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Abstract We address redundancy in the information content of unthresholded re-
currence plots (URPs). The theory of framework rigidity is employed to explain and
analyze this redundancy geometrically. First we show that the domain of a URP can
be restricted to just a finite number of vertical or horizontal lines without loss of
information. Then we construct a globally rigid framework to demonstrate a similar
property for diagonal lines. This result gives theoretical support to recurrence quan-
tification analysis (RQA), which analyzes and extracts features from an RP along
such lines. Third, we construct a finite set of curves, one of which is a contour line,
for which it again holds that the URP contains all information along them. This links
the information content of lossy (thresholded) recurrence plots to that of URPs. This
study is also a starting point in employing redundancy to improve existing recurrence
plots based methods and algorithms, and to develop new ones. Several examples clar-
ify the methods and an application from EEG artifact detection shows some of their
practical potential.

1 Introduction

Recurrence plots (RPs), see [1], are a popular tool for the visualization of the behavior
of dynamical systems, in particular for their phase space trajectories. Recurrence
quantification analysis (RQA), see [2, 3], provides RP based methods to further
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analyze and quantify RPs and the underlying dynamical behavior. RQA proceeds by
selecting horizontal, vertical and diagonal lines in recurrence plots and computing
various quantities from them. Potential problems and pitfalls related to different
aspects of the application of RPs are pointed out in [4]. The methods based on RPs
have been successfully applied to various fields in the natural sciences as well as
in engineering and in economy. See, for instance, the bibliography collected on the
recurrence plot website [5], which shows an impressive increase of such applications
over the last decade.

Recurrence plots can also be used to analyze scalar signals x(t) by first embedding
them in an M-dimensional trajectory space. Given a finite-interval continuous-time
real-valued signal x(t), with t ∈ [0, 1) say, the time-delay embedding method of [6]
constructs such a trajectory X (t) as:

X (t) =

⎛
⎜⎜⎜⎝

x(t)
x(t + τ)

...

x(t + (M − 1)τ )

⎞
⎟⎟⎟⎠ , t ∈ [0, 1). (1)

The embedding dimension M and the time-delay τ ∈ (0, 1) are specified by the user,
for which some techniques are available in the literature, e.g. involving the average
mutual information (AMI) [7] for M , or the false nearest neighbors fraction (FNNF)
[8] for τ . Next, the unthresholded recurrence plot (URP) is defined as (the graph of)
the intra-trajectory distance function for X (t):

URPX (u, v) = ‖X (u) − X (v)‖, u, v ∈ [0, 1), (2)

in which ‖ · ‖ denotes a norm. While several other norms are also popular in the
literature, such as the 1-norm and the maximum norm, we will exclusively use the
Euclidean norm here. Also, to avoid having to take finite interval effects explicitly
into account, the signal x(t) and its trajectory X (t) are periodically extended from
the interval [0, 1) to all of R. Finally, for a given positive threshold ε, the binary
(thresholded) recurrence plot is defined as

RPε
X (u, v) = Θ (ε − ‖X (u) − X (v)‖) , u, v ∈ [0, 1), (3)

in which Θ denotes the Heaviside function (i.e. Θ(x) = 1 for x ≥ 0 and Θ(x) = 0
otherwise). Recurrence plots can likewise be defined for discrete-time signals and
trajectories in an obvious way, by restricting t , u and v to a discrete set of time instants
(and choosing τ accordingly).

For a proper understanding of the information content of a recurrence plot, we
have previously addressed the relationship between the URP and its underlying sig-
nal x(t) using Fourier analysis and graph theory; see [9]. Generically it holds that
URPX determines x(t) up to a sign and an additive constant, but more information
from x(t) may sometimes be lost, depending on the frequency content of x(t) and
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on the choice of the embedding parameters M and τ . Earlier work in this area is
found in [10, 11], while the relationship between the RP and x(t) was previously
investigated in [12–15]. In the present paper we study redundancy of information
in URPs themselves. One obvious aspect of URPs and RPs is their symmetry with
respect to the diagonal u = v. Since URPs are a 2-dimensional representation of
a 1-dimensional object (the trajectory in M-dimensional space), it should also not
come as a surprise that it carries much more redundant information. We first address
the joint information content of horizontal and vertical lines in a URP and we show
how this determines the (redundant) information in other parts of that URP. As an
example, we show how our results on redundancy in URPs can be employed for the
detection of similar signal segments. (Other detection methods based on RPs can
also be found in [16–18].) For further studies on lines structures in RPs, see e.g. [2,
19, 20]. We shall also briefly address the information in diagonals and in contour
lines of a URP. This aims to better understand the information which is preserved in
an RP, as an RP is obtained from a URP by thresholding.

Because a URP captures distance information between pairs of points on the trajec-
tory X (t), it is natural to employ the theory of framework rigidity, see [21–23], to
explain geometrically the redundant distance information in a URP. Following [23],
we introduce some preliminary definitions and notation. A configuration P in R

M

is a finite set of N points P = {P1, P2, . . . , PN }. Let G be a simple graph on the
nodes 1, 2, . . . , N , then a bar-and-joint framework (or simply a framework) in R

M ,
denoted by G(P), is the graph G together with the configuration P , where each node
n of G is located at the point Pn . Each edge (m, n) in G is viewed as a rigid bar
of length equal to ‖Pm − Pn‖, and each node in G as a joint – with full rotational
freedom for all its adjacent bars. Two frameworks G(P) and G(Q) are said to be
equivalent if ‖Pm − Pn‖ = ‖Qm − Qn‖ for all edges (m, n) of G. They are said
to be congruent if ‖Pm − Pn‖ = ‖Qm − Qn‖ for all pairs of nodes m and n in the
graph G. This is the same as saying that G(Q) can be obtained from G(P) by an
isometry. A framework G(P) is called rigid if there is an ε > 0 such that every
framework G(Q) which is equivalent to G(P) and for which ‖Pn − Qn‖ < ε for all
n = 1, 2, . . . , N , is also congruent to G(P). A framework is called globally rigid if
this holds for every ε > 0, i.e. if every framework G(Q) which is equivalent to G(P)

is congruent to G(P). A complete graph always gives a globally rigid framework
for every embedding dimension M . See Fig. 1 for an example of four frameworks in
R

2 illustrating these concepts, where the nodes (joints) are represented by dots and
the edges (bars) by straight lines.

In this paper we consider frameworks G(X ) which involve a configuration
of points X = {X1, . . . ,XN } located on a trajectory X (t). i.e. for all nodes
n = 1, . . . , N of G: Xn = X (tn) for some set of time instants t1, . . . , tN . Note that
global rigidity of G(X ) then expresses the property that all the values of URPX (u, v)
with u, v ∈ {t1, . . . , tN } are determined by the subset of such values with (u, v) cor-
responding to the edges of G.
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Fig. 1 The frameworks in a and b are equivalent. When embedded in R
2, both are rigid. They are

not congruent, therefore they are both not globally rigid. When embedded in R
3 they are both also

no longer rigid. The frameworks in c and d are congruent and both are globally rigid. The graph G
is complete; therefore global rigidity holds for arbitrary embedding dimensions ≥ 2

The paper is structured as follows. In Sect. 2, we show that the whole URP can be
reconstructed from the information content of a set of selected horizontal or vertical
lines in a URP. The geometrical interpretation and the use of redundancy in recur-
rence plot analysis is demonstrated and evaluated by three examples. First, redundant
distance information in a trajectory and in its URP is illustrated geometrically. Sec-
ond, we show that the choice of the embedding parameters M and τ may influence
the number of lines needed in the URP to capture all the information. Third, an
application in EEG analysis involving eye blink artifact detection is presented, to
demonstrate how redundancy can be employed to reduce the analysis region for the
URP. In Sect. 3, we construct globally rigid frameworks with points which relate
to diagonals of a URP, and then we extend that approach to (approximate) contour
lines. This aims to better understand the information which is (and which is not)
preserved in RPs. Section 4 concludes the paper. All the proofs are collected in the
Appendix.
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2 Redundancy in URPs and the Information Contained in
Vertical Lines

In this section we show with basic geometry how an entire URP can be reconstructed
from the information it carries in a few well selected horizontal or vertical lines.
Because URPX is constructed from the intra-trajectory distances of X (t) in the
embedding space R

M , it is clear that it is invariant under isometric transformation
of X (t), which makes it natural to employ affine geometric tools. To formalize this
we have the following basic results.

Lemma 1 Let VX be the smallest affine subspace of R
M which contains the trajec-

tory X (t). Denote k = dim(VX ). Let Tb = {t0, t1, . . . , tk} be a set of time instants
such that {X (t0), X (t1), . . . , X (tk)} constitutes an affine basis for VX . Each point
X (t) can then be written in a unique way as X (t) = ∑k

m=0 αm(t)X (tm) with affine
coordinates αm(t) ∈ R, satisfying

∑k
m=0 αm(t) = 1.

Relative to the point X (t0), let the trajectory be represented by X̃(t) := X (t)−X (t0),
so that a basis for the linear space VX − X (t0) is given by the columns of the matrix
B := (

X̃(t1) . . . X̃(tk)
)
. Note that for this basis, the coordinate vector of X̃(t) is

the unique vector α(t) satisfying X̃(t) = Bα(t). Its entries coincide with the affine
coordinates: α(t) = (α1(t), . . . , αk(t))T . We then have that:

(1) The coordinate vector α(t) of X̃(t) is given by

α(t) = (BT B)−1 BT X̃(t). (4)

(2) The values URPX (u, v) of the unthresholded recurrence plot satisfy:

URPX (u, v)2 = (A(u) − A(v))T
(

BT B
)−1

(A(u) − A(v)) , (5)

where
A(t) := BT X̃(t) = BT Bα(t). (6)

(3) For m = 1, . . . , k, the entries Am(t) of A(t) are given in terms of URPX by:

Am(t) = 1

2

(
URPX (t0, tm)2 + URPX (t0, t)2 − URPX (tm, t)2

)
. (7)

(4) For m, n = 1, . . . , k, the entries
(
BT B

)
m,n of the Gram matrix BT B are given

by: (
BT B

)
m,n

= Am(tn) = An(tm). (8)

Combining parts (2), (3) and (4) of this lemma, it follows that URPX (u, v) can be
computed from the joint information stored at certain other locations in the URP. We
have the following theorem.
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Theorem 1 Let VX be the smallest affine subspace of R
M containing the trajectory

X (t). Denote k = dim(VX ). Let Tb := {t0, t1, . . . , tk} be a set of time instants such
that {X (t0), X (t1), . . . , X (tk)} is an affine basis for VX . Then:
(1) The entire unthresholded recurrence plot URPX (u, v) can be computed from the
restriction of URPX (u, v) to the k + 1 vertical lines of points (u, v) with u ∈ Tb.
(2) Let Ta ⊆ [0, 1) be an arbitrary subset of time instants. Then the restriction
of URPX (u, v) to Ta × Ta can be computed from the restriction of URPX (u, v) to
Tb × (Tb ∪ Ta).

According to part (1) of this theorem, the dimension k of the affine subspace VX

determines how many vertical lines jointly carry all the information in a URP. (By
symmetry, this likewise holds for horizontal lines.) The value of k is bounded from
above by the embedding dimension M , but it may also vary with the choice of
time-delay τ . We can make this precise for time-delay embeddings of real periodic
signals x(t) which have a Fourier series representation x(t) = ∑

p∈Z
cpe2πpti . For

such signals it holds that the complex Fourier coefficients cp satisfy c−p = cp for
all p ∈ Z. The corresponding trajectory X (t) is given by X (t) = ∑

p∈Z
cpe2πpti Tp,

in which the complex-valued vectors Tp ∈ C
M are given by:

Tp =

⎛
⎜⎜⎜⎝

1
z p

...

z(M−1)p

⎞
⎟⎟⎟⎠ , with z = e2πτ i . (9)

See also [9], where this class was used extensively. We then have the following result.

Proposition 1 Let x(t) be a real periodic signal with a Fourier series representation
x(t) = ∑

p∈Z
cpe2πpti . Let k be the dimension of the smallest affine subspace VX

of R
M containing the trajectory X (t) = ∑

p∈Z
cpe2πpti Tp. Define the set K X :=

{p ∈ Z \ {0} | cp �= 0} and define the linear subspace V of C
M as the span of the set

of vectors Tp with p ∈ K X . Then:
(1) k = dim(V).
(2) Let r be the cardinality of the set {pτ(mod 1) | p ∈ K X }, i.e. the total number of
different fractional parts of the quantities pτ with p ∈ K X . Then k = min{M, r}.
For values of τ that are not rational, all the quantities pτ(mod 1) with p ∈ K X are
different. Then part (2) of this proposition shows that k = min{M, |K X |} and the di-
mension k of VX attains its maximal value (i.e. for the situation where τ is varied but
M and the signal x(t) are fixed). Because the vectors Tp all depend continuously on
τ , it follows from part (1) that the same maximal value of k is also attained in open
neighborhoods of such irrational values for τ and hence it is attained generically.
However, for some special rational choices of τ (e.g. in combination with finite sets
K X ), the value of k may drop.
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To further clarify the findings of this section, we now give three examples. In the first
example we explain geometrically the redundant distance information contained in
a URP. In the second example we investigate the impact of different choices of τ ,
which may lead to different values of the dimension k = dim(VX ). In the third ex-
ample we investigate an application in EEG analysis. It concerns a digitally sampled
measurement signal containing eye blink artifacts. We demonstrate how the set of
time instants Tb in Theorem 1 can be chosen to reduce the analysis region from the
entire URP to only a part.

Example 1 Parts of a URP constructed from vertical lines in that URP

To illustrate Theorem 1 and the underlying Lemma 1, we consider a trajectory X (t)
in R

2 and a set of time instants Tb = {t0, t1, t2}, for three different choices of Ta .
(i) Let Ta = {u0, v0}.
From Lemma 1 we have that URPX (u0, v0) is determined by the entries of A(u0),
A(v0) and BT B. The entries of BT B are in turn given by the entries of A(t1) and
A(t2). The entries of a vector A(t) are determined by URPX (t0, t), URPX (t1, t),
URPX (t2, t), URPX (t0, t1) and URPX (t0, t2). With t ∈ {t1, t2, u0, v0}, it therefore
follows that URPX (u0, v0) is determined by:

(1) The values URPX (t0, t1), URPX (t0, t2) and URPX (t1, t2), which equal the
lengths of the three black solid lines in Fig. 2a. Note that this constitutes the
complete graph for the affine basis of trajectory points {X (t0), X (t1), X (t2)} for
Tb.

(2) The values URPX (t0, u0), URPX (t1, u0) and URPX (t2, u0), which equal the
lengths of the three red solid lines in Fig. 2a. These values fix the position of the
point X (u0) relative to the affine basis under (1).

(3) The values URPX (t0, v0), URPX (t1, v0) and URPX (t2, v0), which equal the
lengths of the three green solid lines in Fig. 2a. These values fix the position
of the point X (v0) relative to the affine basis under (1).

The key geometric observation is that the framework G(P) with P consisting of the
trajectory points for the time instants Ta ∪ Tb and which has all the possible edges
except for the edge between X (u0) and X (v0) (represented by the blue dashed line in
Fig. 2a), is a globally rigid framework. Therefore the value of URPX (u0, v0) is fixed.
In Fig. 2b, the corresponding points in the recurrence plot URPX are indicated: the
blue dot for (u0, v0), three black dots for (t0, t1), (t0, t1), (t1, t2), three red dots for
(t0, u0), (t1, u0), (t2, u0), and three green dots for (t0, v0), (t1, v0), (t2, v0). Because
of symmetry, and because the values of any URP along the diagonal u = v are all
zero, the statements of Theorem 1 follow (also for horizontal lines).
(ii) Let Ta = [α, β] be a subinterval of [0, 1].
The restriction of URPX (u, v) to the grid points Tb × Tb again corresponds to the
complete graph for the affine basis of points X (t0), X (t1) and X (t2), previously in-
dicated by the solid black triangle in Fig. 2a. The restriction of URPX (u, v) to the
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Fig. 2 Geometric representation of redundant distance information: a in a trajectory; b in its URP

three vertical line segments with coordinates in Tb × [α, β], captures the distances
between the points X (t) with t ∈ [α, β] and the three points of the affine basis; it
fixes the position of these points X (t) relative to the basis. Taking u0, v0 ∈ [α, β], the
restriction of URPX (u, v) to the square area [α, β] × [α, β] can then be constructed
in a point-by-point manner as described under (i).
(iii) Suppose Ta = [0, 1]. This is case (ii) for the special choice α = 0 and β = 1.
Then from the restriction of URPX (u, v) to the three vertical lines with (u, v) in
{t0, t1, t2} × [0, 1], see Fig. 2b, all of URPX (u, v) can be constructed.

Example 2 Influence of the embedding parameters M and τ on redundancy

Consider a zero-mean real-valued signal of the form x(t) = ∑2
p=−2 cpe2πpti with

c−p = cp �= 0 for p ∈ K X = {−2,−1, 1, 2} and c0 = 0. Let the embedding
dimension be chosen as M = 4. The corresponding trajectory X (t) is contained in a
smallest affine subspace VX of R

4, which is in fact a linear subspace because of the
zero-mean property. It therefore coincides with the intersection of R

4 and the space
V spanned by the four vectors Tp ∈ C

4 with p ∈ K X . According to Proposition 1(1)
we have that: k = dim(VX ) = dim(V) = rank

(
T−2 T−1 T1 T2

)
. The latter matrix

is a Vandermonde matrix for the 4 complex numbers in the set {z2, z, z, z2} with
z = e2πτ i . These are numbers on the complex unit circle and depend on τ . To find
the value of k we must count how many different values are contained in this set.
From Proposition 1(2) (and since M = 4) we have that k also equals the cardinality
r of {pτ(mod 1) | p ∈ K X }. We compute k for four different rational values of τ .

(1) τ = 1
2 . Then z = eπ i = −1 and |{z2, z, z, z2}| = |{−1, 1}| = 2. Alternatively,

r = |{pτ(mod 1) | p ∈ K X }| = |{0, 1
2 }| = 2. Both approaches give k = 2.

(2) τ = 1
3 . Now z = e2π i/3 and |{z2, z, z, z2}| = |{e2π i/3, e4π i/3}| = 2. Also,

r = |{pτ(mod 1) | p ∈ K X }| = |{ 1
3 , 2

3 }| = 2. It again follows that k = 2.
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(3) τ = 1
4 . Here z = eπ i/2 = i and |{z2, z, z, z2}| = |{i,−1,−i}| = 3. Likewise,

r = |{pτ(mod 1) | p ∈ K X }| = |{ 1
4 , 1

2 , 3
4 }| = 3, whence k = 3.

(4) τ = 1
5 . In this case

z = e2π i/5 and |{z2, z, z, z2}| = |{e2π i/5, e4π i/5, e6π i/5, e8π i/5}| = 4. Similarly,
r = |{pτ(mod 1) | p ∈ K X }| = |{ 1

5 , 2
5 , 3

5 , 4
5 }| = 4. Now k attains its maximal

possible value (for the given choice of M and x(t)): k = 4.

This example shows that different choices of τ may sometimes produce different
values of k. Recall that the number k + 1 gives the number of vertical lines to which
a URP can be restricted without loss of information. Note also that it follows from
the results of [9] that for the given values of M , τ and K X , the URP determines the
underlying zero-mean signal x(t) up to a sign choice in each of the cases (2) and (4),
whereas in case (1) it determines x(t) up to two sign choices, and in case (3) up to
one sign choice and one complex unimodular factor. Therefore it does not generally
hold that a URP which is less informative on x(t) will have fewer lines that still
contain all its information.

Example 3 Reduction of the region of analysis for eye blink artifact detection

We present an application in EEG analysis to illustrate how redundancy in a URP
can be used to reduce the search region for the detection of morphologically similar
signal segments. From a digitally sampled EEG measurement signal (with sampling
frequency 250 Hz) we took an excerpt of N = 2, 500 samples with a total duration
of T = 10 s, containing 7 eye blink artifacts. From this discrete-time measurement
signal a continuous-time signal x(t) was constructed, interpolating the measurement
values to let x(t) have a finite Fourier series. It is shown in Fig. 3a. The eye blink
artifacts are clearly visible, as they occur as upward peaks having a significantly
higher amplitude than the rhythmic brain activity contained in the signal. The corre-
sponding URP was computed for the time-delay embedding parameters M = 55 and
τ = 0.004 with u and v ranging over the interval [0, 10]; it is displayed in Fig. 3b.
It has distinctly yellow strips which mark the location of the onset of eye blinks in
the signal x(t). The choice of a high embedding dimension helps to locate the eye
blinks, as it induces corresponding maxima in the URP, plotted in red.

For testing purposes, a second signal y(t) was generated by adding Gaussian
zero-mean white noise w(t) with variance σ 2 = 25 to the signal x(t) at the sample
times, i.e. before interpolation. The high variance of the noise makes that the eye
blink artifacts are no longer easily observed in the signal by mere inspection and
simple thresholding does not allow their detection. This noise corrupted signal y(t)
is shown in Fig. 3c and its URP (for the same embedding parameters as before) is
given in Fig. 3d.

The theory of this section indicates that all the information of the URP is also still
contained in a limited number of vertical lines of the URP, which can be bounded
above by M + 1. One may for instance focus attention on vertical lines which are
close to each other, i.e. on a vertical strip of the URP. Note that a vertical strip which



64 A. Sipers et al.

Fig. 3 a The interpolated EEG signal x(t), containing 7 eye blink artifacts. b The URP of x(t).
c The noise corrupted signal y(t) = x(t) + w(t) with Gaussian zero-mean white noise w(t) with
variance 25. d The URP of y(t)

aligns with an eye blink artifact allows one to locate the other artifacts in the URP
for the clean signal x(t) by searching for the local maxima in the URP. However, the
same result can still be obtained for vertical strips which do not align with eye blink
artifacts. In fact, for the URP of the noisy signal y(t), the strips which do not align
with eye blinks seem to be more promising for avoiding false positive detections
(which for instance might occur near the vertical line with u = 6.3).

3 Distance Information Carried by Diagonals and Contour Lines

In the previous section we have demonstrated that a URP can be restricted without
loss of information to just k+1 of its vertical (or horizontal) lines, corresponding to an
affine basis of VX . We took a geometric approach, constructing a globally rigid graph
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connecting any two points X (u) and X (v) to all of the affine basis {X (t) | t ∈ Tb}.
The distance information contained in the selected vertical lines of the URP then
admits the computation of URPX (u, v).

In the present section we investigate the information content of different sets of
lines or curves in a URP, also involving the construction of a globally rigid graph.
We first study the situation for diagonals, which like vertical and horizontal lines
are also used for RQA. In the discussion that follows we assume that the periodic
trajectory X (t) is nontrivial and sufficiently smooth (i.e. continuous or continuously
differentiable with respect to t). For such X (t) and its URP, a graph G and an
associated framework G(X ) are now constructed in the following way.

• Choose an initial time instant t0 ∈ [0, 1), a time step Δt > 0, and an integer N .
Let k be the dimension of the affine trajectory space VX .

• For n = 1, 2, . . . , N , define the time instants tn by:

tn = tn−1 + Δt (mod 1). (10)

i.e. tn increases linearly with n with fixed increments Δt , but the time instants are
‘wrapped around’ from 1 back to 0 in view of periodicity of X (t).

• Let G have the nodes {0, 1, . . . , N } and the edge set {(i, j) | 1 ≤ j − i ≤ k + 1}.
• Let X = {X0,X1, . . . ,XN } with Xn = X (tn) for n = 0, 1, . . . , N be a configura-

tion consisting of trajectory points, and G(X ) the corresponding
framework.

If N is sufficiently large, then periodicity of the sequence of time instants will
occur if and only if Δt is rational. If Δt is irrational, the sequence will be dense
and any two points u, v ∈ [0, 1) will be approximated arbitrarily closely by some
time instants ti and t j in the sequence. Now suppose that k + 1 consecutive points
X (tn), . . . , X (tn + k) always constitute an affine basis for VX . Then the framework
G(X ) is globally rigid: by construction, any k + 2 consecutive points form a clique
(i.e. a complete subgraph) which is globally rigid and fixes the position of its first
(last) point relative to the last (first) k + 1 points. Any k + 3 consecutive points are
then covered by two such overlapping cliques, of which the overlap consists of an
affine basis of k + 1 consecutive points, fixing the relative positions of the first and
last points and hence their distance.

The points (tn, tn+1) all lie on the diagonal line D1 described by v = u +
Δt (mod 1) in the domain of a URP. Because of the periodic nature of the URP,
we will identify opposite sides of a URP and allow curves and lines to be con-
tinued across them. Likewise, the points (tn, tn+2) all lie on the diagonal line D2
described by v = u + 2Δt (mod 1). Continuing in a similar fashion, we have for
� = 3, . . . , k + 1 that the points (tn, tn+�) all lie on the diagonal line D� described
by v = u + �Δt (mod 1). If the value of the URP is known along the diagonal lines
D1, . . . , Dk+1, then the lengths of the bars in the framework G(X ) are all known,
and by global rigidity the distance between any two points X (ti ) and X (t j ) can be
computed. Continuity of X (t) makes that such points can be used to approximate
X (u) and X (v) arbitrarily closely. This gives the following theorem.
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Theorem 2 Let X (t) ∈ R
M be a continuous periodic trajectory with period T = 1.

Let k = dim(VX ), where VX is the smallest affine subspace of R
M containing X (t)

for all t ∈ [0, 1). Let Δt ∈ (0, 1) be irrational and consider the k + 1 diagonal
lines D1, . . . , Dk+1 given by D� : u 	→ v = u + �Δt (mod 1). If an initial point
t0 exists such that for all n ∈ N, with tn = t0 + nΔt (mod 1), the subset of k + 1
consecutive trajectory points X (tn), . . . , X (tn+k) gives an affine basis for VX , then
the domain of URPX (u, v) can be restricted to the diagonals D1, . . . , Dk+1 without
loss of information.

This theorem strongly suggests that, generically, the information of a URP is not
only contained along k + 1 of its vertical lines, but also along k + 1 suitably chosen
diagonals. The remaining open issue concerns the existence of an initial time instant
t0 with the properties required by the theorem, for a suitable large class of trajectories
X (t).
We proceed to study the information content of k +1 curves in the URP, one of which
is a contour line. To fix terminology, the level set Ld of a URP for a given value d > 0
is defined to consist of all the points (u, v) for which U R PX (u, v) = d. A level set
typically consists of one or several curves which are contour lines of the URP; they
make up the connected components of the level set Ld . Again we identify opposite
sides of a URP so that contour lines can continue across them. Note that a (binary,
thresholded) RP is basically obtained from a URP by determining the level set for a
specified value d = ε. This study aims to better understand the loss of information
that occurs when thresholding a URP to produce an RP.

We now construct a graph G and an associated framework G(X ) largely as before
when studying diagonals, but with the following adaptations.

• We choose an additional distance value d > 0, but the time step Δt is no longer
needed.

• For n = 1, 2, . . . , N , the time instants tn are no longer generated according to
Eq. (10), but instead by:

tn = min{t̃ > tn−1 | URPX (t̃ (mod 1), tn−1) = d} (mod 1). (11)

i.e. tn is the earliest time instant after tn−1 for which ‖X (tn) − X (tn−1)‖ = d,
where time instants are ‘wrapped around’ from 1 back to 0 in view of periodicity
of X (t).

For the construction to produce a valid sequence {t0, t1, . . . , tN }, a sufficient condition
that we will assume to hold is 0 < d < D/2, where D = maxu,v URPX (u, v).
(Continuity of the periodic trajectory X (t) guarantees D to exist and to have a finite
value.) As before, we again assume that any subsequence of k + 1 consecutive
trajectory points X (tn), . . . , X (tn+k) gives an affine basis of VX . Then the graph G
is again globally rigid.

We have that ‖X (tn) − X (tn−1)‖ = d for all n = 1, 2, . . . , N , which shows
that the corresponding points (tn−1, tn) in the domain of URPX are all located, by
construction, on the level set Ld . Equation (11) defines tn as a function of tn−1,
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which we denote by C1. The graph of this function may be a single contour line
for the value d, or be composed of parts of one or several contour lines of Ld .
The points (tn−2, tn) with n = 2, 3, . . . , N in general do not lie on a single level
set. The function which generates tn from tn−1 is denoted by C2. It is obtained by
applying two steps of the recursion of Eq. (11), showing that C2 = C1 ◦ C1. When d
is small and X (t) continuously differentiable, which admits local linearization, this
curve approximates a subset of the level set L2d . This subset may consist of a single
contour line, or of various parts of one or several contour lines. This depends on the
curvature of the trajectory and on how nearby different sections of the trajectory can
be. Likewise, the points (tn−3, tn) with n = 3, . . . , N lie on the graph of the function
C3 = C1 ◦ C1 ◦ C1, which, for small d, approximates a subset of L3d . Continuing in
a similar fashion, we construct k + 1 curves C� which pass through the sets of points
{(tn−�, tn) | n = �, � + 1, . . . , N } for � = 1, 2, . . . , k + 1, respectively, and which,
for small d, approximate subsets of the level sets Ld , L2d , ..., L(k+1)d . These curves
C� are characterized recursively by C� = C1 ◦ C�−1. They have a continuous graph
if and only if C1 is continuous.

We now sketch how, if C1 happens to be continuous and for a well chosen value
of d, the values of the URP along the curves C1, . . . , Ck+1 can be used to compute
the distance between two points X (u0) and X (v0). Let t0 = u0 and construct the
sequence of time instants u1, u2, . . . , uN as described above. Then, by construction,
the points (un, un+�) are located on the curve C� for all n = 0, 1, . . . , N − �.
Because of global rigidity of the graph G, the information in the URP along the
curves C1, . . . , Ck+1 fixes the distance between any two points X (ui ) and X (u j ).
For sufficiently large N , exploiting periodicity of the trajectory X (t), we aim for a
situation in which the sequence of time instants un becomes dense in the interval
[0, 1). Before, for the diagonals D�, this required Δt to be irrational. For the current
situation this requires the distance value d to be chosen such that the sequence of
time instants un again does not become periodic. It also requires that the range of
C1, and hence the range of each curve C�, is dense in [0, 1). In this way, the time
instant v0 can be approximated arbitrarily closely by a subsequence of time points
un j . Consequently, also the value of URPX (u0, v0) can be obtained with arbitrary
precision from the values URPX (u0, un j ).

If C1 is continuous and describes a contour line then, even though this proce-
dure has numerical drawbacks and is not advocated from a practical point of view, it
strongly suggests that, for a suitably selected value of d, the information contained in
the URP along the curves C1, . . . , Ck+1 determines URPX (u, v) completely. More
generally, if C1 is discontinuous and in particular if its range is not dense in [0, 1),
then a similar statement holds if instead of using the curve C1, one uses the multi-
valued function of which the graph is the level set Ld . Along with this, the curves
C� should then be replaced by the graphs of the multi-valued functions obtained by
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composing Ld with itself multiple times. This level set Ld determines the recurrence
plot RPd

X (u, v). Thresholding is a lossy operation and for an RP it is well known that
it contains in general less information than the URP. The above discussion makes
clear that by adding the information along another k well selected curves or level
sets of the URP, loss of information can be avoided.

Example 4 Information along curves in the URP

To illustrate the constructions of this section, we consider a zero-mean periodic signal
x(t) which is specified by

x(t) = 8 sin(2π t) + 2 cos(4π t + 1

5
) + sin(6π t + 1). (12)

It is shown in Fig. 4a. It has a finite power spectrum with the corresponding index
set K X = {−3,−2,−1, 1, 2, 3}. We choose the embedding parameters M = 2 and
τ = 1

5 , for which the 2-dimensional periodic trajectory X (t) is given in Fig. 4b. Note
that VX = R

2 and k = dim(VX ) = 2. A contour plot of the resulting URP is shown
in Fig. 4c, while the RP for the threshold value ε = 5 is displayed in Fig. 4d. Three
specific level sets, consisting of contour lines for the URP values d = 5, 2d = 10,
and 3d = 15, are presented in Fig. 4e.

In Fig. 4f the three curves C1, C2, and C3 for d = 5 are given. These are closed
curves when opposite sides of the square plot area are identified, consistent with the
periodicity of X (t). The curve C1 coincides with a contour line of the URP (and also
of the RP) for d = 5. The curves C2 and C3 are approximations of contour lines
for the URP values 2d = 10 and 3d = 15, respectively. (They are not very close
approximations, since d is not really small.)

Starting from an initial time t0 = u0 = 0.05, the corresponding points X (un)

generated with d = 5 for n = 0, 1, . . . , 13 are shown on the trajectory in Fig. 4b.
By definition, these are such that ‖X (un) − X (un−1)‖ = 5 for n = 1, . . . , 13.
The curve C2 in the URP captures the distances ‖X (un) − X (un−2)‖, while the
curve C3 captures the distances ‖X (un) − X (un−3)‖. The globally rigid graph G
has all the edges corresponding to these distances and is also displayed in Fig. 4b. It
follows that the curves C1, C2, and C3 jointly carry sufficient information to compute
URPX (u0, un) for all n. The corresponding locations in the URP are also displayed
in Fig. 4f. Note that the points X (u11), X (u12) and X (u13) are located on X (t) in
between the pairs of points X (u0) and X (u1), X (u1) and X (u2), and X (u2) and
X (u3), respectively. If n is increased further, this eventually produces many more
points in these intervals, which can then be used to approximate any given point X (v)
and the value URPX (u0, v).
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Fig. 4 a The zero-mean periodic signal x(t) of Example 4. b The trajectory X (t) in R
2, the

configuration of trajectory points X = {X (u0), . . . , X (u13)}, and the globally rigid framework
G(X ). c The unthresholded recurrence plot URPX (u, v) for M = 2 and τ = 1

5 . d The recurrence
plot RP5

X (u, v) for the threshold ε = 5. e The level sets (contour lines) for the values d = 5,
2d = 10, 3d = 15. f The curves C1, C2, C3 and their points for times t = u0, u1, . . . , u13
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4 Conclusions and Discussion

In Sect. 2, we used properties of rigid frameworks to explain geometrically how
the information contained by a URP along a finite number of vertical lines, can be
used to reconstruct the entire URP. This result holds for arbitrary trajectories X (t),
which need not come from a scalar signal through time-delay embedding. In Sect. 3
we presented a similar result for diagonal lines, and also for curves which coincide
with or approximate contour lines. However, the proofs of those results strongly
exploit periodicity of X (t). The number of lines (or curves) needed to avoid loss of
information in all these results is computed as k +1, where k equals the dimension of
the space VX . We neither claim nor conjecture that this number is minimal. In fact,
especially when a continuous periodic scalar signal x(t) is time-delay embedded
to produce the trajectory X (t), it may well be that fewer lines still contain all the
information of a URP.

When a discrete-time recurrence plot is considered, the results of Sect. 2 still hold.
The same goes for diagonal lines when Δt is chosen as a multiple of the sampling
time which is relatively prime to the total number of measurements. The curves
C1, . . . , Ck+1, though, are less easy to generalize to discrete-time, because they may
involve time instants that are no integer multiples of the sampling time.

Regarding the information contained in a (thresholded) RP, we note that our results
suggest that the information from a finite number of other curves in the URP may
help to restore full information. In our opinion it does not seem likely that the choice
of these curves is very critical, although convenient choices may give easier proofs.
An interesting topic for further research is to investigate whether the contour lines in
multi-level recurrence plots (obtained from URPs by thresholding at several levels
instead of just one) may carry the full information of a URP.

In Example 3 we showed how the results of Sect. 2 can be combined with char-
acteristics of an EEG signal to develop a novel method for artifact detection using
vertical lines. Similar approaches can be investigated which involve diagonal lines or
(approximate) contour plots. This theoretical study may serve as a basis to improve
existing recurrence plots based methods and algorithms, and we expect it to provide
new opportunities for signal analysis and feature selection.

Acknowledgments 1. This research is conducted in collaboration with and supported by Brain-
Marker BV, the Netherlands, in the course of its development of a decision support system for EEG
based brain state analysis. 2. We want to thank an anonymous referee for his valuable comments
which helped to substantially improve the paper.

Appendix

Proof of Lemma 1.
(1) For X (t) ∈ VX we have that X (t) = ∑k

m=0 αm(t)X (tm) in which the
affine coordinates α0(t), α1(t), . . . , αk(t) add up to 1. For the translated trajectory
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X̃(t) = X (t) − X (t0) it then holds that: X̃(t) =
(∑k

m=0 αm(t)X (tm)
)

− X (t0) =(∑k
m=0 αm(t)X (tm)

)
−

(∑k
m=0 αm(t)X (t0)

)
= ∑k

m=1 αm(t)(X (tm) − X (t0)) =
Bα(t). This shows how the affine coordinates of X (t) are related to the linear vector
space coordinates of X̃(t) for the basis in the columns of B.
The matrix B has full column rank k, so the k × k Gram matrix BT B is invertible.
From X̃(t) = Bα(t) it then follows upon premultiplication by (BT B)−1 BT , that
α(t) = (BT B)−1 BT X̃(t), which proves part (1) of the lemma.
(2) With the given definition of A(t) in terms of the coordinate vector α(t), the right-

hand side of Eq. (5) becomes: (α(u) − α(v))T BT B
(
BT B

)−1
BT B (α(u) − α(v))

= (α(u) − α(v))T BT B (α(u) − α(v)) = ‖B (α(u) − α(v)) ‖2 = ‖X̃(u) − X̃(v)‖2.
(3) Since A(t) = BT X̃(t), the entry Am(t) equals the inner product 〈X̃(tm), X̃(t)〉.
It is well-known that an inner product between two vectors w1 and w2 on a
real vector space can be expressed in terms of its induced norm as 〈w1, w2〉 =
1
2 (‖w1 + w2‖2 − ‖w1‖2 − ‖w2‖2). Choosing w1 = X̃(tm) and w2 = −X̃(t), and
noting that ‖X̃(t)‖2 = URPX (t, t0)2, part (3) of the lemma follows.
(4) This follows from the observation that

(
BT B

)
m,n = 〈X̃(tm), X̃(tn)〉 = Am(tn),

where m and n can be interchanged because of symmetry. ��

Proof of Theorem 1.
Suppose that (u0, v0) ∈ Ta × Ta . Then, from part (2) of Lemma 1it follows that
URPX (u0, v0) is determined by the vectors A(u0) and A(v0), and the matrix BT B.
From part (3) of Lemma 1, the vector A(u0) is determined by the restriction of
URPX (u, v) to Tb ×{u0}. Similarly, the vector A(v0) is determined by the restriction
of URPX (u, v) to Tb × {v0}. Hence, the difference A(u0) − A(v0) is determined by
the restriction of URPX (u, v) to Tb × {u0, v0}.
From part (4) it follows that the matrix BT B is determined by the restriction of
URPX (u, v) to Tb × Tb.
Together, this implies that the value of URPX (u0, v0) is determined by the restriction
of URPX (u, v) to Tb × (Tb ∪ {u0, v0}). (Recall that symmetry applies to any URP.)
Part (2) of the theorem now follows by letting u0 and v0 range over all of Ta . Part
(1) then follows by taking Ta = [0, 1). ��

Proof of Proposition 1.
Clearly, the trajectory X (t) is contained in the space spanned by the vectors Tp.
The dimension k of the affine space Vx is equal, by definition, to the dimension
of the linear vector space obtained as VX − X0 for any point X0 contained in VX .
Choosing X0 = c0T0 = c0(1, . . . , 1)T , which is contained in VX as it is the mean
of all the points for one period of the periodic trajectory X (t), we therefore focus of
the translated trajectory X̃(t) = X (t)− c0T0 = ∑

p∈Z\{0} cpe2πpti Tp. By definition

of K X , this equals X̃(t) = ∑
p∈K X

cpe2πpti Tp.
For M ≥ 2, two vectors Tp and Tq are equal if and only if z p = zq , which holds

if and only if (p − q)τ is integer. We therefore consider the equivalence relation on
K X defined by: p ∼ q if and only if (p − q)τ ∈ Z. Then the equivalence classes are
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characterized by the fractional parts of the numbers pτ , with p ∈ K X . We now define
RX := {pτ(mod 1) | p ∈ K X } and L := RX/τ ⊂ N. The set L is used to index these
equivalence classes. For each � ∈ L the corresponding equivalence class is given by
M� := {p ∈ K X | pτ = �τ(mod 1)}. With this notation the set K X can be partitioned

into its equivalence classes and we may write X̃(t) = ∑
�∈L

(∑
p∈M�

cpe2πpti
)

T�.

First, it is noted that: (1) M� is not empty for all � ∈ L; (2) cp �= 0 for all
p ∈ M�; (3) the functions e2πpti are all independent harmonic functions on [0, 1]
for all p ∈ Z. This proves part (1) of the proposition, and for all � ∈ L we have that∑

p∈M�
cpe2πpti �≡ 0 on [0, 1]. Second, it is observed that any selection of j ≤ M

vectors {T�1, . . . , T� j } with distinct indices �1, . . . , � j ∈ L , is independent (because
these vectors can be joined to form the columns of a Vandermonde matrix). Hence, it
follows that dim(VX ) = min{M, |L|}. This proves part (2) because r = |K X | = |L|.

Finally, for M = 1 the proposition is also easily verified to hold. ��
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