active process. Then it is the leader. It sends a message STOP in order that all
passive processes terminate and it terminates. If the number of processes between
itself and its neighbors is different from the ring size, the process becomes passive
if (1) Id(p) < Id(q) or Id(p) < Id(r) or (2) if Id(p) = Id(q) = Id(s) and (DR <
DL or DR = DL) (condition (2) is an adaptation for homonyms). Otherwise, it
remains active and starts a new step.

If we consider three consecutive active processes by the previous rules at least
one of them become passive. In each step, at least a third of active processes are
hence eliminated. By repetitive application of these rules eventually it remains
only at most one active process (the ring structure ensures that if two processes
are active at least one will be eliminated). Thus after O(log(n)) steps, it remains
at most one process.

But we have to avoid that all processes become passive. The fact that |L| is
greater than the greatest proper divisor of n ensures that it is impossible that
there is a subset of processes with the same identifier such that the distance
between them is the same and the set of identifiers of processes between them
are the same (see Lemma 10).

Thus, the algorithm will finish with only one active process. The algorithm
is described in more details in Fig. 4.

We give below the main steps of the proof of this theorem and we sketch their
proofs. By abuse of language we say that a process is active (resp. passive) if its
status variable is active (resp. passive). As channels are FIFO, a computation
of an active process can be decomposed in (asynchronous) rounds. As long as a
process is active and has not terminate, it executes a round: it waits to receive
messages from the left and the right and computes its new state after receiving
them. We name sr

p the state of p after r rounds. Let s0p denotes the initial state.
If a process is terminated or passive in sr

p then for all r′ greater than sr′
p = sr

p.
Directly from the algorithm we have:

Lemma 9. If process q is active at sr
q and p is its the nearest active right neigh-

bor (i.e. the nearest right neighbor p such that p is active in sr
p) then if q receives

Dq
R from its right and p receives Dp

L from its left then Dq
R = Dp

L.

Lemma 10. Let G be a subset of processes with the same identifier, there do
not exist a set of identifiers I and an integer x such that for any two processes
p and q of G, there are x processes between p and q and the set of identifiers of
processes between p and q is I.
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Code for a process with identifier i

1 status = “active”
2 Leader = false
3 send(i, <>, 1) in both directions

4 for ever
5 if status = “passive” then

6 wait until received a message:
7 On receiving (j, D):
8 send(j, D⊕ < i >) in the same direction

9 On receiving (STOP ):
10 send(STOP ) in the same direction; halt

11 if status = “active” then

12 wait until received a message from the left and the right:
13 assume that (jR, DR) came from right and (jL, DL) came from left
14 if nb(DR) = n then Leader = true; send(STOP ) to left; halt
15 else if (i < jR or i < jL) or (i = jR = jL and (DR < DL or DR = DL ) )
16 then status = “passive”
17 else send(i, <>, 1) in both directions

Fig. 4. O(n log(n)) algorithm for process terminating leader election

Proof. Assume that there exists a subset G of processes with the same identifier,
a set of identifier I and an integer x such that for any two processes p and q of
G, there are x processes between p and q and the set of identifiers of processes
between p and q is I. Note that x ≥ |I|. We have n = |G| ∗ x, then (1) x is a
divisor of n. As for each identifier, the ring contains at least one process with
this identifier, we get I = L.

Then x ≥ gpd(n), with (1) this implies that G contains only one process.

Lemma 11. For all r, there is at least one process p active in sr
p.

Proof. We show this property by induction, it holds trivially for r = 0. Assume
it is true until r− 1. Assume for contradiction that all processes become passive
in r. Let G be the set of processes that changes its state from active to passive
in round r.

If G contains at least two processes with a different identifier, we consider
the subset H of G that contain the processes with the greatest identifier. As
there is a process in G with another identifier, there is at least one process in H
that has from right active neighbor a process in H \G. From condition line 15,
this process remains active.

If all processes in G have the same identifier, by Lemma 10, for at least one
process we have DL > DR. From condition Line 15, this process remains active.
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Lemma 12. For r > 0, let x = |{p|p is active in sr−1
p }|, we have |{p|p is active

in sr
p}| ≤ (2/3) ∗ x+ x mod 3.

Proof. Consider the set {p|p is active in sr−1
p }) and x = |{p|p is active in sr−1

p }|.
We split this set in sets of three processes that are neighbors in the ring (it
remains x mod 3 processes). Consider some sets of three processes {p, q, v} and
assume that p is the left neighbor of q and x its right neighbor.

If p and q or q and v have not the same identifier then the process with the
smallest identifiers become passive. Let Dq

R and Dq
L the values that it receives

from its nearest active neighbors. If they have the same identifier, q remains
active only if Dq

R > Dq
L but in this case by Lemma 9, p becomes passif.

Lemma 13. For r > 0, let |{p|p is active in sr−1
p }| = 2, we have |{p|p is active

in sr
p}| = 1.

Proof. It remains two active processes, let p and q be these processes.
If p and q have not the same identifier then the process with the smallest

identifiers become passive. Let Dq
R and Dq

L the values that it receives from its
nearest active neighbors. If p and q have the same identifier, q remains active
only if Dq

R > Dq
L but in this case by Lemma 9, p becomes passive.

From Lemmas 11, 12 and 13, we deduce that eventually it remains only one
active process. Directly from the algorithm this process becomes leader and
propagates the termination by sending a STOP messages.

Theorem 4. If n is known by processes and |L| > gpd(n) then there exists
an algorithm that solves process terminating leader election with O(n log(n))
messages.

6 Concluding Remarks

Given a ring of size n, gpd(n) identifiers are needed to have a deterministic
election algorithm. If n is a prime number then two identifiers are sufficient,
but in the worst case when n is even n/2 (hence O(n)) identifiers are needed.
Moreover, if there is a deterministic solution for leader election, then we do
not have any penalty: there is an election with the same order of number of
exchanged messages as when all processes have their own identity. Then limiting
the number of identifiers without avoiding the existence of deterministic election
algorithm is mainly interesting if some properties of the size ring are known (e.g.
this size is a prime number).

The leader election problem has been studied in framework similar to
homonyms: [5,7,8,22,23] consider “partially anonymous”, [14] “nonunique label”
and [18] “partially eponymous”. Some of the results in these papers are similar
to the ones we present here but we present our results, restricted to the ring
topology, in term of number of process identifiers rather than properties of the
general communication graph. Even if [14] concerns rings with asynchronous
communication, our algorithm, with our conditions on |L| gets the optimality in
term of messages that is not achieved in a more general framework by [14].
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Abstract. We present a TM system that executes transactions without
ever causing any aborts. The system uses a set of t-var lists, one for each
transactional variable. The instructions of each transaction are placed
in the appropriate t-var lists based on which t-variable each of them
accesses. A set of worker threads are responsible to execute these instruc-
tions. Because of the way instructions are inserted in and removed from
the lists, by the way the worker threads work, and by the fact that all
the instructions of a transaction are placed in the appropriate t-var lists
before doing so for the instructions of any subsequent transaction, it fol-
lows that no conflict will ever occur. Parallelism is fine-grained since it
is achieved at the level of transactional instructions instead of transac-
tions themselves (i.e., the instructions of a transaction may be executed
concurrently).

1 Introduction

In asynchronous shared memory systems, where threads execute in arbitrary
speeds and communication among them occurs by accessing basic shared prim-
itives (usually provided by the hardware), having threads executing pieces of
code in parallel is not an easy task due to synchronization conflicts that may
occur among threads that need to concurrently access non-disjoint sets of shared
data. A promising parallel programming paradigm is Transactional Memory (TM)
where pieces of code that may access data that become shared in a concurrent
environment (such pieces of data are called transactional variables or t-variables)
are indicated as transactions. A TM system ensures that the execution of a trans-
action T will either succeed, in which case T commits and all its updates become
visible, or it will be unsuccessful, so T aborts and its updates are discarded. Each
committed transaction appears as if it has been executed “instantaneously” in
some point of its execution interval.

When a conflict between two transactions occurs, TM systems usually abort
one of the transactions to ensure consistency; two transactions conflict if they

c© Springer International Publishing Switzerland 2014
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both access the same t-variable and at least one of these accesses writes a t-
variable. To guarantee progress, all transactions should eventually commit. This
property, albeit highly desirable, is scarcely ensured by the currently available
TM systems; most of these systems do not even ensure that transactions abort
only when they violate the considered consistency condition (this property is
known as permissiveness [13]). The work performed by a transaction that aborts
is discarded and it is later re-executed as a new transaction; this incurs a per-
formance penalty. So, the nature of TM is optimistic; if transactions never abort
then no work is ever discarded. In terms of achieving good performance, the
system should additionally guarantee that parallelism is achieved. So, transac-
tions should not be executed sequentially and global contention points should
be avoided. The design of TM algorithms that never abort transactions is highly
desirable since they additionally support irrevocable transactions; i.e. transac-
tions that perform irrevocable operations, e.g. I/O operations.

In this paper, we present SemanticTM, an opaque [16] TM algorithm which
ensures (1) that transactions complete and never abort (i.e., the strongest
progress guarantee), and (2) fine-grain parallelism at the transactional instruc-
tion level: in addition to instructions of different transactions, instructions of the
same transaction that do not depend on each other can be executed concurrently.
So, since SemanticTM ensures wait-freedom, it naturally supports irrevocable
operations.

SemanticTM employs a list for each t-variable. The instructions of each trans-
action are placed in the appropriate lists in FIFO order; specifically, each instruc-
tion is executed on a single t-variable, so it is placed in the list of the t-variable
that it accesses. A set of worker threads execute instructions from the lists, in
order. The algorithm is highly fault-tolerant. Even if some worker threads fail by
crashing, all transactions whose instructions have been placed in the lists will be
executed. In this paper we focus on relatively simple transactions that access a
known set of t-variables, and their codes contain read and write instructions on
them, conditionals (i.e. if, else if, and else), loops (i.e. for, while, etc.), and
function calls. For such transactions, the work of placing the instructions of the
transaction in lists can be done at compile time (so there is no need to employ
a scheduling component for doing so). Despite this fact, for simplicity, we refer
bellow to a scheduling thread (sometimes called scheduler) which undertakes
this task. We briefly discuss, in Sect. 4, how to extend SemanticTM to cope with
more complicated transactional codes.

We remark that several dependencies may exist among the instructions of a
single transaction; specifically, a single instruction may have several dependen-
cies. SemanticTM works well when these dependencies can be predicted stati-
cally. By using compiler support, these dependencies become known before the
beginning of the execution of the transactions. SemanticTM stores information
about them together with the corresponding instruction in the appropriate list.
In Sect. 2, we describe the dependencies expected by SemanticTM in order to
guarantee the correct execution of the corresponding transactions.
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It is worth mentioning that in this work, we do not focus on how these depen-
dencies are extracted. SemanticTM can make use of any existing or future work
on dataflow analysis. After its placement in the appropriate list, each transac-
tional instruction is executed as soon as its data are available. Thus, SemanticTM
can be thought of as a dataflow algorithm in the sense that it mimics, in software,
a dataflow architecture.

In Sect. 3, we present some experimental results where a simplified version of
SemanticTM executes simple static transactions testing different conflict patterns
among them. In the experiments, SemanticTM exhibits good performance; specif-
ically, in all these experiments, SemanticTM performs better than GccSTM [23]
which is an industry software transactional memory standard [23].

The current version of SemanticTM does not support dynamic transactions.
A discussion on how this limitation could be overcome is provided in Sect. 4.
Since SemanticTM ensures that all transactions will commit, it does not provide
any support for explicitly aborting transactions.

Related Work. TM algorithms that never abort transactions has been recently
presented in [1,18]. They use ideas from [25] where a TM system is presented which
supports the execution of irrevocable transactions. In the algorithms of [1,18],
read-only transactions are wait-free, i.e. each of them is completed successfully
within a finite number of steps; a read-only transaction never writes a t-variable
in contrast to an update transaction that performs write operations on such
variables. However, these algorithms restrict parallelism by executing all update
transactions sequentially using a global lock. SemanticTM guarantees that no
transaction aborts while exploiting parallelism between both writers and readers.
SemanticTM does not also use any locks and therefore update transactions are
also executed in a wait-free way. TM systems that support wait-free read-only
transactions are presented in [4,21]. Update transactions in them may abort
and they require locks to execute some of the transactional instructions.

To enhance progress, a lot of research has been performed on designing
efficient contention managers and transactional schedulers. A contention man-
ager [15,24] is a TM component aiming at ensuring progress by providing efficient
conflict resolution policies. When two transactions conflict, the contention man-
ager is employed to decide whether simple techniques, like back-off, would be
sufficient, or which of the transactions should abort or be paused to allow the
other transaction to complete. SemanticTM prevents conflicts from occurring
thus making the use of a contention manager unnecessary.

Somewhat closer to the work here, a transactional scheduler [2,3,5,6,11,19,
27] is a more elaborated TM component which places transactions in a set of
queues, usually one for each thread; a set of working threads then execute trans-
actions from these queues. In addition to deciding which transaction to delay or
abort when a conflict occurs, and when to restart a delayed or aborted transac-
tion, a scheduler also decides in which scheduling queue the transaction will be
placed once its execution will be resumed or restarted. Some of the schedulers
always abort one of the two transactions and place it in an appropriate queue
to guarantee that the transaction will be restarted only after the conflicting
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transaction has finished its execution, i.e. they serialize the execution of the two
transactions. CarSTM [11], Adaptive Transaction Scheduling [27], and Steal-on-
Abort [2] work in this way. In [5], a scheduler was presented which alternates
between reading epochs (where priority is given to the execution of read-only
transactions) and writing epochs (where the opposite occurs). This technique
behaves better for read-dominated [17] and bimodal [5] workloads, for which
schedulers like those presented in [2,11,27] may serialize more than necessary.
However, the working threads in the algorithm of [5] use locks; additionally,
aborts are not avoided. To evaluate a transactional scheduler, competitive analy-
sis is often employed [3,5,14,15] where the total time needed to complete a set of
transactions (known as makespan) is compared to the makespan of a clairvoyant
scheduler [19].

In [12], scheduling is done based on future prediction of the transactions’ data
sets on the basis of a short history of past transactions and the accesses that they
performed. If a transaction is predicted to conflict with an active transaction, it
is serialized. To avoid serializing more than necessary in cases of low contention,
a heuristic is used where prediction and serialization occur only if the completion
rate of transactions falls below a certain threshold.

In [22], a lock-based dependence-aware TM system is presented which dynam-
ically detects and resolves conflicts. Its implementation extends ideas from TL
II [10] with support of dependence detection and data forwarding. The algo-
rithm serializes transactions that conflict; in case of aborts, cascading aborts
may occur. The current version of SemanticTM copes only with transactions
that their data sets are known. However, SemanticTM ensures that all transac-
tions will always commit within a bounded number of steps.

In [20], a database transaction processing system similar to SemanticTM is
proposed; database transactions can be thought of as transactions whose data
sets are known, in TM concept. Similarly to SemanticTM, consecutive transac-
tional instructions of a transaction are separated into groups, called actions,
according to the dataset they access, each worker thread is responsible to exe-
cute instructions for a disjoint set of datasets, and each action is scheduled to
the appropriate thread. Data dependencies between actions are maintained using
extra metadata. Specifically, a shared object (additional to database’s tables),
called rendezvous point, is maintained for the dependencies of each action of
some transaction; a single action may have several data dependencies and each
of those dependencies will be resolved by the corresponding thread. Using these
rendezvous points the execution of a transaction is separated into phases, with
each phase containing independent actions. A thread initiating the execution
of a transaction, schedules the independent actions (of the first phase) to the
appropriate worker threads. When a worker thread resolves the last dependency
of some rendezvous point, it initiates the next phase of transaction’s execution
by scheduling the next independent actions of this transaction. However, due to
its execution scheme a transaction executed in this system may have to abort,
whereas in SemanticTM transactions never abort.
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With goals similar to TM, Thread Level Speculation (TLS) [8,9,26] uses com-
piler support to split a program into several tasks which are speculatively exe-
cuted and each of them finishes by trying to commit. Whenever a consistency
violation is detected the conflicting tasks are appropriately aborted, like in TM. In
[7], an algorithm that incorporates TLS support on a TM algorithm has been pro-
posed, where each transaction of the TM program is split into several tasks. In this
case, consistency violations may arise as a result of either an intra-transaction
conflict (i.e., a conflict between the instruction of the same transaction) or an
inter-transaction conflict (i.e., a conflict between instruction of different trans-
actions). In both cases, an appropriate tasks’ abort policy ensures that no con-
sistency violation occurs. However, in SemanticTM instead of executing tasks,
threads execute sets of instructions, each performed on a specific t-variable (this
set may contain instructions of several transactions). So, no conflict ever occurs.

2 SemanticTM

Main Ideas. SemanticTM uses a set of lists, called t-var lists, one for each
t-variable. A scheduler places the instructions of each transaction in the appro-
priate t-var lists based on which t-variables each of them accesses. All the instruc-
tions of each transaction are placed in the t-var lists before the instructions of
any subsequent transaction. The scheduler also records any dependencies that
may exist between the instructions of the same transaction. Each of the workers
repeatedly chooses, uniformly at random, a t-var list and executes the instruc-
tions of this list, starting from the first one. Processing transactions in this way
ensures that conflicts never occur; so, transactions never abort. Recall that com-
piler support is employed to know, for each instruction, any dependency that
leads to or originates from it. Figure 1 shows the main structure of SemanticTM.

For example, consider transactions T1 and T2 of Fig. 2. Without loss of gen-
erality, assume that the instructions of T1 are placed in the t-var lists first. Then,
the instructions of lines 1 and 2 of T1 will be placed in the t-var list for x before
the write to x on line 6 of T2. Similarly, the write to y of line 3 of T1 will be placed
in the t-var list for y before the write to y of line 5 of T2. Since the worker threads
respect the order in which instructions have been inserted in the lists when they
execute them, the instructions of T1 on each t-variable will be executed before
the instructions of T2 on this t-variable, and thus no conflict between them will
ever occur.

The set of t-variables accessed by a transaction is its data set. We call control
flow statements the conditionals and loops, and we use the instruction cond to
refer to such a statement. The instructions of a transaction are read, write,
and cond instructions. We call block the set of its instructions in the body of a
control flow statement; so each cond instruction is associated with a block.

Dependencies. If the execution of an instruction e1 requires the result of the
execution of another instruction e2, then there is a dependency between e1 and
e2. This dependency is an input dependency for e1 and an output dependency
for e2. A dependency between a read and a write is called data dependency.1
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execute ready 
transactional 
instructions 

Code of 
Application

T1: e1, in1, out1, f1
T1: e2, in2, out2, f2

T2: e3, in3, out3, f3

T3: e4, in4, out4, f4
T3: e5, in5, out5, f5

…

x

val 

e1, in1, out1, f1

e5, in5, out5, f5

z

val 

e3, in3, out3, f3

e4, in4, out4, f4

T1: e1, in1, out1, f1
T3: e5, in5, out5, f5

…
T1: e2, in2, out2, f2

…

T2: e3, in3, out3, f3
T3: e4, in4, out4, f4

…

Working
Threads

y

val 

e2, in2, out2, f2

Dependence 
Analysis
Module

SemanticTM

Fig. 1. Main components of SemanticTM. Extraction of transactional instructions and
their placement into t-var lists.

We remark that SemanticTM will place five instructions for T1 (Fig. 2) in the
t-var lists: e1 which is a write to x (line 1), a read e2 and a write e3 to x
(line 2), a read e4 on x and a write e5 to y for line 3. There is an output
dependency from ei to ei+1, 1 ≤ i < 5. Notice that in order to execute line 3,
where the assignment on y depends on the value of x, SemanticTM places a read
instruction (e4) on x before the corresponding write instruction (e5) on y. By
doing this, SemanticTM avoids to maintain data dependencies between write
instructions (e.g., between e3 and e5).

Moreover, SemanticTM does not maintain input dependencies for any read
instruction e on a t-variable x, since all writes to x on which e depends have been
placed in the t-var list of x before e and thus the read can get the value from the
metadata of x (by the way the algorithm works, this value will be consistent).
Thus, SemanticTM records input data dependencies only for write and cond
instructions (that originate from read instructions). For each such dependency,
additional metadata are maintained, including the value of the t-variable, read by
the corresponding read instruction, which is also called value of the dependency.
We remark that each read (write or cond) instruction may have several output
(input) data dependencies.

A dependency that either leads to or originates from a cond instruction is
called control dependency. For each cond instruction, SemanticTM maintains
an output control dependency from cond to each instruction e of the block
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1 x := 3
2 x + +
3 y := x

T1

4 z := 2
5 y := z
6 x := y

T2

7 x := 1
8 if (. . .) then

9 x := 2
10 else

11 x := 4
12 y := x

T3

13 i := 1
14 while (i ≤ 3) cnt ∈ {0, 1, 2, 3}

15 j := 1 cnt ∈ {0, 1, . . . , 15}

16 while (j ≤ 5) startinneriter ∈ {⊥, 0, 5, 10}

17 j := j + 1 forouteriter ∈ {0, 1, 2, 3}

18 i := i + 1

T4

Fig. 2. Transactions.

associated with it. As an example, there is one output control dependency for
instruction 8 (to 9) and another one for instruction 10 (to 11). We assume that
for each write instruction on a t-variable x, or for each cond instruction e, a
function f can be applied to the values of the input dependencies of e in order
either to calculate the new value of x or to evaluate whether the condition is true
or false, respectively. We remark that f should be applied after all the input
data dependencies of e have been resolved1. Table 1 provides a brief description
of all possible dependencies for each instruction. The state of an instruction is
waiting, if at least one of its input dependencies has not been resolved, otherwise,
it is ready; an instruction is active if it is either waiting or ready.

Recall that by using compiler support, the dependencies between the instruc-
tions of a transaction are known before the beginning of its execution. Each
instruction, together with its dependencies (and function), is placed in the appro-
priate t-var list, as a single entry.

Conditionals. Each part of a conditional (if, else if, else) is associated with
a cond instruction and a block. Therefore, for an if . . . then . . . else statement,
the two conds (for the if and the else part) and their blocks’ transactional
instructions will be placed in the appropriate t-var lists. Then, at runtime, one
of the two cond instructions will be evaluated as false so its block’s instruc-
tions will be invalidated by the working thread that executes this cond. A cond
instruction can be inserted in the t-var list of any t-variable; in the current ver-
sion of SemanticTM it is placed in the t-var list of the first instruction of its
block.

Notice that a transactional instruction of some block, may have outside-block
dependencies which come from or lead to instructions that does not belong to the
block. For instance, there may be outside-block dependencies from the instruc-
tion of line 7 to the conds of the if. . . then . . . else or to the instructions of
the conds’ blocks. Notice that in SemanticTM output outside block dependencies
are resolved directly because of the way that the transactional instructions are
placed in the t-var lists. For example, to execute line 12, SemanticTM places
1 Computation on local variables can be included in the code of function f . For this

reason, such a function may also be maintained for read instructions.
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Table 1. Data dependencies between transactional instructions.

Transactional
instruction

Dependencies

Input Output

Data dep Control dep Data dep Control dep

e = read(x) In SemanticTM,
e has no input
data dependen-
cies

if e participates
in some block, it
has an input con-
trol dependency
originating from
the block’s cond

e forwards the
value it reads to
write and cond

instructions that
depend on it

if e participates
in some loop’s
block, an output
control depen-
dency originates
from e to its
block’s cond

e = write(x) e may have input
data dependen-
cies originating
from reads

if e participates
in some block, it
has an input con-
trol dependency
originating from
the block’s cond

In SemanticTM,
e has no out-
put data depen-
dencies

if e participates
in some loop’s
block, an output
control depen-
dency originates
from e to its
block’s cond

e = cond e may have input
data dependen-
cies originating
from reads

if e is a cond

of a loop cond,
it has input con-
trol dependency
originating from
each of its block’s
instructions cond

e has output
control depen-
dencies to each
of its block’s
instructions

a read instruction e and a write instruction e′ in the t-var lists of x and y,
respectively. Recall that e as a read instruction does not have an input depen-
dency. However, a dependency exists from e to e′. Moreover, in SemanticTM input
outside block dependencies do not exist. As an example, consider that line 12
participates in some block’s code; for the same reason (as above), e and e′ do
not have input outside block dependencies.

Loops. Let e be a transactional instruction that is included in a loop block; let
c be the associated cond. SemanticTM places c and each instruction of the block
in the appropriate t-var lists only once independently of the number of times
that the loop will be executed since this number may be known only at run
time. We remark that the execution of e (and c) in some iteration may depend
on the execution of some transactional instructions of the previous iteration; we
call such a dependency across-iteration.

In order to perform c multiple times, an iteration counter cntc is associated
with c. This counter stores the current iteration number of the loop’s execution.
Moreover, the input control dependency of e is implemented with a counter cnte;
the same counter is also used to implement the input control dependency of c
from e. If cnte = cntc + 1, then the input control dependency of e is resolved,
otherwise not; if cnte = cntc, then e has been executed and the input control
dependency of c from e is resolved, for the (cntc)th iteration. Notice that cnte
can be either equal to or smaller by one from cntc. This is so, since c can initiate
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a new iteration only after its input control dependencies originating from its
block instructions have been resolved, i.e., after all these instructions have been
executed for the current iteration; similarly, these instructions can be executed
only if their input control dependencies (from c) have been resolved.

To ensure correctness, an iteration number is associated with each of the
input data dependencies of e (or c); this number is stored together with the
corresponding input dependency into a CAS object. When the iteration number
of an input data dependency inDep of e (or c) is smaller than cntc, it follows that
inDep is unresolved for the current iteration; if all input data dependencies of
e have their iteration number fields equal to cntc, then all data dependencies of
e have been resolved and e can be executed. Once e is executed, it resolves the
control dependency to c by writing there an iteration number equal to cntc; recall
that the same action marks e as performed for the current iteration. When all
dependencies of c have been resolved c can be executed. If it decides to initiate
the next iteration (i.e., its condition is evaluated as true) it increments cntc by
one to resolve its output control dependencies for the next iteration.

Notice that although (in SemanticTM) e does not have data dependencies
with instructions outside the block of c, c may have input data dependencies
from instructions outside its block and inside its block; we call them outer and
inner data dependencies, respectively. SemanticTM differentiates them, so that
inner dependencies are not taken into consideration when c decides the initiation
of the first loop iteration. Also, if the input control dependencies of c are resolved
for some iteration, then its inner data dependencies are also resolved for the same
iteration; so, c uses them to decide the initiation of the next loop iteration.

Consider a t-var list that contains two instructions e1 and e2, in this order,
which are included in the same loop block. Assume that there is an across iter-
ation data dependency from e2 to e1. We remark that the input across-iteration
data dependency of e1 originating from e2 should be initialized as resolved in
order for e1 to appropriately become ready for the first iteration of the loop.
Also, notice that the execution of e1 during the second iteration should occur
only after the execution of the first-iteration instance of e2. Since e1 precedes e2

in the list, the working threads may have to search which element of the corre-
sponding t-var list is ready (instead of just checking whether the first element of
the list is ready). Specifically, t-var list should be searched until an instruction
is found that does not participate in the same loop, or until the end of the list if
such an instruction does not exist. In this way, the loop instructions are executed
as if the loop was unfolded and all its instructions were executed in FIFO order.
We remark that the loop in which an instruction participates can be determined
using its input control dependency.

Nesting of conds. Let c2 be a cond that participates in the block of another
cond c1 (so the block of c2 is nested in that of c1). In SemanticTM, the output
control dependencies of c1 include only c2 and not any instruction in the block
of c2; respectively, each instruction of the block of c2 has an output control
dependency with c1.
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We consider first the case where c1 and c2 are conditionals. During the exe-
cution of c1 by some thread p, p will resolve c1’s output control dependency to
c2. If c2 is not invalidated, then c2 and the instruction of its block are executed;
otherwise, c2 and the instructions of its block are invalidated.

We consider now the case where c1 and c2 are loops. Each time c1 initiates
a new iteration, c2 is executed. During its execution, c2 may execute several
iterations of its block code. When its execution completes for some iteration of
c1, c2 resolves its output control dependency to c1; from this point on and until
the input control dependency of c2 from c1 is resolved once more, we say that
c2 is inactive.

Recall that c2 has both inner and outer data dependencies. We remark that,
in each iteration of c1, c2’s outer data dependencies should be resolved before
c2 is executed for the first time for the current iteration of c1. Notice that, a
cond that does not participate in some loop is executed for the first time when
its iteration counter equals 0. This is true for c2, for the first iteration of c1, but
probably in next iterations of c1 may have a value greater than 0.

To figure out the first time that c2 is executed for the current iteration of c1,
a start inner iteration number startinneriterc2 is associated with c2. Before the
input control dependency of c2 is resolved, startinneriterc2 is updated (by some
working thread executing c1) so that startinneriterc2 = cntc2 . For example,
consider T4 (Fig. 2), with c1 and c2 be the cond instructions of lines 14 and
16, respectively. Notice that startinneriterc2 takes values {⊥, 0, 5, 10} (in this
order) where ⊥ is its initial value and the rest are the values of cntc2 before c2’s
loop starts in each iteration of c1’s loop, i.e. (i − 1) ∗ 5, 1 ≤ i ≤ 3, for the ith
iteration of c1’s loop.

The case where c2 is a conditional’s cond and c1 is a loop’s cond is similar
with the previous one, with the difference that c2 is executed only once each time
c1 initiates another (outer) loop iteration. Finally, the case where c2 is a loop’s
cond and c1 is a conditional’s cond is again similar with the above one (where
c1 and c2 are both loops), with the difference that c2’s input control dependency
is resolved at most once; specifically, if c1 is evaluated as true.

Worker Threads. Since working threads choose the t-var list to work on uni-
formly at random, it may happen that several working threads may (concur-
rently) execute the same instruction. To synchronize workers that execute the
same instructions, the following synchronization techniques are employed. For
each transactional instruction e, a status field (with initial value ACTIVE) is
maintained in its entry, indicating that e has not yet been performed. As soon
as a working thread completes the execution of e, it changes e’s status to DONE.

For each t-variable x, SemanticTM maintains a single CAS object which stores
the value of x together with a version number. This is done in order to atomically
update x. Recall that several instances of a write instruction e to some t-variable
x which is contained in a loop block are executed (one for each iteration). The
working threads executing the same instance of e should use the same old value
for x, so that x is updated consistently; also, they should calculate the same new
value for x for the current iteration. To ensure this, SemanticTM maintains a CAS
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object in the record of e which stores the old value of the t-variable to be updated
by e and an iteration number; moreover, the new value of x, is calculated by all
working threads using the values provided in input data dependencies of e for
the current iteration.

We consider now the case where a cond c2 is nested under a cond c1 and at
least one of them is a loop’s cond. In order the working threads executing c1

to correctly update the startinneriterc2 field of c2, a CAS object forouteriterc2

is associated with c2 that maintains the iteration of c1’s loop for which c2 has
started executing. The first step during the execution of c2 for the first time
for some iteration j > 0 of c1 by the corresponding working thread is to update
forouteriterc2 so that it is equal to j; recall that before the input control depen-
dency of c2 from c1 is resolved for the jth iteration of c1, startinneriterc2 has
been updated with value j. By doing this, thereafter the working threads execut-
ing c1 for iteration j are not able to update forouteriterc2 with a value different
than j. Therefore, at each point in time forouteriterc2 is either smaller than
one or equal with cntc1 .

Considering again the example of Fig. 2, with c1 be the cond of line 14 and
c2 be the cond of line 16, forouteriterc2 takes values {0, 1, 2, 3} (in this order)
where 0 is its initial value and the rest are the values of cntc1 in each iteration
of c1’s loop; i.e., i, 1 ≤ i ≤ 3, for its ith iteration.

3 Experimental Evaluation

In this section, we present some experimental results on the performance of
SemanticTM.

The system. We use a Core i7-4770 3.4 GHz Haswell processor, running Linux
3.9.1-64-net1 x86 64. This processor has 4 cores, each with 2 hyperthreads, and
hyperthreads enabled. Each core has a private 32 KB 8-way associative level-1
data cache and a 256 KB 8-way level-2 data cache. The chip further includes a
shared 8MB level-3 cache. The cache lines are each 64-bytes.

The benchmarks’ code was written in C and compiled with GCC-4.8.1. We
compare SemanticTM to GccSTM, the gcc’s STM support which was introduced
in GCC-4.7 [23]. GccSTM is considered as the industry STM standard.

Tested Workload. We study four benchmarks that execute simple static trans-
actions, testing different conflict patterns among them. In each of our bench-
marks, we execute 105 transactions and have N worker threads W1, . . . ,WN

work on N tvar-lists V1, . . . , VN . For our experiments, we consider a simplified
version of SemanticTM which works as follows. Before the beginning of each
experiment, a single thread places the instructions of each transaction in each
tvar-list. Then, N workers are initiated and worker Wk, 1 ≤ k ≤ N , processes
all transactional instructions contained in t-var list Vk, for different values on N .
This static assignment of workers to lists trades wait-freedom for performance.

The GccSTM code works on N variables as well, and initiates exactly N
threads, each executing the same type and number of transactions as in Seman-
ticTM. In both GccSTM and SemanticTM, in each benchmark, each worker
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thread executes transactions of the same type. We denote by Ti, 1 ≤ i ≤ 4,
the transactions’ type executed in our ith benchmark. The code of Ti executed
by Wk is shown in Fig. 3; also, the SemanticTM version of code of T1 is presented.

1 V(k+1)%N ← V(k−2)%N + 1
2 await

3 V(k+2)%N ← V(k−1)%N + 1

T1

4 add read to V(k−2)%N

5 add write to V(k+1)%N dep on V(k−2)%N

followed by await

6 add read to V(k−1)%N

7 add write to V(k+2)%N dep on V(k−1)%N

T1 - SemanticTM

8 Vk ← Vk + 1
9 await

10 Vk ← Vk + 1

T2

11 V1 ← V1 + 1
12 await

13 V1 ← V1 + 1

T3

14 V1 ← 10000
15 while (V1 �= 0) do

16 if (V1 > 0) then

17 V1 ← V1 + 1
18 await

19 Vk ← Vk

T4

Fig. 3. Code of Ti, 1 ≤ i ≤ 4.

We measure the throughput, i.e. the number of transactions that are executed
successfully per second. The interesting thing about the workload of the 1st
benchmark is that GccSTM, as well as any other optimistic TM algorithm, will
abort all transactions while executing line 2. The reason is that while Wk waits
by calling await, Wk−3 writes a t-variable (Vk−2) which is contained in Wk’s
read-set. However, Wk realizes that it has to abort only at commit time. Thus,
the longer each transaction waits, the higher is the penalty (in terms of the
number of aborted transactions) that an optimistic TM pays. We remark that
the use of await is realistic since it simulates the execution of local work which
might be necessary.

In the 2nd benchmark, no transaction ever aborts, since each of them accesses
a disjoint set of t-variables (Wk accesses only Vk). Using this benchmark, the
overhead added by the SemanticTM’s implementation is compared against the
overhead added by GccSTM. In the 3rd benchmark each transaction increments
by one the same shared counter (V1). Finally, the 4th benchmark studies Seman-
ticTM’s performance for transactions with conditionals and loops.

Results. The graphs of Fig. 4 show the performance advantage of SemanticTM
in comparison to GccSTM. As expected, this advantage is significant in the 1st
experiment, since the abort ratio of GccSTM is very high (for eight threads, it is
8 times faster than GccSTM when wait time is short and 20 times faster when
wait time is long). In the 3rd experiment, GccSTM causes a smaller number of
aborts, since at the first write, V1 is locked due to its encounter-time-locking
algorithm [23]. Still its performance degrades. However, since the t-var list of V1
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(a) T1 (conflicts) - Short Wait Time (b) T1 (conflicts) - Long Wait Time

(c) T2 (no-conflict) - Short Wait Time (d) T2 (no-conflict) - Long Wait Time

(e) T3 (counter) - Short Wait Time (f) T3 (counter) - Long Wait Time

(g) T4 (cond) - Short Wait Time (h) T4 (cond) - Long Wait Time

Fig. 4. Transactions with long and short wait time, to demonstrate the impact of
different amounts of local work.
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becomes a bottleneck, SemanticTM is only 2.5 times faster than GccSTM when
wait time is short, and 2 times faster when wait time is long.

Finally, the 2nd experiment where no conflicts occur, show that the overhead
added by SemanticTM is less than the overhead added by GccSTM, since Seman-
ticTM is almost 2 times faster than GccSTM in this experiment. For a small
number of threads, the gap in performance is small for long wait time, since the
overhead added by the GccSTM is amortized.

4 Discussion

The current version of SemanticTM assumes that each transaction accesses a
known set of t-variables. This can be overcome by using wildcards; a wildcard is
an instruction which accesses a t-variable known only at runtime. As an example,
consider a transaction that accesses an element of an array; however, the exact
element becomes known only at runtime. To cope with this (or similar cases),
SemanticTM can maintain a t-var list L for the entire array, as well as one list
Li, 1 ≤ i ≤ m, for each of its elements, where m is the array size. The scheduler
places each instruction e that accesses a (possibly unknown) element of the array
in L. When later (at runtime), the specific element i to be accessed by e becomes
known, e is moved in list Li. A similar strategy may work for supporting dynamic
memory allocation, if we consider the memory heap as an array.

Recall that in SemanticTM there are output dependencies from all instruc-
tions of a block to its cond and vice versa. However, the scheduler may choose to
add such dependencies from the block’s cond instruction only to those instruc-
tions that do not depend on other block instructions, since the rest have depen-
dencies originating from them and therefore they will be executed after them.
Moreover, no output control dependencies to a block’s cond from those block
instructions that do not contribute to the evaluation of the cond are needed. Such
optimizations may have positive impact on the performance of SemanticTM.

SemanticTM is currently achieving fine-grain parallelism at the level of trans-
actional instructions by maintaining a t-var list for each t-variable. Its space over-
head can be decreased by maintaining a single t-var list for a set of more than
one t-variables. So, there is a tradeoff between the space overhead and the gran-
ularity of parallelism achieved by it.

Designing a lock-based version of SemanticTM will be simpler than its lock-
free version discussed here since it will not have to cope with several threads
executing the same instruction.
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Abstract. Disjoint Access Parallelism (DAP) stipulates that operations
involving disjoint sets of memory words must be able to progress indepen-
dently, without interfering with each other. In this work we argue towards
revising the two decade old wisdom saying that DAP is a binary condi-
tion that splits concurrent programs into scalable and non-scalable. We
first present situations where DAP algorithms scale poorly, thus showing
that not even algorithms that achieve this property provide scalability
under all circumstances. Next, we show that algorithms which violate
DAP can sometimes achieve the same scalability and performance as
their DAP counterparts. We continue to show how by violating DAP
and without sacrificing scalability we are able to circumvent three the-
oretical results showing that DAP is incompatible with other desirable
properties of concurrent programs. Finally we introduce a new property
called generalized disjoint-access parallelism (GDAP) which estimates
how much of an algorithm is DAP. Algorithms having a large DAP part
scale similar to DAP algorithms while not being subject to the same
impossibility results.

1 Introduction

As multicores have become the norm, writing concurrent programs that are
correct and efficient has become more important than ever. In this context,
efficiency is no longer just a matter of making a program fast on a specific
number of processors, but also ensuring that when the number of processors is
increased, the performance of the program also increases proportionally.

In order to simplify the task of algorithm designers, several attempts to
characterize scalable programs have been made. Ideally, these properties would
be used in the design phase, when directly measuring scalability is impossible,
and still guarantee scalable programs.

One such property is Disjoint Access Parallelism (DAP) [15]. Introduced by
Israeli and Rappoport, it has been acclaimed to be both necessary and sufficient
for ensuring the scalability of concurrent algorithms. In a nutshell, this property
stipulates that operations accessing disjoint sets of memory words must be able
to progress independently, without interfering with each other.

Unfortunately, it has been shown to be impossible to achieve DAP along
with other desirable properties of concurrent algorithms. Ellen et al. [7] showed
c© Springer International Publishing Switzerland 2014
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for instance that it is impossible to build a disjoint-access parallel universal
construction that is wait-free, even when considering a very weak definition of
disjoint-access parallelism. To illustrate further, Attiya et al. [4] proved that
it is impossible to build a disjoint-access parallel transactional memory having
read-only transactions that are invisible and always terminate successfully, while
Guerraoui and Kapalka [9] showed that it is impossible to design a transactional
memory that is both disjoint-access parallel and obstruction-free.

Conventional wisdom seems to consider that DAP programs scale under any
circumstances while violating this property is catastrophic for scalability. In this
work we contradict the two decade old assumption that DAP is necessary and
sufficient for obtaining scalable concurrent programs. We first show situations
where disjoint-access parallel programs scale poorly, mainly due to the high syn-
chronization cost of specific hardware. We then show how by modifying DAP
algorithms in order to violate this property we still obtain good scalability. Sur-
prisingly perhaps, in some cases we find the non-DAP algorithm to outperform
a similar DAP one. Although unintuitive, the fact that an algorithm that is not
DAP and performs slightly more work can scale better is most likely due to
decreasing contention on shared data in a manner similar to flat combining [11].

We use two data structures to evaluate the impact of violating DAP, one
lock-based and one lock-free. The lock-based data structure is a closed addressing
hashtable that uses lock striping to prevent concurrent threads from accessing
the same bucket of the hashtable. The lock-free one is the multi-word compare-
and-swap implementation of Harris et al. [10]. In order to observe the effects
of losing DAP under several scenarios, we conduct our measurements on two
distinct hardware platforms, one being a multi-socket Opteron while the other
is a single-socket Niagara.

Using our new findings we revisit three theoretical proofs showing that
disjoint-access parallelism is incompatible with other desirable properties of con-
current programs, such as stronger liveness. Then, by circumventing the proofs
we show that violating DAP does not hamper scalability or performance, thus
making it possible to achieve the other desirable properties without sacrificing
scalability.

So far, disjoint-access parallelism has been thought of as a binary property,
and although in some cases violating it has little to no effect, this is by no
means a general principle. To quantify how close the scalability of a non-DAP
algorithm is to that of a DAP one, we introduce a new notion called Generalized
Disjoint-Access Parallelism (GDAP). In short, GDAP quantifies how much of an
operation is DAP.

We experiment with violating the DAP property in two distinct ways. First,
by adding a global shared counter we allow restricted communication among
processes, for instance allowing one process to observe the presence of another.
Then, we allow processes to communicate using a shared queue that permits
processes to exchange any type of message. As counter increments feature a lower
latency compared to queue operations, the non-DAP part is higher in the latter
case, having a more pronounced impact on scalability. Similarly, the latency of
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hashtable operations is lower than that of the multi-word compare-and-swap,
leading to a smaller non-DAP part for the latter. When most of the operation is
DAP, even though not all of it, i.e. there is a small non-DAP part, the difference
in scalability compared to operations that are fully DAP is negligible and in some
cases the GDAP algorithm even achieves better performance and scalability.
When a large part of the operation is not DAP, scalability is indeed severely
hampered.

The rest of the paper is organized as follows. Section 2 reviews disjoint-access
parallelism in a standard model of shared memory. Section 3 describes the bench-
marks we use to show that DAP is neither sufficient (Sect. 4) nor necessary
(Sect. 5) for ensuring scalability. In Sect. 6 we review three previous impossibility
results relying on DAP and we show that violating this property, under similar
scenarios to those in the proofs, has little impact on scalability. We introduce
our new notion of generalized disjoint-access parallelism in Sect. 7 and review
related work in Sect. 8.

2 Disjoint Access Parallelism

We consider a standard model of a shared memory system [5]. Under this
model, we first recall the notion of disjoint-access parallelism of Israeli and Rap-
poport [15].

A finite set of asynchronous processes p1, . . . , pn are assumed to apply prim-
itives to a set of base objects O, located in the shared memory. A primitive that
does not change the state of a base object is called a trivial primitive. As we wish
to reason about the practical performance of disjoint-access parallel programs,
we consider base objects to be memory locations supporting operations such as
read, write, compare-and-swap, and fetch-and-increment.

A concurrent object is a data structure, shared among several processes,
implemented using algorithms that apply a set of primitives to underlying base
objects, and providing to its user a set of higher-level operations. An imple-
mentation of concurrent object A from a set of base objects I ⊂ O is a set of
algorithms, one for each operation of object A. The clients of object A cannot
distinguish between A and its implementation.

Two operations affecting distinct concurrent objects are said to be disjoint-
access. A transaction is then defined as a special type of operation that invokes
operations of more than one concurrent object. Two transactions are said to be
disjoint-access if they access disjoint sets of concurrent objects.

Disjoint-Access Parallelism is a condition on concurrent algorithms stating
that any two operations or transactions that access disjoint sets of concurrent
objects must not apply primitives to the same base object, but must be able
to proceed independently, without interfering with each other. This technique
ensures that no hot-spots are created by the implementation and is claimed to
ensure scalability by reducing the number of cache misses.

To illustrate, consider a Software Transactional Memory that uses the under-
lying primitives of the shared memory (read, write, C&S, etc.) to provide the
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user with read/write registers that can then be accessed through atomic trans-
actions. The registers provided by the STM are then the concurrent objects. In
this context, if pi and p′

i are two processes that execute concurrent transactions
Tj and T ′

j , DAP requires that if transactions Tj and T ′
j access disjoint sets of

registers, then they must not access the same base object, i.e. the same under-
lying memory location. This implies that the time required to execute each of
the two transactions would be the same, had they been executing in isolation.

An alternative definition of disjoint-access parallelism allows operations or
transactions accessing disjoint sets of concurrent objects to apply trivial prim-
itives to the same base object. Disjoint-access parallelism is only violated if at
least one of the primitives is non-trivial. We believe this definition to be more
useful in practice as hardware can typically execute read operations in parallel,
while writes are commonly ordered among themselves and with respect to the
reads. When arguing that DAP is not a good measure for scalability in practice,
we use the latter definition.

3 Benchmarks

We use two different hardware platforms and two separate applications in order
to obtain an ample image of the difference DAP makes in the scalability of
concurrent programs.

The first platform is a 48-core AMD Opteron equipped with four AMD
Opteron 6172 multi-chip modules that contain two 6-core dies each. We fur-
ther refer to it as the Opteron. The L1 contains a 64 KiB instruction cache as
well as a 64 KiB data cache, while the size of the L2 cache is 512 KiB. The L3
cache is shared per die and has a total size of 12 MiB. The cores are running at
2.1 GHz and have access to 128 GiB of main memory.

Our other test platform is a Sun Niagara 2, equipped with a single-die SUN
UltraSPARC T2 processor. We further refer to it as the Niagara. Based on the
chip multi-threading architecture, this processor contains 8 cores, each able to
run a total of 8 hardware threads, totaling 64 threads. The L1 cache is shared
among the 8 threads of every core and has a 16 KiB instruction cache and 8 KiB
data cache. The last level cache (LLC) is shared among all the cores and has a
size of 4 MiB. The cores are running at 1.2 GHz and have access to 32 GiB of
main memory.

Each data point in our graphs was obtained by averaging three separate runs.
For each run we warm up the JVM for 5 s before measuring the throughput
for 10 s, obtaining a variation small enough to be negligible. We continue to
describe the two applications we use to assess the degree at which disjoint-access
parallelism influences scalability in practice.

3.1 Lock-Based Hashtable

Our lock-based implementation is based on the striped hashtable of Herlihy and
Shavit [13], which in turn is based on the sequential closed-addressing hashtable.
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Hash conflicts are resolved by assigning elements that map to the same hash
value into buckets. Each bucket is protected by a distinct lock and can hold any
number of elements by storing them in a linked list.

Although a set implemented using a hashtable cannot be regarded as being
DAP due to hash collisions, when considering the hashtable data structure, oper-
ations involving the same bucket are no longer logically independent. This allows
operations affecting the same bucket to synchronize using the same lock while
still satisfying DAP. Operations affecting elements that map to different buckets
need to acquire different locks and can proceed independently. The hashtable is
the data structure of choice for illustrating DAP in the reference book of Herlihy
and Shavit [13].

We made two independent modifications to this data structure in order to
violate disjoint-access parallelism. We first added a global shared counter that
keeps track of the total number of elements in the hashtable. This counter is
incremented by every insert and decremented by every remove operation of the
hashtable using fetch-and-increment and respectively fetch-and-decrement. The
hashtable size operation is present in most frameworks for sequential program-
ming, such as that of the JDK. Although approximating the current size of the
hashtable can be done by using weak counters, a strong counter is needed in
order to provide a linearizable size operation. We thus explore the compromise
of losing disjoint-access parallelism in order to obtain an atomic size operation.

The second modification consisted in adding a concurrent queue, shared
among all the processes, and making each update to the hashtable also push
or pop an element from this queue. While the global counter consists of the
minimum violation of DAP, the higher latency of the queue allows us to observe
the effects of having a larger part of the operations violate DAP.

3.2 Multi-word Compare-and-Swap

The multi-word compare-and-swap represents a Java implementation of the algo-
rithm presented by Harris et al. [10]. The algorithm first builds a double-compare
single-swap (DCSS) operation out of the compare-and-swap available in hard-
ware and then builds an n-word compare-and-swap operation (NCAS) on top
of that. Both the DCSS and NCAS algorithms are based on descriptors, mak-
ing their design non-blocking. Using this mechanism, an operation makes its
parameters available so that other processes can provide help in case the initial
operation is delayed.

This algorithm is disjoint-access parallel since NCAS operations that affect
disjoint sets of memory locations are not required to synchronize among them-
selves and can proceed in parallel. We again made two independent modifications
in order to violate DAP. We first added a global shared counter for keeping track
of the number of NCAS operations executed. Although finding this number could
have been done by using local counters, we chose this solution in order to obtain
a slight violation of disjoint-access parallelism whose impact on scalability we
can measure. This solution also allows finding the precise number of NCAS oper-
ations executed before the current point in time. The second modification was
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Fig. 1. Speedup obtained when executing 20 % update operations on a hashtable with
1024 elements and buckets of length 4 (a) and NCAS operations of length 8 in a system
with 1000 locations (b) on the Opteron.

to make every NCAS operation also perform a push or pop from a concurrent
queue, shared among all the processes. Due to the higher latencies incurred by
the queue, this modification allows us to test scenarios where operations violate
DAP in a larger degree.

4 DAP Does Not Imply Scalability

In this section we contradict the common misconception that disjoint-access
parallel algorithms necessarily scale. To this aim, we run both the lock-based
hashtable and the NCAS algorithms on the Opteron. On this machine the
disjoint-access parallel implementations of both algorithms scale poorly. For the
sake of comparison, we also plot on the same graphs the versions of these algo-
rithms where DAP is violated by adding a global shared counter.

In Fig. 1a we show the scalability of the original (DAP) version of our lock-
based hashtable. To put it into perspective, we compare to a version where we
break disjoint-access parallelism by having a global counter that stores the size
of the data structure. Our experiments use buckets of length 4 and 20 % update
operations. The DAP version of the hashtable achieves a speedup of only 2.2X
on 48 cores compared to the single core performance. The resulting scalability
is far from ideal and cannot justify aiming for disjoint-access parallelism when
designing a new concurrent algorithm.

In Fig. 1b we plot the speedup obtained when running our implementation of
the multi-word compare-and-swap on the Opteron. In this experiment each of the
NCAS operations attempts to change the value of 8 memory locations, while the
system contains 1000 locations in total. In the case of this algorithm, the DAP
version achieves a speedup of only 3.5X on 48 cores. To put it into perspective,
we also plot the non-DAP version of the NCAS where each operation incre-
ments a global shared counter. In this experiment the two algorithms perform
almost identically and for some thread counts the non-DAP version performs
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Fig. 2. Speedup obtained when executing 20% update operations on a hashtable with
1024 elements and buckets of length 4 (a) and NCAS operations of length 8 in a system
with 1000 locations (b) on the Niagara.

slightly better. This effect, of having an algorithm that performs strictly more
work perform better, is probably caused by decreasing contention on the NCAS
locations by using the extra delay provided by the counter. In effect, violating
disjoint-access parallelism under this scenario does not bring any performance
penalty.

5 Scalability Does Not Imply DAP

In this section we contradict the common misconception that disjoint-access
parallelism is a requirement for obtaining scalable concurrent programs. We
present experiments using both the lock-based hashtable and the multiword
compare-and-swap showing that, for both applications, the non-DAP versions
of these algorithms are able to scale. There experiments were conducted on the
Niagara machine.

In Fig. 2a we plot the speedup obtained when running the hashtable bench-
mark with 20 % update operations on a table with 1024 elements and buckets
of length 4. Both the DAP and non-DAP version using a counter scale very
well, measuring a speedup of 32X on 64 hardware threads. Both versions scale
identically to the point that it is hard to distinguish between the two. The non-
DAP version using an additional queue scales less but is still able to reach a
25X speedup on 64 hardware threads. Therefore the small violation of DAP
obtained when using an additional counter does not hamper scalability at all,
while the larger non-DAP part represented by the queue operations, still allows
the algorithm to achieve a 25X speedup.

Figure 2b shows the speedup obtained when executing NCAS operations on
our Niagara machine. In these tests, each thread picks 8 locations at random,
reads their values using the read operation of the algorithm, and attempts to
swap them to a random set of new values. We use a total of 1000 locations for
this experiment.
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Both the DAP and the non-DAP version using a counter obtain a 40X
speedup and, as in the case of the hashtable, their performance is indistinguish-
able, both versions scaling equally well. The non-DAP version using a queue
scales significantly less but is still able to reach a 10X speedup on 64 hard-
ware threads. Compared to the hashtable augmented with the queue, this ver-
sion of the NCAS scales less due to the fact that all the operations use the
queue, whereas in the case of the hashtable, only the updates (20 %) were using
the queue. Therefore when running our benchmarks on the Niagara machine,
disjoint-access-parallelism does not bring any advantage compared to a version
of the same algorithm that slightly violates this property by introducing a shared
counter. When operations have a larger non-DAP part, such as in the case of
adding a shared queue, both the hashtable and the NCAS are able to scale,
although not as much as their DAP counterparts.

6 Revisiting Impossibilities

In this section we dissect three published theoretical results that we believe are
misleading [4,7,9]. They seem to indicate that we need to sacrifice liveness in
order to have scalability: in fact, we must only sacrifice liveness when aiming
for disjoint-access parallelism. We put these results to the test by evaluating
solutions that circumvent these impossibilities and we show that by weakening
DAP, scalability is not affected.

6.1 DAP Vs Obstruction-Freedom

The first result [9] proves that it is impossible to design a transactional mem-
ory providing transactions that are at the same time disjoint-access parallel and
obstruction-free. The latter condition requires that from any point in the exe-
cution of the system, if a transaction executes alone for a long enough period of
time, it eventually commits. This allows a transaction having a higher priority
to be able to preempt or abort lower priority ones at any time and then be sure
to commit.

The authors claim that disjoint-access parallelism prevents artificial “hot
spots” that may provoke “useless” cache invalidations, thus decreasing perfor-
mance. We provide experimental measurements showing that even in the case
of programs that violate disjoint-access parallelism and feature such artificial
“hot spots”, the number of cache invalidations does not increase significantly:
performance does not suffer.

Circumventing the critical scenario. The authors present the following scenario
for showcasing their impossibility result in a system consisting of four transac-
tional variables, x, y, w and z. Transaction T1 starts executing, reads value 0 for
both w and z and then attempts to write value 1 into both x and y. Then T1

is delayed just before it commits, and T2 starts executing, reads value 0 from x,
writes 1 to w and commits. We observe that T1 and T2 cannot both commit since
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Fig. 3. Throughput obtained when executing NCAS operations of different lengths in
a system with 10000 locations on the Niagara.

this would violate serializability. Therefore the latter must write a base object to
abort the former, which must then be read by a new transaction T3 that reads
y and updates z. Thus, even if T2 and T3 access disjoint sets of transactional
objects, the latter must read a base object showing that T1 has been aborted,
and that object must in turn have been written by T2.

One possible way to circumvent the impossibility is to add a counter CT to
every transaction T in the system. In the example above, consider the counter
CT1 associated with transaction T1. The counter initially has the value 0 and
transaction T2, before committing, aborts T1 by incrementing its counter to 1.
When T3 executes, it reads y and also counter CT1, finding that T1 was aborted.

We estimate a loose upper bound of the performance impact of such a mod-
ification by adding a global shared counter to our NCAS system instead of one
for each operation. Furthermore, all our NCAS operations increment this global
counter instead of only those participating in scenarios similar to those described
by the authors. Note that incrementing is at least as expensive as reading the
counter value. These two differences have the effect of increasing contention at
least as much, if not more than required to contradict the proof.

Performance. In Fig. 3 we show the throughput of running our NCAS imple-
mentation on a system with 10000 locations. The difference between the DAP
and the non-DAP version is that the latter increments a global shared counter
on every operation. We vary the length of the NCAS operation between 2 and
64. The results show that when using operations of length at least 8, the two
versions of the algorithm perform identically. As we observe shorter lengths of
the operations, the difference is small for a length of 4 and significant for length
2 but only when running 64 threads. The decrease in performance for the latter
case is due to the high contention on the counter caused by the low time required
for executing the NCAS. When the NCAS operation needs to write 4 or more
locations, contention on the counter decreases and it is no longer a performance
bottleneck.
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6.2 DAP Vs Invisible Reads and Eventual Commit

Attiya et al. [4] showed that it is impossible to build a transactional memory
that is disjoint-access parallel and has read-only transactions that are invisible
and always eventually commit. They again built on the assumption that disjoint-
access parallelism is necessary for achieving scalability. We show however that
violating disjoint-access parallelism in a manner that would circumvent their
proof has little or no effect on the scalability of the system.

A transactional memory is said to have invisible read-only transactions if
such transactions do not apply any updates to base objects; otherwise read-only
transactions are said to be visible. Invisible read-only transactions are desirable
since this reduces the number of updates to base objects in read-dominated
workloads, thus decreasing the number of cache invalidations.

Circumventing the critical scenario. The authors start by defining a flippable
execution, consisting of a single long read-only transaction with a complete
update transaction interleaved between every two steps of the read-only trans-
action, such that flipping the order of two consecutive updates is indistinguish-
able from the initial execution to all the processes. Then they show that in
such a flippable execution, the read-only transaction cannot commit. Finally,
the authors prove that every disjoint-access parallel transactional memory with
invisible read-only transactions has such a flippable execution and the conclu-
sion follows. The crux of the proof is building an execution where the read-only
transaction misses one of two update transactions. Having all transactions incre-
ment a shared counter upon committing would enable the read-only transaction
to find both update transactions and a flippable execution would no longer be
possible.

Performance. In Fig. 4 we show both the throughput and the cache miss rate
obtained when running the NCAS operations on the Opteron. We use again
operations of length 8 and we vary the size of system. The size of the L1 data
cache is 64 KB, hence systems of 1000 locations fit into the L1. The L2 cache is
512 KB, being able to accommodate a system containing 10000 locations. The
L3 cache has a total of 12 MB and is insufficient to accommodate the largest
system size.

One of the main arguments in favor of disjoint-access parallelism is that it
increases performance by reducing the number of cache misses in the system. Due
to this we perform more in-depth measurements of the cache behavior of the two
versions of the NCAS algorithm. We measure the LLC cache miss rate due to
its high penalties and because on the Opteron it proves to be a good measure
of inter-core communication. We use the perf tool [1], which we attach to our
benchmark after performing a 5 s warm-up. To prevent the virtual machine from
garbage collecting during our measurements, we use a large initial heap size that
is not expected to fill.

For small system sizes we see that both versions of the algorithm do not scale.
Due to high contention, operations have a high chance of conflicting, causing
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Fig. 4. Throughput and percentage of cache misses obtained when executing NCAS
operations of length 8 in a system of different sizes on the Opteron.

them to help each other. As the system size is increased, both algorithms increase
in performance but continue to scale poorly. The amount of cache misses is
largely the same, with the biggest difference being at 105 elements, where a
more significant difference in terms of the throughput is observed when reaching
48 cores.

6.3 DAP Vs Wait-Freedom

A universal construction [12] is a concurrent algorithm that takes as input a
sequential algorithm and then atomically applies it to a data structure. The
main difference between a transactional memory and a universal construction is
that the former can complete an operation by returning Abort, while the latter
does not return until it has successfully applied the operation. The universal
construction is then equivalent to a transactional memory that reattempts to
execute aborted transactions until it succeeds in committing them.

Ellen et al. [7] showed that a universal construction cannot be both disjoint-
access parallel and wait-free. Their proof relies on building an unordered linked
list with operations append and search. The former adds an element to the end
of the list by modifying its tail pointer, while the latter tries to find a specific
element by starting from the beginning of the list.

Circumventing the critical scenario. The proof proceeds by having one search
operation execute while other processes are continuously executing appends. If
the search is not close to the end of the list, it remains disjoint-access with respect
to concurrent append operations. However, if the rate at which new elements are
appended to the list is faster than the progress of the search operation, the
latter will never finish unless the element being searched for is found. It is then
sufficient for this element to be different than all the elements being added to
the list, and the conclusion follows.



52 R. Guerraoui and M. Letia

DAP non−DAP

0 10 20 30 40 50 60

0
20

40
up

da
te

=0
%

Th
ro

ug
ht

pu
t (

op
s/

m
ic

ro
se

c)

0 10 20 30 40 50 60

0
20

40
up

da
te

=5
%

0 10 20 30 40 50 60

0
20

40
up

da
te

=1
0%

0 10 20 30 40 50 60

0
20

40
up

da
te

=2
0%

0 10 20 30 40 50 60

0
10

30
up

da
te

=5
0%

Number of threads
0 10 20 30 40 50 60

0
10

30
up

da
te

=1
00

%

Fig. 5. Throughput obtained when executing different percentages of update opera-
tions on a hashtable with 1024 elements and buckets of length 1 on the Niagara.

One simple way of circumventing the assumptions in their proof is to allow
processes executing a search to read a base object that was written by a process
executing append, even though they access disjoint data items. This object could
then inform the search that a specific append has a higher timestamp and can
be safely be serialized after it.

Performance. In order to evaluate the effect of violating DAP in such a manner,
we modified our non-DAP version of the hashtable such that the search oper-
ations read the shared counter incremented by the insert and delete. In Fig. 5
we compare this new non-DAP version of the hashtable to the original DAP
version on the Niagara, while varying the update rate between 0 and 100 %.
The experiments show that for update rates of up to 20 %, the counter does not
affect performance at all. Then, when using 50 % updates, the effect is visible
for thread counts larger than 32, while with 100 % updates, the effect becomes
visible at 16 threads. As update rates of more than 20 % are less common in
practice, we conclude that for most workloads adding the extra counter does not
affect throughput and scalability.

7 DAP as a Non-binary Property

So far disjoint-access parallelism has been thought of as a binary property: DAP
programs scale, non-DAP programs do not scale. However, in this work we have
shown that disjoint-access parallelism is neither necessary (Sect. 5) nor sufficient
(Sect. 4) for obtaining scalable concurrent programs. To this end we have shown
that violating DAP by itself does not make an impact on scalability. Programs
that are “almost DAP” scale as well as their fully DAP counterparts.

In order to quantify how close an algorithm is to being disjoint-access parallel,
we extend the notion of DAP to define a property called generalized disjoint-
access parallelism (GDAP). This property encompasses the classical notion of
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disjoint-access parallelism but also algorithms that violate it to a certain degree.
GDAP is useful for characterizing situations where algorithm designers choose to
give up DAP in order to obtain some other desirable properties by capturing how
far the resulting algorithm is from its fully DAP counterpart. For instance, many
Software Transactional Memories (STMs) use a shared counter [6,17] in order
to achieve faster revalidation or contention management, this way increasing
performance.

Intuitively, if an operation OP applies primitives to L base objects, and 1/k
of these objects are part of a hotspot while the rest is DAP, the only theoretical
bound for scalability is when k instances of OP are being executed concurrently.
Hence the larger the k factor, the smaller the impact on scalability. In fact,
our experiments show that algorithms featuring a sufficiently large k factor still
provide the same scalability as fully DAP algorithms and in some cases can
outperform them.

Definition 1 (GDAP of order k). Let I be the set of implementations of
concurrent objects A. If for any two operations OPi and OPj such that:

– Ii is an implementation of object Ai ∈ A and Ij is an implementation of
object Aj ∈ A,

– Ai �= Aj,
– OPi is an operation of implementation Ii ∈ I and OPj is an operation of

implementation Ij ∈ I,
– Ii applies primitives to base objects Oi and Ij applies primitives to base objects

Oj,
– ∃O′

i ⊂ Oi with (Oi \O′
i) ∩Oj = ∅ and |O′

i| × k ≤ |Oi|
then I said to be GDAP of order k.

nD DAP

nD DAP

nD DAP

nD DAP

time

Fig. 6. Execution showing Generalized
Disjoint-Access Parallel operations.

Figure. 6 shows an execution of
four GDAP operations that are not
fully DAP. Every operation accesses
a common hotspot such that it has
a non-DAP part as well as a DAP
one. As the non-DAP part is short
(large k factor), the four operations
can still execute concurrently. This
represents the typical scenario result-
ing from adding a shared object to
a set of DAP operations in order to
obtain, for instance, a stronger liveness
property.

In Fig. 3 we observe that opera-
tions which are GDAP of a higher

order scale better than those of a lower order and can, in fact, perform identically
to their fully DAP counterparts. In both experiments we increase the length of
the NCAS operations while the non-DAP part remains constant. The result is
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Fig. 7. Throughput and percentage of cache misses obtained when executing 10 %
update operations on hashtables of different sizes and buckets of length 1 on the
Opteron.

that longer operations scale better. Switching from length 2 to length 4 provides
close to the same performance as the fully DAP version, while for length 8 and
greater, the two are practically indistinguishable.

Although in most cases the fully DAP variant of an algorithm scales slightly
better than a GDAP variant that is not fully DAP, in certain cases the latter can
in fact outperform the former. As shown in Fig. 7, the performance gain obtained
by adding an extra counter to our hashtable can be as high as 50% for certain
thread counts. In this scenario, the threads are executing 10% update operations
on a hashtable with buckets of length 1. We show results obtained using tables
of size varying from 1024 to 4096 elements. The graphs show that, although the
percentage of cache misses stays roughly the same between the DAP and GDAP
variants, on some workloads the latter achieves better throughput even though
it performs extra work.

8 Related Work

As concurrent algorithms become prevalent, knowing what properties to aim
for in their design is crucial. In this paper, we contradict classical wisdom by
showing that disjoint-access parallelism is neither necessary nor sufficient for
ensuring scalability. Instead, we propose a new property, generalized disjoint-
access parallelism that helps estimate how close a non-DAP algorithm is to
a DAP one. Using this property, algorithm designers can build algorithms that
scale similarly to DAP ones but are not subject to the same impossibility results.

The assumption that DAP is sufficient for scalability has been used both
when building algorithms that promise good scalability, and as an assumption in
proofs. Anderson and Moir [3] describe universal constructions that are expected
to scale well due to being disjoint-access parallel. Kuznetsov and Ravi [16] explore
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the lower bounds on the number of synchronization operations that a transac-
tional memory must perform in order to guarantee disjoint-access parallelism
and the progressiveness liveness condition.

Although DAP seems to be the most accepted theoretical condition for ensur-
ing scalability in practice, other works explore properties that are promising in
this direction. Whether or not they are either necessary or sufficient for obtaining
scalable concurrent programs remains uncertain.

Afek et al. [2] characterize an operation as having d-local step complexity if
the number of steps performed by the operation in a given execution interval
is bounded by a function of the number of primitives applied within distance d
in the conflict graph of the given interval. They define an algorithm as having
d-local contention if two operations access the same object only if their distance
in the conflict graph of their joint execution interval is at most d. Ellen et al. [8]
introduce the obstruction-free step complexity as the maximum number of steps
that an operation needs to perform if no other processes are taking steps.

Imbs and Raynal [14] introduce a property called help locality that restricts
which other operations can be helped by the current operation. They build upon
this property to design an atomic snapshot that scales well, under the assumption
that help locality is sufficient for ensuring scalability in practice. However, this
assumption has not yet been tested and, similar to disjoint-access parallelism,
may have less merit than it receives.

Roy et al. [18] show a tool that profiles concurrent programs giving informa-
tion about critical sections such as the average time threads spend waiting for
a lock and the amount of disjoint-access parallelism that can be exploited. Such
a tool can potentially be modified in order to provide the order of GDAP of a
concurrent program, helping algorithm designers understand if their scalability
issues can be solved by attempting a fully DAP solution.

This paper should be regarded as a step to better understanding scalabil-
ity. Theoretical conditions that ensure practical scalability are important but,
unfortunately, disjoint-access parallelism is not a silver bullet in this regard. As
further work, we plan to test other promising theoretical properties in hope to
find one that guarantees practical scalability.
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Abstract. We show that, in contrast to the general belief in the distrib-
uted computing community, linearizability, the celebrated consistency
property, is not always a safety property. More specifically, we give an
object for which it is possible to have an infinite history that is not lin-
earizable, even though every finite prefix of the history is linearizable.
The object we consider as a counterexample has infinite nondetermin-
ism. We show, however, that if we restrict attention to objects with finite
nondeterminism, we can use König’s lemma to prove that linearizability
is indeed a safety property. In the same vein, we show that the backward
simulation technique, which is a classical technique to prove linearizabil-
ity, is not sound for arbitrary types, but is sound for types with finite
nondeterminism.

1 Introduction

One of the most challenging problems in concurrent and distributed systems
is to build software objects that appear to processes using them as “perfect”:
always available and consistent. In particular, proving that implementations of
such objects are correct can be very difficult.

To make the challenge more tractable, it is common to divide the difficulty
into proving two properties: a safety and a liveness property [2,3]. In short, a
safety property says “bad things should never happen” whereas a liveness prop-
erty says “good things should eventually happen.” Traditionally, in the context
of building “perfect” shared objects, safety has been associated with the concept
of linearizability [9] while liveness has been associated with a progress guarantee
such as wait-freedom [8].

– Linearizability: Despite concurrent accesses to an object, the operations
issued on that object should appear as if they are executed sequentially. In
other words, each operation op on an object X should appear to take effect at
some indivisible instant between the invocation and the response of op. This
property, also called atomicity, transforms the difficult problem of reasoning
about a concurrent system into the simpler problem of reasoning about one
where the processes access each object one after another.

– Wait-freedom: No process p ever prevents any other process q from making
progress when q executes an operation on any shared object X. This means

c© Springer International Publishing Switzerland 2014
G. Noubir and M. Raynal (Eds.): NETYS 2014, LNCS 8593, pp. 57–69, 2014.
DOI: 10.1007/978-3-319-09581-3 5
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that, provided it remains alive and kicking, q completes its operation on X
regardless of the speed or even the failure of any other process p. Process p
could be very fast and might be permanently accessing shared object X, or
could have failed or been swapped out by the operating system while accessing
X. None of these situations should prevent q from executing its operation.

Ensuring each of linearizability or wait-freedom alone is simple. The chal-
lenge is to ensure both. In particular, one could easily ensure linearizability
using locks and mutual exclusion. But this would not guarantee wait-freedom:
a process that holds a lock and fails can prevent others from progressing. One
could also forget about linearizability and ensure wait-freedom by creating copies
of the object that never synchronize: this would lead to different objects, one
per process, defeating the sense of a shared object. So indeed the challenge is
to design shared abstractions that ensure both linearizability and wait-freedom.
But proving correctness can be made simpler if we could prove each property
separately.

It was shown that properties of distributed systems can be divided into safety
and liveness properties [2], each requiring specific kinds of proof techniques.
So the general approach in proving the correctness of shared objects is that
linearizability, being a safety property, requires techniques to reason about finite
executions (such as backward simulation [13]), whereas wait-freedom, being a
liveness property, requires another set of techniques to reason about infinite
executions. The association between safety and linearizability on the one hand,
and liveness and wait-freedom on the other, is considered a pillar in the theory
of distributed computing.

This paper shows that, strictly speaking, this association is wrong for the
most general definition of object type specifications. More specifically, we show
that, in contrast to what is largely believed in the distributed computing liter-
ature, linearizability is not a safety property. This might be surprising because
(a) it was often argued that linearizability is a safety property, e.g., in [12], and
(b) linearizability proofs have used techniques specific to safety properties, e.g.,
backward simulation [13]. In fact, there is no real contradiction with our new
result for the following reasons.

– To prove that linearizability is not a safety property, we exhibit an object,
which we call the countdown object, and a non-linearizable history such that
every finite prefix of the execution is linearizable. The object we consider
has infinite nondeterminism, which might occur, for instance, in a distributed
system that seeks to ensure fairness (as we discuss in Sect. 2.2). Interestingly,
the execution we use in our proof is by a single process, so it demonstrates
that other consistency conditions that are weaker than linearizability (such
as sequential consistency) are also not safety properties for the countdown
object.

– We show, however, that if we restrict attention to objects with finite nondeter-
minism, we can use König’s lemma [10] to prove that linearizability is indeed
a safety property. We thus highlight that, even if this was not always stated in
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the past, claims that linearizability is a safety property, should assume finite
nondeterminism.1 Lynch’s proof that linearizability is a safety property [12]
applies only to the more restricted class of deterministic objects.

In the same vein, we show that the backward simulation technique, which is
sometimes used to prove linearizability, is not sound for arbitrary types (if infinite
nondeterminism is permitted). It is sound, however, for finite nondeterminism.

The rest of the paper is organized as follows. We describe our system model
in Sect. 2. We recall the notion of linearizability in Sect. 3. In Sect. 4 we recall
the concept of safety and give our counterexample that shows linearizability is
not a safety property. Then we show in Sect. 5 that, if we restrict ourselves to
objects with finite nondeterminism, linearizability becomes a safety property.
We consider the implications for backward simulations in Sect. 6 and conclude
the paper in Sect. 7.

2 System Model

We consider a system consisting of a finite set of n processes, denoted p1, . . . , pn.
Processes communicate by executing operations on shared objects. The execution
of an operation op on an object X by a process pi is modelled by two events, the
invocation event denoted inv[X.op by pi] that occurs when pi invokes the oper-
ation, and the response event denoted resp[X.res by pi] that occurs when the
operation terminates and returns the response res. (When there is no ambiguity,
we talk about operations where we should be talking about operation executions.)

2.1 Objects

An object has a unique identity and a type. Multiple objects can be of the same
type. A type is defined by a sequential specification that consists of

– the set Q of possible states for an object of that type,
– the initial state q0 ∈ Q,
– a set OPS of operations that can be applied to the object,
– a set RES of possible responses the object can return, and
– a transition relation δ ⊆ Q×OPS ×RES ×Q.

This specification describes how the object behaves if it is accessed by one oper-
ation at a time. If (q, op, res, q′) ∈ δ, it means that a possible result of applying
operation op to an object in state q is that the object moves to state q′ and
returns the response res to the process that invoked op.
1 For example, an erroneous claim is made in two recent papers [1,11] that explicitly

permit nondeterministic objects and make no restriction that the nondeterminism of
the objects should be finite. The latter paper states that “linearizability is a safety
property, so its violation can be detected with a finite prefix of an execution history.”
Using the definitions given in that paper, this statement is false. However, this does
not affect the correctness of that paper’s main results because those results are about
objects with finite nondeterminism.
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2.2 Infinite Nondeterminism

– We say that an object is deterministic if, for all q ∈ Q and op ∈ OPS, there is
at most one pair (res, q′) such that (q, op, res, q′) is in the object’s transition
relation δ.

– An object has finite nondeterminism if, for all q ∈ Q and op ∈ OPS, the set
of possible outcomes {(res, q′) : (q, op, res, q′) ∈ δ} is finite.

Dijkstra [6] argued that infinite nondeterminism should not arise in comput-
ing systems. He showed, for example, the functionality of nondeterministically
choosing an arbitrary positive integer cannot be implemented in a reasonable
sequential programming language. Nevertheless, there is a significant literature
on infinite nondeterminism. For example, Apt and Plotkin [4] observed that
infinite nondeterminism can arise naturally in systems that guarantee fairness.
Consider a system of two processes P and Q programmed as follows, using a
shared boolean variable Stop that is initially false.

Process P : Process Q :
Stop := true x := 1

do until Stop
x := x+ 1

end do
print x

If these processes are run in a fair environment, where each process is guar-
anteed to be given infinitely many opportunities to take a step (but there is
no bound on the relative speeds of the processes), Q will choose and print an
arbitrary positive integer. Thus, at the right level of abstraction, this system
implements a choice with infinite nondeterminism. In the context of shared-
memory computing, objects with infinite nondeterminism have also occasionally
arisen (e.g., [14]).

2.3 Histories

A (finite or infinite) sequence of invocation and response events is called a history
and this is how we model an execution. We assume that processes are sequential:
a process executes (at most) one operation at a time. Of course, the fact that
processes are (individually) sequential does not preclude different processes from
concurrently invoking operations on the same shared object.

The total order relation on the set of events induced by H is denoted <H .
A history abstracts the real-time order in which the events occur. We assume
that simultaneous (invocation or response) events do not affect one another, so
that we can arbitrarily order simultaneous events.

A local history of pi, denoted H|pi, is a projection of H on process pi: the
subsequence H consisting of the events generated by pi. Two histories H and
H ′ are said to be equivalent if they have the same local histories, i.e., for each
process pi, H|pi = H ′|pi.
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As we are interested only in histories generated by sequential processes, we
focus on histories H such that, for each process pi, H|pi is well-formed: it starts
with an invocation, followed by a response (the matching response associated
with the same object), followed by another invocation, and so on.

An operation is said to be complete in a history if the history includes both the
events corresponding to the operation’s invocation and its response. Otherwise,
we say that the operation is pending. A history is complete if it has no pending
operations and incomplete otherwise.

A history H induces an irreflexive partial order on its operations as follows.
Let op and op′ be two operations. Informally, operation op precedes operation
op′, if op terminates before op′ starts. More precisely:

(
op→H op′

) def=
(
resp[op] <H inv[op′]

)
.

Two operations op and op′ are said to overlap (we also say are concurrent) in a
history H if neither op→H op′ nor op′ →H op.

2.4 Sequential Histories

A history is sequential if its first event is an invocation, and then (1) each invo-
cation event, except possibly the last, is immediately followed by the matching
response event, and (2) each response event, except possibly the last, is immedi-
ately followed by an invocation event. A complete sequential history always ends
with a response event. A history that is not sequential is said to be concurrent.
Given that a sequential history S has no overlapping operations, the associated
partial order →S defined on its operations is actually a total order.

Let S|X (S at X) denote the subsequence of history S made up of all
the events involving object X. We say that a sequential history S is legal if,
for each object X, the sequence X.op1,X.res1,X.op2,X.res2, . . . satisfies the
sequential specification (Q, q0, OPS,RES, δ) of X in the following sense: there
exists q1, q2, . . . in Q such that (qi−1, opi, resi, qi) ∈ δ for all i.

3 Linearizability

Linearizability [9] basically requires that each operation on an object appears to
execute at some indivisible point in time, also called the operation’s lineariza-
tion point, between the invocation and response of the operation. Linearizability
provides the illusion that the operations issued by the processes on the shared
objects are executed one after another.

We first define linearizability for complete histories H, i.e., histories with-
out pending operations, and then extend the definition to incomplete histories.
A complete history H is linearizable if there is a “witness” history S such that:

1. H and S are equivalent,
2. S is sequential and legal, and
3. →H⊆→S .
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This means that for a historyH to be linearizable, there must exist a permutation
S of H, which satisfies the following requirements. First, S has to be indistin-
guishable from H to any process. Second, S has to be sequential (interleaving the
process histories at the granularity of complete operations) and legal (respecting
the sequential specification of each object). Notice that, as S is sequential,→S is
a total order. Finally, S must also respect the real-time occurrence order of the
operations as defined by→H . Such a sequential history S is called a linearization
of H.

The definition of linearizability is extended to incomplete histories as follows.
An incomplete history H is linearizable if H can be completed, i.e., modified in
such a way that every invocation of a pending operation is either removed or
completed with a response event, so that the resulting (complete) history H ′

is linearizable. Intuitively, H ′ is obtained by adding response events to certain
pending operations of H, as if these operations have indeed been completed, but
also by removing invocation events from some of the pending operations of H.
We require however that all complete operations of H are preserved in H ′.

When proving that an algorithm implements a linearizable object, we need
to prove that all histories generated by the algorithm are linearizable. A history
H may allow for several different linearizations.

4 Linearizability Is Not a Safety Property

4.1 Safety

Intuitively, safety properties ensure that nothing “bad” ever happens. More
specifically, a safety property is a set of histories that is non-empty, prefix-closed
and limit-closed. Thus, a set P of histories is a safety property if it satisfies the
following three conditions.

– P is non-empty : P �= {}.
– P is prefix-closed : if H ∈ P , then for every prefix H ′ of H, H ′ ∈ P .
– P is limit-closed : for every infinite sequence H0,H1, . . . of histories, where

each Hi is a prefix of Hi+1 and each Hi ∈ P , the limit history H = lim
i→∞

Hi is
in P .

To ensure that a safety property P holds for a given implementation, it is thus
enough to show that every finite history of the implementation is in P ; an execu-
tion is in P if and only if each of its finite prefixes is in P . Indeed, every infinite
history of an implementation is the limit of some sequence of ever-extending
finite histories and thus should also be in P .

4.2 Counterexample

Theorem 1. Linearizability is not a safety property.
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0 1 2 3 4
op : T

op : T

op : F

op : T

op : T op : T op : T

op : T

Fig. 1. The countdown object.

Proof. We define a type of object called a countdown object, which provides a
single operation op that outputs T or F . The first invocation of op nondetermin-
istically picks a positive integer k. The object returns T for the first k invocations
of op. After that, it returns F for all remaining invocations of op. Formally, this
type has the following sequential specification, which is illustrated in Fig. 1.

Q = N

q0 = 0
OPS = {op}
RES = {T, F}

δ = {(0, op, T, k) : k ≥ 1} ∪ {(1, op, F, 1)} ∪ {(k, op, T, k − 1) : k ≥ 2}
Consider the following infinite sequential history H that uses a single count-

down object X.

inv[X.op by p],
resp[X.T by p],
inv[X.op by p],
resp[X.T by p],
inv[X.op by p],
resp[X.T by p],
...

We first show that this history is not legal (and hence not linearizable). If we
try to assign any positive integer state k to the object X after the first operation
has been performed, then the states of the object after the next k−1 operations
must be k − 1, k − 2, k − 3, . . . , 1. Thus, the (k + 1)th invocation of op in the
execution would have to return F . Since there is no way to assign states to the
object consistent with all responses in H, we conclude that H is not legal.

Now consider any finite prefix H ′ of H. We show that H ′ is legal (and
hence linearizable). Let k be the number of complete operations in H ′. We
can assign the sequence of states k, k − 1, . . . , 2, 1 to X. Note that (0, op, T, k)
and (i, op, T, i − 1) (for 2 ≤ i ≤ k) are transitions of a countdown type, so this
sequence of states satisfies the definition of legality for H ′.
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Let Hi be the prefix of H consisting of the first i complete operations. Then,
for all i, Hi is linearizable and Hi is a prefix of Hi+1. However, H = lim

i→∞
Hi is

not linearizable. Thus, the property of being linearizable is not limit-closed, and
linearizability is not a safety property for this object specification. 	

Remark 2. Because the execution used in the proof of Theorem 1 is a sequential
execution, the argument in fact shows that even legality is not a safety property
for the countdown object type, since the sequential execution is not legal but
every prefix of it is. Moreover, since the execution in the proof is by a single
process, it also demonstrates that other consistency conditions that are weaker
than linearizability (such as sequential consistency) are also not safety properties
for the countdown object.

5 When Linearizability Is a Safety Property

We now show that a slight generalization of König’s (Infinity) Lemma enables
us to show that linearizability, when restricted to objects with finite nondeter-
minism, is a safety property. König’s Lemma can be formulated as follows.

Lemma 3. (König’s Lemma [10]). Let G be an infinite directed graph such that
(1) each vertex of G has finite outdegree, (2) each vertex of G is reachable from
some root vertex of G (a vertex with zero indegree), and (3) G has only finitely
many roots. Then G has an infinite path with no repeated vertices starting from
some root.

Theorem 4. Linearizability is a safety property for object types with finite non-
determinism.

Proof. Consider any object type with finite nondeterminism. The set of lineariz-
able histories is non-empty, since the empty history (consisting of 0 events) is
trivially linearizable. We show that the set of linearizable histories is prefix- and
limit-closed.

Consider a linearizable history H. We show that any prefix H ′ of H is also
linearizable. Let S be any linearization of H. Let sequential history S′ be the
shortest prefix of S that contains all complete operations of H ′.

We claim that S′ is a linearization of H ′. We complete H ′ by appending
responses that are present in S′ but not in H ′ to the end of H ′ and removing
operations that do not appear in S′. Note that only incomplete operations are
removed fromH ′ since all complete ones appear in S′. Let H̄ ′ denote the resulting
complete history.

First we show that complete histories S′ and H̄ ′ contain the same set of
operations. Any operation in H̄ ′ must also be in S′ (since all operations not in
S′ are removed when forming H̄ ′). To derive a contradiction, suppose that S′

contains an operation op that does not appear in H̄ ′. Since only operations that
do not appear in S′ were removed fromH ′ to obtain H̄ ′, op does not appear inH ′

either. Since S′ is the shortest prefix of S that contains all complete operations
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of H ′, the last operation op′ in S′ must be a complete operation in H ′. Thus,
op �= op′. Since op′ is complete in H ′ and op does not appear in H ′, op′ <H op.
But op <S op

′, contradicting the assumption that S is a linearization of H.
Since S′ is a prefix of a legal history S, it is also legal. Moreover, it also

respects the real-time order in H̄ ′: if op <H̄′ op′, then op <S′ op′ (otherwise,
S would violate the real-time order in H). Since S and H̄ ′ contain the same
set of operations, S′ respects the real-time order of H̄ ′, and local histories are
well-formed, S′ is equivalent to H̄ ′: local histories in S′ and H̄ ′ are identical.

So, S′ is a linearization of H ′ and, thus, linearizability is prefix-closed.
To prove the limit-closed property, we consider an infinite sequence of ever-

extending linearizable histories H0,H1,H2, . . .. Our goal is to show that H =
lim

i→∞
Hi is linearizable. We assume that H0 is the empty history and each Hi+1

is a one-event extension of Hi. (By prefix-closedness, each prefix of every Hi is
linearizable, so there is no loss of generality in this assumption.)

Now we construct a directed graph G = (V,E) as follows. Vertices of G are
all tuples (Hi, S,W ), where i ∈ N, S is any linearization of Hi that ends with a
complete operation present in Hi, and W is a sequence of states that witnesses
the legality of S. There is a directed edge ((Hi, S,W ), (Hj , S

′,W ′)) in G if and
only if j = i+ 1, S is a prefix of S′ and W is a prefix of W ′.

Note that for each Hi there is at least one vertex (Hi, S,W ), since Hi is
linearizable and if we remove all operations at the end of the linearization that are
incomplete in Hi, we still have a linearization of Hi (the incomplete operations
can also be removed from Hi to obtain a completion of Hi). Moreover, since S
is necessarily legal, there exists a witness W for it. Thus, the graph G contains
infinitely many vertices.

We use König’s lemma to show that the resulting graph G contains an infinite
path (H0, S0,W0), (H1, S1,W1), . . . and the limit lim

i→∞
Si is a linearization of

the infinite limit history H. The legality of lim
i→∞

Si is witnessed by the infinite

sequence of states lim
i→∞

Wi.

First we observe that for each vertex (Hi+1, S
′,W ′) (with i ≥ 0), there is

an edge into the vertex from some vertex (Hi, S,W ). There are two cases to
consider.

– The last operation op of S′ is a complete operation inHi. In this case, S′ is also
a linearization of Hi. Indeed, even if the last event of Hi+1 is the invocation
of a new operation op′, this operation cannot appear in S′: it can only appear
before op in S′ violating the real-time order in Hi+1. Thus, (Hi, S

′,W ′) is a
vertex in G and there is an edge from it to (Hi+1, S

′,W ′).
– The last operation op of S′ is not a complete operation in Hi. But since S′

ends with an operation op that is complete in Hi+1 and Hi+1 extends Hi with
one event only, we conclude that the last event of Hi+1 is the response of
op. Thus, Hi and Hi+1 contain the same set of operations, except that op is
incomplete in Hi. Let S be the longest prefix of S′ that ends with a complete
operation in Hi. Let W be the prefix of W ′ whose length corresponds is the
number of operations in S′. Since W witnesses the legality of S, W ′ witnesses
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the legality of S′. Also, only incomplete operations in Hi do not appear in S.
Thus, S is a linearization of Hi and (Hi, S,W ) is a vertex in G and there is
an edge from it to (Hi+1, S

′,W ′).

It follows that the graph G has only one root vertex, (H0, S0,W0), where
H0, S0 and W0 are empty sequences, and moreover that every vertex is reachable
from this root.

Now we show that the outdegree of every vertex of G is finite. There are only
finitely many operations in Hi+1 and each linearization of Hi+1 is a permutation
of these operations, so there can only be finitely many linearizations S′ of Hi+1.
Moreover for any finite-length sequential history S′ there can only be finitely
many witnesses to the legality of S′, since the number of possible states after
any finite number of operations has been performed is finite. (This is where we
use the assumption that the object’s specification has finite nondeterminism.)
Thus, there are only finitely many vertices of the form (Hi+1, S

′,W ′). Since
all outgoing edges of any vertex (Hi, S,W ) are directed to vertices of the form
(Hi+1, S

′,W ′), the outdegree of every such vertex is also finite.
By Lemma 3, G contains an infinite path starting from the root vertex:

(H0, S0,W0), (H1, S1,W1), . . .. Let S = lim
i→∞

Si and W = lim
i→∞

Wi. First, note

that W witnesses the legality of S. We argue now that the S is a linearization
of the infinite history H. Let H ′ be the completion of H obtained by removing
the incomplete operations of H that are not included in S and inserting into
H response events for incomplete operations of H that are included in S. (The
response events should be inserted in the order they occur in S and the response
to an operation op should be inserted after the response to any operation that
appears before op in S.) By construction, S is equivalent to H ′, and S respects
the real-time order of H; otherwise there would be a vertex (Hi, Si) such that Si

is not equivalent to Hi or violates the real-time order of Hi. Thus, S is indeed
a linearization of H, which concludes the proof that linearizability is a safety
property. 	


6 Backward Simulations

A backward simulation [13] is a technique that is sometimes used to show that an
implementation of a shared object is linearizable (for example, [5,7]). A backward
simulation from a system A to a system A′ (which have state sets Q and Q′,
respectively) is a relation bsr ⊆ Q×Q′ with the following properties.

1. For every state s of A, there is a state s′ of A′ such that (s, s′) ∈ bsr.
2. If there is a transition α from state s1 to state s2 in A and (s2, s′2) ∈ bsr

then there is a state s′1 and a sequence of transitions α′ of A′ such that
(s1, s′1) ∈ bsr, α′ moves from state s′1 to s′2, and the sequence of externally
observable events2 is the same in α and α′.

2 In the context of implementations of shared object of type T , observable events are
just invocations and responses on the object of type T .
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3. If q0 is a possible initial state of A and (q0, q′0) ∈ bsr then q′0 is a possible
initial state of A′.

If such a backward simulation exists from an implementation automaton to
an abstract automaton that specifies correct linearizable behaviour, it is easy
to prove that every finite history of the implementation is also a history of the
abstract automaton, and hence linearizable. Intuitively, given a history H of
the implementation A, we start from the final state of that history and find a
matching state of the abstract automaton A′ using property 1. Then, working
backwards step by step, we build a historyH ′ of A′ by finding, for each transition
of H, a sequence of transitions to prepend to H ′ using property 2. Finally, when
we reach the beginning of H we observe, using property 3, that the history
we have built could take place starting from an initial state of A′. Moreover,
by construction the two histories have the same sequence of externally visible
events.

Thus, if we can build a backward simulation from the implementation to the
abstract automaton that specifies linearizable behaviour and if linearizability is
a safety property, it follows that the implementation is linearizable. However,
if linearizability is not a safety property, then the existence of the backward
simulation does not necessarily imply that the implementation is linearizable. In
fact, we can provide an example of an incorrect implementation of the countdown
object where there is a backward simulation between the implementation and
the abstract automaton.

0 1
op : T

op : T

Fig. 2. An incorrect implementation of the countdown object.

Consider the following trivial (but incorrect) implementation of a countdown
object: to perform an op on the countdown object, a process immediately returns
T . One way to model this implementation is the automaton shown in Fig. 2.
The reason that this implementation is incorrect is that it is possible for the
implementation to return T forever in an infinite execution, something that is
not permitted by the specification of the countdown object. Nevertheless, there
is a backward simulation relation from the implementation to the countdown
type. Let

bsr = {(0, 0)} ∪ {(1, k) : k ≥ 1}.

It is easy to verify that bsr satisfies the three properties that define a backward
simulation relation using the following correspondence between actions.
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α s′
2 α′ External actions

0 → 1 k, where k ≥ 1 0 → k op : T

1 → 1 k, where k ≥ 1 k + 1 → k op : T

Thus, for objects with infinite nondeterminism, backward simulations are
not necessarily a sound technique for proving linearizability (unless one can also
prove that linearizability is a safety property for the object type considered). In
view of Theorem 4, proving linearizability with a backward simulations is sound
for any type with finite nondeterminism.

7 Concluding Remarks

For clarity, we have used the terms finite nondeterminism, rather than bounded
nondeterminism (which is often used in the literature) because an object may
have finite nondeterminism even when there is no bound B such that the num-
ber of possible responses to an operation is always bounded by B. For example,
consider the bag object type, which stores a set of natural numbers and provides
two operations: insert(k), which adds k to the set, and delete, which nonde-
terministically removes and returns an arbitrary element of the set. It has the
following formal specification.

Q =P(N)
q0 ={}

OPS ={insert(k) : k ∈ N} ∪ {delete}
RES ={ack, empty} ∪ N

δ ={(S, insert(k), ack, S ∪ {k}) : S ⊆ N, k ∈ N}∪
{(S,delete, k, S − {k}) : S ⊆ N, k ∈ S} ∪ {({},delete, empty, {})}

Although the number of nondeterministic choices available to a delete operation
depends on the current state, and there is no a priori bound on this number, the
bag object does have finite nondeterminism, so Theorem 4 says that linearizabil-
ity is a safety property for the bag object.

We have shown in this paper that, strictly speaking, linearizability is not a
safety property if infinite nondeterminism is permitted in the definition of object
types. This points out the importance of considering carefully whether theorems
proved about shared-memory systems apply to arbitrary nondeterministic object
type specifications, or whether one should make the (often reasonable) restriction
that object types must have finite nondeterminism. In particular, this shows that
if linearizability is established by proving that every finite run is linearizable,
for example by using a backward simulation, then there is an additional proof
obligation to show that linearizability is a safety property for the particular type,
for example by showing that the type specification has finite nondeterminism
and then applying Theorem 4 of this paper. One open question raised by this
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work would be to give a precise characterization of the object types for which
linearizability is a safety property.
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Abstract. Resource allocation is one of the most relevant problems in
the area of Mechanism Design for computing systems. Devising algo-
rithms capable of providing efficient and fair allocation is the objective
of many previous research efforts. Usually, the mechanisms they propose
use payments in order to deal with selfishness. Since using payments
is undesirable in some contexts, a family of mechanisms without pay-
ments is proposed in this paper. These mechanisms extend the Linking
Mechanism of Jackson and Sonnenschein introducing a generic concept
of fairness with correlated preferences. We prove that these mechanisms
have good incentive, fairness, and efficiency properties. To conclude, we
provide an algorithm, based on the mechanisms, that could be used in
practical computing environments.

Keywords: Linking mechanism · Fairness · Resource allocation

1 Introduction

The success of the Internet has made the problem of resource allocation to emerge
in many versions like, for example, deciding which peer must receive bandwidth
or disk in a file sharing P2P system [1], or deciding to which computational
task some CPU is assigned in a collaborative distributed environment [2]. The
problem may also appear with a negative formulation (i.e., instead of deciding
who shall receive a resource, the problem is deciding who shall not receive it).

In all these scenarios, it is very important to conceive mechanisms that
achieve efficient and fair resource allocation even when players present selfish
or non-rational behavior. With that purpose, a number of interesting protocols
and mechanisms based on Game Theory concepts [3,4] have been proposed.
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In such works, it is often assumed that players can transfer their utilities (i.e.,
use payments). However, there are many systems in which this assumption is not
realistic. Recently, some mechanisms without payments have been proposed, like
those of Procaccia and Tennenholtz [5], or the seminal work of Jackson and Son-
nenschein [6,7] in which a new type of mechanism (called Linking Mechanism)
is proposed. A Linking Mechanism, instead of offering incentives or payments
to players, limits the spectrum of players’ responses to a probability distribu-
tion known by the game designer. The objective of this paper is to explore and
extend Linking Mechanisms, introducing a wide spectrum of fairness concepts,
while preserving all the original properties.

State of the Art. Mechanism Design has been gaining increasing popularity in
distributed computing during the last few years (see, e.g., [8–10]). Even though
the mechanisms proposed in these works are interesting, they are usually based
on payment systems. Deploying such payment system in practice is often diffi-
cult. For this reason, mechanisms without payments have also been proposed.
Related literature could be found in economics on cooperation [11,12] or sim-
ilar problems in P2P systems such as reputation [13] and artificial currencies
[14]. The work closest to our own, and in which we have based our proposal, is
the Linking Mechanism proposed by Jackson and Sonnenschein [6,7]. Related to
this work, Engelmann and Grimm [15] presents experimental research on linking
mechanisms. An algorithm called QPQ (Quid Pro Quo) [16] has been proposed
as an application of this kind of mechanisms to distribute task executions fairly
among independent players.

QPQ reflects the main idea behind the concept of linking mechanism: when
a game consists of multiple instances of the same basic decision problem (e.g.,
saying yes or no, choosing among a number of discrete options), it is possible to
define selfishness-resistant algorithms by restricting the players’ responses to a
given distribution. Hence, in that case, the frequency with which a player declares
a particular decision is established beforehand. Based on this, QPQ presents
quite relevant features as the fact of not requiring payments, the flexibility on the
definitions of the utility functions of the players, its applicability in iterative (i.e.
repeated) games, the lack of central control authority, etc. While QPQ presents
some very interesting properties, it only guarantees fairness and efficiency when
users behave independently on each other. Nevertheless, this does not need to
be the case in real environments, where users may have correlated preferences.
The problem of fairness among players has been widely analyzed in the game
theory literature and a wide range of fairness concept has been proposed, but, as
far as we know, there is no fair linking mechanisms when players have correlated
preferences. This motivates the research proposed in this paper.

Contributions. Our contributions are twofold. On the one hand, we have extended
the idea of Linking Mechanism introducing fairness, while preserving desirable
properties, like efficiency, truthful reporting, incentive compatibility, etc. On the
other hand, we propose an algorithm based on these mechanisms that we expect
to be used in practical scenarios.
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In our model, fairness is a key element introduced to compensate current
sacrifices in future iterations. Due to the large number of notions of fairness
that could be defined, it is difficult to find a general model that encompasses
any approach. Fairness is, in general, an elusive concept that can be seen from
many different perspectives. In this work we have proposed a generic fairness
definition, which we hope will serve as a reference to wider models. Hence, our
contribution is clear: to the best of our knowledge, no other previous research
work has offered a linking mechanism providing fair and efficient decisions.

In addition, from a theoretical perspective, we contribute to the progress of
the state-of-the-art by proposing a mathematical framework suitable for proving
all claimed algorithmic properties. This framework is inspired on previous work
on theoretical economics but, as far as we know, it has never been adapted
to the specific peculiarities of distributed computing (at least not to solve the
resource allocation problem). This technique has proven to be extremely powerful
for our specific problem, but it can be re-used in other scenarios with similar
assumptions.

Based on the theoretical results, we propose a realization of the mechanism
suitable for being implemented as an iterative game in real distributed environ-
ments. Unlike in the original linking mechanism, this algorithm does not need
to know the probability distribution of the players’ responses. We show that this
realization does not require central entities and that its computational cost is
affordable for current state of the art networks and devices. In addition, through
simulations, we confirm the stability of the algorithm demonstrating that few
iterations on a repeated game are enough for making the mechanism to converge
to a fair equilibrium even when the players’ distributions are strongly correlated.

To illustrate the application of this mechanism in a real environment, consider
a P2P system used for computation to which requests arrive continuously. When
a request arrives, the computational cost of processing it at a given node of the
system will depend on the load of the node. Our mechanism could be used to
enforce that all nodes process the same proportion of requests, while the total
computational cost is minimized.

2 Model and Definitions

We start by presenting the usual mathematical framework for mechanism design
and then we formally define the specific problem we face in this paper.

Mechanism Design Concepts. The following provides the usual theoretic frame-
work that will be later applied to our problem. We assume that there are n
players. The set of players is N = {1, 2, . . . , n}. Players are risk-neutral. The
alternative or outcome set of the game played is D. In a general setting, D could
be defined over Δ(N)1, but in this paper we define D = N so that the outcome
d ∈ D is the player to whom the resource will be allocated.
1 We denote by Δ(S) the set of all probability distribution over some set S.
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Prior to making the collective choice in the game, each player privately
observes her preferences over the alternatives in D. This is modeled by assum-
ing that player i privately observes a parameter or signal θi that determines her
preferences. (For instance, in resource allocation, θi could represent the value
player i assigns to the resource.) For a given player i, we say that θi is the player
type. The set of possible types of player i is Θi. We denote by θ = (θ1, θ2, . . . , θn)
the vector of player types. The set of all possible vectors is Θ = Θ1×Θ2× . . . Θn.
We denote by θ−i the vector obtained by removing θi from θ.

We denote by Π = Δ(Θ) the set of all probability distributions over Θ. It is
assumed that there is a common prior distribution π ∈ Π that is shared by all
the players. We denote by πi ∈ Δ(Θi) the marginal probability of θi. We define
βi(θ−i|θi) as the conditional probability distribution of θ−i given θi. That is, for
any possible type θi ∈ Θi , βi(·|θi) specifies a probability distribution over the
set Θ−i representing what player i would believe about the types of the other
players if her own type were θi. Beliefs (βi)i∈N are consistent, since individual
belief functions βi can all be derived from the common prior π. This implies that
π(θ−i|θi) = βi(θ−i|θi).

Individual players have preferences over outcomes, which are represented by
a utility function ui(d, θi) ∈ R defined over all d ∈ D and θi ∈ Θi.

The set of outcomes D, the set of players N , the type sets in Θ, the common
prior distribution π ∈ Π, and the payoff functions ui, i ∈ N are assumed to be
common knowledge among all the players. The game rules defined by a specific
mechanism are also common knowledge. However, the specific value θi observed
by player i is private information of player i.

A strategy for the player i is any map σi : Θi → Δ(Θi), where σi(θ̂i|θi) is
the conditional probability that the player reports θ̂i when her true type is θi. A
reporting strategy σi is truthful if for every pair (θ̂i, θi), σi(θ̂i|θi) = 1 if θ̂i = θi
and 0 otherwise. As usually done, we will use θ̂i to denote the reported type and
θi the actual type.

Given that the prior distribution π is known, player i can not change it.
Hence, we say that a player i has a limited strategy space, since her strategy can
not change the beliefs of other players. Intuitively, player i has a limited strategy
space if beliefs over reports are the same as actual beliefs.

For a given Bayesian mechanism 〈Θ, g〉 we shall write qi(·|θi) for player i’s
interim probability density function on D conditional on player i’s type being
θi.

In this paper, we are looking for a mechanism 〈Θ, g〉, where g(·) is the decision
function, without utility transfers (payments) and that implements some social
choice function f under some equilibrium when the induced game is Bayesian.
In addition, we introduce fairness as a key tool to compensate or reward players.
We call this kind of mechanisms as Quid Pro Quo Mechanisms (QPQ).

Fairness. In our model, we use fairness as a very abstract concept. For us, fair-
ness is the property of balancing in expectation some game parameters (mod-
elled with a real function) among all players. Our model was originally built
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with two examples in mind: fairness in utility (“players have same expected
utility”) and fairness in assignment (“same expected number of assignments”).
But these two examples are just special cases of our model. Additionally, we
have contemplated the possibility that some scenarios require allocations other
than equiproportional; or than the game must be constrained to several fairness
concepts at the same time. All of this is modelled introducing a set of functions
ηi,l : θ → R and ratios δi,l, all defined for each player i ∈ N and for each fairness
concept l = 1, · · · ,m (m is the number of fairness concepts). The function ηi,l
represents a fairness concept. For instance, for fairness in assignment this func-
tion could be defined as ηi,l(θ) = 1. Similarly, fairness in utility is applied when
ηi,l(θ) = θi. On the other hand, δi,l is the ratio for player i when fairness l is
applied. Typically, this ratio is δi,l = 1

n . Then, formally, our concept of fairness
is defined as follows.

Definition 1 (Fairness). Given functions ηi,l : Θ → R, and values δi,l, we say
that a mechanism 〈Θ, g〉 is fair (or η-fair) when, for all i ∈ N and l = 1, · · · ,m,

∫

Θ

ηi,l(θ)qi(θ) dπ(θ) = δi,l
∑

j∈N

∫

Θ

ηj,l(θ)qj(θ) dπ(θ) (1)

In this paper, we deal mathematically with this general concept of fairness,
but for the algorithm and simulations we used a particular concept of fairness,
where players will have equal number of allocated resources (in expectation).

Resource Allocation Problem. We now formally define the problem we study in
this work. Intuitively, the problem is like a repeated single-unit auction, where
the mechanism that decides how to allocate the resource in each auction is a
QPQ mechanism. Hence there are no payments and the allocation must satisfy
a notion of fairness.

The problem of resource allocation is a tuple 〈R,N,Θ〉 where, N and Θ
are as defined above, and R = {r1, r2, . . .} is the ordered set of resources that
have to be allocated by the system over time. Resources are received by the
system in their order in R, they are independent among them, and the system
must allocate resource rk to a single player before receiving resource rk+1. R is
assumed to be infinite.

As was mentioned previously, in this problem the outcome set is D = N ,
where an outcome of d ∈ D for resource rk means that rk is allocated to player d.
In [16], we have proposed a QPQ algorithm that implements this function when
the type of players follow mutually independent distributions. As in that work,
we assume here that the type of each player is normalized using a Probability
Integral Transform (PIT), so that it takes real values in the interval [0, 1] and
follows a uniform distribution within that support. Hence, we assume that Θi =
[0, 1]. Finally, as mentioned, we assume that players have a limited space strategy
(i.e., π is known a priori and cannot be changed by the players).

The social choice function (scf) g(·) we are looking for is one that optimizes
the social utility restricted by fairness conditions. The social choice function
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must be the solution to the following equation,

max
g

{∑
i∈N

∫
Θ
ui(d(θ), θi) qi(θ) dπ(θ)

}

s.t.,

∫
Θ
ηi,l(θ)qi(θ) dπ(θ) = δi,l

∑
j∈N

∫
Θ
ηj,l(θ)qj(θ) dπ(θ), l = 1, · · · ,m

(2)

As an example, we study the fairness concept where each player i will receive a
proportional number of resources δi. Hence, we obtain that the scf is the solution
of the following equation.

max
g
{
∑

i∈N

∫

Θ

ui(d, θi) qj(θ) dπ(θ)}

s.t.
∫

Θ

qj(θ) dπ(θ) = δi,∀i ∈ N.

(3)

Another fairness concept that we study as an instance of this framework is
players with proportional utility. Under this fairness concept every player will
obtain a proportional expected utility. The equations are similar in this case.

max
g
{
∑

i∈N

∫

Θ

ui(d, θi) qj(θ) dπ(θ)}

s.t.
∫

Θ

ui(d, θi) qj(θ) dπ(θ) = δi
∑

j∈N

∫

Θ

uj(d, θj) qj(θ) dπ(θ),∀i ∈ N.
(4)

Without loss of generality, we can define the utility of a player i as follows,

ui(d, θi) =

{
θi if d = i,

0 otherwise.
(5)

In this paper, we are interested in dynamic mechanisms where truth-telling
is a Bayesian equilibrium of the static QPQ mechanism. In that case we call
the QPQ mechanism Bayesian incentive compatible. That means that a player
obtains a higher utility when reporting truthfully.

3 The Fair Quid Pro Quo Mechanism

With the above definitions, we now derive QPQ Mechanisms that implement the
social choice functions given by Eqs. 3 and 4 under equilibrium, as special cases
of the solution to Eq. 2.
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Theorem 1. The QPQ Mechanism that implements the social function 2 with
η-fairness is a set of functions ψ = (ψ1, · · ·ψn) that defines a line y = ψi(x) for
each player i with deterministic assignment d = gψ(θ) = argmax

i∈N
(ψi(θ)) (except

at some points where the decision is indifferent).

Proof. The problem we aim to solve is to find the decision function g that max-
imizes

∫

Θ

∑

i∈N
θi qi(θ) dπ(θ) (6)

under the constraints given in Eq. 2. Using Lagrange multipliers, this is tanta-
mount to maximizing the functional

F [q] ≡
∫

Θ

∑
i∈N

θi qi(θ) dπ(θ) +
∑
k∈N

m∑
l=1

λk,l

∫
Θ

⎧⎨
⎩ηk,l(θ)qk(θ) − δk,l

∑
j∈N

ηj,l(θ) qj(θ)

⎫⎬
⎭ dπ(θ),

(7)
which can be rewritten

F [q] =
∫

Θ

∑

i∈N
ψi(θ)qi(θ) dπ(θ), (8)

where

ψi(θ) ≡ θi +
m∑

l=1

λi,l ηi,l(θ)−
∑

k∈N

m∑

l=1

λk,l δk,l ηi,l(θ). (9)

Since 0 ≤ qi(θ) ≤ 1 and
∑
i∈N qi(θ) = 1 for all θ ∈ Θ, then for each θ ∈ Θ,

∑

i∈N
ψi(θ)qi(θ) ≤ ψj(θ) (10)

if j ∈ N is such that ψj(θ) > ψk(θ) for all k 	= j. The upper bound is reached
if, and only if, for that value of θ we have qj(θ) = 1 and qk(θ) = 0 for all k 	= j.

If, on the other hand, j1, . . . , jr are such that ψj1(θ) = · · · = ψjr (θ) > ψk(θ)
for all k 	= j1, . . . , jr, then the upper bound is ψj1(θ), but this time is reached for
any choice of the functions qi(θ) such that qj1(θ)+ · · ·+qjr (θ) = 1 and qk(θ) = 0
for all k 	= j1, . . . , jr. 
�

For convenience, we build the decision function of our mechanism introducing
a transformation function ψ : Θ → R

n that returns a vector of n real values. The
decision function is then obtained as d = g(θ) = gψ = argmax

i∈N
(ψi(θ)). We say

that ψ determines the “decision rule” or “decision function”. Our main theorem
give us insight into what can we expect about the set of functions ψ. Given our
definition of ψi(θ) we can derive some intuition about the decision function. The
theorem tells us that we can restrict our attention to deterministic solutions
except when ψi(θ) = ψj(θ), i, j ∈ N . At these points, the decision is indifferent.
The above theorem also gives us an optimality result.
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Corollary 2. Assume that all players are honest, mechanism M defined using
the decision function d = argmax

i∈N
(ψi(θ)) maximizes the utility of the system

subject to fairness constraints.

Finally, when fairness is symmetric in the sense that each player has the
same fairness function, then each ψi depends only on the player’s profile θi and
therefore ψi(θi, θ−i) could be reduced to ψi(θi). This last aspect allows us to
state the following corollary.

Corollary 3. When fairness is symmetric in the sense of ηi(θ) = η(θi) ∀i ∈ N ,
and players have limited space strategy, then the probability qi depends only on
the player’s value, that is qi(θ) = qi(θi).

Proof. The proof follows from the definition of ψi(θ) and therefore the deci-
sion function could be reduced to d = argmax

i∈N
(ψi(θi)). As beliefs can not be

changed by the strategy of others players, the probability qi(θ) is only defined
as a function of θi. 
�

Revisiting our particular cases of fairness defined as equal-number of resources
(Eq. 3) and equal number of utility (Eq. 4) we can check that the solutions forψ are
in both cases straight lines. When fairness is defined as equal-number of resources
(Eq. 3), ψi(θ) becomes

ψi(θ) ≡ θi + λi −
∑n
k=1 λkδk, (11)

and therefore ψ(θi) = θi + λi −
∑n
k=1 λkδk.

This solution has a very nice property that was already observed in our
original work (QPQ with independent players). The mechanism designer could
aggregate players when studying a single player. The mechanism designer can see
the game as player i against the system formed by all other players (j ∈ N, j 	= i).
In this case, player i has to compute just two values for λ, her own value λi and
the aggregate value λj =

∑n
k=1 λkδk. That is: ψ(θi) = θi + λi − λj , or even

simpler: ψ(θi) = θi + λ. if we redefine λ as a new single real parameter that
represents λi −

∑n
k=1 λkδk.

This confirms that the decision function is a straight line where the parameter
λ determines the point at which the line crosses the y-axis. And this is true for
all players.

On the other hand, when fairness is defined as a function of utility (Eq. 4),
our ψ function could be defined using

ψi(θ) ≡ θi (1 + λi −
∑n
k=1 λkδk), (12)

and therefore ψ(θi) = θi (1 + λi −
∑n
k=1 λkδk).

Again, the decision function is a straight line where λ determines the slope.
Aggregating players, the above solution could be reduced to ψ(θi) = (1 + λi −
1
nλj), or ψ(θi) = λ θi.
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Properties. The Fair QPQ Mechanism with Correlated players (Mfair) has the
following properties:

1. Mfair is (ex-ante) individual-rational. This means that the expected utility
of a player is at least its expected outside utility.

2. Mfair is not allocative-efficient, but assign tasks efficiently subject to equal
number of tasks for each player. This property is a clear conclusion from
Corollary 2.

3. There is no incentive for any of the players to lie about or hide their private
information from the other players. Players will report truthfully in a Bayesian
equilibrium. We said that Mfair is Bayesian incentive compatible. This prop-
erty prevents selfish players from obtaining a benefit by misbehaving.

The two first properties are quite evident. The last property follows from
Theorem 4.

Theorem 4. When players have limited space strategy, and fairness is sym-
metric in the sense that ηi(θ) = η(θi) ∀i ∈ N , then Mfair is Bayesian incentive
compatible.

Proof. For the sake of contradiction, let us suppose this proposition is false.
Hence, there is some set of assignments for which, if i is not honest, she will
obtain more utility in expectation.

From Corollary 3, this holds for any strategy of the aggregate player j, and
in particular when all its players are honest. Hence, we can consider in the rest
of the proof that the rest of n− 1 players behave honestly.

Additionally, using the same corollary, we know that every player, j 	= i ∈ N ,
will obtain the same expected utility (independently whether i lies or not),

∫

Θ

uj(d, θj) qj(θ) dπ(θ) =
∫

Θ

uj(d, θj) q̂j(θ) dπ̂(θ)

Now we can define a new mechanism M that assigns a task to player i
(when i is honest and declares θi) with the same probability as the original QPQ
assigns the task to the player i when she declares a false value θ̂i. Then, qi(θi) =
q̂i(θ̂). Note this new mechanism conserves the same fairness constraints as the
original one. However, if the above were true, QPQ would not be optimal, since
a mechanism that reproduces the same decisions under i lying (in presence of
honest players) would different (lower) utility. Clearly, this is in contradiction of
optimality of QPQ. Therefore, the best strategy for a player (the one optimizing
her normalized utility) is to be honest. 
�

4 Practical QPQ Algorithm

After describing the different ingredients of our solution, we are able to propose
an application of our mechanism. Due to space restrictions, we will only discuss
an algorithm for a particular case. We propose an algorithm where the resource
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Algorithm 1. QPQ Correlated mechanism (code for node i)
1: Estimate the preference θi

2: Publish the normalized value θ̄i = PIT (θi)
3: Wait to receive the normalized values θ̄j from the other players
4: for all j ∈ N do
5: if not GoF Test(θ̄j ,Historic) then
6: θ̄j ← Random(θ̄−j ,Historic)
7: end if
8: end for
9: Historic ← Historic ∪ {θ̄}

10: Let d = argmax
j∈N

{ψj(θ̄j)}
11: if d = i then
12: Resource is assigned to node i
13: end if
14: Update λj , ∀j ∈ N : λk+1,j = λk,j + εk(Tk,j − 1/n).

allocation achieves fairness in the number of resources allocated to each player.
This algorithm could be extended to other fairness concepts. The details can be
observed in Algorithm 1.

In the algorithm, Tk,j denotes the percentage of decisions assigned to player j,
computed at round k. As it can be observed, for each round, each player estimates
her own value and publishes it. Publication means broadcasting a message with
the value to all players (although any other means of distribution, like shared
memory, can be used). By assumption, a player sends its value before it receives
any of the others (concurrency, which implies that they do not depend from each
other), and all of the values are correctly received at each player (reliability).
Then, the algorithm assigns the resource to the player that publishes the highest
value modified by a particular ψk.

Acceptance Test. We are assuming that players are reporting values using a uni-
form distribution. If their original distribution is not the uniform, we apply here
the same normalization transformation proposed in [16] based on the Probability
Integral Transform (PIT). Given the properties of the PIT, the idea is that any
player applying correctly the PIT on her real type distribution, must generate
a uniform distribution on the unit interval on her published normalized values.
Hence, from the point of view of the mechanism designer, the problem consists
on determining whether these published values follow or not that uniform dis-
tribution. There are a wide range of tests that allow checking that. These tests
are called Goodness-of-Fit or GoF tests.

Continuing with this argument, we propose to implement the acceptance test
of our algorithm by using some GoF test on the declared transformed sequence of
values published by the player. Whenever a player is honest and she declares the
values by applying the PIT transformation on her own distribution, these values
will be uniformly distributed in the unit interval. In that case (with high proba-
bility) the GoF tests will accept the samples. More importantly, this process has
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an error which tends to zero when the number of samples (rounds) increases for
any reasonable value of the threshold. For the study of our analytical results, we
assume that GoF tests are perfect and this error is zero.

A tremendous amount of GoF tests have been proposed in the scientific
literature. We propose to use the Kolmogorov-Smirnov (KS) test [17,18] test as
the GoF test of QPQ. In contrast to our previous work with independent players
[16], in this case it is necessary to add a second test. The goal for this new test
is to check if a player is trying to modify the joint distribution. For our work, we
have used the “Copula” R-Cran package. We note that no approach is always
the best.

Punishment. In the case that a dishonest player tried to lie, one possible strategy
is to generate increasing θ̂ values, so that the PIT transformed values are close
to the unit. However, this type of behavior is quickly detected by the test. In
that case, the question is how to establish a punishment. Inspired on previous
works on linking mechanisms, the proposal is to reject the value declared by the
player and generate a new random value according to the join prior distribution.

Practical computation of λ. The above solution reduces the problem to finding
the value of λ that adjusts the tasks performed by players. In principle, we can
ask the players to declare the joint distribution and calculate that parameter
accordingly. But in general, we should not expect to find an analytical equation.
That is, it is possible that π does not have an analytical expression, or even if
it exists, players must estimate it empirically. There are multiple methods for π
estimation, both parametric and nonparametric. The major difficulty with these
systems is the convergence speed making it necessary a large number of samples.
There is a relationship between the dimension of the feature and the number of
samples needed. In our case, the dimension would be given by the number of
players. Fortunately, each player can compute the QPQ mechanism using just
only two dimensions (itself and the aggregate system).

However, players do not need to know the joint density function π, they only
need to know the function T (·) that indicates the number of tasks performed
given a parameter λ. We denote by T (λ) the number of tasks that run the player
when the decision value ψ is determined by the parameter λ. Again, we can not
expect an analytic form for T . But under the right assumptions, we can approxi-
mate λ using stochastic approximation methods. Due to the characteristics of the
transformation function and noting how it influences the number of tasks, we can
expect that the function T (λ) is continuous and decreasing (or increasing in the
direction of λ). That is, there is always a value of λ for each percentage of desired
tasks. Our proposal is to approximate λ by a sequence λ0, λ1, λ2, λ3, · · · → λ con-
structed using a stochastic approximation method. The best known method is
perhaps the Robbins-Monro method [19] although not the only one. Then, our
algorithm must compute, for each iteration k,

λk+1 = λk + εk(Tk − 1/n). (13)
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Where Tk is an estimation of the average number of tasks performed by the player
and where εk is a sequence of values that satisfies εk > 0, εk → 0,

∑
k εk = ∞.

Note that, in order to estimate Tk we don’t need to store previous samples and
memory consumption is low.

Simulations. By performing simulations, we have checked various aspects of our
proposal. Mainly, we wondered how Robbins-Monro algorithm performs in time.
We have simulated several alternatives for the generation of the sequence of
values εk. In our simulation we have used two methods: εk = 1/k and εk =

1
log(k)+k . The first one is the original proposal of Robbins-Monro’s work. With
this sequence, our experiments produce some oscillations in the λ estimation and
the speed of convergence was far from ideal. We found better results with the
second approach. Figure 1 presents an experiment with three players, the first
two are correlated and the third one is independent. Without our algorithm, the
independent player will obtain less utility than the two other players. On the
other hand, with our proposal, fairness is achieved and every player will have a
proportional number of assignments.
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Fig. 1. Evolution of work ratio (number of tasks) with QPQ.

5 Conclusions and Future Work

In this paper we have created a novel scheme capable of providing efficient
resource allocation in distributed systems even in the presence of selfish cor-
related players. We have shown that, for a general notion of fairness, the mech-
anism can be proved to perform efficiently and to maintain the incentive of
players to participate. In addition, we have proposed a specific realization of
the mechanism as an algorithm implementable in real distributed environments
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with affordable computational and communication costs. This algorithm is sus-
ceptible of being used in repeated task allocations given that our simulations
demonstrate its rapid convergence, which open new horizons for systems based
on open systems for distributed collaborative tasks execution.

Despite this, the authors consider necessary to extend the current research in
several directions. First, the model requires knowledge on the number of players
that participate. We may find scenarios where this is not reasonable, e.g., sce-
narios in which several players “hide” and play the game with a single identity,
which may resulting on the mechanism not achieving fairness. Second, it would
be important to analyze the problem when more flexible space strategies are
possible. One of our main assumptions has been to consider that correlations
are fixed and that players are not able to alter them through their strategies.
This assumption is reasonable when information is private and the mechanism
is designed in such a way that players cannot make their declared (true or false)
values on an iteration dependent on the values of others at the same iteration.
However, there are many real-live scenarios where players may be able to share
their values making more complex interdependent strategies possible. This would
break the properties of our proposed algorithm.
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Abstract. This paper explores the problem of reaching approximate
consensus in synchronous point-to-point networks, where each directed
link of the underlying communication graph represents a communication
channel between a pair of nodes. We adopt the transient Byzantine link
failure model [15,16], where an omniscient adversary controls a subset
of the directed communication links, but the nodes are assumed to be
fault-free.

Recent work has addressed the problem of reaching approximate
consensus in incomplete graphs with Byzantine nodes using a restricted
class of iterative algorithms that maintain only a small amount of mem-
ory across iterations [12,21,23,24]. This paper addresses approximate
consensus in the presence of Byzantine links. We extend our past work
[21,23] that provided exact characterization of graphs in which the iter-
ative approximate consensus problem in the presence of Byzantine node
failures is solvable. In particular, we prove a tight necessary and suffi-
cient condition on the underlying communication graph for the existence
of iterative approximate consensus algorithms under transient Byzantine
link model [15,16].

1 Introduction

Approximate consensus can be related to many distributed computations in
networked systems, such as data aggregation [10], decentralized estimation [17],
and flocking [9]. Extensive work has addressed the problem in the presence of
Byzantine nodes [11] in complete networks [1,6] and arbitrary directed networks
[12,21,23]. This paper consider the problem of tolerating Byzantine link failures
[2,15,16,18].
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We consider synchronous point-to-point networks, where each directed link
of the underlying communication graph represents a communication channel
between a pair of nodes. The link failures are modeled using a transient Byzantine
link failure model (formal definition in Sect. 2) [15,16], in which different sets of
link failures may occur at different times. We consider the problem in arbitrary
directed graphs using a restricted class of iterative algorithms that maintain
only a small amount of memory across iterations, e.g., the algorithms do not
require the nodes to have a knowledge of the entire network topology. Such
iterative algorithms are of interest in networked systems in which nodes have
only constrained power or memory, e.g., large-scale sensor systems, since the
iterative algorithms have low complexity and do not rely on global knowledge
[12]. In particular, the iterative algorithms have the following properties:

– Initial state of each node is equal to a real-valued input provided to that
node.

– Termination: The algorithm terminates in finite number of iterations.
– Validity: After each iteration of the algorithm, the state of each node must

stay in the convex hull of the states of all the nodes at the end of the previous
iteration.

– ε-agreement: For any ε > 0, when the algorithm terminates, the difference
between the outputs at any pair of nodes is guaranteed to be within ε.

Main Contribution. This paper extends our recent work on approximate con-
sensus under node failures [21,23]. The main contribution is identifying a tight
necessary and sufficient condition for the graphs to be able to reach approximate
consensus under transient Byzantine link failure models [15,16] using restricted
iterative algorithms; our proof of correctness follows a structure previously used
in our work to prove correctness of other consensus algorithms in incomplete
networks [21,24]. The use of matrix analysis is inspired by the prior work on
non-fault-tolerant consensus (e.g., [3,8,9]). For lack of space, the proofs of most
claims in the paper are omitted here. Further details can be found in [22].

Related Work. Approximate consensus has been studied extensively in synchro-
nous as well as asynchronous systems. Bertsekas and Tsitsiklis explored reaching
approximate consensus without failures in a dynamic network, where the under-
lying communication graph is time-varying [3]. Dolev et al. considered approx-
imate consensus in the presence of Byzantine nodes in both synchronous and
asynchronous systems [6], where the network is assumed to be a clique, i.e., a
complete graph. Subsequently, for complete graphs, Abraham et al. proposed an
algorithm to achieve approximate consensus with Byzantine nodes in asynchro-
nous systems using optimal number of nodes [1].

Recent work has addressed approximate consensus in incomplete graphs with
faulty nodes [12,21,23]. References [21,23] and reference [12] showed exact char-
acterizations of graphs in which the approximate consensus problem is solvable
in the presence of Byzantine nodes and malicious nodes, respectively. Malicious
fault is a restricted type of Byzantine fault in which every node is forced to send
an identical message to all of its neighbors [12].
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Much effort has also been devoted to the problem of achieving consensus in
the presence of link failures [2,4,15,16,18]. Charron-Bost and Schiper proposed a
HO (Heard-Of) model that captures both the link and node failures at the same
time [4]. However, the failures are assumed to be benign in the sense that no
corrupted message will ever be received in the network. Santoro and Widmayer
proposed the transient Byzantine link failure model: a different set of links can
be faulty at different time [15,16]. They characterized a necessary condition
and a sufficient condition for undirected networks to achieve consensus in the
transient link failure model; however, the necessary and sufficient conditions do
not match: the necessary and sufficient conditions are specified in terms of node
degree and edge-connectivity,1 respectively. Subsequently, Biely et al. proposed
another link failure model that imposes an upper bound on the number of faulty
links incident to each node [2]. As a result, it is possible to tolerate O(n2) link
failures with n nodes in the new model. Under this model, Schmid et al. proved
lower bounds on number of nodes, and number of rounds for achieving consensus
[18]. However, incomplete graphs were not considered in [2,18].

For consensus problem, it has been shown that (i) an undirected graph of
2f + 1 node-connectivity2 is able to tolerate f Byzantine nodes [7]; and (ii) an
undirected graph of 2f + 1 edge-connectivity is able to tolerate f Byzantine
links [16]. Independently, researchers showed that 2f + 1 node-connectivity is
both necessary and sufficient for the problem of information dissemination in
the presence of either f faulty nodes [20] or f fixed faulty links [19].3

Link failures have also been addressed under other contexts, such as distrib-
uted method for wireless control network [14], reliable transmission over packet
network [13], and estimation over noisy links [17].

2 System Model

Communication model: The system is assumed to be synchronous. The com-
munication network is modeled as a simple directed graph G = (V, E), where
V = {1, . . . , n} is the set of n nodes, and E is the set of directed edges between
the nodes in V. With a slight abuse of terminology, we will use the terms edge
and link interchangeably in our presentation. In a simple graph, there is at most
one directed edge from any node i to any other node j (But our results can be
extended to multi-graphs). We assume that n ≥ 2, since the consensus prob-
lem for n = 1 is trivial. Node i can transmit messages to node j if and only if
the directed edge (i, j) is in E . Each node can send messages to itself as well;
however, for convenience, we exclude self-loops from set E . That is, (i, i) �∈ E for
i ∈ V.
1 A graph G = (V, E) is said to be k-edge connected, if G′ = (V, E −X) is connected

for all X ⊆ E such that |X| < k.
2 A graph G = (V, E) is said to be k-node connected, if G′ = (V −X, E) is connected

for all X ⊆ V such that |X| < k.
3 Unlike the “transient” failures in our model, the faulty links are assumed to be fixed

throughout the execution of the algorithm in [19].
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For each node i, let N−i be the set of nodes from which i has incoming edges.
That is, N−i = { j | (j, i) ∈ E }. Similarly, define N+

i as the set of nodes to which
node i has outgoing edges. That is, N+

i = { j | (i, j) ∈ E }. Since we exclude
self-loops from E , i �∈ N−i and i �∈ N+

i . However, we note again that each node
can indeed send messages to itself. Similarly, let E−i be the set of incoming links
incident to node i. That is, E−i contains all the links from nodes in N−i to node
i, i.e., E−i = {(j, i) | j ∈ N−i }.

Fault Model. We consider the transient Byzantine link failure model [15,16] for
iterative algorithms in directed network. All nodes are assumed to be fault-free,
and only send a single message on each outgoing edge in each iteration. A link
(i, j) is said to be faulty in a certain iteration if the message sent by node i is
different from the message received by node j in that iteration, i.e., the message
from i to j is corrupted. Note that in our model, it is possible that link (i, j)
is faulty while link (j, i) is fault-free.4 In every iteration, up to f links may be
faulty, i.e., at most f links may deliver corrupted messages or drop messages.
Note that different sets of link failures may occur in different iterations.

A faulty link may tamper or drop messages. Also, the faulty links may be
controlled by a single omniscient adversary. The adversary is assumed to have
a complete knowledge of the execution of the algorithm, including the states of
all the nodes, contents of the messages exchanged, the algorithm specification,
and the network topology.

3 IABC Algorithms

In this section, we describe the structure of the Iterative Approximate Byzantine
Consensus (IABC) algorithms of interest, and state conditions that they must
satisfy. The IABC structure is identical to the one in our prior work on node
failures [21,23,24].

Each node i maintains state vi, with vi[t] denoting the state of node i at the
end of the t-th iteration of the algorithm (t ≥ 0). Initial state of node i, vi[0],
is equal to the initial input provided to node i. At the start of the t-th iteration
(t > 0), the state of node i is vi[t − 1]. We assume that the input at each node
is lower bounded by a constant μ and upper bounded by a constant U . The
iterative algorithm may terminate after a number of iterations that is a function
of μ and U . μ and U are assumed to be known a priori.

The IABC algorithms of interest will require each node i to perform the
following three steps in iteration t, where t > 0.
4 For example, the described case is possible in wireless network, if node i’s transmitter

is broken while node i’s receiver and node j’s transmitter and receiver all function
correctly.
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1. Transmit step: Transmit current state, namely vi[t−1], on all outgoing edges
(to nodes in N+

i ).
2. Receive step: Receive values on all incoming edges (from nodes inN−i ). Denote

by ri[t] the vector of values received by node i from its neighbors. The size
of vector ri[t] is |N−i |. The values sent in iteration t are received in the same
iteration. If a faulty link drops (discards) a message, it is assumed to have
some default value.

3. Update step: Node i updates its state using a transition function Ti as follows.
Ti is a part of the specification of the algorithm, and takes as input the vector
ri[t] and state vi[t− 1].

vi[t] = Ti ( ri[t] , vi[t− 1] ) (1)

Finally, the output is set to the state at termination.
The following properties must be satisfied by an IABC algorithm in the

presence of up to f Byzantine faulty links in every iteration:

– Termination: the algorithm terminates in finite number of iterations.
– Validity: ∀t > 0, and ∀i ∈ V, minj∈V vj [t− 1] ≤ vi[t] ≤ maxj∈V vj [t− 1].
– ε-agreement: If the algorithm terminates after tend iterations, then

∀i, j ∈ V, |vi[tend]− vj [tend]| < ε.

For a given communication graph G = (V, E), the objective in this paper is to
identify the necessary and sufficient conditions in graph G for the existence of a
correct IABC algorithm (i.e., an algorithm satisfying the above properties).

4 Necessary Condition

For a correct iterative approximate consensus algorithm to exist under transient
Byzantine link failures, the graphG = (V, E) must satisfy the necessary condition
proved in this section. We first define relations⇒ and �⇒ introduced in our prior
work [23], and a condition on the graph based on ⇒.

Definition 1. For non-empty disjoint sets of nodes A and B in G′ = (V ′, E ′),
A⇒ B in G′ iff there exists a node i ∈ B that has at least f + 1 incoming links
from nodes in A, i.e., |{(j, i) | j ∈ A, (j, i) ∈ E}| > f ; A �⇒ B iff A⇒ B is not
true.

Condition P: Consider graph G = (V, E). Denote by F a subset of E such that
|F | ≤ f . Let sets L,C,R form a partition of V, such that both L and R are
non-empty. Then, in G′ = (V, E − F ), at least one of the two conditions below
must be true: (i) C ∪R⇒ L or (ii) L ∪ C ⇒ R.

Theorem 1. Suppose that a correct IABC algorithm exists for G = (V, E). Then
G satisfies Condition P.
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Proof. The proof is by contradiction. Let us assume that a correct IABC algo-
rithm exists in G = (V, E), and for some node partition L,C,R of V and a subset
F ⊆ E such that |F | ≤ f , C ∪ R �⇒ L and L ∪ C �⇒ R in G′ = (V, E ′), where
E ′ = E − F . Thus, for any i ∈ L, |{(k, i) | k ∈ C ∪ R, (k, i) ∈ E − F}| ≤ f .
Similarly, for any j ∈ R, |{(k, j) | k ∈ L ∪ C, (k, j) ∈ E − F}| ≤ f .

Also assume that all the links in F (if F is non-empty) are faulty, and the
rest of the links are fault-free in every iteration. Note that the nodes are not
aware of the identity of the faulty links.

Consider the case when (i) each node in L has initial input m, (ii) each node
in R has initial input M , such that M > m+ ε, and (iii) each node in C, if C is
non-empty, has an input in the interval [m,M ]. Define m− and M+ such that
m− < m and M < M+.

In the Transmit Step of iteration 1 in the IABC algorithm, each node k, sends
to nodes in N+

k value vk[0]; however, some values sent via faulty links may be
tampered. Suppose that the messages sent via the faulty links in F (if non-
empty) are tampered in the following way: (i) if the link is an incoming link to a
node in L, then m− < m is delivered to that node; (ii) if the link is an incoming
link to a node in R, then M+ > M is delivered to that node; and (iii) if the
link is an incoming link to a node in C, then some arbitrary value in interval
[m,M ] is delivered to that node. This behavior is possible since links in F are
Byzantine faulty by assumption.

Consider any node i ∈ L. Recall that E−i is the set of all the incoming links
at node i. Let E′i be the subset of links in E−i from the nodes in C ∪R, i.e.,

E′i = {(j, i) | j ∈ C ∪R, (j, i) ∈ E}.

Since |F | ≤ f ,
∣
∣E−i ∩ F

∣
∣ ≤ f . Moreover, by assumption C ∪ R �⇒ L; thus,

|E′i| ≤ f , and we have |E′i − F | ≤ |E′i| ≤ f . Node i will then receive m− via the
links in E−i ∩F (if non-empty) and values in [m,M ] via the links in E′i−F , and
m via the rest of the links, i.e., links in E−i − E′i − F .

Consider the following two cases:

– Both E−i ∩ F and E′i − F are non-empty:
In this case, recall that

∣
∣E−i ∩ F

∣
∣ ≤ f and |E′i − F | ≤ f . From node i’s

perspective, consider two possible scenarios: (a) links in E−i ∩ F are faulty,
and the other links are fault-free, and (b) links in E′i − F are faulty, and the
other links are fault-free.

In scenario (a), from node i’s perspective, all the nodes may have sent values
in interval [m,M ], but the faulty links have tampered the message so that m−

is delivered to node i. According to the validity property, vi[1] ≥ m. On the
other hand, in scenario (b), all the nodes may have sent values m− or m,
where m− < m; so vi[1] ≤ m, according to the validity property. Since node
i does not know whether the correct scenario is (a) or (b), it must update
its state to satisfy the validity property in both cases. Thus, it follows that
vi[1] = m.
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– At most one of E−i ∩ F and E′i − F is non-empty:
Recall that by assumption,

∣
∣E−i ∩ F

∣
∣ ≤ f and |E′i − F | ≤ f . Since at most one

of the set is non-empty,
∣
∣(E−i ∩ F ) ∪ (E′i − F )

∣
∣ ≤ f . From node i’s perspective,

it is possible that the links in (E−i ∩F )∪ (E′i −F ) are all faulty, and the rest
of the links are fault-free. In this situation, all the nodes have sent m to node
i, and therefore, vi[1] must be set to m as per the validity property.

Thus, vi[1] = m for each node i ∈ L. Similarly, we can show that vj [1] = M
for each node j ∈ R.

Now consider the nodes in set C, if C is non-empty. All the values received
by the nodes in C are in [m,M ]; therefore, their new state must also remain in
[m,M ], as per the validity property.

The above discussion implies that, at the end of iteration 1, the following
conditions hold true: (i) state of each node in L is m, (ii) state of each node
in R is M , and (iii) state of each node in C is in the interval [m,M ]. These
conditions are identical to the initial conditions listed previously. Then, by a
repeated application of the above argument (proof by induction), it follows that
for any t ≥ 0, (i) vi[t] = m for all i ∈ L; (ii) vj [t] = M for all j ∈ R; and
(iii) vk[t] ∈ [m,M ] for all k ∈ C.

Since both L and R are non-empty, the ε-agreement property is not satisfied.
A contradiction. �

Theorem 1 shows that Condition P is necessary. However, Condition P is
not intuitive. Below, we state an equivalent condition Condition S that is easier
to interpret. To facilitate the statement, we introduce the notions of “source
component” and “link-reduced graph” using the following three definitions. The
link-reduced graph is analogous to the concept introduced in our prior work on
node failures [21,23,24].

Definition 2. Graph decomposition ([5]). Let H be a directed graph. Par-
tition graph H into non-empty strongly connected components, H1,H2, · · · ,Hh,
where h is a non-zero integer dependent on graph H, such that

– every pair of nodes within the same strongly connected component has directed
paths in H to each other, and

– for each pair of nodes, say i and j, that belong to two different strongly con-
nected components, either i does not have a directed path to j in H, or j does
not have a directed path to i in H.

Construct a graph Hd wherein each strongly connected component Hk above
is represented by vertex ck, and there is an edge from vertex ck to vertex cl if
and only if the nodes in Hk have directed paths in H to the nodes in Hl.

It is known that the decomposition graph Hd is a directed acyclic graph [5].

Definition 3. Source component. Let H be a directed graph, and let Hd be
its decomposition as per Definition 2. Strongly connected component Hk of H
is said to be a source component if the corresponding vertex ck in Hd is not
reachable from any other vertex in Hd.
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Definition 4. Link-Reduced Graph. For a given graph G = (V, E) and F ⊂
E, a graph GF = (V, EF ) is said to be a link-reduced graph, if EF is obtained by
first removing from E all the links in F , and then at each node, removing up to
f other incoming links in E − F .

Note that for a given G = (V, E) and a given F , multiple link-reduced graphs
GF may exist. Now, we state Condition S based on the concept of link-reduce
graphs:

Condition S: Consider graph G = (V, E). For any F ⊆ E such that |F | ≤ f ,
every link-reduced graph GF obtained as per Definition 4 must contain exactly
one source component.

Now, we present a key lemma below. The proof is omitted for lack of space.
This proof, and the other omitted proofs in the paper are presented in [22].

Lemma 1. Condition P is equivalent to Condition S.

An alternate interpretation of Condition S is that in every link-reduced graph
GF , non-fault-tolerant iterative consensus must be possible. We will use this
intuition to prove that Condition S is sufficient in Sect. 6. Then, by Lemma 1,
Condition P is also sufficient.

4.1 Useful Properties

Suppose G = (V, E) satisfies Condition P and Condition S. We provide two
lemmas below to state some properties of G = (V, E) that are useful for analyzing
the iterative algorithm presented later. The proofs are presented in [22].

Lemma 2. Suppose that graph G = (V, E) satisfies Condition S. Then, in any
link-reduced graph GF = (V, EF ), there exists a node that has a directed path to
all the other nodes in V.
Lemma 3. For f > 0, if graph G = (V, E) satisfies Condition P, then each node
in V has in-degree at least 2f + 1, i.e., for each i ∈ V, ∣

∣N−i
∣
∣ ≥ 2f + 1.

5 Algorithm 1

We will prove that there exists a correct IABC algorithm – particularly Algo-
rithm 1 below – that satisfies the termination, validity and ε-agreement proper-
ties provided that the graph G = (V, E) satisfies Condition S. This implies that
Condition P and Condition S ares also sufficient. Algorithm 1 has the iterative
structure described in Sect. 3, and it is similar to algorithms that were analyzed
in prior work as well [21,23] (although correctness of the algorithm under the
necessary condition – Conditions P and S – has not been proved previously).
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Algorithm 1

1. Transmit step: Transmit current state vi[t− 1] on all outgoing edges.
2. Receive step: Receive values on all incoming edges. These values form vector
ri[t] of size |N−i |. If a faulty incoming edge drops the message, then the
message value is assumed to be equal to the state at node i, i.e., vi[t− 1].

3. Update step: Sort the values in ri[t] in an increasing order (breaking ties
arbitrarily), and eliminate the smallest and largest f values. Let N∗i [t] denote
the set of nodes from whom the remaining |N−i | − 2f values in ri[t] were
received. Note that as proved in Lemma 3, each node has at least 2f +
1 incoming neighbors if f > 0. Thus, when f > 0, |N∗i [t]| ≥ 1. Let wj
denote the value received from node j ∈ N∗i [t], and for convenience, define
wi = vi[t − 1]. Observe that if the link from j ∈ N∗i [t] is fault-free, then
wj = vj [t− 1].
Define

vi[t] = Ti(ri[t], vi[t− 1]) =
∑

j∈{i}∪N∗
i [t]

ai wj (2)

where
ai =

1
|N∗i [t]|+ 1

=
1

|N−i |+ 1− 2f

The “weight” of each term on the right-hand side of (2) is ai. Note that
|N∗i [t]| = |N−i | − 2f , and i �∈ N∗i [t] because (i, i) �∈ E . Thus, the weights on
the right-hand side add to 1. Also, 0 < ai ≤ 1.

Termination: Each node terminates after completing iteration tend, where tend
is a constant defined later in Equation (9). The value of tend depends on graph
G = (V, E), constants U and μ defined earlier in Sect. 3 and parameter ε in
ε-agreement property.

6 Sufficiency (Correctness of Algorithm 1)

We will prove that given a graph G = (V, E) satisfying Condition S, Algorithm
1 is correct, i.e., Algorithm 1 satisfies termination, validity, ε-agreement prop-
erties. Therefore, Condition S and Condition P are proved to be sufficient. We
borrow the matrix analysis from the work on non-fault-tolerant consensus [3,8,9].
The proof below follows the same structure in our prior work on node failures
[21,24]; however, such analysis has not been applied in the case of link failures.

In the rest of the section, we assume that G = (V,F) satisfies Condition
S and Condition P. We first introduce standard matrix tools to facilitate our
proof. Then, we use transition matrix to represent the Update step in Algorithm
1, and show how to use these tools to prove the correctness of Algorithm 1 in
G = (V,F).
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6.1 Matrix Preliminaries

In the discussion below, we use boldface upper case letters to denote matrices,
rows of matrices, and their elements. For instance, A denotes a matrix, Ai

denotes the i-th row of matrix A, and Aij denotes the element at the intersection
of the i-th row and the j-th column of matrix A.

Definition 5. A vector is said to be stochastic if all the elements of the vector
are non-negative, and the elements add up to 1. A matrix is said to be row
stochastic if each row of the matrix is a stochastic vector.

When presenting matrix products, for convenience of presentation, we adopt
the “backward” product convention below, where a ≤ b,

Πb
i=aA[i] = A[b]A[b− 1] · · ·A[a] (3)

For a row stochastic matrix A, coefficients of ergodicity δ(A) and λ(A) are
defined as follows [25]:

δ(A) = max
j

max
i1,i2

|Ai1 j −Ai2 j |

λ(A) = 1−min
i1,i2

∑

j

min(Ai1 j ,Ai2 j)

Lemma 4. For any p square row stochastic matrices A(1),A(2), . . . ,A(p),

δ(Πp
u=1A(u)) ≤ Πp

u=1λ(A(u))

Lemma 4 is proved in [8]. Lemma 5 below follows from the definition of λ(·).
Lemma 5. If all the elements in any one column of matrix Aare lower bounded
by a constant γ, then λ(A) ≤ 1− γ. That is, if ∃g, such that Aig ≥ γ ∀i, then
λ(A) ≤ 1− γ.

It is easy to show that 0 ≤ δ(A) ≤ 1 and 0 ≤ λ(A) ≤ 1, and that the rows
of A are all identical iff δ(A) = 0. Also, λ(A) = 0 iff δ(A) = 0.

6.2 Correctness of Algorithm 1

Denote by v[0] the column vector consisting of the initial states at all nodes.
The i-th element of v[0], vi[0], is the initial state of node i. Denote by v[t], for
t ≥ 1, the column vector consisting of the states of all nodes at the end of the
t-th iteration. The i-th element of vector v[t] is state vi[t].

For t ≥ 1, define F [t] to be the set of all faulty links in iteration t. Recall
that link (j, i) is said to be faulty in iteration t if the value received by node i is
different from what node j sent in iteration t. Then, define NF

i as the set of all
nodes whose outgoing links to node i are faulty in iteration t, i.e.,5

5 NF
i may be different for each iteration t. For simplicity, the notation does not

explicitly represent this dependence.
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NF
i = {j | j ∈ N−i , (j, i) ∈ F [t]}.

Now we state a key lemma. In particular, Lemma 6 allows us to use results
for non-homogeneous Markov chains to prove the correctness of Algorithm 1.
The proof is presented in [22].

Lemma 6. The Update step in iteration t (t ≥ 1) of Algorithm 1 at the nodes
can be expressed as

v[t] = M[t]v[t− 1] (4)

where M[t] is an n×n row stochastic transition matrix with the following prop-
erty: there exist Nr

i , a subset of incoming neighbors at node i of size at most f ,6

and a constant β (0 < β ≤ 1) that depends only on graph G = (V, E) such that
for each i ∈ V, and for all j ∈ {i} ∪ (N−i −NF

i −Nr
i ),

Mij [t] ≥ β.
Matrix M[t] is said to be a transition matrix for iteration t. As the lemma

states above, M[t] is a row stochastic matrix. The proof of Lemma 6 shows how
to construct a suitable row stochastic matrix M[t] for each iteration t (presented
in [22]). M[t] depends not only on t but also on the behavior of the faulty links
in iteration t.

Theorem 2. Algorithm 1 satisfies the Termination, Validity, and ε-agreement
properties.

Proof. Sects. 6.3–6.5 provide the proof that Algorithm 1 satisfies the three prop-
erties for iterative approximate consensus in the presence of Byzantine links. This
proof follows a structure used to prove correctness of other consensus algorithms
in our prior work [21,24]. �

6.3 Validity Property

Observe that M[t + 1](M[t]v[t − 1]) = (M[t + 1]M[t])v[t − 1]. Therefore, by
repeated application of (4), we obtain for t ≥ 1,

v[t] = (Πt
u=1M[u])v[0] (5)

Since each M[u] is row stochastic as shown in Lemma 6, the matrix product
Πt
u=1M[u] is also a row stochastic matrix. Thus, (5) implies that the state of

each node i at the end of iteration t can be expressed as a convex combination
of the initial states at all the nodes. Therefore, the validity property is satisfied.
6 Intuitively, Nr

i corresponds to the links removed in some link-reduced graph. Thus,
the superscript r in the notation stands for “removed.” Also, Nr

i may be different
for each t. For simplicity, the notation does not explicitly represent this dependence.
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6.4 Termination Property

Algorithm 1 terminates after tend iterations, where tend is a finite constant
depending only on G = (V, E), U, μ, and ε. Recall that U and μ are defined
as upper and lower bounds of the initial inputs at all nodes, respectively. There-
fore, trivially, the algorithm satisfies the termination property. Later, using (9),
we define a suitable value for tend.

6.5 ε-Agreement Property

Denote by RF the set of all the link-reduced graph of G = (V, E) corresponding
to some faulty link set F . Let

r =
∑

F⊂E, |F |≤f
|RF |

Note that r only depends on G = (V, E) and f , and is a finite integer.
Consider iteration t (t ≥ 1). Recall that F [t] denotes the set of faulty links

in iteration t. Then for each link-reduced graph H[t] ∈ RF [t], define connectivity
matrix H[t] as follows, where 1 ≤ i, j ≤ n:

– Hij [t] = 1, if either j = i, or edge (j, i) exists in link-reduced graph H;
– Hij [t] = 0, otherwise.

Thus, the non-zero elements of row Hi[t] correspond to the incoming links
at node i in the link-reduced graph H[t], or the self-loop at i. Observe that H[t]
has a non-zero diagonal.

Based on Condition S and Lemmas 2 and 6, we can show the following key
lemmas. The omitted proofs are presented in [22].

Lemma 7. For any H[t] ∈ RF [t], and k ≥ n, Hk[t] has at least one non-zero
column, i.e., a column with all elements non-zero.

Then, Lemma 7 can be used to prove the following lemma.

Lemma 8. For any z ≥ 1, at least one column in the matrix product Πu+rn−1
t=u

H[t] is non-zero.

For matrices A and B of identical dimension, we say that A ≤ B iff Aij ≤ Bij

for all i, j. Lemma below relates the transition matrices with the connectivity
matrices. Constant β used in the lemma below was introduced in Lemma 6.

Lemma 9. For any t ≥ 1, there exists a link-reduced graph H[t] ∈ RF [t] such
that βH[t] ≤M[t], where H[t] is the connectivity matrix for H[t].

Let us now define a sequence of matrices Q(i), i ≥ 1, such that each of these
matrices is a product of rn of the M[t] matrices. Specifically,

Q(i) = Πirn
t=(i−1)rn+1 M[t] (6)
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From (5) and (6) observe that

v[krn] =
(
Πk
i=1 Q(i)

)
v[0] (7)

Based on (7), Lemmas 6, 8, and 9, we can show the following lemma.

Lemma 10. For i ≥ 1, Q(i) is a row stochastic matrix, and

λ(Q(i)) ≤ 1− βrn.
Let us now continue with the proof of ε-agreement. Consider the coefficient

of ergodicity δ(Πt
u=1M[u]).

δ(Πt
u=1M[u]) = δ

((
Πt

u=(� t
rn

�)rn+1M[u]
)(

Π
� t

rn
�

u=1 Q(u)
))

by definition of Q(u)

≤ λ
(
Πt

u=(� t
rn

�)rn+1M[u]
)(

Π
� t

rn
�

u=1 λ (Q(u))
)

by Lemma 4

≤ Π
� t

rn
�

u=1 λ (Q(u)) because λ(·) ≤ 1

≤ (1 − βrn)� t
rn

� by Lemma 10 (8)

Observe that the upper bound on right side of (8) depends only on graph
G = (V, E) and t, and is independent of the input states, and the behavior of
the faulty links. Moreover, the upper bound on the right side of (8) is a non-
increasing function of t. Define tend as the smallest positive integer such that
the right hand side of (8) is smaller than ε

nmax(|U |,|μ|) . Recall that U and μ are
defined as the upper and lower bound of the inputs at all nodes. Thus,

δ(Πtend
u=1M[u]) ≤ (1− βrn)	

tend
rn 
 <

ε

nmax(|U |, |μ|) (9)

Recall that β and r depend only on G = (V, E). Thus, tend depends only on
graph G = (V, E), and constants U, μ and ε.

By construction, Πt
u=1M[u] is an n × n row stochastic matrix. Let M∗ =

Πt
u=1M[u]. We omit time index [t] from the notation M∗ for simplicity. From

(5), we have vj [t] = M∗jv[0]. That is, the state of any node j can be obtained as
the product of the j-th row of M∗ and v[0]. Now, consider any two nodes j, k.
By simple algebraic manipulation (the omitted steps are presented in [22]), we
have

|vj [t]− vk[t]| =
∣
∣Σn

i=1M
∗
jivi[0]−Σn

i=1M
∗
kivi[0]

∣
∣

≤ Σn
i=1

∣
∣M∗ji −M∗ki

∣
∣ |vi[0]|

≤ Σn
i=1δ(M

∗) |vi[0]|
≤ nδ(Πt

u=1M[u]) max(|U | , |μ|) (10)

Therefore, by (9) and (10), we have

|vj [tend]− vk[tend]| < ε (11)

Since the output of the nodes equals its state at termination (after tend iter-
ations). Thus, (11) implies that Algorithm 1 satisfies the ε-agreement property.
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7 Summary

This paper explores approximate consensus problem under transient Byzantine
link failure model. We address a particular class of iterative algorithms in arbi-
trary directed graphs, and prove the tight necessary and sufficient condition for
the graphs to be able to solve the approximate consensus problem in the presence
of Byzantine links iteratively.
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Abstract. We present the first (practically) self-stabilizing replicated
state machine for asynchronous message passing systems. The scheme
is based on a variant of the Paxos algorithm and ensures that starting
from an arbitrary configuration, the replicated state-machine eventually
exhibits the desired behaviour for a long enough execution regarding all
practical considerations.

1 Introduction

To provide a highly reliable system, a common approach is to replicate a state-
machine over many servers (replicas). From the system’s client point of view, the
replicas implement a unique state-machine which acts in a sequential manner.
This problem is related to the Consensus problem. Indeed, if all the replicas
initially share the same state and if they execute the same requests in the same
order, then the system is coherent from the client’s point of view. In other words,
we can picture the system as a sequence of Consensus instances that decide
on the request to execute at each step. In an asynchronous message-passing
system prone to crash failures, solving a single consensus instance has been
proven impossible [10]. This hinders the possibility of a state-machine replication
protocol.

Lamport, however, has provided an algorithmic scheme, namely Paxos [14,
15], that partially satisfies the requirements of state-machine replication in the
following sense. The safety property (two processes cannot decide to execute
different requests for the same step) is always guaranteed. On the other hand,
the liveness property (every non-crashed process eventually decides) requires
additional assumptions, usually any means to elect a unique leader for a long
enough period of time. Note that the original formulation [15] presented Paxos
as a (partial) solution to the Consensus problem, but its actual purpose is to

Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer
Sciences, Israeli Internet Association, Israeli Ministry of Science, Lynne and William
Frankel Center for Computer Sciences, and Israel Science Foundation (grant number
428/11).

c© Springer International Publishing Switzerland 2014
G. Noubir and M. Raynal (Eds.): NETYS 2014, LNCS 8593, pp. 99–121, 2014.
DOI: 10.1007/978-3-319-09581-3 8



100 P. Blanchard et al.

implement a replicated state-machine. Since then, many improvements have been
proposed, e.g., Fast Paxos [17], Generalized Paxos [16], Byzantine Paxos [18],
and the study of Paxos has become a subject of research on its own. The extreme
usefulness of such an approach is proven daily by the usage of this technique by
the very leading companies [5].

Unfortunately, none of these approaches deal with the issue of transient
faults. A transient fault may put the system in a completely arbitrary con-
figuration. In the context of replicated state-machine, the consequences (among
many other unanticipated scenarios) may be the following: (a) the states of the
replica are incoherent, (b) the replicas never execute the same requests in the
same order, (c) the replicas are blocked even if the usual liveness conditions
(e.g., unique leader) are satisfied. The issues (a) and (b) hinder the lineariz-
ability of the state-machine, whereas the issue (c) hinders the liveness of the
state-machine.

A self-stabilizing system is able to recover from any transient fault after a
finite period of time. In other words, after any transient fault, a self-stabilizing
system ensures that eventually the replicas have coherent states, execute the
same requests in the same order and progress is achieved when the liveness
conditions are satisfied.

Nevertheless, completing this goal is rather difficult. One of the main ingre-
dients of any Paxos-based replicated state-machine algorithm is its ability to
distinguish old and new messages. At a very abstract level, one uses natural
numbers to timestamp data, i.e., each processor is assumed to have an infinite
memory. At a more concrete level, the processes have a finite memory, and the
simplest timestamp structure is given by a natural number bounded by some
constant 2b (b-bits counter). Roughly speaking, this implies that the classic
Paxos-based replicated state-machine approach is able to distinguish messages
in a window of size 2b.

This constant is so large that it is sufficient for any practical purposes, as
long as transient faults are not considered. For example, if a 64-bits counter
is initialized to 0, incrementing the counter every nanosecond will last about
500 years before the maximum value is reached; this is far greater than any
concrete system’s timescale. But, a transient fault may corrupt the timestamps
(e.g., counters set to the maximum value) and, thus, lead to replicas executing
requests in different order or being permanently blocked although the usual
liveness related conditions (e.g., unique leader) are satisfied.

This remark leads to a realistic form of self-stabilizing systems, namely prac-
tically self-stabilizing systems. Roughly speaking, after any transient fault, a
practically self-stabilizing system is ensured to reach a finite segment of exe-
cution during which its behavior is correct, this segment being “long enough”
relatively to some predefined timescale. We give details in Sect. 2.

In this paper, we provide a new bounded timestamp architecture and describe
the core of a practically self-stabilizing replicated state-machine, in an asynchro-
nous message passing communication environment prone to crash failures.
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Related work. If a process undergoes a transient fault, then one can model the
process behaviour as a Byzantine behaviour. In [4], Castro and Liskov present
a concrete1 replicated state-machine algorithm that copes with Byzantine fail-
ures. Lamport presents in [18] a Byzantine tolerant variant of Paxos which has
some connections with Castro and Liskov’s solution. Note, however, that in both
cases, the number of Byzantine processes must be less than one third of the total
number of processes. This is related to the impossibility of a Byzantine tolerant
solution to Consensus where more than one third of the system are Byzan-
tine. The approach of self-stabilization is comprehensive, rather than addressing
specific fault scenarios (risking to miss a scenario), and thus is somehow orthog-
onal to Byzantine fault tolerance. The issue of bounded timestamp system has
been studied in [6,12], but these works do not deal with self-stabilization. The
first work, as far as we know, on a self-stabilizing timestamp system is pre-
sented in [1], but it assumes communications based on a shared memory. In
[2,9], the authors present the notion of practically stabilizing algorithm and pro-
vide an implementation of practically self-stabilizing replicated state machine
using shared memory, and the message passing implementation of a practically
self-stabilizing single-write multi-reader atomic register. Doing so, they intro-
duce a self-stabilizing timestamp system. However, their approach assumes that
a single processor (the writer) is responsible for incrementing timestamps and
stabilization is conditional on such write executions. Our timestamp system is
a generalization which allows many processors to increment timestamps. A first
formulation of the present work has been given in [3].

The paper starts with a background and description of techniques and cor-
rectness in a nutshell. Then we turn to a more formal and detailed description.

2 Overview

In this section, we define the Replicated State-Machine (RSM) problem and
give an overview of the Paxos algorithm. In addition, we give arguments for
the need of a self-stabilizing algorithm that would solve the Replicated State-
Machine Problem. Doing so, we investigate the recently defined kind of self-
stabilizing behaviour, namely the practically self-stabilizing behaviour, and also
briefly present the core idea of our algorithm.

Replicated State-Machine. Replicated State-Machine (RSM) aims at provid-
ing a reliable service to clients. From the client point of view, it is only required
that the RSM acts as a correct sequential machine, and that every client request
eventually gets a response. Formally, the problem is defined by the two follow-
ing properties: (Safety) every execution yields a history of client requests and
responses that is linearizable [11], (Liveness) in this history, every request has a
corresponding response.

Original Paxos. Although the original Paxos algorithm [15] has been formu-
lated as a (partial) solution to the Consensus problem, its actual purpose is to
1 In their paper, “practical” is not related to our notion of practical self-stabilization.
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implement a RSM. Hence, in the following, our presentation of Paxos will include
aspects related to the RSM problem.

The original Paxos algorithm allows to implement a RSM property in an
asynchronous complete network of processors communicating by message-passing
such that less than half of the processors are prone to crash failures. Precisely,
the safety of the RSM is always guaranteed, whereas the liveness is guaranteed if
some conditions (e.g., unique leader) are satisfied. We refer to these conditions as
the liveness conditions. The algorithm uses unbounded integers and also assumes
that the system starts in a consistent initial configuration.

If it were possible to elect a unique leader in the system, then implementing
a replicated state-machine would be easy: this leader receives the client requests,
chooses an order, and tells the other processors. But, since the leader may crash
(no more leader), and since it is impossible to reliably detect the crashes (many
leaders at the same time), a take-over mechanism is required. To do so, the Paxos
algorithm defines three roles: proposer (or leader), acceptor and learner.

Basically, a proposer is a willing-to-be leader. It receives requests from clients,
orders them (using a step number s, natural number) and proposes them to the
acceptors. The acceptor accepts a request for a step s according to some specific
rules discussed below. A request can be decided on for step s when a majority
of acceptors have accepted it in step s. Finally, the learner learns when some
request has been accepted by a majority of acceptors for some step and decides
accordingly. The learner has a local copy of the state-machine, and it applies the
decided requests in an increasing step order.

There are many possible mappings of these roles to the processors of a con-
crete system. In our case, we assume that every processor is both an accep-
tor and a learner. We also assume that some unreliable failure detector elects
some processors; the elected processors, in addition to their other roles, become
proposers.

To deal with the presence of many proposers, the Paxos algorithm uses ballot
numbers2 (unbounded natural numbers). Every proposer can create new ballot
numbers (two proposers include their identifiers to produce mutually distinct
ballot numbers). Every acceptor records a ballot number which roughly repre-
sents the proposer it is attached to. When a processor becomes a proposer, it
executes the following prepare phase or phase 1. It creates a new ballot number
t, and tries to recruit a majority of acceptors by broadcasting its ballot number
(p1a message) and waiting for replies (p1b) from a majority. An acceptor adopts
the ballot number t (i.e., is recruited by the proposer) only if its previously
adopted ballot number is strictly smaller. In any case, it replies to the proposer.
If the proposer does not manage to recruit a majority of acceptors, it increments
its ballot number and tries again.

An acceptor α adds to its p1b reply, the lastly accepted request acceptedα[s]
for each step s (if any), along with the corresponding ballot number at the time
of acceptance. Thanks to this data, at the end of the prepare phase, the proposer
2 These ballot numbers are not used to indexed the requests like the step numbers

above.



Practically Self-stabilizing Paxos Replicated State-Machine 103

knows the advancement of a majority of acceptors, and can compute requests to
propose which do not interfere with possibly previous proposals. It selects, for
each step s, the most recent (by referring to the ballot numbers of the accepted
requests) accepted request, and if there are no such requests, it can pick any
requests it has personally received from clients.

Then for each step s for which the proposer has a request to propose, the
proposer executes the following accept phase or phase 2. The proposer broadcasts
to the acceptors a p2a message containing its ballot number t, the step s, and
the proposed request p. An acceptor accepts this request for step s if the ballot
number t is greater than or equal to its previously adopted ballot number, and
acknowledges the proposer. If the proposer sees an acceptor with a greater ballot
number, it reexecutes phase 1. Otherwise, it receives positive answers from a
majority of acceptors, and it tells the learners to decide on the request for the
corresponding step.

Phase 2 can be thought as the “normal case” operation. When a proposer
is unique, each time it receives a request from a client, it assigns to it a step
number and tell the acceptors. Phase 1 is executed when a processor becomes a
proposer. Usually, a processor becomes a proposer when it detects the crash of
the previous proposer, e.g., according to some unreliable failure detector. Phase
1 serves as a “take-over” mechanism: the new proposer recruits a majority of
acceptors and records, for each of them, their lastly accepted requests. In order
for the proposer to make sure that these lastly accepted requests are accepted
by a majority of acceptors, it executes phase 2 for each corresponding step.

The difficulty lies in proving that the safety property holds. Indeed, since the
failure detection is unreliable, many proposers may be active simultaneously.
Roughly speaking, the safety correctness is given by the claim that once a pro-
poser has succeeded to complete phase 2 for a given step s, the chosen request
is not changed afterwards for step s. Ordering of events in a common processor
that answers two proposers yields the detailed argument, and the existence of
such a common processor stems from the fact that any two majorities of accep-
tors always have non-empty intersection. The liveness property, however, is not
guaranteed. A close look at the behaviour of Paxos shows why it is so. Indeed,
since every proposer tries to produce a ballot number that is greater than the
ballot numbers of a majority of acceptor, two such proposers may execute many
unsuccessful phases 1. Intuitively though, if there is a single proposer in the sys-
tem during a long enough period of time, then requests are eventually decided
on, and progress of the state-machine is ensured.

Practically Self-Stabilizing Replicated State-Machine. As we pointed
out in the previous section, the Paxos algorithm uses unbounded integers to
timestamp data (ballot and step numbers). In practice, however, every integer
handled by the processors is bounded by some constant 2b where b is the integer
memory size. Yet, if every integer variable is initialized to a very low value, the
time needed for any such variable to reach the maximum value 2b is actually way
larger than any reasonable system’s timescale. For instance, counting from 0 to
264 by incrementing every nanosecond takes roughly 500 years to complete. Such
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a long sequence is said to be practically infinite. This leads to the following impor-
tant remark from which the current work stems. Assuming that the integers are
theoretically unbounded is reasonable only when it is ensured, in practice, that
every counter is initially set to low values, compared to the maximum value. In
particular, any initialized execution of the original Paxos algorithm with bounded
integers is valid as long as the counters are not exhausted.

In the context of self-stabilization, a transient fault may hinder the system
in several ways as explained in the introduction. First, it can corrupt the states
of the replicas or alter messages leading to incoherent replicas states. Second,
and most importantly, a transient fault may also corrupt the variables used to
timestamp data (e.g., ballot or step number) in the processors memory or in the
communication channels, and set them to a value close to the maximum value
2b. This leads to an infinite suffix of execution in which the State-Machine Repli-
cation conditions are never jointly satisfied. This issue is much more worrying
than punctual breakings of the State-Machine Replication specifications.

Intuitively though, if one can manage to get every integer variable to be reset
to low values at some point in time, then there is consequently a finite execution
(ending with ballot or step number reaching the maximum value 2b) during
which the system behaves like an initialized original Paxos-based State-Machine
Replication execution that satisfies the specifications. Since we use bounded
integers, we cannot prove the safe execution to be infinite (just like the original
Paxos cannot), but we can prove that this safe execution is as long as counting
from 0 to 2b, which is as long as the length of an initialized and safe execution
assumed in the original Paxos prior to exhausting the counters. This is what we
call a practically self-stabilizing behaviour.

More formally, a finite execution is said to be practically infinite when it con-
tains a causally ordered (Lamport’s happen-before relation [13]) chain of events
of length greater than 2b. We then formulate the Practically Self-Stabilizing
Replicated State-Machine (PSS-RSM) specification as follows: (Safety) Every
infinite execution contains a practically infinite segment that yields a lineariz-
able history of client requests and responses, (Liveness) In this history, every
request has a corresponding response.

Tag System. Our algorithm uses a new kind of timestamping architecture,
namely a tag system, to deal with the overflow of integer variables. We first
describe a simpler tag system that works when there is a single proposer, before
adapting it to the case of multiple proposers.

One of the key ingredient of Paxos is the possibility for a proposer to incre-
ment its ballot number t. We start with t being a natural number between 0
and a large constant 2b, namely a bounded integer. Assume, for now, that there
is a single proposer in the system. With an arbitrary initial configuration, some
processors may have ballot numbers set to the maximum 2b, thus the proposer
will not be able to produce a greater ballot number. To cope with this problem,
we redefine the ballot number to be a couple (l t) where t is a bounded integer
(the integer ballot number), and l a label, which is not an integer but whose type
is explicited below. We simply assume that it is possible to increment a label,
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and that two labels are comparable. The proposer can increment the integer
variable t, or increment the label l and reset the integer variable t to zero. Now,
if the proposer manages to produce a label that is greater than every label of
the acceptors, then right after everything is as if the (integer part of the) ballot
numbers of the processors have all started from zero, and, intuitively, we get a
practically infinite execution that looks like an initialized one. To do so, when-
ever the proposer notices an acceptor label which is not less than or equal to
the proposer current label (such an acceptor label is said to cancel the proposer
label), it records it in a history of canceling labels and produces a label greater
than every label in its history.

Obviously, the label type cannot be an integer. Actually, it is sufficient to
have some finite set of labels along with a comparison operator and a function
that takes any finite (bounded by some constant) subset of labels and produces
a label that is greater than every label in this subset. Such a device is called a
finite labeling scheme (see Sect. 3).

In the case of multiple proposers, the situation is a bit more complicated.
Indeed, in the previous case, the single proposer is the only processor to pro-
duce labels, and thus it manages to produce a label greater than every acceptor
label once it has collected enough information in its canceling label history. If
multiple proposers were also producing labels, none of them would be ensured
to produce a label that every other proposer will use. Indeed, the first proposer
can produce a label l1, and then a second proposer produces a label l2 such that
l1 ≺ l2. The first proposer then sees that the label l2 cancels its label and it
produces a label l3 such that l2 ≺ l3, and so on.

To avoid such interferences between the proposers, we elaborate on the pre-
vious scheme as follows. Instead of being a couple (l, t) as above, a ballot number
will be a couple (v, t) where t is the integer ballot number, and v is a tag, i.e., a
vector of labels indexed by the identifiers of the processors. We assume that the
set of identifiers is totally ordered. A proposer μ can only create new labels in
the entry μ of its tag. By recording enough of the labels that cancel the label in
the entry μ, μ is able to produce a greatest label in the entry μ; therefore the
entry μ becomes a valid entry (it has a greatest label) that can be used by other
proposers. In order for the different processors to agree on which valid entry to
use, we simply impose that each of them uses the valid entry with the smallest
identifier.

Finally, in the informal presentation above, we presented the tag system as a
means to deal with overflows of ballot numbers, but the same goes for overflows
of any other kind of ever increasing (but bounded) sort of variables. In particular,
in any implementation of Paxos, the processors record the sequence of executed
requests (which is related to the step number); our tag system also copes with
overflows of this kind of data.

3 System Settings

Model. All the basic notions we use (state, configuration, execution, asynchrony,
. . . ) can be found in, e.g., [7,19]. Here, the model we work with is given by a



106 P. Blanchard et al.

system of n asynchronous processors in a complete communication network. Each
communication channel between two processors is a bidirectional asynchronous
communication channel of finite capacity C [8]. Every processor has a unique
identifier and the set Π of identifiers is totally ordered. If α and β are two proces-
sor identifiers, the couple (α, β) denotes the communication channel between α
and β. A configuration is the vector of states of every processor and communica-
tion channel. If γ is a configuration of the system, we note γ(α) (resp. γ(α, β))
for the state of the processor α (resp. the communication channel (α, β)) in the
configuration γ. We informally3 define an event as the sending or reception of
a message at a processor or as a local state transition at a processor. Given a
configuration, an event induces a transition to a new configuration. An execution
is denoted by a sequence of configurations (γk)0≤k<T , T ∈ N ∪ {+∞} related
by such transitions4. A local execution at processor λ is the sequence of states
obtained as the projection of an execution on λ.

We consider transient and crash faults only. The effect of a transient fault
is to corrupt the state of some processors and/or communication channels; but
it does not corrupt the memory where the program is located5. As usual in
self-stabilization, it is assumed that all the basic services related to message
transmission (in particular identifiers) are reliable. Also, we only consider the
suffix of execution after the last transient fault; though crash faults may occur
in this suffix. This amounts to assume that the initial configuration of every
execution is arbitrary and at most f processors are prone to crash failures.

A quorum is any set of at least n − f processors. The maximum number of
crash failures f satisfies n ≥ 2 · f + 1. Thus, there always exists a responding
majority quorum and any two quorums have a non-empty intersection. We also
use the “happened-before” strict partial order introduced by Lamport [13]. In
our case, we note e � f and we say that e happens before f , or f happens
after6 e. Each processor plays the role of a proposer, acceptor and learner. A
proposer can be active or inactive7. We simply assume that at least one processor
acts as a proposer infinitely often. This proposer is not required to be unique
in order for our algorithm to stabilize. A unique proposer is required only for
the liveness of the state-machine (Sect. 6). Finally, we fix a state-machine M ,
and each processor has a local copy of M . A request corresponds to a transition
of the state-machine. We assume that the machine M has a predefined initial
state.

Data Structures. Given a positive integer b, a b-bounded integer, or simply a
bounded integer, is any non-negative integer less than or equal to 2b. A finite
labeling scheme is a 4-tuple L = (L ,≺, d, ν) where L is a finite set whose
elements are called labels, ≺ is a partial relation on L that is irreflexive (l �≺ l)
3 For a formal definition, refer to, e.g., [7,19].
4 For sake of simplicity, the events and the transitions are omitted.
5 This would create Byzantine processes, and is outside of our scope.
6 Note that the sentences “f happens after e” and “e does not happen before f” are

not equivalent.
7 How a proposer becomes active can be modeled by a the output of a failure detector.
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and antisymmetric (� ∃(l, l′) l ≺ l′∧ l′ ≺ l), d is an integer, namely the dimension
of the labeling scheme, and ν is the label increment function, i.e., a function
that maps any finite set A of at most d labels to a label ν(A) such that for
every label l in A, we have l ≺ ν(A). We denote the reflexive closure of ≺ by
�. The definition of a finite labeling scheme imposes that the relation ≺ is not
transitive. Hence, it is not a preorder relation. Given a label l, a canceling label
for l is a label cl such that cl �� l. See [2] for a concrete construction of finite
labeling scheme of any dimension.

A tag is a vector v[μ] = (l cl) where μ ∈ Π is a processor identifier, l is a
label, cl is either the null symbol ⊥, the overflow symbol ∞ or a canceling label
for l. The entry μ in v is said to be valid when the corresponding canceling field
is null, v[μ].cl = ⊥. If v has at least one valid entry, we denote by χ(v) the first
valid entry of v, i.e., the smallest identifier μ such that v[μ] is valid. If v has no
valid entry, we set χ(v) = ω where ω is a special symbol (not in Π). Given two
tags v and v′, we note v ≺ v′ when either χ(v) > χ(v′) or χ(v) = χ(v′) = μ �= ω
and v[μ].l < v′[μ].l. We note v � v′ when χ(v) = χ(v′) = μ and v[μ] = v′[μ]. We
note v � v′ when either v ≺ v′ or v � v′.

A fifo label history H of size d, is a vector of size d of labels along with an
operator + defined as follows. Let H = (l1, . . . , ld) and l be a label. If l does not
appear in H, then H + l = (l, l1, . . . , ld−1), otherwise H + l = H. We define the
tag storage limit K and the canceling label storage limit Kcl by K = n+Cn(n−1)

2
and Kcl = (n + 1)K.

4 The Algorithm

In this section, we describe the Practically Self-Stabilizing Paxos algorithm. In
its essence, our algorithm is close to the Paxos scheme except for some details.
First, in the original Paxos, the processors decide on a unique request for each
step s. In our case, there is no actual step number, but the processors agree on a
growing sequence of requests of size at most 2b as in [16] (see Remark 1 below).
Second, our algorithm includes tag related data to cope with overflows.

The variables are presented in Algorithm 1. The clients are not modeled here;
we simply assume that each active proposer α can query a stream queueα to get a
client request to propose. The variables are divided in three sections correspond-
ing to the different Paxos roles: proposer, acceptor, learner. In each section, some
variables are marked as Paxos variables8 while the others are related to the tag
system.

The message flow is similar to Paxos. When a proposer λ becomes active,
it executes a prepare phase (phase 1), trying to recruit a majority of acceptors.
An acceptor α is recruited if the proposer ballot number is (strictly) greater
than its own ballot number. In this case, it adopts the ballot number. It also
replies (positively or negatively) to the leader with its latest accepted sequence of
requests acceptedα along with the corresponding (integer) ballot number. After

8 They come from the original formulation of Paxos.
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recruiting a quorum of acceptors, the proposer λ records the latest sequence
(w.r.t. the associated integer ballot numbers) of requests accepted by them in
its variable proposed proposedλ. If this phase 1 is successful, the proposer λ can
execute accept phases (phase 2) for each request received in queueλ. For each
such request r, the proposer λ appends r to its variable proposedλ, and tell
the acceptors to accept proposedλ. An acceptor accepts the proposal proposedλ
when the two following conditions are satisfied: (1) the proposer’s ballot num-
ber is greater than or equal to its own ballot number, and (2) if the ballot
integer associated with the lastly accepted proposal is equal to the proposer’s
ballot integer, then proposedλ is an extension of the lastly accepted proposal.
Roughly speaking, this last condition avoids the acceptor to accept an older
(hence shorter) sequence of request. In any case, the acceptor replies (positively
or negatively) to the proposer. The proposer λ plays the role of a special learner
in the sense that it waits for positive replies from a quorum of acceptors, and,
sends the corresponding decision message. The decision procedure when receiv-
ing a decision message is similar to the acceptation procedure (reception of a p2a
message), except that if the acceptor accepts the proposal, then it also learns
(decides on) this proposal and execute the corresponding new requests.

We now describe the treatment of the variables related to the tag system.
Anytime a processor α (as an acceptor, learner or proposer) with tag vα receives
a message with a tag v′, it updates the canceling label fields before comparing
them, i.e., for any μ, if vα[μ].l (or vα[μ].cl) is a label that cancels v′[μ].l, or
vα[μ].cl = ∞ is the overflow symbol, then the field v′[μ].cl is updated accord-
ingly9, and vice versa. Also, if the processor α notices an overflow in its own
variables (e.g. its ballot integer, or one of the request sequence variables, has
reached the upper bound), it sets the overflow symbol ∞ in the canceling field
of the first valid entry of the tag. If after such an update, the label vα[α].l is
canceled, then the corresponding canceling label is added to Hcl

α as well as the
label vα[α].l, and vα[α].l is set to the new label ν(Hcl

α ) created from the labels in
Hcl
α with the label increment function. The purpose of Hcl

α is to record enough
canceling labels for the proposer to produce a greatest label. In addition, if, after
the update, it appears that vα � v′, then α adopts the tag v′, i.e., it copies the
content of the first valid entry μ = χ(v′) of v′ to the same entry in vα (assuming
μ < α). Doing so, it also records the previous label in vα in the label history
Hα[μ]. If there is a label in Hα[μ] that cancels vα[μ].l, then the corresponding
field is updated accordingly. The purpose of Hα[μ] is to avoid cycle of labels
in the entry μ of the tag. Recall that the comparison between labels is not a
preorder. In case μ = α, then α uses the label increment function on Hcl

α to
produce a greater label as above.

We say that there is an epoch change in the tag vλ if either the first valid entry
χ(vλ) has changed, or the first valid entry has not changed but the corresponding
label has changed. Whenever there is an epoch change in the tag vλ the processor
cleans the Paxos related variables. For a proposer λ, this means that the proposer
9 i.e., the field v′[μ].cl is set to vα[μ].(l or cl). In case, there is a canceling label and

the overflow symbol, the canceling label is preferred.
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ballot integer tpλ is reset to zero, the proposed requests proposedλ to the empty
sequence; in addition, the proposer proceeds to a new prepare phase. For an
acceptor (and learner) α, this means that the acceptor ballot integer is reset to
zero, the sequences acceptedα and learnedα are reset to the empty sequence, and
the local state q∗α is reset to the predefined initial state of the state-machine.

The pseudo-code in Algorithms 2 and 3 sums up the previous description.
Note that, the predicate (vα, tα) < (vλ, tλ) (resp. (vα, tα) ≤ (vλ, tλ)) means that
either vα ≺ vλ, or vα � vλ and tα < tλ (resp. tα ≤ tλ).
Remark 1. Note that, in our algorithm, the replicas agree on growing sequences
of requests, of length at most 2b. Our goal in this paper is not to provide an
optimized solution, but to pave the way to it. Yet, a means to control the length
of the sequences would be to replace a prefix of request sequence by the state
reached from the initial state when applying the prefix. Then the replicas can
agree on (possibly conflicting) states by the latest found in a quorum.

Algorithm 1. Variables at processor α
1 (tag system)
2 vα : tag

3 canceling label history, Hcl
α : fifo history of size (K + 1)Kcl

4 for each μ ∈ Π, label history, H[μ] : fifo history of size K
5 (proposer)
6 client requests, queueα : queue (read-only)
7 [Paxos] proposer ballot integer, tpα : bounded integer

8 [Paxos] proposed requests, proposedα : requests sequence of size ≤ 2b

9 (acceptor)
10 [Paxos] acceptor ballot integer, taα : bounded integer
11 [Paxos] accepted requests, acceptedα = (t, seq) : t bounded integer, seq

requests sequence of size ≤ 2b

12 (learner)

13 [Paxos] learned requests, learnedα : requests sequence of size ≤ 2b

14 [Paxos] local state, q∗
α : state of the state-machine

5 Proofs

Due to lack of space, proofs are only sketched. More details can be found in [3].

5.1 Tag Stabilization

Definition 1 (Interrupt). Let λ be any processor (as a proposer, or an accep-
tor) and consider a local subexecution σ = (γk(λ))k0≤k≤k1 at λ. We denote by
vkλ the λ’s tag in γk(λ). We say that an interrupt has occurred at position k in
the local subexecution σ when one of the following happens



110 P. Blanchard et al.

Algorithm 2. Prepare phase (Phase 1)

1 Processor λ becomes a proposer:

2 increment tλ
3 if tλ reaches 2b then

4 set vλ[χ(vλ)].cl to ∞
5 update the entry vλ[λ] with Hcl

if it is invalid

6 clean the proposer Paxos variables

7 broadcast 〈p1a, vλ, tλ, λ〉
8 collect replies R from some quorum Q

9 update (if necessary) the tag vλ and

the label histories

10 if no epoch change in vλ and all replies

are positive then

11 order R with lexicographical order

(acceptedα.t, |acceptedα.seq|)
12 proposedλ ← acceptedα.seq the

maximum in R (break ties if necessary)

13 if proposedλ has reached max length

then

14 set vλ[χ(vλ)].cl to ∞
15 update the entry vλ[λ] with Hcl if

it is invalid

16 clean the Paxos variables

17 repeat phase 1

18 else

19 if epoch change in vλ then

20 clean the Paxos variables

21 repeat phase 1

22

23 Processor α receives p1a message from λ:

24 update canceling fields in (vα, vλ)

25 if (vα, tα) < (vλ, tλ) then

26 adopt vλ, tλ
27 if epoch change in vα then

28 clean Paxos variables

29 reply to λ, 〈p1b, vα, tα, acceptedα, α〉
30

– μ < λ, type [μ,←] : the first valid entry moves to μ such that μ = χ(vk+1
λ ) <

χ(vkλ), or the first valid entry does not change but the label does, i.e., μ =
χ(vk+1

λ ) = χ(vkλ) and vkλ[μ].l �= vk+1
λ [μ].l.

– μ < λ, type [μ,→] : the first valid entry moves to μ such that μ = χ(vk+1
λ ) >

χ(vkλ).
– type [λ,∞] : the first valid entry is the same but there is a change of label in

the entry λ due to an overflow of one of the Paxos variables; we then have
χ(vk+1

λ ) = χ(vkλ) = λ and vkλ[λ].l �= vk+1
λ [λ].l.

– [λ, cl] : the first valid entry is the same but there is a change of label in the
entry λ due to the canceling of the corresponding label; we then have χ(vk+1

λ ) =
χ(vkλ) = λ and vkλ[λ].l �= vk+1

λ [λ].l.

For each type [μ, ∗] (μ ≤ λ) of interrupt, we denote by |[μ, ∗]| the total number
(possibly infinite) of interrupts of type [μ, ∗] that occur during the local subexe-
cution σ.

If there is an interrupt like [μ,←], μ < λ, occurs at position k, then necessarily
there is a change of label in the field vλ[μ].l (due to the adoption of received tag).
In addition, the new label l′ is greater than the previous label l, i.e., l ≺ l′. Also
note that, if χ(vkλ) = λ, the proposer λ never copies the content of the entry λ
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Algorithm 3. Accept phase (Phase 2) and Decision

1 Once λ gets requests in queueλ:

2 append requests to proposedλ

3 broadcast 〈p2a, vλ, tλ, proposedλ〉
4 collect replies R from some quorum Q

5 update (if necessary) the tag vλ

and the label histories
6 if no epoch change in vλ and

all replies are positive then

7 broadcast 〈dec, vλ, tλ, proposedλ〉
8 else

9 if epoch change in vλ then clean
the Paxos variables

10 proceed to phase 1

11

12 Processor α receives p2a or dec message
from λ:

13 update canceling fields in (vα, vλ)

14 if (vα, tα) ≤ (vλ, tλ) then

15 adopt vλ, tλ
16 if epoch change in vα then

clean the Paxos variables

17 if acceptedα.t < tλ or
acceptedα.seq is a prefix of

proposedλ then

18 accept (tλ, proposedλ)
19 if it is a dec message then

20 learn proposedλ

21 update q∗
α by executing

the new requests

22 if it is a p2a message then
23 reply to λ, 〈p2b, vα, tα,

acceptedα, α〉
24

of a received tag, say v′, to the entry λ of its tag, even if vkλ[λ].l ≺ v′[λ].l. New
labels in the entry λ are only produced with the label increment function applied
to the union of the current label and the canceling label history Hcl

λ .

Definition 2 (Epoch). Let λ be a processor. An epoch σ at λ is a maximal
(for the inclusion of local subexecutions) local subexecution at λ such that no
interrupts occur at any position in σ except for the last position. By the definition
of an interrupt, all the tag’s values within a given epoch σ at λ have the same first
valid entry, say μ, and the same corresponding label, i.e., for any two processor
states that appear in σ, the corresponding tag values v and v′ satisfies χ(v) =
χ(v′) = μ and v[μ].l = v′[μ].l. We denote by μσ and lσ the first valid entry and
the corresponding label common to all the tag values in σ.

Definition 3 (h-Safe Epoch). Consider an execution E and a processor λ. Let
Σ be a subexecution in E such that the local subexecution σ = Σ(λ) is an epoch
at λ. Let γ∗ be the configuration of the system right before the subexecution Σ,
and h be a bounded integer. The epoch σ is said to be h-safe when the interrupt
at the end of σ is due to an overflow of one of the Paxos variables. In addition,
for every processor α (resp. communication channel (α, β)), for every tag x in
γ∗(α) (resp. γ∗(α, β)), if x[μσ].l = lσ then any corresponding integer variables
(ballot integers, or lengths of request sequences) have values less than or equal
to h.

If there is an epoch σ at processor λ such that μσ = λ and λ has produced
the label lσ, then necessarily, at the beginning of σ, the Paxos variables have
been reset. However, other processors may already be using the label lσ with,
for example, arbitrary ballot integer value. Such an arbitrary value may be the
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cause of the overflow interrupt at the end of σ. The definition of a h-safe epoch
ensures that the epoch is truly as long as counting from h to 2b.

Since a processor λ always checks that the entry vλ[λ] is valid (updating with
ν(Hcl

λ ) if necessary), it is now assumed, unless stated explicitly, that we always
have χ(vλ) ≤ λ.

Consider a configuration γ and a processor identifier μ. Let S(γ) be the
set of every tag present either in a processor memory or in some message in a
communication channel, in the configuration γ. Let Scl(μ, γ) be the set of labels
l such that either l is the value of the label field x[μ].l for some tag x in S(γ),
or l appears in the label history Hα[μ] of some processor α, in the configuration
γ. Then, we have |S(γ)| ≤ K and |Scl(μ, γ)| ≤ Kcl. In particular, the number of
label values x[μ].l with x in S(γ) is less than or equal to K.

Lemma 1 (Cycle of Labels). Consider a subexecution E, a processor λ and
an entry μ < λ in the tag variable vλ. The label value in vλ[μ].l can change during
the subexecution E and we denote by (li)1≤i≤T+1 for the sequence of successive
distinct label values that are taken by the label vλ[μ].l in the entry μ during the
subexecution E. We assume that the first T labels l1, . . . , lT are different from
each other, i.e., for every 1 ≤ i < j ≤ T , li �= lj. If T > K, then at least one
of the label li has been produced10 by the processor μ during E. If T ≤ K and
lT+1 = l1, then when the processor λ adopts the label lT+1 in the entry μ of its
tag vλ, the entry μ becomes invalid.

Proof (Sketch). This stems from the fact that in any configuration there are at
most K different tags in the system, and that λ records the last K label values
of the entry μ of its tag. ��
Lemma 2 (Counting the Interrupts). Consider an infinite execution E∞
and let λ be a processor identifier such that every processor μ < λ produces
labels finitely many times. Consider an identifier μ < λ and any processor ρ ≥ λ.
Then, the local execution E∞(ρ) at ρ induces a sequence of interrupts such that
|[μ,←]| ≤ Rμ = (Jμ + 1) · (K + 1) − 1 where Jμ is the number of times the
processor μ has produced a label since the beginning of the execution.

Proof (Sketch). Assume the contrary. Then there are Rμ + 1 successive distinct
label values in the field vρ[μ].l, l1 ≺ · · · ≺ lRμ+1. We can divide this sequence
in Jμ + 1 segments of length K + 1. Due to the previous lemma, there is one
segment containing a cycle of labels of length ≤ K; this is a contradiction since
ρ records the last K labels in Hρ[μ]. ��
Theorem 1 (Existence of a 0-Safe Epoch). Consider an infinite execution
E∞ and let λ be a processor such that every processor μ < λ produces labels
finitely many times. We denote by |λ| the number of identifiers μ ≤ λ, Jμ for
the number of times a proposer μ < λ produces a label and we define

Tλ = (
∑

μ<λ

Rμ + 1) · (|λ|+ 1) · (Kcl + 1) · (K + 1) (1)

10 Precisely, it has invoked the label increment function to update the entry μ of its
tag vμ.
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where Rμ = (Jμ+1) ·(K+1)−1. Assume that there are more than Tλ interrupts
at processor λ during E∞ and consider the concatenation Ec(λ) of the first Tλ
epochs, Ec(λ) = σ1 . . . σTλ . Then Ec(λ) contains a 0-safe epoch.

Proof (Sketch). The bound given by the previous lemma and successive appli-
cations of the pigeonhole principle yield a segment E2(λ) of (Kcl + 1)(K + 1)
successive epochs with interrupts like [λ,∞] and [λ, cl] only. If there is in E2 a
segment E3 of K + 1 successive epochs with interrupts like [λ,∞] only, λ must
have a created a label that was not present in the system; and the correspond-
ing epoch is 0-safe. Otherwise, there is at least Kcl + 1 interrupts like [λ, cl].
This implies that λ has collected all the possible canceling labels. At the end, it
produces a greatest label, and the corresponding epoch is necessarily 0-safe. ��

Note that the epoch found in the proof is not necessarily the unique
0-safe epoch in Ec(λ). The idea is only to prove that there exists a practically
infinite epoch. If the first epoch σ at λ ends because the corresponding label
lσ in the entry μσ gets canceled, but lasts a practically infinite long time, then
this epoch can be considered, from an informal point of view, safe. One could
worry about having only very “short” epochs at λ due to some inconsistencies
(canceling labels or overflows) in the system. Theorem 1 shows that every time
a “short” epoch ends, the system somehow loses one of its inconsistencies, and,
eventually, the proposer λ reaches a practically infinite epoch. Note also that a
0-safe epoch and a 1-safe or a 2-safe epoch are, in practice, as long as each other.
Indeed, any h-safe epoch with h very small compared to 2b can be considered
practically infinite. Whether h can be considered very small depends on the con-
crete timescale of the system. Besides, every processor α always checks that the
entry α is valid. Doing so the processor α still works to find a “winning” label
for its entry α. In that case, if the entry μ becomes invalid, then the entry α is
ready to be used, and a safe epoch can start without waiting any longer.

5.2 Safety

To prove the safety property within a subexecution, we have to focus on
the events that correspond to deciding a proposal, e.g., (v, t, p) at processor
α (v being a tag, t a ballot integer, p a sequence of requests). Such an event
may be due to corrupted messages in the communication channels an any stage
of the Paxos algorithm. Indeed, a proposer computes the proposal it will send
in its phase 2 thanks to the replies it has received at the end of its phase 1.
Hence, if one of these messages is corrupted, then the safety might be violated.
However, there is a finite number of corrupted messages since the capacity of the
communication channels is finite. To formally deal with these issues, we define
the notion of scenario that corresponds to specific chain of events involved in the
Paxos algorithm. Consider a subexecution E = (γk)k0≤k≤k1 . A scenario in E
is a sequence U = (Ui)0≤i<I where each Ui is a collection of events in E. In
addition, every event in Ui happens before every event in Ui+1.
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Definition 4 (Phase Scenario). Consider a proposer ρ, an acceptor α,
quorums S and Q of acceptors, a tag v, a ballot integer t, and a sequence of
requests p.

A phase 1 scenario is defined as follows. The proposer ρ broadcasts a message
p1a containing the tag v, and ballot integer t. Every acceptor in the quorum S
receives this message and adopts11 the tag v. Every processor α in the quorum
S replies to the proposer ρ a p1b message telling they adopted the couple (v, t),
and containing the last proposal they accepted. These messages are received by
ρ. We denote this scenario by ρ

p1a−−→ (S, v, t)
p1b−−→ ρ.

A phase 2 scenario with acceptation is defined as follows. The proposer ρ
broadcasts a p2a message containing the tag v, the ballot integer t, and the pro-
posed sequence of requests p. The acceptor α accepts the proposal (v, t, p). We
denote this scenario by ρ

p2a−−→ (α, v, t, p).
A phase 2 scenario with quorum acceptation is defined as follows. The pro-

poser ρ broadcasts a p2a message containing the tag v, the ballot integer t, and
the proposed sequence of requests p. Every acceptor in the quorum Q accepts
the proposal (v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ
a p2b message telling that it has accepted the proposal (v, t, p). The proposer ρ

receives these messages. We denote this scenario by ρ
p2a−−→ (Q, v, t, p)

p2b−−→ ρ.
A phase 2 scenario with decision is defined as follows. The proposer ρ broad-

casts a p2a message containing the tag v, the ballot integer t, and the proposed
sequence of requests p. Every acceptor in the quorum Q accepts the proposal
(v, t, p). Every acceptor α in the quorum Q sends to the proposer ρ a p2b mes-
sage telling that it has accepted the proposal (v, t, p). The proposer ρ receives
these messages. The proposer ρ sends a decision message containing the proposal
(v, t, p). The processor α receives this message, accepts and decides on the pro-

posal (v, t, p). We denote this scenario by ρ
p2a−−→ (Q, v, t, p)

p2b−−→ ρ
dec−−→ (α, v, t, p).

In all the previous cases, we say that the phase scenarios are conducted by
the proposer ρ and use the ballot (v, t).

Definition 5 (Simple Acceptation Scenario). A simple acceptation sce-
nario is the concatenation of a phase 1 scenario, followed by a finite number
of phase 2 scenarios with quorum acceptation, and ending with a phase 2 sce-
nario with either acceptation, or decision; all the phase scenarios being conducted
by the same proposer ρ, and using the same ballot (v, t). Let S be the quorum
of acceptors in the phase 1 scenario, p be the sequence of requests accepted (or
decided on) in the last event of the scenario, and α be the corresponding acceptor.
If the last phase scenario is a phase scenario with acceptation, then we denote
the simple acceptation scenario by ρ

p1a−−→ (S, v, t) � ρ
p2a−−→ (α, v, t, p). If the last

phase scenario is a phase scenario with decision, then we denote the simple accep-
tation scenario by ρ

p1a−−→ (S, v, t) � ρ
p2a−−→ (Q, v, t, p)

p2b−−→ ρ
dec−−→ (α, v, t, p).

11 Recall that this means the acceptor, say α, copies the entry v[χ(v)] in the entry
vα[χ(v)].
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When we want to indicate that both cases are possible, we simply denote the
simple acceptation scenario by (ρ, S, v, t) � (α, v, t, p).

A simple acceptation scenario is simply a basic execution of the Paxos algo-
rithm that leads a processor to either accept a proposal, or decide on a proposal
(accepting it by the way).

Definition 6 (Fake Message). Given a subexecution E = (γk)k0≤k≤k1 , a fake
message relative to the subexecution E, or simply a fake message, is a mes-
sage that is in the communication channels in the first configuration γk0 of the
subexecution E.

This definition of fake messages comprises the messages at the beginning of
E that were not sent by any processor, but also messages produced in the prefix
of execution that precedes E.

Definition 7 (Fake Phase Scenario). Consider a proposer ρ, an acceptor α,
quorums S and Q of acceptors, a tag v, a ballot integer t, and a sequence of
requests p. Fix a subexecution E. A fake phase scenario relative to E is one of
the following scenario.

(Fake phase 1 scenario) The proposer ρ sends a p1a message with ballot (v, t).
It receives positive replies from a quorum S, one of these replies at least being
fake (i.e. it was not actually sent by an acceptor). We denote this fake phase

scenario by ρ
p1a−−→ (S, v, t)

fake p1b−−−−−−→ ρ.
(Fake phase 2 scenario with acceptation) The acceptor α receives a fake p2a

with proposal (v, t, p) that seems to come from the processor ρ. The acceptor α

accepts the proposal. We denote this scenario by ρ
fake p2a−−−−−−→ (α, v, t, p).

(Fake phase 2 scenario with quorum acceptation) The proposer ρ sends a
p2a message with proposal (v, t, p). The proposer ρ receives positive replies from
a quorum Q, one of these replies, at least, being fake. Then ρ sends a decision
message with proposal (v, t, p) to the acceptor α, and α decides accordingly. We

denote this scenario by ρ
p2a−−→ (Q, v, t, p)

fake p2b−−−−−−→ ρ
dec−−→ (α, v, t, p).

(Fake phase 2 scenario with decision) The acceptor α receives a fake decision
message with proposal (v, t, p) which seems to come from the proposer ρ. The

acceptor α decides accordingly. We denote this scenario by ρ
fake dec−−−−−−→ (α, v, t, p).

Definition 8 (Simple Fake Acceptation Scenario). A simple fake accepta-
tion scenario is either a fake phase 2 scenario with acceptation, a fake phase 2
scenario with quorum acceptation, a fake phase 2 scenario with decision, or the
concatenation of a fake phase 1 scenario, followed by a finite number of (non-
fake) phase 2 scenarios with quorum acceptation, and ending with a (non-fake)
phase 2 scenario with either an acceptation, or a decision; all the scenarios
being conducted by the same proposer ρ, and using the same ballot (v, t). We
often denote this kind of scenarios by fake � (α, v, t, p) where (α, v, t, p) refers
to the last acceptation (or decision) event.
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A simple fake acceptation scenario is somehow similar to a simple acceptation
scenario except for the fact that at least one fake message (relative to the given
subexecution) is involved during the scenario.

Definition 9 (Composition). Consider two simple scenarios

U = X � (α1, v1, t1, p1)
V = (ρ2, S2, v2, t2) � (α2, v2, t2, p2)

where X = fake or X = (ρ1, S1, v1, t1) such that the following three conditions
are satisfied. (1) The processor α1 belongs to S2 (2) Let e2 be the event that
corresponds to α1 sending a p1b message in scenario V . Then the event “α1

accepts the proposal (v1, t1, p1)” from U is the last acceptation event before e2
occurring at α1. In addition, the proposer ρ2 selects the proposal (t1, p1) as the
highest-numbered proposal at the end of the Paxos phase 1. In particular, p1 is
a prefix of p2, i.e., p1 � p2. (3) All the tags involved share the same first valid
entry, the same corresponding label.

Then the composition of the two simple scenarios is the concatenation the
scenarios U and V . This scenario is denoted by X � (α1, v1, t1, p1) → (ρ2, S2,
v2, t2) � (α2, v2, t2, p2). Note also that the ballot integer is strictly increasing
along the simple scenarios (Fig. 1).

Fig. 1. Composition of scenarios - Time flows downward, straight lines are local exe-
cutions, arrows represent messages.

Definition 10 (Acceptation Scenario). Given a subexecution E, an accep-
tation scenario is the composition U of simple acceptation scenarios U1, . . . , Ur
where U1 is either a simple acceptation scenario or a simple fake acceptation
scenario relative to E, whereas the other are real (i.e. non-fake) simple accep-
tation scenarios. We denote it by X � (α1, v1, t1, p1) → (ρ2, S2, v2, t2) �
(α2, v2, t2, p1) . . . (ρr, Sr, vr, tr) � (αr, vr, tr, pr) where X is either fake or some
(ρ1, S1, v1, t1).
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An acceptation scenario whose first simple scenario is not fake relative to E
is called real acceptation scenario relative to E. An acceptation scenario whose
first simple scenario is fake relative to E is called fake acceptation scenario
relative to E.

Given an acceptation event or a decision event, there is always at least one
way to trace back the scenario that has lead to this event. If one of these scenarios
involve a fake message, then we cannot control the safety property. Besides, all
the tags involved share the same first valid entry μ and the same corresponding
label l. Also, the ballot integer value, as well as the sequence of requests, is
increasing along the acceptation scenario; i.e., if i < j, then ti < tj and pi � pj .

Definition 11 (Fake event). Consider an event e that corresponds to some
processor accepting a proposal, let U be the simple acceptation scenarios that
ends with the event e. The event e is said to be fake relative to a subexecution
E if U is a fake simple acceptation scenario relative to E. The event e is said
to be real relative to E otherwise.

Definition 12 (Simple Scenario Characteristic). The characteristic of a
simple acceptation scenario U with tag v, ballot integer t, is the tuple char(U) =
(χ(v), v[χ(v)].l, t).

Definition 13 (Observed Zone). Consider an execution E. Let λ be a pro-
poser and let Σ be a subexecution such that the local execution σ = Σ(λ) at λ
is a h-safe epoch. We denote by F the suffix of the execution that starts with Σ.
Assume that λ hears from at least two quorums during its epoch σ. Let Q0, Qf

be the first and last quorums respectively whose messages are processed by the
proposer λ during σ. For each processor α in Q0 (resp. Qf ), we denote by e0(α)
(resp. ef (α)) the event that corresponds to α sending to λ a message received in
the phase that corresponds to Q0 (resp. Qf ).

The zone observed by λ during the epoch σ, namely Z(F, λ, σ), is the set of
acceptation scenarios relative to F described as follows. An acceptation scenario
relative to F belongs to Z(F, λ, σ) if and only if it ends with a real acceptation
(or decision) event (relative to F ) that does not happen after the end of σ and
it contains a real simple acceptation scenario U = (ρ, S, v, t) � (β, v, t, p) such
that there exists an acceptor α in S ∩Q0 ∩Qf at which the event e0(α) happens
before the event e that corresponds to sending a p1b message in U , and the event
e happens before the event ef (α) (cf. Fig. 2).

The observed zone models a globally defined time period during which we
will prove, under specific assumptions, the safety property (cf. Theorem3).

Lemma 3 (Epoch and Cycle of Labels). Consider an execution E. Let λ be
a processor and consider a subexecution Σ such that the local execution σ = Σ(λ)
is an epoch at λ. We denote by F the suffix of the execution E that starts with
Σ. Consider a processor ρ and a finite subexecution G in F as follows: G starts
in Σ and induces a local execution G(ρ) at ρ such that it starts and ends with
the first valid entry of the tag vρ being equal to μσ and containing the label lσ,
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Fig. 2. Scenario (ρ, S, v, t) � (β, v, t, p) in Z(F, λ, σ) - Time flows downward, straight
lines are local executions, curves are send/receive events, arrows represent messages.

and the label field in the entry vρ[μσ] undergoes a cycle of labels during G(ρ).
Assume that, if μσ < λ, the processor μσ does not produce any label during G.
Then μσ = λ and the last event of σ happens before the last event of G(ρ).

Proof. By Lemma 1, since the entry vρ[λ] remains valid after the readoption of
the label l at the end of G(ρ), the proposer μσ must have produced some label
l′ during G (hence μσ = λ) that was received by ρ during G. Necessarily, the
production of l′ happens after the last event of σ at λ, thus the last event of
G(ρ) at ρ also happens after the last event of σ at λ. ��
Theorem 2 (Safety - Weak Version). Consider an execution E. Let λ be
a processor and let Σ be a subexecution such that the local execution σ =
Σ(λ) at λ is an h-safe epoch. We denote by F the suffix of the execution that
starts with Σ. Consider the two simple scenarios U1 = ρ1

p1a−−→ (S1, v1, t1) �
ρ1

p2a−−→ (Q1, v1, t1, p1)
p2b−−→ ρ1

dec−−→ (α1, v1, t1, p1) and U2 = (ρ2, S2, v2, t2) �
(α2, v2, t2, p2) with characteristics (μσ, lσ, t1) and (μσ, lσ, t2) respectively.

We denote by ei the acceptation event (αi, vi, ti, pi). Assume that the events
e1 and e2 occur in F and that h ≤ t1 ≤ t2. In addition, assume that, if μσ < λ,
then the processor μσ does not produce any label during F . We then have two
cases: (a) If t1 = t2, then either p1 � p2, or p2 � p1, or the last event of σ
happens before one of the event e1 or e2. (b) If t1 < t2, then p1 � p2 or the last
event of σ happens before one of the event e1 or e2.

Proof (Sketch). We assume that both events e1 and e2 do not happen after the
last event of σ and we prove the result. We denote by γ∗ the configuration right
before the subexecution Σ. We prove the result by induction on the value of t2.

(Bootstrapping). We first assume that t2 = t1. Recall the ballot integers
include the identifiers of the proposer, hence ρ1 = ρ2. If p1 �� p2 and p2 �� p1,
then ρ1 has sent two p2a messages with different proposals and the same ballot.
Let e and f be the events corresponding to these two sendings. None of the
events e and f occurs in the execution prefix A, otherwise, since e1 and e2 occur
in F , the configuration γ∗ would contain a ballot (x, t) with x[μσ].l = lσ and
t ≥ h; this is a contradiction since σ is h-safe. We will refer to this argument as
the safe epoch argument. Hence, e and f occur in F . The fact that p1 �� p2 and
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p2 �� p1 implies that there must be a cycle of labels in the entry vρ1 [μσ] between
the e and f . By Lemma 3, this implies that the last event of σ happens before
the event e1 or e2; this is a contradiction. We will refer to this argument as the
cycle of label argument. Hence, p1 � p2 or p2 � p1.

(Induction). Now, t1 < t2 and we assume the result holds for every value
t such that t1 ≤ t < t2. Pick some acceptor β in Q1 ∩ S2. From its point of
view, there are two events f1 and f2 at β that respectively correspond to the
acceptation of the proposal (v1, t1, p1) in the scenario U1 (reception of a p2a
message), and the adoption of the ballot (v2, t2) in the scenario U2 (reception of
a p1a message).

First, the events f1 and f2 occur in the suffix F (same argument as in boot-
strapping). Since t1 < t2, by the cycle of labels argument, f1 happens before
f2. The p1b message the acceptor β has sent contains a non-null lastly accepted
proposal (t, p) such that t1 ≤ t < t2 and p1 � p. Otherwise, the cycle of labels
argument would show (again) a contradiction.

Now, the proposer ρ2 receives a set of proposals from the acceptors of the
quorum S2, including at least one non-null proposal from β. Then, it selects
among the replies, the accepted proposal (tc, pc) with the highest ballot integer,
and highest request sequence length (lexicographical order). Since ρ2 has received
the proposal (t, p) from β, we then have h ≤ t1 ≤ t ≤ tc < t2 and (t, |p|) ≤
(tc, |pc|) (lexicographically).

Let βc be the proposer in S2 which has sent to ρ2 the proposal (tc, pc) in
the p1b message. By the safe epoch argument, there is an event fc in F that
corresponds to βc accepting the proposal (tc, pc). Consider the simple acceptation
scenario Vc that ends with fc, and let char(Vc) = (μc, lc, tc) be its characteristic.
Since fc is the last acceptation event before βc replies to ρ2 (with a p1a message),
we must have (μc, lc) = (μσ, lσ); otherwise, the accepted variable acceptedβc

would have been cleared (epoch change at βc), and βc would have not sent the
non-null proposal (tc, pc) to ρ2. Because of the safe epoch argument, Vc cannot be
a fake simple acceptation scenario; thus Vc is a real simple acceptation scenario.

By applying the induction hypothesis to Vc, and since fc cannot happen
after the last event of σ (otherwise e2 would also happen after it), we have
two cases. The case (A) t1 = tc. Then p1 � pc or pc � p1. But, the fact that
(t, |p|) ≤ (tc, |pc|) (lexicographically) and p1 � p implies that |pc| ≥ |p| ≥ |p1|,
and thus p1 � pc. The case (B) t1 < tc. But then p1 � pc.

In all cases, we have p1 � pc. But, we also have pc � p2 (scenario U2), hence
p1 � p2. ��
Corollary 1. Consider an execution E. Let λ be a processor and let Σ be a
subexecution such that the local execution σ = Σ(λ) at λ is an h-safe epoch. We
denote by F the suffix of the execution that starts with Σ.

Consider two decision events ei = (αi, vi, ti, pi), i = 1, 2, such that χ(vi) =
μσ, vi[μσ].l = lσ and ti ≥ h. Assume that both events e1 and e2 are real decision
events relative to F . In addition, assume that, if μσ < λ, then the processor μσ
does not produce any label during F . Then either p1 � p2, p2 � p1 or the last
event of σ happens before one of the event e1 or e2.
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Theorem 3 (Safety). Consider an execution E, a proposer λ proposer and a
subexecution Σ such that the local execution σ = Σ(λ) at λ is a h-safe epoch for
some bounded integer h. We denote by F the suffix of execution that starts with
Σ. Assume that the observed zone Z(F, λ, σ) is defined and that, if μσ < λ, then
the processor μσ does not produce any label during F . Consider two scenarios
U1 and U2 in Z(F, λ, σ) ending with acceptation events e1 = (α1, v1, t1, p1) and
e2 = (α2, v2, t2, p2). Let μi = χ(vi) and li = vi[μi], i = 1, 2, and assume that
μσ ≤ min(μ1, μ2) and t1, t2 ≥ h. Then (μ1, l1) = (μ2, l2) = (μσ, lσ), and p1 � p2

or p2 � p1.

Proof (Sketch). The definition of the observed zone imply that (μ1, l1) = (μ2, l2) =
(μσ, lσ) because the corresponding scenarios has been “seen” by λ during its epoch.
Then the previous corollary applies. ��

In the case μσ < λ , assuming that μσ does not produce any label during F
means that the proposer λ should be the live processor with the lowest identifier.
To deal with this issue, one can use a failure detector.

6 Self-stabilizing Failure Detector

Liveness in Paxos is not guaranteed unless there is a unique proposer. The orig-
inal Paxos algorithm assumes that the choice of a distinguished proposer is
done through an external module. In the sequel, we present an implementa-
tion of a self-stabilizing failure detector that works under a partial synchronism
assumption. Note that this assumption is strong enough to implement an even-
tual perfect failure detector, but such a failure detector is not mandatory for our
tag system to stabilize. This brief section simply explains how a self-stabilizing
implementation can be done; which is, although not difficult, not obvious either.
Each processor α has a vector Lα indexed by the processor identifiers; each
entry Lα[μ] is an integer whose value is comprised between 0 and some prede-
fined maximum constant W . Every processor α keeps broadcasting a heartbeat
message 〈hb, α〉 containing its identifier (e.g., by using [7,8]). When the proces-
sor α receives a heartbeat from processor β, it sets the entry Lα[β] to zero, and
increments the value of every entry Lα[ρ], ρ �= β that has value less than W .
The detector output at processor α is the list Fα of every identifier μ such that
Lα[μ] = W . In other words, the processor α assesses that the processor β has
crashed if and only if Lα[β] = W .

(Interleaving of Heartbeats). For any two live processors α and β, between
two receptions of heartbeat 〈hb, β〉 at processor α, there are strictly less than W
receptions of heartbeats from other processors. Under this condition, for every
processor α, if the processor β is alive, then eventually the identifier β does
not belong to the list Fα. A distinguished proposer ρ can be defined as follows:
ρ = min(μ; Lρ[μ] < W ).
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Abstract. Replicated services that allow to scale dynamically can adapt
to requests load. Choosing the right number of replicas is fundamental
to avoid performance worsening when input spikes occur and to save
resources when the load is low. Current mechanisms for automatic scaling
are mostly based on fixed thresholds on CPU and memory usage, which
are not sufficiently accurate and often entail late countermeasures. We
propose Make Your Service Elastic (MYSE), an architecture for auto-
matic scaling of generic replicated services based on queuing models for
accurate response time estimation. Requests and service times patterns
are analyzed to learn and predict over time their distribution so as to
allow for early scaling. A novel heuristic is proposed to avoid the flipping
phenomenon. We carried out simulations that show promising results for
what concerns the effectiveness of our approach.

Keywords: Automatic scaling · Performance modeling · Traffic fore-
casting · QoS compliance · Resource-saving

1 Introduction

While designing a replicated service to deliver target response time for a fixed
workload is easily achievable by properly tuning the number and the specifics of
replicas, it becomes really challenging for highly variable loads. Methods based on
over-provisioning allow to cope with load peaks but entail huge waste of resources,
which translates in to money loss. Nevertheless, under-provisioning systematically
fails in delivering required performance when input spikes occur. The actual alter-
native to static provisioning is rendering the service elastic, so that it can adapt to
fluctuating workloads by changing the number of replicas (configuration) on the
fly. Such a functionality is called auto scaling. Amazon Web Services (http://aws.
amazon.com) and Google App Engine (https://appengine.google.com) are among
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the most relevant XaaS providers offering the possibility to reconfigure at runtime.
Both allow to define policies that trigger a reconfiguration on the basis of the vari-
ation of a set of off-the-shelf and custom metrics, like memory usage and CPU
utilization.

This kind of solutions has two main issues. One concerns the difficulty to
find an accurate relationship between the value of monitored metrics and the
configuration needed to meet latency requirements. Indeed, an effective model
should be employed in order to find the proper relationship between gathered
measures and expected performance. The other regards the timeliness in reacting
to load variations: spotting a problematic situation when it is already occurring
brings temporary Quality of Service (QoS) violations, while reacting late to a
load drop causes the same problems of over-provisioning. The reaction delay also
includes the time required for the new configuration to be ready, which comprises
additional factors like replica activation time and state transfer time.

One additional challenge of designing elastic solutions is the cost of elasticity,
i.e. the cost that the service provider pays to activate/deactivate a replica like,
for example, the bandwidth used to transfer the state from an active replica to
a new one, the energy used to keep replicas running with low utilization and the
tradeoff between buying the infrastructure or just renting it. Usually, such costs
occur each time that the system moves from one configuration to another and
they may grow up if the flipping phenomenon (i.e. a sequence of activation and
deactivation of replicas) is not properly mastered.

We propose a solution aimed at facing these issues. We designed the Make
Your Service Elastic module (MYSE) for the automatic horizontal scaling of a
replicated service. By monitoring input requests patterns and the service times
delivered by the replicated service, the MYSE module learns over time through
neural networks how input load and service times vary, and produces estimations
to enable early decisions about reconfiguration. A queuing model of the repli-
cated service is used to compute the expected response time given the current
configuration (number of replicas) and the distributions of both input requests
and service times. A novel graph-based heuristic called Flipping-reducing Scaling
Heuristic is employed that leverages this model to find the minimum number
of replicas required to achieve the target performance and to reduce as much as
possible the flipping phenomenon.

We carried out simulations by using a real dataset containing the requests to
a website over the time. The results showed high accuracy in input traffic predic-
tion and good effectiveness in taking proper scaling decisions. These promising
outcomes of the MYSE module validation have driven us to start its real imple-
mentation on Amazon Web Services. With reference to the related work (see
Sect. 2), the novelty of MYSE consists in (i) combining together traffic forecast-
ing, done through artificial neural networks, and performance estimation through
queuing models, and (ii) addressing the problem of flipping by employing the
innovative Flipping-reducing Scaling Heuristic.

The rest of the paper is organized as follows: related works are presented in
Sect. 2; Sect. 3 describes the MYSE architecture; Sect. 4 reports the preliminary
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results obtained from simulations and Sect. 5 outlines how the work is going
to continue.

2 Related Work

According to a recent survey [19], there are several works on automatic scaling of
elastic applications in the cloud. This survey proposes the following classification
of the auto-scaling techniques existing in literature, on the basis of the approach
they employ.

– Static, threshold-based policies. The configuration is changed according
to a set of rules, some for scaling out and others for scaling in [9,14,15,20].
This is a completely reactive approach that is currently used by most of the
cloud providers.

– Reinforcement learning. It is an automatic decision-making technique to
learn online the performance model of the target system without any a priori
knowledge. Such continuous learning is used to choose the best scaling decision
according to the goals of decreasing response time and saving resources [3,10,
26,30].

– Queuing theory. The target system is modeled using techniques coming from
the queuing theory with the aim of estimating its performance given a small
set of parameters, like input rate and service time, that can be monitored at
runtime [30–32,36].

– Control theory. It is used to automate the management of scaling deci-
sions through the employment of a feedback or feed-forward controller module
whose objective is to meet performance requirements by adjusting the con-
figuration of the target system [1,5,24,25,34]. Feedback controllers correct
their behavior by taking into account the error reported by the target system
through a gain parameter that can be adapted dynamically. Feed-forward con-
trollers are based on model predictive control (MPC) and aim at forecasting
the future behavior of the system. The relationship between the input (the
workload) and the output (the configuration to adopt) is embedded into the
transfer function, which can be implemented in several ways (i.e., smoothing
spline, Kalman filter, Fuzzy model).

– Time-series analysis. It can be used to spot recurring patterns of the work-
load over time, in order to forecast future workload so as to come to a scaling
decision early. Several techniques can be used like averaging methods, regres-
sion and neural networks [6–8,13,16–18,21,27,29].

The limitations of an approach based on static, threshold-based rules lies in
its reactive nature: it only takes action after the recognition of a situation that
requires scaling, and during the time needed for the scaling to complete either
the system provides poor performance or resources are wasted. This problem can
be addressed by using time-series analysis in order to forecast how the workload
is likely to change over time so as to enable scaling decisions in advance and
consequently avoid transient periods where the system is not properly configured.
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The drawbacks of the techniques based on reinforcement learning are the
excessive length of the training phase before reaching a point where it becomes
effective, and the difficulty to adapt to workloads that change quickly.

Using control theory can actually be a valid choice, but choosing the right
gain parameter is hard. In fact, considering a fixed gain parameter, its tuning
is hard and cannot be adjusted at runtime; on the contrary, using an adaptive
parameter, that is changed according to the workload, is likely to introduce
flipping.

The employment of queuing models to estimate performance can turn out
to be not reliable enough because the hard assumptions it requires could be not
valid in a real scenario. Nevertheless, we chose to model the replicated service
using a queue model because it doesn’t require a long training as reinforcement
learning does instead.

In addition to the works cited in the survey, also others employ a proactive
approach for auto-scaling as we do, but none combines together traffic forecasting
through artificial neural networks, and performance estimation through queuing
models. Ghanbari et al. [12] present an auto-scaling approach based on MPC
that aims both to meet SLA and save resources by framing the problem as an
MPC problem. Moore et al. [22] describe an elasticity framework composed by
two controllers operating in a coordinated manner: one works reactively on the
basis of static rules and the other uses a time-series forecaster (based on support
vector machines) and two Naive Bayes models to predict both the workload and
the target system performance.

For what concerns how the flipping phenomenon is dealt with in literature,
the survey [19] reports that such an issue is addressed in some of the threshold-
based works by setting two distinct thresholds: one for scaling out and another
for scaling in, so as to have a “tolerance band” that can absorb part of the
oscillations. The survey also advises to set so called calm periods during which
scaling decisions are suspended. Our approach is based on the concept of calm
periods, as suggested in the survey, but is more refined as the length of such
period is adapted on the basis of the amount of flipping experienced so far.

3 MYSE Architecture

Figure 1 shows how the MYSE module is expected to be integrated with the
target service. We assume that a Configuration Manager module is available to
receive external commands that update the configuration.

We modeled the service as a queuing system with s servers [11]. Without loss
of generality, we considered that replicas are homogeneous (i.e. they have the
same computational capabilities and can be used interchangeably) and a single
class of service. The basic idea is to consider the replicated service as a black box
and monitor requests patterns over time to identify the relevant characteristics of
input traffic so as to properly reconfigure the service through the Configuration
Manager. To this aim, we assume that replicated service instances export, as
performance metrics, their service times. This allows us to follow the black box
approach as in [2,33] by considering only observable parameters.
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Fig. 1. Integration of MYSE module with target replicated service.

Fig. 2. MYSE internal structure.

Monitoring requests arrival and service times over time enables to predict
their probability distribution. The queuing model is then used to compute the
expected latency in serving a single request, which can be compared to given
QoS requirements to figure out whether the compliance is actually achieved. The
same queuing model is employed to derive the minimum configuration allowing
to meet the QoS and, at the same time, to avoid wasting resources. We employed
four Artificial Neural Networks (ANNs), two ANNs to learn how request rate
and request distribution vary over time, and other two to learn how service
times and their distribution vary over time. In this way, we can conveniently
update the configuration early enough to avoid temporary performance worsen-
ing or resource under-utilization. The timeline of these predictions is provided
externally (Δ parameter).

Figure 2 details the submodules of MYSE. TheΔ-Load and Distribution Fore-
caster is in charge of learning and forecasting request rate and request distribu-
tion (it includes Δ-Load Forecaster and Δ-Distribution Forecaster submodules).
The Δ-Service Times Forecaster looks at service time patterns to extract the
distribution of service times and its mean μ. The Decider determines the suitable
configuration to meet QoS on the basis of the inputs supplied by the other two
submodules and of the Flipping Parameters (see Sect. 3.4). Single submodules
are described below.
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Fig. 3. The ANN implementing the Δ-Load Forecaster submodule.

3.1 Δ-Load Forecaster Submodule

It analyzes request rates over time and employs an ANN to provide predictions
on expected request rate λ within Δ time units. A real dataset with 8000 h
provided by Google Analytics framework on our department services is used
for training and testing the ANN. It has been divided in three parts: 70 % for
training, 15 % for validation and 15 % for test using a k-fold cross validation with
k = 10 in order to choose the right ANN parameters and address overfitting. We
normalized the input parameters with the Max-Min Normalization [0, 1] and
employed the Backpropagation Algorithm [28] for learning, with a sigmoid as
activation function. A general method to set the network parameters doesn’t
exist, so we empirically fixed learning rate and momentum (to 0.3 and 0.5,
respectively), by executing several tests aimed at trading off the recognition
error with the exposure to overfitting.

Several guidelines are available for choosing the number of hidden layers
and nodes for obtaining good generalization and low overfitting. One hidden
layer is sufficient to approximate any complex nonlinear functions to any desired
accuracy. We implemented several ANNs to find out the best one, and it turned
out to be the one with four input nodes for the date (day, day of the week, month,
hour) and one input node for the current traffic. Again, we chose the number
of hidden nodes empirically (as also suggested in [35]) and we found out that
using 11 hidden neurons gives the best performances. The output node simply
represents the predicted traffic values. Figure 3 shows the final architecture of
the ANN used in the Δ-Load forecaster.

We also carried out some simulations to check how long it takes for the ANN
to be properly trained as the number of backpropagation iterations varies. The
obtained results show that using up to 100 iterations allows to keep the training
time below 1.2 s.
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Fig. 4. Classification error in the Δ-Distribution Recognized while increasing the win-
dow size.

Fig. 5. Time needed by the Δ-Distribution Recognized to get the estimation of the
distribution type by varying the window size. This experiment has been executed on
an Intel Core 2 2.00 GHz, 2GB RAM.

3.2 Δ-Distribution Forecaster Submodule

It is composed by two parts, the Distribution Recognizer and the Distribution
Forecaster ; it analyzes requests inter-arrival times to produce predictions on
request distribution Δ time units ahead. The Distribution Recognizer estimates
the best-fitting continuous or discrete distribution by analyzing a set of samples
given in input, which represent the requests inter-arrival times. These samples
are analyzed with a fixed-length sliding window. We computed that the length
has to be at least 80 samples to get an estimation error lower than or equal
to 5 % (see Fig. 4); on the other hand, Fig. 5 gives evidence that obtaining an
estimation latency below 5 ms requires 80 samples or less.

The estimation of distribution parameters is made by using the maximum-
likelihood estimation method [23]. This result is then used to perform “goodness-
of-fit” tests, such as the chi-squared test (for discrete distributions, i.e. Poisson)
and Kolmogorov-Smirnov test (for continuous distributions, i.e. Normal), for dis-
criminating among distinct distributions [4]. In the current implementation, the
submodule is able to recognize and classify the following distributions: Poisson,
Uniform and Exponential. Obviously, in case the real distribution of the samples
doesn’t correspond to any of those recognized by the Distribution Recognizer,
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then the most similar distribution is chosen. The Distribution Forecaster is able
to predict the future distribution by using an ANN trained by taking as input
the output produced by the Distribution Recognizer, which is an encoding of the
recognized distribution. Such an encoding consists in assigning to each recog-
nizable distribution a distinct numerical identifier, so that the identifiers are
distanced enough to avoid possible conflicts. The choice to use two distinct par-
allel ANNs (this one and the one of the Δ-Load Forecaster) is made to improve
the forecasting accuracy, as suggested in [35]. The ANN is built following the
same empirical guidelines discussed in Sect. 3.1: it has as input four nodes for
the date and one node for the previous distribution id, 150 hidden neurons and
one output for the forecasted distribution. The learning rate is fixed to 0.9 and
momentum to 0.4, while the other parameters are the same derived in Sect. 3.1.

3.3 Δ-Service Times Forecaster Submodule

It takes as input the service times provided by the replicated service and produces
as output the estimation of their distribution and the mean μ of service times.
The same techniques employed for the Δ-Load and Distribution Forecaster are
used here.

3.4 Decider Submodule

The submodule computes the minimum configuration for guaranteeing QoS com-
pliance in service provisioning (i.e. the latency in the specific case). It takes as
input the latency threshold specified in the QoS, the predictions on request dis-
tribution (distribution id and λ), the predictions on the distribution of service
times (distribution id and μ) and the Flipping parameters, which are the tuning
parameters of the Flipping-reducing Scaling Heuristic, described in detail later in
this section. The Decider submodule first applies the well-known queuing model
techniques to compute the expected latency T in the current configuration (i.e.
with s replicas), given the request rate and the service times provided by the
forecasters. Then, it applies the Flipping-reducing Scaling Heuristic to decide
whether scaling out (in case QoS is violated), scaling in (in case a configuration
with less replicas can still guarantee QoS compliance) or keeping the current
configuration.

The Flipping-Reducing Scaling Heuristic. If QoS compliance can be
achieved with the current configuration (with s replicas), then the algorithm
evaluates if switching off replicas still makes it possible to satisfy QoS require-
ments. It computes the maximum number n of replicas that can be removed
without violating the QoS, and moves from a configuration with s servers to a
configuration with s−n. On the contrary, if the expected latency is higher than
QoS threshold, then the algorithm computes the minimum number n of replicas
to activate in order to comply with the QoS, and moves from a configuration
with s servers to a configuration with s+ n. Highly variable traffic and predic-
tion errors can make the configuration oscillate very often, introducing a lot of
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overhead due to frequent activation/deactivation of replicas. This phenomenon
is referred to as flipping, and we dealt with it by introducing a cost function that
prevents the algorithm from moving back in a certain configuration in case such
configuration was set too recently.

To this aim, we defined an edge-weighted directed graph G = (V,E,w(e, t))
where (i) the set of vertex V represents all the possible configurations (i.e. num-
ber of active replicas) i.e. V = {1, 2, 3, . . . smax}, (ii) there exists an edge between
any pair of vertexes (iii) for any edge es,s′ ∈ E the edge weight w(es,s′ , t) repre-
sents the cost of moving from the configuration s to the configuration s′ at the
current time t.

The cost function is defined as w(es,s′ , t) = FlippingCost · flipping%, where
FlippingCost is one of the Flipping parameters, while flipping% is computed as
the number of the flippings detected from the beginning divided by the number
of heuristic executions. The detection of a flipping is triggered when two scaling
decisions in opposite directions (i.e., a scaling out and a scaling in) are executed
within a configurable window (the FlippingWindow, another Flipping Parame-
ter). In this way, the flipping% decreases in time in case no flipping occurs.
When the algorithm moves from the configuration s to the configuration s′ at
time t, the edge es,s′ is assigned with the value w(es,s′ , t). Then, such weight
is decreased linearly in time until it comes back to 0. The transition from a
configuration s to a configuration s′ is allowed at time t only if w(es,s′ , t) = 0.
The flipping phenomenon is very likely to involve additional costs because of
the high number of machine activations. On the other hand, forcing to keep a
certain configuration for a period of time regardless of the load can raise tem-
porary over-provisioning and/or under-provisioning, and both lead to increased
costs. The FlippingCost parameter is indeed aimed at tuning such a tradeoff,
on the basis of both the real costs of replica activation and QoS violation, and
the expected variability of the input traffic.

We evaluated the effectiveness in avoiding the flipping phenomenon by car-
rying out a simulation that compares the behavior of the heuristic that uses
the cost function with a heuristic that doesn’t put any cost on the edges (i.e.,
FlippingCost = 0). We set FlippingCost to 15000 and FlippingWindow to
100 s. The results shown in Fig. 6 give evidence that our heuristic is successful,
indeed it manages to keep the configuration fixed during the intervals when the
other oscillates instead. It is to note that at the beginning the algorithm actu-
ally introduces flipping, but this is due to the fact the no flipping was occurred
before, so flipping% is zero, yet.

4 Simulations

In this section we describe a set of simulations aimed at assessing the effectiveness
of the proposed architecture. In particular, we first evaluated the ability of the
Δ-Load Forecaster and Δ-Distribution Forecaster to adapt to different types of
loads and then we evaluated globally the goodness of the approach by evaluating
the evolution of the configurations in time. In all these simulations, Δ is fixed
to one hour.
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Fig. 6. A comparison between the heuristic employing a cost function and another one
that doesn’t use any cost function. Over time, it is shown that putting costs on the
edges allows to limit the flipping phenomenon.

Evaluation of the Δ-Load Forecaster. In this experiments, we used a real
dataset including one year of statistics collected through the Google Analyt-
ics framework on our Department services. In order to show the adaptation to
changes in the load pattern, this dataset has been integrated with a synthetic one.
In particular, starting from the real Google Analytics dataset, we appended five
days of the same dataset that has been scaled (amplified), and a sine function.
We didn’t simulate the Service Times Estimator because of the unavailability
of traces describing service times over time, but we considered it as fixed and
known to the Decider Module. Anyway, we believe that the effectiveness of the
results obtained for the Δ-Load and Distribution Forecaster can also hold for
this module, since the employed techniques are the same. In order to make the
ANN really adaptive to traffic changes, online learning is employed as follows.
We store the training set in a fixed-length sliding window containing the last
100 inputs, and at each new input the ANN is trained using all the inputs in
the window (by executing 100 iterations of the backpropagation algorithm, as
explained in Sect. 3.1). Figure 7 shows the comparison between the real number
of requests over time and the predictions. As we can see, the predictions follow
the real pattern and converge quite quickly after a request pattern change. The
weekly Root Mean Square Error (RMSE) of predictions is 4%, and the Mean
Average Error (MAE) is 3 %.

Evaluation of the Δ-Distribution Forecaster. We evaluated the capability
of this module to recognize a distribution by using a synthetic dataset where the
distribution of inter-arrival times changes very often over time, from Uniform
to Poisson and viceversa. We measured the number of iterations required to
correctly recognize distribution changes, where one iteration corresponds to the
analysis of the samples of a single window, whose length was fixed to 80 samples
(see Sect. 3.2). The results showed that 62 iterations are required on average to
detect the transition from Uniform to Poisson, and 30 are needed instead for
the opposite transition. Since the window slides at each sample, these results
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Fig. 7. Comparison between dataset traffic and forecaster predictions. The instants in
time are indicated where traffic pattern changes: from normal to triplicated, to normal
again and finally to a sine function with amplitude 100 is used.

Fig. 8. Comparison between real and predicted request arrival distributions. Three
distributions are recognizable: Uniform (id = 0), Exponential (id = 3) and Poisson (id
= 11). The average error in 72 h is 3%

indicate that distribution changes can be recognized before the window gets
totally renewed.

We also evaluated the predictive accuracy of the ANN, by comparing real
and forecasted request distributions over time. Three distinct distributions are
recognized, each mapped to distinct ids chosen so that classification errors get
minimized. We modified the dataset used for the evaluation of the Δ-Load Fore-
caster in such a way that the distribution of inter-arrival times changes very often
over time among the recognizable distributions. Figure 8 shows that predictions
are notably accurate (3% error over 3 days).
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Fig. 9. Comparison between the number of replicas requested by MYSE and NT-
MYSE, together with the indication of the optimum, that is the minimum number of
replicas required to meet QoS requirements.

Evaluation of the Overall Architecture. This evaluation is aimed to high-
light the relevant added value of employing traffic predictions for correctly issu-
ing resource provisioning. The dataset used here is the Google Analytics one.
Figure 9 shows how the number of requested replicas varies over time on a hour-
basis during a whole day. These results have been obtained by simulating three
distinct scenarios: (i) the optimal configuration, that is the minimum number
of replicas required to meet QoS requirements, (ii) the configuration produced
without the contributions of Δ-Load and Distribution Forecaster, referred to
as Non-Trained MYSE (NT-MYSE) and (iii) the configuration requested by the
complete MYSE module. In the simulation of NT-MYSE, the Decider is fed with
traffic details that are produced in real-time by the Distribution Recognizer on
the basis of the current traffic only.

Until 8:00 the traffic is stable and both the approaches behave correctly, then
traffic begins changing and the use of predictions shows its effectiveness by con-
tributing to generate configurations that are nearer to the optimum compared
to NT-MYSE approach. Another important advantage of employing predictions
is rendering the system more robust to unexpected peaks. This can be seen by
observing the effect of the isolated peak occurring at 16:00 (a peak in the num-
ber of the optimal number of replicas corresponds to a peak in traffic load):
NT-MYSE is biased by such occurrence and hereafter keeps to over-provision,
while MYSE correctly recognizes it as an outlier. We quantified numerically the
error of each approach by averaging over the entire day the number of replicas
above (over-provisioning) and below (QoS violation) the optimum. NT-MYSE
provided on average 0.29 replicas in excess and 0.33 replicas less than the min-
imum required, for a total of 0.62. MYSE allows on average to over-provision
0.13 replicas (55 % more accurate) and under-provision 0.21 replicas (36 % more
accurate), that is a total error of 0.34 replicas (45 % more accurate).
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5 Conclusions and Future Directions

Avoiding both performance worsening and over-provisioning for replicated ser-
vices is the goal of the architecture we propose in this work and, according to
the results obtained by the simulations we carried out, we believe that forecasting
requests and service times, and carefully modeling how performance gets affected,
are the proper building blocks for achieving that objective. We claim that this
approach is novel within the context of auto-scaling works. An additional original
contribution concerns the Flipping-reducing Heuristic, which allows to address
the problems due to quick oscillations in the load. Along this line, we are carrying
on this work by exploring distinct directions.

At the time of this writing we are deploying the MYSE architecture on Ama-
zon Web Services in order to concretely assess strengths and weaknesses of the
model. Once a target service for the prototype implementation is chosen, we will
be able to provide both a validation of the MYSE module and the specification
of the analytical model for the actual service in order to compare the results. The
deployment of MYSE in a real cloud infrastructure will allow to estimate the
delays due to replicas activation/deactivation, which will contribute to the accu-
racy of the model itself. Another important aspect we want to investigate is the
economics behind this elastic model. What is the best model to price the elastic
replication system? Who are the customers for this kind of service? The answers
to these questions depend on the definition of a precise cost model that can
help to identify the market sectors where such replication mechanism could be
beneficial.

Finally, we are investigating how to make the MYSE architecture completely
non-intrusive, i.e., so that the MYSE module does not need any information
provided by the replicated service, such as the service times. This would enable
and ease its employment in a wider range of applications.
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Abstract. This paper presents a multi-layer monitoring and analysis
approach for Cloud computing environments based on the methodol-
ogy of Complex Event Processing (CEP). Instead of having to manually
specify continuous queries on monitored event streams, CEP queries are
derived from analyzing the correlations between monitored metrics across
multiple Cloud layers. The results of our correlation analysis allow us to
reduce the number of monitored parameters and enable us to perform a
root cause analysis to identify the causes of performance-related prob-
lems. The derived analysis rules are implemented as queries in a CEP
engine. The results of several experiments demonstrate the benefits of the
proposed approach in terms of precision and recall in comparison with
threshold-based methods. They also show the accuracy of our approach
in identifying the causes of performance-related problems.

1 Introduction

In a Cloud computing environment with many resources, many applications
and many concurrent users, performance degradations are quite likely to occur
and rather the norm than the exception. Thus, it is necessary to monitor the
performance of Cloud computing environments to detect performance problems
and analyze their causes.

Today’s Cloud computing environments are typically based on a layered
architecture consisting of infrastructure, platform and software layers. Most of
the existing Cloud monitoring and analysis approaches have been designed to
separately work for only one of these layers [1–6] and thus do not consider the
interactions between these layers.

However, monitoring events and analyzing their correlations across layers is
very promising to improve the quality of the analysis, especially in terms of
identifying the causes of performance degradations. On the other hand, a multi-
layer monitoring and analysis approach generates a huge volume of data. Thus,
an analysis could be quite slow and could consume a lot of storage space.
c© Springer International Publishing Switzerland 2014
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This paper presents a novel multi-layer monitoring and analysis approach
for Cloud computing environments. Our approach offers accurate diagnosis and
does not require any storage space for recording monitored events. It is based on
Complex Event Processing (CEP) [7], an approach to realize publish-subscribe
systems. It can be used to monitor, process and analyze elementary events to
deduce complex events describing the state of the monitored system. CEP per-
forms continuously running queries on streams of monitored events. The queries
usually have to be specified manually, which typically is a quite challenging task.
The novelty of our approach is that the CEP queries are derived from a com-
prehensive analysis of the relationships between monitored metrics across Cloud
layers. The correlations between the monitored metrics on different Cloud layers
are obtained via a set of experiments and well known statistical methods. The
results of our correlation study allow us to reduce the number of monitored para-
meters. Furthermore, they are used to perform a Root Cause Analysis (RCA)
to identify the causes of performance-related problems [8]. The derived analysis
rules are implemented as queries in the CEP engine used in our approach.

To evaluate our proposal, several experiments have been conducted. The first
group of experiments investigates the quality of our analysis approach in terms
of precision and recall. The results indicate that the proposed approach offers
better precision and recall than threshold-based methods. The second set of
experiments illustrates the accuracy of our approach in identifying failed com-
ponents and the causes of performance degradations.

The paper is organized as follows. Section 2 discusses related work. In Sect. 3,
the multi-layer monitoring and analysis approach is presented. Our experimental
results are described in Sect. 4. Section 5 concludes the paper and outlines areas
for future research.

2 Related Work

Monalytics [1] is a large scale monitoring and analysis approach for Cloud
services. It focuses on monitoring a Cloud infrastructure (Infrastructure-as-a-
Service (IaaS)) and virtualized systems. The authors define different deploy-
ment topologies between monitoring brokers and analysis agents: centralized,
distributed and hierarchical. The topologies are represented as graphs and can
be managed at runtime. Monalytics monitors CPU and memory utilization. It
is integrated into the Xen virtualization infrastructure. PCMONS [2] is a mon-
itoring architecture for an IaaS Cloud. It makes use of open source monitoring
tools such as Nagios. The challenge of this work is to deal with the majority of
Cloud technologies. An integration layer that makes PCMONS easy to install in
Cloud platforms such as OpenNebula and Eucalyptus is presented. C-Meter [3]
is a performance analysis framework for Cloud computing. It is an extension of
Grenchmark: a Grid tool, allowing performance tests in Grid computing envi-
ronments. C-Meter manages virtual resources allocation, according to the state
of the virtual machines. Contrary to our approach, Monalytics [1], PCMONS
[2] and C-Meter [3] are limited to the IaaS layer only, and do not take into
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account monitoring data from higher layers (i.e., Platform-as-a-Service (PaaS)
and Software-as-a-Service (SaaS) layers). HOLMES [4] is a monitoring architec-
ture for data centers, based on CEP. The defined CEP queries get the observed
data of the monitoring sensors as inputs, process them and generate alarms when
an anomaly is detected. The used monitoring sensors act at the infrastructure
layer. This means that HOLMES is not able to detect anomalies related to higher
layers. Moreover, HOLMES uses straightforward analysis rules that analyze only
a single category of parameters. The proposed analysis rules are mostly based on
pre-defined thresholds. Thus, this analysis is not able to accurately identify the
source of an anomaly, due to the lack of relevant analyzed metrics. In contrast,
our approach allows us to analyze multiple Cloud layers while exploiting the cor-
relations between metrics across Cloud layers, without using pre-defined thresh-
olds. Cohen et al. [9] present a three-layer analysis approach for web services.
It is based on the use of Tree-Augmented Bayesian Networks (TAN). The used
TANs model the correlations between the Service Level Objective (SLO) and
the resource usage. The proposal can be used (1) to detect SLO violations via
simple comparisons with pre-defined thresholds; and (2) to identify the cause of
a violation via the use of correlations between the different monitored metrics.
The TANs (modeling correlations) are deduced from historical data that were
previously collected and stored in a separate database. This means that a train-
ing period is necessary for the execution of this approach. During this training
period, the system is unable to identify the cause of a violation. Moreover, it is
hard to apply this approach in the context of Cloud computing due to the large
volume of data that has to be stored. EbAT [10] is an online detection method
of Cloud computing anomalies. It is based on the calculation of a multi-level
entropy. It analyzes distributions of metrics instead of individual metrics. To
ensure accuracy, EbAT needs a storage space to keep historical data. In contrast
to [10] and [9], our approach does not require a database for storing monitored
data, thanks to the use of CEP. Sarkar et al. [5] present a self-healing architec-
ture for a PaaS Cloud. Its analysis module is based on two main components:
an Event Aggregation and Correlation System (EACS) and an Automated Inci-
dent Management System (AIMS). The EACS is in charge of receiving events
from the monitoring module. It stores events received within a window of time.
Then, it performs aggregation, correlation and suppression of events. Subse-
quently, a filtering activity is performed. It decides about events that should
be sent to the AIMS. The latter detects performance incidents. Correlations,
in this work, are determined by the aggregation operations. These just decide
about the relevant events to observe and do not aim to extract relationships
between collected metrics. Mi et al. [6] have proposed a performance analysis
approach, called Magnifier. It allows to detect Cloud failures, while identifying
their prime causes. Magnifier is based on a hierarchical analysis. Therefore, it is
able to detect performance degradations layer by layer, separately. The detection
procedure is based on a basic threshold comparison. In contrast to [5] and [6],
our approach exploits the relationships between the Cloud metrics across Cloud
layers and is not based on thresholds.
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Fig. 1. The architecture of CEP4CMA

3 Multi-layer Monitoring and Analysis in Clouds

In this section, our multi-layer monitoring and analysis approach for Cloud envi-
ronments based on CEP is presented. We call it CEP4CMA for “Complex Event
Processing for Cloud Monitoring and Analysis”.

3.1 The Architecture

Figure 1 shows the architecture of CEP4CMA. It consists of two main compo-
nents: a multi-layer monitoring agent and a CEP-based analysis agent.

The multi-layer monitoring agent relies on four monitoring components. The
first component, PI Monitor, operates on the physical infrastructure layer and
collects performance-related parameters on this layer. The second component,
VI Monitor, operates on the virtualization layer and measures the virtual
infrastructure parameters. The third component, P Monitor, acts on the plat-
form layer and collects platform metrics. The fourth component, S Monitor,
gathers metrics pertinent to the software layer.

PI Monitor, VI Monitor, P Monitor and S Monitor send collected data to
the Elementary Events Collector (EVC). The EVC transfers all monitored
data to the CEP-based analysis agent of CEP4CMA. The analysis agent takes
as inputs the elementary events that correspond to the observed parameters
of the monitoring agent. These events are then processed and analyzed by the
CEP engine, via the use of our analysis rules. The conducted analysis is used
to detect performance degradations. It generates diagnosis reports and triggers
alarms when a performance degradation is detected. The monitoring and the
analysis agents are described in detail below.

3.2 The Monitoring Agent

Our monitoring agent has been designed to leverage the results of existing mon-
itoring tools that typically operate on a single Cloud layer (e.g., [2,11–13]).
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Thus, the four components of our monitoring agent described above make use
of existing sensors, as discussed below.

PI Monitor monitors the physical infrastructure layer and gathers metrics
related to the consumption of hardware resources, such as the CPU usage of the
physical cores, the waiting and blocked times spent by virtual machines to access
the physical disk, the memory consumption etc. It is installed on the privileged
domain (Dom0) with direct access to the XEN hypervisor, the virtualization
technology used in our work. PI Monitor makes use of a set of existing sensors:
Xenmon [14], Ganglia1 [11], IoStat2 and MpStat3. Xenmon collects information
about the CPU, such as the blocked times, the waiting times and the number of
executions (i.e. number of times a domain was scheduled to run [14]) per second.
Ganglia mainly gathers information about the state of resources, such as disk
and memory consumption. Moreover, it measures the network link quality. IoStat
measures disk transactions, such as the I/O requests to the physical disk. It is
running in the privileged domain (Dom0) that has direct access to the physical
disk. Finally, MpStat gathers the software and hardware interrupts of Dom0.

VI Monitor operates on the virtualization layer and monitors virtual
machines. It is installed on each virtual machine. VI Monitor makes use of Gan-
glia, MpStat and IoStat. Ganglia collects CPU, RAM, disk and network metrics
of the virtual machines, such as the used swap space and the throughput of
the network (BytesIn and BytesOut). MpStat measures the CPU steal of virtual
machines, reflecting the time spent by the VM waiting for the hypervisor’s tasks.
IoStat gathers information about the number of read and written pages of the
considered virtual machine.

P Monitor operates on the platform layer and gathers corresponding data.
For this purpose, we have developed the JVMSensor tool dealing with Java Vir-
tual Machine (JVM) monitoring. JVMSensor measures JVM platform metrics,
such as the CPU time of the running threads, the heap memory and the number
of loaded classes. JVMSensor is based on the Jconsole tool4.

S Monitor operates on the software layer and collects performance-related
parameters of Cloud services at the SaaS layer. It makes use of AOP4CSM, a
monitoring tool based on aspect-oriented programming developed in our previous
work [12]. S Monitor measures the execution, communication and response times
of SaaS Cloud services.

PI Monitor, VI Monitor, P Monitor and S Monitor make use of basic TCP/IP
sockets to send collected data to the Elementary Event Collector. It should be
pointed out that there are typically two methods to monitor VMs: (1) from inside
the VMs via installing a monitoring tool; (2) from outside via introspection [15],
using, e.g., LibVMI5. We use the first option in this paper. This makes VI Monitor
suitable to all kinds of VMs, and independent of the hypervisor.
1 http://www.ganglia.sourceforge.net
2 http://www.linux.die.net/man/1/iostat
3 http://www.linux.die.net/man/1/mpstat
4 http://www.openjdk.java.net/tools/svc/jconsole/
5 https://code.google.com/p/vmitools/

http://www.ganglia.sourceforge.net
http://www.linux.die.net/man/1/iostat
http://www.linux.die.net/man/1/mpstat
http://www.openjdk.java.net/tools/svc/jconsole/
https://code.google.com/p/vmitools/
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3.3 The Analysis Agent

An important component of our architecture is the analysis agent. It is used to
detect performance degradations, while identifying their causes and the corre-
sponding layers (physical infrastructure, virtual infrastructure, platform and soft-
ware). Our analysis agent is based on CEP and makes use of a set of cross-layer
analysis rules (i.e., queries) implemented in a CEP engine. We use Esper6, an open
source CEP engine. It is written in JAVA and implements rules as EPL (Event
Processing Language) queries. The used analysis rules are defined on the basis of
relationships between the monitored parameters across Cloud layers.

In particular, extracting relationships (i.e., correlations) between metrics has
two main benefits. First, it allows us to reduce the number of monitored parame-
ters, since analyzing two “highly” correlated metrics gives the same result as ana-
lyzing one of these two metrics. Second, the relationships are very useful to define
the analysis rules. Consequently, we can rapidly detect a performance degrada-
tion (thanks to the reduced number of observed metrics) and accurately identify
its layer and its cause (thanks to the intelligent analysis rules).

Relationships Between Cloud Layers: To identify the relationships between
Cloud layers, we followed two steps. First, we theoretically examined the interac-
tions between metrics across Cloud layers. Second, we conducted several experi-
ments in order to verify the theoretically obtained relationships. The conducted
experiments are based on 2 steps: (1) monitor the different Cloud parameters and
(2) compute the correlation between them, via different statistical indicators such
as the correlation and the multiple correlation coefficients. Our experiments have
been performed on several samples. The sample size depends on the scenario. It
varies between 20 and 100 data points7. They are partitioned into three groups.
The first group of experiments consists of measuring two metrics in normal con-
ditions (without generating any load) and calculating the correlation coefficient.
According to its value, we deduce the relationship between the two metrics [16].
The second group of experiments deals with the case when there are more than
two related metrics. The related metrics are monitored in normal conditions and
the multiple correlation coefficient between them is computed [17]. We use the
G*Power8 [18] tool to compute the multiple correlation coefficient. The last group
of experiments consists in generating load with respect to the first parameter and
observing its effects on the second one. If both increase, decrease or inversely vary
together, this means that they are related.

Since in this step we deal with correlation experiments, we use a small testbed
to isolate the studied metrics and easily identify their relationships. The testbed
for the correlation experiments consists of one physical node with 1 GB of RAM
and 100 GB of disk, running under the Debian operating system. Xen 4.1 was
chosen as the virtualization technology to administer virtual machines through
6 http://esper.codehaus.org/
7 A data point represents one measurement of the studied metric.
8 http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

http://esper.codehaus.org/
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/
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Fig. 2. Testbed for correlation experiments

its hypervisor and its privileged domain Dom0 [19]. Moreover, it manages access
to the hardware resources, such as the disk and the memory, via Dom0 and the
hypervisor. The testbed for the correlation experiments has a Cloud architecture
with four layers. The hardware resources, Xen, its hypervisor and Dom0 constitute
the physical infrastructure layer. The virtual infrastructure layer is composed of
the DomU virtual machines. The used platform layer consists of the Java Virtual
Machine (JVM) with Apache Tomcat as a web server. Under Tomcat, the Axis
engine is deployed to manage web services (WS). The Axis engine and the web
services constitute the software layer (see Fig. 2).

To extract relationships between the monitored metrics in a theoretical study,
we classified the monitored metrics according to two criteria: the layer of a metric
(e.g., the infrastructure layer) and the category of a metric (e.g., the CPU cate-
gory). Thus, we have four groups of relationships:

– Intra-Category, Intra-LayerRelationships describe relationships between
metrics belonging to the same layer and the same category. The majority of
these relationships are used to reduce the number of parameters. For exam-
ple, we experimentally confirmed that the CPU time of a running thread is
related to its waited count by calculating the correlation coefficient (0.9) of the
two parameters for 50 data points. Such a relationship allows us to reduce the
number of monitored parameters. It is sufficient to monitor only one of the two
metrics, since they describe the same information.

– Intra-Category, Inter-LayerRelationships describe relationships between
metrics belonging to the same category. They are used to define the analysis
rules. For example, an experiment based on 30 data points has shown that the
CPU time of a Java thread is related to the CPU user time of its virtual machine,
since the corresponding correlation coefficient is equal to 0.5. This observation
allows us to deduce the cause of a VM CPU performance-related problem.

– Inter-Category, Intra-LayerRelationships describe relationships between
metrics belonging to the same Cloud layer. They are useful to reduce the num-
ber of observed metrics if this reduction does not affect the quality of the analysis.
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Otherwise, these relationships are used to define the analysis rules. For
example, an experiment based on 65 data points has shown that the number
of running processes is related to the machine load, since the correlation coef-
ficient is equal to 0.9. Such a relationship is used to define the analysis rules.

– Inter-Category, Inter-LayerRelationships describe relationships between
metrics belonging to different layers and different categories, such as the rela-
tionship between the I/O requests to the physical disk and the number of Bytes
In and the number of Bytes Out. This relationship is illustrated by calculating
the multiple correlation coefficient (0.8) of the I/O disk requests and Bytes In
and Bytes Out for 30 data points. The majority of such relationships are used
in our analysis rules.

Next, we present the proposed analysis rules, the associated Fishbone dia-
grams and their implementation as continuous queries in the CEP engine.

The Analysis Rules: The definition of analysis rules is based on the extracted
relationships between Cloud metrics, while adopting a Root Cause Analysis
(RCA) method [8]. RCA is an analytic approach that helps analysts to diagnose
crisis situations, while identifying the cause of failures [8]. It is the process that
allows to discover what happened, why it happened and how to prevent / solve
it [8]. The extracted correlations can be used by RCA methods, since they are
augmented by “extra” knowledge. The fishbone (also called cause-effect) diagram
is a visual method that follows the RCA approach to detect failures and iden-
tify their causes. In this paper, we use fishbone diagrams to perform Cloud per-
formance analysis. Thus, we start our analysis by stating the trivial causes of a
performance degradation. Starting the analysis by studying such evident causes
is necessary, but not sufficient to give accurate information about the nature of a
degradation. Figure 3 presents a high level view of our fishbone diagram.

As shown in Fig. 3, the first step of the analysis only states trivial causes of
a performance-related problem (degradation of the communication (Tcom) and
execution (Texec) times), such as network congestion, high resource (Disk, CPU,
memory) consumption and high load. Stopping the analysis in this step could lead,
in some cases, to wrong results, due to the interaction between Cloud
metrics. This is the reason why it is necessary to continue the analysis of these
evident causes. For instance, this first analysis (see Fig. 3) shows that a communi-
cation time degradation is always related to a network congestion (low through-
put). However, expanding this branch on the basis of the extracted relationships
demonstrates that such a degradation could also be related to a huge number of
requests to the physical disk (see Fig. 4). Actually, our correlation study has indi-
cated that the number of requests to the physical disk (I/O Req) is related to the
network characteristics (Bytes In/Out)9.

Each elementarybranchof the cause-effect diagram is ananalysis rule. It is com-
posed of a set of symptoms and a diagnosis report. An analysis rule is analytically
9 A complete version of our fishbone diagram can be found at http://www.redcad.org/

members/mdhaffar/cep4cma/Fishbone.html.

http://www.redcad.org/members/mdhaffar/cep4cma/Fishbone.html
http://www.redcad.org/members/mdhaffar/cep4cma/Fishbone.html
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Fig. 3. Cause-effect diagram: a high level view

Fig. 4. Cause-effect diagram: analysis of a communication time degradation

represented by R(S1, S2, .. , S3 // D), where R is the rule; S1, S2, .. , S3 are the
observed symptoms, and D is the deduced diagnosis report.

For instance, the first part of the cause-effect diagram, showing the communi-
cation time analysis (see Fig. 4) is translated into two analysis rules R1 (see For-
mula (1)) and R2 (see Formula (2)).

R1(Tcom ↑, P − BytesIn ↓ OrP − BytesOut ↓
//External Failure,

Physical layer,

over − used links)

(1)

R2(Tcom ↑, V − BytesIn ↓ OrV − BytesOut ↓,

IOReqDisk ↑ //

Internal Failure,

Physical layer,

Many V Ms accessing the disk)

(2)

These rules are implemented within the CEP engine (Esper). Listing 1.1 presents
the implementation of the rule R1, called query in the Esper language.
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Listing 1.1. The implementation of the rule R1

select * from JoinTcomB

match_recognize (partition by IP

measures A.IP as id,

A.Tcom as tcom_v1 , B.Tcom as tcom_v2 ,

C.Tcom as tcom_v3 , D.Tcom as tcom_v4 ,

A.PBytesIn as bi_v1 , B.PBytesIn as bi_v2 ,

C.PBytesIn as bi_v3 , D.PBytesIn as bi_v4 ,

A.PBytesOut as bo1 , B.PBytesOut as bo2 ,

C.PBytesOut as bo3 , D.PBytesOut as bo4 ,

A.TimeValue as TVBegin ,

D.TimeValue as TVEnd

pattern (A B C D)

define

B as B.Tcom > A.Tcom and ((B.PBytesOut < A.PBytesOut) or (B.

PBytesIn < A.PBytesIn)),

C as C.Tcom > B.Tcom and ((C.PBytesOut < B.PBytesOut) or (C.

PBytesIn < B.PBytesIn)),

D as D.Tcom > C.Tcom and ((D.PBytesOut < C.PBytesOut) or (D.

PBytesIn < C.PBytesIn)))

Translating the branches of the fishbone diagram into CEP queries allows us to
ensure an easy and scalable implementation of our approach, in contrast to tra-
ditional RCA-based approaches. The implementation of the analysis rules is based
on the use of patterns that are used to detect the different symptoms. They
describe, in the majority of our rules, the variation of the Cloud parameters and
trigger alarms when this variation lasts for N successive observations. The mini-
mum value of N is calculated based on the definition of a performance degradation.
In our case, a performance degradation is a continuous decrease of the performance
parameters. In other words, we consider that the Cloud suffers from a performance
degradation, if it will still suffer from this degradation in the next instant of time.
This means that we need to observe symptoms at least two times. Thus, the min-
imum value of N is equal to 2. However, N depends also on the Cloud provider
requirements. Actually, if the provider requires a fast detection and does not care
about false alarms, then 2 is the best value of N. If the provider does not care about
the detection time and cares about the number of false alarms, then N should be
strictly greater than 2. To find the optimal N in our case, we measured the number
of false alarms while varying N from 2 to 5. Our experiments have illustrated that
3 is the best value of N, since it eliminates false alarms.

4 Experimental Results

This section describes our Cloud testbed. Furthermore, it presents the conducted
experiments to evaluate our approach.
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Fig. 5. The cloud environment testbed

4.1 Testbed

Figure 5 depicts the layered architecture of the private Cloud environment used
in our experiments. It consists of 9 physical machines: a Cloud controller and 8
compute nodes. They host our virtual machines (instances).

The Ubuntu Server 12.04 TLS is used as the operating system for the physi-
cal machines. Each physical machine has a 64-bit CPU, with 250 GB of disk. The
Cloud controller and six compute nodes have 16 GB of RAM. The seventh com-
pute node has 12 GB of RAM, and the last one has 8 GB of RAM. The Xen Server
is the used virtualization technology. The open source Cloud software OpenStack10

(Folsom release) has been deployed in order to upload Cloud images and launch
instances. Based on the Ubuntu Cloud image, we build our image. It includes our
monitoring agent. This image has been uploaded into our OpenStack Cloud plat-
form. For testing purposes and to show the feasibility of the proposed analysis
rules, we launched, via OpenStack horizon, 80 VM instances. Each instance has
1 virtual CPU and 1 GB of RAM, with 10 GB of disk. A Java Virtual Machine
(JVM) and an Apache Tomcat web server are running on all instances. Moreover,
the Axis engine is deployed on every Tomcat, in order to manage web services.
The deployed web services compute the factorial of a given number. Our test-
bed environment has a typical Cloud architecture, since it makes use of Open-
Stack and is composed of the four principal Cloud layers (physical infrastructure,
virtual infrastructure, platform and software layers). The physical infrastructure
layer is composed of the physical resources, Xen server and OpenStack. The 80 VM
instances constitute the virtual infrastructure layer. The JVM and the Tomcat
web server are the main components of the platform layer. The software layer is
composed of Axis and its related web services. Our analysis agent is installed on a
dedicated machine, called Cloud Analyzer. It is running under an Ubuntu Server
12.04 TLS. The Cloud Analyzer machine has a 64-bit CPU, with 4 GB of RAM
and 140 GB of disk. It receives monitoring data and processes analysis rules to
detect performance degradations.
10 http://www.openstack.org/

http://www.openstack.org/
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4.2 Experiments

Precision/Recall: To evaluate CEP4CMA, we compare it to baseline analysis
methods in terms of precision and recall. These two metrics are often used to inves-
tigate the quality of failure prediction approaches [20]. The precision expresses
the probability of CEP4CMA to generate correct alarms. It is determined by cal-
culating the ratio of the number of true alarms to the number of all alarms (see
Formula 3):

Precision =
TP

TP + FP
[20] (3)

where TP is the number of True Positive (correct alarms); and FP is the number
of False Positive (false alarms).

The recall is defined as the ratio of correct alarms to the number of true failures
(see Formula 4). It reflects the probability of detecting true failures:

Recall =
TP

TP + FN
[20] (4)

where FN is the number of False Negative (missing alarms).
We have chosen threshold-based detection approaches as our baseline meth-

ods. They allow us to detect a performance-related problem by comparing a Cloud
parameter value to a fixed threshold. We use an’oracle’-based approach [10] to
set a threshold’s value. It consists of (1) monitoring the corresponding parame-
ters during a training period, and (2) calculating the lowest and highest 1 % of
the extracted values, while considering them as outliers. The acceptable range is
then taken between the lowest and the highest 1 % of the values [10]. We compared
CEP4CMA to 3 different threshold-based approaches. The first one is an I/OReq-
based method. It checks whether the I/OReq value is in the acceptable range, to
decide about the Cloud state. The second one, similar to the first one, is based on
the CPU usage metric. The third approach combines the two previous methods.
It analyzes the Cloud state according to the values of I/OReq and CPU usage.

First, we injected 30 I/O failures, via dbench, and compared CEP4CMA to the
I/OReq-based method. The results of this first experiment show that CEP4CMA
is better than the I/OReq-based method, in terms of precision and recall. Actually,
CEP4CMA achieves a precision of 89 %, while the I/OReq-based approach’s preci-
sion is 57 %. Moreover, the recall of CEP4CMA is 83 %, while the I/OReq-based
approach achieves a recall of 53 %. Thus, CEP4CMA outperforms the I/OReq-
based method by a precision and recall improvement of 56.1 % and 56.6 %,
respectively.

Second, we injected 30 CPU failures, via sysbench11, and evaluated the
precision and the recall of CEP4CMA and the CPU-based approach. Our exper-
imental results show that CEP4CMA achieves better precision (86 %) than the
CPU-based approach (72 %). Thus, the improvement of precision is around 18.5 %.

11 Sysbench is a multi-threaded benchmark tool. It allows us to evaluate OS parameters
by injecting different kinds of load: http://sysbench.sourceforge.net/docs/.

http://sysbench.sourceforge.net/docs/
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Furthermore, the recall of CEP4CMA is about 83 %. It outperforms the CPU-
based method by an improvement of 56 %. In fact, the recall of the CPU-based
method is 53 %.

Third, we compared CEP4CMA to the combined approach (based on I/OReq
and CPU thresholds). For this purpose, we injected 60 failures: 50 % of them are
I/O failures (i.e. injected via dbench); and the remaining 50 % are CPU failures
(i.e., injected via sysbench). In this scenario, we noticed that CEP4CMA achieves
a precision of 87 % and a recall of 83 %. The precision of the combined approach
is about 34 %, while its recall is around 53 %. This means that CEP4CMA is also
better than the combined approach: It improves the precision by 157 % and out-
performs the recall by an improvement of 56 %. Thus, the recall improvement is
similar for the three conducted experiments. This implies that the three threshold-
based approaches have almost the same capabilities in detecting true failures.
Using two parameters, in the case of the combined approach, does not make a
big difference. Actually, CEP4CMA still achieves the same improvements, when
compared to the combined approach. On the other hand, we observed that the
combined approach does not reach better results in terms of precision. Indeed,
using two threshold comparisons increases the number of false alarms. This is why
CEP4CMA outperforms the combined approach by an improvement of 157 %, in
terms of precision. An experimental comparison of CEP4CMA with other related
approaches will be performed in future work.

Accuracy of the Diagnosis: To demonstrate the accuracy of the diagnosis
reports generated by CEP4CMA, we injected 4 different failures and observed
the returned outputs. First, we generated I/O load on the physical machine “com-
pute05”, via the benchmark dbench. In this scenario, we observed that CEP4CMA
raised two alarms: the first one indicates that a degradation of the execution time
has happened on one of the VMs, belonging to “compute05”, due to a high I/O
load. The second alarm identified a degradation of the communication time on
another VM, also hosted by “compute05”. It indicated again that the failure was
caused by a high I/O load. This demonstrates that CEP4CMA was able to cor-
rectly identify the failed VMs and the failure’s cause. Second, we injected a Java
memory failure. To this end, we implemented a benchmark that consumes a lot of
memory. When we started running this benchmark on one of our VMs, CEP4CMA
raised an alarm while accurately identifying the failed VM and the cause of the
failure. It indicated that the failure was caused by an increase of the Java heap
memory. Third, we used the Hping312 benchmark to saturate the network links.
Hping3 is a networking tool that allows us to send TCP/IP packets and could gen-
erate a Denial-of-Service (DoS) attack when used with the flood option. In this sce-
nario, CEP4CMA accurately identified the failed physical node. It was also able
to deduce the cause of the failure: a network failure. Fourth, we injected a CPU
failure via sysbench. CEP4CMA raised an alarm, when sysbench was running on
one of the VMs. It correctly identified the failed VM and the failure’s cause (high
CPU load).
12 http://linux.die.net/man/8/hping3

http://linux.die.net/man/8/hping3
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5 Conclusion

This paper presented a multi-layer monitoring and analysis approach for Cloud
computing environments, called CEP4CMA. It is based on using a CEP engine
to continuously run queries on streams of monitored events across Cloud layers.
In contrast to other approaches where the queries must be written manually, we
derive them from the results of a theoretical and experimental analysis of the rela-
tionships of monitored metrics on different Cloud layers and follow a root cause
analysis approach. The conducted experiments have demonstrated the benefits of
CEP4CMA in terms of precision and recall, in comparison with threshold-based
methods. Furthermore, our experimental results have shown that the proposed
analysis rules are suitable for the diagnosis of Cloud environments, in the sense
that they generate an accurate diagnosis report.

There are several directions for future work. First, it is interesting to design a
distributed analysis architecture based on cooperating CEP engines (possibly in
a hierarchical fashion) to efficiently process different analysis rules. Second, addi-
tional experiments, based on known benchmarks, will be conducted in large-scale
Clouds. Finally, the extracted relationships of the monitored events can be used
to perform other kinds of analysis, such as security analysis. Detected anomalies
could then be related to security intrusions.

Acknowledgments. This work is partly supported by the German Ministry of Edu-
cation and Research (BMBF) and the German Academic Exchange Service (DAAD).
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Abstract. We identify 13 problems whose solutions can significantly
enhance our ability to design and analyze firewalls and other packet
classifiers. These problems include the firewall equivalence problem, the
firewall redundancy problem, the firewall verification problem, and the
firewall completeness problem. The main result of this paper is to prove
that every one of these problems is NP-hard. Our proof of this result
is interesting in the following way. Only one of the 13 problems, the so
called slice probing problem, is shown to be NP-hard by a reduction
from the well-known 3-SAT problem. Then, the remaining 12 problems
are shown to be NP-hard by reductions from the slice probing problem.
The negative results of this paper suggest that firewalls designers may
need to rely on SAT solvers to solve instances of these 13 problems or
may be content with probabilistic solutions of these problems.

Keywords: Firewalls · Packet classifiers · Logical analysis · Equiva-
lence · Redundancy · Verification · Completeness · 3-SAT · NP-hard

1 Introduction

A firewall is a packet filter that is placed at a point where a private computer
network is connected to the rest of the Internet [14]. The firewall intercepts
each packet that is exchanged between the private network and the Internet,
examines the fields of the packet headers, and makes a decision either to discard
the packet or accept it and allow it to proceed on its way. The decision that a
firewall makes to discard or accept a packet depends on two factors:

1. The values of the fields in the packet headers.
2. The sequence of rules in the firewall that are specified by the firewall designer.

A firewall rule consists of a predicate and a decision, which is either accept
or discard. When the firewall receives a packet, the firewall searches its sequence
of rules for the first rule, whose predicate is satisfied by the values of the fields
in the packet headers, and then applies the decision of this rule to the packet.
c© Springer International Publishing Switzerland 2014
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Note that there are three sets of packets that are associated with each firewall:
(1) the set of packets that are discarded by the firewall, (2) the set of packets
that are accepted by the firewall, and (3) the set of packets that are neither
discarded nor accepted by the firewall. This third set is usually empty.

The task of designing, verifying, and analyzing a firewall (especially one with
thousands of rules, as usually is the case) is not an easy one [9,11,16]. Performing
this task properly usually requires solving thousands of instances of the following
problems:

1. Firewall Verification:
Show that a given firewall discards or accepts a given set of packets.

2. Firewall Implication:
Show that a given firewall discards (or accepts, respectively) every packet
that is discarded (or accepted, respectively) by another given firewall.

3. Firewall Equivalence:
Show that two given firewalls discard or accept the same set of packets.

4. Firewall Adequacy:
Show that a given firewall discards or accepts at least one packet.

5. Firewall Redundancy:
Show that a given discard (or accept, respectively) rule in a given firewall
can be removed from the firewall without changing the set of packets that are
discarded (or accepted, respectively) by the firewall.

6. Firewall Completeness:
Show that any given firewall discards or accepts every packet.

Efficient algorithms for solving these six problems can benefit the design, ver-
ification, and analysis of firewalls. For example, consider the next three scenarios
that occur frequently during the design phase, verification phase, and analysis
phase of firewalls.

Scenario 1. A firewall designer designs a firewall that is required to accept some
specified sets of packets and to discard other specified sets of packets. After
the firewall design is completed, the designer needs to verify that indeed the
designed firewall accepts every set of packets that it should accept and discards
every set of packets that it should discard. Thus, the designer needs to apply an
algorithm, that solves the above firewall verification problem, on the designed
firewall. Moreover, if the verification shows that the firewall discards a set of
packets that should be accepted or accepts a set of packets that should be dis-
carded, then the designer needs to modify the designed firewall and repeat the
verification.

Scenario 2. A firewall can be designed through a series of refinement steps that
proceeds as follows. Initially, the firewall is designed to accept all packets. Then
at each refinement step, the designer modifies the firewall slightly to make the
firewall discard one more set of packets (that the firewall is required to discard).
To check the correctness of each refinement step, the designer needs to apply
an algorithm, that solves the above firewall implication problem, to check that
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indeed the firewall at the end of the refinement step discards every packet that
is discarded by the firewall at the beginning of the refinement step.

Scenario 3. After a firewall designer completes the design of a firewall, the
designer needs to identify the redundant rules in the designed firewall and remove
them from the firewall. (Note that removing the redundant rules from a firewall
does not affect the sets of packets that are discarded by or accepted by the
firewall.) To identify the redundant rules in the designed firewall, the designer
needs to apply an algorithm that solves the above firewall redundancy problem,
to check whether each rule in the firewall is redundant.

Recognizing the importance of these problems (to the task of designing, ver-
ifying, and analyzing firewalls), many researchers have attempted to develop
efficient algorithms that can solve these problems in polynomial time. But the
efforts of these researchers (including the authors of the current paper) have
failed to develop polynomial algorithms for solving any of these problems. And
the time complexity of the best known algorithm to solve any of these problems
remains exponential.

In this paper, we show that in fact each one of these problems is NP-hard!
This paper is the first to show that any significant problem related to the logical
analysis of firewalls is NP-hard. Note that the paper not only proves that one
or two of these problems are NP-hard but it also proves that many of these
problems are NP-hard.

The rest of this paper is organized as follows. In Sect. 2, we formally define
the four main concepts of firewalls, namely fields, packets, rules, and firewalls. In
Sect. 3, we formally state 13 problems related to the logical analysis of firewalls.
In Sects. 4–10, we prove that each one of the 13 problems in Sect. 3 is NP-hard.
Then in Sect. 11, we outline three research directions that can still enhance
our ability to design and analyze firewalls, in light of these negative results.
Concluding remarks are in Sect. 13.

2 Fields, Packets, Rules, and Firewalls

In this section, we define the four main concepts of firewalls: fields, packets, rules,
and firewalls. We start our presentation by introducing the concept of a field.

A field is a variable whose value is taken from a nonempty interval of con-
secutive integers. This interval is called the domain of the field. A nonempty
interval X of consecutive integers can be written as a pair [y, z], where y is the
smallest integer in interval X, z is the largest integer in X, and X contains only
every integer that is neither smaller than y nor larger than z. Note that if X is
[y, y], then X contains only one integer, y.

In this paper, we assume that each packet has d fields, named f1, f2, · · · , and
fd. The domain of each field fj is denoted D(fj). (Examples of the d fields in
a packet are the source IP address of the packet, the destination IP address of
the packet, the transport protocol of the packet, the source port number of the
packet, and the destination port number of the packet.)
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Formally, a packet p is a tuple (p1, · · · , pd) of d integers, where each integer
pj is taken from the domain D(fj) of field fj .

A rule in a firewall consists of two parts, a < predicate > and a < decision >.
A rule is usually written as

< predicate >→ < decision >

The < predicate > of a rule is a conjunction of d conjuncts of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))

where each fj is a field, each Xj is a nonempty interval of consecutive integers
taken from the domain D(fj) of field fj , and ‘∧’ is the logical AND operator.
The value of each conjunct (fj ∈ Xj) is true iff the value of field fj is taken from
the interval Xj .

The < decision > of a rule is either discard or accept. A rule whose decision
is discard is called a discard rule and a rule whose decision is accept is called an
accept rule. A packet (p1, · · · , pd) is said to match a rule of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

iff the predicate ((p1 ∈ X1) ∧ · · · ∧ (pd ∈ Xd)) is true.
A firewall is a sequence of rules. A firewall F is said to discard (or accept,

respectively) a packet p iff F has a discard (or accept, respectively) rule rl
such that the following two conditions hold: (a) packet p matches rule rl, and
(b) packet p does not match any rule that precedes rule rl in firewall F .

A firewall F is said to ignore a packet p iff p matches no rule in F . It follows
that for any firewall F and any packet p, exactly one of the following three
statements holds: (a) F accepts p, (b) F discards p, or (c) F ignores p.

Two firewalls F and F ′ are said to be equivalent iff for every packet p,
exactly one of the following three statements holds: (a) both F and F ′ accept p,
(b) both F and F ′ discard p, or (c) both F and F ′ ignore p.

A packet is said to match a firewall F iff the packet matches at least one rule
in F . A firewall F is called complete iff every packet matches F . A rule of the
form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

is called an ALL rule iff each interval Xj is the whole domain D(fj) of field fj .
Note that every packet matches each ALL rule. Thus, each firewall that has an
ALL rule is complete.

A property of a firewall has the same form as a rule in a firewall:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ < decision >

where each fj is a field, each Xj is a nonempty interval of consecutive integers
taken from the domain D(fj) of field fj , and < decision > is either discard or
accept. A property whose decision is discard is called a discard property, and a
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property whose decision is accept is called an accept property. A discard property
of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ discard

is said to discard a packet (p1, · · · , pd) iff the predicate ((p1 ∈ X1) ∧ · · · ∧ (pd ∈
Xd)) is true. Similarly, an accept property of the form:

((f1 ∈ X1) ∧ · · · ∧ (fd ∈ Xd))→ accept

is said to accept a packet (p1, · · · , pd) iff the predicate ((p1 ∈ X1)∧· · ·∧(pd ∈ Xd))
is true. A firewall F is said to satisfy a property pr iff one of the following two
conditions holds.

(a) pr is a discard property and each packet that is discarded by pr is discarded
by F.

(b) pr is an accept property and each packet that is accepted by pr is accepted
by F.

We end this section by identifying two special classes of firewalls, named
discard slices and accept slices. Later in this paper we show that two problems
concerning these two special firewall classes are NP-hard. From the fact that
these two problems are NP-hard, we show that many problems concerning the
design and analysis of general firewalls are also NP-hard. A firewall that consists
of zero or more accept rules followed by an ALL discard rule is called a discard
slice. Similarly, a firewall that consists of zero or more discard rules followed by
an ALL accept rule is called an accept slice.

3 Firewall Analysis

In this section we identify 13 problems that need to be solved in order to carry
out the logical analysis of firewalls. As discussed below, these problems include
firewall verification, firewall implication, and firewall equivalence. Later, we show
that each one of these 13 problems is NP-hard. These results indicate that the
logical analysis of firewalls is hard, at least theoretically from an asymptotic
worst case analysis perspective.

The 13 problems that we identify in this section can be classified into 7
classes: Problems of Slice Probing, Problems of Firewall Adequacy, Problems
of Firewall Verification, Problems of Firewall Implication, Problems of Firewall
Equivalence, the Problem of Firewall Redundancy, and the Problem of Firewall
Completeness.

Problems of Slice Probing. There are two Slice Probing problems, which we
denote SP-D and SP-A. These two problems are defined as follows.

SP-D: Probing of Discard Slices:
Design an algorithm that takes as input a discard slice S and determines
whether S discards at least one packet.



158 E.S. Elmallah and M.G. Gouda

SP-A: Probing of Accept Slices:
Design an algorithm that takes as input an accept slice S and determines
whether S accepts at least one packet.

Problems of Firewall Adequacy: There are two Firewall Adequacy problems,
which we denote FA-D and FA-A. These two problems are defined as follows.

FA-D: Discard-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
F discards at least one packet.

FA-A: Accept-Adequacy of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
F accepts at least one packet.

The Problem of Firewall Completeness: The Firewall Completeness prob-
lem, which we denote FC, is defined as follows:

FC: Completeness of Firewalls:
Design an algorithm that takes as input a firewall F and determines whether
every packet is either discarded or accepted by F.

Problems of Firewall Verification: There are two Firewall Verification prob-
lems, which we denote FV-D and FV-A. These two problems are defined as
follows.

FV-D: Discard-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and a discard property pr
and determines whether every packet that is discarded by pr is also discarded
by F.

FV-A: Accept-Verification of Firewalls:
Design an algorithm that takes as input a firewall F and an accept prop-
erty pr and determines whether every packet that is accepted by pr is also
accepted by F.

Problems of Firewall Implication: There are two Firewall Implication prob-
lems, which we denote FI-D and FI-A. These two problems are defined as follows.

FI-D: Discard-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether every packet that is discarded by F1 is also discarded by
F2.

FI-A: Accept-Implication of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether every packet that is accepted by F1 is also accepted by F2.
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Problems of Firewall Redundancy: There are two Firewall Redundancy
problems, which we denote FR-D and FR-A. These two problems are defined as
follows.

FR-D: Discard-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and a discard rule rl in
F and determines whether the two firewalls F and F \ rl discard the same
set of packets, where F \ rl is the firewall that is obtained after removing
rule rl from firewall F.

FR-A: Accept-Redundancy of Firewalls:
Design an algorithm that takes as input a firewall F and an accept rule rl
in F and determines whether the two firewalls F and F \ rl accept the same
set of packets, where F \ rl is the firewall that is obtained after removing
rule rl from firewall F.

Problems of Firewall Equivalence: There are two Firewall Equivalence prob-
lems, which we denote FE-D and FE-A. These two problems are defined as
follows.

FE-D: Discard-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether F1 and F2 discard the same set of packets.

FE-A: Accept-Equivalence of Firewalls:
Design an algorithm that takes as input two firewalls F1 and F2 and deter-
mines whether F1 and F2 accept the same set of packets.

4 Hardness of the Slice Probing

In this section, we show that the first Slice Probing problem SP-D is NP-hard
by a reduction from the 3-SAT problem. We then show that the Slice Probing
problems SP-A is NP-hard by a reduction from SP-D. For convenience, we state
the 3-SAT problem next

3-SAT:
Design an algorithm that takes as input a Boolean formula BF of the form
BF = C1 ∧ C2 ∧ · · · ∧ Cn where each clause Ck is a disjunction of 3 literals
taken from the set of Boolean variables {v1, · · · , vd}, and determines whether
BF is satisfiable (i.e. determines whether there is an assignment of Boolean
values to the variables {v1, · · · , vd} that makes BF true).

The 3-SAT problem is known to be NP-hard [8]. This means that the time
complexity of any algorithm that solves this problem is very likely to require
exponential time of O(n × 2d), where n is the number of clauses and d is the
number of variables in the Boolean formula BF .

(To date, progress in solving the 3-SAT problem has resulted in both deter-
ministic and randomized algorithms with reduced complexity. For example, in
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[5] the authors present a deterministic algorithm that runs in O(1.473n) time,
and in [10] the authors present a randomized algorithm that runs in O(1.32113n)
time on average.)

Next, we describe a polynomial translation of any instance of the 3-SAT
problem to an instance of the SP-D problem such that any solution of the 3-
SAT instance yields a solution of the SP-D instance and vice versa. The existence
of this polynomial translation indicates that the SP-D problem is NP-hard and
that the time complexity of any algorithm that solves this problem is very likely
to be exponential. Translating an instance of 3-SAT to an instance of SP-D
proceeds as follows:

1. The 3-SAT instance is defined by a Boolean formula BF and the SP-D
instance is defined by a discard slice S.

2. Each Boolean variable vj that occurs in formula BF is translated to a field
fj in slice S.

3. The domain of values for each variable vj is the set {false, true} and the
domain of values for each field fj is the set {0, 1}. Value false of each variable
vj is translated to value 0 of the corresponding field fj . Similarly, value true
of each variable vj is translated to value 1 of the corresponding field fj .

4. Each clause Ck in formula BF is translated to an accept rule Rk in slice
S as follows. First, if the literal vj occurs in clause Ck, then the conjunct
(fj ∈ [0, 0]) occurs in the predicate of rule Rk. Second, if the literal vj occurs
in clause Ck, then the conjunct (fj ∈ [1, 1]) occurs in the predicate of rule Rk.
Third, if no literal of vj occurs in clause Ck, then the conjunct (fj ∈ [0, 1])
occurs in the predicate of rule Rk.

5. Add an ALL discard rule at the bottom of slice S.

From this translation, an assignment of values (val(v1), · · · , val(vd)) makes a
clause Ck true iff the corresponding packet (val(f1), · · · , val(fd)) does not match
the corresponding accept rule Rk. Thus, we draw the following two conclusions:

(1) If there is an assignment of values (val(v1), · · · , val(vd)) that makes the
Boolean formula BF true, then the corresponding packet (val(f1), · · · ,
val(fd)) does not match any of the accept rules in the discard slice S and
matches only the last ALL discard rule. In other words, if the Boolean for-
mula BF is satisfiable, then the discard slice S discards at least one packet.

(2) If the discard slice S discards at least one packet, then the Boolean formula
BF is satisfiable.

Therefore, any solution of the 3-SAT instance yields a solution of the SP-D
instance and vice versa. This completes our proof of the following theorem.

Theorem 1. Problem SP-D is NP-hard.

Having established that problem SP-D is NP-hard, we can now use this problem
to establish that problem SP-A is also NP-hard.
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Theorem 2. Problem SP-A is NP-hard.

Proof. We describe a polynomial translation of any instance of the SP-D prob-
lem to an instance of the SP-A problem such that any solution of the SP-D
instance yields a solution of the SP-A instance and vice versa. Translating an
instance of SP-D to an instance of SP-A proceeds as follows:

1. An instance of SP-D is defined by a discard slice S.
2. Replacing every discard (or accept, respectively) decision in S by an accept

(or discard, respectively) decision yields an accept slice denoted S′.
3. The accept slice S′ defines an instance of SP-A.

From this translation, packet p is discarded by slice S iff packet p is accepted
by slice S′. Thus, we draw the following two conclusions:

(1) If slice S discards at least one packet, then slice S′ accepts at least one
packet.

(2) If slice S′ accepts at least one packet, then slice S discards at least one
packet.

Therefore, any solution of the SP-D instance yields a solution of the SP-A
instance and vice versa.

5 Hardness of Firewall Adequacy

In this section, we employ problem SP-D, which we have shown to be NP-hard
in the previous section, to show that the two Firewall Adequacy problems FA-D
and FA-A are also NP-hard. First, we assert that the FA-D problem is NP-hard
(by a reduction from the SP-D problem). Then we assert that the FA-A problem
is NP-hard (by a reduction from the FA-D problem). We omit proofs (due to
space limitation), and refer the reader to the details in [7].

Theorem 3. Problem FA-D is NP-hard.

Theorem 4. Problem FA-A is NP-hard.

6 Hardness of Firewall Completeness

In this section, we employ problem SP-D, which we have shown to be NP-hard
in Sect. 4, to show that the Firewall Completeness problem FC is NP-hard.

Theorem 5. Problem FC is NP-hard.

Proof: We describe a polynomial translation of any instance of the SP-D prob-
lem to an instance of the FC problem such that any solution of the SP-D instance
yields a solution of the FC instance and vice versa. Translating an instance of
SP-D to an instance of FC proceeds as follows:
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1. An instance of SP-D is defined by a discard slice S.
2. Let F denote the firewall that results from removing the last (ALL discard)

rule from slice S.
3. Firewall F , which consists entirely of accept rules, defines an instance of FC.

From this translation, we conclude that the discard slice S discards at least
one packet iff firewall F is not complete (i.e., F ignores at least one packet.)
Therefore, any solution of the SP-D instance yields a solution of the FC instance
and vice versa.

7 Hardness of Firewall Verification

In this section, we employ problem SP-A, which we have shown to be NP-hard
in Sect. 4, to show that the two Firewall Verification problems, namely FV-D
and FV-A, are also NP-hard. First, we show that the FV-D problem is NP-hard
by a reduction from the SP-A problem. Then we assert that the FV-A problem
is NP-hard (by a reduction from the FV-D problem).

Theorem 6. Problem FV-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the SP-A prob-
lem to an instance of the FV-D problem such that any solution of the SP-A
instance yields a solution of the FV-D instance and vice versa. Translating an
instance of SP-A to an instance of FV-D proceeds as follows:

1. An instance of SP-A is defined by an accept slice S.
2. Because each accept slice is a special case of a firewall, the accept slice S can

be viewed as a firewall denoted F .
3. Firewall F and the ALL discard property pr together define an instance of

FV-D.

From this translation, we conclude that the accept slice S accepts at least one
packet iff this packet is discarded by property pr and not discarded by Firewall
F . Therefore, any solution of the SP-A instance yields a solution of the FV-D
instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 7. Problem FV-A is NP-hard.

8 Hardness of Firewall Implication

In this section, we employ problem FV-D, which we have shown to be NP-hard
in the previous section, to show that the two Firewall Implication problems,
namely FI-D and FI-A, are also NP-hard. First, we show that the FI-D problem
is NP-hard by a reduction from the FV-D problem. Then we assert that the
FI-A problem is NP-hard (by a reduction from the FI-D problem).
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Theorem 8. Problem FI-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the FV-D prob-
lem to an instance of the FI-D problem such that any solution of the FV-D
instance yields a solution of the FI-D instance and vice versa. Translating an
instance of FV-D to an instance of FI-D proceeds as follows:

1. An instance of FV-D is defined by a firewall F and a discard property pr.
2. Because each property is a special case of a firewall, the discard property pr

can be viewed as a firewall denoted F ′.
3. The two firewalls F and F ′ together define an instance of FI-D.

From this translation, we conclude that every packet that is discarded by
property pr is discarded by firewall F iff every packet that is discarded by firewall
F ′ is discarded by firewall F . Therefore, any solution of the FV-D instance yields
a solution of the FI-D instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 9. Problem FI-A is NP-hard.

9 Hardness of Firewall Redundancy

In this section, we employ problem FV-D, which we have shown to be NP-hard
in Sect. 7, to show that the two Firewall Redundancy problems FR-D and FR-
A are also NP-hard. First, we show that the FR-D problem is NP-hard by a
reduction from the FV-D problem. Then, we assert that the FR-A problem is
NP-hard (by a reduction from the FR-D problem).

Theorem 10. Problem FR-D is NP-hard.

Proof. We describe a polynomial translation of any instance of the FV-D prob-
lem to an instance of the FR-D problem such that any solution of the FV-D
instance yields a solution of the FR-D instance and vice versa. Translating an
instance of FV-D to an instance of FR-D proceeds as follows:

1. An instance of FV-D is defined by a firewall F and a discard property pr.
2. Because each property can be viewed as a rule, the discard property pr can

be viewed as a discard rule denoted rl. Let F ′ denote the firewall that results
from placing rule rl at the top of firewall F . (Note that firewall F is the same
as firewall F ′ \ rl.)

3. Firewall F ′ and its top (discard) rule rl together define an instance of FR-D.

From this translation, we conclude that every packet that is discarded by the
discard property pr is discarded by firewall F iff the two firewalls F and F ′

discard the same set of packets. Therefore, any solution of the FV-D instance
yields a solution of the FR-D instance and vice versa.

We omit the proof of the next theorem; the details are presented in [7].

Theorem 11. Problem FR-A is NP-hard.
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10 Hardness of Firewall Equivalence

In this section, we rely on the NP-hardness of the FR-D problem, which is
established in the previous section, to show that the two Firewall Equivalence
problems FE-D and FE-A are also NP-hard. First, we assert that the FE-D
problem is NP-hard (by a reduction from the FR-D problem). Then, we assert
that the FE-A problem is NP-hard (by a reduction from the FE-D problem).
We omit proofs (due to space limitation), and refer the reader to the details in
[7].

Theorem 12. Problem FE-D is NP-hard.

Theorem 13. Problem FE-A is NP-hard.

11 Where We Go from Here

Figure 1 shows an outline of our proof, presented in the five Sects. 4–10, that each
one of the 13 problems in Sect. 3 is NP-hard. This proof outline is a directed
graph where each node represents one problem and where each directed edge
from node P to node P ′ indicates that problem P ′ is shown to be NP-hard by
a reduction from problem P . Note that in this graph, each node P has exactly
one incoming edge labeled by a number k to indicate that the NP-hardness of
problem P is proven in Theorem k.
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Fig. 1. Hardness reductions between 13 firewall analysis problems

From this proof outline, each one of the 13 problems is shown to be NP-hard
by an ultimate reduction from the 3-SAT problem. As mentioned in Sect. 4, the
time complexity of any algorithm that solves the 3-SAT problem is very likely
to be of O(n× 2d), where n is the number of clauses in the Boolean formula and
d is the number of Boolean variables in the Boolean formula.

Thus, assuming that the firewall fields are all binary, the time complexity of
any algorithm that solves any of the 13 problems in Sect. 3 is very likely to be of
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O(n×2d), where n is the number of rules in a firewall, and d is the number of bits
that are checked by the firewall rules in the headers of every packet. For most
firewalls, n is at most 2000 rules, and d is at most 120 bits. Therefore, assuming
that the firewall fields are all binary, the time complexity of any algorithm that
solves any of the 13 problems in Sect. 3 is very likely to be of O(2000× 2120).

At first, this large time complexity may discourage many researchers from
trying to solve any of the 13 problems in Sect. 3. But it turns out that researchers
can take advantage of the following three techniques in order to avoid this large
complexity in many practical situations.

1. Using SAT-Solvers:
As discussed in [17], each instance of the 13 problems in Sect. 3 can be translated
into an instance of the SAT problem and then can be easily solved (in many
practical situations) using any of the available SAT-solvers, such as Minisat [6].

Indeed the experimental results reported in [17] are impressive. For example,
it is shown that many instances of the Firewall Equivalence problem, the Firewall
Implication problem, and the Firewall Redundancy problem can all be solved
using the Minisat solver [6] and the firewall generator Classbench [15]. More
importantly, solving each of these problem instances, which involves one or two
firewalls of about 2,000 rules each, takes less than 5 s.

2. Adopting Integer Fields:
The large time complexity of O(2000× 2120) for solving any of the 13 problems
in Sect. 3 is based on our assumption that the firewalls in these problems have
a large number (around 120) of Boolean fields. Technically, this assumption
can be replaced by assuming that the firewalls in these problems have a small
number (around 5) of integer fields. Adopting this new assumption, it is shown
in [1,2,4,12,13] that there are algorithms, whose time complexity is of O(ne+1),
that solve the Slice Probing problem, the Firewall Verification problem, and the
Firewall Redundancy problem. In this case, n is the number of rules in a firewall
and e is the number of integer fields that are checked by the firewall rules in
the headers of every packet. For most firewalls, n is at most 2000 rules, and e
is at most 5 integer fields. Therefore, the time complexity of any algorithm that
solves any of the 13 problems in Sect. 3 is very likely to be of O(20006) which is
much smaller than O(2000× 2120).

3. Accepting Probabilistic Solutions:
The large time complexity of O(ne+1) for any algorithm to solve any of the 13
problems in Sect. 3 is based on the implicit requirement that the algorithm be
deterministic. It is possible to drastically reduce this time complexity if one is
willing to accept probabilistic algorithms that solve these problems.

For example, a probabilistic algorithm for solving the Firewall Verification
problem is proposed in [3]. This algorithm determines whether any given firewall
satisfies any given property. The time complexity of this algorithm is optimally
linear of O(n × e), where n is the number of rules in the given firewall and
e is the number of integer fields that are checked by the firewall rules in the
headers of each packet. The only problem of this algorithm is that sometimes



166 E.S. Elmallah and M.G. Gouda

when the algorithm returns a determination that the given firewall satisfies the
given property, the returned determination is incorrect. A large simulation study
showed that the probability of an incorrect determination is negligible.

12 Related Work

The importance of the logical analysis and verification of firewalls has been
recognized since the year 2000 [14]. This recognition has led early on to some
attempts to identify configuration errors and vulnerabilities in firewalls that
were in operation at the time [9,11,16]. These early attempts, though useful
in practice, did not develop into a mature theory for the logical analysis and
verification of firewalls.

Later on, a robust and full theory for the logical analysis and verification of
firewalls was developed [1,2,4,12,13]. The objective of this theory was to design
efficient algorithms that can solve: firewall equivalence problems [12], firewall
redundancy problems [1,13], and firewall verification problems [2,4].

It turns out that the time complexity of each algorithm that was designed
in this theory is exponential! Yet until the current paper, no one was able to
prove that any problem in this theory is NP-hard. The current paper not only
proves that one or two problems in this theory are NP-hard but it also proves
that many problems in the theory are NP-hard.

The fact, that the time complexity of all algorithms in the theory of logical
analysis of firewalls is exponential, was alarming. This alarm led researchers
to propose two new research directions. First, some researchers proposed to
design probabilistic algorithms for solving the problems in the theory [2]. Second,
other researchers proposed to rely on SAT solvers to solve the problems in the
theory [6,17]. The results in the current paper will undoubtedly bolster and
add credence and significance to these new research directions, as discussed in
Sect. 11.

13 Concluding Remarks

In this paper, we identified 13 important problems related to the analysis of
firewalls and showed that each one of these problems is NP-hard. This means
that the time complexity of any algorithm that can solve any of these problems
is very likely to be exponential. Our proofs of these NP-hardness results were
based on reductions from the relatively new problem of Slice Probing. This fact
confirms the central role that the Slice Probing problem plays in the analysis of
firewalls. Future research in the analysis of firewalls should be mindful of this
problem.

Some of the 13 problems discussed in this paper can be shown to be NP
[8]. Examples of these problems are the Slice Probing problems. The remaining
problems can be shown to be co-NP [8]. Example of these problems are the
Firewall Implications problems. It is possible to think of other problems related
to the analysis of firewalls and show that these problems are also NP-hard by
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reductions from the 13 problems in Sect. 3. For example consider the following
problem

Firewall Exclusion: Show that if any given firewall discards (or accepts,
respectively) a packet, then another given firewall does not discard (or does
not accept, respectively) the same packet.

We believe that this problem can be shown to be NP-hard by a reduction from
the Firewall Implication problem. In Sect. 11, we pointed out three research
directions that can be pursued in order to enhance our ability to design and
analyze firewalls, in light of the NP-hardness results in this paper.

References

1. Acharya, H.B., Gouda, M.G.: Firewall verification and redundancy checking are
equivalent. In: Proceedings of the 30th IEEE International Conference on Com-
puter Communication (INFOCOM), pp. 2123–2128 (2011)

2. Acharya, H.B., et al.: Projection and division: linear space verification of firewalls.
In: Proceedings of the 30th International Conference on Distributed Computing
Systems (ICDCS), pp. 736–743 (2010)

3. Acharya, H.B., et al.: Linear-time verification of firewalls. In: Proceedings of the
17th IEEE International Conference on Network Protocols (ICNP), pp. 133–140
(2009)

4. Al-Shaer, E., Marrero, W., El-Atawy, A., Elbadawi, K.: Network configuration in a
box: towards end-to-end verification of network reachability and security. In: 17th
IEEE International Conference on Network Protocols (ICNP), pp. 123–132 (2009)

5. Brueggemann, T., Kern, W.: An improved deterministic local search algorithm for
3-SAT. Theoret. Comput. Sci. 329(13), 303–313 (2004)

6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

7. Elmallah, E.S., Gouda, M.G.: Hardness of firewall analysis. Technical Report
TR13-08, University of Alberta, Edmonton, Alberta, Canada T6G 2E8. http://
hdl.handle.net/10402/era.36864 (2013). Accessed April 2014

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, San Francisco (1979)

9. Hoffman, D., Yoo, K.: Blowtorch: a framework for firewall test automation. In: Pro-
ceedings of the 20th IEEE/ACM international Conference on Automated Software
Engineering, ASE ’05, pp. 96–103 (2005)

10. Iwama, K., Seto, K., Takai, T., Tamaki, S.: Improved randomized algorithms for
3-SAT. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS,
vol. 6506, pp. 73–84. Springer, Heidelberg (2010)

11. Kamara, S., Fahmy, S., Schultz, E., Kerschbaum, F., Frantzen, M.: Analysis of
vulnerabilities in internet firewalls. Comput. Secur. 22(3), 214–232 (2003)

12. Liu, A.X., Gouda, M.G.: Diverse firewall design. IEEE Trans. Parallel Distrib.
Syst. 19, 1237–1251 (2008)

13. Liu, A.X., et al.: Complete redundancy removal for packet classifiers in TCAMs.
IEEE Trans. Parallel Distrib. Syst. 21, 424–437 (2010)

14. Mayer, A., Wool, A., Ziskind, E.: Fang: a firewall analysis engine. In: IEEE Sym-
posium on Security and Privacy, pp. 177–187 (2000)

http://hdl.handle.net/10402/era.36864
http://hdl.handle.net/10402/era.36864


168 E.S. Elmallah and M.G. Gouda

15. Taylor, D., Turner, J.: Classbench: a packet classification benchmark. IEEE/ACM
Trans. Networking 15(3), 499–511 (2007)

16. Wool, A.: A quantitative study of firewall configuration errors. Computer 37(6),
62–67 (2004)

17. Zhang, S., Mahmoud, A., Malik, S., Narain, S.: Verification and synthesis of fire-
walls using SAT and QBF. In: 20th IEEE International Conference on Network
Protocols (ICNP), pp. 1–6 (2012)



Privacy-Preserving Distributed Collaborative
Filtering

Antoine Boutet1(B), Davide Frey1, Rachid Guerraoui2, Arnaud Jégou1,
and Anne-Marie Kermarrec1

1 INRIA Rennes, Rennes, France
{antoine.boutet,davide.frey,arnaud.jegou,Anne-marie.kermarrec}@inria.fr

2 EPFL, Lausanne, Switzerland
rachid.guerraoui@epfl.ch

Abstract. We propose a new mechanism to preserve privacy while lever-
aging user profiles in distributed recommender systems. Our mechanism
relies on (i) an original obfuscation scheme to hide the exact profiles of
users without significantly decreasing their utility, as well as on (ii) a
randomized dissemination protocol ensuring differential privacy during
the dissemination process.

We compare our mechanism with a non-private as well as with a fully
private alternative. We consider a real dataset from a user survey and
report on simulations as well as planetlab experiments. We dissect our
results in terms of accuracy and privacy trade-offs, bandwidth consump-
tion, as well as resilience to a censorship attack. In short, our extensive
evaluation shows that our twofold mechanism provides a good trade-off
between privacy and accuracy, with little overhead and high resilience.

1 Introduction

Collaborative Filtering (CF) leverages interest similarities between users to rec-
ommend relevant content [19]. This helps users manage the ever-growing volume
of data they are exposed to on the Web [8]. But it also introduces a trade-off
between ensuring user privacy and enabling accurate recommendations. Decen-
tralized collaborative filtering partially addresses this trade-off by removing the
monopoly of a central entity that could commercially exploit user profiles. How-
ever, it introduces new privacy breaches: users may directly access the profiles of
other users. Preventing these breaches is the challenge we address in this paper.
We do so in the context of a news-oriented decentralized CF system.

We propose a twofold mechanism: (i) an obfuscation technique applied to user
profiles, and (ii) a randomized dissemination protocol satisfying a strong notion
of privacy. Each applies to one of the core components of a decentralized user-
based CF system: clustering and dissemination. Clustering consists in building
an interest-based topology, implicitly connecting users with similar preferences:
it computes the similarity between profiles, capturing the opinions of users on
the items they have been exposed to. The dissemination protocol propagates the
items along the resulting topology.
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-09581-3 12
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Our obfuscation scheme prevents user machines from exchanging their exact
profiles while constructing the interest-based topology. We compute similarities
using coarse-grained obfuscated versions of user profiles that reveal only the
least sensitive information. To achieve this, we associate each disseminated item
with an item profile. This profile aggregates information from the profiles of
users that liked an item along its dissemination path. This reflects the interests
of the portion of the network the item has traversed, gathering the tastes of a
community of users that have liked similar items. We use this information to
construct filters that identify the least sensitive parts of user profiles: those that
are the most popular among users with similar interests. Albeit lightweight,
our obfuscation scheme prevents any user from knowing, with certainty, the
exact profile of another user. Interestingly, we achieve this without significantly
hampering the quality of recommendation: the obfuscated profile reveals enough
information to connect users with similar interests.

Our dissemination protocol ensures differential privacy [9]. Differential pri-
vacy bounds the probability of the output of an algorithm to be sensitive to
the presence of information about a given entity—the interests of a user in our
context—in the input data. We obtain differential privacy by introducing ran-
domness in the dissemination of items. This prevents malicious players from
guessing the interests of a user from the items she forwards.

We compare our mechanism with a non-private baseline as well as with an
alternative solution that applies differential privacy to the entire recommen-
dation process. We consider a real dataset from a user survey and report on
simulations as well as planetlab experiments. We dissect our results in terms
of accuracy and privacy trade-offs, bandwith consumption, as well as resilience
to a censorship attack. Our extensive evaluation shows that our twofold mecha-
nism provides a good trade-off between privacy and accuracy. For instance, by
revealing only the least sensitive 30% of a user profile, and by randomizing dis-
semination with a probability of 0.3, our solution achieves an F1-Score (trade-off
between precision and recall) of 0.58, against a value of 0.59 for a solution that
discloses all profiles, and a value of 0.57 for the differentially private alternative
in a similar setting. Similarly, malicious users can predict only 26% of the items
in a user’s profile with our solution, and as much as 70% when using the differ-
entially private one. In addition, our mechanism is very resilient to censorship
attacks, unlike the fully differentially private approach.

2 Setting

We consider a decentralized news-item recommender employing user-based col-
laborative filtering (CF). Its architecture relies on two components: user clus-
tering and item dissemination. We aim to protect users from privacy threats.

User clustering aims at identifying the k nearest neighbors of each user1.
It maintains a dynamic interest-based topology consisting of a directed graph
1 We use the terms ‘node’ and ‘user’ interchangeably to refer to the pair

‘user/machine’.
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G(U,E), where vertices, U = u1, u2, u3, ...un, correspond to users, and edges,
E = e1, e2, e3, ...en, connect users that have the most similar opinions about a
set of items I = i1, i2, ..., im. The system is decentralized: each node records the
interests of its associated user, u, in a user profile, a vector of tuples recording
the opinions of the user on the items she has been exposed to. Each such tuple
Pu =< i, v, t > consists of an item identifier, i, a score value, v, and a timestamp,
t, indicating when the opinion was recorded. Profiles track the interests of users
using a sliding window scheme: each node removes from its profile all the tuples
that are older than a specified time window. This allows the interest-based topol-
ogy to quickly react to emerging interests while quickly forgetting stale ones. We
focus on systems based on binary ratings: a user either likes or dislikes an item.
The interest-based topology exploits two gossip protocols running on each node.
The lower-layer random-peer-sampling (rps) [22] protocol ensures connectivity
by maintaining a continuously changing random graph. The upper-layer cluster-
ing protocol [6,23] starts from this random graph and quickly provides each node
with its k closest neighbors according to a similarity metric. Several similarity
metrics have been proposed [21], we use the Jaccard index in this paper.

Item dissemination exploits the above clustering scheme to drive the dissem-
ination. When a user generates a new item or receives an item she likes, the
associated node assumes that this is an interesting item for other users with
similar interests. It thus forwards the item to its neighbors in the interest-based
topology. If, instead, the user marks an item as dislike, the node drops it.

Privacy Threats. While decentralization removes the prying eyes of Big-Brother
companies, it leaves those of curious users who might want to discover the per-
sonal tastes of others. In the decentralized item recommender considered, mali-
cious nodes can extract information in two ways: (i) from the profiles they exchange
with other nodes (profiles contain information about the interests of users); and
(ii) from the predictive nature of the dissemination (a node sends an item only
when it likes it). We consider the Honest-But-Curious adversary model [11] where
malicious nodes can collude to predict interests from received profiles but can-
not cheat in the protocol. In Sect. 6.6, we also consider attackers modifying their
obfuscated profiles to control their location in the interest-based topology (i.e.
their clustering views).

3 Obfuscation Protocol

Our first contribution is an obfuscation protocol that protects user profiles by
(i) aggregating their interests with those of similar users, and (ii) revealing only
the least sensitive information to other users. For clarity, this Section describes a
simplified version of our obfuscation protocol. Section 4 completes this descrip-
tion with features required by our differentially-private dissemination scheme.
Figure 1 gives an overview of the complete protocol. For space reason, we omit
the pseudocode of the algorithms (available in [5]).
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Fig. 1. Simplified information flow through the protocol’s data structures.

3.1 Overview

Our protocol relies on random indexing, an incremental dimension reduction
technique [14,24]. To apply it in our context, we associate each item with an
item vector, a random signature generated by its source node. An item vector
consists of a sparse d-dimensional bit array. To generate it, the source of an item
randomly chooses b << d distinct array positions and sets the corresponding
bits to 1. It then attaches the item vector to the item before disseminating it.

Nodes use item vectors when recording information about items in their
obfuscated profiles. Let us consider a node A that receives an item R from
another node C. Figure 1 depicts the data flow through the protocol’s data
structures. When receiving R, node A records whether it likes or dislikes the
item in its private profile. A node never shares its private profile. It only uses it
as a basis to build an obfuscated profile whenever it must share interest informa-
tion with other nodes in the clustering process. Nodes remove the items whose
timestamps are outside the latest time window. This ensures that all profiles
reflect the current interests of the corresponding nodes.

Let us now assume that A receives an item R and likes it. After updating
its private profile, A updates the item profile of R before forwarding it to other
nodes. This corresponds to the operations on the left branch of Fig. 1. A extracts
the items it has liked from its private profile and combines the corresponding
item vectors into a data structure called compact profile. This introduces some
uncertainty because different sets of liked items may result in the same compact
profile. Then A updates the item profile of R. This consists of a bitmap that
aggregates the compact profiles of the nodes that liked R. To update it, A
combines its own compact profile and R’s old item profile. This makes R’s item
profile an obfuscated summary of the interests of the nodes that like R.

The right branch of Fig. 1 shows how a node, A, builds its obfuscated profile
when required by the clustering process. First, A creates a filter profile that
aggregates the information contained in the item profiles of the items it liked.
Then, it uses this filter to identify the bits from its compact profile that will
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appear in its obfuscated profile. These consist of the most popular bit positions
among the nodes that liked the same items as A did. This has two advantages.
First, using the most popular bits makes A’s obfuscated profile likely to overlap
with those of similar nodes. Second, these bits carry less information than less
popular ones, which makes them preferable in terms of privacy.

3.2 Profile Updates

Private Profile. A node updates its private profile whenever it generates a
new item or receives an item from another node. In either case, the node inserts
a new tuple into its private profile. This tuple contains the item identifier, its
timestamp (indicating when the item was generated), a score (1 if the node liked
the item, 0 otherwise), its item vector, and the item profile upon receipt. Locally
generated items count as liked and have an empty “item profile upon receipt”.

Compact Profile. Unlike private profiles, which contain item identifiers and
their associated scores, the compact profile stores liked items in the form of a
d-dimensional bit array. As shown in Fig. 1, a node uses the compact profile both
to update the item profile of an item it likes and to compute its obfuscated profile
when exchanging clustering information with other nodes. In each of these two
cases, the node computes a fresh compact profile as the bitwise OR of the item
vectors of all the liked items in its private profile.

This on demand computation allows the compact profile to take into account
only the items associated with the current time window. It is in fact impossible to
remove an item from an existing compact profile. The reason is that the compact
profile provides a first basic form of obfuscation of the interests of a user through
bit collisions: a bit at 1 in the compact profile of a node may in fact result from
any of the liked items whose vectors have the corresponding bit set.

Compact profiles bring two clear benefits. First, the presence of bit collisions
makes it harder for attackers to identify the items in a given profile. Second, the
fixed and small size of bit vectors limits the size of the messages exchanged by
the nodes in the system. As evaluated in Sect. 6.7, this drastically reduces the
bandwidth cost of our protocol.

Item Profile. A node never reveals its compact profile. Instead, it injects part
of it into the item profiles of the items it likes. Consequently, the item profile
of an item aggregates the interests of the users that liked the item along its
dissemination path. A parameter s controls how much information from the
compact profile nodes include in the item profile.

Let n be a node that liked an item R. When receiving R for the first time,
n computes its compact profile as described above. Then, before forwarding R,
n builds an integer vector as the bit-by-bit sum of R’s item profile and n’s
own compact profile. Each entry in this vector has a value in {0, 1, 2}: node n
chooses the s vector positions with the highest values, breaking ties randomly,
and creates a fresh profile for item R by setting the corresponding bits to 1 and
the remaining ones to 0. Finally, when n generates the profile for a new item,
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it simply sets to 1 the values of s bits from those that are set in its compact
profile. This update process ensures that the item profile of each forwarded item
always contains s bits with value 1.

Filter Profile. Nodes compute their filter profiles whenever they need to
exchange clustering information with other nodes. Unlike the other profiles asso-
ciated with nodes, this profile consists of a vector of integer values and does not
represent the interests of a user. Rather it captures the interests of the commu-
nity of users that have liked similar items. A node computes the value at each
position in its filter profile by summing the values of the bits in the correspond-
ing position in the profiles of liked items. This causes the filter profile to record
the popularity of each bit within a community of nodes that liked similar items.

Obfuscated Profiles. As shown in Fig. 1, a node builds its obfuscated profile
by filtering the contents of its compact profile through the filter profile. This
yields a bit vector that captures the most popular bits in the node’s community
and thus hides the node’s most specific and unique tastes. The node selects the s
positions that have the highest values in its filter profile, breaking ties randomly,
and sets the corresponding bits in the obfuscated profile to the values they have
in its compact profile. It then sets all the remaining bits in the obfuscated profile
to 0.

4 Randomized Dissemination

An attacker can discover the opinions of a user by observing the items she for-
wards (Sect. 2). We address this vulnerability through our second contribution:
a differentially-private randomized dissemination protocol.

The key idea of our protocol is to randomize the forwarding decision: a node
that likes an item drops it with probability pf , while a node that does not like it
forwards it with the same pf . This prevents an attacker from acquiring certainties
about a user’s interests by observing which items she forwards. However, the
attacker could still learn something from the content of the associated item
profiles (nodes modify the item profiles of the items they like). To ensure that
the whole dissemination protocol does not expose any non-differentially-private
information, we therefore randomize not only forwarding actions, but also the
item profiles associated with forwarded items. This requires us to modify the
protocol described in Sect. 3 as follows.

First, we modify the private profile. For each item, not only do we store
whether the node liked or disliked it, but we also add a new field: the random-
ized decision. This field stores the forwarding decision taken as a result of the
randomization process (1 for forward and 0 for drop).

We then introduce a new randomized compact profile (as shown in Fig. 2).
The node fills this profile analogously to the compact profile but it uses the
randomized decision instead of its actual opinion on the item. The node iterates
through all the items for which the randomized decision is 1 and integrates
their item vectors into the randomized compact profile using the same operations
described for the non-randomized one.
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Fig. 2. Complete information flow through the protocol’s data structures.

Finally, the node updates the item profile of an item when it decides to
forward it as a result of randomization, regardless of whether it likes it or not.
Moreover, the node performs this update as described in Sect. 3.2 except that the
node uses its randomized compact profile instead of its compact profile. Nodes
still use their non-randomized compact profile when choosing their neighbors.
In this case, they compare their compact profile with the obfuscated profiles of
candidate neighbors.

The above modifications guarantee that the actual content of the compact
profile never leaks during dissemination. This guarantees that our dissemination
protocol is differentially private [9]. Roughly speaking, a randomized algorithm
A is ε-differentially private if it produces approximately the same output when
applied to two neighboring datasets [10] (i.e. which differ on a single element).
In the context of dissemination, the datasets to randomize are vectors of user
opinions. For space reasons, we omit the proofs, which can be found in [5].

This algorithm bounds the amount of information an observer gets when
receiving an item from a user. Instead of knowing with certainty that the user
liked the item, the observer knows that the user liked it with probability 1− pf .
However, this does not make our solution differentially private. The dissemina-
tion component is, but it only ensures ε-differential privacy when a user expresses
her opinion about an item, not when she generates a new one. In the latter case
the user always forwards the item.

5 Experimental Setup

Dataset. We conducted a survey on 200 news items involving 120 colleagues
and relatives. We selected news items from a set of RSS feeds illustrating various
topics. We exposed each of them to our test users and gathered their opinions
(like/dislike). This provided us with a small but real dataset of users exposed to
exactly the same news items. To scale out our system, we generated 4 instances
of each user and news item in the experiments. While this may introduce a bias,
it does so for both our mechanism and the two solutions we compare against.
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Alternatives. We compare our approach with the following alternatives.
Cleartext profile (CT): This solution does not provide any privacy mecha-

nism. This baseline implements the decentralized CF solution presented in Sect. 2
where user profiles are exchanged in clear during the clustering process.

Differentially private approach (2-DP): This alternative, denoted by 2-DP
in the following, uses the randomized compact profile both for clustering and
for dissemination. In other words, it applies randomization during the entire
recommendation process. In particular, nodes leverage their randomized compact
profiles to compute their clustering views. Every time a user expresses an opinion
about an item, 2-DP inverses it with probability pd: this results in a differentially
private clustering protocol and a differentially private dissemination protocol.

2-DP extends the privacy guarantee provided by our dissemination protocol
to the management of interest profiles. Section 6.6 shows that 2-DP remains more
vulnerable to censorship attacks than our solution.

Recommendation Quality. We evaluate recommendation using recall and
precision. Both measures are in [0, 1]. A recall of 1 means that all interested
users have received the item. Yet, a trivial way to ensure a recall of 1 is to send
all news items to all users, potentially generating spam. Precision captures the
level of spam: a precision of 1 means that all news items reach only users that
are interested in them. The F1-Score captures the trade-off between these two
metrics [21] as their harmonic mean.

Overhead. We evaluate the overhead of the system in terms of the network traf-
fic it generates. For simulations, we compute the total number of sent messages.
For our implementation, we instead measure the average consumed bandwidth.
A key parameter that determines network traffic is the fanout of the dissemi-
nation protocol, i.e. the number of neighbors from the interest-based overlay to
which nodes forward each item.

Privacy. We measure privacy as the ability of a system to hide the profile of a
user from other users. We capture it by means of two metrics. The first evaluates
to what extent the obfuscated profile is close to the real one by measuring the
overlap rate between the two using the Jaccard index. The second measures the
fraction of items present in a compact profile out of those that can be predicted
by analyzing the presence of item vectors in the corresponding obfuscated profile.
As item vectors are public, malicious users can leverage them to guess contents
of the obfuscated profiles of other users, thereby inferring their interests.

6 Performance Evaluation

We evaluate the ability of our solution to achieve efficient information dissemi-
nation while protecting the profiles of its users. We consider both simulations,
and a real implementation deployed on PlanelLab. In both cases, we randomly
select the source of each item among all users. We refer to our solution as OPRD
(Obfuscation Profile and Randomized Dissemination) in the following.
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Fig. 3. Impact of compacting the profiles (various b-to-d ratios)

6.1 Compacting Profiles

As explained in Sect. 3.2, our solution associates each item with a (sparse) item
vector containing b 1’s out of d possible positions. When a user likes an item, we
add the corresponding item vector to her compact profile by performing a bitwise
OR with the current profile. The ratio between b and d affects the probability
of having two items sharing bits at 1 in their vectors, which in turn affects
the accuracy of the similarity computation between users. Figure 3 evaluates its
effect on performance.

Figure 3a shows the values of the F1-Score depending on network traffic for
various values of the b-to-d ratio. The points in each curve correspond to a
range of fanout values, the fanout being the number of neighbors to which a
user forwards an item she likes: the larger the fanout the higher the load on
the network. Figure 3b shows instead the corresponding precision-recall curve.
Again, each curve reflects a range of fanout values: the larger the fanout, the
higher the recall, and the lower the precision.

Interestingly, the larger the b-to-d ratio, the bigger the difference between our
solution and CT. With a low b-to-d ratio, it is unlikely for any two item vectors
to contain common bits at 1. As a result, the performance of our solution closely
mimics that of CT. When the b-to-d ratio increases, the number of collisions
between item vectors—cases in which two distinct item vectors have common
bits at 1—also increases. This has two interesting effects on performance.

The first is that the F1-Score increases faster with the fanout and thus with
the number of messages: the b = 10% curve climbs to an F1-Score of 0.4 with less
than 400k messages. The curve on Fig. 3b shows that this results from a higher
recall for corresponding precision values (bump in the b = 10% curve). The high
probability of collisions between item vectors results in some user profiles being
similar even though they do not contain many common items. This leads to a
topology in which users are less clearly clustered, and in which the items can be
disseminated more easily, which explains the high recall value.

The second effect is that the maximum F1-Score attained by the protocol
with a large b-to-d ratio (to the right of Fig. 3a) stabilizes at lower values.
Figure 3b clarifies that this results from a lower maximum recall, as indicated
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by the left endpoints of the curves corresponding to high values of b. The arti-
ficial similarities caused by a large b—advantageous with small fanout values
(small number of messages)—also create false clusters that ultimately inhibit
the dissemination of items to large populations of users. This effect is even more
prominent with values of b that set a vast majority of the bits in compact profiles
to 1 (not shown in the plot).

In the following, we set d to 500 and b to 5 for our evaluations. The values
assigned to b and d should be computed depending on the expected number of
items per user profile. Explanations about the computation of these values are
outside of the scope of this paper, but are similar to those that relate the number
of hash functions and the size of a bloom filter [20].

6.2 Filtering Sensitive Information

In our solution, the size of the filter defines how much information from the com-
pact profile appears in the obfuscated profile. The larger the filter, the more the
revealed information. Figure 4a depicts the F1-Score as a function of the num-
ber of messages. The performance increases with the size of the filter. Figure 4b
shows that this variation comes from the fact that precision strongly decreases
when the filter size decreases.

6.3 Randomizing the Dissemination

We now evaluate the impact of randomizing the dissemination process in addition
to the obfuscation protocol evaluated above (the previous results were obtained
without randomization). Figure 5a shows the F1-Score for our solution using a
filter size of 200 and several values for pf . Performance decreases slightly as
we increase the amount of randomness (for clarity, we only show pf = 0 and
pf = 0.5, the other curves being in between). Figure 5b shows that increasing
pf results mostly in a decrease in precision.
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6.4 Evaluating 2-DP

2-DP reverses the opinions of users with a probability, pd, that affects both the
construction of user profiles and the dissemination process. This differs from our
solution in which only the dissemination is randomized.

Figure 6a shows the F1-Score of 2-DP versus network traffic for various values
of pd. Performance strongly increases at low fanout values for dp = 0.1, but
decreases for larger values. A small amount of randomness proves beneficial and
allows the protocol to disseminate items more effectively with a low fanout. This
effect, however, disappears at high fanouts. Very high values of pd on the other
hand cause a drastic decrease in the F1-Score. Figure 6b shows that increasing
randomness leads to a strong decrease in precision.

Figure 7 compares the F1-Score of OPRD using a filter of size of 200 and a pf
value of 0.3, with that of CT and 2-DP using a pd of 0.3. We observe that above
2M messages, our solution provides slightly better F1-Score values than 2-DP.
Overall, however, the best performances of the two approaches are comparable.
In the following, we show that this is not the case for their ability to protect
user profiles.

6.5 Privacy Versus Accuracy

We evaluate the trade-off between privacy, measured as the ability to conceal the
exact profiles of users, and accuracy for both OPRD and 2-DP. OPRD controls
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this trade-off with two parameters: the size of the filter, and the probability pf .
2-DP controls it by tuning the probability pd to switch the opinion of the user.

Figure 8a compares their recommendation performance by measuring the F1-
Score values for various filter sizes. The x-axis represents the evolution of the
probabilities pf , for our solution, and pd, for 2-DP. We show that the F1-Score of
2-DP decreases faster than ours. The F1-Score of 2-DP with a pd of at least 0.2 is
smaller than that of our solution with a filter size greater than 100. In addition,
revealing the most popular 10% of the compact profile (fs = 50) yields similar
performance as 2-DP with pd ≥ 0.3.

Figure 8b measures the level of privacy as the overlap rate (computed with
the Jaccard index) between the compact profile and the obfuscated profile: lower
overlap rate implies more privacy. As our randomized dissemination protocol
hardly impacts the obfuscated profile, our results are almost independent of pf .
2-DP sees instead its similarity decrease with increasing pd. With pd = 0.3, 2-
DP yields an overlap rate of about 0.55 with an F1-Score (from Fig. 8a) of 0.55.
Our approach, on the other hand yields the same overlap rate with a filter size
between 150 < fs < 200, which corresponds to an F1-Score value of about 0.57.

Figure 9, instead, assesses privacy by measuring if the items in a user’s real
profile can be predicted by an attacker that analyzes the user’s public profile.
Note that in 2-DP, the real profile is the one that would exist without random
perturbations. We evaluate this aspect by measuring the recall and the precision
of predictions. Prediction recall measures the fraction of correctly predicted items
out of those in the compact profile. Prediction precision measures the fraction
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of correct predictions out of all the prediction attempts. For our solution, in
Fig. 9a, we use a pf = 0.2 to control the randomized dissemination, and vary
the filter size. For 2-DP (Fig. 9b), we instead vary pd.

The plots show that while our approach is subject to fairly precise predictions,
these cover only a small fraction of the compact profile with reasonable values
of fs. With fs = 200, the prediction recall is of about 30%. In contrast, 2-
DP exposes a higher number of items from the compact profile. With pd = 0.2
the prediction recall is 0.8 with a prediction precision of 0.6. The curves for
prediction effectiveness, computed as F1-Score values, highlight our approach’s
ability to strike an advantageous balance between privacy and recommendation
performance. The two plots also show the average popularity of the predicted
items. We observe that when the filter size decreases, the correctly predicted
items are among the most popular ones, which are arguably the least private.

6.6 Resilience to a Censorship Attack

We illustrate the resilience of our obfuscation protocol against censorship by
implementing a simple eclipse attack [18]. A coalition of censors mirrors the
(obfuscated) profile of a target node in order to populate its clustering view.
This is turn isolates it from the remaining nodes since its only neighbors are
all censors. If the user profiles are exposed in clear, the profile of the censors
matches exactly that of the target node: this gives censors a very high probability
to enter its view. Once the censors have fully populated the target node’s view,
they simply intercept all the messages sent by the target node, preventing their
dissemination. We evaluate the efficiency of this attack with two metrics: the
poisoning rate of the target’s clustering view by attackers; and the fraction of
honest nodes (e.g. not censors) reachable by the target when it sends an item.

We ran this attack for each user in the dataset. The x-axis represents the
users in the experiment sorted by their sensitivity to the attack. Figure 10a and
b depict the results obtained with a cluster size of 50, and 50 censors (we observe
similar results independently of the cluster size). In addition, this experiment
uses a filter of 125 and pf = 0.2 for our solution, and pd = 0.2 for 2-DP. We
can clearly see that 2-DP is not effective in preventing censorship attacks: only



182 A. Boutet et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

Fr
ac

tio
n

Peers

Attackers in the view
Reachable nodes

(a) 2-DP, pd = 0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  150  300  450

Fr
ac

tio
n

Peers

Attackers in the view
Reachable nodes

(b) OPRD, fs = 125, pf = 0.2

Fig. 10. Resilience to censorship

150 nodes have a poisoning rate lower than 1. This is because 2-DP computes
similarities using the randomized compact profile, which it also shares with other
users. Therefore 2-DP exhibits exactly the same vulnerability as CT. The censors
can trivially match the profile of the target node.

Our approach is more resilient to this censorship attack. It is difficult for
censors to intercept all messages sent by the target and only a third of the
nodes have a fully poisoned clustering view. The obfuscated profile only reveals
the least sensitive information to other nodes: censors only mirror a coarse-
grained sub part of the target node’s profile. Consequently, their profiles are
more likely to resemble those of users with correlated interests than to match
the target profile. Figure 8b confirms this observation by showing the overlap
between obfuscated and compact profiles. The resilience of OPRD is driven by
the size of the obfuscation filter, the smaller the filter, the more resilient the
protocol.

6.7 Bandwidth Consumption

We also conducted experiments using our prototype with 215 users running on
approximately 110 PlanetLab nodes in order to evaluate the reduction of network
cost resulting from the compactness of our profiles. The results in terms of F1-
Score, recall, and precision closely mimic those obtained with our simulations
and are therefore omitted. The bandwidth cost associated with our obfuscated
solution (not depicted for space reason) is about one third of that of the solution
based on cleartext profiles [5].

7 Related Work

Privacy is important in many applications. Several approaches [2,17] use ran-
domized distortion techniques to preserve the privacy of sensitive data. However,
[13,15] show that random distortion can seriously compromise privacy. Instead
of adding randomness to user profiles, our solution uses coarse-grained profiles
that reveal only the least sensitive information. The changes we apply to profiles
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are thus not random, but they depend on the interests of users. This makes it
harder to separate privacy sensitive information from the introduced distortion.

Some authors [1] designed a statistical measure of privacy based on differ-
ential entropy. However, it is difficult to evaluate its meaning and its impact
on sensitive data. Differential privacy was considered in [9,12]. In a distributed
settings, [4] proposed a differentially private protocol to measure the similarity
between peers. While this solution works well with static profiles, its differential
privacy is not preserved when profiles are dynamic as in recommendation sys-
tems. In addition, still in the context of recommendation systems, [16] highlights
the trade-off between privacy and accuracy.

Other approaches [7] exploit homomorphic encryption in a P2P environment
to secure multi-party computation techniques. Similarly, [3] proposes an archi-
tecture for privacy preserving CF by replacing the single server providing the
service with a coalition of trusted servers.

8 Concluding Remarks

The motivation of this work is to make distributed CF resilient to privacy and
censorship attacks without jeopardizing the quality of recommendation. We pro-
posed a mechanism that relies on two components: (i) an obfuscation scheme
revealing only the least sensitive information in the profiles of users, and (ii)
a randomization-based dissemination protocol ensuring differential privacy dur-
ing the dissemination. We showed the viability of our mechanism by comparing
it with a non-private and a fully (differentially) private alternative. However,
many questions remain open. In particular, evaluating the fundamental trade-
offs between privacy, resilience to censorship, and recommendation quality con-
stitutes an interesting research direction.
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Abstract. Rich Internet Applications are widely used as they are inter-
active and user friendly. Automated tools for crawling Rich Internet
Applications have become needed for many reasons such as content
indexing or testing for correctness and security. Due to the large size
of RIAs, distributed crawling has been introduced to reduce the amount
of time required for crawling. However, having one controller may result
in a performance bottleneck resulting from a single database simulta-
neously accessed by many crawlers. It may also be vulnerable to com-
plete data loss if a node failure occurs at the storage unit. We present
a distributed decentralized scheme for crawling large-scale RIAs capable
of partitioning the search space among several controllers in which the
information is partially stored, which allows for fault tolerance and for
the scalability of the system. Our results are significantly better than
for non-distributed crawling, and outperforms the distributed crawling
using one coordinator.

Keywords: Rich Internet Applications · Web crawling · Web applica-
tion modeling · Graph exploration · Distributed crawling · P2P networks

1 Introduction

As the web has evolved towards dynamic content, modern web technologies gave
birth to interactive and more responsive applications, referred to as Rich Internet
Applications [4], which combine client-side scripting with new features such as
AJAX (Asynchronous JavaScript and XML) [2,6], allowing the client to asyn-
chronously modify the currently displayed page. Exploring a RIA is referred
to as event-based crawling. Automated event-based crawling [3] automatically
explores all events by traveling each of the possible user-interactions within
the given page, where each page is represented by its Document Object Model
(DOM) [12].
c© Springer International Publishing Switzerland 2014
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In the context of RIAs, a study [1] has been conducted in a centralized
environment to store states within a single coordinator. This central hub has the
responsibility of partitioning the task of crawling RIAs among multiple crawlers.
We address the scalability and resilience problems when crawling RIAs by dis-
tributing states in a P2P network composed of multiple coordinators, where each
coordinator maintains a list of states and is associated with a set of crawlers.

The proposed decentralized architecture for crawling RIAs is challenging for
two reasons: (1) Crawlers may have to go through a path of ordered states before
exploring a new transition. If the states are partitioned among multiple coordi-
nators, it is unsuitable to communicate with all coordinators that are associated
with the states in this path. (2) Traversing a long path before executing a new
state is costly. Some coordination between the coordinators needs to be per-
formed to allow crawlers to execute new transitions while the length of the path
to reach each of these transitions is minimized.

To our knowledge, crawling large-scale RIAs over P2P networks while min-
imizing the cost (number of event executions), where coordinators maintain a
partial knowledge of the application model has not been investigated yet. We
make the following contributions:

– The distribution of responsibilities for the states among multiple coordinators
in the underlying P2P network, where each coordinator maintains a portion
of the application model, and a high number of crawlers are associated with
each coordinator, which allows for scalability.

– Defining and comparing different knowledge sharing schemes for efficiently
crawling RIAs in the P2P network.

The rest of this paper is organized as follows: Sect. 2 gives an overview of the
distributed RIA crawling. Section 3 introduces the distributed P2P Architecture
for Crawling RIAs with partial knowledge. The decentralized distributed greedy
strategy and the P2P crawling protocol are also described. Section 4 introduces
different knowledge sharing schemes for efficiently crawling RIAs. Finally, Sect. 5
describes the results of our simulation study and compares the efficiency of our
exploration mechanisms. A conclusion is provided in the end of the paper with
some future directions for improvements.

2 Overview of the Distributed Decentralized RIA
Crawling

2.1 Traditional Web Crawling

The typical interaction between client and server in a traditional web applica-
tion consists of sending a request for a URL so that the corresponding web page
is returned in response. Thus, each web page is identified by its URL. Crawl-
ing a traditional web application consists of finding all its URLs [10]. Improv-
ing both scalability and efficiency of crawling traditional web applications may
be achieved by partitioning the task of the crawl among multiple crawlers in
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a distributed network. Distributed crawling allows each crawler to explore only
a portion of the search space by contacting one or more units, which are respon-
sible for storing and distributing the graph exploration task, referred to as the
coordinator.

Different approaches have been used to concurrently crawl traditional web
applications [7]. In a centralized environment, a single unit is responsible for
storing a list of the newly discovered URLs and gives the instruction of loading
each unexplored URL to an idle crawler [10]. An alternative has been proposed
in a P2P [8] network in order to partition URLs among several coordinators
by means of a Distributed Hash Table (DHT) [5,14] where each coordinator
maintains a portion of the application model so that there is no single point of
failure.

2.2 RIA Crawling with One Single Crawler

In contrast to traditional web applications where each state represents a sin-
gle URL, states represent the distinct pages within the same URL in a RIA
model [3], while transitions illustrate the possible ways to move from one page
to another. Consequently, a graph with a high number of states can be derived
for each single URL in a RIA. Formally speaking, the task of crawling a RIA
consists of finding all distinct states for each seed URL [3], where the initial state
corresponds to the initial page that is reached from loading the seed URL. The
triple (SourceState, event,DestinationState) describes a transition in the RIA
model, and event describes a possible user-interaction within a source state and
leading to a destination state. The basic greedy strategy with a single crawler
consists of exploring an event from the current state if there is any unexplored
event. Otherwise, the crawler executes an unexplored event from another state
by either performing a reset, i.e. returning to the initial state and retracing the
steps that lead to this state [4], or by using a shortest path algorithm [13] to
find the closest state with an unexecuted event without necessarily performing
a reset.

2.3 Distributed Centralized RIA Crawling

A distributed centralized scheme [1] for crawling RIAs has been recently intro-
duced with the aim of reducing the required amount of time to crawl RIAs, by
allowing multiple crawlers to crawl a given RIA simultaneously. In this system, all
states are maintained by a single entity, the coordinator. This entity is responsible
for storing information about the new discovered states including the unexecuted
events on each state. All crawlers are associated with the single coordinator. That
is, each crawler may retrieve the required graph information by communicating
with the single coordinator, and then executes a single unexecuted event from its
current state if such an event exists, or may move to another state with some unex-
ecuted events based on the information available in the database. A shortest path
algorithm is performed by the coordinator to find the closest state with an unex-
ecuted event of a given crawler.
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However, maintaining the states within a single unit may be problematic
for the following reasons: (1) Scalability: Preliminary analysis of experimental
results [1] have shown that a coordinator can support up to only 20 crawlers
without becoming overloaded. (2) Fault tolerance: A failure occurring within
this unit may result in the entire loss of the graph under exploration.

2.4 Distributed Decentralized RIA Crawling

In this paper, we propose a P2P chordal ring structure [9] that is composed of
multiple coordinators that are dispersed over the P2P network as shown in Fig. 1.
Moreover, a set of crawlers is associated with each coordinator, where crawlers
and coordinators are independent processes running on different computers.

Fig. 1. Distribution of states and crawlers among coordinators: Each state is associated
with one coordinator, and each crawler gets access to all coordinators through a single
coordinator it is associated with.

3 Distributed P2P Architecture for Crawling RIAs
with Partial Knowledge

3.1 The Decentralized Distributed Greedy Strategy

In the P2P environment, states are partitioned among the coordinators. The
coordinator responsible for storing the information about a state is contacted
when a crawler reaches a new state. For each request, the coordinator returns in
response a single event to execute on this state.

However, if there is no event to execute on the current state of a visiting
crawler, the coordinator associated with this state may look for another state
with an unexecuted event among all states it is responsible for. Notice that
maintaining a possible path from the initial state to a target state within the
coordinator is necessary in RIA crawling as coordinators must be able to tell
each visiting crawler how to reach a particular state starting from the initial
state.
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3.2 Protocol Description

Data-Structures

– State: This represents a state of the application and has the following vari-
ables:
• Integer stateID: The identifier of this state.
• Set < Transition > myTransitions: The set of transitions that can be

executed from this state.
• (initial URL, Sequence < Transition >) path: A pair of the initial URL

and a sequence of transitions describing a path to this state from the initial
state.

– Transition: This represents a transition of the application and has the fol-
lowing variables:
• Enumeration status: (unexecuted, assigned, executed):

1. unexecuted: This is the initial status of the transition.
2. assigned: A transition is assigned to a crawler.
3. executed: The transition has been executed.

• Integer eventID: The identifier of the JavaScript event on this transition.
• Integer destStateID: The identifier of the destination State of this transi-

tion. It is null if its status is not executed.

Processes: We describe the processes involved during the crawl.

– Crawler: Crawlers are only responsible for executing JavaScript events in a
RIA. Each crawler has the following variables:
• Address myAddress: The address of the crawler.
• Address myCoordinator: The address of the coordinator that is associated

with this crawler.
– Coordinator: Coordinators are responsible for storing states and coordinat-

ing the crawling task. Each coordinator has the following variables:
• Address myAddress: The address of the coordinator.
• Set < State > myDiscoveredStates: The discovered states that belong to

this coordinator.
• String URL: The seed URL to be loaded when a reset is performed.

Exchanged Messages. The following section describes the different type of
messages that are exchanged between controllers and crawlers during the crawl.
Each message type has the form (destination, source, messageInformation)

– destination: This identifies the destination process. It is either an address,
or an identifier, as follows:
• AdressedByAddress: This is when a message is sent directly to a known

destination process.
• AdressedByKey: It is a message forwarded to the appropriate process

using the DHT look-up based on the given identifier in the P2P network.
– source: It maintains the address of the sending process.
– messageInformation: It consists of the message type and some parameters

that represents the content of the message.
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Message Types. We classify the message type with respect to the message
Information included in each message:

– Sent from a crawler to a coordinator:
• StateInfo(State currentState): This is to inform the coordinator about

the current state of the crawler. The message is addressed by key using the
ID of the crawler’s current state, allowing the coordinator for finding an
event to execute.
• AckJob(Transition executedTransition): Upon receiving an acknowl-

edgment, the coordinator updates the list of unexecuted events by setting
the status of the newly executed event to executed. The destination state
of this transition is updated accordingly.
• RequestJob(State currentState): RequestJob is a message sent by an

idle crawler looking for a job after having received an ExecuteEvent message
without an event to be executed. This message is forwarded around the
ring until a receiving coordinator finds an unexecuted event, or the same
message is received back by the coordinator that is associated with this
crawler, leading to entering the termination phase [11].

– Sent from a coordinator to a crawler:
• Start(URL): Initially, each crawler establishes a session with its associ-

ated coordinator. The coordinator sends a Start message in response to the
crawler to start crawling the RIA.
• ExecuteEvent((initial URL, Sequence < Transition > ) path): This

is an instruction to a crawler to execute a given event. The message includes
the execution path, i.e. the ordered transitions to be executed by the
crawler, where the last transition in the list contains the event to be exe-
cuted. Furthermore, the message may contain a URL, which is used to tell
the crawler that a reset is required before processing the executionPath.
The following four cases are considered:
∗ Both the URL and the path are NULL: There is no event to execute in

the scope of the coordinator.
∗ The URL is NULL but the path consists of one single transition: There

is an event to execute from the current state of the crawler.
∗ The URL is NULL but the path consists of a sequence of transitions: It

is a path from the crawler’s current state to a new event to be executed.
∗ The URL is not NULL and the path consists of a sequence of transitions:

A reset path from the initial state leading to an event to be executed.

The P2P RIA Crawl Protocol. Initially, each crawler receives a Start mes-
sage from the coordinator it is associated with, which contains the seed URL.
Upon receiving the message, the crawler loads the URL and reaches the initial
state. The crawler then sends a StateInfo message using the ID of its current
state as a key, requesting the receiving coordinator to find a new event to be
executed from this state. The coordinator returns in response an ExecuteEvent
message with an event to be executed or without any event. If the ExecuteEvent
message contains a new event to be executed, the crawler executes it and sends
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Fig. 2. Exchanged messages during the exploration phase.

an acknowledgment for the executed transition. It has reached a new state and
sends a new StateInfo message to the coordinator which is associated with the
ID of the new current state as a key. In case a crawler receives an ExecuteEvent
message without an event to execute, it sends a RequestJob message to the
coordinator it is associated with. This message is forwarded in the ring until a
receiving coordinator finds a job or until the system enters a termination phase
(Fig. 2).

The following section defines the P2P RIA crawl protocol as executed by the
coordinator and the crawler processes.

Coordinator process: Upon Receiving StateInfo
(stateID, crawlerAddress, currentState)
1: if stateID /∈ myDiscoveredStates then
2: add currentState to myDiscoveredStates
3: end if
4: if ∃ t ∈ currentState.transitions such thatt.status = unexecuted then
5: executionPath← t
6: t.status← assigned
7: URL← ∅
8: else if ∃ s ∈ myDiscoveredStates and t′ ∈ s.transitions such that

t′.status = unexecuted then
9: executionPath← s.path + t′

10: t′.status← assigned
11: end if
12: path←< URL, executionPath >
13: send ExecuteEvent(crawlerAddress, myAddress, path)
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Coordinator process: Upon Receiving AckJob
(coordinatorAddress, crawlerAddress, executedTransition)
1: Get t from myDiscoveredStates.transitions such that

t.eventID = executedTransition.eventID
2: t.status← executed

Coordinator process: Upon Receiving RequestJob
(coordinatorAddress, crawlerAddress, currentState)
1: if ∃ s ∈ myDiscoveredStates and t ∈ s.transitions such that

t.status = unexecuted then
2: executionPath← s.path + t
3: t.status← assigned
4: path←< URL, executionPath >
5: send ExecuteEvent(crawlerAddress, myAddress, path)
6: else
7: forward RequestJob to nextCoordinator
8: end if

Crawler process: Upon Receiving Start
(URL)
1: currentState← load(URL)
2: currentState.path← ∅
3: for all e ∈ currentState.transitions do
4: e.status← unexecuted
5: end for
6: send StateInfo(stateID, myAddress, currentState)

Crawler process: Upon Receiving ExecuteEvent
(crawlerAddress, coordinatorAddress, executionPath)
1: if executionPath �= ∅ then
2: if URL �= ∅ then
3: currentState← load(URL)
4: currentState.path← ∅
5: end if
6: while executionPath.hasNext do
7: currentState← process(executionPath.next)
8: end while
9: send AckJob(coordinatorAddress, myAddress, executionPath.last)

10: currentState.path← executionPath
11: for all e ∈ currentState.transitions do
12: e.status← unexecuted
13: end for
14: send StateInfo(stateID, myAddress, currentState)
15: else
16: send RequestJob(nextCoordinator, myAddress, currentState)
17: end if
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4 Choosing the Next Event to Explore from a Different
State

If no event can be executed from the current state of a given crawler, the coor-
dinator that is maintaining this state may look for another state with some
unexecuted events, depending on its available knowledge about the executed
transitions. In a non-distributed environment, the crawler may have access to all
the executed transitions, which allows for the use of a shortest path algorithm
to find the closest state with unexecuted events, starting from the current state.
However, in the distributed environment, sharing the knowledge about executed
transitions may introduce a message overhead and increase the load on the coor-
dinators. Therefore, there is a trade-off between the shared knowledge which
improves the choice of the next event to execute, and the message overhead in
the system. We introduce different approaches with the aim to reduce the overall
time required to crawl RIAs.

Global-Knowledge. This is a theoretical model used for comparison purpose
in which we assume that all coordinators have instant access to a globally shared
information about the state of knowledge at each coordinator.

Reset-Only. A crawler can only move from a state to another by performing a
Reset. In this case, the coordinator returns an execution path, starting from the
initial state, allowing the visiting crawler to load the seed URL and to traverse
a reset path before reaching a target state with an unexecuted event. Note that
Reset-Only approach is a simple way for concurrently crawling RIAs.

Shortest path based on local knowledge. In this case, a visited coordina-
tor may use its local transitions knowledge to find the shortest path from the
crawler’s current state leading to the closest state with an unexecuted event the
coordinator is responsible for. Unlike the Reset-Only approach where only one
path from a URL to the target state is stored, coordinators store all executed
transitions with their destination states and obtain then a partial knowledge of
the application graph. This local knowledge is used to find the shortest path from
the current state of the crawler to a state with an unexecuted event. Since the
knowledge is partial, this may often lead to a reset path even though according
to global knowledge, there exists a shorter direct path to the same state.

Shortest path based on shared knowledge. In this case, the transitions of
the StateInfo message are locally stored by intermediate coordinators when the
message is forwarded through the DHT. Therefore, all forwarding coordinators
in the chordal ring, i.e. intermediate coordinators receiving a message that is
not designated to them, may also update their transitions knowledge before
forwarding it to the next coordinator. This way, the transitions knowledge is
significantly increased among coordinators with no message overhead.

Forward exploration. One drawback of the shortest path approach is the
distribution of states among coordinators, i.e. each state is associated with a
single coordinator in the network. Consequently, shortest paths can be only
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computed to states the visited coordinator is responsible for. An alternative
consists of globally finding the optimal choice based on the breadth-first search.

The forward exploration search is initiated by the coordinator and begins by
inspecting all neighboring states from the current state of the crawler if there are
no available events on its current state. For each of the neighbor states in turn, it
inspects their neighbor states which were unvisited by communicating with their
corresponding coordinators, and so on. The coordinator maintains two sets of
states for each forward exploration query: The first, referred to as statesToV isit
is used to tell a receiving coordinator what are the states to visit next, while
the second set, referred to as visitedStates is used to prevent loops, i.e. states
that have been already explored by the forward exploration. Additionally, each
state to visit has a history path of ordered transitions from the root state to
itself, called intermediatePath. This path is used to tell a visiting crawler how
to reach a particular state with an unexecuted event from its current state.

Initially, when a visited coordinator receives a StateInfo message from a
crawler, it will pick an unexecuted event from the crawler’s current state. If
no unexecuted event is found, the coordinator picks all destination states of
the transitions on that state and adds them to the set statesToV isit. The
intermediatePath from the crawler’s current state to each of these state is
updated by adding the corresponding transition to this path. This coordina-
tor then picks the first state in the list. It first adds it to the set visitedStates
to avoid loops, and then sends a forward exploration message containing both
statesToV isit, and visitedStates to its appropriate coordinator. When a coor-
dinator receives the forward exploration message, it checks if there is an unexe-
cuted event from the current state. If not, it adds the destination states of the
transitions on that state at the beginning of the list statesToV isit after veri-
fying that these destination states are not in the set visitedStates and that all
transitions have been acknowledged on this state. It will then pick the last state
in the list statesToV isit and send again a forward exploration message which
will be received by the coordinator that is responsible for that state.

In order to prevent different coordinators from visiting states that have
already been visited and has no unexecuted events, coordinators may share dur-
ing the forward exploration their knowledge about all executed transitions on
these states, with other coordinators in the network. This allows for prevent-
ing the states with no unexecuted event that have been already explored, from
getting visited again. The knowledge sharing of executed transitions is made by
means of the messageknowledge parameter included in each of the breadth-first
search queries. The messageknowledge is updated with the variable transitions
Knowledge that is maintained by each coordinator upon receiving a Forward
Exploration message. Notice that all executed transitions must be acknowledged
on each visited state before they are added to the transitionsKnowledge vari-
able, i.e. for each reached state, a coordinator can only jump over a visited state
if and only if all transitions have been executed on that state and are known to
a given coordinator.
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The following figure describes the forward Exploration protocol, as executed
by the coordinator process upon receiving a ForwardExploration
message. The line 4 to line 13 of UponReceivingStateInfomessage are replaced
by UponReceivingForwardExplorationmessage, allowing for initiating the
Forward Exploration.

Coordinator process: Upon Receiving ForwardExploration
(coordinatorAddress, crawlerAddress, currentState,
statesToV isit, visitedStates,messageKnowledge)
1: transitionsKnowledge← messageKnowledge + transitionsKnowledge
2: if ∃ t ∈ currentState.transitions such that t.status = unexecuted then
3: executionPath← currentState.intermediatePath + t
4: t.status← assigned
5: URL← ∅
6: path←< URL, executionPath >
7: send ExecuteEvent(crawlerAddress, myAddress, path)
8: else
9: if � t ∈ currentState.transitions such that t.status = assigned then

10: for all t ∈ currentState.transitions do
11: transitionsKnowledge← t + transitionsKnowledge
12: end for
13: end if
14: for all t ∈ currentState.transitions such that t.status = executed do
15: if t.destinationState /∈ visitedStates then
16: t.destinationState.intermediatePath← currentState.intermediatePath + t
17: statesToV isit← t.destinationState + statesToV isit
18: end if
19: end for
20: noJumping ← false
21: while statesToV isit �= ∅ or noJumping = false do
22: nextState← statesToV isit.last
23: remove statesToV isit.last
24: push nextState to visitedStates
25: if nextState.transitionsKnowledge �= ∅ then
26: for all t ∈ nextState.transitionsKnowledge do
27: if t.destinationState /∈ visitedStates then
28: t.destinationState.intermediatePath← nextState.intermediatePath + t
29: statesToV isit← t.destinationState + statesToV isit
30: end if
31: end for
32: else
33: noJumping ← True
34: send ForwardExploration(nextState.coordinatorAddress, crawlerAddress,

nextState, statesToV isit, visitedStates, transitionsKnowledge)
35: end if
36: end while
37: if statesToV isit = ∅ and noJumping = false then
38: send ExecuteEvent(crawlerAddress, myAddress, ∅)
39: end if
40: end if

5 Evaluation

5.1 Simulation

The simulation software that we developed is written in the Java programming
language using the Kepler Service Release 1 of the Eclipse software development
environment. For the purpose of simulation, we used the Java SSIM simulation
package [15].
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5.2 Test-Applications

The first real large-scale application we consider is the JQuery-based AJAX
file browser1 RIA, which is an AJAX-based file explorer. It has 4622 states
and 429654 transitions with a reset cost of 12. The second and largest tested
real large-scale application is the Bebop2 RIA. It consists of 5082 states and
468971 transitions with a reset cost of 3. Notice that in an effort to minimize
any influence that may be caused by considering events in a specific order, the
events at each state are randomly ordered for each crawl.

5.3 Results and Discussion

This section presents the simulation results of crawling the test-applications
using our simulation software. Based on our preliminary analysis of experimen-
tal results, a coordinator can support up to 20 crawlers without becoming over-
loaded. For each of the test-applications, we plot the simulated time (in seconds)
for an increasing number of coordinators from 1 to 20, with steps of 5, while
the number of crawlers is constant and set to 20 crawlers. In this simulation,
we plot the cost in time required for crawling each of the test-applications and
we compare the efficiency of the proposed schemes to the Global Knowledge
scheme where all coordinators have instant access to a globally shared informa-
tion about the state of knowledge at all coordinators. Notice that the Global
Knowledge scheme is unrealistic in our setting and is used only for comparison.

The worst performance is obtained with the Reset-Only strategy, followed
by the Shortest Path with Local Knowledge strategy. This is due to the high
number of resets performed as well as the partial knowledge compared to all other
strategies. Our simulation results also show that the Shortest Path with Local
Knowledge strategy converges towards the Reset-Only strategy as the number
of coordinators increases, which is due to the low partial knowledge available on
each coordinator when the number of coordinators is high.

The Shortest Path based on shared Knowledge strategy comes in the second
position and significantly outperforms both the Reset-Only and the Shortest
Path based on Local Knowledge strategies as coordinators have more knowledge
about the application graph. However, it is worst than the Forward Exploration
strategy due to its partial knowledge.

For all applications, the best performance is obtained with the Forward
Exploration strategy. This strategy has performed significantly better than the
Reset-Only and the Shortest Path based on Local Knowledge strategies and
it slightly outperformed the Shortest Path based on shared Knowledge strat-
egy. This is due to the fact that shortest paths can be only computed toward
states the visited coordinator is responsible for, while the Forward Exploration
1 http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/ (Local version:

http://ssrg.eecs.uottawa.ca/seyed/filebrowser/).
2 http://www.alari.ch/people/derino/apps/bebop/index.php/ (Local version: http://

ssrg.eecs.uottawa.ca/bebop/).

http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/
http://ssrg.eecs.uottawa.ca/seyed/filebrowser/
http://www.alari.ch/people/derino/apps/bebop/index.php/
http://ssrg.eecs.uottawa.ca/bebop/
http://ssrg.eecs.uottawa.ca/bebop/
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Fig. 3. Comparing different sharing schemes for crawling the JQuery file tree RIA.

Fig. 4. Comparing different sharing schemes for crawling the Bebop RIA.

strategy consists of finding globally the optimal choice based on the distributed
breadth-first search.

We conclude that the Reset-Only, the Shortest Path based on Local Knowl-
edge and the Shortest Path based on shared Knowledge strategies are bad strate-
gies, while the Forward Exploration is the best choice for RIA crawling in a
decentralized P2P environment.

Our simulation results show that the simulated time for all schemes increases
as the number of coordinators increases, which explains the difficulty of decen-
tralizing the crawling system (Figs. 3 and 4).

5.4 Scalability of Our Approach

The following section illustrates the expected performance when we have 20
crawlers per coordinator, assuming that a coordinator can support up to 20
crawlers without becoming a bottleneck. The behavior of the crawling system
is similar across our test-applications. Therefore, we demonstrate the system
scalability using the largest test-application we have, which is the Bebop RIA.



198 K. Ben Hafaiedh et al.

Fig. 5. System scalability for crawling the Bebop RIA.

We consider the strategy with the best performance, which is the Forward
Exploration strategy and we plot the simulated time (in seconds) for an increas-
ing number of coordinators from 1 to 5, with 20 crawlers for each coordinator.
Our simulation results show that the crawling time decreases near optimally
as we increase the number of crawlers, which is consistent with our expecta-
tions. We conclude that our system scales with the number of crawlers when the
coordinators are not overloaded (Fig. 5).

6 Conclusion

We have presented a new distributed decentralized scheme for crawling large-
scale RIAs by partitioning the search space among several controllers that share
the information about the explored RIA. This allows for fault tolerance and
scalability. Simulation results show that the Forward Exploration strategy is
near optimal and outperforms the Reset-Only, the Shortest Path based on Local
Knowledge and the Shortest Path based on Shared Knowledge strategies. This
is due to its ability to globally find a shortest path, compared to all other strate-
gies that are based on partial knowledge. This makes Forward Exploration a
good choice for general purpose crawling in a decentralized P2P environment.
However, there is still some room for improvement: We plan to study the sys-
tem behavior when controllers become bottlenecks. We also plan to apply other
crawling strategies besides the greedy strategy.
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Abstract. Crawling web applications is important for indexing, acces-
sibility and security assessment. Crawling traditional web applications is
an old problem, for which good and efficient solution are known. Crawl-
ing Rich Internet Applications (RIA) quickly and efficiently, however,
is an open problem. Technologies such as AJAX and partial Document
Object Model (DOM) updates only make the problem of crawling RIA
more time consuming to the web crawler. One way to reduce the time to
crawl a RIA is to crawl a RIA in parallel with multiple computers. Pre-
viously published Dist-RIA Crawler presents a distributed breath-first
search algorithm to crawl RIAs. This paper expands Dist-RIA Crawler in
two ways. First, it introduces an adaptive load-balancing algorithm that
enables the crawler to learn about the speed of the nodes and adapt to
changes, thus better utilize the resources. Second, it present a distributed
greedy algorithm to crawl a RIA in parallel, called GDist-RIA Crawler.
The GDist-RIA Crawler uses a server-client architecture where the server
dispatched crawling jobs to the crawling clients. This paper illustrates a
prototype implementation of the GDist-RIA Crawler, explains some of
the techniques used to implement the prototype and inspects empirical
performance measurements.

Keywords: Web crawling · Rich internet application · Greedy
algorithm · Load-balancing

1 Introduction

Crawling is the process of exploring and discovering states of a web application
automatically. This problem has a long and interesting history. Throughout the
history of web-crawling, the chief focus of web-crawlers has been on crawling
traditional web applications. In these applications there is a one to one cor-
respondence between the state of the web application and its URL. The new
generation of web applications, called Rich Internet Applications (RIAs), take

c© Springer International Publishing Switzerland 2014
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advantage of availability of powerful client-side web-browsers and shift some part
of application logic to the client. This shift often breaks the assumption of one-
to-one correspondance between the URL and the state of the application. Thus,
unlike a traditional web application, in crawling a RIA it is not sufficient to
discover all application URLs, and it involves discovering all application states.

In a RIA, a client-side page, associated with a single URL, often contains
executable code that may change the state of the page as seen by the user. This
state is stored within the browser, and is called the Document Object Model
(DOM). Its structure is encoded in HTML and includes the program fragments
executed in response to user input. Code execution is normally triggered by
events invoked by the user, such as mouse over or clicking events. To ensure
that a crawler finds all application content it must execute every events from
every reachable application states. Thus, under the assumption that a RIA is
deterministic, the problem of crawling is reduced to the problem of executing all
events in the application across all reachable DOMs.

One can reduce the time it takes to crawl a RIA by executing the crawl
in parallel on multiple computational units. By considering each state of the
application on the client side (henceforth simply referred to as state) as a vertex
and each JavaScript event as an edge, the problem of the parallel crawling a RIA
is mapped to the problem of parallel exploration of a directed graph.

Dist-RIA Crawler [27] introduced a distributed crawler for RIAs that achieves
parallelism by having all the crawlers go to each application state, however, each
crawler only explores a specific subset of the events in that vertex. The union of
all these events covers all of the events in the state. In Dist-RIA Crawler, each
crawler node implements a breath-first search algorithm in its own scope.

Dist-RIA Crawler assigns equal number of events to each node. The under-
lying assumption is that all nodes have equal processing power, and thus equal
workload is to be assigned to the nodes. To enhance Dist-RIA Crawler to take
advantage of heterogeneous set of nodes available, this paper introduces a mech-
anism to adapt to the perceived speed and processing power of the nodes. This
algorithm is explained in Sect. 3.

In the context of RIA crawling, crawling strategy refers to the strategy the
crawler follows to decide the next event to execute. Dincturk et al. [5,12,14] stud-
ied several crawling strategies to optimize the crawl in two dimensions: reducing
the total time of the crawl, and finding new application states as soon as possible
in the crawl. Among the strategies studied, the greedy algorithm [28] scores well
in the majority of cases, and it is much better than breath-first and depth-first
search strategies. This algorithm always chooses the closest application state
with an un-executed event, goes to the state and execute the event. This paper
studies distribution of the greedy algorithm.

In Dist-RIA Crawler, the nodes only broadcast the knowledge of application
states, and no single node had the entire knowledge of the transitions between
the states. This restriction does not allow a Dist-RIA Crawler to run the greedy
algorithm: knowledge of application transitions is a prerequisite for the greedy
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algorithm. At the same time, broadcasting all transitions to the entire group of
workers can make the network a bottleneck.

This paper introduces GDist-RIA Crawler, a client-server architecture to
integrate the greedy algorithm into the architecture of the Dist-RIA Crawler.
The GDist-RIA Crawler runs the greedy algorithm on the server and runs the
crawling jobs to the client nodes. The server node is henceforth referred to as the
coordinator and the client nodes responsible to crawl the website are henceforth
referred to as the nodes. Nodes ask the coordinator for tasks to do, the coor-
dinator runs the greedy algorithm on the application graph and responds them
with a set of events to execute. Nodes execute the assigned tasks and inform the
coordinator about the transition they discovered. The coordinator is the only
computer that keeps the knowledge of application graph.

The greedy nature of the algorithm makes the GDist-RIA Crawler superior
to the Dist-RIA Crawler (which runs breath-first search) by reducing the total
number of events executed to crawl an application. The GDist-RIA Crawler is
also superior to the centralized greedy algorithm in that it harnesses the power
of multiple nodes to reduce the time it takes to crawl the target application.
Further, it does not require the load-balancing algorithm introduced in Sect. 3
that is required by the breath-first search strategy, since only idle nodes ask for
work from the coordinator, and thus no node becomes a bottleneck.

This paper contributes to the body of crawling literature by enhancing the
previously presented Dist-RIA Crawler in two ways. First by introducing an
adaptive load-balancing strategy to harness availability of heterogenous nodes.
Second by introducing a client-server architecture to concurrently crawl RIAs.
We share our empirical experience with the introduced model and some of the
challenges we faced in capturing client-side events.

The rest of this paper is organized as follows: In Sect. 3 we introduce a new
adaptive load-balancing algorithm. In Sect. 4 we give an overview of the GDist-
RIA Crawler. In Sect. 5 we describe some of the technical aspects of implementing
the GDist-RIA crawler. In Sect. 6 we evaluate various performance aspects of the
GDist-RIA Crawler. In Sect. 2 we give an overview of the related works. Finally,
in Sect. 7 we conclude this paper.

2 Related Works

This work is not the first of its kind in addressing the issue of RIA model
construction and model checking. Duda et al. [15,18,23] uses Breadth-First
search crawling strategy to crawl RIAs. Crawljax [24,25] leans toward Depth-
First search strategy. Other works aim at constructing the FSM model of the
application [1–3,22].

Model-based crawling is another area of research that gained momentum in
recent years. Benjamin et al. [5,13] present they hypercube model that assumes
the target application is a hypercube. Choudhary et al. [9,10] introduce Menu
model that assumes events reach the same target state, irrelevant of the source
state. Greedy strategy was explored by Peng et al. [28]; and Milani Fard and
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Mesbah [26] in a tool called FeedEx. An empirical comparison of different crawl-
ing strategies is done by Dincturk et al. [12,13].

Parallel crawling of traditional web applications has been explored extensively
in the literature [6–8,16,17,19,20,29,30]. Parallel crawling of RIAs however is
a new field and the only work we know of is Dist-RIA Crawler [27]. Dist-RIA
Crawler performs a breath-first search over multiple independent nodes. This
paper adds a load-balancing algorithm to the breath-first search. It also works
on the superior and more efficient greedy algorithm.

A close topic to Model-based crawling is DOM equivalency. Duda et al. [15,
18,23] used equality of DOMs to measure their equivalency. Crawljax [24,25]
uses edit distance to do so. Amalfitano et al. [2] compares the two DOMs based
on the elements in them. Imagen [21] takes into account JavaScript functions
closure, event listeners and HTML5 elements as well in identifying the state of
the application. In this paper an DOM equality, the most strict form of DOM
equivalency, is used.

3 Load-Balancing

The following notations are used in this section and the rest of the paper:

– s: Refers to an application state.
– e: Refers to an event.
– S: The total number of application states.
– Es: The number of events in the application state s.
– E: Sum of the number of events in all application states.
– N : Number of crawler nodes.
– i: A unique identification number of a node, where 1 ≤ i ≤ N .

As described earlier, in each state, Dist-RIA Crawler assigns equal shares
of work to the nodes. The load-balancing algorithm presented in this section,
refered to as adaptive approach, adjusts the portion of events assigned to each
node as the crawling proceeds. The manipulation of the portion assigned to the
nodes is used as a tool to reduce the workload of the overloaded nodes, and
increase the workload of the idle nodes. One of the nodes, called coordinator,
calculates the portion of the events to be assigned to each node at the time
of state discovery. Tasks are not assigned equally, but assigned based on the
perceived computational speed of the node and its current workload.

The purpose of the assignment is to drive all nodes to finish together. The
portion of events in state s that belong to node i is represented by Ps,i where
Ps,i ∈ [0, 1]. The coordinator uses the assignment of tasks to different nodes
as a means to increase the chance of all nodes to finish together, and no node
becomes a bottleneck. To achieve this goal, for every node i, the coordinator
uses the number of events executed so far by the node (called ETi) to calculate
the execution speed of the node. This execution speed is used to forecast the
execution rate of the node in the future. Based on the calculated speed for all
nodes, and the given remaining workload of each node, the coordinator decides
the portion of the tasks that are assigned to each node.
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3.1 Adaptive Load-Balancing Algorithm

Assume that a new state s is discovered at time t. The coordinator calculates
vi, the speed of node i, as:

vi = ETi/t (1)

where ETi is the number of events executed by node i so far. The remaining
workload of node i can be calculated as the difference between the number of
assigned events (called ATi) and the number of executed events ETi. Based on
the calculated speed vi, the coordinator calculates the time it takes for node i
to finish execution of remaining events assigned to it. This time to completion
is represented by TCi and is calculated as follow:

TCi =
ATi − ETi

vi
(2)

After the coordinator distributes the new events of a newly discovered state s
among the nodes, the time to complete all events will change. Assuming node
i will continue executing events at rate vi, the new estimation for the time to
finish, called TC ′i, is:

TC ′i = TCi +
Ps,i × Es

vi
(3)

To drive all nodes to finish together, the coordinator seeks to make TC ′ equal
for all nodes. That is, it seeks to make the following equation valid:

TC ′1 = TC ′2 = · · · = TC ′N (4)

Equation 4 can be re-written using Eq. 3:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
= · · · = TCN +

Ps,N × Es

vN
(5)

Let us take the first two expressions and re-write then:

TC1 +
Ps,1 × Es

v1
= TC2 +

Ps,2 × Es

v2
(6a)

⇒ (TC1 + Ps,1×Es

v1
− TC2)× v2

Es
= Ps,2 (6b)

Similarly Ps,2, Ps,3, . . . and Ps,N can all be expressed as follow:

∀i : 2 ≤ i ≤ N : Ps,i =
(TC1 + (Ps,1×Es)

v1
− TCi)× vi

Es
(7)

The coordinator intends to assign all of the events in the newly discovered states
to the nodes. Thus the sum of all P s for state s is 1. Therefore:

1 =
N∑

i=1

Ps,i (8)
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By expanding Ps,2, Ps,3, . . . and Ps,N in Eq. 8, using Eq. 7, we get:

1 = Ps,1 +
N∑

i=2

(TC1 + (Ps,1×Es)
v1

− TCi)× vi

Es
(9a)

⇒ Ps,1 =

1−
N∑

i=2

(TC1 − TCi)× vi

Es

1 + Es

v1×Es
×

N∑

i=2

vi

(9b)

Given the value of Ps,1 using Eq. 9, the value of Ps,2, Ps,3, . . . and Ps,N can
easily be calculated using Eq. 7.

The adaptive approach does not guarantee that all nodes finish together. The
assignment eliminates bottlenecks only if there are enough events in a newly
discovered state s to rescue every bottlenecked node. In the other words, if there
are not enough events in s, and the workload gap between the nodes is large, the
adaptive approach fails to assign enough jobs to all idle nodes and make them
busy so that all nodes finish together.

4 Overview of the GDist-RIA Crawler

This section describes the crawling algorithm that the GDist-RIA crawler uses.

4.1 Design Assumptions

The GDist-RIA Crawler makes the following assumptions:

– Reliability: Reliability of nodes and communication channels is assumed. It
is also assumed that each node has a reachable IP address.

– Network Bandwidth: It is assumed that the crawling nodes and the coor-
dinator can communicate at a high speed. This makes the network delay
intangible. Note that there is no assumption made about the network delay
between the server or servers hosting the target application and the crawling
nodes.

– Target RIA: The GDist-RIA Crawler only targets deterministic finite RIAs.
More formally, the GDist-RIA Crawler assumes that visiting a URL always
leads to the same state; and from a given state, execution of a specific
JavaScript event always leads to the same target state.

4.2 Algorithm

The GDist-RIA Crawler consists of multiple nodes. The nodes do not share
memory and work independently of each other. Nodes communicate with the coor-
dinator using a client-server architecture. Nodes start by contacting the coordi-
nator for the seed URL. After loading the seed URL (i.e. the URL to reach the
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starting state of the RIA), and after executing any path of events, a node sends
the hash of the serialized DOM (henceforth referred to as the ID of s), as well as
Es to the coordinator.

In response, the coordinator who has the knowledge of the application graph
calculates the closest application state to s with an unexecuted event and sends
a chain of events that lead to that state back to the probing node. This path may
start with a reset order by visiting the seed URL. In addition, the coordinator
sends the index of the un-executed event in the target state to the probing node.

The probing node executes the assigned event and sends the transition to
the coordinator. The coordinator again runs the greedy search algorithm and
responds to the client with a new chain of events. This process continues until
all the events in all the application states are executed. If at any point the
coordinator realizes that there is no path from the state of the probing node to a
state with unexecuted events, it orders the node to reset. In effect, by resetting
the node jumps back to the seed URL. Since all application states are reachable
from the seed URL, the node will find events to execute after the reset.
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Fig. 1. The node status state diagram.

Figure 1 shows the node state diagram of a crawler node. The crawler starts in
the Initial state. In this state, the crawler starts up a headless browser process.
It then loads the seed URL in the headless browser and goes into the Active
state. Crawling work happens in the Active state. After finishing the assigned
task, the node goes to the Idle state. The node stays in the Idle state until either
more work becomes available or a termination order from the coordinator marks
the end of the crawl. During Active and Idle states, the coordinator may order
the node to restart so it can reach states that are unreachable from the current
state of the node.
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4.3 Termination

When the following two conditions are met the coordinator initiates the termi-
nation protocol by sending all nodes a Terminate order:

– All nodes are all in Idle state.
– There is no Unassigned work in the coordinator i.e. all events in the discovered

states are assigned to the nodes.

5 Implementation

To ensure that the proposed algorithm is practical a prototype of the system was
implemented. This section explains some of the technical challenges in imple-
menting the prototype of the GDist-RIA crawler.

5.1 Running a Virtual Headless Browser

The GDist-RIA Crawler uses an engine, called JS-Engine, to handle web client
events1. The primary task of JS-Engine is to execute JavaScript events and it
uses PhantomJS 2, an open source headless WebKit, to emulate a browser with
the capability to do so.

Due to the asynchronous nature of the JavaScript, the crawler can not simply
trigger an event and consider the execution finished when the call returns. Exe-
cuting an event in JavaScript may trigger an asynchronous call to the server, or
schedule an event to happen in the future. When these events happen the state
of the application may change. More formally, two main types of the events that
may have dormant ramifications include: Asynchronous calls and Clock events.

Upon triggering an event on the target application, the JS-Engine waits
until the event and all its ramifications are over. For this to happen success-
fully, the JS-Engine requires a mechanism to keep track of all asynchronous
calls in progress and wait for their completion before continuing. Unfortunately,
JavaScript does not offer a method to keep track of AJAX calls in progress.
Thus the JS-Engine redefines send and onreadystatechange methods of XML-
HttpRequest object, the native JavaScript object responsible for performing asyn-
chronous requests, such that the target web application notifies the crawler
application automatically upon start and finish of every asynchronous call
(Listing 1.1)3,4.

1 This paper only focuses on JavaScript events and leaves other client side events such
as Flash events to the future studies.

2 http://phantomjs.org/
3 XMLHttpRequest is the module responsible for asynchronous calls in many popular

browsers such as Firefox and Chrome. Microsoft Internet Explorer however does not
use module, and instead it uses ActiveXObject.

4 Due to space limitation rest of code snippets in this section are omitted.

http://phantomjs.org/
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Listing 1.1. Hijacking Asynchronous Calls

XMLHttpRequest.prototype.sendOriginal = XMLHttpRequest.prototype.send;

XMLHttpRequest.prototype.send = function (x){

cvar onreadystatechangeOriginal = this.onreadystatechange;

this.onreadystatechange = function(){

onreadystatechangeOriginal(this);

parent.ajaxFinishNotification();

}

parent.ajaxStartNotification();

this.sendOrig(x);

};

The second source of asynchronous behaviour of a RIA with respect to the
time comes from executing clock functions, such as setTimeout. This methods
is used to trigger an event in the future. In many cases, such events can help
animating the website, and adding fade-in fade-out effects. Knowledge of the
existence of such dormant functions may be necessary to the JS-Engine. Similar
to the asynchronous events, JavaScript does not offer a method to keep track of
the time events. Thus JS-Engine re-defines setTimeout to hijack time events.

JS-Engine needs to identify the user interface events (i.e. the events that
can be triggered by the user interacting with the interface) in the page. Events
that leave a footprint in the DOM are easy to detect: Traversing the DOM
and inspecting each element can find these events. Attached events using addE-
ventListener, however, do not reflect themselves on the DOM. The final challenge
faced by JS-Engine is to detect these client-side events attached through event
listeners.

These events are added through a call made to addEventListener and are
removed through a call made to removeEventListener. To handle event listeners,
JS-Engine redefines addEventListener and removeEventListener methods such
that whenever a call is made to addEventListener an entry is added to a global
object, and when a call is made to removeEventListener the corresponding ele-
ment is removed. Hence at any given point, JS-Engine can simply check the
contents of this object to get elements with attached events.

6 Evaluation

The coordinator prototype is implemented in PHP 5.3.10 and MySQL 14.14. The
coordinator contacts the node using SSH channel. The nodes are implemented
using PhantomJS 1.9.2, and they contact the coordinator through HTTP. The
coordinator as well as the nodes are hosted on a Linux R© Kernel 3.8.0 operating
system with an Intel R© Intel R© Core(TM)2 Duo CPU E8400 @ 3.00 GHz and
3 GB of RAM. The communication happens over a 10 Gbps network.
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Fig. 2. File tree browser RIA
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Fig. 3. The total time to crawl the target RIA
with multiple nodes.

6.1 Testbed

To measure the performance of the crawler in practice a jQuery based RIA called
jQuery file tree5 was chosen. This open source library creates a web interface
that allows the user to brows a set of files and directories through a browser.
Similar to most file browsers, directories can be expanded and collapsed, leading
to the new client side states. Expanding a directory triggers an asynchronous call
to the server to retrieve the contents of that directory. Figure 2 shows a picture
of a jQuery file tree application.

6.2 Results

To capture the performance of the algorithm as the number of nodes increases,
we crawled the target RIA with different number of nodes, from 1 node to 15
nodes.

Figure 3 shows the total time it takes to crawl the RIA as the number of
nodes increase (the bar chart) and compares it with the theoretical optimal time
to crawl the RIA with multiple nodes (the line chart). The theoretical optimal
time it calculated by taking the time it takes to crawl the RIA with one node
(T1), and divide the number by the number of nodes used by the crawler. This
theoretical number serves as a base line to measure the efficiency of the crawler.
A the figure shows, a good speedup is achieved as the number of nodes increases.
The best performance is achieved with 14 nodes.

The performance of the crawler in Fig. 3 is better described by breaking down
the time into most time consuming operations. Box plots in Figs. 4, 5, 6 and 7
show this break down:

– Figure 4: This plot shows the time it takes to load the seed URL into JS-
Engine. This plot is interesting in that, this operation is the only operation

5 http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/

http://www.abeautifulsite.net/blog/2008/03/jquery-file-tree/
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Fig. 5. Time to update application
graph.

that gets more expensive as the number of crawlers increase. Compared to
normal asynchronous calls, the seed URL contains large files and libraries. As
the number of crawling nodes increase, the host server disk operation becomes
a bottleneck and a jump is observed around node 6.

– Figure 5: This plot shows the time it takes for the coordinator to maintain and
update the application graph. This includes adding new states and transitions
to the application graph stored in the MySQL database. As expected, this
operation is impacted by the number of crawlers.

– Figure 6: This plot shows the time it takes for the coordinator to calculate
the closest state from the state of the probing node with un-executed events
in it. The time to do this calculation does not vary much and it is often close
to 50 ms. The calculation itself is rather fast, and the majority of the 50 ms is
spent on retrieving the application graph from the database and constructing
the auxiliary structures in the memory. As expected, the figure shows that
the measured values are independent of the number of crawlers and are not
impacted by it.

– Figure 7: Finally this plot shows the time it takes to execute a single JavaScript
event. Based on our calculations, executing JavaScript events is fairly fast
when there is no asynchronous call to the server. Asynchronous calls make
event execution time substantially longer, and often increase the execution
time by two orders of magnitude. At the scale we ran the experiments, the
application server is not bottlenecked by executing JavaScript events. Even-
tually as the number of nodes increases, the application server will become a
bottleneck and the time it takes to execute asynchronous requests rises.

6.3 Discussion

From the presented break down, it is obvious that the most time consuming
operation is loading the seed URL into the JS-Engine. The second most time
consuming operation that happens frequently is executing JavaScript events.
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Fig. 6. Time to calculate the next task
using the greedy algorithm.
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Fig. 7. Time to execute JavaScript
events.

Executing a JavaScript event can be particularly time consuming if it involves
an asynchronous call to the server.

The design decision of performing the greedy algorithm in a centralized loca-
tion is inspired by the large discrepancy in the time it takes to find the path
greedily and the time it takes to execute the path. As the experiments presented
suggests, executing a single asynchronous event can take an order of magnitude
longer than calculating the entire shortest path.

At the scale presented in this paper, the coordinator is far from being a bot-
tleneck. As the number of crawling nodes increases, however, the coordinator is
bound to become one. In Dist-RIA Crawler [27] nodes uses a deterministic algo-
rithm to autonomously partition the search space and execute JavaScript events
in the application. As a future improvement, similar techniques can be used to
improve the GDist-RIA crawler by allowing the crawling nodes to autonomously
decide (at least partly) the events to execute.

7 Conclusion and Future Improvements

This paper studies distributed crawling of RIAs using a greedy algorithm. A new
client-server architecture to dispatch crawling jobs among the crawling nodes,
called GDist-RIA Crawler, is introduced. Upon finishing a task, nodes ask the
coordinator for the next tasks to do. The coordinator runs the greedy algorithm
to assign new task to the probing node, and responds the node with the task. A
prototype of the algorithm is implemented and experimental results are provided.

The GDist-RIA Crawler achieves a satisfactory speed up while running the
system with up to 15 crawling nodes. This speedup is a result of the low cost of
running the greedy search in the application graph at the coordinator, compared
to executing the found path by a crawler node. The GDist-RIA Crawler can be
improved in many directions, including: Multiple Coordinators to scale better,
a peer-to-peer architecture is to shift the greedy algorithm from the coordinator
to the crawling nodes, parallelizing other Model-based Crawling strategies (such
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as probabilistic model or menu model) [4,5,11,14], and Cloud Computing to be
more elastic with respect to the resources available and disappearing resources.
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Abstract. Mobile search is a significant task in information retrieval
and when coupled with context awareness technologies they can become
key tools for mobile users for Web search applications. Context awareness
techniques can increase the usability of mobile search providing personal-
ized and more focussed content. However, Contextualized Mobile Infor-
mation Retrieval still remains a challenging problem. This problem is
to identify contextual dimensions that improve search effectiveness and
should therefore be in the user’s focus. We propose a context filtering
process based on a new Preference Language Model, and a new relevance
measurement. The experiments have been performed with over than 6000
contextual dimensions. The results show the potential of our Preference
model in limiting the negative effects of contextual information overload
by using the relevance measurement.

Keywords: Mobile information retrieval · Context awareness · User’s
preferences

1 Introduction

Web search personalization is the process of customizing search results to the
needs of specific users, taking advantage of the knowledge acquired from the
analysis of the users navigational behavior and many other informations such
as user profile data and users physical context. For mobile applications, Web
Search personalization becomes a necessity for many reasons. First, mobile users
use mobile devices as one of the most important communication tools for daily
life. Thus, they expect that when they need information about something, they
will get it right away and quickly. Second, mobile phones have gone from being a
simple voice-service to become a multipurpose service platform that makes the
collect of data about user’s behavior, preferences, physical context and social
relations easier and faster. This emergence in the use of Mobiles has established
new challenges. In fact, mobile queries are often short and ambiguous that tra-
ditional search engines cannot guess the user’s information demands accurately.
c© Springer International Publishing Switzerland 2014
G. Noubir and M. Raynal (Eds.): NETYS 2014, LNCS 8593, pp. 215–229, 2014.
DOI: 10.1007/978-3-319-09581-3 15
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In addition, a user’s information need may undergo a change through search sit-
uations (context of the mobile user). For example, the same request “Broadway”
may used to mean restaurant at one particular situation and may used to mean
an American street in Manhattan city in other situations. Therefore, without
the knowledge of specific search situation, it would be difficult to recognize the
correct sense behind a query. The major deficiency of the existing search engines
is that they generally lack context modeling. To this end, an optimal Mobile
Search engine must incorporate context information to provide an important
basis for identifying and understanding users information needs. For such rea-
son, an interesting aspect emerging in Mobile Information Retrieval (Mobile
IR) appeared recently, that is related to the several contextual dimensions that
can be considered as new features to enhance the user’s request and solve “the
mismatch query problem” [14]. Hence, in the mobile information environment,
the context is a strong trigger for information needs. So the question is “What
contextual dimensions reflect better the information need and lead to the appro-
priate search results?” Owing by this question, the challenge is about selecting
the best contextual information that may help to personalize web search and
meeting the users demands.

In this paper, we focus our research efforts on an area that has received less
attention which is the context filtering. We have brought a new approach that has
addressed two main problems: how to identify the user’s context dependency of
mobile queries? And how to filter this user’s context and select the most relevant
contextual dimensions? This article is organized as follows. In Sect. 2, we give
an overview of Context awareness for Mobile Search. In Sect. 3, we describe
our context model. Then in Sect. 4, we present our Filtering approach. Then,
in Sect. 5, we discuss experiments and obtained results. Finally, by Sect. 6, we
conclude this paper and outline future work.

2 Related Works on Contextual Mobile Search

Mobile context presents challenges of changing location and social context,
restricted time for information access, and the need to adapt resources with con-
current physical characteristics of mobile devices. Understanding mobile infor-
mation needs and associated interaction challenges, is fundamental to improve
search browsers. Therefore, Mobile IR systems have evolved to take into account
both the user’s physical environment and situation. Thence, it was so crucial to
integrate context-aware techniques to the aim of modeling contextualized mobile
search browsers. The work on context-aware approaches focuses on the adapta-
tion of Mobile IR systems to users needs and tasks. These approaches modelize
the user’s current context, and exploit it in the retrieval process. Various studies
such as [30] and [12] are conducted in order to understand the nature of the
information needs of mobile users and their research practices. Indeed, in the
context of mobile search, users have less time and screen space for browsing long
lists of results. According to [30], users describe their needs in shorter query
and using less number of queries by session. Also, they usually consult only the
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first page of results. Taking this into account, some recent papers have investi-
gated several techniques of context awareness in Mobile IR to recognize user’s
intention behind the query such as Bouidghaghen et al. [2], and especially to
personalize web search such as Tsai et al. [9], Pitkow et al. [28] and Ahn et al.
[27]. Personalized web search aims at enhancing the user’s query with the his
context to better meet the individual needs. To this aim, many research efforts
such as [1,4,6,24,29] are performed to modelize context, allowing to identify
information that can be usefully exploited to improve search results. The con-
text can include a wide range of dimensions necessary to that characterize the
situation of the user. Also, the situation and information demand have more
dynamic change in a mobile environment. Owing to the above characteristics, a
big challenge appeared which is about selecting the best contextual information
that may help to personalize web search and meeting the users demands.

The Related work in the domain can be summarized in terms of three cat-
egories. Firstly, approaches which are characterized as “one dimension fits all”
using one same contextual dimension to personalize all search queries. Secondly,
approaches such as [20] that exploit a set of predefined dimensions for all queries
even though these latter are submitted by different users in different contexts.
And finally, approaches that are performed to the aim of filtering the user’s con-
text and exploit only the relevant information to personalize the mobile search:
in this category, our work has proceeded in terms of filtering the mobile con-
text and identifying relevant dimensions to be latter using in contextual ranking
approach. The one dimension fits all approaches consider user’s mobile context
as one dimension at a time sessions. In this category, several research efforts are
proposed in the literature to modelize the current user’s situation, where loca-
tion is probably the most commonly used variable in context recognition. Some
of these approches such as Bouidghaghen et al. [2], Welch and Cho [21], Chirita
et al. [4], Vadrevu et al. [23] and Gravano et al. [18] have build models able to cat-
egorize queries according to their geographic intent. Based on localization as the
most relevant factor, they define query as “Global” or “local implicit”. Indeed,
they identify the query sensitivity to location in order to determine whether the
user’s need is related to his geographic location (local implicit) or not (Global).
For local search queries, those approaches personalize the search results using
current location. In the same category, Welch and Cho [21], Vadrevu et al. [23]
and Gravano et al. [18] use the classification techniques to achieve this goal.
Bouidghaghen et al. [2] propose a location query profile in order to automat-
ically classify location sensitive queries on “Local implicit, Local explicit and
Global”. Location can be considered as an important context dimension but in
this field it is not the only one, others can be taken into account. Some queries
have no intent for localization (e.g. Microsoft office version, Horoscope) but they
are “Time” sensitive. With the aim of recognizing user’s intention behind the
search, using a unique predefining context’s dimension is not accurate. For exam-
ple, when a mobile user is a passenger at the airport and he is late for check-in,
the relevant information often depends in more than time or localization. It is
a complex searching task. So, it needs some additional context dimensions such
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as activities and dates (e.g., flight number inferred from the user’s personal cal-
endar or numeric agenda). As another example let us consider a group of users
are preparing for an outing with friends for the weekend. If the query “musi-
cal event” is formulated by one of them, the query evaluation should produce
a different contextual dimensions such as location, time and preferences. The
second category of approaches propose to use a set of contextual dimensions
for all queries and do not offer any context adaptation models to the specific
goals of the users. Several works in this category use ‘Here’ and ‘now’, both as
the main important concepts for mobile search. Thus, projects as MoBe project
of Coppola et al. [5] and Castelli et al. [3] operate including Time and Loca-
tion as main dimensions besides others in which Bayesian networks are used
to automatically infer the user’s current context. Most of these approaches use
generally classification techniques, and few studies have tried to use semantics
and ontological modeling techniques for context such as Gross and Klemke [19],
Jarke et al. [10] and Aréchiga et al. [1]. In Mymose system, Aréchiga et al. [1]
propose a multidimensional context model, which includes four main dimensions
(Spatial, Temporal, Task and Personal model). Those dimensions are supported
by ontologies and thesaurus to represent the knowledge required for the system.
While all aspects of the operational mobile environment have the potential to
influence the outcome search results, only a subset is actually relevant. For such
reason, the last category of approaches such as [11,17] are proposed to iden-
tify the appropriate contextual information in order to tailor the search engine
results to the specific user’s context. Kessler [11] approach is built to automati-
cally identifying relevant context parameters. He proposes a cognitively plausible
dissimilarity measure “DIR”. The approach is based on the comparison of result
rankings stemming from the same query posed in different contexts. This mea-
sure aims to calculate the effects of context changes on the IR results. Another
research effort, Stefanidis et al. [17], specify context as a set of multidimensional
attributes. They identify user’s preferences in terms of their ability to tailor with
the context state of a query. In order to improve understanding the user’s needs
and to satisfy them by providing relevant responses, we propose a novel model
inspired by the last category of approaches. It allows to define the most relevant
and influential user’s context dimensions for each search situation. Comparing
to the previously discussed approaches, our main contribution is to filter the
mobile user’s context in order to tailor search results with the intention behind
his query. We formulate the context filtering problem as the problem of iden-
tifying those contextual dimensions whic are eligible to encompass the user’s
preferences. We provide a new score that allows to compute the relevance degree
of each dimension. The idea is: “the more relevant the context dimension is, the
more effective the personalized answer can be”.

3 Our User’s Context Model

Within Mobile IR research, context information provides an important basis for
identifying and understanding users information needs [7]. In fact, mobile devices



A New Preference Based Model for Relevant Dimension Identification 219

Fig. 1. An instance of a modeled context.

provide more context information than personal computers, such as location
information, Time, SMS Clicks, Friends Contacts, Tags, Profiles, Traffic, and
certain social networks. All those can be considered as context dimensions and
then be used as additional features to create an efficient representation of the
user’s situation. In our work, the context is modeled through a finite set of
special purpose attributes, called context dimensions ci, where ci ∈ C and C
is a set of n dimensions {c1, c2..., cn} For instance we adopt a context model
that represents the user’s context by only three dimensions Location, Time,
Activity. The Fig. 1 shows the concept of user’s context C with an instance of a
finite set of contextual dimensions Location, Time, Activity. The user’s current
context is the user’s physical, environmental and organizational situations in the
moment of search. It can be considred as the current state at the time of the
query submission. For example, when a query such as “Restaurant” is formulated
by a parent, his current situation can be definite as Location: Sousse - Tunisia;
Time: Evening-12/09/2012; Activity: Outing with family. We present in the next
section our filtering model including the main features that allow to filter the
user’s current context and specify the most relevant contextual dimensions to
narrow the search.

4 Context Filtering Process Based on Preference
Language Model

A user’s context is multidimensional and contains lots of information. Those
dimensions are changing from one situation to another and may have an impor-
tant effect for a query and haven’t the same importance for another. Hence,
including all context’s dimensions for each search can decrease the reliability
and robustness of search engine in terms of response time and efficiency. Thus,
we propose to filter the context in order to retain only relevant dimensions. In
order to identify relevant contextual dimension we measure the effect of each
dimension on mobile queries performance according to two language models:
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– Query Language Model proposed by Cronen et al. [22]
– and our Preference Language Model, which we proposed and described in this

section.

4.1 Query Language Model

Query Language Model is used in many research such as [8] and [2] to the aim
of analyzing the user’s query and its sensibility to the context. However the best
way to analyze a context dimension is to look at its effect on the query. Thence,
its effect on the type of documents the query retrieves. In our work we use the
Query language model approach as described in [22] which allow to examine the
performance of the query. To this aim, we follow those steps:

– Step 1: We begin by selecting the top N (cf. Sect. 5) search results of intial
user’s query (Qin).

– Step 2: In the second step, we refine the query by adding the contextual
dimension ci. We obtaine a refined query (Qci

) for which we select also the
top N search results.

– Step 3: We measure the effect of the dimension ci on the query outcomes
by comparing the search results of both intial query (Qin) and refining query
(Qci

) using the language model as described in [22]. The assumption is that
the more the dimension enhance this model the more it is relevant.

In a language modeling approach [13,16], we rank the documents in a collection
according to their likelihood of having generated the query. Given a query Q
and a document D,this likelihood is presented by the following equation:

P (Q | D) =
∏

w∈Q

P (w | D)qw (1)

We denote, qw as the number of times the word w occurs in query Q which was
restricted to 0 or 1. Thus, in [25] the document language models P (w | D), are
estimated using the words in the document. This ranking allows to build a query
language model, P (w | Q), out of the top N documents:

P (w | Q) =
∑

D∈R

P (w | D)
P (Q | D)

∑
D∈R P (Q | D′)

(2)

Where R is the set of top N documents. At this point, we use Kullback-Leibler
divergence to calculate the gap between the query language models (unigram
distributions) of (Qin) and (Qci

). (Qin) is the initial query submitted by the
user. (Qci

) is the refined query by adding the contextual dimension ci to (Qin).
Thus, This gap between the both models, can be considered as the effect of the
contextual dimension ci (cf. Sect. 5.1) on the mobile query performance.

Dkl (P (w | Qci
) , P (w | Qin)) =

∑

w∈Q

P (w | Qci
) log

P (w | Qci
)

P (w | Qin)
(3)

Where P (w | Qin), is the language model of the initial query, used as a back-
ground distribution. P (w | Qci

) is the language model of the refined query.
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4.2 Preference Language Model

In the following, we propose a preference language model to incorporate user’s
preferences information into the language model so that we induce the effictivness
of a query to return results related to user’s preferences. Which mean, its ability
to describe well the user’s information need. Thus we wish to examine some
preferences profile of a query Q. E.g., Searching for some “events”, the mobile
search system must take into account the user’s preference “Art”. Hence relevant
retrieved results must contain cultural or musical events. By analogy to the
“Query Language Model”, we create a “Preferences Language Model” described
as the maximum likelihood estimates.

P̂ (Pre | Q) =
∑

D∈R

P̂ (Pre | D)
P (Q | D)

∑
D∈R P (Q | D)

(4)

Where “Pre” is a term that describes a user preferences category from a data
base containing all user’s preferences (his profile). For example if a user is inter-
ested by “Music” a set of terms such as (Classical songs, Opera, Piano, Saxo-
phone) are defined as “Pre”. The maximum likelihood estimate of the probability
“Pre” under the term distribution for document D is:

P̂ (Pre | D) = {1 if Pre ∈ PreD

0 Otherwise
(5)

Where PreD is the set of categories names of interests contained in document D
(e.g. Art, Music, News, Cinema, Horoscope . . . ). The profile, that describes the
user’s interests and preferences could be explicitly set by the user or gathered
implicitly from the user search history. In our experiments, a profile is collected
explicitly before starting the search session. Similar to a regular query language
model, the preference model also needs to be smoothed to solve the zero prob-
ability problem and to penalize common terms. To this aim, We consider a
popular smoothing method Jelinek-Mercer [26]. We use the distribution of the
initial query Qin(reference-model) over preferences as a background model. This
background model is defined by:

P̂ (Pre\Qin) =
1
|N |

∑

D

P̂ (Pre | D) (6)

Thus, the smoothing method is given by:

P
′
(Pre | Q) = λP̂ (Pre | Q) + (1− λ) P̂ (Pre | Qin) (7)

Given λ as a smoothing parameter.
Figure 2 shows an example for the effect of different dimensions on the Pref-

erence Language Model (preferences profile) of the query “Olympic sports”. For
our experiments, we choose as dimensions three contextual informations which
are Time, Location and Activity. In this example the initial query presents a flat
preferences profile, while Time, location and Activity dimensions have profiles
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Fig. 2. Comparison between the preferences profiles of the query “Olympic sports”, an
enhanced queries using three contextual dimensions.

with distinctive peaks spread over many user’s preferences. Looking in depth
on this graph of Fig. 2, we can see the difference between calculated preferences
profile for the initial query P (Pre | Qin)) and preference profile for the query
enhanced by a contextual dimension ci is “Time” P (Pre | QTime). Indeed, Time
dimension makes a clear improvement for some preferences (Results, Taekwando)
over the others profiles. But for some others user’s preferences P (Pre | QTime)
is less or equal to P (Pre | Qin)). The assumption of this analysis is that irrele-
vant dimension’s Preference Language Model show no variance comparing to the
initial query Preference Language Model. Given that, this contextual dimension
is not important for a query and shouldn’t be selected. In contrast, a relevant
dimension provides query Preference Language Model with at least one peak.
At this point, we need to analyze a context dimension’s effect on the Preference
Language Model. Thence, we follow those steps:

– Step 1: We begin by selecting the top N (cf. Sect. 5) search results of intial
user’s query (Qin). Then we calculate the Preference language model of Qin.

– Step 2: In the second step, we refine the query by adding the contextual
dimension ci. We obtaine a refined query (Qci

) for which we select also the
top N search results. Also, Then we calculate the Preference language model
of Qci

.
– Step 3: We measure the effect of the dimension ci on the Preference language

model using Kullback-Leibler divergence.
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Using Kullback-Leibler divergence, we can estimate the effect of the dimension
on Preference Language Model, which is initially defined as:

Dkl (P (Pre | Qci
) , P (Pre | Qin)) =

∑

Pre∈PreD

P (Pre | Qci
) log

P (Pre | Qci
)

P (Pre | Qin)
(8)

Where P (Pre | Qci
) is Preferences Language Model for the refined query Qci

using a contextual dimension ci. At this level, we need to calculate the general
effect (improvement/non improvement) of the dimension on Preference Language
Model as on Query Language Model to predict its relevance degree.

4.3 Identification of Relevant Dimensions Using Relevance
Measurement

We introduce a new measure that allows to specify the relevance of a contextual
dimension. It defines the performance of the dimension at enhancing the mobile
query. Our measure named “Relevance score” combines linearly the effect of such
dimension on Query Language Model and Preference Language Model using the
following formula:

Relevance (ci, Q) =
[Dkl (P (Pre | Qci

) , P (Pre | Qin)) +Dkl (P (w | Qci
) , P (w | Qin))] (9)

with Relevance(ci, Q) on [0, 1]. where ci and C represent respectively, contextual
dimension and user’s current context. Once this Relevance score is calculated,
we define experimentally a threshold value γ. A relevant dimension ci must
have a relevance degree that goes beyond γ, otherwise it is considered irrelevant
and will be not including in the personalization as an element of the accurate
user’s current context C. The proposed context-based measurement model can
be expressed in a formal manner with the use of basic elements toward mathe-
matic interpretation that build representative values from 0 to 1, corresponding
to the intensity of dimension’s relevance. Being null values indicative of non
importance for that dimension (it should not be integrated in personalization of
mobile information retrieval process). In the experiment, we will try to define
the threshold that a dimension should obtain to be classified as relevant or irrel-
evant information. In the next section, we will also evaluate the effectiveness of
our metric measure “Relevance score” to classify the contextual dimensions.

5 Experimental Evaluation

Our goal is to evaluate the “Relevance score” measure. In this section, we present
our training and test collection, our evaluation protocol, which has been greatly
improved compared to [15], then we describe and discuss the obtained results.
We have improved our system performance which is achieved, through the size
augmentation of our database (from 300 to 2200 queries), and the creation of a
new user’s context model with over than 6000 dimensions. which enhances the
stability and reliability of our system.
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5.1 Dataset

For the experiments reported in this work, we used a real-world dataset which
is a fragment submitted to the America Online search engine. We had access to
a portion of the 2006 query log of AOL1. We had relied on some experts in the
field of Information Retrieval to pick manually 2200 initial set of queries based
on the signification of their terms. Also experts have select queries which may
be related to the user’s environmental and physical context. After a filtering
step to eliminate duplicate queries, we obtained a set of 2000 queries. Where
three contextual dimensions (Time, Location and Activity) are assigned to each
query to indicate the user current situation. To obtain the top N Web pages
that match each query, we use a Web search engine namely Google via the
Google Custom Search API2. We considered only the first 10 retrieved results,
which is reasonable for a mobile browser, because mobile users aren’t likely
to scroll through long lists of retrieved results. Then, for each query in the test
set we classified manually their related contextual dimensions. Each dimension is
associated to a label to indicate whether it is irrelevant or relevant. The criterion
to assess whether a given dimension is relevant, is based on whether the mobile
user expects to see search results related to this contextual information ordered
high on the results list of a search engine. E.g., for a query such as “weather”
the user can express his intention to see search results related higher to location
and time information. Since, these dimensions are judged relevant. These steps
left us, in our sample test queries, with 34 % irrelevant dimensions and 65.6 %
relevant.

5.2 Evaluation Protocol: Assessment of the Classification
Performance of Relevance Score

Our experimental design allows us to evaluate the effectiveness of our technique
to identify user’s relevant contextual dimensions. For this purpose, we propose
an evaluation methodology of obtained results using manually labeled contextual
dimensions. In fact, a contextual dimension’s class is correct only if it matches the
labeled results. Using the Relevance score as a classification feature, we build a
context intent classifier. In order to compute the performance of the classifiers in
predicting the parameter types, we use standard precision, recall and F-measure
measures. We use also classifiers implemented as part of the Weka3 software.
We test the effectiveness of several supervised individual classifiers (Decision
trees, Naive Bayes, SVM,and a Rule-Based Classifier) in classifying contextual
parameters using Relevance score as classification feature.
1 http://www.gregsadetsky.com/aol-data/
2 https://developers.google.com/custom-search/
3 http://www.cs.waikato.ac.nz/ml/weka/

http://www.gregsadetsky.com/aol-data/
https://developers.google.com/custom-search/
http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 3. Distribution of Relevance measure for geographic dimension (Location).

5.3 Results and Discussion

Analysis of Relevance Score Measure. At this level we analyze the “Rel-
evance score” distribution for each category of contextual parameters. Figure 3
shows distribution of Relevance score measure over different values of Location
parameters for different queries. In this figure we notice that there is a remarkable
drops and peaks in the value of ’Relevance score’ for the Location parameters.
Moreover, the distribution of this measure for temporal parameters, presented
in Fig. 4, has a clear variation with multiple values which clearly support our
assumption here. Indeed, the relevance of a contextual parameter is independent
on his type or value but it depends on the query and the intention of mobile
user behind such query. Hence, Relevance score measure hasn’t a uniform distri-
bution for those contextual parameters. It is still depending on the user’s query.
We can conclude that the measure based on language model approach succeeds
to measure the sensitivity of user’s query to each contextual dimension.

Table 1 presents the two lowest and two highest values for each parameter
class, obtained from our sample test queries and their user’s context. Those
values allow to confirm a possible correlation between parameter intent class and
’Relevance score’ feature. Hence, we define a threshold value for each parameter
class. And in the following, we will evaluate the effectiveness of thus thresholds
to classify those dimensions.

Effectiveness of Contextual Parameter Classification. Our goal in this
evaluation is to assess the effectiveness of our classification attribute ‘Relevance
score’ to identify the type of contextual dimension from classes: relevant and
irrelevant. As discussed above, we tested different types of classifiers and Table 2
presents the values of the evaluation metrics obtained by each classifier. In fact,
all the classifiers were able to distinguish between the both contextual parameter
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Fig. 4. Distribution of Relevance measure for temporal dimension (Time).

Table 1. The fourth lowest and highest values for each dimension class.

Query Parameters Relevance score Class

“house for sale” Activity: At home 0.432 Relevant

“check in airport” Time: 12/09/2012 0.550

“house for sale” Location: Tunisia 0.985

“check in airport” Activity: Walking 0.999

“outdoor tiki hut bars” Time: 30/08/2012 0.147 Irrelevant

“eye chart” Activity: Working 0.169

“weather” Activity: Walking 0.199

“new bus federation” Activity: Study 0.279

classes. Fmeasures, Precision and Recall ranging from 96 % to 99 %. But “SVM”
classifier achieves the highest accuracy with 99 % for the F-measure. This first
experiment implies the effectiveness of our approach to accurately distinguish
the both types of user’s current contextual information. It especially allows to
correctly identify irrelevant contextual information with an evaluation measure
over 1. When relevant achieving over 97 % classification accuracy.

In a second experiment, we evaluated the classification effectiveness of our app-
roach comparatively to DIR approach developed by Kessler [11]. The DIR mea-
sure enables distinguishing between irrelevant and intended context. Whence, we
compared the two approaches only on this basis. We implemented the DIR app-
roach using the SVM classifier which achieves one of the best classification perfor-
mance using one simple rule: analyzing the individual results in two rankings for
the same query expanded by different contextual parameters. Intended or relevant
contextual information must have an impact that goes beyond a threshold value.
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Table 2. Classification performance obtained using a classifier with Relevance score
as a feature.

Classifier Class Precision Recall F-measure Accuracy

SVM Relevant 0.978 0.989 0.981 99 %

Irrelevant 1 1 1

Average 0.991 0.99 0.99

JRIP rules Relevant 0.911 0.953 0.924 96.3 %

Irrelevant 1 1 1

Average 0.965 0.962 0.962

Bayes Relevant 1 0.933 0.966 97 %

Irrelevant 1 1 1

Average 0.973 0.971 0.971

J48 relevant 1 0.933 0.966 97 %

irrelevant 1 1 1

average 0.973 0.971 0.971

Table 3. Classification performance on Relevant and Irrelevant dimensions: compari-
son between our approach and DIR measure approach.

Approach DIR approach Our approach: Relevance score

Class Relevant Irrelevant Average Relevant Impro Irrelevant Impro Avrege Impro

Precision 1 0.968 0.982 1 0% 0.984 1.7% 0.991 1%

Recall 0.956 1 0.981 0.978 2.3% 1 0% 0.99 1%

F-measure 0.977 0.984 0.981 0.989 1.3% 0.992 0.9% 0.99 1%

Accuracy 98% 99.5% 1.5%

Hence, we should obtain a high value of DIR measure to classify a context as
relevant. Table 3 presents the precision, recall, F-measure and accuracy achieved
by the SVM classifier according to the both approaches. The result of compar-
ison show that, our approach gives higher classification performance than DIR
approach with an improvement of 1 % at accuracy. This improvement is mainly
over Relevant context parameters with 1.3 % at Recall.

6 Conclusion

We proposed in this paper a filtering model for mobile user’s context that eval-
uates the quality of contextual dimensions using different features and selects
the most appropriate among them. Those dimensions will improve the retrieval
process to produce reliable and in context results. This approach is based on
the language models approach. We have built a new metric measure namely
Relevance score that allows to effectively classify the contextual dimensions on
Relevant and irrelevant according to their ability to enhance the search results.
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Our experimental evaluation on a part of the AOL corpus shows that some con-
textual dimensions are more relevant and influential then others. Whence, we
evaluated the classification performance of our metric measure comparatively
to a cognitively plausible dissimilarity measure namely DIR. For future work,
we plan to extend filtering model using others contextual dimensions and to
exploit our proposed automatic method to personalize mobile Web search. We
will customize the search results for queries by considering the determined user’s
contextual dimensions classified as relevant.

References
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Abstract. Video transmission over Mobile Ad hoc Networks (MANETs) is a
challenging task due to instability and limited resources in such networks.
Transmission of video streams through multipath routing protocols in MANETs
can enhance the quality of video transmission. To this end, we propose an
extension of MP-OLSR (Multipath Optimized Link State Routing Protocol),
named FQ-MP-OLSR (Fuzzy based Quality of service MP-OLSR), which
integrates two fuzzy systems. The first receives as inputs three links Quality of
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Ratio (SINR) and return as output multi-constrained QoS metric used to find the
best paths. The second fuzzy system is applied to adapt cost functions used to
penalize paths previously computed by Dijkstra’s algorithm. To schedule mul-
timedia traffic among heterogeneous multiple paths, FQ-MP-OLSR integrates
also the Weighted Round-Robin (WRR) scheduling algorithm, where the path
weights, needed for scheduling, are computed using the multi-constrained QoS
metric provided by the first fuzzy system. These mechanisms allow FQ-MP-
OLSR to improve video QoS and QoE (Quality of Experiment), against the MP-
OLSR that uses classical mechanisms such as hop count as single metric, cost
functions without adaptation and Round-Robin (RR) as scheduling algorithm.
Implementation and simulation experiments with Network Simulator NS2 are
presented in order to validate our proposed approach. The results show that FQ-
MP-OLSR achieves a significant improvement of the video streaming quality in
term of QoS and QoE.
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1 Introduction

Mobile Ad hoc Networks (MANETs) are characterized by a dynamic topology and
non-centralized administration. The instability and limited resources have large impacts
on the performances of video transmission over MANETs. The video transmission
demands high throughput, low data loss and low delay. Consequently, for a good
quality video transmission, it is important to enhance video transmission taking account
multiple Quality of Service (QoS) parameters. Using multipath routing protocols in
MANETs allows to improve load distribution, reliability, fault tolerance, security,
energy preservation and QoS [1]. To this end, we propose, in this paper an extension of
MP-OLSR (Multipath Optimized Link State Routing Protocol) [2], named FQ-MP-
OLSR (Fuzzy based Quality of service MP-OLSR). Like original MP-OLSR, FQ-MP-
OLSR uses the multipath Dijkstra’s algorithm without eliminating nodes or links which
compose the previous computed paths, the aim is to obtain (in case when it is not
possible to find node or link-disjoint paths) the inter-twisted multiple paths that may
share one or more links. The multipath Dijkstra’s algorithm obtains considerable
flexibility and scalability by using the cost functions, route recovery and loop detection
mechanisms in order to improve QoS of MANETs. Rather than using hop count as a
single metric in MP-OLSR, FQ-MP-OLSR uses a new routing metric based on multiple
link quality metrics to find the best path in term of QoS. This metric is computed by the
first proposed Fuzzy Logic Controller (FLC). As well, FQ-MP-OLSR adapts the cost
functions as function of network conditions by using second proposed FLC. Finally,
FQ-MP-OLSR integrates Weighted Round-Robin (WRR) scheduling algorithm for
supporting heterogeneous multiple paths with different QoS. Implementation and
simulation experiments with Network Simulator NS2 are presented in order to validate
our proposed goals. The results show that our enhancement achieves a significant
improvement of the quality of video streaming in term of QoS and QoE metrics.

This paper is organized as follows: Sect. 2 summarizes some related works.
Section 3 describes the MP-OLSR functionality. Section 4 presents our improvement
made to MP-OLSR. Section 5 describes simulation parameters and results. Finally,
Sect. 6 concludes the paper.

2 Related Works

Several multipath routing protocols based OLSR have already been proposed. Xuekang
et al. [3] proposed an OLSR multipath version, which compute two nodes-disjoint best
paths from source to a destination. The first path is used to send data and the second is
alternate and is used only if the first breaks, to select paths that improve QoS, authors
introduces a new cross-layer parameter which is define as the ratio between SNR
(Signal to Noise Ratio) and delay metrics.

Hung et al. proposed in [4, 5] respectively, two new multiple paths variant of OLSR
called LIA-MPOLSR (Link-disjoint Interference-Aware Multipath OLSR) and HIA-
MPOLSR (Hybrid Interference-Aware Multipath OLSR) which are based interference
metric calculated by considering the geographic distance between nodes. The perfor-
mance evaluation shows that LIA-MPOLSR and HIA-MPOLSR enhances the
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performances in terms of packet delivery ratio, routing overhead and normalized
routing load. However, the metric based interference used to select paths is not always
available, GPS (Global Position System) is needed to know position of neighbors for
computing this metric.

Adoni et al. [6] proposed a multipath OLSR variant based energy metric, the aim is
to get energy optimization of all nodes in the network, and make energy expenditure of
all nodes uniform. Another multipath OLSR variant based energy and moving mode
metrics is proposed by Huang et al. [7], the aim is to increase living time of nodes and
links and reliability of selected paths. However, moving mode metric require neighbors
nodes position, so this information is not always available.

All cited multipath variants of OLSR use a removing strategy of nodes or links to
find disjoint paths. However, under particular cases, this strategy could not find disjoint
paths. Thus, this strategy sometimes leads to find paths with a high number of hops,
which increases packets transmission delay and causes a high rate of broken links and
then a high rate of packet loss.

In our knowledge, the only multipath variant of OLSR trying to increase the chance
of constructing disjoint paths is MP-OLSR proposed by Yi et al. [2, 8]. Thereafter, we
propose to improve this variant while keeping its advantages. Before presenting our
improvements made to MP-OLSR, we describe the basic functionality of MP-OLSR in
the next section.

3 Multipath Optimized Link State Routing Protocol
(MP-OLSR)

MP-OLSR [2] is a multipath enhanced variant of the standard OLSR [9]. MP-OLSR
improves quality of data transmission by enhancing packet delivery ratio and load
balancing. MP-OLSR inherits some characteristics of OLSR, each node in the Ad hoc
network maintains network topology using a periodic exchange of protocol messages
such as HELLO and Topology Control (TC) messages. To reduce TC messages, like in
OLSR, MP-OLSR uses a Multipoint Relays (MPR) selection algorithm. Differently to
OLSR, MP-OLSR does not maintain routing tables to all reached nodes in the network.
The multipath computation procedure is made in a source node by following an on-
demand computation, so the source node triggers multipath computation when there are
data packets need to be sent to a destination node.

Based on the network topology database, MP-OLSR computes the multiple paths
using multipath Dijkstra’s Algorithm (see Algorithm 1) without eliminating nodes or
links that compose the computed paths. The aim is to construct multiple paths in case
where the ad hoc network does not contain strictly node-disjoint or link-disjoint paths.

As presented in Algorithm 1, the MultipathDijsktra function computes and returns
a set of t paths P = (P1,P2,…,Pt), connecting a source node s and a destination node d,
from a graph G = (V,E,c), where V is the set of vertices (i.e. nodes), E ⊂ V × V is the
set of edges (i.e. links) and c : V� V ! R�þ is the cost function which define the set
of weights associated at each edge belonging to E, so for each edge eq = (vq,
vq + 1) ∈ E, there exists a weight c(eq) associated with it. c(eq) represents the cost or
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metric associate to edge eq, by default MP-OLSR use hop count as metric to select
multiple paths, so in this case c(eq) is equal 1 for each edge eq ∈ E.

The function Dijkstra(G, s) used in MultipathDijsktra function is the standard
Dijkstra’s algorithm [10] that returns a source tree of the shortest path from node s in
graph G. Initially, the cost of all the links is set to one. The function GetPath
(SourceTree, d) extracts the path Pi from node s to node d and the function Reverse(eq)
returns the opposite edge (vq + 1, vq) of eq so that eq = (vq, vq + 1). The function Head
(eq) returns the vertex from edge which eq points, i.e., vq + 1. The paths in P are not
necessarily disjoint, when a path Pi is computed, the cost function fp called also
incremental function is used to increase the cost of the arc eq or Reverse(eq) that
belongs to the path Pi. This will make future paths tend to be link-disjoint. The cost
function fe is used to increase the cost of the arcs if Head(eq) belongs to Pi, then this
will make the arcs tend to be node-disjoint. The paths constructed by function Mul-
tipathDijsktra do not need to be strictly disjoint. The cost functions fp(c) = 3c and
fe(c) = 2c are used by MP-OLSR [2], i.e. a penalty is applied to the used links and
nodes. The computation procedure is repeated t times until t paths P are obtained from
source node s to destination node d.

4 The Improvements Made to MP-OLSR

4.1 Link Cost Based Multiple Link Quality Metrics Computation

MP-OLSR uses a hop count as single routing metric. By using this metric, MP-OLSR
do not find the best path in term of QoS. Generally, using single metric may satisfy
only one criterion metric. So, efficient routing in MANETs requires selecting routes
that considers multiple QoS. However, Selecting route which satisfies multiple QoS
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routing metrics is an NP-complete problem [11]. There is no accurate mathematical
model to describe it. To this end, we propose a new metric based on multiple link
quality metrics by using fuzzy logic. This technology provides an efficient tool to solve
multi-constraint problem, it is able to calculate results fast and precisely. Fuzzy logic
has proven efficiency in many applications such as decision support and intelligent
control, especially where a system is difficult to be characterized. Since MANETs need
simple and fast methods to make decision, fuzzy logic is qualified as suitable method to
make decision in such networks. The input parameters considered by the proposed
fuzzy logic system are delay, throughput, and SINR (Signal to Interference plus Noise
Ratio). Thus, each node can build a weighted graph where link weights (link costs) are
computed by the fuzzy logic system. Based on this graph, multipath Dijkstra’s algo-
rithm is used to find paths with minimum cost (where the cost of a path is equal to the
sum of link costs in the path). Due to lack of space, the strategies used for computing
the three input link quality metrics (delay, throughput and SINR) of the proposed
fuzzy-logic system are not described in this paper. For more information about these
three metrics, the reader can refer to [12–14]. To compute the links cost based multiple
QoS metrics (delay, throughput and SINR) we developed a first Fuzzy Logic Controller
(FLC). The following paragraphs describe the Fuzzy concepts and the components
needed to construct the first FLC for computing link costs.

Fuzzy Logic and Fuzzy Set Theory. Fuzzy logic theory [15] is based on fuzzy set
theory [16], which are proposed by Lotfi Zadeh to solve problems that are difficult to
solve for classical set theory and logic. Fuzzy logic theory has been widely employed
for supporting intelligent systems. Fuzzy set theory, allows an element x in universal
set X to partially belong to a fuzzy set A. Then, a fuzzy set can be described by a
membership function μA defined as follow: μA: X → [0, 1]. For all x ∈ X, The mem-
bership value μA(x) is the degree of truth of x in fuzzy set A, it indicates the certainty (or
uncertainty) that x belongs to fuzzy set A. The fuzzy set A is completely determined by
the set of tuple A = {(x, μA(x)) | x ∈ X, μA(x) ∈ [0, 1]}.

FLC for Link Cost Computation. The proposed FLC is shown in Fig. 1, it receives as
input the normalized delay, throughput and SINR of a link, and returns as output the
cost of this link. The fundamental components of the proposed FLC are described as
follows:

Fig. 1. FLC for link cost computation
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Fuzzifier. It is based on the input membership functions (MFs), the fuzzifier converts a
numerical input variable (real number or crisp variable) into fuzzy input sets needed for
the Inference Engine. Triangular and rectangular MFs are used here as the reference
because they have a lower processing cost compared to other MFs. Figure 2(a), (b) and
(c), show respectively, the normalized link delay MFs, link throughput MFs and link
SINR MFs of the proposed FLC. They have three linguistic variables Low (L), Medium
(M) and High (H).

Knowledge Base. Called also rule base, it contains a collection of fuzzy IF-THEN rules
that are expressed as fuzzy conditional statements. The rule base represents the
knowledge and experience of a human expert of the system. In our proposed FLC and
based on the fuzzy values of link delay, throughput, and SINR, the mobile node uses
the IF-THEN rules (as defined in Table 1) to calculate the link cost metric.

Inference Engine. It derives conclusions from the fuzzy IF-THEN rules, it maps fuzzy
inputs sets received from the Fuzzifier onto fuzzy outputs sets which will be converted
into crisp value by the Defuzzifier.

Defuzzifier. It performs defuzzification process to return a numeric (crisp) value based
on a predefined output MFs. Figure 2(d) shows the defined output MFs for link cost.
It has three linguistic variables Low (L), Medium (M) and High (H). Defuzzifier
aggregates the fuzzy set into a single value. One of the most popular defuzzification
methods is the Mamdani’s Center of Gravity (COG) method [17]. It is used here to
defuzzify the fuzzy outputs sets received from Inference Engine component. The center
of gravity is calculated as follows:

Fig. 2. Membership functions for (a) link delay, (b) link SINR (c) link throughput and (d) link
cost
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COG ¼
R b
a l xð ÞxdxR b
a l xð Þdx

ð1Þ

Where μ(x) denotes the membership degree of element x, [a, b] is the interval of the
result aggregated MF, and COG is the returned numeric value from Defuzzifier. In the
implementation and experimental design, COG presents the link cost returned by the
function FuzzyLinkCost that presents the proposed FLC. The FuzzyLinkCost function
will be called by the function LinksCostAssignement presented by the Algorithm 1.
LinksCostAssignement function is used to assign links cost of MANET’s graph G and
is called by modified multipath Dijkstra’s algorithm (line 2 in Algorithm 2).

In the links cost assignment algorithm (Algorithm 2), the functions MaxLinkDelay,
MaxLinkThroughput and MaxLinkSINR compute, respectively, the maximum values of
link delay, link throughput and link SINR in the graph G. These values are used to
compute, for each link eq in the graph G, the normalized QoS metrics NLD, NLT and
NLSINR, respectively, of link delay, link throughput and link SINR. The three nor-
malized link QoS metrics NLD, NLT and NLSINR are used as input parameters of the
function FuzzyLinkCost to assign link cost to the link eq.

4.2 Cost Functions Adaptation

We propose to adapt cost functions as function of MANET conditions; in our scheme,
the link cost and the hop count metrics are used. Our idea is to penalize links

Table 1. Rule base for link cost computation

Link 
Delay

Link 
Throughput

Link 
SINR

Link 
Cost

Link 
Delay

Link 
Throughput

Link 
SINR

Link 
Cost

Link 
Delay

Link 
Throughput

Link 
SINR

Link 
Cost

Low Low Low High Medium Low Low High High Low Low High

Low Low Medium High Medium Low Medium High High Low Medium High

Low Low High Medium Medium Low High Medium High Low High Medium

Low Medium Low High Medium Medium Low High High Medium Low High

Low Medium Medium Medium Medium Medium Medium Medium High Medium Medium High

Low Medium High Low Medium Medium High Medium High Medium High Medium

Low High Low Medium Medium High Low High High High Low High

Low High Medium Low Medium High Medium Medium High High Medium Medium

Low High High Low Medium High High Low High High High Medium
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(belonging to current computed path by Dijkstra’s algorithm) with high values if they
have high costs and belonging to long path, inversely, penalize links with low values if
they have low costs and belonging to short path. The aim is to favor the sharing links
that have low costs and belonging to short paths and, inversely, disfavor the sharing
links that have high costs and belonging to long paths. So, long path having high
sharing links increase packets delay transmission and loss. To adapt cost functions we
developed a second FLC which is independent to the first FLC used to compute links
cost. The second proposed FLC receives two inputs the cost of link and the hop count
of the current path computed by Dijkstra’s algorithm and contain this link. This new
FLC returns as output the penalization parameter c0 used to increment the cost of this
link.

Figure 3(a) shows the link cost MFs, it has three linguistic variables Low (L),
Medium (M) and High (H). The hop count MFs and the penalization parameter c0 MFs
are show, respectively, in Fig. 3(b) and (c). They have five linguistic variables Very
Low (VL), Low (L), Medium (M), High (H) and Very High (VH). In our new proposed
FLC and based on the fuzzy values of link cost and hop count metrics, mobile node
uses the IF-THEN rules, as defined in Table 2, and Mamdani’s Center of Gravity
(COG) method [17] for computing the penalization parameter c0. In the implementation
and experimental design, the proposed FLC for cost function adaptation is presented by
the function FuzzyCostFunctionAdaptation. This function is used by the modified

Fig. 3. Membership functions for (a) link cost, (b) path hop count and (c) penalization parameter
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multipath Dijkstra’s algorithm to increase the cost of the link. It receives as input the
current link cost and the hop count of the path containing this link (see Algorithm 3).

4.3 Load Balancing

The important role of load distribution is to select path to carry packets from source to
destination. In MP-OLSR protocol, packets are distributed into different paths by using
Round-Robin (RR) algorithm [18]. RR is simple and no additional network information
is required for path selection. However, RR is incapable to balance load among het-
erogeneous multiple paths. So, if the cost of each path is different, RR can cause
problems such as over-utilization of a path with high cost and under-utilization of a
path with low cost. To this end, we propose to integrate Weighted Round-Robin
(WRR) scheduling mechanism [19] to MP-OLSR for supporting heterogeneous mul-
tiple paths.

Each path was assigned a weight, an integer value that indicates the capacity of
path. In our proposed scheme we compute the weight xi of path Pi as function of path
cost (pc) by the following formulate:

xi ¼ Int
1
pciPt

i¼1
1
pci

� �
0
@

1
A� 100

2
4

3
5 ð2Þ

Where pci is the path cost of the path Pi which equals the sum of the cost of links
belonging to this path and Int is rounding function from float value to lowest integer
value.

To compute the weight xi for each path Pi we have added the lines 5, 9 and 23 to
27 in multipath Dijkstra’s algorithm (see Algorithm 3). The algorithm returns multiple
paths with its assigned weights. In this case, paths with higher weights (low costs)
could carry a higher number of packets than those with less weights. In other words, the
numbers of packets assigned to paths are limited by weights of the paths. Traffic load
distribution based WRR algorithm is performed by node source s to distribute packets
into the t paths to destination node d based on weights parameters.

Table 2. Rule base for link penalization computation

Link
cost

Hop
count

Link
penalization

Link
cost

Hop
count

Link
penalization

Link
cost

Hop
count

Link
penalization

Low Very
low

Very low Medium Very
low

Low High Very
low

High

Low Low Low Medium Low Low High Low Medium

Low Medium Low Medium Medium Medium High Medium High

Low High Medium Medium High High High High High

Low Very
high

High Medium Very
high

High High Very
high

Very high
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5 Simulation Model

5.1 Simulation Parameters

To evaluate our enhancement, we conducted simulation experiments for the original
MP-OLSR and the enhanced variant of MP-OLSR denoted FQ-MP-OLSR. The traffic
considered in the evaluation focuses on video stream transmission over MANET. The
obtained results are also compared. The simulations were performed with the Network
Simulator NS2 [20] according to the MP-OLSR implementation [8] based on UM-
OLSR [21] which is corrected and validated in our previous works [22]. The proposed
correction is made, particularly, to the Multipoint Relays (MPR) selection algorithm [9]
responsible for optimizing the broadcasting topology control (TC) packets. For more
credible simulation we use the wireless IEEE 802.11 implementation from [23]. This
implementation includes IEEE 802.11 bug fixes, realistic channel propagation, multiple
data transmission rates and adaptive auto rate fallback (AARF).
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In all simulations, we use a network consisting of 50 mobile nodes. These nodes are
randomly moved in square area of size 1000 m × 1000 m according to the Random
Waypoint Mobility Model [24]. Video transmissions have been carried out by using the
video quality evaluation tool Evalvid [25, 26], integrated in NS2. Evalvid generates
the input source file from the information of video frames. The video source used in the
simulation is akiyo_cif.yuv [26] that have 300 frames in YUV CIF (352 × 288) format.
This video sequence is compressed by MPEG-4 codec and sent from a source to desti-
nation at 10th second with a rate 30 frames/s. Each frame was fragmented into packets
before transmission, and the maximum transmission packet size over the simulated net-
work is 1000 bytes. The sources background traffic used in simulations is CBR (Constant
Bit Rate) associated with the UDP. CBR connections are randomly generated by using a
traffic generator and are started at times uniformly distributed between 5 and 100 s.

Like in [2], the number t of paths is set to 3, for both, original and enhanced MP-
OLSR variants. The main simulation parameters are summarized in Table 3.

5.2 Evaluation Criteria

The objective of the experiments with the network simulator NS2 is to validate our
proposed enhancement, by analyzing the impact of the MP-OLSR and FQ-MP-OLSR
on the quality of real video sequences. To this end we analyze three QoS metrics:

Table 3. Simulation parameters

Parameters used for traffic model
Simulation time 100 s
Type of multimedia traffic MPEG-4
Multimedia sequence name Akiyo
Type of background traffic CBR/UDP
Number of background traffic connections 15 connections
Background traffic packets size 512 bytes
Background traffic packets rate 10 packets/s

Parameters used for mobility model
Ad hoc network area 1000 m × 1000 m
Number of nodes 50
Pause time 5 s
Maximum speed of nodes 0, 1.5, 5, 10, 15, 20, 25 and 30 m/s
Mobility model Random Waypoint

Parameters used for physical and link layers
MAC protocol IEEE 802.11
Propagation model Two-ray ground
Transmission range 250 m
Bandwidth 11 Mbps
Maximum queue size 50 packets
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• Packet loss ratio: is the ratio between the number of dropped data packets and those
sent by the sources;

• Delay: is the time elapsing from the sending of a packet by the source until it is
received by the destination;

• Jitter: is the average of the difference in transmission delays of two successively
received packets belonging to the same data stream.

To assess how video streams are perceived by users, we analyze also three QoE
(Quality of Experiment) metrics [27]:

• PSNR (Peak Signal to Noise Ratio): compares frame by frame the quality of the
video received by the user with the original one. PSNR computes the Mean Square
Error (MSE) of each pixel between the original and received frames. PSNR is
represented in dB. Frames with more similarity will result in higher PSNR values;

• SSIM (Structural Similarity): measures the video structural distortion trying to get a
better correlation with the user’s subjective impression. SSIM combines luminance,
contrast, and structural similarity of the frames to compare the correlation between
the original frame and the received one. The values of SSIM vary between 0 and 1.
The closer the metric gets to 1, the better the video quality;

• VQM (Video Quality Metric): measures the perception damage the video experi-
enced based on human visual system characteristics including in a single metric
factors such as blurring, noise, color distortion, and distortion blocks. The closer the
metric gets to 0, the better the video quality.

5.3 Simulation Results and Discussions

Figure 4(a) illustrates the packet loss ratio of the video traffic in different mobility
scenarios. It shows that, in all mobility scenarios, the packet loss ratio of FQ-MP-
OLSR is lower compared to MP-OLSR. As shown in Table 4, FQ-MP-OLSR can
decrease packet loss ratio up to 77.4 % compared to MP-OLSR. The high packet loss
ratio achieved by MP-OLSR can be explained by the fact that it uses the hop count as
single metric for routing decision. This metric cannot avoid instable paths that produce
high packet loss. The scheduling mechanism is another factor that may influence packet
loss ratio. So, the RR algorithm that is used by MP-OLSR, the not take into account
heterogeneous paths, it may cause problems such as over-utilization of instable paths

Fig. 4. QoS metrics (a) Packets loss ratio, (b) delay and (c) jitter for video traffic
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with a low throughput and SINR and under-utilization of stable paths with a high
throughput and SINR. All these factors may increase packet loss ratio by MP-OLSR.
However, FQ-MP-OLSR adopts an intelligent routing decision process allowing the
selection of best and the most stable paths using multi-constrained QoS metric based
delay, throughput and SINR. Especially, taking into account throughput and SINR in
routing decision reduce packet loss ratio. FQ-MP-OLSR, uses also WRR scheduling
algorithm for balancing packets transmission among heterogeneous paths. The weights
of paths, used by WRR algorithm, are computed as function of the multi-constrained
QoS metric previously computed by fuzzy system. As well, FQ-MP-OLSR adapts links
penalization to avoid paths with higher cost (lower multi-constrained QoS metric) and
higher hop count when computing multiple paths by Dijkstra’s algorithm. So, if the hop
counts of paths are high, then they are vulnerable to broken links and more packet
losses are generated.

Our enhancements also reduce packets transmission delay. Figure 4(b) illustrates
the average end to end delay of the video traffic in different mobility scenarios. It shows
that, in all mobility scenarios, the end to end delay is significantly less for FQ-MP-
OLSR compared to original MP-OLSR. The decrease of the end to end delay by FQ-
MP-OLSR is mainly introduced by multi-constrained QoS metric which the delay is
one of it component. This metric is used for routing decision and also by WRR
scheduling mechanism to balances traffic between heterogeneous paths having different
delay and adapts links penalization to avoid paths with higher cost and higher hop
count when computing multiple paths by Dijkstra’s algorithm.

As shown in Table 4, FQ-MP-OLSR can decrease delay up to 96.3 % compared to
MP-OLSR. The average jitter is also decreased by FQ-MP-OLSR. Figure 4(c) illus-
trates the average jitter in different mobility scenario. It shows that, whatever the speed
of mobile nodes, the average jitter of the FQ-MP-OLSR version is lower compared to
original MP-OLSR. Thus, as shown in Table 4, FQ-MP-OLSR decrease jitter up to
88.5 % compared to MP-OLSR. Hence, FQ-MP-OLSR increases the quality level of
multimedia transmissions, where delay and jitter are the keys metrics that influence
multimedia quality transmission.

Table 4. Performance metrics improvement by FQ-MP-OLSR for video traffic

Max
speed

Packet loss
ratio

Delay Jitter PSNR SSIM VQM

0 m/s ↓66.93 % ↓52.32 % ↓92.45 % ↑77.17 % ↑54.92 % ↓80.68 %
1.5 m/s ↓53.30 % ↓63.01 % ↓64.07 % ↑76.35 % ↑51.32 % ↓79.65 %
5 m/s ↓37.33 % ↓52.61 % ↓20.90 % ↑73.12 % ↑49.65 % ↓72.58 %
10 m/s ↓27.03 % ↓62.46 % ↓66.87 % ↑11.72 % ↑17.53 % ↓24.70 %
15 m/s ↓62.55 % ↓96.27 % ↓88.52 % ↑49.51 % ↑48.51 % ↓71.64 %
20 m/s ↓77.44 % ↓24.01 % ↓7.40 % ↑1.84 % ↑0.31 % ↓3.22 %
25 m/s ↓52.03 % ↓31.51 % ↓14.15 % ↑60.78 % ↑51.78 % ↓80.62 %
30 m/s ↓20.74 % ↓62.25 % ↓52.75 % ↑37.77 % ↑42.09 % ↓63.13 %
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Figure 5 compares the video quality in term of QoE metrics considering MP-OLSR
and FQ-MP-OLSR. It can be seen that FQ-MP-OLSR has the best values compared to
original MP-OLSR. Thus, as summarized in Table 4, FQ-MP-OLSR increases PSNR
and SSIM, respectively, up to 77.2 % and 54.9 %. It shows also, that VQM is reduced
up to 80.7 %.

6 Conclusion and Future Work

We proposed and implemented an improved variant of MP-OLSR protocol called FQ-
MP-OLSR. The aim is to reach acceptable QoS and QoE for video transmission in
MANETs. To this end, we developed two fuzzy systems for FQ-MP-OLSR. The first is
used to compute multi-constrained QoS metric based three QoS metrics. The second is
applied to adapt cost functions used to penalize paths previously computed to find next
paths by Dijkstra’s algorithm. We integrated also the WRR scheduling algorithm to
FQ-MP-OLSR for scheduling multimedia traffic among heterogeneous multiple paths,
the weights of paths, needed for scheduling, are computed based multi-constrained QoS
metric computed by the first fuzzy system. These mechanisms allow FQ-MP-OLSR to
improve video QoS and QoE, against the MP-OLSR that uses classical mechanisms
such as hop count as single metric, cost functions without adaptation and Round-Robin
(RR) as classical scheduling algorithm.

Simulation experiments with Network Simulator NS2 show that FQ-MP-OLSR
achieves a significant improvement of the quality of video streaming in term of QoS
and QoE. Thus, FQ-MP-OLSR can decrease packet loss ratio, end-to-end delay and
average jitter, respectively, up to 77.4 %, 96.3 % and 88.52 %. It increases PSNR and
SSIM, respectively, up to 77.2 % and 54.9 %. Finally, it reduces VQM up to 80.7 %
compared to original MP-OLSR.

The FQ-MP-OLSR protocol can be further improved by reducing topology control
traffic. Thus, in the future work, we would like to study and integrate optimal MPR
selection heuristics [28] to FQ-MP-OLSR and confirm our improvements by setup test-
bed environment to show the efficiency of the proposed enhancements in real scenarios.

Fig. 5. QoE metrics (a) PSNR, (b) SSIM and (c) VQM for video traffic
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Abstract. Wireless Sensor Networks (WSNs) consist of autonomous
nodes, deployed to monitor various environments (even under hostility).
Major challenges arise from its limited energy, communication failures
and computational weakness. Many issues in WSNs are formulated as
NP-hard optimization problems, and approached through metaheuris-
tics. This paper outlines an Ant Colony Optimization (ACO) used to
solve routing problems in WSNs. We have studied an approach based
on ACO. So, we designed an improved one that reduces energy con-
sumption and prolongs WSN lifetime. Through simulation results, our
proposal efficiency is validated.

Keywords: Wireless Sensor Network · Metaheuristic · Routing ·
Ant Colony Optimization

1 Introduction

Wireless Sensor Network (WSN) is a new kind of network composed of a large
number of sensors working in uncontrolled areas [1]. Many physical parame-
ters like temperature, humidity, acoustic vibration, pressure, and electromag-
netism can be detected by different kinds of sensor nodes [2]. For those various
nodes and their communication abilities, WSN can be used for many applications
such as disaster relief, environmental control, precision agriculture, medicine and
health care [3]. This new technology is receiving increased interest, due to its
advantages. Its easy deployment reduces installation cost. It can be distributed
over a wide region and has capacity of self-organization. Nonetheless there are
some intrinsic limitations for sensors like low processing capacity, low power,
and limited lifetime [4]. Hence, new theoretical problems and challenges appear
in operations research and optimization field. Some basic optimization problems
are related to coverage, topology control, scheduling, mobility and routing [5,6]
But, many researches have tended to focus on routing problems rather than all
the previously mentioned problems.

Routing in WSN is very challenging, as it has more different characteristics
than that in traditional communication networks [7]. It’s qualified as an NP-hard
optimization problem [5]. That means we need robust and efficient techniques
c© Springer International Publishing Switzerland 2014
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to solve this kind of problems, such as metaheuristics [8]. Metaheuristics use
search strategies to explore the solution space. These methods begin with a set
of initial solutions or an initial population, and then they examine step by step
a sequence of solutions to reach or hope to approach the optimal solution of the
problem of the interest.

Many metaheuristics, such as Genetic Algorithms (GA) [9], Artificial Bee
Colony (ABC) [10], Particle Swarm Optimization (PSO) [11] and Ant Colony
Optimization (ACO) [12] are used to solve routing problems [13]. The ACO meta-
heuristic has been successfully applied to solve routing problem in WSN [12,14,
15]. Its optimization procedure can be easily adapted to implement an ant based
routing algorithm for WSNs. To date, various methods have been developed
to solve WSN routing problem, such as Sensor-driven Cost-aware Ant Routing
(SC), the Flooded Forward Ant Routing (FF) algorithm, and the Flooded Piggy-
backed Ant Routing (FP) algorithm [14], Adaptive ant-based Dynamic Routing
(ADR) [16], Adaptive Routing (AR) and Improved Adaptive Routing (IAR)
algorithm [17], and E&D ANTS [18].

We studied an approach based on ACO for WSN routing problem, proposed
by S. Okdem and D. Karaboga [15]. In addition to its safety and efficacy, this
approach can be enhanced. So, we proposed an improved one by adding a new
kind of ants’ communication, to supply prior information to the other ants.

The remaining of this paper is organized as follows: Sect. 2 gives the WSN
routing problem statement. Section 3 introduces Ant Colony Optimization
(ACO). Section 4 presents our ACO-based algorithm for the routing problem.
Section 5 shows the performance evaluation of our results. Finally, Sect. 6 con-
cludes our work.

2 Routing Problem in Wireless Sensor Networks

Routing is forwarding data from source to destination. The route between both
extremities is determined by many techniques relatively to the application field.
Routing in wireless sensor networks differs from routing in classical networks. In
the case of WSNs we can talk about unreliable links, energy requirements and no
infrastructure. Many routing algorithms developed for wireless sensor networks
depend on mobility of sensors or sinks, application field and network topology.
Overall, the routing techniques are classified according to network structure or
protocol operation (routing criteria) [7].

Figure 1 shows that in WSN routing protocols, based on network structure,
are classified into three categories based on: flat, hierarchical networks, and loca-
tion based routing. Moreover, these protocols can be classified into multipath,
query, negotiation, QoS, and coherent, by considering protocol operation [7]. The
studied protocol ranked among flat networks. Routing problem consists on sta-
ble sensors and sink. The purpose is to find the best paths that minimize energy
consumption, guarantee links reliability (by using acknowledgement signals) and
manage bandwidth [15]. All these requirements are considered in the conception
of the ACO routing protocol, which described in the following sections.
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Fig. 1. Routing protocols in WSN: taxonomy [7]

3 Ant Colony Optimization

Ant colony is considered among the colonies of insects that have a very high
capacity to explore and exploit their environment despite their displacement way
which is very limited (walking) compared to other species (flying). This moving
inconvenience is offset by skills in manipulating and using environment. They use
their environment as a medium of storage, processing and sharing information
between all the ants in the colony. Inspired from this behavior, M. Dorigo and G.
Di Caro have developed in 1999 ant colony optimization algorithms [19]. ACO
basic steps are summarized in the Algorithm 1 [20].

Algorithm 1. ACO
Objective function f(xij ), (i, j) ∈ {1, 2, ..., n}
Initialize the pheromone evaporation rate ρ
while (criterion) do

for Loop over n nodes do
Generate the new solutions (using Eq. 1)
Evaluate new solutions
Mark the best routes with the pheromone δτij

Update Pheromone : τij ← (1 − ρ)τij + δτij

end for
Daemon actions

end while
Output the best results and pheromone distribution.

This algorithm discusses two interesting points: The first one is related to
the probability of choosing routes, which is used basically in ACO (Eq. 1) to let
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node s make a choice by calculating the probability of any node in its coverage
area, and then choosing the node r with the highest probability value. The
second one depends on pheromone. At the start ants take routes randomly and
left an amount of pheromone τ in these routes. This quantity of pheromone is
not stable. On one hand it can be decreased by environmental factors (wind,
sun, . . . ), where those factors are presented by the pheromone evaporation rate
parameter ρ. On the other hand it increases because all the other ants, when
they choose the route, they leave an amount of pheromone δτ .

4 Routing-Based Ant Colony Optimization

S. Okdem and D. Karaboga [15], present a new kind of routing protocol based
on ACO where they try to maximize WSN lifetime and minimize energy con-
sumption of sensors. After detecting an event, source node splits data to N parts,
every part is transmitted to the next destination by an ant. Ants choose next
hop by using two heuristic functions. The first one is related to the quantity of
the pheromone, and the second depends on energy. These values appear, where
ant k moving from node s to node r, in the following probabilistic decision rule
(Eq. 1):

Pk(r, s) =

⎧
⎪⎨

⎪⎩

[τ(r,s)]α.[η(r,s)]β∑
r∈Rs

[τ(r,s)]α.[η(r,s)]β
if k /∈ tabur

0 otherwise
(1)

Where τ(r, s) is a function that returns the pheromone value between node s
and r, η is the first heuristic value related to nodes’ energy level, Rs are receiver
nodes, α and β are two parameters that control the relative influence of the
pheromone trail and the heuristic information, and tabur is the list of packet
identities already received by node r [15]. Pheromone trails are connected to
each arc(r, s) which has a trail value τ ∈ [0,1]. The heuristic value τ of the node
r is expressed by Eq. 2:

τ(r, s) =
(I − es)−1

∑
r∈Rs

(I − er)−1
(2)

Where I is the initial energy, and er is the current energy level of receiver node
r. According to this rule, node having information chooses a node destination
to forward this information, and so on until sink. This approach gives good
results, relatively to routing protocol EEABR proposed by T. Camilo et al. [21].
But these results can be improved, by adding more accuracy to make a choice
especially when probabilities are equal. In its decision a node chooses randomly
the following node, so it may make wrong choice and loses data in uncovered
area, or packets travel a long path to the sink. Therefore many nodes lose power
(just because choice was bad), delay of delivery and lifetime decreases. To reduce
the number of wrong choices, we improved this approach [15]. we kept the same
ACO solution modeling as in [15] but we made decision rule more precise by
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adding a new heuristic value δ. So, the new probabilistic decision rule is as
follows (Eq. 3):

Pk(r, s) =

⎧
⎪⎨

⎪⎩

[τ(r,s)]α.[η(r,s)]β .[δ(r,s)]γ∑
r∈Rs

[τ(r,s)]α.[η(r,s)]β .[δ(r,s)]γ
if k /∈ tabur

0 otherwise
(3)

The heuristic value δ (Eq. 4) is used to distinguish the best neighbor, avoiding
the use of the wrong nodes, so do not exhausting it. δ is related to sensors field
Rc. According to Dorigo experimentation [19], the control parameters values are:
α = 1, β = 5. After many tests, we conclude that the best value of γ is 1. By
using this heuristic value δ, sensors transmit information about sink.

δ(r, s) =

⎧
⎨

⎩

Es∑
r∈Rs

Er
if Sink ∈ Rc

v otherwise
(4)

Where Er is the residual energy of node r (residual energy is the energy of
node at the end of simulation) and v is a constant that depends on the simulation
environment. Node r having sink in its collection field, must inform neighboring
nodes about this detail, to have more chances to be chosen, because packets will
attain sink definitely. When sink is not in the r field, only energy and pheromone
are considered in the probabilistic rule. This information allows to take the right
choice, and then get a new approach which gives a good result, mainly in energy
consumption, WSN lifetime, reliability and packet delivery ratio (PDR) .

5 Simulation and Results

In order to show the performance of our proposal, we simulate the both approaches,
improved and original one, in same conditions, using basically MATLAB for imple-
mentation. We used a model of sensors based on “First Order Radio Model” of
Heinzelman et al. [22] (see Fig. 2). To send and receive a message, power require-
ments are formulated as follows:

– To send k bits to a remote receiver by d meters, transmitter consumes:
ETx(k, d) = (Eelec × k) + (εamp × k × d2)

– To receive k bits, receiver consumes:
ERx(k) = Eelec × k
Where Eelec = 50nJ/bit and εamp = 100 nJ/bit/m2 are respectively energy

of electronic transmission and amplification.
Aiming to test several situations, we apply routing protocol on several WSNs

with different densities. We deploy randomly a number of sensors varied accord-
ing to coverage area. We distribute 10 nodes over 200 × 200m2, 20 nodes over
300×300m2, 30 nodes over 400×400m2, 40 nodes over 500×500m2 and finally
for 600× 600m2 we deploy different WSNs, composed by 50, 60, 70, 80 and 100
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Fig. 2. First Order Radio Model [22]

sensor nodes. The main task of this deployment is to monitor a static phenom-
enon, and transmit all collected data to the sink, which has an unknown location.
In the same setting, related to the original protocol, and using the same metrics
(average residual energy) we perform simulation of improved protocol for the
purpose of comparing results and confirming their efficiency.

By performing many simulations we prove that the improved protocol is bet-
ter than the original one. Figure 3 shows that our improved approach is higher
than original approach by considering the average residual energy of 15 runs.
Thus, the power consumption is minimized, and the WSN lifetime is maximized
especially when densities are high. In order to confirm the efficiency of our pro-
posal, we simulated the transmission of 256 packets in different coverage areas
where it deployed randomly a number of nodes (from 10 to 100 nodes). The
shown results in Fig. 4 represent the average residual energy of 15 runs.

Figure 4 presents residual energy normalized (all values between 0 and 1)
after reception of 256 packets by Sink, for many WSNs with diverse number
of nodes. Packet Delivery Ratio (PDR) is the ratio of the correctly received
packets at the receiver to the total number of packets sent by the sender.
A straightforward method to calculate PDR is to send a number of packets
in a period of time. The receiver counts the successful received packets and cal-
culates the PDR [23]. According to this definition, the PDR can be calculated
as in Eq. 5.

PDR =
Number of received packets

Number of transmitted packets
(5)

This metric allows knowing if a protocol is able to ship all sent packages. In
order to compare PDR of studied and improved approaches, we simulate sending
256 packets, using various WSNs (changing number of nodes). Our approach
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(a) 20 nodes, density is 222x10−6nodes/m2

(b) 40 nodes, density is 160x10−6nodes/m2

Fig. 3. Simulation results for different WSNs
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(c) 60 nodes, density is 167x10−6nodes/m2

(d) 80 nodes, density is 222x10−6nodes/m2

Fig. 3. (continued)

reduces energy consumption, since the number of lost packets is minimal (Fig. 5).
Packets are lost because of many reasons such as dead of nodes in the path, or
the lack of the active neighbour nodes.

Figure 5 presents a PDR (%) after reception of 256 packets by Sink for many
WSNs with diverse numbers of nodes.



254 A. El Ghazi et al.

Fig. 4. Residual energy for different WSNs

Fig. 5. Packet Delivery Ratio for different WSNs

6 Conclusion

This paper presents an improved protocol for WSN routing. The protocol is
achieved by using an enhanced ant colony algorithm to optimize the node power
consumption and increase network lifetime as long as possible, while data
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transmission is attained efficiently. To evaluate the performance of our protocol,
we implemented in the same conditions, both approaches original and improved
one. From the comparison it is concluded that overall performance of our pro-
posal is better than Okdem and Karaboga approach [15], in terms of energy
consumption, network lifetime and packet delivery ratio. The future work could
be investigate other methods and compare the ant-based algorithm for other
proactive and reactive routing protocols.
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Abstract. In this paper, we address the problem of planning the uni-
versal mobile telecommunication system (UMTS) base stations location
for uplink direction. The objective is to maximize the total trafic covered
and minimize the total installation cost. To define the cost, researchers
used the current period market prices. But prices may change over time.
Our aim here is to deal with the imprecise and uncertain information of
prices. For this we address this problem using fuzzy Logic. We propose
an algorithm based on the hybridization of genetic algorithm (GA) with
Local Search method (LS). To code the solutions of the problem, we have
used an encoding method which combines binary and integer coding. To
validate the proposed method some numerical examples are given. The
obtained results show the efficiency of our approach.

Keywords: UMTS · Optimization · Fuzzy logic · Genetic algorithm ·
Local search · Hybridization

1 Introduction

Universal Mobile Telecommunications System (UMTS) is a third generation
mobile cellular technology for networks based on the Global System for Mobile
Communications standard (GSM). The deployment of UMTS networks involves
a colossal investment for the operators. In this context, the optimization of these
networks becomes, for an operator, a fundamental task.

The problem of planning second-generation cellular systems adopting a time-
division multiple access (TDMA)-based access scheme has usually been simpli-
fied by subdividing it into a coverage planning problem and a frequency planning
problem which are driven by a coverage and a capacity criterion, respectively
[1–3]. Using the wideband code-division multiple access (W-CDMA) air inter-
face of UMTS, the two-phase approach is not appropriate mainly because the
bandwidth is shared by all active connections and no actual frequency assign-
ment is strictly required. The access scheme allows for a more flexible use of
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radio resources and the capacity of each cell (e.g., the number of connections)
is not limited a priori by a fixed channel assignment as in TDMA systems,
but it depends on the actual interference levels which determine the achievable
signal-to-interference ratio (SIR) values. As these values depend on both traffic
distribution and base stations (BSs) positions, BS location in UMTS networks
cannot only be based on coverage but it must also be capacity driven [1,2].
Furthermore, since interference levels depend both on the connections within a
given cell and on those in neighboring cells, the SIR values and the capacity are
highly affected by the traffic distribution in the whole area [1,4].

UMTS networks planning problems have been the interest of many researchers
(see for instance [5–10]). In this article we focus on the problem of Amaldi et
al. [1,4] in which they investigate mathematical programming models for support-
ing the decisions on where to install new base stations and how to select their con-
figuration so as to find a trade-off between maximizing coverage and minimizing
costs.

But the cost estimation differs from one author to another. In [6,7] the total
cost of an UMTS access network is composed of two variable factors: the cost of
the radio network controller (RNC) stations and the cost of the links. In [1,4,10]
authors consider that an installation cost is associated with each candidate site.
In [11] the cost estimation is limited to engineering and license costs. In [9] the
total cost is composed of Infrastructure cost and license cost. In [12] the combined
costs for operators can be broken into 8 categories: license cost, operational cost,
network set up, content acquisition, product development, customer acquisition,
handset subsidization and fixed marketing costs. For Great Britain [11], the costs
are estimated for a single UMTS network over 10 years. The auctioned license
will contribute about 25 % of the costs. Cost of operation will be 24 %, network
deployment 12 %, customer acquisition 11 %, subsidies for phones 11 %, market-
ing 8 %, acquisition of content 7 %, and product development 2 % (see [11]). In
all of these articles, authors used the current period market prices. But prices
may change over time. The question is how to define the cost estimation then?
In order to investigate more realistic systems, it is necessary to consider the
situation that one makes a decision on the basis of data involving fuzziness (see
[13], for instance).

In this paper, we address the UMTS Base-station Location problem for
Uplink direction using fuzzy Logic to deal with the imprecise and uncertain
information of prices. For this we apply three inputs (license cost, operational
cost and content acquisition) to produce one output (the estimated cost). We
propose an algorithm based on the hybridization of the genetic algorithm (GA)
with the Local Search method (LS).

In Sect. 2, we describe the problem and we present its mathematical mod-
elling, and in Sect. 3 we propose the fuzzy logic model. In Sect. 4, we introduce
an approach using metaheuristics and fuzzy Logic. In Sect. 5 we give an appli-
cation of our approach, then we present the obtained numerical results. Finally,
in Sect. 6 we give some concluding remarks.
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2 Problem Statement and Model Presentation

Consider a territory to be covered by an UMTS service. Let S = {1, ...,m} be
a set of candidate sites (CS) where a base station (BS ) can be installed and
I = {1, ..., n} a set of test points (TPs). Each site j has a cost denoted by cj.
We denote by ui The required number of simultaneously active connections for
TP index i (TPi). In this section we will need the following notations:

Preçcue Received power

Ptarget Target power

Pmax Maximum power

SIR The signal-to-interference ratio

Hb Height of the base (in meters)

Hm Height of the mobile station (in meters)

F Signal frequency (in megahertz)

dB Decibels

dBm Power ratio in dB of the measured power referenced to one milliwatt (mW)

CS Candidate site

TP Test points

BS Base station

gij Propagation factor of the radio link between TPi and a candidate site CSj

dij Distance between TPi and candidate site CSj

SF Spreading factor; the ratio between the spread signal rate and the user rate

2.1 Mechanism of Power Control (PC) and Radio Propagation

In UMTS networks, it is important to implement a mechanism that allows to
a mobile terminal to adjust its power of emission while guaranteeing a good
reception of the base station. This power problem also arises for the power
emitted by the base station to limit the intercellular interferences. Two PC
mechanisms are commonly considered [4]:

1. PC mechanism based on the received power: The transmitted power is adjusted
so that the power received on each channel is equal to a given target value
Ptarget.

2. PC mechanism based on the estimated SIR: The transmitted power is set so
that the SIR is equal to a target value SIRtarget.

The propagation channel in a mobile radio environment is mainly related to the
type of environment to be considered, urban, rural, indoor, etc.; and to physical
phenomena that the wave undergoes during the propagation namely reflection,
diffraction and diffusion. In this paper we consider the Hata’s propagation model
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presented in [14], which gives the attenuation due to the signal propagation. In
particular, the attenuation between a BSj and TPi for urban areas, measured
in decibels (dB) and denoted by Lu, is given by [14]:

Lu(dij) = 69.55 + 26.16 log(F )− 13.82 log(Hb)
− a(Hm) + [44.9− 6.55 log(Hb)] log(dij), (1)

where the parameter a(Hm) is a correction factor depending on the height of
the antenna of the mobile station and on the environment. The value of a(Hm)
is given by:

– For a medium sized city:

a(Hm) = (1.1 log(F )− 0.7)Hm − (1.56 log(F )− 0.8) (2)

– For a large city:

a(Hm) = 3.2(log(11.75Hm)]2 − 4.97 (3)

2.2 Model Presentation

Let S = {1, ...,m} be a set of candidate sites (CS) where a base station can
be installed and I = {1, ..., n} a set of test points. Each base station BSj has
a cost denoted by cj . Let ui be the required number of simultaneously active
connections for a TPi. Let us define the two following classes of decision variables:

yj =
{

1 if a BS is installed in a site j,
0 otherwise, for j ∈ S, (4)

and

xij =
{

1 if a TPi is assigned to a BSj ,
0 otherwise. for i ∈ I and j ∈ S. (5)

We see that the variable x depends on y. An illustrative example is presented in
Fig. 1. In this example we have four CSs and six TPs. We see that the BS2 is
not installed and the TP3 is not covered; TP1 and TP2 are assigned to BS1; TP4

and TP5 are assigned to BS3 and TP6 is assigned to BS4. We consider a power-
based PC mechanism. Suppose we have directive BSs with three identical 120◦

sectors and with an omnidirectional antenna diagram along the horizontal axis.
Let the index set Iσj ⊆ I denotes the set of all TPs that fall within the sector
σ of the BS installed in the candidate site CSj . Since we wish to maximize the
total trafic covered and minimize the total installation cost subjected to some
constraints, then the problem can be expressed as (see [1,4]):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Maximize f(x) =
n∑

i=1

m∑

j=1

uixij ,

Minimize g(y) =
m∑

j=1

cjyj ,

(6)
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Fig. 1. Illustration of the problem

subject to:
m∑

j=1

xij ≤ 1 , i ∈ I, (7)

xij ≤ min{1, gijPmax/Ptarget}yj , i ∈ I , j ∈ S, (8)

yj
∑

i∈Iσ
j

m∑

t=1

(
uigij
git

xit − 1) ≤ SF/SIRmin, j ∈ S, σ ∈ Σ, (9)

xij , yj ∈ {0, 1}, i ∈ I, j ∈ S, (10)

where the propagation factor of the radio link between a TPi and a candidate
site CSj is given by:

gij = (10Lu(dij)/10)−1, (11)

where the attenuation Lu is calculated by relation (1).
Amaldi et al. [1,4] have transformed the multi-objective problem (6) into a

mono-objective one as follows:

Maximize
n∑

i=1

m∑

j=1

uixij − λ
m∑

j=1

cjyj , (12)

subject to the constraints (7), (8), (9) and (10), where λ > 0 is a tradeoff
parameter between maximizing coverage and minimizing costs.

In this model, the costs cj , 1 ≤ j ≤ m are taken constants. But prices may
change over time. To deal with the imprecise and uncertain information of prices
we introduce a fuzzy logic model as follows:

Maximize
n∑

i=1

m∑

j=1

uixij − λ
m∑

j=1

c̃jyj , (13)
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subject to the constraints (7), (8), (9) and (10), where λ > 0 is a tradeoff para-
meter between maximizing coverage and minimizing costs, and c̃j , 1 ≤ j ≤ m
is a fuzzy cost with the membership function presented in Fig. 2.

Fig. 2. Membership function of input cost

3 Proposed Fuzzy Logic Model

Certainty and precision are much too often used as an absolute standard in
reasoning and decision making. Fuzzy logic is based on the notion of relative
graded membership and can deal with information arising from computational
perception and cognition that is uncertain, imprecise, vague, partially true, or
without sharp boundaries [15]. The concept of fuzzy sets has been published in
1965 by Lotfi Zadeh in his famous paper Fuzzy sets [16]. Fuzzy set can be defined
as a set with membership degree with values in the interval [0, 1].

A fuzzy inference system (FIS) is composed of four components: fuzzifier,
rules, inference engine, and defuzzifier. In general, FIS has multiple inputs and
multiple outputs [17]. The fuzzifier converts the crisp input into membership
degree value. The inference engine process the inference mechanism from the
rulebase information and finally the crisp output is computed by a defuzzifier
process. In this paper we use fuzzy logic to deal with the imprecise information of
prices. Following the expert advice in the field of telecommunications in Morocco,
we apply three inputs: license cost (44 %), operational cost (43 %) and content
acquisition (13 %) to produce one output (the estimated cost). The fuzzy logic
is described as follows.

– Membership function. The three inputs are fed into a fuzzifier, which trans-
forms them into fuzzy sets. We consider that these inputs have the same
membership function values of fuzzy input. We define these inputs as follow:
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Very cheap Cheap Medium Expensive Very expensive

Cost Cj

Fig. 3. Membership function of output cost

“Cheap”, “Medium” and “Expensive”, and we define the output as follow:
“Very cheap”, “Cheap”, “Medium”, “Expensive” and “Very expensive”. The
membership function values of fuzzy input is shown in Fig. 2 and the mem-
bership function values of fuzzy output is shown in Fig. 3.

– Fuzzy rules. We applied a set of fuzzy IF-THEN rules to obtain fuzzy decision
sets. The IF-THEN rules are shown in Table 1.

– Fuzzy inference system methods. We use the Zadeh operators and the Mam-
dani type fuzzy model. This model is widely accepted for capturing expert
knowledge and it allows us to describe the expertise in more intuitive, more
human-like manner (see [18]). For the defuzzification, we use center of gravity
method.

To achieve this model, we propose an algorithm based on the hybridization of
genetic algorithm (GA) with local search method (LS) (see the next section).
These hybridizations (see e.g. [19,20]) are proven to be more efficient than the
evolutionary algorithms (including GAs) themselves. The reason behind this is
the combination of global exploration and local exploitation [21].

4 Proposed Approach Using Metaheuristics and Fuzzy
Logic

Consider the problem presented in Sect. 2.2 and described by Eq. (13).

4.1 Chromosome Representation

To code the chromosome we use the encoding method introduced by the authors
in [22]. This encoding method combines binary coding, for test points (TPs),
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Table 1. IF-THEN fuzzy rules

IF THEN

License cost Operational cost Content acquisition Estimated cost

Cheap Cheap Cheap Very cheap

Cheap Cheap Medium Very cheap

Cheap Cheap Expensive Cheap

Cheap Medium Cheap Cheap

Cheap Medium Medium Cheap

Cheap Medium Expensive Medium

Cheap Expensive Cheap Medium

Cheap Expensive Medium Medium

Cheap Expensive Expensive Medium

Medium Cheap Cheap Medium

Medium Cheap Medium Medium

Medium Cheap Expensive Medium

Medium Medium Cheap Medium

Medium Medium Medium Medium

Medium Medium Expensive Medium

Medium Expensive Cheap Expensive

Medium Expensive Medium Expensive

Medium Expensive Expensive Expensive

Expensive Cheap Cheap Medium

Expensive Cheap Medium Medium

Expensive Cheap Expensive Medium

Expensive Medium Cheap Expensive

Expensive Medium Medium Expensive

Expensive Medium Expensive Expensive

Expensive Expensive Cheap Very expensive

Expensive Expensive Medium Very expensive

Expensive Expensive Expensive Very expensive

and integer coding for base stations (BSs). If we have m base stations and n
test points, the chromosome will have m+ n genes, where the first m genes are
formed by the code of the base stations and the remanning digits are formed by
the test points code. Hence each chromosome will indicate if a TP is covered or
not, and to which BS is assigned. For example, if we have m = 7 and n = 13 the
chromosome can be encoded as: 4; 3; 1; 0; 1; 7; 4; 7; 2; 3; 2; 5; 6; 0111001. Finally,
we must always take care not to fall in the case where a TP is assigned to a BS
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that is not installed. To do this we use a small correction which reassigns the
TP to another BS (see [22] for more detail).

4.2 Initial Population, Crossover and Mutation

Now, we show how to create an initial population and how to apply crossover
and mutation operators of the GA to this type of encoding.

– Initial population. Suppose we have n TPs and m BSs. To define each chro-
mosome of the population we generate n+m random genes; the first n genes
are integers in the set {0, . . . ,m} and the remaining m genes are binary digits.
Then, we use the correction procedure defined above.

– Crossover. We use the usual crossover followed by the procedure of correction.
– Mutation. We used the usual mutation followed by the procedure of correction.

If the gene to mutate is a TP, we replace it by an integer chosen randomly
from the set {1, 2, . . . ,m}, otherwise we transform the 0 to 1 and the 1 to 0
in the selected gene.

4.3 Hybridization Approach

For genetic algorithms (GAs), local search (LS) is often used for the improvement
of the solutions and the intensification of research [23]. In this paper we exploit
this hybridization as follows:

– We seek the best solution by the method of GAs;
– We take this solution as the initial configuration of LS;
– We apply the method of LS on this configuration.

5 Application

5.1 Data Description

To evaluate the performance of the proposed algorithm, we consider uplink
instances generated by using Hata’s propagation model. For each instance, we
consider a rectangular service area, a number of candidate sites in which to
locate omnidirectional antennas, and a number of TPs. Using a pseudorandom
number generator each candidate site and each TP is assigned a position with
uniform distribution in the service area. We considered two families instances of
a urban environment. The simulation parameters are:

– Size of the service area (in km): 0.4× 0.4 in the first instance and 1× 1 in the
second instance;

– Number of TPs: 95 in the first instance and 400 in the second instance;
– Number of BSs: 22 in the first instance and 120 in the second instance;
– ui = 1, the required number of simultaneously active connections for a TPi;
– F = 2000 MHz;
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Fig. 4. First instance: location of 95 TPs and 22 BSs in a service area of 0.4 × 0.4
(Km)

– Hm = 1 m;
– Hb = 10 m;
– Ptarget = −100 dBm (about 10−10 mW);
– Pmax = 30 dBm;
– SF = 128;
– SIRmin = 0.03125 dB;
– SIRtarget = 6 dB;
– Input costs ci: are taken randomly between 1 and 20 units.

Figures 4 and 5 illustrate the distribution of the TPs and BSs in the area service
of the two instances, respectively.

5.2 Computational Results

The algorithms were coded in JAVA programming language and implemented
on a machine of CPU Intel Core2Duo-2GHz and memory RAM 2Go. In the GA
approaches we have used three selection methods; roulette, scaling and sharing.
The parameters of GA are set as follows: crossover probability pc = 0.4, muta-
tion probability pm = 0.01, population size ps = 30, and maximum number of

Table 2. Number of TPs covered and BSs installed for n = 95 and m = 22

Method of selection Served TPs BSs not installed Cost Total cost Time in second

Roulette 92 1 278 281 75

Scaling 92 1 274 281 75.6

Sharing 93 1 270 281 76.4
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Fig. 5. Second instance: location of 400 TPs and 120 BSs in a service area of 1 × 1
(Km)

Table 3. Number of TPs covered and BSs installed for n = 400 and m = 120

Method of selection Served TPs BSs not installed Cost Total cost Time in second

Roulette 397 5 1273 1719 230

Scaling 398 8 1238 1719 231

Sharing 396 5 1280 1719 233

generations 5000. In the sharing selection method, the threshold of dissimilarity
between two parents is taken as σs = ps/2, and α = 1. Each experiment were
conducted on ten times. Tables 2 and 3 show number of TPs covered, number
of BSs installed and costs for the two instances problem, respectively. Now, we
comment results of each experiment.

First instance problem: 95 TPs and 22 BSs.
The best solution consists of installing 21 BSs instead of 22, which cover 93

TPs among 95, with a cost equal to 270, see last line in Table 2. Then we have
a gain of 11, since the cost of installing all BSs is 281. We obtained a gain of
approximately 4 % of costs of BSs.

Second instance problem: 400 TPs and 120 BSs.
This time, the best solution consists of installing 112 BSs instead of 120,

which cover 398 TPs among 400, with a cost equal to 1238, see line 2 in Table 3.
Then we have a gain of 481, since the cost of installing all BSs is 1719. We
realized a gain of approximately 28% of cost of BSs.
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6 Conclusion

In this paper we have considered an UMTS base station (BS) location planning
problem for uplink direction based on propagation models with power control.
The objective is to maximize the total trafic covered and minimize the total
installation cost. To deal with the imprecise and uncertain information of prices
we address this problem using a fuzzy Logic. For this we apply three inputs to
produce one output (the estimated cost). Our goal is to make the resolution of
the problem more realistic.

In order to solve the problem we have proposed an algorithm based on the
hybridization of genetic algorithm (GA) with Local Search method (LS). To code
the solutions of the problem, we have used an encoding method which combines
binary and integer coding, then we have described the crossover and mutation
operators. We have applied our approach to two instances problem. The obtained
results show the performance of our method.
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Abstract. The IEEE 802.11e EDCA standard was developed to guarantee the
Quality of Service (QoS) requirements of the different traffic types (voice, video,
data, etc.) in WLAN. However, several studies have shown that this standard
performs poorly under heavy load traffic due to the high collision rate. On the
other hand, EDCA was also used in the battery constrained devices. But, very
few studies have tried to improve the energy-efficiency of this standard. For
these reasons, we propose in this paper a Fuzzy-Logic-based (FL) mechanism to
improve both energy-efficiency and traffic performance of the IEEE 802.11e
EDCA, and also to favor real-time traffic when traffic load is heavy. The pro-
posed FL-EDCA decreases the collision probability considerably, through a
dynamic adaptation of the contention windows, using fuzzy logic controller. Our
simulation results show that FL-EDCA outperforms EDCA by improving
significantly energy-efficiency and traffic performance.

Keywords: IEEE 802.11e � EDCA � MAC protocol � Energy-efficiency �
Traffic performance � WLAN

1 Introduction

The rapid evolution and accessibility of the IEEE 802.11 WLAN [1] technologies have
led to their adoption all over the world. This technology has been used in many fields,
and become dominant in some fields, seen its flexibility and evolution. The IEEE 802.11
WLAN is deployed at large, e.g., in offices, homes, public hotspots, etc. With the
emergence of multimedia applications that require well-defined QoS levels for their
good functioning, improving the IEEE 802.11 WLAN standard has become a necessity.
This improvement should ensure an appropriate level of QoS to satisfy the applications
requirements in terms of delay, jitter, throughput, etc. For this reason, the IEEE 802.11
Working Group has proposed as an improvement the IEEE 802.11e WLAN [2], which
has today become a reference for QoS-Wireless Communication Networks. This stan-
dard provides service/traffic differentiation at the MAC Layer, using four Access Cat-
egories (AC). The IEEE 802.11e standard defines a third coordination function called
Hybrid Coordination Function (HCF). HCF defines two modes of channel access:
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(i) EDCA MAC protocol that is a distributed contention-based channel access
mechanism, (ii) and HCF Controlled Channel Access (HCCA) MAC protocol that is a
centralized polling-based channel access mechanism. The EDCA and HCCA are
improvements of DCF and PCF MAC protocols of the IEEE 802.11 standard.

The EDCA is distributed channel access method and can be used in ad hoc net-
works. The communication management within an Ad hoc WLAN with multiple
priority traffic is a difficult task. For this reason, the IEEE 802.11e EDCA [2] has been
deployed at the MAC layer to manage traffics according to their priority, in order to
ensure a good traffic performance. However, several studies have shown that EDCA
MAC protocol performs poorly under heavy traffic load due to the high collision rate
[3]. On the other hand, greening the communication protocols is recognized as a
primary design goal. The IEEE 802.11(e) technology is also used in the battery con-
strained devices (notebook computers, smart phones, eBook readers, etc.). The research
works conducted on the EDCA have invested a lot in the field of improving traffic
performance (delay, throughput, jitter, etc.). But, little research has invested in the
energy-efficiency side of the EDCA. So, a good improvement of EDCA must consider
both traffic performance and energy-efficiency, hence our proposal of FL-EDCA pro-
tocol in this paper.

The proposed FL-EDCA MAC protocol is an enhanced version of the EDCA. The
FL-EDCA integrates a QoS Mechanism which is based on a Fuzzy Logic Controller
(FLC) to dynamically adapt the contention windows of EDCA. This QoS Mechanism
reduces the probability that a collision occurs, something that significantly improves
the traffic performance and energy-efficiency. In addition, FL-EDCA favors real-time
traffic when traffic load is heavy. The strength of the FL-EDCA protocol is that, it is
based on two types of decision metrics: (i) Preventive metric represented by the
remaining energy of the station; and (ii) Healing metric represented by the collision rate
seen by the station.

The rest of this paper is structured as follows. Section 2 presents the related work.
Section 3 outlines a brief overview of the IEEE 802.11e EDCA standard. In Sect. 4, we
present our proposed FL-EDCA MAC protocol. Performance evaluation is presented in
Sect. 5. Finally, conclusions and future work are presented in the last section.

2 Related Work

Several research studies have tried to improve the EDCA protocol. All improvements
proposed by these studies include just the traffic performance side. But, few of them
have addressed the energy-efficiency side of the EDCA. One of the few studies that
have tried to improve both traffic performance and energy-efficiency is the EDCA/CA
MAC protocol proposed by Chen and Cheng [4]. The EDCA/CA tries to improve
traffic performance and energy-efficiency by reducing the number of collisions, by
defers the transmissions of some traffic when traffic load is heavy. But, the EDCA/CA
slightly increases the video delay when traffic is light. On the other hand, to improve
the energy-efficiency of EDCA, the IEEE 802.11 Working Group has developed an
energy conservation mechanism called Automatic Power Save Delivery (ASPD) [5].
This mechanism consists in reducing the idle listening state of the communication
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interface, which represents one of the main sources of energy waste in EDCA. But,
there are other sources of energy waste, such as collisions, overhead, etc. [6]. There-
fore, the development of a QoS Mechanism that reduces collisions is another solution
to further improve the energy-efficiency of the EDCA. In addition, this QoS Mecha-
nism will enable us to improve also the traffic performance.

To the best of our knowledge, there are no studies that have tried to improve both
traffic performance and energy-efficiency of EDCA, by adjusting the contention win-
dows CWmin and CWmax. This need has motivated us to propose the FL-EDCA
MAC protocol to improve both traffic performance and energy-efficiency of EDCA,
and also to favor real-time traffic when traffic load is heavy.

Fuzzy logic is used in many fields because it allows simulate human reasoning. In
wireless networks, several studies have used this mathematical theory. We cite as an
example, the study made by Nyirenda et al. [7] that has used a Fuzzy Logic Congestion
Detection (FLCD) in IEEE 802.11 WLAN environment. Simulation results of this
study have showed that the FLCD minimizes UDP traffic delay, and also reduces
packet loss rate. As well, fuzzy logic has been used as a basis for a localization solution
in Wireless Sensor Networks (WSN) [8]. Other studies have proposed mechanisms
based on fuzzy logic at the routing layer of WSN to maximize lifetime [9, 10].

3 The IEEE 802.11e EDCA MAC Protocol

The IEEE 802.11e Enhanced Distributed Channel Access (EDCA) [2] is an
enhancement of the IEEE 802.11 DCF MAC protocol [1]. As shown in Fig. 1, the
EDCA uses eight Traffic Categories (TC) defined by the IEEE 802.1D Bridges
Specification [11]. These eight TC are mapped to four Access Categories (AC), in order
to ensure traffic/service differentiation at the MAC Layer.

Fig. 1. The EDCA MAC structure
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• AC[VOICE] <= TC(6 and 7) : Higher priority traffic,
• AC[VIDEO] <= TC(4 and 5),
• AC[BESTEFFORT] <= TC(0 and 3),
• AC[BACKGROUND] <= TC(1 and 2) : Lower priority traffic.

Each AC is represented by a Drop-Tail MAC-Queue (Dropping a packet that
arrives at a full queue) that uses the technique First In First Out (FIFO). The priority of
each MAC-Queue is maintained by four MAC parameters that are: Arbitration Inter
Frame Space Number (AIFSN), Contention Window minimum (CWmin), Contention
Window maximum (CWmax), and Transmission Opportunity Limit (TXOPLimit). The
default values of these MAC parameters for each AC (with the IEEE 802.11b at the
physical layer) are given in Table 1. Each AC has its own AIFS[AC] and CW[AC]
parameters, see (1) and (2). The values of aSlotTime and SIFS parameters are fixed
according to the used physical layer. For example, for the IEEE 802.11b PHY:
aSlotTime = 20 µs and SIFS = 10 µs.

AIFS AC½ � ¼ SIFSþ AIFSN AC½ � � aSlotTime ð1Þ
CWmin AC½ � �CW AC½ � �CWmax½AC� ð2Þ

The two parameters CWmin and CWmax determine the value of CW[AC]. At the
beginning, CW[AC] = CWmin[AC]. If the station has a packet to transmit, it waits a
AIFS[AC] time. If all throughout the AIFS[AC] the channel was free, the station sends
the packet directly. Otherwise, the station must wait until the channel becomes free,
wait for another time AIFS[AC], and then wait a random time called Backoff Timer
(BT), see (3). If during the decrement of BT[AC] the channel becomes busy, the
decrement is suspended. Once the channel becomes free the station waits AIFS [AC],
and then continues decrementing the BT[AC]. If the BT[AC] time expires, the station
can send the packet. When there is a transmission error of a packet, the CW[AC] value
of the concerned AC is doubled, see (4). When the packet is sent successfully, the CW
[AC] value of the concerned AC is reset to CWmin[AC].

BackoffTime½AC� ¼ Randomð0;CW ½AC�Þ � aSlotTime ð3Þ
CWnew½AC� ¼ 2� ðCWold½AC� þ 1Þ � 1 ð4Þ

Table 1. MAC parameters values of EDCA (IEEE 802.11b PHY)

AC AIFSN CWmin CWmax TXOPLimit

AC_VO 2 7 15 3.264 ms

AC_VI 2 15 31 6.016 ms

AC_BE 3 31 1023 0 ms

AC_BK 7 31 1023 0 ms
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4 The proposed FL-EDCA MAC Protocol

In this section we describe in detail the FL-EDCA protocol that we propose in this
paper. The FL-EDCA is an enhanced version of the EDCA, which incorporates a QoS
Mechanism to reduce the probability that a collision occurs. For reducing this proba-
bility, the FL-EDCA dynamically adapts (at run time) the contention windows CWmin
and CWmax of the four AC, using Fuzzy Logic Controller (FLC), as shown in Fig. 2.
When the collision rate increases the FLC increases the size of the Contention Win-
dows (CWs) to reduce the collision probability. To adjust the size of CWs, the FLC
uses two decision metrics. The first decision metric is preventive represented by the
Remaining Energy (RE) of the station. The FLC increases slightly the CWs according
to the remaining energy. In this way, when the remaining energy decreases, we will try
to reduce the probability of future collisions. The second decision metric is healing
represented by the Collision Rate (CR). The FLC increases the CWs according to the
collision rate seen by the station, in order to reduce the probability of future collisions.

The operating mode of the QoS Mechanism (Based on a FLC) incorporated in our
proposed FL-EDCA protocol is as follows:

After each time period P, we must make the following steps:

• STEP 1: We count the number of packets sent and the number of collisions that have
occurred during this period P.

• P = (5000 × aSlotTime) according to [12].
• We use the IEEE 802.11b at the physical layer, so aSlotTime = 20 µs.

• STEP 2: We calculate the Collision Rate (CRnew) after the expiration of each
period P.

CRnew ¼ NColl=NPSent ð5Þ

Fig. 2. FLC architecture incorporated in FL-EDCA.
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• NColl: Collisions number in P period.
• NPSent: Packets sent number in P period.

• STEP 3: We use after step 2 an estimator of Exponentially Weighted Moving
Average (EWMA), to smoothen the estimated values of the collision rate.

CRavgðnewÞ ¼ ð1� aÞ � CRnewþ a � CRavgðoldÞ ð6Þ

• α = 0.8 according to [12].
• STEP 4: We apply the new calculated values of the collision rate CRavg(new) and
remaining energy (in %) as input to the FLC.

• STEP 5: The controller fuzzifies the value of the two inputs using their membership
functions (see Figs. 3 and 4). Then look in the inference rules (see Table 2) to
determine the correspondent decision. And finally the FLC defuzzifies the decision,
and gives as output the proper configuration CWs(out) of the four AC (see Table 3).

The two membership functions (MF) are used to convert the value of CR and RE to
a fuzzy set (Low, Medium, or High) according to the degree of truth. The values of S1,
S2, S3 and S4 of each MF define the fuzzy sets. There is no standard that allows

Fig. 3. Membership function of the collision rate

Fig. 4. Membership function of the remaining energy
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determining the values of the threshold {S1, S2, S3, S4} of CR and RE. We have set
the values of {S1, S2, S3, S4} of CR based on the reference [13], which analyzed the
impact of CWmin and CWmax values on packet loss. To set the values of {S1, S2, S3,
S4} of RE, we have divided the interval [0,100 %] on three equal fuzzy sets.

The used fuzzy inference rules in Table 2 are in the following form:

if CR is X and RE is Y then CWs(out) is Z

Table 2 shows the different possible combinations (rules) between the fuzzy sets of
the two membership functions. For each rule, an output configuration of CWs is
chosen. The output configurations are detailed in Table 3, and their values are chosen
based on the results of the reference [13] and the recommendations of the IEEE
802.11e [2]. The CWs are attributed to the rules in such a way that, the CWmin and
CWmax values increase gradually with the increase of CR and the decrease of RE. The
values of CWs(out) configurations were well chosen to support real-time traffic. As
shown in Table 3, the values of CWmin[VO] and CWmax[VO] always keep a safe
distance with the CWmin and CWmax values of the others ACs. Such a configuration
allows keeping priority of the real-time traffic, regardless the traffic load in the network.

Table 2. Fuzzy inference rules

Rules CR RE CWs(out)

R1 Low High Config A
R2 Low Medium Config A
R3 Low Low Config A
R4 Medium High Config B
R5 Medium Medium Config B
R6 Medium Low Config C
R7 High High Config D
R8 High Medium Config D
R9 High Low Config E

Table 3. Contention windows configurations

CWs(out) Configurations
A B C D E

CWmin[VO] 7 7 15 15 31
CWmax[VO] 15 15 31 31 63
CWmin[VI] 15 31 31 63 63
CWmax[VI] 31 63 63 127 127
CWmin[BE] 31 63 63 127 127
CWmax[BE] 1023 1023 1023 1023 1023
CWmin[BK] 31 63 63 127 127
CWmax[BK] 1023 1023 1023 1023 1023
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How a node can compute the number of collisions? The determination of the cause of
packet loss (collision or weak signal) in real time is impossible in wireless networks,
because the antenna can’t transmit data and listen to the channel at the same time [14].
Such a problematic has prompted the IEEE 802.11 Working Group to propose an
intermediate solution. This solution consists in assigning the problem of packet loss to
a collision, but after a certain number of unsuccessful retransmission of the packet (set
from Short/Long Retry Count parameters), the problem of loss is attributed to a weak
signal [14]. In the case of a packet loss due to a collision, the Binary Exponential
Backoff (BEB) is invoked to double CW, see (4). In the case of a packet loss due to a
weak signal, the data-rate adaptation algorithm is invoked.

5 Performance Evaluation

We have simulated our network using the simulation environment Network Simulator 2
(NS-2). We have implemented the EDCA protocol in NS-2 based on the code that was
proposed by Sven et al. [15]. To properly assess the energy-efficiency and traffic
performance, we realized several scenarios by varying the density of nodes (2, 4, 6, 8,
10, 12, 14, 16 and 18) and the traffic load in the network. The simulated network
contains no hidden or mobile stations. All stations belong to a single Independent Basic
Service Set (IBSS). In our study, the energy-efficiency is represented by the average
lifetime of nodes, and the traffic performance is represented by the sum of the gains of
the delay, throughput and packets delivery rate of FL-EDCA compared to EDCA.
Table 4 shows in detail the Constant Bit Rate (CBR) traffics exchanged between nodes.
Figure 5 shows the topology used in the different scenarios. The simulation time in the
different scenarios is 10000 seconds. The used simulation parameters and the energetic
characteristics of the communication interface [16] are detailed in Table 5.

5.1 Results and Discussion

Figure 6 shows the lifetime guaranteed by EDCA and FL-EDCA MAC protocols.
Preliminary results show that the FL-EDCA can ensure greater energy-efficiency
through the QoS Mechanism that it integrates. This significant improvement in lifetime
is due to the ability of FL-EDCA to reduce the collision probability. This decrease in
collisions avoids wasted energy during a collision, and also the wasted energy during
the retransmission of the packet after collision. In addition, this significant energy-
efficiency guaranteed by FL-EDCA is due to the two decision metrics (preventive and
healing) on which is based the FLC integrated in our QoS Mechanism. Since, through

Table 4. Exchanged traffics

Traffic Voice Video

Packet size (Bytes) 160 625

Packet interval (ms) 20 12.5

Traffic rate (Kbps) 64 400
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these metrics the FLC can correctly predict the proper configuration of CWs, in an
attempt to avoid as much as all future collisions.

Figure 7 shows the guaranteed traffic performance. The traffic performance repre-
sent in this figure the sum of the gains of the delay, throughput and packets delivery
rate of FL-EDCA compared to EDCA. Preliminary results show that the FL-EDCA can
provide more traffic performance. This is due to the ability of the QoS Mechanism
integrated in our FL-EDCA protocol to significantly reduce the number of contentions
in the network, something that significantly reduces the number of collisions. Because
reducing the number of collisions prevents the time loss due to collisions and re-
transmissions, something that improves the delay, throughput and packet delivery rate.
In addition, this significant improvement in traffic performance is due to the two
decision metrics (preventive and healing) on which is based the FLC integrated in our
QoS Mechanism. Since, through these metrics the FLC can correctly predict the proper

Fig. 5. Simulation topology

Fig. 6. Guaranteed lifetime by EDCA and FL-EDCA protocols
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configuration of CWs, in an attempt to avoid as much as all future collisions. The FL-
EDCA ensures better QoS characteristics compared to EDCA protocol (Delay gain: up
to 30.2 %, Throughput gain: up to 44.9 %, Packets delivery rate gain: up to 31.4 %).

6 Conclusion and Future work

In this paper we have proposed an enhanced version of EDCA called FL-EDCA. This
proposed MAC protocol incorporates a QoS Mechanism that is based on a fuzzy logic
controller to reduce the probability that a collision occurs, through dynamic adaptation

Table 5. Simulation parameters

Parameter Value(s)

Simulation time 10 000 s
Simulation area 100 m x 100 m
Number of nodes 2, 4, 6, 8, 10, 12, 14, 16, 18
Pause time 0 s
Queue size 50
Physical layer IEEE 802.11b
SIFS 10 µs
SlotTime 20 µs
DIFS 50 µs
Data rate 11 Mbps
IDLE energy 0.740 W
Reception energy 0.900 W
Transmission energy 1.350 W
Sleep energy 0.050 W
{S1, S2, S3, S4}CR {1 %, 2 %, 10 %, 20 %}
{S1, S2, S3, S4}RE {23 %, 43 %, 56 %, 76 %}

Fig. 7. Guaranteed traffic performance by EDCA and FL-EDCA protocols
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(at run time) of the contention windows. Simulation results show that FL-EDCA
outperforms EDCA by improving significantly energy-efficiency and traffic
performance.

In our future study, we will try to find the optimal values of the intervals of the
three states (Low, Medium and High) of the membership functions, to maximize both
traffic performance and energy-efficiency guaranteed by our FL-EDCA protocol.
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Abstract. In OBS networks, lost bursts can be recovered proactively using
burst cloning, or reactively using burst retransmission. Burst cloning has
advantage of low delay but it suffers from low throughput. Burst retransmission
has advantage of high throughput but at the cost of high delay. To minimize
delay while keeping high throughput in star OBS networks, we propose three
schemes: (1) enhanced burst retransmission scheme that controls the retrans-
missions; (2) hybrid loss recovery scheme that integrates efficiently burst
cloning and burst retransmission; (3) differentiated QoS scheme that provides
differentiation between two classes in terms of delay using burst cloning and
burst retransmission. Both analytical and simulation results show that the pro-
posed schemes achieve high throughput. We find that, compared to basic burst
retransmission scheme, first scheme reduces delay only at moderate and high
load, however, second and third scheme reduce delay at every load. Third
scheme can also give good differentiation.

Keywords: Performance analysis � Optical burst switching � Loss minimization �
Delay differentiation

1 Introduction

Optical Burst Switching (OBS) is proposed as a switching paradigm to support tre-
mendous traffic of current and next generation Internet over wavelength division
multiplexing networks [1–3]. OBS networks use one-way reservation that leads to burst
contention, which is the principal reason of burst loss. Burst loss affects negatively the
performance of the higher layers. Contention occurs at both edge and core node. At
edge node, contending burst may be electronically queued in finite burst queue and,
consequently, a new arriving burst can be lost if the burst queue is full. Whereas at core
node, which lacks of optical memory and wavelength conversion capability, con-
tending burst will be lost.

Burst cloning mechanism can proactively recover lost bursts by transmitting two or
more duplicates of the same burst in order to enhance the probability that at least one
duplicate will reach destination [4]. We have previously proposed two burst cloning
schemes for star networks [5]. First scheme, called basic burst cloning scheme, can
reduce burst loss at low load, however at high load, it leads to a significant burst loss at
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edge nodes due to burst queue saturation. The second scheme, called opportunistic
burst cloning scheme, aims to overcome this shortcoming by disabling burst cloning
mechanism when the burst queue size reaches a preset Threshold (T). Whereas burst
cloning mechanism has advantage of low burst delay, it suffers from low bandwidth
utilization. Lost bursts can be also recovered reactively by retransmitting contending
bursts [6]. For star networks, the authors of [7] proposed a basic burst retransmission
scheme. Burst retransmission mechanism has advantage of high bandwidth utilization
but at the cost of high burst delay.

In order to minimize burst delay while keeping high bandwidth utilization in star
OBS networks, we propose, in this work, three schemes. The first scheme is an enhanced
burst retransmission scheme, which aims to control the retransmissions through a simple
technique to enable/disable burst retransmission mechanism. The second scheme is a
new hybrid loss recovery scheme, which aims to integrate efficiently burst cloning and
burst retransmission mechanism. The third scheme is a differentiated QoS scheme that
provides differentiation between two classes in terms of burst delay by using burst
cloning and burst retransmission. We propose analytical models for basic burst
retransmission scheme, enhanced burst retransmission scheme, hybrid loss recovery
scheme and differentiated QoS scheme. The accuracy of our analytical model is verified
through simulation. Both analytical and simulation results show that the proposed
schemes achieve high bandwidth utilization. We find that, compared to basic burst
retransmission scheme, the first scheme reduces burst delay only at moderate and high
load, however, the second and third scheme reduce delay at every load. The third
scheme can offer also a good differentiation in terms of burst delay.

The outline of this paper is: in Sect. 2, we present and analyze the basic burst
retransmission scheme; in Sect. 3, we propose and analyze the enhanced burst
retransmission scheme; in Sect. 4, we propose and analyze the hybrid loss recovery
scheme; in Sect. 5, we propose and analyze the differentiated QoS scheme; in Sect. 6,
we show the analytical and simulation results. Finally, we conclude this paper in
Sect. 7.

2 Basic Burst Retransmission Scheme

In Basic Burst Retransmission Scheme (BBRS) [7, 8], both new arriving and retrans-
mitting burst are scheduled through EPMV-VF algorithm [9]. We consider that burst
queue is finite and, consequently, both new arriving and retransmitting burst will be lost
when the burst queue is saturated. Each new arriving burst should be kept in retrans-
mission buffer and assigned a unique id. The life duration of burst copy in retrans-
mission buffer is controlled by setting a timer to the value of Round Trip Time (RTT)
between edge and core node. A control packet is sent before data burst to reserve a data
wavelength at the core node and if this reservation is failing, a Negative Acknowl-
edgment (NACK) packet with burst id is sent from the core node to the edge node,
which is the source of the control packet. When the NACK packet reaches the edge
node, which has an unsaturated burst queue, the timer is set to RTT and the new control
packet is sent again, and so on. The burst copy is still in the retransmission buffer until it
either reaches its destination or is lost due to burst queue saturation.
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2.1 Modeling of Edge Node

The burst queue of the edge node in conventional OBS is modeled with M/M/W/K
queue; where the number of servers W represents the number of data wavelengths per
single fiber, and the number of system places K represents the sum of the number of
data wavelengths and the number of burst queue places; the burst arrival from burst
assembler to the burst queue is assumed Poisson process with rate λ bursts per second
and the distribution of burst time is exponential with a mean of 1⁄µ seconds [5]. In
BBRS, the total burst arrival to the burst queue Λ includes the new burst arrival from
burst assembler λ and the arrival of retransmitted bursts δ:

K ¼ kþ d: ð1Þ
We model the burst queue in BBRS with the same M/M/W/K queue as conventional
OBS except that the burst arrival is Λ. The equilibrium probability (pn) is expressed in
terms of p0 as follows:

pn ¼ 1
n!

K
l

� �n

p0; for n ¼ 1; . . .;W ; ð2Þ

pn ¼ WW

W !

K
Wl

� �n

p0; for n ¼ W þ 1; . . .;K : ð3Þ

The normalization condition of the total probability is expressed as follows:
XK

n¼0
pn ¼ 1: ð4Þ

Consequently, p0 is given by:

p0 ¼
XW

n¼0

1
n!

K
l

� �n

þWW

W !

XK

n¼Wþ1

K
Wl

� �n� ��1

: ð5Þ

The burst queue is saturated with the probability (f):

f ¼ pK: ð6Þ
The utilization of each outgoing data wavelength (ρ) is given by:

q ¼ Kð1� pKÞ
Wl

: ð7Þ

The Queuing Delay (QD) is given based on Little’s law [10]:

QD ¼
PK

n¼1 npn
Kð1� pKÞ : ð8Þ

2.2 Modeling of Core Node

Let g be the probability of a data-wavelength reservation failure in core node. g is given
by the following formula, which is given and proved in [5]:
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g ¼ aðN � 1Þ
lN þ 2aðN � 1Þ : ð9Þ

Where N is the number of edge nodes and α is given by:

a ¼ lq
1� q

: ð10Þ

The arrival of retransmitted bursts δ is:

d ¼
X1

i¼1
1� fð Þgð Þik; ð11Þ

that is,

d ¼ 1� fð Þg
1� 1� fð Þg k: ð12Þ

To get δ we need the 2-tuple (f, g) and to obtain the 2-tuple (f, g) we need δ, which
leads to the following iterative algorithm. In the initialization step, we assume that δ is
zero. In the iterative step, we calculate the 2-tuple (f, g); and then we calculate δ. We
repeat the iterative step until δ converges.

2.3 Performances of Network

Since the burst is lost only in edge nodes due to burst queue saturation, the Burst Loss
Probability (BLP) is given by:

BLP ¼
X1

i¼0
f 1� fð Þgð Þi: ð13Þ

Thus,

BLP ¼ f
1� 1� fð Þg : ð14Þ

The Normalized Throughput (NT) is the ratio of bandwidth utilization. NT is given by:

NT ¼ k 1� BLPð Þ
Wl

: ð15Þ

The BD depends on QD, Offset Time (OT), Propagation Delay (PD), Processing Time
(PT) of each of control packet and NACK packet, and average number of retrans-
missions (r). BD is given by:

BD ¼ QDþ OT þ r 2PDþ 2PTð Þ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{RTT

þ2PD; ð16Þ
such as r is given by:

r ¼
X1

i¼1
i 1� fð Þgð Þi 1� 1� fð Þgð Þ; ð17Þ
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that is,

r ¼ 1� fð Þg
1� 1� fð Þg : ð18Þ

3 Enhanced Burst Retransmission Scheme

At low load, the BBRS can minimize significantly the burst loss probability with
reasonable burst delay. At high load, the BBRS can also minimize the burst loss
probability but not as significantly with unreasonable high burst delay. To overcome
this shortcoming, we propose Enhanced Burst Retransmission Scheme (EBRS), which
aims to control the retransmissions through a simple technique to enable/disable burst
retransmission mechanism. In EBRS, retransmission mechanism is enabled or disabled
in accordance with the current state of the burst queue. When the NACK packet reaches
the edge node, if the burst queue size is less than a preset threshold, the timer is set to
RTT and the new control packet is sent to the core node; else, the burst copy is deleted
from retransmission buffer and, consequently, the burst is finally lost.

3.1 Modeling of Edge Node

We model the burst queue of edge node with the Markov chain shown in Fig. 1, where
Λ is given by (1) and T denotes the threshold. Based on the global balance equation for
the cut between states (n − 1) and n, we can express pn in terms of p0 as follows:

pn ¼ 1
n!

K
l

� �n

p0; for n ¼ 1; . . .;W ; ð19Þ

pn ¼ WW

W !

K
Wl

� �n

p0; for n ¼ W þ 1; . . .; T ; ð20Þ

pn ¼ WW

W !

K
k

� �T k
Wl

� �n

p0; for n ¼ T þ 1; . . .;K: ð21Þ

Consequently, p0 is given by:

p0 ¼
XW
n¼0

1
n!

K
l

� �n

þWW

W !

XT
n¼Wþ1

K
Wl

� �n

þ K
k

� �T XK
n¼Tþ1

k
Wl

� �n
 ! !�1

: ð22Þ

Fig. 1. State transition diagram for burst queue of an edge node in EBRS
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The new burst arrival from burst assembler will be dropped with probability (f1):

f1 ¼ pK: ð23Þ
The arrival of the retransmitting bursts will be dropped with probability (f2):

f2 ¼
XK
n¼T

pn: ð24Þ

ρ are given as follows:

q ¼
PK

n¼1 minðW ; nÞpn
W

; ð25Þ

QD is given based on Little’s law as follows:

QD ¼
PK

n¼1 npn
Wlq

: ð26Þ

3.2 Modeling of Code Node

g is calculated as in BBRS except that the arrival of retransmitted bursts δ is given by:

d ¼ 1� f1ð Þg
X1

i¼1
1� f2ð Þgð Þi�1k; ð27Þ

that is:

d ¼ 1� f1ð Þg
1� 1� f2ð Þg k: ð28Þ

3.3 Performances of Network

The new burst is lost due to burst queue saturation whereas the retransmitted burst is
lost if the burst queue size is greater than the threshold. The BLP is given by:

BLP ¼ f1 þ 1� f1ð Þf2g
X1

i¼1
1� f2ð Þgð Þi�1; ð29Þ

that is,

BLP ¼ f1 þ f2 � f1ð Þg
1� 1� f2ð Þg : ð30Þ

The NT is given based on (15). The BD is calculated using (16) such as average number
of retransmissions (r) is given by:
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r ¼
X1

i¼1
i 1� f2ð Þgð Þi 1� 1� f2ð Þgð Þ; ð31Þ

that is,

r ¼ 1� f2ð Þg
1� 1� f2ð Þg : ð32Þ

4 Hybrid Loss Recovery Scheme

In this section, we propose a Hybrid Loss Recovery Scheme (HLRS), which aims also
to improve bandwidth utilization while keeping burst delay as low as possible in star
OBS networks. HLRS integrates burst retransmission mechanism, which has advantage
of high bandwidth utilization but it suffers from high burst delay, with burst cloning
mechanism, which has advantage of low burst delay but it suffers from low bandwidth
utilization. In HLRS, we divide the burst queue into three parts with two thresholds.
When the burst queue size is less than the first threshold, the both mechanisms are
enabled. When the burst queue size is between the first threshold and the second
threshold, only burst retransmission mechanism is enabled. When the burst queue size
is more than the second threshold, the both mechanisms are disabled. When a new
arriving burst is ready, if the burst queue is saturated, then, the new arriving burst is
lost, else, it is kept in retransmission buffer, the timer is set to RTT, and if the burst
queue size is less than the first threshold, then, two copies of the new arriving burst
are sent to the core node, else, only one copy of the new arriving burst is sent to the
core node. When the NACK packet reaches the edge node, if the burst queue size is
more than the second threshold, the burst copy is deleted from retransmission buffer
and the burst is finally lost, else, the timer is set to RTT and if the burst queue size is
less than the first threshold, then, two copies of retransmitting burst are sent to the core
node, else, only one copy of retransmitting burst is sent to the core node.

4.1 Modeling of Edge Node

We model the burst queue of edge node queue in HLRS with the Markov chain shown
in Fig. 2, where T1 denotes the first threshold and T2 denotes the second threshold. Λ is
given by (1). We can express pn based on the global balance equation for the cut
between states (n − 1) and n:

p1 ¼ K
l
p0; for n ¼ 1; ð33Þ

pn ¼ K
minðW ; nÞl pn�1 þ pn�2ð Þ; for n ¼ 2; . . .; T1; ð34Þ

pn ¼ K
minðW ; nÞl pn�1; for n ¼ T1 þ 1; . . .; T2; ð35Þ
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pn ¼ k
minðW ; nÞl pn�1; for n ¼ T2 þ 1; . . .;K: ð36Þ

Based on (33), (34), (35), (36) and the normalization condition of the total probability,
we can calculate any state probability pn. The following way computes all state
probabilities of the system: let un be the un-normalized probability of the state n, we
initialize u0 to one; for n ≥ 1, we calculate un as in (33), (34), (35) and (36); finally, we
calculate pn as follows:

pn ¼ unPK
i¼0 ui

; for n ¼ 0; . . .;K: ð37Þ

The probability that a new burst will be dropped is:

f1 ¼ pK: ð38Þ
The probability that a retransmitted burst will be dropped is:

f2 ¼
XK
n¼T2

pn: ð39Þ

ρ and QD are given by (25) and (26) respectively. If a burst is not lost, then it will be
cloned with the probability c:

c ¼ Wlq

K
PT2�1

n¼0
pn þ k

PK�1

n¼T2
pn

� 1: ð40Þ

4.2 Modeling of Core Node

The load may be considered in core node is:

l ¼ ð1þ cgÞq
1þ c

: ð41Þ

Where g is given by (9), such as α is given by:

a ¼ ll
1� l

: ð42Þ

Fig. 2. State transition diagram for burst queue of an edge node in HLRS
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If the burst is cloned, then it is retransmitted only when the both data wavelength
reservations are failed. However, if the burst is not cloned, then the burst is retrans-
mitted when one data wavelength reservation is failed. Therefore, the arrival of re-
transmitted bursts δ is given by:

d ¼ ð1� f1Þðð1� cÞgþ cg2Þ
X1

i¼1
ð1� f2Þðð1� cÞgþ cg2Þ� �i�1

k; ð43Þ
that is:

d ¼ ð1� f1Þðð1� cÞgþ cg2Þ
1� ð1� f2Þðð1� cÞgþ cg2Þ k: ð44Þ

To get δ we need the 4-tuple (f1, f2, c, g) and to obtain the 4-tuple (f1, f2, c, g) we need δ,
which leads to an iterative algorithm. We propose the following iterative algorithm. In
the initialization step, we assume that δ is zero and g is zero. In the iterative step, we
calculate the 4-tuple (f1, f2, c, g); and then we calculate δ. We repeat the iterative step
until δ converges.

4.3 Performances of Network

The new burst is lost due to burst queue saturation however the retransmitted burst is
lost if the burst queue size is greater than the second threshold T2. Therefore, BLP is:

BLP ¼ f1 þ 1� f1ð Þf2ðð1� cÞgþ cg2Þ
X1

i¼1
1� f2ð Þðð1� cÞgþ cg2Þ� �i�1

; ð45Þ
that is,

BLP ¼ f1 þ ðf2 � f1Þðð1� cÞgþ cg2Þ
1� ð1� f2Þðð1� cÞgþ cg2Þ : ð46Þ

The NT is given based on (15). We calculate the BD by (16) such as r is given by:

r ¼
X1

i¼1
i ð1� f2Þðð1� cÞgþ cg2Þ� �i

1� ð1� f2Þðð1� cÞgþ cg2Þ� �
; ð47Þ

thus,

r ¼ ð1� f2Þðð1� cÞgþ cg2Þ
1� ð1� f2Þðð1� cÞgþ cg2Þ : ð48Þ

5 Differentiated Quality of Service Scheme

Here, we propose a Differentiated Quality of Service Scheme (DQSS), which aims to
provide a differentiation between two classes in terms of burst delay while keeping the
burst loss as low as possible for both classes and high bandwidth utilization in star OBS
networks. The bursts of the First Class of Service (CoS1) contain non-real-time traffic
(e.g. best-effort services), however, the bursts of the Second Class of Service (CoS2)
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contain real-time traffic (e.g. voice and video conferencing) which demands lowest
delay. In DQSS, bursts of CoS1 are processed as in EBRS, however, bursts of CoS2 are
processed as in HLRS. When the burst queue size is less than the first threshold, burst
retransmission mechanism is enabled for bursts of CoS1 and CoS2, however, burst
cloning mechanism is enabled only for bursts of CoS2. When the burst queue size is
between the first threshold and the second threshold, only burst retransmission
mechanism is enabled for bursts of CoS1 and CoS2. When the burst queue size is more
than the second threshold, the both mechanisms are disabled.

5.1 Modeling of Edge Node

The burst arrival from burst assembler to the burst queue includes the arrival of CoS1
(λ1) and the arrival of CoS2 (λ2):

k ¼ k1 þ k2: ð49Þ
The total burst arrival of a CoSi to the burst queue includes the new burst arrival of the
CoSi (λi) and the arrival of retransmitted bursts of the same CoSi (δi):

Ki ¼ ki þ di: ð50Þ
We model the burst queue of edge node queue in DQSS with the Markov chain shown
in Fig. 3, where Λ is given by:

K ¼ K1 þ K2: ð51Þ
We can express pn based on the global balance equation for the cut between states
(n − 1) and n:

p1 ¼ K
l
p0; for n ¼ 1; ð52Þ

pn ¼ Kpn�1 þ K2pn�2

minðW ; nÞl ; for n ¼ 2; . . .; T1; ð53Þ

pn ¼ K
minðW ; nÞl pn�1; for n ¼ T1 þ 1; . . .; T2; ð54Þ

pn ¼ k
minðW ; nÞl pn�1; for n ¼ T2 þ 1; . . .;K: ð55Þ

Fig. 3. State transition diagram for burst queue of an edge node in DQSS
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We calculate pn as follows: we initialize the un-normalized probability of the state 0
(u0) to one; for n ≥ 1, we calculate un as in (52), (53), (54) and (55); finally, we
calculate pn using (37). f1, f2, ρ, QD and c are given by (38), (39), (25), (26) and (42)
respectively. If a burst of CoS2 is not lost, then it will be cloned with the probability q:

q ¼ cK
K2

: ð56Þ

5.2 Modeling of Core Node

l is given by (41). The arrival of retransmitted bursts of CoS1 is given by:

d1 ¼ ð1� f1Þg
X1

i¼1
ð1� f2Þgð Þi�1k1; ð57Þ

that is:

d1 ¼ ð1� f1Þg
1� ð1� f2Þg k1: ð58Þ

The arrival of retransmitted bursts of CoS2 is given by:

d2 ¼ ð1� f1Þðð1� qÞgþ qg2Þ
X1

i¼1
ð1� f2Þðð1� qÞgþ qg2Þ� �i�1

k2; ð59Þ
that is:

d2 ¼ ð1� f1Þðð1� qÞgþ qg2Þ
1� ð1� f2Þðð1� qÞgþ qg2Þ k2: ð60Þ

To get the 2-tuple (δ1, δ2) we need the 4-tuple (f1, f2, q, g) and to obtain the 4-tuple (f1,
f2, q, g) we need the 2-tuple (δ1, δ2). We propose the following iterative algorithm. In
the initialization step, we assume that δ1 is zero, δ2 is zero and g is zero. In the iterative
step, we calculate the 4-tuple (f1, f2, q, g); and then we calculate the 2-tuple (δ1, δ2). We
repeat the iterative step until g converges.

5.3 Performances of Network

The Burst Loss Probability of CoS1 (BLP1) is given as in (30). The Burst Loss
Probability of CoS2 (BLP2) is given by:

BLP2 ¼ f1 þ 1� f1ð Þf2ðð1� qÞgþ qg2Þ
X1

i¼1
1� f2ð Þðð1� qÞgþ qg2Þ� �i�1 ð61Þ

that is,

BLP2 ¼ f1 þ ðf2 � f1Þðð1� qÞgþ qg2Þ
1� ð1� f2Þðð1� qÞgþ qg2Þ : ð62Þ
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Consequently, the BLP is given by:

BLP ¼ k1BLP1 þ k2BLP2ð Þ
k

: ð63Þ

The NT is given based on (15). The Burst Delay of CoS1 (BD1) is given by (16) such as
r is given by (32). The Burst Delay of CoS2 (BD2) is given by (16) such as r is given
by:

r ¼
X1

i¼1
i ð1� f2Þðð1� qÞgþ qg2Þ� �i

1� ð1� f2Þðð1� qÞgþ qg2Þ� �
; ð64Þ

thus,

r ¼ ð1� f2Þðð1� qÞgþ qg2Þ
1� ð1� f2Þðð1� qÞgþ qg2Þ : ð65Þ

Consequently, the BD is given by:

BD ¼ k1 1� BLP1ð ÞBD1 þ k2 1� BLP2ð ÞBD2ð Þ
k 1� BLPð Þ : ð66Þ

6 Numerical Results

We implemented Conventional OBS (COBS), Basic Burst Cloning Scheme (BBCS),
Opportunistic Burst Cloning Scheme (OBCS), BBRS, EBRS, HLRS and DQSS in ns-2
simulator [11] using OBS-ns extension [12]. In the considered star network, the core
node is connected to 15 edge nodes (i.e. N = 15) through 15 different bi-directional
dual-fibers. We assume that there are no control packet losses and no NACK packet
losses, W = 8, K = 24, PD = 10−3 s, PT = 10−6 s. OT = 10−5 s, wavelength capacity is
10 Gbps and µ−1 = 0.0008 s. The generated load (L) by each burst assembler can be set

Fig. 4. Burst delay, BD
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by adjusting the rate λ such as L = λ(Wµ) −1. In Figs. 4, 5 and 6, we plot respectively
analytical and simulation results of BD, BLP and NT, as function of L for: COBS;
BBCS with R = 2; OBCS with T = 16; BBRS; EBRS with T = 20; HLRS with T1 = 8,
T2 = 20; DQSS with T1 = 8, T2 = 20, λ1/λ = 0.9, λ2/λ = 0.1. Note that the analytical
model of COBS, BBCS and OBCS are given in [5].

The results shown in Figs. 4, 5, and 6 demonstrate that, our analytical models
achieve a good approximation in comparison with the simulation results.

In Fig. 4, we observe that, BD of COBS remains less than that of BBCS, OBCS,
BBRS, EBRS, HLRS and both classes of DQSS for every load. The BD of COBS
remains constant and near to end-to-end propagation delay until the load reaches 50 %;
after this point, it begins to increase slowly with increasing L. When L is below 30 %,
BD of OBCS is close to that of BBCS and increases slowly; however, when L is more

Fig. 5. Burst loss probability, BLP

Fig. 6. Normalized Throughput of network, NT
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than 30 %, BD of BBCS continues to increase more rapidly than that of OBCS. When
L is less than 40 %, BD of EBRS is close to BD of BBRS and increases rapidly with
increasing L; however, when L is more than 40 %, BD of BBRS continues to increase
more rapidly than that of EBRS until it attains its maximum at L = 66 % and then it
decreases slowly with increasing L. BD of EBRS becomes to decrease when reaching
L = 54 %. As L increases, BD of HLRS increases less rapidly than that of EBRS until it
attains its maximum at L = 56 %; after this point, the BD of HLRS begins to decrease
and becomes close to that of EBRS. For DQSS, BD of CoS1 remains close to that of
EBRS under every load; however, as L increases, BD of CoS2 increases more rapidly
than that of BBCS and less rapidly than that of HLRS until it attains its maximum at
L = 60 %; after this point, it begins to decrease and becomes close to that of EBRS and
HLRS. We explain the above results as follows. For COBS, BBCS and OBCS, BD
depends only on OT, PD, PT and QD. However, for BBRS, EBRS, HLRS and both
classes of DQSS, BD depends on OT, PD, PT, QD and on average number of re-
transmissions (r) as shown in (16). Since OT and PD remain constant, the variation of
BD for COBS, BBCS and OBCS is due to QD and the variation of BD for BBRS,
EBRS, HLRS and both classes of DQSS is due to QD and r. COBS has zero extra load,
which leads to smaller QD, and, consequently, lower BD. For BBCS, the extra load of
burst cloning increases as the load increases, however, OBCS reduces ratio of extra
load as the load increases. Thus, OBCS can also reduce QD and, consequently, BD
more than BBCS. At low load, the extra load of burst retransmission of EBRS is very
similar to that of BBRS, thus EBRS and BBRS achieve the same QD and r. Conse-
quently, EBRS and BBRS achieve the same BD at low load. However, at moderate and
high load, as we increase load EBRS reduces the ratio of the extra load more than
BBRS that means that EBRS minimizes QD and reduces r more than BBRS. Conse-
quently, EBRS can achieve a BD that is less than BD of BBRS at moderate and high
load. At low and moderate load, HLRS allows each transmitted burst more opportunity
to avoid retransmission by transmitting two duplicates of the burst using burst cloning
mechanism that leads to reduce significantly r. Consequently, HLRS achieves a BD
that is less than BD of EBRS at low and moderate load. In DQSS, only the bursts of
CoS2 that benefits by burst cloning mechanism, therefore the bursts of CoS2 have an
opportunity to avoid retransmission more than that of bursts of HLRS at low and
moderate load. Consequently, CoS2 of DQSS achieves a BD that is less than BD of
HLRS at low and moderate load. At high load, HLRS and DQSS disable burst cloning
mechanism and reduces the ratio of the extra load, due to burst retransmission
mechanism, as EBRS. Consequently, HLRS, CoS1 of DQSS and EBRS achieve the
same BD at high load. By compared to arrival of CoS1, the arrival of CoS2, which is
processed as in EBRS, is very high, consequently, CoS1 of DQSS achieves a BD that is
near to that of EBRS at every load.

In Fig. 5, we show that, BLP of OBCS remains less than that of both BBCS and
COBS for every load. When L is less than 40 %, BLP of OBCS is very close to that of
BBCS and increases slowly. When L is more than 40 %, BLP of BBCS increases more
rapidly than that of OBCS and when L is above 70 %, it becomes above that of COBS.
The BLP of BBRS is close to that of EBRS, HLRS and both classes of DQSS, it
remains less than that of OBCS under every load. The BLP of BBRS, EBRS, HLRS
and both classes of DQSS remains close to zero until the load reaches 40 %; after this
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point, it increases with increasing L. In Fig. 6, we observe that OBCS offers better NT
compared with both COBS and BBCS. When L is less than 40 %, NT of OBCS is close
to that of BBCS and it increases with increasing L. When L is more than 40 %, NT
of BBCS increases slowly and when L is more than 70 %, it will be less than NT of
COBS. However, when L is more than 40 %, NT of OBCS becomes greater than that of
BBCS and continues to increase with increasing L. BBRS, EBRS, HLRS and DQSS
achieve the same NT under every load. At low load, the NT of BBRS, EBRS, HLRS
and DQSS increases more rapidly than that of COBS, BBCS and OBCS. At high load,
the NT of BBRS, EBRS, HLRS and DQSS remains almost constant and above than that
of COBS, BBCS and OBCS. We interpret the above results as follows. In COBS,
BBCS and OBCS, burst loss occurs at edge node and core node. COBS has no extra
load because it uses no loss recovery mechanisms. Thus, COBS has better burst loss
probability at edge node (LPE) and worse burst loss probability at core node (LPC).
BBCS aims to reduce LPC by cloning all new arriving bursts that leads to saturation of
burst queue. Consequently, BBCS suffers from high LPE. In OBCS, the edge node
prevents saturation of burst queue by disabling the burst cloning mechanism when the
load is high. OBCS achieves an optimal combination of LPE and LPC than COBS and
BBCS. Consequently, OBCS has better BLP and NT than COBS and BBCS. In BBRS,
EBRS, HLRS and DQSS, burst loss occurs only in edge node. The extra load of
retransmission increases as the load increases until the burst queue is near to saturation
state; after this point, if no action is taken such as in BBRS, the burst queue is saturated,
which leads to a loss of both new arriving and retransmitting bursts. EBRS prevents
saturation of burst queue at high load by disabling burst retransmission mechanism.
This technique keeps more opportunity for new arriving bursts at high load when burst
retransmission becomes inefficient to reduce burst lost. In order to allow each trans-
mitted burst more opportunity to avoid retransmission, HLRS efficiently uses the
unused bandwidth of EBRS at low load through burst cloning mechanism. DQSS uses
also this unused bandwidth but only for burst of CoS2. Thus, BBRS, EBRS, HLRS and
both classes of DQSS achieve the same BLP. Consequently, BBRS, EBRS, HLRS and
DQSS achieve the same NT.

7 Conclusion

In this paper, three schemes are proposed for star OBS networks to improve bandwidth
utilization while keeping burst delay as low as possible. The first scheme is an
enhanced burst retransmission scheme, which aims to control the retransmissions
through a simple technique to enable/disable burst retransmission mechanism. The
second scheme is a hybrid loss recovery mechanism, which aims to integrate efficiently
burst cloning and burst retransmission mechanisms. The third scheme is a differentiated
QoS scheme that provides differentiation between two classes in terms of burst delay
by using burst cloning and burst retransmission. We analytically modeled basic burst
retransmission scheme, enhanced burst retransmission scheme, hybrid loss recovery
scheme and differentiated QoS scheme over star networks. The results obtained from
simulation present a good agreement with analytical results. We found that the pro-
posed schemes achieve high bandwidth utilization; compared to basic burst
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retransmission scheme, the first scheme reduces burst delay only at moderate and high
load, however, the second and third scheme reduce delay at every load; the third
scheme can offer also a good differentiation in terms of burst delay.
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Abstract. Vehicular Ad hoc Networks are considered recently as a fer-
tile field of research. Their applications are showing a growing impor-
tance as they are expected to improve road safety and traffic efficiency,
through the development of vehicle safety applications whose main goal is
to provide the driver with assistance in dangerous situations. Thanks to
vehicular communications, drivers can permanently receive information
about road conditions which help them to make more reliable decisions.
The idea behind this paper is to enable an adaptive assistance to drivers
in different situations, based on their past driving experience. As a first
step, we focus on the modeling and learning of individual driving behav-
ior at a picoscopic level. This paper proposes a formal description of a
driver-centric model, using the formalisms of hybrid IO automata and
rectangular automata. Then, an online passive learning based approach
for the construction of the described model is proposed. Having a model
that describe the behavior of drivers can enable us to predict and recog-
nize a driver preferences in different driving context, enabling thus an
adaptive assistance.

Keywords: VANET ·Driver behavior modeling ·Hybrid I/O automata ·
Rectangular automata · Behavior learning

1 Introduction

With the fast development in wireless and sensor technologies, Vehicular ad-hoc
networks (VANETs) have emerged as a core component of intelligent transporta-
tion systems (ITS). The main goal of VANETs is to enhance traffic safety and
efficiency by enabling the exchange of information among connected cars. The
amount of information that can be disseminated through vehicular communica-
tion provides a great opportunity for the development of driver assistance sys-
tems. Equipped with a sophisticated on-board unit (OBU), vehicles are able to
collect information about road conditions, driving situations and other vehicle’s
information. This information can be used to make driving more convenient by
providing a reliable assistance to the driver and warn him in-time about potential
danger and hazardous situations. Thus, the driver will have a better chance to
avoid and react properly to dangerous situations. Despite the important role of
c© Springer International Publishing Switzerland 2014
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DOI: 10.1007/978-3-319-09581-3 21



A Formal Driving Behavior Model for Intelligent Transportation Systems 299

the dissemination of information in road safety, the behavior of drivers towards
this information remains a dominant factor for safety enhancement. The moti-
vation of this work is to enable an adaptive driving assistance to individual
drivers, based on their observed behavior in the previous encountered driving
situations. Therefore, we focus primarily on the modeling of driving behavior.
Driving behavior models were considered by researchers as a promising tool to
develop advanced assistance systems, allowing the emergence of driver’s adapted
vehicles. We assume that the analysis and study of these models are important
to predict the behavior of drivers, thus ensuring safer roads.

In this paper, we investigate the description and construction of a driver-
adapted behavior model in the context of VANET, taking into account the
different real time information and warnings a driver receives while driving.
A new formal framework for capturing and modeling driving behavior is then
proposed. This behavior can be captured using mixed discrete and continuous
parameters. This is why we chose the hybrid automata formalism as a basis of
our approach. To describe the proposed framework, we define the formalism of
Rectangular Hybrid I/O Automata (RHIOA) with urgent transitions. Then to
gather and encode driving behavior within the proposed framework, an online-
passive learning based approach using the theory of Learning Automata (LA) is
proposed. The constructed model will represent the behavior of the individual
driver according to which it was built, and can be used to provide him with a
personalized assistance. The rest of the paper is structured as follows. Section 2
presents related works. A formal description of the framework of our model is
given in Sect. 3. In Sect. 4, we describe driving behavior within the proposed
framework. The approach used for the construction of the model is presented in
Sect. 5. Then in Sect. 6, we clarify our approach using an example of application
of our model. Section 7 concludes and draws perspectives.

2 Related Work

Driving behavior has been recently investigated by many studies, leading to the
appearance of a huge variety of behavioral models. Driving behavior models have
different purposes, and differ in terms of strategies and approaches used to cap-
ture the driving behavior. A schematic grouping of these approaches is presented
in [2]. In this section, we give examples of some of these models presented in the
literature.

The work proposed in [3] aims to model the driving behavior to detect if
the driver is distracted due to a secondary task. Steering wheel angle, brake
status, acceleration status and vehicle speed were used as parameters to model
the behavior. The models were then evaluated to classify driving actions (long
term behavior/constant or neutral driving), detect the driver distraction and
identify the driver by his driving behavior characteristics. The paper [12] focuses
on the impact of contextual information on the driver’s performance, and tries
to model and recognize driver maneuvers. After a training stage, seven driver
maneuvers were modeled. The proposed behavior model was able to recognize
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and classify the maneuver 1 second before any significant change in the car
signals. In [16], two different and complementary approaches were proposed.
The goal of these approaches was to obtain generic model (driver independent
model of the maneuvers and the route) that can be used for driver identification
and distraction detection. The authors of [8] propose an analysis of car-pedal
use and car-following habits to build driver models that were evaluated in driver
identification.

Other researchers have focused on the modeling of driving behavior in specific
scenarios. In [11], the lane change scenario was modeled based on the steering
behavior. The model recognizes three different maneuvers: lane keeping, nor-
mal lane change and emergency lane change. The paper [7] proposes a situation
aware predictive braking system that implements predicted behavioral informa-
tion, vehicle information and surrounded information in the braking system.
Therefore, the system will be able to identify the need for braking action and
detect if a braking action is planned by the driver. An application of the learn-
ing of driver behavior in an adaptive cruise control system was presented in [14].
The goal of [14] is to optimize the interactions between drivers and the system
by automatically adjusting the gap setting based on driver type and the context
of the drive. According to the driving style, three types of drivers were defined:
hunter, glider and follower. In [15], a series of experiments was conducted to learn
and model the usual behavior of drivers at the stop sign before an intersection.
The model was used to detect deviations from the usual behavior and to decide
if assistance is necessary. In [13], a Partially Autonomous Driving Assistance
System is proposed. The system provides the driver with a longitudinal support
to avoid collisions in a car following situation. The considered scenario is divided
into three stages: the pre-collision, the collision warning and the automatic emer-
gency braking. For the first two stages, the driver is in complete control of the
vehicle while the system takes the full control in the case of the emergency
braking. A reinforcement learning scheme is used to find an optimal warning
and intervention strategy for the assistance system. A probabilistic approach for
driving behavior prediction was considered in [5]. It considers an intersection
situation and focuses on the prediction of the stop probability during a driver’s
side turn.

A recent approach of modeling presented in [17] uses concepts from behavioral
psychology. The authors consider driving behavior as a result of an optimization
process. They formalize their idea within a formal framework of hybrid automata,
and introduce a theoretical variable to represent the consequences of possible
behavior. A scenario of a driver entering the freeway was used as a Testbed to
evaluate their model. Although the authors use hybrid automata to model and
predict qualitatively distinct driving maneuvers, they do not consider a decision
process. The goal of their model is to find an optimal driving trajectory for a
given situation.

Most of the researches presented in the literature rely on modeling approaches
to create prototypes models that allow them to classify the observed driving
behavior. They focus mainly on the driver behavior without taking into account
the information about the driving environment. In this paper, we intend to fill
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Fig. 1. The framework of the proposed model

the lack of approaches that address the human driving behavior in the context of
VANET. In contrast to the researches presented above, we propose an approach
that tries to construct a model for an individual driver based on his observed
behavior, taking into consideration the reaction of the driver to different traffic
information received either from VANET or from on-board sensors.

3 Presentation of the Modeling Framework

The design of a framework for modeling human driving behavior is a challenging
task that might be faced with several limiting factors, such as:

– The diversity of parameters intervening in driving, that have to be included
within the framework.

– The interactions of the model with the external environment.
– The approach used to gather and encode knowledge within the model.

Even though the driver is the main actor in the driving activity, the environment
in which the driver is moving and the driven vehicle play an important role in
the determination of driving behavior. Driver, Vehicle, Environment and their
interactions are referred to as DVE system [10]. In this paper we describe a
new framework for a driver-centered modeling of driving behavior. The overall
framework of our approach is represented in Fig. 1. The goal of our approach
is to model the observed driving behavior of an individual driver. The model
captures:

– Signals received from the external environment (e.g. traffic signs, collision
warnings, traffic information...)

– Signals received from the vehicle (e.g. played music, phone call...)
– Driving actions performed by the driver.
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The description of our framework relies on a mix of notions from the theories of
hybrid input/output and rectangular automata. Hybrid IO Automaton (HIOA)
is a well known formal model, which can be used to describe discrete and con-
tinuous behavior of a system. It is a kind of finite state machine with a set of
continuous variables. HIOA has been widely used to describe and analyze dif-
ferent examples of hybrid transportation systems, such as automotive control
systems, automated transportation systems and intelligent vehicle highway sys-
tems. Rectangular automata are an important subclass of hybrid automata that
was proposed to deal with decidability questions about hybrid automata. Their
advantage consists of providing a better analysis of hybrid systems.

Our formal model consists of an adaptation of hybrid IO automata [6] and
rectangular automata [4] with urgent transitions [1]. Hybrid I/O automata allows
us to differentiate input and output actions, while rectangular hybrid automata
allows us to define rectangular inequalities over variables. And, we express urgency
using the concept of urgent transitions. Urgent transitions are transitions that
occur as soon as their guard becomes true, without any delay. Formally, we define
Rectangular Hybrid I/O Automaton with urgent transitions (RHIOA) as a tuple
(H,U ,Y ,Q,Θ,inv,E,I,O,urgent,D), where:

– H is a set of internal variables, U is a set of input variables and Y is a set
of output variables. H,U and Y are disjoint from each other and we write
X � H ∪ U ∪ Y .

– Q ⊆ val(H) is a set of states, where val(H) is the set of valuations of H.
– Θ is a set of initial states.
– inv : Q → Rect(H) is an invariant function, where Rect(H) is the set of all

rectangular predicates over H. A rectangular predicate φ over H is a con-
junction of rectangular inequalities; it defines the set of vectors [[φ]] = {z ∈
R
n | φ [H := z] is true}. A rectangular inequality over H is a formula hi ∼ c,

where hi ∈ H, c is an integer constant and ∼ is one of <,≤, >,≥. The function
inv maps each state to its invariant condition.

– E,I and O are sets of internal, input and output actions, respectively. An
internal action of E will be denoted later by “?”.

– D is a set of discrete transitions. A discrete transition is labeled with an action,
and is defined as a triple (q, o, g, q′) where q is a source state, o is an action,
g ∈ Rect(H) is a guard on the transition, and q′ is a target state. To simplify,
if the guard is true we will only refer to a transition as a triple (q, o, q′).

– urgent is a set of urgent transitions.

4 Description of Driving Behavior Model Using RIOHA

The idea of our modeling approach is to capture and analyze the driving behavior
in a continuous basis. The goal is to be able to characterize the driving behavior
in a specific state within specific environmental conditions. We distinguish three
categories of driving behavior:
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– Convenient behavior: is a driving behavior that is in compliance with the
environmental conditions. Environmental conditions are determined as the
traffic rules, hazardous events... An example of convenient driving behavior is
when the driver respects the speed limitation on a road.

– Tolerable behavior: is every behavior deviated with a predefined value from the
convenient behavior. The deviation has a predetermined value. For example,
exceeding the speed limited by a traffic sign with 10 % can be tolerable.

– Risky behavior: is a behavior of driver who does not respect the environment
conditions. For example, an overtake maneuver on road where overtaking is
prohibited is characterized as risky.

By continuously observing the driver, the system characterizes his behavior in
real time as one of the categories cited above. While driving, the driver may
also transit between them. In this section, we will firstly present a description
of a convenient driving behavior model. Then, we extend it by integrating a
description of the risky driving behavior.

4.1 Convenient Driving Behavior

The proposed model is a description of the behavior of a driver in interaction
with the vehicle and the driving environment. The driver receives information
about roads from the environment, and makes control decisions. Vehicles receive
the control decisions from the driver and move in the environment accordingly.
Following the driver, the automaton describing the driving behavior is supposed
to be in a state. A state is defined by a set of internal variables. We restrict
ourselves to the parameters presented in Table 1 (the variables clock and isSafe
are related to risky behavior, their semantic is explained later). This set might
be extended later with additional variables, such as GPS position, physical state
of the driver, weather... For the availability of these parameters, we assume that
the vehicle is equipped with a set of sensors capable of measuring the value of
the vehicle’s parameters.

The automaton resides in a state q as long as the variables stay inside the
invariant interval [[inv(q)]]. inv(q) is conjunction of rectangular inequalities pre-
sented in Fig. 2. The Domains DV , Dlane, Dd, Dθ contain the values used as
boundaries to construct the inequalities. As a domain of velocity, we can use the
values of speed panels provided by the traffic code. This will allow us to have a set
of speed intervals which will be useful to characterize the behavior of the driver
related to an encountered speed panel. The same goes for the other domains;
they can be constructed based on the panels defined by the traffic code. The
information transmitted to the driver (received from the environment) is mod-
eled as input actions of the automaton while the driving actions performed by
the driver are represented as output actions. The set of input actions consists of
signals and events received from the vehicle or the environment, either using the
different on-board sensors and/or a vehicular communication. Table 2 resumes
some of the possible input and output actions used by our model. Transitions
are defined as triples (q, l, q′), where q is a source state, l is a label associated
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Table 1. List of internal variables

Parameter Description

V Velocity

lane Lane used by the vehicle

d Following distance

θ Steering angle (−30 < θ < 30)

Vehicle characteristics l Length of the vehicle

w Width of the vehicle

h Height of the vehicle

m Weight of the vehicle

clock System clock used to control the period of time
the vehicle can be in the current state

isSafe Locally controlled variable to determine if a
state is safe

Fig. 2. Rectangular inequalities over H

to the transition and is expressed as a couple (I/O) [where I is an input action
received in state q and O is an output action performed according to I], and q′
is a target state.

4.2 Risky Driving Behavior

The driving environment plays a crucial role to determine the category of driving
behavior. In our model, we characterize driving according to the contextual situ-
ation determined by a received input. Therefore, we extend the model described
in the previous paragraph by defining:

– The set of input variables presented in Table 3. Input variables are determined
by the received input actions; they provide the allowed values corresponding
to the internal variables of Table 1. For example, if an input action limiting
the speed to 90 km h is received, the system receives also the input variable
speedmax = 90. These variables are used later to construct predicate on urgent
transitions.

– The new state internal variable isSafe used as etiquette to evaluate the safety
of the current state.
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Table 2. Example of eventual input and output actions

Input actions Output actions

Traffic signs based VANET warnings

- Max/min speed limit - Collision warning - Accelerate

- Stop - Accident warning - Turn right

- Min safety distance - Traffic congestion warning - Change lane

- No turn left/right - Emergency vehicle warning - Maintain speed

- No U-turn - Parking space allocation - Give way

- No overtaking - Decelerate

- One way - Turn left

- Closed road - Overtake

- Length/Width limit - Stop

- Height limit - Go straight

- weight limit - Make U turn

Table 3. The Set of input variables

Input variables

Minimum allowed values Maximum allowed values Description

speed min speed max Allowed speed

lane min lane max Allowed lane

min headway max headway Allowed headway distance

θ min θ max Allowed steering angle

lentgh min lentgh max Allowed length of the vehicle

width min width max Allowed width of the vehicle

height min height max Allowed height of the vehicle

weight min weight max Allowed weight of the vehicle

– The internal variable clock used to represent the time. The automaton can be
tolerated to be in a temporary safe state for a predetermined period of time.
This period is controllable by a timer, the system moves automatically to an
unsafe state once this timer expires.

5 Construction of the Driving Behavior Model

The previous paragraph describes the characteristics of our model. However, it
does not determine how the adapted model will be constructed. The construction
of the model consists mainly of the filling of the set D of transitions. This set
is initially empty and will be learned based on the observed behavior of the
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driver. Thus, we ensure the construction of personalized models that depend on
driving characteristics of individual drivers. We propose the use of the theory
of learning automata [9] as a base of our approach. Through an online passive
learning process, the learning agent will construct the driving behavior model
by observing the interactions between the driver, vehicle and environment. The
set of states in learning automata has to be finite.

5.1 Convenient Driving Behavior

The construction of the behavior model includes the definition of states, transi-
tions between states and transition probabilities. The states consist of disjoint
valuations of the internal variables, and we associate to each state an invariant
condition. The sets Di (where i = V, lane, d, θ, l, w, h,m) are supposed to be
finite. Therefore, the set of states is also finite. Transitions are enabled when
a change of state, with or without reception of input actions, is observed. We
suppose that the system is capable of recognizing driver actions, and transitions
are stochastic. Without any prior information about the driver behavior, the
set of transitions is empty. The role of the Learning Agent (LA) is to learn the
possible transitions according to the observed driving behavior and their prob-
abilities. The initial state of the system is the state that assigns 0 to variables
(V, lane, d, θ). The scheme of the process of construction is as follows.

– The LA is initially in state qinitial.
– The LA observes the driver and his interactions with the vehicle and the

environment.
– If the driver receives an input Ij and performs an output actionOi that changes

the current state of the system to q′, a new transition tr = (q, (Ij/Oi), q′) is
added to the set of transitions.

– If the driver receives an input Ij , performs an output action Oi without a
change in the current state, the transition tr = (q, (Ij/Oi), q) is added to the
set of transitions.

– If the driver receives an input Ij and does not perform any output action, the
transition tr = (q, (Ij/?), q) is added to the set of transitions.

– If the driver performs an output action Oi without a reception of an input
action, a new transition tr = (q, (?/Oi), q′) [or tr = (q, (?/Oi), q) if we stay at
the same state] is added to the set of transitions.

– The LA updates the probabilities of transition based on the following rein-
forcement scheme; the probability is distributed over the outgoing transitions
from q. A transition with high probability is a transition that was frequently
traversed by the automaton.

P (q, tr) = P (q, tr) +
1
r
(1− P (q, tr))

P (q, tr′) = P (q, tr′) +
1
r
(P (q, tr′)), for tr 	= tr′

(1)

Where P (q, tr) is the probability of transition tr in q, r is the number of
enabled transitions outgoing from q and tr′ is a transition outgoing from q.
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The constructed automaton will refer to all the possible states and weighted
transitions (I/O), (?/O) and (I/?) that have been explored by the driver.

5.2 Risky Driving Behavior

The determination of risky driving behavior consists of an evaluation of the
safety of a state. This evaluation is possible by verifying if the variables of
the current state respect the values determined by input variables. Let V ect =
{(h1, h2, ..., hn)|hi ∈ H} a vector of the current values in a state q. Input vari-
ables are divided into two vectors Umin and Umax for minimum and maximum
allowed values. We define the following rectangular inequalities (RI).

– RI1 : V ect ≤ Umax if for all i, V ecti ≤ Umaxi

– RI2 : V ect ≥ Umin if for all i, V ecti ≥ Umini

– RI3 : V ect ≤ Umin if for all i, V ecti ≤ Umini

– RI4 : V ect ≥ Umax if for all i, V ecti ≥ Umaxi

– RI5 : V ect ≥ Umin − ε if for all i, V ecti ≥ Umini
− ε

– RI6 : V ect ≤ Umax + ε if for all i, V ecti ≤ Umaxi
+ ε

With ε a vector of tolerable deviation values over H.

A rectangular predicate φ is defined as a conjunction of rectangular inequalities:
φ =

∧
iRIi. We define three predicates:

– φ1 = RI1 ∧RI2 defines the rectangular constraint V ect ∈ [Umin, Umax].
– φ2 = RI3 ∧RI4 defines the rectangular constraint V ect /∈ [Umin, Umax].
– φ3 = RI5 ∧ RI6 defines the rectangular constraint V ect ∈ [Umin − ε, Umax +
ε]\[Umin, Umax].

Based on the classification of driving behavior provided previously, we define 3
levels of safety of a state q:

– Safe state: refers to a convenient behavior. We say that a state is safe, if the
current values V ect satisfy the predicate φ1.

– Temporarily safe state: refers to a tolerable behavior. We say that a state
is temporarily safe, if the current values V ect satisfy the predicate φ3 (the
predicate φ1 with a tolerable deviation of ε).

– Unsafe state: refers to a risky behavior. We say that a state is unsafe, if the
current values V ect satisfy predicates φ2.

Based on these safety levels, we can define 3 possible values of isSafe:

q.safe =

⎧
⎨

⎩

−1 if V ect ∈ [[φ2]]
0 if V ect ∈ [[φ3]]
1 if V ect ∈ [[φ1]]

The definition of isSafe and its semantic is considered as important for
evaluating driving behavior and identifying risky behaviors due to infringements
of the traffic code. It is useful for example to capture and model the behavior of
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Fig. 3. Example of risky behavior

a driver who exceeds the speed limit, and take relative actions, such as warning
the driver, controlling the vehicle or sending alerts to the Police. The modeling of
this risky behavior is an extension of the convenient behavior model, by adding
to every state q (safe state) two other associated states qunsafe, qT safe referring
to the unsafe and temporary safe versions of the state q. The values of internal
variables of the new states remain the same; expect the value of the variable
isSafe. The transitions between safe, temporarily safe and unsafe states are
modeled as internal guarded urgent transitions:

– qsafe
φ2→ qunsafe

– qsafe
φ3→ qT safe

– qT safe
φ2∧clock>t−→ qunsafe

Figure 3 shows an example of the modeling of a risky behavior in a state where
the speed is limited to 90. To simplify, the example shows only the invariant of
the velocity and the input variable speedmax. The system in state q compares the
current value of speed with the input value speedmax = 90. If a little deviation is
detected and this latter is tolerable, the system moves internally to a temporary
safe state. Otherwise if the value of V is far away from the tolerable speed, the
system moves to an unsafe state. The system can authorize to stay in a temporary
safe state until the expiration of a timer t. The timer has a predetermined value
that varies according to situations. Once this latter is expired, the system moves
to an unsafe state. Depending on the applications, an action can be taken in
temporary safe and unsafe states such as warning the driver or sending alerts to
authorities through a vehicular communication.

6 Example of Driving Behavior Modeling

In this section, we present an example of human driving behavior modeling based
on the model described in the previous section. To determine the invariants of
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Table 4. Definition of the constraints domains

DV = {0, 30, 50, 70, 90, 110, 240 km h}
Dlane = {0, 1}
Dd = {50, 70m}
Dθ = {−30,−15, 0, 15, 30◦}
Dl = {10m}
Dw = {2, 5m}
Dh = {3, 5m}
Dm = {5, 5m}

Fig. 4. Scenario of the example

states, we restrict ourselves to some of the existing traffic signs. The set of states
is constructed by forming disjoint combinations of intervals of variables defined
based on the sets in Table 4. Based on these sets, 2304 states are constructed.

Let use as an example the scenario shown in Fig. 4. The driver of the blue
car is driving from and to the parking through a non-motorway main route.
The road consists of two-lanes and one way, and we want to model the behavior
of the driver during one trip. As already explained, inputs are received from
the encountered traffic panels and vehicles. To explain our approach for model
construction, we suppose that the driver behaves as shown in Table 5. This latter
contains for every input received the output actions performed by the driver, this
latter can also perform some driving actions without the reception of inputs.
For a better comprehension, we represent only the states explored by the model
following the example of the supposed behavior; the description of the states is
given in Table 6. To illustrate the evolution of the construction of the automaton,
we decompose the route traveled by the driver into 2 parts (R1, R2). The driver
is initially in the state q1, the evolution of the model is shown in Figs. 5 and 6.
The red and orange states refer to temporary and unsafe states.

The constructed automaton corresponds to the supposed behavior of the
driver in one trip, exploration of other states and the updates of transitions
probabilities are possible in next trips. The goal of the proposed example is
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Table 5. Description of inputs and outputs

Received input Driver’s output

Action Variable

- - O2: Accelerate

I2: give right of way speedmin = 0 O5: Give way

speedmax = 20

- - O2: Accelerate

I1: allowed speed 70 km h speedmax = 70 O1: Decelerate

I3: No overtaking lanemin = 0 O3: Keep lane

lanemax = 0

I4: Road construction lanemin = 1 O4: Change lane

lanemax = 1

I5: End of road construction lanemin = 0 O4: Change lane

lanemax = 0

I6: End of allowed speed speedmin = 0 O2: Accelerate

speedmax = 120

I7: Accident warning lanemin = 0 O4: Change lane

lanemax = 0

θmin = 5

- - O4: Change lane

I1: allowed speed 70kmh speedmax = 70 O1: Decelerate

- - O4: Change lane

I3: No overtaking lanemin = 0 O3: Keep lane

lanemax = 0

I2: give right of way speedmin = 0 O5: Give way

speedmax = 20

- - O2: Accelerate

I8: Parking speedmin = 0 O1: Decelerate

speedmax = 20

Table 6. Description of states

State ID Description

V lane θ d

q1 [0,30] 0 [0,15] > V/2

q2 [30,50] 0 [0,15] > V/2

q3 [50,70] 0 [0,15] > V/2

q4 [50,70] 1 [0,15] > V/2

q5 [70,90] 0 [0,15] > V/2

q6 [70,90] 1 [0,15] > V/2
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Fig. 5. First step of construction (part R1)

Fig. 6. The completed driving behavior model of the scenario

to illustrate the idea of our modeling approach and how it can be applied.
We mention that our model and the learning scheme used to construct it are not
completely implemented yet.

7 Conclusion

The analysis and prediction of driving behavior through human driving models
is considered as an important step in the development of adaptive assistance sys-
tems. In this paper, we proposed a driver-centric approach to model the driving
behavior in vehicular ad-hoc networks. A formal description of our model was
given using the framework of hybrid I/O automata. The theory of stochastic
learning automata was then used to define transitions and construct the automa-
ton. The idea of our work is to construct the automaton following the observed
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behavior of individual drivers. To explain the idea of our modeling approach,
an example of driving behavior in road scenario was presented. This paper is
considered as an introduction of our work, the implementation of the model and
the learning process used to construct it a considered as further work.
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Abstract. Sensor arrays are used in many applications, where their
ability to localize signal sources is essential. One of the sensor appli-
cations is the signal processing of multi antennas with multi sensors. In
this paper, we present an application of the proposed Canonical Polyadic
decomposition (CP decomposition), with isolation of scaling matrix to
multiarray multisensor systems. A simple blind receiver based on the
enhanced alternating least squares (E-ALS) algorithm is presented. For
illustrating this application, computer simulations are provided and
demonstrate the good behavior of these algorithm compared to the old
ALS algorithm.
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1 Introduction

For many years, systems with multiple sensors have been used to receive or
send signals through a wireless channel [1]. Sensor array systems have several
advantages over single sensor systems. First, they can increase the signal-to-
noise ratio (SNR). Second, sensor arrays can steer the transmitting or receiving
beams, then multiple signals can be separated. This is very useful in applications
such as multi-user wireless communications which require the processing of as
many signals as possible without mutual interference, and passive radar which
need to localize signal source locations.

Recently, the use of multi-linear algebra methods has attracted attention in
several areas such as data mining, signal processing and particularly in wireless
communication systems. Wireless communication data can sometimes be viewed
as components of a high order tensor (order larger than 3). Solving the problem
of source separation returns then to find a decomposition of this tensor and
c© Springer International Publishing Switzerland 2014
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determining its parameters. One of the most popular tensor decompositions is
the CP decomposition, which decomposes the tensor into a sum of rank-one
components [2]. The interest of the CP decomposition lies in its uniqueness under
certain conditions, and it has been exploited and generalized in several works, for
solving different signal processing problems [3] such as multi-array multi-sensor
signal processing [4]. The typical algorithm for finding the CP components is
alternating least squares (ALS) optimization. As proposed in [5,6], this algorithm
neglect the scaling matrix in the optimization process. Herein, we propose an
improvement of ALS optimization algorithms taking into account the scaling
matrix in the CP decomposition. An application of the proposed Algorithm to
multiarray multisensor system is presented. The proposed multiarray multisensor
system is a tensor of three dimensions: the first one represents the number of
sensors, the second one is equal to the number of arrays and the third one defines
the length of transmitted signal.

2 Notation

Let us first introduce some essential notation. Vectors are denoted by boldface
lowercase letters, e.g., a; matrices are denoted by boldface capital letters, e.g.,
A. Higher-order tensors are denoted by boldface Euler script letters, e.g., T . The
pth column of a matrix A is denoted ap, the (i, j) entry of a matrix A is denoted
by Aij , and element (i, j, k) of a third-order tensor T is denoted by Tijk. The
outer (tensor) product is represented by the symbol ◦, the Kronecker product
by ⊗ and The Frobenius norm by ‖T ‖F .

Any tensor T admits a decomposition into a sum of rank-1 tensors, called
CP decomposition. In the case of a 3rd order tensor, this decomposition takes
the form below:

T =
R∑

r=1

λrar ◦ br ◦ cr (1)

Denote by ()T matrix transposition, λr real positive scaling factors, and R the
tensor rank. Vectors ar (resp. br and cr) live in a linear space of dimension I
(resp. dimension J and K).

As given in (1), the explicit writing of decomposable tensors is subject to scale
indeterminacies. In the tensor literature, optimization of the CP decomposition
(1) has been done without taking into account scaling factor Λ. In [7], we propose
to pull real positive factors λr outside the product, which permits to monitor the
conditioning of the problem. Scaling indeterminacies are then clearly reduced to
unit modulus but are not completely fixed.

3 Existence and Uniqueness

In the literature, the existing results in [8] showed that under certain condi-
tions, a third-order tensor of rank R can be uniquely represented as sum of
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R rank-1 tensors. In practice, it is preferred to adapt to a lower multi-linear
model of a fixed rank R < rank{T }, so that we have to deal with a problem of
approximation. The best rank-R approximate is defined by the minimum of the
objective function:

Υ (A,B,C,Λ) = ‖T −
R∑

r=1

λrAirBjrCkr‖2F (2)

By expanding the Frobenius norm in (2), and canceling the gradient with respect
to λ, we will calculate the optimal value of Λ, which satisfy the following linear
system:

Gλ = f (3)

where f is R-dimensional vector and G represents the R×R Gram matrix defined
by: Gpq = (ap ⊗ bp ⊗ cp)H(aq ⊗ bq ⊗ cq). In view of matrix G, we can see that
the coherence plays a role in the conditioning of the problem, and has deeper
implications, particularly in existence and uniqueness of the solution to Problem
(2). See [7] for further details.

4 Algorithm for CP Decomposition

The Alternating Least Squares (ALS) algorithm is the classical solution to min-
imize the objective function (2) [9]. In this paper we propose a new version of
the ALS algorithm, that we call E-ALS (Enhanced Alternating Least Squares).
E-ALS consists to estimate one of the three loading matrices at each step by
minimizing the function error (2) and taking into account the scaling matrix Λ.

The E-ALS algorithm can be described by the pseudo-code below:

1. Initialize (A(0),B(0),C(0)) to full-rank matrices with unit-norm columns.
2. Compute G(0) and f(0), and solve G(0)λ = f(0) for λ, as defined in Sect. 3

by (3). Set Λ(0) = Diag{λ}.
3. For k ≥ 1 and subject to a stopping criterion, do

(a) Estimate A(k): Â = TI,KJ(Λ(k − 1)(C(k − 1)�B(k − 1))†)T

(b) Update A(k) = Â
(c) Estimate B(k): B̂ = TJ,KI(Λ(k − 1)(C(k − 1)�A(k))†)T

(d) Update B(k) = B̂
(e) Estimate C(k): Ĉ = TK,JI(Λ(k − 1)(B(k)�A(k))†)T

(f) Update C(k) = Ĉ
(g) Normalize the columns of A(k), B(k) and C(k)
(h) Compute G(k), f(k) and solve Eq. (3) for λ. Set Λ(k) = Diag{λ},

where ( )† denotes the Moore-Penrose pseudo inverse. The convergence at the kth

iteration is declared when the error between tensor T and its reconstructed from
the estimated loading matrices, does not significantly change between iterations
k and k + 1 (a change smaller than a predefined threshold).
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5 Application to Multi Array Multi Sensor System

Sensor arrays consist of multiple sensors which are located at different points
in space. In other words, the array signal is a propagating signal sampled both
spatially and temporally by the sensor array. We assume that there are J arrays
having the same number I of sensors, where two different arrays may share one or
more sensors. The sensors are located in space by a vector mi ∈ R2, i = 1, · · · , I,
and the J − 1 subarray are deduced from the reference array, by translation in
space defined by Δj ∈ R2, j = 1, · · · , J . Lets P signals impinge on an array
from P different directions. The signal received by the sensor i in the jth array
at discrete time k, can be written as:

Si,j(k) =
P∑

p=1

σp(k) exp(j
ω

C
(mT

i dp +ΔT
j dp)) (4)

where σp(k) denotes the complex envelope of the pth source, ω is the central
pulsation, C the wave celerity, j2 = −1 and dp is direction of arrival of the pth

path. Now, rewriting Tijk = Si,j(k), Aip = exp(j ωCmT
i dp), Bjp = exp(j ωCΔ

T
j dp)

and Ckp = σp(k), gives us the relation resembling the CP decomposition:

Tijk =
P∑

p=1

λpAipBjpCkp (5)

Hence, estimating the signal waveforms σp(k) and the directions of arrival dp is
then equivalent to decompose the tensor T into a sum of P contributions.

5.1 Computer Simulations

In this section, we present some simulation results for illustrating the perfor-
mances of the proposed blind receiver of Multiarray Multisensor system. In this
experiment, we consider a multiarray multisensor system with, J = 3 arrays,
I = 4 sensors and P = 6 sources of size K = 10. As presented in Fig. 1, the
arrays are composed of 4 sensors located by the matrix M. The sensors are lin-
early placed and the arrays 2 and 3 are obtained by a translation Δ. The angles-
of-arrival are (−90,−60,−30, 0, 30, 60). Figure 2 illustrates the performance of
our blind receiver E-ALS and those of the ALS receiver. These results indicate
that the proposed receiver E-ALS gives a better estimation of signal waveforms
matrix C than the ALS one. By computing the CP decomposition of tensor T
of Eq. (5), it is possible to estimate the directions of arrival dp of each propa-
gation path if mi or Δj are known. Figure 3 illustrates the directions of arrival
(DOAs) estimations as a function of SNR. From this figure, we can see an exact
estimation of the angles of arrival for the SNR higher than zero.
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Fig. 1. Sensor array example with linear arrays.

Fig. 2. Matrix Estimation error
(MEE) versus SNR results for sce-
nario: I = 4, J = 3, K = 10,
P = 6 and (θ1, θ2, θ3, θ4, θ5, θ6) =
(−90,−60,−30, 0, 30, 60).

Fig. 3. Angles of arrival Estimation ver-
sus SNR results for scenario: I = 4, J = 3,
K = 10, P = 6 and (θ1, θ2, θ3, θ4, θ5, θ6) =
(−90,−60,−30, 0, 30, 60).

6 Conclusion

This paper presents an enhanced version of ALS algorithm, which take into
account the scaling matrix. The conditioning of the optimal scaling matrix Λ
computation depends on coherences via a Gram matrix. An application of the CP
decomposition to Multiarray Multisensor system has been presented. Finally, the
computer simulations demonstrate the good behavior of our algorithm, compared
to the classical ALS one used in the literature, and its usefulness in Multiarray
Multisensor applications.
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Abstract. Secure session management is a challenging problem for Web
applications. In fact, three of the ten most critical security risks included in the
OWASP top ten 2013 can lead to session hijacking attacks. Best practices
advocate the transmission of the session identifiers over HTTPS. However, this
approach does not solve the session problems, and can’t be deployed on a wide
range of HTTP-only applications. This paper presents a lightweight session
management design deployed over HTTP, which allows much of the existing
infrastructure of the web to remain unchanged, while at the same time
strengthening authentication. Our work leverages the following key insights.
(1) Users already have shared secrets with their web applications (e.g. password).
(2) HTTPS is primarily used to protect the authentication information.
(3) A secure session management should be built on a secure initial mutual
authentication. Our proposed protocol guaranties the authenticity, confidentiality,
integrity, and anti-reply of authentication credentials.

Keywords: Session management � Authentication � HTTP/HTTPS � Web
application

1 Introduction

The Hypertext Transfer Protocol (HTTP) is a stateless protocol, which means that an
HTTP server cannot determine if two different requests come from the same user.
Unfortunately, almost all modern Web applications need a mechanism to keep track of
user’s personal settings and authentication information. This task is known as session
management. In particular, because session management plays a key role in today Web
authentication, it is a prime target of malicious attacks. Instead of stealing the user’s
original credentials, a wide range of attacks focus on session management weaknesses.
Beside that they are two motivations for the research presented in this paper. The first is
the enormous demand for secure Web session management. For instance, between the
OWASP Top ten security risks of 2010 and 2013, “broken authentication and session
management” has raised from the third to the second position [1]. The second is the
absence of a lightweight and secure approach that protect the confidentiality and
integrity of user authentication security parameters (e.g. password, session identifier).
Best practices advocate the transmission of session identifiers over HTTPS. However,
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this approach does not solve session problems, and cannot be deployed on a wide range
of HTTP-only applications [2, 3]. In this paper we show the most common vulnera-
bilities of session management, the current solutions to overcome these vulnerabilities
and their limitations. Finally, a high level overview a lightweight novel approach for
secure session management is presented.

2 Current State of Web Authentication

2.1 Authentication Phases

At first, personal websites employed the built-in HTTP authentication specification.
The RFC 2617 defines the digest scheme as an extension for HTTP/1.1. It is a security
enhancement alternative that avoids most serious flaws of basic HTTP authentication.
However, it is known that both basic and digest authentication contain multiple security
risks.

Currently with the wide adoption of dynamic web programming, HTTP authenti-
cation is used rarely in real-world web application. In fact the dominant scenario for
user authentication includes two related phases [4]:

1. Login: In this phase, the web application provides a mechanism for initial user
authentication to verify the user identity using a special authenticator.

2. Session management: After successful login phase, the web application associates
a unique session identifier (SID) with this specific client. Next, the web application
sends the SID to that client as part of an HTTP server response. The web appli-
cation then identifies the client using an association between a specific user and its
SID. Without this phase, a user would have to reenter the authentication credentials
in each HTTP request.

2.2 Session Management Vulnerabilities

Until the writing of this paper, there is no standard mechanism for session management.
This means that each web application built its unique session management system. As a
result, session management vulnerabilities will generally belong to either: (1) Defects
in the generation of session identifiers (SIDs), or (2) defects in the handling of SIDs
throughout their lifecycle: while they are at rest (e.g., on hard disk), and while they are
in transit (e.g., during login). Although most today web applications rely on mature
platforms mechanism to generate session identifiers [3], none of them offer a complete
secure session management.

Furthermore, our analysis to current session management practices concluded that
one of the root causes of sessions attacks is the bearer token concept [5]. For instance,
any party in possession of a valid session ID can use it to access the associated user
protected resources no matter what channel over which the session identifier is trans-
mitted or whoever presents it. Specifically, the static nature of the session IDs on a
specific period of time (i.e. cookie life time) provides attackers with a hijacking win-
dow [6], which gives the attacker a change to impersonate a legitimate user, during the
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life time of this session identifier. Therefore, even with the submission of authentica-
tion parameters over HTTPS, an attacker profits from the hijacking window, to execute
one of the well-known session attacks to retrieve the token.

2.3 Current Solutions

Several protocols have been proposed to improve the security of session management.
X. Liu et al. [4] demonstrated the shortcomings of multiple cookie security enhance-
ment propositions [7–9] and present a secure cookie scheme based on a hashed-based
message authentication code (HMAC) and HTTPS.

Dietz et al. [5] proposed a new TLS extension. It is based on the origin bound
certificate concept (OBC). Unlike typical certificates, and their use in SSL/TLS client
authentication, an OBC is generated by the browser without the user’s interaction, as
needed and contains no user-identification information. It is primarily used to establish
an authenticated channel between the browser and the web application that can be later
reestablished. To strengthen cookie-based authentication and withstand network active
attacks, the scholars presented channel bound cookie in that the generated session
identifier is associated with the client’s origin bound certificate (OBC).

Dacosta et al. [2] presented One Time Cookie (OTC), a solution that guarantees
session integrity of HTTP request and resist session hijacking attacks. OTC relies on
HTTPS in its set up phase to share a secret key, which is used to generate dynamic
single-user authentication token for each request. Additionally, an OTC token is tied to
the requested resources.

While these solutions are helpful to build strong Web session schemes, we primary
identified two key limitations: (1) The security of all these protocols either require a full
HTTPS deployment, or rely on HTTPS in its set up phase, especially to exchange
secrets parameters [2, 10]. (2) Multiple schemes built secure session management on a
weak initial user authentication [2, 4, 7, 10]. It is known that a system is only as strong
as its weakest point. Therefore, we cannot build a secure session management on a
weak initial authentication. Otherwise, some of the most secure and robust methods can
be easily compromise the login phase (e.g. phishing, Cross-Site Request Forgery).

3 High-Level Overview of Our Solution

Our work leverages the following key insights: (1) HTTP-only applications lack a
secure session management mechanism (which represent in some large Web study
41 % of all tested applications [11]). (2) A secure session management should be built
on a secure initial mutual authentication. (3) Users already have shared secrets with
their web applications (e.g. password).

As a solution, our proposed protocol should assure the authenticity, confidentiality,
integrity and anti-reply of user’s initial login and URL requests authentication cre-
dentials (i.e. password and the shared master session key). Therefore, we plan to
construct LSSM from the following basic building blocks:
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• Server side authentication using public key certificate: Our protocol does not require
HTTPS deployment, but does not abundant server authentication based on a public
key certificate. After receiving the server certificate and a digital signature using the
associated server private key, the browser validates the server identity based on the
same mechanism used in HTTPS. If succeed, the browser decrypts the digital sig-
nature via the public key of the certificate. Otherwise, halt the communication and
shows a message error indicating a certificate or signature validation problem. In
addition, LSSM security will not depend solely on the browser certificate validation,
but add a second factor (i.e. the hash and salted password).

• Asymmetric cryptography for secure session key establishing: The browser generates
a pre-master session key and encrypts it with the already validated server public key.
We assume a valid certificate, thus only the server that possess the associated private
key is able to decrypt the pre-master session key. After that, both the web application
and the browser compute the master session key that will be used in the next step.

• Trusted path for password entry and submission: Transmitting passwords using
HTML form attribute present several security threats [12]. Thus, in our work we will
instead use a new private built-in browser window that enables users to enter their
passwords. Furthermore, the password is never transmitted over the network. The
browser uses only its hash and salted version to compute a unique signature based on
hashed-based message authentication code (HMAC).

• Request signature: After a successful first login and secure key establishment, the
browser generates a signature based on the already exchanged master session key and
other parameters. This signature guaranties the requests authenticity and integrity.

• Mutual authentication: After each exchange, both the browser and the server verify
the origin of each message base on the following parameters: (i) the pre-master and
master session keys, (ii) the shared secret in the registration phase (e.g. the hash of
the salted password), (iii) the secure random numbers generated by both the client
and the server in each exchange.

4 Conclusion and Future Work

As we discussed secure session management is a challenging problem for Web
applications. Best practices advocate the transmission of the session identifiers over
HTTPS. However, this approach does not solve the session problems, and cannot be
deployed on a wide range of HTTP-only applications. In this paper we presented a
lightweight secure session management protocol (LSSM) deployed over HTTP, which
allows much of the existing infrastructure of the web to remain unchanged, while at the
same time strengthening authentication. We first overviewed the current state of user’s
authentication on the Web, and present the shortcomings of the most relevant proposed
solutions. After that, we introduced a high-level overview of our work-in-progress.
Future scope in this work is to develop a complete prototype implementation of the
proposed solution. We also plan to give a security analysis to verify the security
properties of user’s authentication credentials. While LSSM needs to be lightweight,
then we will provide extensive performance analysis on multiple platforms.
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Abstract. In this paper we analyze the intrusion detection in a homoge-
neous Wireless Sensor Network that is defined as a mechanism to moni-
tor and detect unauthorized intrusions or anomalous moving attackers in
area of interest. The quality of deterministic deployment can be deter-
mined sufficiently by analysis, before the deployment. However, when
random deployment is required, determining the deployment quality
becomes challenging and depends directly on node density. The major
question is centered on the network coverage problem, how can we guar-
antee that each point of the region is covered by the required number
of sensors? To deal with this, probabilistic intrusion detection models
are adopted, called single and multi sensing probability detection and
the deployment quality issue is surveyed and analyzed in terms of cover-
age. We evaluate our probabilistic model in homogeneous wireless sensor
network, in term of sensing range, node density, and intrusion distance.

Keywords: Intrusion detection probability · Problem coverage network ·
Sensing range and sensing detection

1 Introduction

Advances in technology have made possible to develop small low-cost devices,
called sensors, which may be deployed in large numbers to form a wireless sensor
network (WSN) that can be used in many applications. Each sensor senses a
field of interest and communicates the collected data to the sink, where the end-
user can access them [1]. This article focuses on WSN surveillance applications
like detecting unauthorized/unusual moving intruders. Intrusion detection model
introduces as parameters sensing range and node density. Each field of interest
point must be within the sensing range of at least one sensor and a WSN must
be able to adapt to changing network because an intruder may be detected by
single or multi sensors, that is modeled by single or multi sensing detection.

Some works are targeted at particular applications, but the main idea is still
centered on a coverage issue that is addressed by several authors. References [2,3]
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showed how well an area is monitored by sensors, while [4,5] derived analytical
expressions to enhance the deployment quality because the network coverage
concept is a measure of the quality of service. These issues are motivated by
random network topology, which implies the efficient deployment of the required
coverage. Specifically, given a monitoring region, how can we guarantee that
each region point is covered by the required sensor number? Thus, we need to
recognize which areas are covered by enough sensors, to enhance the intrusion
detection probability and to limit an intruder to exceed a threshold distance.

This paper major contributions are developing a probabilistic approach by
deriving analytical expressions to characterize topological properties of net-
work coverage, designing and analyzing the intrusion detection probability in a
homogeneous WSN in single and multi sensing detection. In Sect. 2, we analyt-
ically evaluate the intrusion detection model in a homogeneous WSN. Section 3
presents the simulation results while conclusions are drown in Sect. 4.

2 Intrusion Detection Model in a Homogeneous WSN

Intrusion detection in a WSN is defined as a mechanism to detect unauthorized
intrusions or anomalous moving attackers, for deterministic node deployment.
The deterministic deployment quality can be determined by analysis before
deployment, however, when random deployment is required, it becomes chal-
lenging [6]. To assess a sensor deployment quality, it is fundamental to charac-
terize WSN parameters like node density and sensing range, for high detection
probability.

2.1 Collaborating Sensors

Consider two nodes Ni and Nj located at ξi and ξj respectively. Nk (k = 1, 2)
covers the surface area SNk

. Let us note dij the distance between Ni and Nj .
The collaborating set of Ni and Nj is defined as the union between SNi

and SNj
.

Besides, Ni and Nj are said to be collaborating if and only if dij = |ξi − ξj| ≤
2RSENS (RSENS : sensing range). In general, the collaborating sensor set Ni is:

Scol(Ni) = ∪{Nj :|ξi−ξj |≤2RSENS}SNj
(1)

2.2 Sensing Model Probability

We consider a random network topology where all nodes are randomly deployed;
we note λ its node density. We adopt a sensing model probability where sensor
can detect any events located in its sensing area. All sensors are assumed to be
homogeneous and have the same sensing coverage RSENS . An intruder starts
from a random WSN point and moves in a random fashion as illustrated in
Fig. 1. The sensing model, where exactly k sensors detect the intruder, follows a
poisson distribution:

P (k) =
(Sλ)k

k!
e(−Sλ) (2)



326 N. Assad et al.

Fig. 1. An intruder starts from a random point in the WSN and moves in a random
fashion, and sweeps the surface area S following a trajectory L.

where S is the area swept by the intruder following a trajectory L. It is given by

S = 2RSENSL+ πR2
SENS (3)

2.3 Single-Sensing Detection

The probability that no sensor in an area of interest can detect an event is
P = e−λS . The complement of P is the probability that there is at least one
sensor which detects an event. This sensing model probability is determined by:

P = 1− P = 1− e−λS (4)

According to the intrusion scenario given in Sect. 2.2, the probability that an
intruder does not exceed the threshold distance LTHR is:

P (0 ≤ L < LTHR) = 1− e−(2RSENSLT HR+πR2
SENS)λ (5)

2.4 Multi-sensing Detection

In a WSN, the number of required sensors depends on the coverage quality.
An area may require that multiple nodes monitor each of its points [7]. This
constraint is known as k-coverage; where k is the number of nodes that watch
each point. To achieve a coverage degree k, we derive the probability P that an
intruder can be detected within threshold intrusion distance LTHR in k-sensing.
The multi-sensing detection model is (S is given in Eq. (3)):

P (0 ≤ L < LTHR) = 1−
k∑

i=1

(Sλ)i

i!
e−Sλ (6)

While increasing the sensing coverage and the number of nodes per unit, the
intrusion detection probability in single/multi sensing increases; all events that
happen in the network, are covered. Optimal values of sensing coverage and node
density to cover an area, can be determined in advance by the above formulas.
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2.5 Node Availability

In a dense network, sensing areas of different nodes may be similar to their
neighbor nodes, so nodes will transmit redundant information and WSN total
energy consumption will increase. Thus, it is important to select the effective
sensor number covering the same monitored area without diminishing the overall
field coverage. It is appropriate to take into account the node availability rate p in
our analysis. Each sensor can decide whether to become active with probability
p or to move to the sleep mode with probability 1 − p. So, the sensing model
probability that exactly k sensors detect an intruder is:

P (n = k) =
(Spλ)k

k!
e(−Spλ) (7)

The probabilities that an intruder can be detected without exceeding a threshold
distance LTHR in an homogeneous WSN, with node density λ, sensing range
RSENS and node availability p, in the single and the multi sensing are:

P (0 ≤ L < LTHR) = 1− e−Spλ (8)

P (0 ≤ L < LTHR) = 1−
k∑

i=1

(S)i

i!
e−Spλ (9)

3 Discussions Results

In this section, we evaluate our intrusion detection model by using MATLAB
software. We consider a random homogeneous WSN composed of static sensors
which are independent and distributed uniformly in a square area 10× 100.

The results illustrated in Fig. 2(a) show that the intrusion detection prob-
ability P is determined by the node density λ and the sensing range RSENS .
Intrusion detection may need a large sensing range or a high node density, thus
increasing the WSN deployment cost.

We can note that if we increase the node density λ or the sensing range
RSENS , the probability to cover an intrusion happens in the network increases
too. This is because the increase of sensing range/node density significantly
enhances the network coverage. However, increasing more λ or RSENS the prob-
ability attend 1 and remains constant, will not affect the robustness of detection.
Consequently, for a given value of sensing range RSENS , we can find the opti-
mal node number which can be deployed to cover efficiently the controlled region
and reciprocally. This node number and sensing range will be the optimal values,
which must be used to totally cover an area of interest.

The Fig. 2(b) shows intrusion detection probability curves as a function of the
intrusion distance for different values of node availability rate p. It is obvious that
if the intrusion distance L increases, the detection probability P increases too. In
the normal cycle, the node availability p is usually less than 1.0, it is considered
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Fig. 2. (a) Intrusion detection probability as a function of node density and sensing
range. (b) Intrusion detection probability withe different values of node availability. (c)
Single-sensing detection probability versus multi-sensing detection probability.

to be satisfied to monitored an area as much as possible without diminishing the
overall field coverage. If an intruder is detected by a node, an alarming message
is broadcasting over the entire network, to improve the detection efficiency by
assuring the network connectivity, it is illustrated by node availability rate p = 1.

We plot in Fig. 2(c), the detection probability in multi-sensing detection as
a function of intrusion distance. The detection probability increases with the
increase of the intrusion distance. At the same time, the single-sensing detection
probability (k = 1) is higher than that of multi-sensing detection (k = 2 and k =
3). This is because the multi-sensing detection imposes a more strict requirement
on detecting an intruder in the network, at least k = 2 (k = 3) sensors are
required.

4 Conclusion

In this paper, we developed a probabilistic approach by deriving analytical
expressions to characterize the topological properties of network coverage, design-
ing and analysing the intrusion detection probability in a homogeneous WSN
with taking into account various parameters such as sensing range, node den-
sity or availability, and intrusion distance. We investigate our model for intru-
sion detection in WSN to single-sensing and multi-sensing detection. Our results
enable us to design and analyse the homogeneous WSN and help us to select the
critical parameters of network in order to meet the WSN application require-
ments.
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Abstract. Over the last four years there has been significant growth in
the interest that researchers and IT industry have shown in a new net-
work architecture approach called Software-Defined Networking (SDN).
This new approach is based on the separation between the control plane
(routing decisions) and the data plane (packet forwarding). Commu-
nication between these two planes is mainly established today by the
OpenFlow protocol. The interest of SDN is that it allows network pro-
grammability through applications acting on the control plane and hence
it facilitates the development of new network protocols and services.
However, there are some problems of performance and scalability when
a single centralized controller is deployed in an SDN architecture. In
this paper, we briefly introduce SDN, OpenFlow and review perfor-
mance studies. After, we study through some experiments the perfor-
mance issues of the Ruy OpenFlow controller especially in a large-scale
network case.

Keywords: Software-defined networking · OpenFlow · Performances ·
Scalability

1 Introduction

The Internet has become a universal digital infrastructure essential for billions
of people. Nevertheless, its architecture has some weaknesses in security, quality
of service and performance and must cope with new needs due to the contin-
uous increase in traffic and changing uses. However, because of the enormous
installation of equipments and difficulty of testing new protocols in operational
networks, this infrastructure has remained static and no significant progress has
been made on its fundamental architecture in nearly three decades. The initial
objective of the “Software Defined Networks (SDN)” approach that has recently
emerged is to solve this problem and open network infrastructure for innovation.
The idea is to allow researchers to run experimental code on programmable
switches and routers that could handle packets from the experimental traffic
without disrupting the operation of the production network [1]. After the emer-
gence of SDN, several recent work has shown that this approach is suitable for
c© Springer International Publishing Switzerland 2014
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applications in various environments such as distributed data centers, wireless
networks and enterprise networks [2,3].

In SDN architecture, the control plane is supported by centralized software
application called a controller and the switches becomes simple packet forward-
ing devices. This architecture raises the problem of controller performance and
its capacity to handle all the network devices, especially for large and highly
distributed networks.

In this paper, we try to contribute to the efforts of analyzing performances of
SDN controllers by studying the performances of Ryu OpenFlow controller [4]
through some experiments. The paper is organized as follows: Sect. 2 is devoted
to some works on performances of OpenFlow controllers. Section 3 presents the
used tools and scenarios of the experiments. Simulation results are given in
Sect. 4. Finally, we give some conclusions in Sect. 5.

2 Related Works

The OpenFlow protocol is an open source protocol normalized by the Open Net-
working Foundation (ONF) [5], it specifies how a software controller and a switch
should communicate in an SDN architecture. Openflow allows users to implement
rules into switches flow tables. The communication between the flow table and
the remote controller will be established through Secure Shell (SSH), using the
OpenFlow protocol agent to exchange messages and configuration management
with the switch. Currently, there are several available OpenFlow controllers, for
example, Floodlight [6], NOX [7] and Ryu [4]. The differences between these con-
trollers relies on programming language, performances and application domain.

As SDN is a new technology, the performance issue is not yet sufficiently
studied. We mention here some works that are interested in this problem. In [8],
the authors present a study of SDN controller performance using some publicly-
available OpenFlow controllers. They show that the problem of performances is
not an intrinsic limitation of the SDN control plane, but of the available con-
trollers which are not optimized for performance. To prove this, they propose a
multi-threaded controller called NOX-MT (a new release of the NOX controller)
that improves the performance of NOX by more than 30 times.

In [9], the authors consider the FloodLight OpenFlow controller and show
how the latency between an OpenFlow switch and its controller affect the per-
formances of the whole network. The SDN fundamental concept is to centralize
the control plane through a single controller, but thereafter researchers suggest
to deploy multiple controllers to manage different components of the network.

In [10], the authors studied the impact of the number of controllers to deploy
and their placement on performances. They conclude that there are no placement
rules that applies to every network and that the controllers number depends on
the network topology and the metric choice. The mentioned works and also other
studies show that there are many facets to analyze the performances of a network
based on SDN approach.

In the next two sections, we consider the Ryu OpenFlow controller and per-
form some experiments to evaluate its scalability.
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3 Study Description

In this section, we give a description of our testbed, we specify the hardware
configuration and the different tools used in our experiments.

To emulate an SDN platform, we must have an SDN controller, an SDN
software switch and an SDN emulation tool. In our testbed, we use the Ryu
OpenFlow controller [4], which is based on python language and provides soft-
ware components with well defined API. We also use a programmable switch
called Open Vswich (OVS) [11], and the Mininet emulation environment [12],
developed by Stanford University. We note that all the results shown in the next
section depend on the lab device1 used to conduct the experiment.

OVS-Edge OVS-2 OVS-Edge

OpenFlow Controller

Fig. 1. Linear OVS topology

The goal of this study is to analyze the scalability issue. For this, we consider
a basic network topology as shown in (Fig. 1), we vary the number of nodes and
measure the network delay. We consider two scenarios with and without (w/o)
centralized controller to clearly see the impact of the controller. In the first case,
every packet sent to an unknown address will be delivered to the controller to
decide what to do with it. The other case (w/o) corresponds to a proactive
technique where we pre-populates the flow table in each switch before receiving
the first packets from the data plane. In fact, the second scenario can be viewed
as the limit case (for the first scenario) when the controller is never solicited.
Hence, the delay difference between the two scenarios gives an idea about the
delay caused by the solicitation of the controller.

In both cases, we generate an ICMP messages (Ping) and measure the time
delay between the two edges. In the case without controller, this time is the
sum of the traditional packet-network latency to which will be added flow setup
time, the necessary time to insert the appropriate rules in each OVS flow table.
In the other case, the flow setup time is added each time the controller receives
a packet, hence the measured time is already the sum of all delays. In the next
section, we give results of both scenarios.
1 All senarios run in Ubuntu 12.04.3 LTS 3.2.0-57-generic-pae i686, gcc 4.8, Boost

1.46.1, Sun Java 1.6.0.27,Core(TM)2 Duo CPU, 2.00GHz. Ryu (v.3.2), Mininet
(v.2.0) and Open vSwitch 2.0.90.



A Case Study of the Performance of an OpenFlow Controller 333

4 Simulation Results

There are various performance metrics to quantify for an SDN controller. We
focus here on the latency metric (delay to respond to data path requests), which
have an impact on the network time delay. Figure 2 gives this delay accord-
ing to the OVS nodes number. We can observe that until 60 nodes, the delay
difference between the two scenarios (with and w/o) is very low and becomes
more important as the number of nodes increases. In fact, when the network
size increases, the controller becomes much solicited and could not handle all
the requests within a reasonable time. For example, in the case of 100 nodes,
the time delay is equal to 4 s, while it’s less than 2 s in the scenario without
controller. We can also observe that up to 60 nodes, the delay is less than or
nearly equal to a second, even in the case with controller. So, we can benefit from
simplicity management of a centralized controller and a reasonable time delay.
Obviously, the threshold of 60 nodes depends on this case study and may change
according to the lab device and the considered topology. From this experiment,
we can deduce that one controller can handle a reasonable number of switches
such as a network of small and medium enterprise, but it could not handle a
large-scale network.

Fig. 2. Time delay variation according to the OVS nodes number of different scenarios

To investigate more the performances of one centralized controller, we pro-
pose to apply the multiple instances technique that is widely used in today’s
complex systems with virtualization technologies. In the previous experiment,
the network is managed by only one instance of the controller. The exchanged
messages (Packet In, Packet Out et Flow mod) are on only one port (by default
6633), which can cause an overload on the controller in larger networks. In the
multiple instances scenario, each instance manages a small part of the network
and communicates with the nodes on a unique port. In Fig. 2, we consider the
case of 4 instances. We can observe that the time delay decreases in comparison
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of the single instance case. Therefore, this technique alleviates the problem of
scalability. However, we think that it is not sufficient to solve the problem.

5 Conclusion

SDN is undoubtedly one of the important trends in networking area. A large
networking community in industry and academia is interested and works on
different aspects of this topic. In this paper, we investigated the performance
issue and focused especially on scalability. The results of our experiments confirm
that effectively scalability may be an issue and a single centralized controller
could not handle a large size network. The multiple instances technique may help
to reduce the effect of the scalability limitation. However, we think that the real
solution is to have several controllers and to design new protocols to communicate
between controllers. We note that this idea has been already proposed in some
works, but there is no protocol that was developed and tested yet in the best of
our knowledge.
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Abstract. Performance of many P2P systems depends on the ability
to construct a random overlay network among the nodes. Current state-
of-the-art techniques for constructing random overlays have an implicit
requirement that any two nodes in the system should always be able to
communicate and establish a link between them. However, this is not the
case in some of the environments where distributed systems are required
to be deployed, e.g., Decentralized Online Social Networks, Wireless net-
works, or networks with limited connectivity because of NATs/firewalls,
etc. In this paper we propose a gossip based peer sampling service capable
of running on top of such restricted networks and producing an on-the-fly
random overlay. The service provides every participating node with a set
of uniform random nodes from the network, as well as efficient routing
paths for reaching those nodes via the restricted network.

Keywords: Peer sampling · Social overlay · Gossip · Random overlay

1 Introduction

At the heart of many gossip protocols, lies a Peer Sampling Service, which pro-
vides each node with a continuously changing random samples to ensure cor-
rectness of the protocols. The assumption of the existing gossip based sampling
services, such as [3,6], is that a node can directly contact any other node from
its sampled set. However, some applications do not allow such communication
freedom between nodes. E.g., nodes behind firewalls, NATs or strictly friend-to-
friend online social networks, where communications are limited to immediate
friends only, mainly for privacy reasons. In this paper, we provide a solution for
executing gossip based sampling service on restricted networks. We ensure that
every node is provided not only with the set of random nodes but, crucially,
with the routing directions towards these random nodes. I.e., each node main-
tains routing paths using only the available paths of the underlying restricted
network. The main contribution of the paper is a novel on-the fly path prun-
ing technique which exploits the local knowledge of the restricted network at
the nodes that forward the gossip messages. The main target of this protocol is
particularly for push based gossip applications where nodes update their state
only if they have been selected as sample by any participating node to receive
information.
c© Springer International Publishing Switzerland 2014
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2 Solution

We model the underlying restricted overlay as an undirected graph with
unweighted edges. We assume every node has knowledge (IP address) of its
immediate neighbors and neighbors-of-neighbors. We also assume non-malicious
behavior of the nodes, i.e., the nodes are willing to act as relay for message
forwarding. Apart from knowledge of restricted overlay, nodes keep a fixed-sized
and continuously changing cache of C entries of paths towards samples. Similar
to [3], in order to acquire truly random samples at each node, nodes periodically
exchange with each other the subsets of their caches, called Swapping Cache.
In particular, in each round every node selects a copy of the longest waiting
entry e from the cache, contacts it through routing path and sends to e a copy
of swapping cache. Also, it receives a random subset of e’s cache entries. Each
node then updates its cache with the exchanged set. More precisely, each node
updates its cache by replacing entries that are selected as swapping cache more
(propagated more) in its cache with the received entries. In our experiments we
show that such shuffling strategy converges very fast to random samples at each
node and accordingly, a random overlay is continuously being constructed on
the fly.

However, since cache entries to the sampled nodes indicate paths which
always start at the source node, after swapping, cache paths do not indicate
a path from recipient node to the sampled node. A naive way to solve this issue
is to merge reversed path from source node to destination node with the path
towards the sampled node in the swapped cache. The problem of this approach
is that such paths grow prohibitively large and do not scale. We propose an
algorithm to prune swapping cache paths upon forwarding gossip messages at
each node by exploiting the local knowledge of nodes and discovering shortcuts
locally. In this algorithm, source node, destination node and relay nodes (nodes
within path) that are involved in a gossiping round execute this algorithm once
they have received swapping cache. Every node parses the current path, and
prunes it if it can construct a shorter path by using knowledge of its own rout-
ing tables or the tables of its neighbors. The message is continued to be relayed
through the updated path. The details of the algorithm is given in (Algorithm1).

Since the underlying restricted overlay can be arbitrary, the resulting rout-
ing paths will inevitably exhibit all range of lengths, and can be as short as
one hop. Such variation in routing path lengths imply that the communication
times between nodes will vary greatly during the exchange process. This in turn
will create a bias in selection of random nodes. To this end, we introduce a
delay mechanism and define two system parameters called α (maximum thresh-
old of path length) and β (maximum delay). Recipient nodes reject paths with
larger length than α to ensure having short length paths. Furthermore, length
of gossiping rounds are equalized using β that is preferably equivalent to α. In
other words, a gossiping round is postponed to a time that is obtained from the
difference between β and the length of the selected path.

From practical perspective, each entry other than path consists of two vari-
ables. WaitingT ime, represents time that entry is waiting to be selected for
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Algorithm 1. PATH CONSTRUCTION
1: function RECONSTRUCT PATH(path)
2: resultPath = emptyList
3: if self.Id is sourceNode then � Current node is gossip round initiator
4: resultPath.addFirst(self.Id)
5: return resultPath
6: end if
7: for all id ∈ path.reverse() do
8: if self.isNeighbor(id) then � id is immediate neighbor of current node
9: resultPath.addFirst(id)

10: break
11: else if self.isTwoHopNeighbor(id) then � id is two-hop neighbor
12: resultPath.addFirst(id)
13: resultPath.addFirst(self.getNeighbor(id))
14: break
15: else
16: resultPath.addFirst(id)
17: end if
18: end for
19: if self.Id is relayNode then � Current node is within path acting as relay
20: resultPath.addFirst(self.Id)
21: end if
22: return resultPath
23: end function

gossiping. Swapped, denotes the number of times that the entry was selected as
one of the swapping cache entries in current node. The protocol is performed by
letting the initiating peer P execute the following 9 steps:

1. Increase by one waitingT ime of all entries.
2. Select copy of entry Q with the highest waitingT ime from the cache, and

copy of S − 1 other random entries as swapping cache.
3. Increase by one the swapped field of all selected S − 1 entries within cache.
4. Set waitingT ime entry Q within cache to zero.
5. Execute path construction algorithm for all entries of the swapping cache.
6. Wait w.r.t delay, send updated cache to next node of the path towards Q.
7. Receive from one of its social neighbors of reverse path a subset of no more

than S of Q’s entries and execute path construction algorithm for them.
8. Discard the entries with a path longer than α (Maximum path length).
9. Update P’s cache, by firstly replacing the same entries already existed with

longer path, (if any), and secondly replacing entries with the highest swapped.

On reception of a swapping cache request, node Q randomly selects a copy
of subset of its own entries, of size S, execute step 3 for S entries, executes step
5 and sends it to one of its social neighbors in the constructed reverse path,
execute step 7, insert sender entry to the received swapping cache and executes
steps 8, 9.
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Table 1. DATASET

Data set |V | |E| Type Diameter

Wiki-Vote 7066 103663 Social 7

AstroPh 17903 197031 Collaboration 14

Facebook 63391 817090 Social 16
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Fig. 1. The figure shows clustering coefficient (CC). X and Y axis-es show cycle and
average CC respectively. In blue and gray diagrams both α and β are set 2d and d
respectively. Black line represents CC of random graph (Color figure online).

Any relay node involved in gossiping, execute path construction algorithm
and cooperate in building reverse path.

3 Experiments

We implemented the algorithm on PEERSIM [5]. The properties of the graphs
are given in Table 1. The clustering coefficient (CC) of a node is formulated
by division of C over N − 1 that C is cache size and N is network size ( C

N−1 ).
We calculate it to ensure that CC of resulting overlay is equivalent to random
overlay. Neighbors in random overlay are target nodes of paths within caches.
Two scenarios are executed (α = d, β = d; α = 2d, β = 2d) where d is diameter
of the network. (C = 20, S = 5). As Fig. 1 exhibits, CC of the graphs converge
to random graph ensuring global randomness. Larger value for α increases the
speed of convergence but gives better local randomness. In another experiment
we evaluate In-degree distribution of nodes to see whether the sampling bias
is removed in random graph. We calculate degree distribution of target nodes
of paths over random graph. The ideal case is to have a degree distribution
with low standard deviation. It ensures an unbiased sampling independent of
node degrees in social graph. In Fig. 2, the results show a normal distribution in
which 70 % of nodes have in degree 20 ± 20 %, a value between 16, 24 (C = 20).
In the extended version of our work [4] we perform experiments with churn and
show that our algorithm is robust to churn and correlated failures.
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Fig. 2. In-degree distribution. X-axis shows degree. Y-axis shows nodes count.

4 Related Work

In [1], a random walk based approach is proposed for sampling on restricted
networks. Every node periodically initiates a Maximum Degree random walk,
passing its own id and the random walk’s mixing time as parameters and using
reverse random walk as routing to construct view for keeping samples. This
protocol assumes network size and maximum degree are known. So, it needs extra
protocols to obtain them. It requires large mixing time and produced average
path length is large. It is suitable for small size networks but might not scale
in large networks. The idea of constructing a virtual overlay network on top of
static networks has already been used in VRR [2]. It is a network routing protocol
inspired by overlay routing algorithms in Distributed Hash Tables (DHTs) but
it does not rely on an underlying network routing protocol. VRR routes using
only fixed location independent identifiers that determine the positions of nodes
in a virtual ring. Each node maintains a small number of paths to its virtual
neighbors that can be used to forward messages between any pair of nodes.
VRR has different usage from our algorithm. It solves routing problem on link
layer networks while our algorithm addresses random sampling problem on such
networks.
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Abstract. This paper deals with the integration of the formal verifica-
tion techniques of business process (BP) in the design phase. In order to
achieve this purpose, we use the graphical notation of Business Process
Modeling Notation (BPMN ) for modeling BP and specifying constraint
properties to be verified. A formal semantics for some response properties
are given.

Keywords: Business process · BPMN · Dynamic behaviors · Formal
verification

1 Introduction

Nowadays company has become more dependent on software systems, not only
in safety-critical areas, but also in areas such as finance and administration.
Emerging methods for enterprise systems analysis rely on the representation
of work practices in the form of business processes modeling [1]. The Business
Process Modeling Notation (BPMN ) [2] is a standard notation used for business
process modeling in order to define, analyze and deploy Business Processes (BP).
It provides symbols to a simple graphical specification for defining the control
flow of the business process in the early phases of process development.

In this paper, we propose the integration of the formal verification techniques
of BPMN models in the design phase. Most specification formalisms in this
domain are a bit tricky to use. To make them easier to use, our patterns come
with descriptions that illustrate how to map well-understood, conceptions of BP
behavior into precise statements in common formal specification languages like
linear temporal logic (LTL) [3] and computation tree logic (CTL) [4]. We are
particularly interested in responses properties.

Unlike our work presented in this paper, existing works [5–8] in this area
are largely concentrated on a translation of BPMN models to a formal lan-
guage, and the specification of the properties was written with a temporal logic
c© Springer International Publishing Switzerland 2014
G. Noubir and M. Raynal (Eds.): NETYS 2014, LNCS 8593, pp. 341–346, 2014.
DOI: 10.1007/978-3-319-09581-3 27
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[3,4], and do not consider a visual language for specifying these properties to be
verified. Dijkman et al. [9] uses Petri Nets [10] to formalize and analyze BPMN
and it considers to verify only the safety properties. In [11], the authors have
developed a tool called ProM 1 to verify BPMN models. The temporal property
specification logic supported by ProM is restricted to (LTL).

To the best of our knowledge, the above works show that the verification
phase comes after the design phase, and the knowledge of the logic used for the
specification of properties is needed. Our approach has the objective of integrat-
ing the verification process at the design stage.

This paper is organized as follows: In Sect. 2 we provide definitions and nota-
tions of BPMN, while Sect. 3 describes a visual language for specifying properties
to be verified. Finally, some conclusions are drawn in Sect. 4.

2 Business Process Modeling Notation (BPMN)

In this section, we give the basic notations of BPMN (see Fig. 1) used in this
paper. BPMN models are composed of:

1. Events:
(a) Start Event: it indicates where a particular process will start;
(b) End Event: it indicates where a process will end.

2. Task: is a generic type of work to be done during the course of a BP.
3. Sequence flow: it links two objects in a process diagram.
4. Gateways:

(a) And-split Gateway: is where a single branch is divided into two or more
parallel branches which are executed concurrently;

(b) And-join Gateway: is where two or more different branches of the process
merge into one single branch;

(c) Or-split Gateway: it routes the sequence flow to exactly one of the out-
going branches based on conditions;

(d) Or-join Gateway: it awaits one incoming branch to complete before trig-
gering the outgoing flow.

Fig. 1. The basic elements of BPMN

1 http://www.promtools.org/prom6/

http://www.promtools.org/prom6/
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3 Visual Language for Specifying Response Properties

In this section, we show how the designer specifies the properties to be verified by
using a graphical interface. At this stage, the framework uses this specification as
a guide to implement the transformation to LTL or CTL temporal logic. These
logics use the following quantifiers: (i) A: all paths, (ii) E: at least there exists
one path, (iii) ♦: eventually in the future, and (iv) �: now and forever in the
future. For more details see [3,4].

In this paper, we focus on the definition of five of the most frequently used
response properties by providing a graphical representation and corresponding
temporal logic semantics:

1. (Φ1): task ti will always be followed by task tj ;
2. (Φ2): task ti will always be followed by tasks tj and tk, while tj and tk will

be executed in parallel.
3. (Φ3): task ti will always be followed by tasks tj or tk.
4. (Φ4): task tk will be executed after the end of task ti and task tj , while ti

and tj are already executed in parallel.
5. (Φ5): task tk will be executed after the end of task ti or task tj .

The designer can use a graphical interface to specify the source and the target
extremities of property to be verified. Then, the framework proposes the collec-
tion of the gateways and arrow types in order to choose the desirable semantic
(Figs. 2, 3, 4, 5, and 6):

Specification language and semantics of Φ1

Φ1⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

-1- There exists one potential path that connects ti to tj :
(ti ⇒ E♦tj), (CTL formula).
-2- All paths from ti to tj :
(ti ⇒ A♦tj), (CTL formula).
-3- Every time ti is executed, tj has to be executed afterwards:
�(ti ⇒ ♦tj), (LTL formula).

Fig. 2. Graphical specification of Φ1

Specification language and semantics of Φ2

Φ2⇔

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

-1- When ti is executed, tj and tk have to be executed afterwards,
while the two outgoing branches are activated in parallel, each
branch on one potential path: (ti ⇒ (E♦tj ∧ E♦tk)), (CTL formula).
-2- When ti is executed, tj and tk have to be executed afterwards,
while the two outgoing branches are activated in parallel, each
branch on all potential paths: (ti ⇒ (A♦tj ∧A♦tk)), (CTL formula).
-3- Every time ti is executed, tj and tk have to be executed in
parallel afterwards: �(ti ⇒ (♦tj ∧ ♦tk)), (LTL formula).
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Fig. 3. Graphical specification of Φ2

Specification language and semantics of Φ3

Φ3⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

-1- One of the tasks tj or tk eventually is executed after the task ti
on one potential path: (ti ⇒ (E♦tj ∨ E♦tk)), (CTL formula).
-2- One of the tasks tj or tk eventually is executed after the task ti
on each potential path: (ti ⇒ (A♦tj ∨A♦tk)), (CTL formula).
-3- Every time ti is executed, one of the tasks ti or tk
has to be executed afterwards: �(ti ⇒ (♦tj ∨ ♦tk)), (LTL formula).

Fig. 4. Graphical specification of Φ3

Specification language and semantics of Φ4

Φ4⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

-1- When merging parallel branches, outgoing branch on one
potential path: ((ti ∧ tj)⇒ E♦tk), (CTL formula).
-2- When merging parallel branches, outgoing branch on all
potential paths: ((ti ∧ tj)⇒ A♦tk), (CTL formula).
-3- Every time tasks ti and tj are simultaneously executed, tk has
to be executed afterwards: �((ti ∧ tj)⇒ ♦tk), (LTL formula).

Fig. 5. Graphical specification of Φ4

Specification language and semantics of Φ5

Φ5⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

-1- One of the tasks ti or tj is eventually followed by the task tk
on one potential path: ((ti ∨ tj)⇒ E♦tk), (CTL formula).
-2- One of the tasks ti or tj will be eventually followed by the
task tk on each potential path: ((ti ∨ tj)⇒ A♦tk), (CTL formula).
-3- Every time one of the tasks ti or tj is executed, it is followed
by the task tk: �((ti ∨ tj)⇒ ♦tk), (LTL formula).
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Fig. 6. Graphical specification of Φ5

4 Conclusion

In this paper, we presented a new approach to integrate the formal verification
techniques of BP in the design phase. We proposed the use of BPMN to modelize
BP. A visual graphical language is given to specify the properties that will be
verified and corresponding temporal logic semantics. In this way, the designer can
automatically and intuitively validate constraint specifications on the designed
processes at this early stage, while the knowledge of the temporal logic used for
the specification of properties is not needed.
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