
A Recurrence-Based Approach for Feature
Extraction in Brain-Computer Interface Systems

Luisa F. S. Uribe, Filipe I. Fazanaro, Gabriela Castellano, Ricardo Suyama,
Romis Attux, Eleri Cardozo and Diogo C. Soriano

Abstract The feature extraction stage is one of the main tasks underlying pattern
recognition, and, is particularly important for designing Brain-Computer Interfaces
(BCIs), i.e. structures capable of mapping brain signals in commands for external
devices. Within one of the most used BCIs paradigms, that based on Steady State
Visual Evoked Potentials (SSVEP), such task is classically performed in the spectral
domain, albeit it does not necessarily provide the best achievable performance. The
aim of this work is to use recurrence-based measures in an attempt to improve the
classification performance obtained with a classical spectral approaches for a five-
command SSVEP-BCI system. For both recurrence and spectral spaces, features
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were selected using a cluster measure defined by the Davies-Bouldin index and the
classification stage was based on linear discriminant analysis. As the main result,
it was found that the threshold ε of the recurrence plot, chosen so as to yield a
recurrence rate of 2.5 %, defined the key discriminant feature, typically providing a
mean classification error of less than 2 % when information from 4 electrodes was
used. Such classification performance was significantly better than that attained using
spectral features, which strongly indicates that RQA is an efficient feature extraction
technique for BCI.

1 Introduction

The main objective of a Brain-Computer Interface (BCI) is to provide an alterna-
tive communication channel for human beings without using the classical biological
efferent pathways. In the last decade, these systems have experienced a remarkable
development due to the greater availability of low cost instrumentation and com-
putational resources [1, 2]. In particular, the use of BCI in the context of assistive
technology is very important for people suffering from stroke, spinal cord injury,
degenerative disorders (e.g. amyotrophic lateral sclerosis), and any conditions that
impose drastic limitations to communication and mobility [3]. Presently, it is esti-
mated that, only in Europe, there are almost 300 thousand people with spinal cord
injury (SCI), with eleven thousand new injuries occurring every year [4]. Moreover,
approximately 40 % of the total population of patients with SCI are quadriplegics
and it is known that loss of motor functions significantly decreases the quality of
life [2].

To accomplish a rehabilitation purpose, BCI systems typically consist of well-
characterized components, being signal acquisition, processing and feedback stages
the main ones, as illustrated in Fig. 1. Within this general scheme, the typical approach
for brain signal acquisition relies on the recording of surface EEG, being the process-
ing and feedback stages strongly dependent on the adopted BCI paradigm [1]. The
BCI paradigm refers to the process of inducing a stable electrical pattern in the brain to
be detected and recognized, being finally associated with an external command. A
classical example is that of task imagery, i.e. the request to perform a mental task
associated with well-defined motor actions, something that can be detected in a spe-
cific cortical area (e.g. the motor cortex) and, in general, suitably classified. Another
commonly employed BCI paradigm can be formulated in terms of evoked potentials,
such as those present in the P300 response—a potential elicited by the process of
focusing attention in events occurring with low probability—and the Steady State
Visual Evoked Potentials (SSVEP) [1].

In the SSVEP paradigm, different commands (like those defining the direction of
the movement of a wheel-chair) are presented to the user as visual stimuli flickering
with different frequencies, and the user is requested to focus on the command that
he/she wants to perform. In this case, the electrical activity of the visual cortex tends
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Fig. 1 A general BCI system

to synchronize with the visual stimulus chosen by the user and a simple spectral
analysis can be used in order to identify the command selected by the person [5].

Once the BCI paradigm has been defined, the processing and feedback can also be
specified in a more precise manner. Most works use a structure composed of feature
extraction, feature selection and classification stages. These stages are essential for
performing pattern recognition and classification, being thus crucial to define the
external command.

Although classical spectral analysis is widely used for feature extraction in
SSVEP-BCI systems, it can lead to non-optimal classification results depending on
the employed visual stimulation apparatus or require a large amount of data for suit-
ably training the classifier. In this chapter, a new recurrence-based feature extraction
approach for BCI systems based on the SSVEP paradigm is presented. It is shown
here that the threshold ε of the Recurrence Plot (RP), defined so as to match a specific
Recurrence Rate (RR), is the key feature to separate the classes (which correspond
to the commands), providing a better performance in comparison to a strategy based
on spectral analysis. The results are indicative of the potential of recurrence analysis
in the context of BCI, raising quite interesting application perspectives.

This work is organized as follows: Sect.2 presents the instrumentation and the
experimental procedure employed in the context of the BCI system used here. This
section also briefly introduces the signal processing techniques explored for feature
extraction, feature selection and classification. Section 3 exhibits the system perfor-
mance (in terms of mean classification error) when the proposed recurrence-based
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approach is employed and a comparison with different feature selection heuristics
operating in the spectral domain. Finally, this chapter is concluded with a discussion
about the developed ideas and potential extensions.

2 Methods

2.1 Experimental Setup and Experimental Procedure

In the performed experiments, the brain signals were acquired by means of surface
EEG [1], due to its simplicity and non-invasive character. For the acquisition, digiti-
zation and amplification of the EEG signals, the g.USBamp system of the g.tec com-
pany1 was employed. This device allows the simultaneous capture of 16 channels,
with 24-bit resolution each, through a USB 2.0 connection to a desktop computer.
The device is shown in Fig. 2a.

The EEG was recorded using 16 dry electrodes with 8-pin each (the g.SAHARA
g.tec system), which are built using a special gold alloy (see Fig. 2a). These electrodes
were placed in 16 locations defined by the international 10–20 system [1], which
were chosen in accordance with the SSVEP response (i.e. emphasizing signals in the
visual cortex): Fz, Cz, Pz, Oz, PO3, PO4, O1, O2, P3, P4, Iz, POz, PO7, PO8, O9,
O10. Furthermore, two reference electrodes were placed in each mastoid. Figure 2b
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Fig. 2 a Equipment and configuration for EEG signals capture. In b the orange circles represent
the visual cortex region and the blue circles define other interesting positions along the medial
longitudinal fissure

1 http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features.

http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features
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illustrates the cap layout, in which the letters F, T, C, P and O correspond, respectively,
to the frontal, temporal, central, parietal and occipital lobes, with odd numbers used
to reference the left hemisphere and even numbers the right one.

Before starting the acquisition session, it was ensured that all electrodes had
impedance values below 5 k�, which represents a common limit employed during
EEG recordings. The amplifier was configured with a bandpass filter of 0.1–60 Hz and
a notch filter at 60 Hz for all EEG channels, in order to cancel out DC components
interference and noise. A sampling frequency of 128 Hz was used throughout all
acquisitions.

In order to register the signals, the BCI2000 software2 was employed. This soft-
ware is particularly interesting due to its ability to create different experiments with
multiple settings for capturing the data, which were first stored in files with a specific
BCI2000 format and subsequently imported by MATLAB, in which functions from
the statistical signal processing toolbox were used.

To carry out the visual stimulation, a set of four light-emitting diodes (white
LEDs) was used, driven in four different frequencies, namely 13, 18, 21 and 25 Hz.
These values were chosen in view of previous studies that showed strong SSVEP
responses evoked in this range [5].

Three healthy subjects (ages 21, 25, 28; one woman) with no previous history
of neurological diseases participated in this study. The study was approved by the
ethics committee of University of Campinas, and all subjects signed an informed
consent previous to data acquisition. Subjects sat on a comfortable chair placed at a
distance of 0.5 m both from the LEDs and the computer screen. The same ambient
light level was maintained during the execution of all experiments. Figure 3a, b show,
respectively, the LED set-up and the interface used in the BCI2000 software for the
execution of the experiments and for the capture of data.

For every subject, four different sessions for data acquisition were held five
minutes apart from each other. The sessions comprised four separate runs interleaved
by a pause of one minute. The last session had only three runs.

Fig. 3 a Visual stimulation platform used to evoke the SSVEP response. b Interface requesting the
user to focus on a specific LED

2 http://www.schalklab.org/research/bci2000.

http://www.schalklab.org/research/bci2000


100 L.F.S. Uribe et al.

Each run was composed of 25 trials associated with 5 different tasks (four visual
stimuli plus no command). Therefore, there were a total of 15 × 25 = 375 trials
per subject, with 375/5 = 75 the total number of trials for each task. Subjects were
instructed to stay still during every run.

Each image was continuously displayed during 6 seconds. After this period of
time, the screen went blank for 1.5 s before the next image appeared. During the
resting condition, the subject could rest the eyes. The pause period between each run
was long enough to allow the subject to stretch and move around.

2.2 Signal Processing Techniques

After the EEG signals were acquired, a pre-processing stage took place, consisting in
the normalization of each recorded time series with respect to the maximum absolute
value found therein. Thereafter, feature extraction was performed with the aim of
representing each trial of a given electrode in a suitable space, which, in this work,
may correspond to either the recurrence or the spectral domain.

The recurrence domain is defined by Recurrence Quantification Analysis (RQA)
measures obtained for a given trial. As described by [6], the classical RQA measures
correspond to the percentage of determinism (DET), the entropy of the diagonals
(ENTR) and the length of the longest diagonal of the map (Lmax) (excluding the
main diagonal). The L-∞ norm was used for quantifying the distance between the
points in the reconstructed state space, given its lower computational cost [6]. An
adaptive recurrence plot was used to minimize the recurrence plot variability, thus
avoiding inappropriate choices of ε and providing a better comparison between maps
from different EEG electrodes. The RP parameters were defined after a preliminary
analysis concerning the use of a variable threshold as reported in [7, 8]. The threshold
ε of the map was defined to match a Recurrence Rate (RR) of 2.5 %—with an
embedding dimension m = 5 and a time delay τ = 5—being also employed as
a feature. The DET measure was calculated for different diagonal intervals, being
DET1 associated with the percentage of determinism related to diagonal lengths
from 5 to 10, DET2 from 5 to 15, DET3 from 10 to 15, DET4 from 10 to 20, DET5
from 15 to 20, DET6 from 15 to 25. This partition is useful to detect deterministic
sources with different characteristics [9]. In general, the diagonals obtained in the
recurrence plot were small, which justifies the upper limit established by DET6.

The spectral attributes were determined using the classical Welch method for
computing the Power Density Spectrum (PDS). In this approach, each trial was
divided into 8 sub-blocks of identical length (with 170 points each) using a Hamming
window function with 50 % superposition, i.e. with an amount of 85 overlapping
points. Each block was once again divided in segments of 128 points: padding with
zeros the last segment and wrapping them, the Discrete Fourier Transform (DFT) of
each of the eight segments was obtained—implying in a spectral resolution of 1 Hz—
and the square of its absolute value calculated, followed by the average concerning
all sub-blocks. For implementation details, see [10, 11].
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The feature selection stage was implemented based on the cluster measure defined
by the Davies-Bouldin (DB) index [12]. This measure combines in a single expres-
sion two main relevant aspects of data clustering: the minimization of the intraclass
distance and the maximization of the distance between classes, which can be math-
ematically described by:

DB = 1

M

M∑

i=1

max
i �= j

[
diam (Ci ) + diam

(
C j

)

d
(
μi , μ j

)
]

(1)

where d
(
μi , μ j

)
is the distance between the centers of classes i and j , diam (Ci ) is

the maximum distance between all pairs of samples in class i , and M is the number
of classes. Hence, low values of the DB index indicate good class discrimination,
while higher values indicate less favorable scenarios. For this reason, the inverse of
the DB index was employed as a rank measure (DBinv), being each class defined
by the set of trials labeled with the same visual stimulus.

Finally, the classification stage was based on Linear Discriminant Analysis (LDA)
[13], since it is straightforward to implement, fast to train and widespread in the BCI
literature (see, for instance, [14]). In this approach, a linear combination w of the
features x that better separates the classes is found, providing a decision surface in the
form: wT x+c = 0, for a threshold c. Considering two normal multivariate distributed
classes with means μ1 and μ2 and covariance matrices C1 and C2, respectively, the
LDA approach consists in finding the weights w that maximize the ratio concerning
the variance between the classes and the variance within the classes:

S = σ 2
between

σ 2
wi thin

= (wT (μ1 − μ2))
2

wT (C1 + C2)w
. (2)

It is possible to show that this criteria is satisfied for w ∝ (C1 + C2)
−1(μ1 − μ2)

and the threshold c is given by 1
2 wT (μ1 + μ2). Once the training stage has been

performed, trials with attribute vectors x are classified according to their position in
the attribute space relative to the achieved decision hyperplane. The multi-class case
was treated here analyzing all pairs of classes.

3 Results

Built in accordance with the experimental setup described in Sect. 2, Fig. 4 shows
a typical DBinv map containing the main relevant features for class separation in
spectral (Fig. 4a) and in recurrence-based attribute spaces (Fig. 4b), obtained for
subject S1.

Some important conclusions can be drawn from the results shown in Fig. 4. For
instance, it can be clearly noted that the electrode O9 was the one with best separa-
tion performance for both spectral and recurrence-based approaches for this specific
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Fig. 4 Discriminant analysis using the inverse of the Davies-Bouldin index for a spectral and b
recurrence attributes associated to S1. In this last figure, the threshold ε of the map is denoted by ep

subject. Effective separability was also attained with the Iz electrode in both attribute
spaces. These locations completely agreed with the main cortical areas activated in
SSVEP experiments, and, usually, the same promising electrode positions were iden-
tified in both attribute spaces analyzed here, despite there being a great variability
concerning the achieved positions for different subjects, as commonly observed in
BCI experiments.

Furthermore, Fig. 4b reveals that the threshold ε of the map was an effective
attribute for separating the classes, the classical RQA measures having not reached a
similar performance. This is a result observed for all subjects and probably follows
from the adaptation of the recurrence plot in order to match a specific recurrence
rate, a scenario that favors the adapted variable ε when comparing different recur-
rence patterns. The adoption of an adaptive recurrence plot is justified by the great
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variability of the obtained signals, which made it difficult to find a general choice of
a fixed ε for obtaining suitable recurrence plots.

Another particular RQA advantage was that the relevant features were much more
concentrated—in terms of the number of attributes—in the recurrence scenario than
in the spectral domain, which simplifies the automatic selection. For instance, if we
consider class dispersion in the feature space, it is clear that the combination of the
best PSD attributes with higher DBinv values could lead to correlated features with
bad discrimination performance (Fig. 5a). On the other hand, the selection of the best
PSD attributes considering different electrodes (selected by ranking the sum of all
their respective PSD coefficients) can be more informative for separation (Fig. 5b).
However, a clearly better separation scenario was attained in the recurrence-based
attribute space as shown in Fig. 5c. In this case, note that both Fig. 5c and b used
information from electrodes O9 and Iz, but class “down” (red points concentrated at
the origin) was much more close to the “rest” state in the spectral domain, there also
being intersections of other states in general. In fact, the classification error attained
in Fig. 5b was 16.49 %, while in Fig. 5c this measure dropped to 3.81 %, i.e. 4 times

Fig. 5 Classes dispersion for a spectral attributes just ranked by DBinv measure; for b the best PSD
attributes in the most promising electrodes according to DBinv value; and for c recurrence-based
attributes domain associated to S1
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lower. In this last case, the decision hyperplanes that separate class 1 (“up” state)
from class i , with i = 2, 3, 4, 5 (in which the hyperplane color is associated with
the color of the respective class), are shown, in order to illustrate the attribute space
partition and that only few classification mistakes were made.

In addition to the classification performance attained here, the results described in
Fig. 5 show that the recurrence analysis allowed the adoption of a simple heuristic for
combining the features i.e. taking the attained ε for matching a specific recurrence rate
ranked by DBinv index, while the analysis on the spectral domain would require a
multi-objective optimization approach: a search that maximizes the DBinv measure,
and, at the same time, minimizes the correlation between the selected attributes,
which naturally poses a more complex task.

In order to investigate the classification performance in these different spaces,
some simple heuristics for attribute selection were established. The first one consisted
in simply taking the RQA features ranked by the DBinv index (black dots in Fig. 6).
The second heuristic took the features ranked with the DBinv measure in the spectral
domain (red dots in Fig. 6). The third ranked the electrodes according to the sum of
the DBinv index of all frequency coefficients for that electrode and selected the PSD
coefficients in the frequency of the visual stimulation (i.e. 13, 18, 21 and 25 Hz - blue
dots in Fig. 6). The fourth heuristic ranked the electrodes such as in the third one and
took the PSD coefficient with highest DBinv value for each electrode (green dots
in Fig. 6). In all cases, the number of attributes was progressively increased and a k-
fold cross-validation scheme was used to evaluate the mean classification error [13].

The evolution of the mean classification error can be observed in Fig. 6 for all
subjects. It can be clearly noted that the recurrence-based attributes (specifically the
threshold of the map that corresponds to the first 16 attributes) drastically dropped
the classification error to lower than 10 % when 5 attributes were used and practically
to 0 % with less than 8 features. In general, the performance achieved in the spectral
domain was lower, with a mean classification error lower than 10 % attained only
when more than 20 attributes were used in both second and third heuristics. The
fourth heuristic took, progressively, the best PSD coefficients for different electrodes
previously ranked, providing the better spectral scenario. Note that after using all
the best coefficients of the 16 electrodes, this approach just attained a classification
performance close to the recurrence scenario for S2 and a difference around 5 %
for S1 and S2. In summary, using the best feature for different electrodes led to a
faster convergence towards the minimal error and a better final performance in the
recurrence-based attribute space.

Finally, a clear difference between the heuristics used for feature selection in the
spectral domain can be also noted. Concerning heuristics 2 and 3, the free selection
based on the DBinv score provided, at first, a better classification performance with
a faster drop in the mean classification error, which was overcome by the selection
based on the coefficients associated with the visual stimulation frequencies when
few electrodes were taken into account (2 or 3 for all subjects). Interestingly, the
best spectral scenario (heuristic 4) established that just the selection of the best PSD
coefficient of each electrode could provide a low classification error (around 5 %)
without requiring information concerning all the visual stimulation frequencies as
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Fig. 6 Evolution of the classification error for a progressive increase in the number of attributes
concerning the three aforementioned heuristics for subjects a 1, b 2 and c 3

commonly used in SSVEP- BCI systems. Such information could be helpful for
designing BCI systems with just a few trials for training.

4 Discussion and Conclusions

In this work, the problem of efficient feature extraction for pattern recognition in
SSVEP-based BCI was addressed. The obtained results clearly indicates the poten-
tial of using RQA in this task: it reached, indeed, a better performance than classi-
cal spectral analysis, commonly employed in this context. Curiously, it was found
that the threshold of the recurrence plot was the key attribute to perform the class
separation, which reveals the versatility of this complexity measure. In fact, if, on
the one hand, the classical RQA measures are related to the diagonal structures in
the RP and its generative deterministic rule [6], on the other hand, the recurrence
rate is intrinsically associated with the quadratic Rényi entropy and other important
information-theoretic measures can also be derived from it [6, 15].
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In the present experiment, when the quadratic Rényi entropy is fixed (as a conse-
quence of fixing the RR), the different attained recurrence plot thresholds reflect a
particular metric of the recurrence structure of the signals that explain a fixed num-
ber of points. Note that this measure resembles that derived from the estimation of
the correlation sum as introduced by [16] for the determination of the correlation
dimension (D2). In fact, the method used here just fixes the recurrence rate and
makes use of the threshold for comparison between the different classes, instead of
doing the opposite, when different thresholds define recurrence rates and a curve fit
is used for obtaining D2 in the classical approach [6, 16]. Interestingly, the procedure
adopted here allowed overcoming the variability of EEG signals (and the recurrence
plot drawbacks associated with it), and, at the same time, providing a better char-
acterization of the temporal signal structure. The characterization of EEG signals
in terms of the correlation dimension or nonlinear time series analysis has already
been performed in the literature [17, 18], and the present work defines a particular
application in the BCI context.

As a main drawback to the proposed recurrence-based approach, it can be men-
tioned the computational cost associated with the evaluation of an adaptive recur-
rence plot for this purpose, since BCI systems usually require a fast signal processing
framework for real-time operation. Such limitation emphasizes the requirement for
fast (dedicated) platforms for recurrence analysis, defining a natural extension to this
work. The application of RQA for other BCI paradigms (e.g. motor imagery) also
outlines a trend for future investigation.
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