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Abstract We propose a classification method based on recurrence quantification
analysis (RQA) combined with support vector machines (SVM). This method com-
bines in an effective way various quantitative descriptors to allow a refined discrim-
ination among dynamical non linear systems that presents dynamics which are very
similar to each other. To show how effective this methodology is, firstly, based on
synthetic data, it is applied on time series generated from the logistic map with nearby
parameter values and in the chaotic regime. Next, it is applied to human biosignals,
namely, heart rate variability (HRV) time series obtained from four groups of indi-
viduals (premature newborns, full-term newborns, healthy young adults, and adults
with severe coronary disease). Roughly the proposed methodology works as follows:
The signals are transformed into recurrence plots (RP) and a set of RQA statistical
features (recurrence rate, determinism, averaged and maximal diagonal line lengths,
entropy, laminarity, trapping time, and length of longest vertical line) are extracted
to form the input vector for a SVM classifier. Results show that the method discrim-
inates groups of different ages with classification accuracy better than 75 %. Given
that heart rate continuously fluctuates over time and reflects different mechanisms to
maintain cardiovascular homeostasis of an individual, the results obtained may allow
to draw important information on the autonomic control of circulation in normal and
diseased conditions.
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1 Introduction

Heart rate variability (HRV) is a non-invasive measure related to the balance of the
activities of sympathetic and parasympathetic divisions of the autonomic nervous
system [1]. This variability is normal and indicates the heart ability to response to the
environmental and physiological stimuli [2]. The balance of nervous system activities
results in a nonlinear behaviour of the HRV time series. In general autonomic and
parasympathetic activities attenuate with age [3], which is related with reduction of
the HRV [4] (comparing the normal healthy adult and older-age adult).

There are several methods for HRV analysis [5], for example, standard linear
techniques (time and frequency domain analysis) and nonlinear methods (corre-
lation dimension analysis, largest Lyapunov exponent, central tendency measure,
Poincare plot). However, none of them, from our knowledge, is regarded as univer-
sally applicable or effective for all the cases related to HRV analysis. In this study we
propose a methodology that is based on the recurrence plot and recurrence quantifi-
cation analysis. In recent years, recurrence plot (RP) and recurrence quantification
analysis (RQA) have been applied to study different dynamics systems [6, 7], in nat-
ural science, physics [8], biological systems, and physiological processes involving
heart rate variability [9–12]. Given its intrinsic discrete character, RQA is particu-
larly suited for the analysis of HRV time series and allows for a direct quantification
of the complex dynamics of heart rhythm modulation [13, 14].

RQA is a useful tool and helps to understand the variation of the autonomic ner-
vous system over time. The major advantage of RQA and recurrence plots (RPs) over
standard HRV analysis are their applicability to non stationary data and also their
sensitivity to subtle changes in the cardiovascular system dynamics. These aspects
enable RPs to be used in the characterization of changes in the basic cardiovascular
parameters during both physiological and pathological conditions. But the analysis
of HRV time series using only RQA statistics is known as not being able to pro-
vide consistent enough information to achieve a suitable classification. And our goal
here is to have an effective method that allows one enough sensitivity to properly
differentiate systems with very similar dynamics. This desired amplification in the
discrimination sensitivity using the SVM in combination with the RQA, will be
shown here in the subsequent sections. In this work, combined with SVM, we evalu-
ated RQA measures to discriminate and identify groups of different ages, including
information about the system.

2 Materials and Methods

2.1 Experimental Database

The study comprised a total of 148 tachograms divided into four groups: 26 full-term
newborns (FNB) (8 days on average), 48 premature newborn (PNB) (±27.4 days),
61 healthy young adults (HYA) (20.7 ± 1.6 years), and 61 adults in preoperative
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evaluation for coronary artery bypass grafting for severe coronary disease (SCD)
(58.4 ± 10.2 years). All tachograms are from databases from previous studies
of Transdisciplinar Nucleus for Chaos and Complexity Study (NUTECC/Brazil)
[15, 16]. There are time series with 15 min up to 1 h recording period from patients
in a supine rest position without visual and sound stimulations.

The equipment used to collect signal was Polar Monitor (S810i or RS800), which
has been proven [17–19] to be feasible and reliable for measuring HRV according
to recognized standards [20]. At a sampling rate of 1000 Hz, this device captures
successive intervals between heartbeats, namely NN, in the normal sinus rhythm (i.e.,
initiated by the sinoatrial node). All these studies were approved by the respective
ethic committee. All NN time series were filtered to remove artifacts using an adaptive
filter which takes into account the peculiarities of the signal to be analyzed [5].

2.2 Recurrence Quantification Analysis

Defined as a repeated occurrence in time of a given state of a system, recurrence is a
basic attribute of many dynamical systems. It means that along the time a trajectory
comes repetitively close in the state space of points previously visited. Embedding
the time series in a appropriate dimensional space and then plotting in a matrix the
recurrences according to a tolerance rule results a recurrence plot (RP), which is
a graphical representation of the recurrences in the dynamical system. The visual
features of such plots are appealing and reveal patterns not previously viewed in the
original series [13].

RP represents the autocorrelation in the signal at all possible time scales. Since
the diagonal marks the identity in time, long-range correlations are associated to
points far from the main diagonal, whereas the elements near the principal diagonal
correspond to short-range correlations. Diagonals reflect the repetitive occurrence of
similar states in the system dynamics and express the similarity of system behavior
in two distinct time sequences. To quantity such features, recurrence quantification
analysis (RQA) has been introduced for measuring quantitative information con-
tained in recurrence plots [21].

For instance, the density of recurrence points in a recurrence plot is defined as
recurrence rate (RR), giving the probability that a specific rate will recur. Parameters
based on the diagonal lines are determinism (DET, the percentage of recurrence
points forming diagonals from all recurrence points), averaged diagonal line length
(L), maximal diagonal line length (Lmax), and entropy (which denotes the Shannon
entropy of the histogram of the lengths of diagonal segments and thus indicates the
complexity of the deterministic structure of the system).

Verticals are also important structures in a RP in that they reflect the persistence
of one state during some time interval. The parameters derived from vertical lines are
laminarity (LAM, the proportion of recurrence points forming verticals), trapping
time (TT, the mean length of vertical lines), and the maximal length of a vertical,
Vmax. Low TT, LAM, and Vmax values imply high complexity in the systems
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dynamics, since the state of the system stays only for a short time in a state similar to
the previously occurring state. Theoretically, diagonal and vertical structures would
not occur in random (stochastic) as opposed to determinist process [7].

2.3 SVM Classifier

Support Vector Machines (SVMs), developed by [22], are supervised learning tech-
niques used for classification, regression analysis and learning tasks. Such techniques
can be applied to the solution of problems related to text categorization, image analy-
sis, and bioinformatics [23]. The main idea behind this classifier is to construct a
hyperplane that maximizes the distance (so-called margin) to the nearest data points
pertaining to two classes as pictured in Fig. 1.

The classifier was trained from the previously discussed dataset which, in an
empirical way, was divided into the training and test sets enumerated in Table 1.

Fig. 1 Examples of separation of two classes using an SVM classifier: a two classes linearly
separable, b two classes with nonlinear separation, and c separation achieved by a hyperplane in a
high-dimensional space

Table 1 Number of training and test sets employed in the SVM classifier

Groupsa Training set Test set Total of cases for comparison

FNB (26) and PNB (48) 17 and 17 9 and 9 26 and 26

FNB (26) and HYA (61) 17 and 17 9 and 9 26 and 26

PNB (48) and HYA (61) 30 and 30 18 and 18 48 and 48

FNB (26) and SCD (61) 18 and 18 8 and 8 26 and 26

PNB (48) and SCD (61) 30 and 30 18 and 18 48 and 48

HYA (61) and SCD (61) 45 and 45 16 and 16 61 and 61
aFNB full-term newborn, PNB premature newborn
HYA—healthy young adult, SCD—adult with severe coronary disease
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Fig. 2 Structure of the
methodology for discrimi-
nation of HRV clinical groups

The class label (PNB, FNB, HYA, SCD) for each NN interval time series was assigned
by a cardiologist.

For each time series, eight RQA features were extracted to form the input for the
classification step (Fig. 2). The SVM classifier was assessed from the LIBSVM open
library [23] and executed 100 times for each RQA feature for comparison between
two clinical groups. Detailed information about learning and classification algorithm
can be found in [22, 23]. For each execution of the code, the training and test cases
were randomly selected from which was obtained the average accuracy, defined as
the percentage ratio of the number of cases correctly classified to the total number
of cases used for classification.

3 RQA Plus SVM: Discriminating Almost Similar Dynamics

To show the effectivity of the proposed the methodology RQA+SVM, we used
the logistic map time series (xn+1 = r ∗ xn ∗ (1 − xn)) for values r = 3.68,
r = 3.7 and r = 3.9 (see Fig. 3). For each value of the dynamic parameter r , 30
time series were generated, each one with 2,000 points (the first 200 points were
discarded to allow transients to die out), with x(0) ∈ [0.1, 0.8], and an incremental
step Δx(0) = 0.0241.

For the study of the RQA measures, the RP parameters to the logistic map
were selected embedding dimension (m = 1), delay (τ = 1) and threshold radius
(ε = 0.1). Details about these values are given in [7].

To the SVM classifier three groups are assigned (according r values: r = 3.68,
r = 3.7 and r = 3.9). We used 21 time series for each group of the training set
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Fig. 3 Bifurcation diagram of the logistic map with a zoomed in view in the region of the r
parameters chosen: r = 3.68, r = 3.7 and r = 3.9
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Fig. 4 Average accuracy and standard deviation (〈a〉±δa) obtained by the SVM of the comparison
between two time series groups to Logistic Map. (A) r = 3.68 and r = 3.7, (B) r = 3.7 and r = 3.9
(red line); r = 3.68 and r = 3.9 (blue line). The proper level of accuracy (75 % or higher) is indicated
by points to the right of the dashed vertical line

and 9 to the test set. The average accuracy and standard deviation obtained by SVM
are displayed in Fig. 4. In this figure an accuracy equal to 1 means that all of the
cases tested (100 %) were correctly classified, while a zero value means that all
cases were not properly classified. For accuracy values above the threshold of 75 %,
the dynamics of the analyzed groups are considered to be similar. We can observe
that for the pair of groups (r = 3.68, r = 3.7) the RQA features are more similar
than the pairs of groups (r = 3.68, r = 3.9) and (r = 3.7, r = 3.9). These results
demonstrate the ability of the methodology RQA + SVM to differentiate groups with
almost similar dynamics.



Recurrence Quantification Analysis as a Tool for Discrimination … 131

4 Application: Using HRV to Discriminate Physiological Age

The main objective of this study was to analyze RQA measures as a tool to discrim-
inate HRV time series recorded from different clinical groups. Typical HRV time
series and RP patterns are shown in Figs. 5 and 6, from which the peculiarities of
each recurrence plot and the corresponding HRV series are noticeable. For these
plots and throughout the present study the RP parameters were selected as: m = 3,
τ = 3, and ε = 8. The choice of embedding dimension (m = 3) was based on results
from the false nearest neighbor method [24]. We chose the minimum value for m that
presented minimum percentage of false neighbors. This value was adopted for the
time series analyzed, standardizing all the data set. Time delay for embedding was
set at the first minimum of the mutual information function [25], since the embedded
signals have the minimum overlapping information. The tolerance level, following
the recommendation of [26], was selected to ensure the percentage of recurrence
points lying between 0.1 and 0.2 % to obtain reliable values for the RP parameters.
Detailed discussions about the RP parameters are found in [13, 14, 26].

For each group, the extracted RQA features are displayed in Figs. 7 and 8. We can
notice that for the pairs of groups (SCD, HYA) and (FNB, PNB) the RQA features are
similar. Then to further examine the ability of RQA features to differentiate groups
of different ages we applied SVM classification.

A similar plot to those for the RQA measures (Figs. 7 and 8) is obtained when
using the mean value and standard deviation of the HRV time series. We see in Fig. 9a
that the groups FNB and PNB can be distinguished from the groups SCD and HYA
in terms of the average values of the NN intervals. But since an NN interval gives
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Fig. 5 Examples of NN time series and RPs for a FNB and b PNB groups (embedding
dimension=3, delay=3 and threshold=8)
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Fig. 6 Examples of NN time series and RPs for a HYA and b SCD groups (embedding dimen-
sion= 3, delay= 3 and threshold= 8). Example of RPs for each time series groups (embedding
dimension= 3, delay= 3 and threshold= 8)
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Fig. 7 Average values and standard deviation to RQA diagonal parameters for each group

(in milliseconds) the duration of a heartbeat, the values displayed in Fig. 9a are only
correlated with the mean heart rate for the time series of each group. However we
emphasize that the mean value of the NN interval, i.e., the heartbeat average is not
enough to characterize the homeostasis of an individual, which is a dynamical process
that is reflected in the heart rate variability. On the other hand, upon analyzing the
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Fig. 8 Average values and standard deviations of vertical-based RQA measures for each group
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Fig. 9 Average values for the full set of HRV time series by taking for each series: a the NN interval
and b the beat-to-beat NN interval variability

set of series in terms of beat-to-beat NN interval variability, the separation between
groups is no longer possible as demonstrated in Fig. 9b.

The average accuracy values of RQA indexes obtained from SVM through com-
parison between groups of different ages are reported in Fig. 10. It is seen that RQA
indices are better at distinguishing groups the larger is the age difference. In fact, for
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Fig. 10 Average accuracy and standard deviation (〈a〉±δa) obtained by SVM from the comparison
between two NN intervals time series groups to RQA indexes. a Full-term newborn (FNB) and
premature newborn (PNB), b healthy young adult (HYA) and adult with severe coronary disease
(SCD), c premature newborn and healthy young adult (red line); full-term newborn and healthy
young adult (blue line), d premature newborn and adult with severe coronary disease (blue line);
full-term newborn and adult with severe coronary disease (red line)

close age difference as in Fig. 10a, b the average accuracies are restricted to 50 and
60 %, respectively. Nevertheless, this might indicate that age difference between the
HYA and SCD groups is more significant than in groups FNB and PNB. In support
to this conclusion, we see in Fig. 5 that the recurrence plots for the groups FNB and
PNB look more similar than the RPs for the HYA and SCD groups (Fig. 6).

In addition, comparison of newborns with older individuals yields higher accu-
racy, namely, 80 % as demonstrated in Fig. 10d and 90 % in Fig. 10c. It is to be
mentioned, however, that a larger age difference does not necessarily imply a larger
accuracy, i.e., the larger accuracy in Fig. 10c is related to an age difference smaller
than that in Fig. 10d.

5 Conclusion

The present study was concerned with recurrence quantification analysis (RQA) of
HRV time series for groups of individuals with different ages. RQA was proven to
be a powerful discriminatory tool to detect the degree of determinism of the systems
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examined. Among the four groups studied, all the RQA measures (Figs. 7 and 8) were
lower in the healthy young adults (HYA). Low TT, Lam, and Vmax, for instance,
imply high complexity in the system’s dynamics. This result is in line with the
concept that high complexity is a general feature of healthy dynamics compared to
pathological conditions.

We also verified that RQA measures were able to differentiate groups, with the
results demonstrating that better discrimination is achieved the higher the age dif-
ference is. It was noted in Fig. 10c, d, however, that a higher age difference does
not imply a higher discriminatory accuracy. The closeness of the comparison of the
SCD group with the newborns (PNB and FNB) and the higher degree of dissimilarity
between the HYA group and the newborns reflect the fact that the comparisons were
quantified in terms of HRV, which is age dependent. This result shows that the HRV
decreases with age as described in [3, 4].

Given that HRV time series reflects the complex interactions of different control
loops of the cardiovascular control system, the results obtained here provide impor-
tant information on the autonomic control of circulation in normal and diseased
conditions. In addition, the approach discussed here permits an automatic analysis
of a large number of time series, thus making the method useful in clinical sets and
in epidemiological studies to analyze HRV series or other biomedical signals.
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