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1 Introduction and Motivation

It is generally recognised that the actual decision-making processes followed by
real-world firms when they have to set prices or production levels have often
little to do with those assumed in the idealized analytical framework of perfect
information.1 In practice, the use of simple revisable strategies, imitation tactics and
rules of thumb seems to be a key ingredient of many decision processes. Thus, when
analysing a market and its expected behaviour, it seems valuable to go beyond the
perfect-information analysis, and also consider other decision procedures that enjoy
greater empirical support and which may be deemed plausible for the context at
hand. This point is particularly relevant in markets potentially subject to regulation
(e.g. oligopolies) and in situations where the perfect-information theoretical analysis
of the social interaction reveals the presence of multiple possible equilibria—as is
often the case in indefinitely repeated strategic interactions, including oligopolies
in particular. Consequently, several different rules for setting prices or production
levels in oligopolies have been analyzed. Bigoni and Fort (2013) provide a recent
review of the theoretical and experimental literature on learning in oligopolies.

1This statement does not necessarily imply that market predictions made using the perfect-
information model are irrelevant in real life; the famous “as if” theory of Friedman (Friedman
1953) proves sufficiently accurate and useful in many contexts.
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In this paper we analyse Cournot oligopolies in which some firms provide a
homogeneous good or service and have to choose their production level qi. We
consider that the market process advances in discrete time steps and at every time
step the companies have to simultaneously choose whether to increase or decrease
the value of their decision variable (qi). The decision rule considered here can be
simply stated as: repeat your last action (i.e. an increase or a decrease in production)
if your profits have grown; otherwise, choose the opposite action. This simple rule
has been named “Win-Continue, Lose-Reverse” (WCLR) by Huck et al. (2003),2

who conducted a thorough study of its convergence properties in symmetric Cournot
oligopolies.

The WCLR rule adjusts the level of the decision variable in the direction that is
expected to make profits grow, according to the observed effect on profits of the last
increment/decrement. Note that this gradual adjustment strategy can be considered
a type of reinforcement learning rule: an action (i.e. an increase or decrease in
production) is deemed satisfactory—and therefore repeated—if it provides a profit
boost, and it is considered unsatisfactory—and therefore avoided—otherwise.

Mathematically, the WCLR strategy presents some similarities with a gradient
ascent optimization method. In fact, if the profits of a company were to depend
only on its own price or level of production (as in a monopoly with stable demand
and costs), this rule would be a gradient ascent method and, under conditions that
are well known in the optimization literature (Snyman 2005), it would lead to the
vicinity of a local optimum. In a duopoly, however, the profits of a company depend
also on its competitor’s price or output level, and the application of the WCLR
rule by each of the companies independently does not constitute a gradient ascent
method for the joint profit of the two companies. Thus, it is interesting to study
to which reference point of the strategic game (e.g. collusive outcome, competitive
outcome, or one-shot Nash equilibrium) such a simple strategy converges, if it does
converge to any at all.

For a Cournot duopoly in which companies vary their production levels qi by a
predefined amount ı (step size), Huck et al. (2003) show that, under rather general
conditions, for small values of ı, the quantities qi converge to a small area around the
cooperative (collusive) solution. In this paper, we show that the convergence of the
WCLR rule to collusive outcomes is not robust to small independent perturbations
in the profit functions of the firms (e.g., small independent variations in the cost
functions, or small differences on the price received by each company). The
existence of such small independent perturbations tends to push the process towards
the Nash equilibrium of the one-shot game.

The structure of the remaining of the paper is very simple: in Sect. 2 we present
the results for the Cournot model, and then we end with the conclusions.

2The same authors use the name “trial and error” in (Huck et al. 2004), where they also present
and discuss this learning rule in a discrete-time setup, though the analysis in that paper is focused
on a continuous version of the process.
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2 Competition in Quantities: Cournot Model

In this section we analyse a Cournot duopoly in which at every time step t (t D 0,
1, : : : ) each company i (i D 1, 2) chooses a production level or quantity [qi]t. The
market price [p]t is the same for both companies and it depends on the total quantity
produced by both firms. The amount [qi]t is produced on period t with a cost
function C(q). The profit for each company on period t is [� i]t D [p]t [qi]t � C([qi]t).
Incremental values are naturally defined as [4� i]t :D [� i]t � [� i]t�1, for t > 0, and
initial values at time step 0 are [4� i]0 D 0, and [4qi]0 D 0.

Let us also define [si]t :D sign ([4qi]t [4� i]t). Note that [si]t is equal to C1 if
the last changes in [qi]t and [� i]t took place in the same direction, and [si]t is equal
to �1 if such changes went in opposite directions.

For each company i, the production levels are calculated as [qi]tC1 D max([qi]t C
[4qi]tC1, 0), starting with some initial positive production level [qi]0 at time step
0. The decision rule WCLR used to calculate the production increments [4qi]tC1 is
implemented as follows:
WCLR Rule:

– If t D 0 or [si]t D 0, then [4qi]tC1 takes one random value out of the set f�•i, 0,
•ig, where •i is the step size.

– Otherwise, [4qi]tC1 D •i [si]t.

It is also assumed that the process includes some “noise” such that, with a
small probability " for each company in every period, the company will deviate
from the value prescribed above for [4qi]tC1 and will take a random choice out
of the set f�•i, 0, •ig. This “decision noise” can represent occasional mistakes or
experimentation.

Huck et al. (2003) prove that, with ıi D ı, under rather general conditions, if the
step size ı and the noise level " are sufficiently small (but strictly positive), in the
long run the process [q1, q2]t will spend most of the time in a small neighbourhood
around the collusive outcome, and their simulations show a quick convergence to
that situation. The remaining of this section is devoted to show that this convergence
can be very sensitive to small independent perturbations in the profit functions of
the firms. The reader can run all the simulations reported here using the online
model at http://luis.izqui.org/models/wc-lr-cournot/. The computer model has been
implemented in NetLogo (Wilensky 1999).

2.1 The WCLR Rule in the Cournot Model with Noise

For illustrative purposes we consider a linear inverse demand function:
p D max(100 � (q1 C q2), 0) and a quadratic cost function: C(q) D 10q C 0.1q2. In
this situation, the collusive value for the production of each company, characterized

by the first-order conditions
@ .�1 C �2/

@qi

D 0, is qi D 21.43, which corresponds to

http://luis.izqui.org/models/wc-lr-cournot/
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a price level p D 57.14. The Cournot equilibrium, characterized by the equations
@�i

@qi

D 0, is qi D 28.13, corresponding to a price level p D 43.75.

We also set •i D 0.1 and " D 0.01. Initial levels of production [qi]0 are set
randomly in the range [0, 50], but note that the model is ergodic (since " > 0); thus,
its long-run behaviour does not depend on initial conditions.

Departing from the baseline scenario above, we study the sensitivity of the model
to three types of noise:

1. “Decision noise”, characterised by the parameter ", as described above.
2. “Cost noise”, characterised by the parameter "cost, and implemented by altering

each firm’s base cost according to the following formula:

ci D �
10qi C 0:1qi

2
�

.1 C "costUi Œ�1; 1�/

where Ui[�1,1] denotes a continuous uniform random variable with range
[�1,1].

3. “Price noise”, characterised by the parameter "price, and implemented by giving
each firm i a price pi according to the following formula:

pi D p
�
1 C "priceUi Œ�1; 1�

�

where p is the price that corresponds to the total level of output using the inverse
demand function. This modified model represents small differences in the price
that each company gets for its products, which can be due to a number of different
reasons, such as random deviations in the quality of the products of a company
with respect to the average quality, different times of arrival at the market
(which would allow for some variability in demand), different intermediaries
with variable commissions, existence of local markets (which would allow for
some variability in price), etc.

Figure 1 below shows a representative run for each of the three types of noise.3

It is clear that in the absence of cost noise or price noise, the WCLR rule leads
to the collusive outcome, as shown by Huck et al. (2003). In stark contrast, small
independent perturbations in the cost function or in the price function seem to
destabilise the collusive outcome and push the simulation towards the Cournot
equilibrium. The sensitivity of the model to perturbations in price seems to be
greater than the sensitivity to perturbations in cost.

To study this effect rigorously, we conducted a computational experiment where
we explored different values of ", "cost, and "price. For each value of these variables
we conducted 100 simulation runs, and for each of the runs we computed the average
price in the simulation (taken over 105 time steps, and neglecting the first 104 time
steps). Figures 2, 3 and 4 below show the results obtained.

3Note that the simulation runs with “cost noise” or “price noise” have " D 0.01 too, as prescribed
in the baseline scenario.
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Fig. 1 Density Histograms of the quantities produced by each firm [q1, q2] in one representative
simulation run of 100,000 time steps. The left-most histogram shows a baseline scenario. The
histogram in the centre corresponds to a simulation run with a 1 % cost noise added to the baseline
scenario, whilst the right-most histogram shows a simulation run with a 1 % price noise added to
the baseline scenario

Fig. 2 The blue diamonds show, for each value of the probability of a random decision ", the mean
of 100 prices, each of them obtained from one independent simulation run otherwise parameterised
as in the baseline case. The price obtained from each simulation run is the average price in that
simulation (taken over 105 time steps, and neglecting the first 104 time steps). The difference
between the minimum average price and the maximum average price across simulations was less
than 0.1 in all cases

Figure 2 shows that the WCLR rule leads to collusive outcomes even if the
probability of a random decision is fairly high. Figure 3, in contrast, shows that small
perturbations in the cost functions of the firms destabilise the collusive outcome and
push the process towards the Cournot–Nash equilibrium of the one-shot game. In
the same spirit, Fig. 4 shows that the sensitivity of the model to small perturbations
in prices is even higher, and the collusive outcome is completely destabilised in
favour of the Cournot–Nash equilibrium for values of the price noise as low as 1 %.

Why is the WCLR rule so robust to “decision noise”, but so sensitive to “cost
noise” and “price noise”? Note that the stability of the collusive outcome induced
by the WCLR rule relies on coordinated moves. When WCLR firms move in the
same direction (either increasing or decreasing production levels), they receive
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Fig. 3 The blue diamonds show, for each value of the cost noise parameter "cost, the mean of 100
prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline.
The price obtained from each simulation run is the average price in that simulation (taken over 105

time steps, and neglecting the first 104 time steps). The dashed lines join the minimum average
prices and the maximum average prices across simulations

Fig. 4 The blue diamonds show, for each value of the price noise parameter "price, the mean of 100
prices obtained from 100 independent simulation runs otherwise parameterised as in the baseline.
The price obtained from each simulation run is the average price in that simulation (taken over 105

time steps, and neglecting the first 104 time steps). The dashed lines join the minimum average
prices and the maximum average prices across simulations

signals that make them move towards the collusive outcome and linger around it.
Alternatively, an uncoordinated move in the vicinity of the collusive equilibrium
(possibly due to a perturbation) will make both firms move towards the Cournot–
Nash equilibrium in the following time step—assuming no more deviations from the
WCLR rule occur. Note, however, that this move towards Nash is itself coordinated,
so at the following time step, both firms will simultaneously decrease production
and they will keep doing so until they return to the neighbourhood of the collusive
outcome. This explains why the collusive outcome is so robust to “decision noise”.
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Decision mistakes have an impact only on the decision at the time step at which they
occur, and the process goes back towards collusion automatically in two time-steps.

By contrast, the effects of “cost noise” and “price noise” are more profound,
as they do not only affect the decision at the time step they occur, but they also
have a direct impact on subsequent decisions. This is because these perturbations
effectively change the profit landscape and, in that way, they alter the relation
between [4qi]t and [4� i]t. This deeper type of perturbation, which transcends
the time step at which it occurs, is a greater source of miscoordination and, as
explained above, uncoordinated moves push the process towards the Cournot–Nash
equilibrium.

One final question remains to be answered: why does price variability have a
greater impact than cost variability? The answer relates to the different strength
with which these two sources of miscoordination affect the profit landscape. It turns
out that, given the parameter values used in the illustrations above, profits for both
firms in the region of interest are always positive and quite sizable, i.e. income is
significantly greater than cost for both firms. In such a situation, a certain percentage
change x in prices (and, therefore, in income) induces a greater change in profit
than the same percentage change x in costs. Greater changes in profit mean higher
chances of altering the sign of [4� i]t :D [� i]t � [� i]t�1, and hence, greater impact
on the dynamics of the model. Thus, under such favourable circumstances, it is
natural that price variability constitutes a greater source of miscoordination than
cost variability. If income and cost were closer in magnitude, the sensitivity of the
model to these two types of noise—“price noise” and “cost noise”—would also be
more alike. This point can be checked adding a fixed cost equal to 900, i.e. the new
cost function reads C(q) D 900 C 10q C 0.1q2. This change makes income and cost
similar in the region of interest. In these conditions, the observed impact of cost
variability was similar to that of price variability.

2.2 Other Noise Distributions

In this section we show that our results are robust to changes in the noise distribution
considered for the price or the cost perturbations. To illustrate this fact, we focus
here on a normal distribution with the same mean and standard deviation as the
uniform distribution U[�1,1], i.e. the normal distribution N[0, 1/3] with mean 0 and
variance 1/3.

First, we show in Fig. 5 below a representative run for each of the three types
of noise.4 Figure 5, which uses the noise distribution N[0, 1/3] for the price and the
cost perturbations, is analogous to Fig. 1, which used the noise distribution U[�1,1].

4Note that the simulation runs with “cost noise” or “price noise” have " D 0.01 too, as prescribed
in the baseline scenario.
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Fig. 5 Density Histograms of the quantities produced by each firm [q1, q2] in one representative
simulation run of 100,000 time steps. The left-most histogram shows a baseline scenario. The
histogram in the centre corresponds to a simulation run with a 1 % cost noise following a N[0, 1/3]
added to the baseline scenario, whilst the right-most histogram shows a simulation run with a 1 %
price noise following a N[0, 1/3] added to the baseline scenario

Fig. 6 The blue diamonds show, for each value of the cost noise parameter "cost, the mean of
100 prices obtained from 100 independent simulation runs with noise distribution N[0, 1/3], and
otherwise parameterised as in the baseline. The price obtained from each simulation run is the
average price in that simulation (taken over 105 time steps, and neglecting the first 104 time
steps). The dashed lines join the minimum average prices and the maximum average prices across
simulations

To study the robustness to changes in the noise distribution, we conducted a
computational experiment where we explored different values of "cost and "price

using the noise distribution N[0, 1/3], in the same spirit as the experiments shown
in Figs. 3 and 4 for noise distribution U[�1,1]. Figure 6 below presents the results
obtained for "cost, which are very similar to those obtained in Fig. 3. The same
similarity was obtained for price perturbations ("price), showing that the sensitivity of
the model to cost and price noise does not depend on whether the noise distribution
is a uniform distribution or a normal distribution.
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2.3 Correlated Perturbations

In this section, we show that the destabilizing factor of the variability in cost or price
is not so much the existence of the perturbations, but the fact that they are somewhat
independent or uncorrelated between the firms. To illustrate this, here we consider
the effect of correlated perturbations. Correlations would be observed in the real
world if there were variations in costs or in the demand function that affected both
companies in a similar way (for instance, seasonal demand variability). To study
such situations, we model a price perturbation for each firm which is composed
of both a common factor ’ U[�1,1]—with weight ’—and an independent factor
(1 � ’) Ui[�1,1]—with weight (1 � ’)—, according to the formula:

pi D p
�
1 C "priceR’

i

�

where

R’
i D ’ U Œ�1; 1� C .1 –’/ Ui Œ�1; 1� :

Thus, parameter ’ is a measure of the correlation between the perturbations of
each firm. Extreme value ’ D 0 represents completely uncorrelated perturbations
(as analyzed above), and extreme value ’ D 1 represents full correlation (where the
perturbations for each firm are exactly the same). Figure 7 below shows that the
more correlated perturbations are, the less impact they have on destabilising the
collusive outcome. As explained before, perturbations affect the dynamics of the
model mainly through the generation of miscoordination between the firms; thus,
it is natural that the impact of correlated noise, which does not cause so much
miscoordination, is less acute than the effect of uncorrelated perturbations.

Fig. 7 The diamonds show, for each value of the price noise parameter "price and different values of
’, the mean of 100 prices obtained from 100 independent simulation runs otherwise parameterised
as in the baseline. The price obtained from each simulation run is the average price in that
simulation (taken over 105 time steps, and neglecting the first 104 time steps)
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2.4 More than Two Competing Firms

The simulation results of Huck et al. (2003) in symmetric oligopolies with more
than two competing firms (up to ten) and some small decision noise also showed
convergence of the WCLR rule to collusive outcomes. We show in Fig. 8 below
that, as in the duopoly case, the existence of small independent perturbations in the
price that each company obtains also destabilises the collusive outcome and pushes
the process towards the Nash equilibrium of the one-shot game.

Uncorrelated perturbations in cost have the same qualitative effect, so they are
not shown here.

It should also be noted that, as the number of competing firms increase, the
one-shot Cournot–Nash equilibrium gets closer to the outcome predicted under
the assumption of perfect competition, so, as the number of firms increase, the
WCLR rule with independent cost or price perturbations leads to market prices
and production levels which approach those predicted by the perfect competition
theory. Figure 9 below shows the effect of uncorrelated 2 % price perturbations
in oligopolies with different number of firms. The results also show an increasing
difference between the simulated price and the Cournot price as the number of firms
in the market increases, which can be due to the decreasing marginal importance of
one firm in the market as the number of firms in the market increases.

Fig. 8 The blue diamonds show, for each value of the price noise parameter "price, the mean
of 100 prices obtained from 100 independent simulation runs otherwise parameterised as in the
baseline, in an oligopoly with five competing firms. The price obtained from each simulation run
is the average price in that simulation (taken over 105 time steps, and neglecting the first 104 time
steps). The dashed lines join the minimum average prices and the maximum average prices across
simulations
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Fig. 9 The diamonds show, for a price noise parameter "price D 2 % and different number of firms,
the mean of 100 prices obtained from 100 independent simulation runs otherwise parameterised as
in the baseline. The price obtained from each simulation run is the average price in that simulation
(taken over 105 time steps, and neglecting the first 104 time steps)

Conclusions
The results obtained by Huck et al. (2003) indicate that the simple, individual,
“sensible” and not forward-looking decision rule WCLR (“Win-Continue,
Lose-Reverse”) can lead to collusion-like outcomes in Cournot oligopolies,
even though each company is independently trying to maximize its own
profit, and is acting based only on its own past information. Similar results
were obtained by Waltman and Kaymak (2008) considering a more involved
learning algorithm (Q-learning). In principle, these results could raise impor-
tant concerns about the fairness of fining firms in oligopolies for apparently
carrying out collusive practices, since one could always allege that observed
collusion-like outcomes could just be the unintended result of using this type
of independent (and thus legitimate) decision rule.

However, this paper has shown that small independent variations in the
cost functions, or small uncorrelated perturbations in the price obtained by
each firm, can all destabilize the convergence of the WCLR rule to collusive
outcomes, pushing the outcomes towards the Nash solution of the one-
shot game. Previous simulation results (Keen and Standish 2006) had also
indicated that introducing variability in the step sizes used by each company
in each period could also push the process towards the Cournot–Nash solution
in markets where firms compete in quantities. Consequently, in markets where
there is some independent variability over time in the profit functions of the
competing firms (which can be due, for instance, to spatially local effects), our
results throw doubts on the validity of arguments that try to justify collusive-
like outcomes as the unintended result of this kind of “innocent” decision
rules.
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