Unthresholded Recurrence Plots
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of Narrow Band Signals
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Abstract We address the information content of unthresholded recurrence plots for
complex-valued signals admitting a Fourier series representation (including periodic
and sampled signals). Unthresholded recurrence plots of complex-valued signals
contain the information of two real-valued signals simultaneously and can therefore
be used to study the relationship between these signals. The graph theoretic procedure
in our recent work [ 1], which was developed to characterize the uniqueness conditions
forreal-valued signals, is extended to the class of complex-valued signals. The special
properties of complex signal representations provide alternative ways to employ
unthresholded recurrence plots on narrow band signals. Examples and an application
from EEG analysis clarify the results.

1 Introduction

Recurrence plots (RPs) are a signal analysis method that was initially introduced to
visualize characteristics of a trajectory in a phase space [2]. Later, to go beyond the
visual impression, different measures of quantification of RPs were introduced, see
[3, 4]. These techniques have been applied in a variety of different disciplines, such
as finance, economy, earth sciences, biology, neuroscience, physiology, engineering,
physics and chemistry. In the last decade an impressive increase of the application

A. Sipers () - P. Borm

Centre of Expertise in Life Sciences, Zuyd University,
Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands
e-mail: aloys.sipers@zuyd.nl

P. Borm
e-mail: paul.borm@zuyd.nl

R. Peeters

Department of Knowledge Engineering, Universiteit Maastricht,
Bouillonstraat 8-10, 6200 MD Maastricht, The Netherlands
e-mail: ralf.peeters @ maastrichtuniversity.nl

© Springer International Publishing Switzerland 2014 31
N. Marwan et al. (eds.), Translational Recurrences, Springer Proceedings
in Mathematics & Statistics 103, DOI 10.1007/978-3-319-09531-8_3



32 A. Sipers et al.

of methods based on RPs can be observed, see the bibliography collected on the
website [5]. Some of the pitfalls which can occur during the application of RPs are
highlighted in [6].

Given a finite-interval continuous-time real-valued signal x(¢), with r € [0, 1)
say, its corresponding recurrence plot is constructed with the time-delay embedding
method (cf. [7]) in three steps:

(1) An embedding dimension M and a time-delay T € (0, 1) are chosen, and an
associated M-dimensional vector trajectory X () is constructed as:

x(1)
x(t+1)

X)) = .t €[0,1). (1)

Xt + (M = 1)7)

Here, for technical convenience (to avoid having to take finite interval effects
explicitly into account), the signal x (¢) is periodically extended from the interval
[0, 1) to all of R.

(2) The unthresholded recurrence plot (URP) is defined as (the graph of) the intra-
trajectory distance function URPy (u, v), given by

URPy(u,v) = [[X(u) — XW)|, u,vel0,1), 2)

in which | - || denotes the Euclidean norm.
(3) For a given positive threshold ¢, the binary (thresholded) recurrence plot is
defined as
1 if URPx(u,v) <&,

0 if URPx(u,v) > é. 3)

RPS (u,v) = [

In this paper we study the information content of URPs of complex-valued signals.
They are defined in a similar manner, with the Euclidean norm || - || in step (2)
generalized to trajectories that are now in C¥. This theoretical study on URPs of
complex-valued signals is new and may serve as a starting point for applications of
URPs and RPs on complex-valued signals which are constructed from real world
data. Furthermore, the special properties of complex signal representation are used
to employ URPs in alternative ways on signals with a narrow band power spectrum.
The information content of URPs and RPs of real-valued signals has been studied in
[1, 8-13], respectively.

In Sect. 2, we study the information content of URPs of zero mean continuous-
time complex-valued signals on [0, 1) which admit a Fourier series representation.
We build upon our recent work of [1] where real-valued signals were analyzed. As in
that case, we show that for any complex-valued signal its power spectrum is entirely
determined by its URP, regardless of the choice of M and t. Itis easily seen that a URP
does not carry information on the mean of a signal (hence the zero mean assumption),
nor on aunimodular scaling factor, nor on complex conjugation. We provide sufficient
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conditions on M and T which guarantee that a zero mean complex-valued signal w(z)
can be uniquely recovered from its URP, up to conjugacy and a unimodular factor.
They extend the necessary and sufficient conditions for real-valued signals given in
[1]. In general, when these conditions are not satisfied, it depends on M, 7, and the
frequency content of the actual signal w(¢) itself, which information can be recovered
from its URP. These results have implications for real-valued signals too, because
recurrence plots of complex-valued signals relate to joint recurrence plots for two
real-valued signals; see [14].

In Sect. 3, we address another application of complex-valued signal representa-
tions by studying signals with a narrow band power spectrum. Then, in Sect.4, the
information content and the structure of URPs for narrow band signals are illustrated
by two examples. First, we investigate four different settings for M and t, which
cause complex signals with magnitudes having different morphology to exhibit iden-
tical URPs. Second, an application with real measurement data from EEG analysis
involving an alpha rhythm is presented, to illustrate the use of URPs on complex-
valued narrow band signals in alternative ways. We compare the frequency con-
tent on horizontal (or vertical) and on diagonal lines in a URP, and we illustrate
how this information can be used to approximate the envelope of the underlying
signal.

Section 5 concludes the paper. All the proofs are collected in the Appendix.

2 Unique Reconstruction of a Complex-Valued Signal
from Its Unthresholded Recurrence Plot

In this section we extend the results of [1] for real-valued signals, to the class of
complex-valued signals w(t) = x(¢) + iy(¢). Here, x(¢) and y(¢) denote the real
and the imaginary part of w(z), respectively. For a given embedding dimension and
time-delay the corresponding trajectories relate similarly as W(t) = X (¢) +iY (¢).
For all time instances u and v it holds that W(u) &~ W(v), i.e., a near recurrence
occurs, if and only if both X (#) =~ X (v) and Y (#) = Y (v). Therefore, recurrence
plots of complex-valued signals are closely related to joint recurrence plots (JRPs),
see [14]. To be precise, a binary (thresholded) joint recurrence plot is defined as
the product of the RPs of the signals x(¢) and y(¢), which may be constructed for
different embedding dimensions, different time-delays and different thresholds:

IRPYYY (u, v) = RPY (u, )RPY (u, v).

Note that URPy (u, v)> = [ W () = W)II* = [ X ) = X0)[* +|Y () = Y ) |-
Therefore RPS, (u, v) = 1 if and only if (| X (u) — X W)||> + |Y (u) — Y ()|} /? <
1, while JRP‘;’f’YEY(u, v) = 1 if and only if max{||X(u) — X(W)|/ex, ||Y (u) —
Y(v)|/ey} < 1. This makes clear that the RP of a complex-valued signal employs
the 2-norm, while the JRP of two real-valued signals employs a mixture of the
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Fig. 1 a Real-valued signals x(#) and y(¢) with joint recurrences. b Joint recurrence plot of x(z)
and y(¢) (top) recurrence plot of the complex-valued signal w(t) = x(¢) + iy(t) (bottom)

2-norm and the maximum-norm. However, topologically these norms are equivalent
(i.e., they define the same families of open sets), so that small distances for one norm
correspond to small distances for the other norm. An example of a joint recurrence
plot of two real-valued signals and the recurrence plot of the corresponding complex-
valued signal for equal embedding dimensions M = 2, equal time delays t = 0.2
and equal thresholds ¢ = 0.1, is displayed in Fig. 1b. The signal values giving rise
to the joint recurrence in JRPy y (u, v) and the recurrence in RPx;y (u, v), are indi-
cated by squares and circles in Fig. 1a. The corresponding time instants are u = 0.3,
u+1t=0.5v=0.6and v+ v = 0.8. This demonstrates that a recurrence plot
of a complex-valued signal contains joint information on two real-valued signals.
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We shall investigate to which extent a recurrence plot of a complex-valued signal
also contains individual information about the two real-valued signals.

As a URP does not contain information on the mean of a signal, without loss of
generality we focus attention on the class of complex-valued zero mean signals w(?).
We restrict to signals on [0, 1) which admit a Fourier series representation which
converges pointwise almost everywhere and has finite energy:

w(t) = zwkez’”‘”’, with wg = 0, and Z lwg|? < oo. 4)
keZ keZ

Then for such a signal w(t), for a given embedding dimension M and time-delay ,
the trajectory W(¢) is:

W(t) =D wie™ Ty, )
keZ
in which (for all k € Z)
1
* e
T = . , withz =™, (6)
Z(Mfl)k

When considering the inner product (W (u#), W(v)) (with linearity in the first argu-
ment) as a two-variable function of u, v € [0, 1), it is obtained that

(W), W) = D> wywge™ P=ai(T, T,). (7)

pEL g€

This constitutes a 2-dimensional Fourier series representation of (W (1), W (v)), with
2D-Fourier coefficients w,w—, (T, T—4). Note that (T}, T;;) = (Tp+,, Ty+,) for all
integers p, g, r. An explicit expression for the inner product (T}, T,) is provided by
[1, Lemma 3.1]. It holds that (T}, T,;) # 0 if and only if [(p — ¢)T € Z] Vv [(p —
q)Mrt ¢ Z]. Also, (To, To) = M.

The 2D-Fourier coefficients of (W (u), W (v)) enable the computation of the 2D-
Fourier coefficients of URPyy (1, v)?, which are given by the following proposition.

Proposition 1 Ler w(t) = > ;7 wieX™ 1 be a complex-valued zero mean signal
from our class. Let W(t) be its trajectory for the embedding dimension M and time-
delay t. Then a 2D-Fourier representation of its squared URP is given by

URPW (M, V)2 — Z Z %‘quH(Pu+l]V)i7 (8)
peZ qel

in which the 2D-Fourier coefficients are given by
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Hoo=2M D Iwml? ©)
keZ
Wpo = (Tp, To) D witpW (p # 0) (10)
keZ
Hog = Ty To) D wirgW (g #0) (1)
keZ
Wpg = —(Tpig To) (wpWw—g +W=pwg) (p.q #0). (12)

Note that #), = Wy pand #_, _, = % for all integers p and g. By choosing
g = —p # 0, it follows that #), _, = —M(Iw,,l2 + Iw_p|2). Therefore, when the
URPs (for the same time-delay embedding) of two signals with Fourier coefficients
{Wi}xez and {vi }xez happen to coincide, itholds that [w, |>+|w_p|? = [v,|*+|v_p|?
for all p € Z*. Observe that |w p|2 + |w_ p|2 denotes contribution of the frequency
p to the power of w(r). Because the 2D-Fourier coefficients of a URP characterize
it uniquely, this proves the following result.

Corollary 1 Letw(t) = > 1oz wieX™ 1 and v(t) = D ker Ve ™kt pe two complex-
valued zero mean signals from our class. Let W (t) and V (t) be their trajectories,
respectively, for the same time-delay embedding. If their URPs coincide, then also
the power spectra of the signals w(t) and v(t) coincide. i.e., for all k € Z it holds
that \wi|> + [w_g]* = |ve|® + [v_k /.

Sufficient conditions for the reconstruction of a complex-valued signal w(z) from its
URP can also be given, in terms of the following associated graph Gy .

Definition 1 Let w(r) = ZkeZ wie2 ki pe a complex-valued zero mean signal
from our class. Let W (¢) be its trajectory for the embedding dimension M and time-
delay t. Then define the associated graph Gw as the simple undirected graph for
which:

(1) the nodes are labeled by positive indices from the set
Kw ={k € Z¥ |wip # 0V w_y # 0},

(2) twodistinctnodes labeled p, ¢ € Kw are adjacent if and only if both (T),, T;) #
0 and (T, T_4) # 0.

The following theorem contains the main reconstruction result of this section. Note
that we will call a graph complete if all nodes are connected to all nodes, including
self-loops.

Theorem 1 Letw(t) =D o7 weeX™ K and v(t) = D kel viee2™ 1 be two complex-
valued zero mean signals from our class. Let W (t) and V (t) be their trajectories,
respectively, for the same time-delay embedding. If the unthresholded recurrence
plots URPyw and URPy coincide and the associated graph G is complete, then
the signal v(t) is determined by w(t) up to conjugacy and a unimodular factor, i.e.,
there exists a unimodular constant a such that v(t) = aw(t) or v(t) = am.
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Recall that the graph Gw has positively labeled nodes k € Ky which in fact cor-
respond to the pairs of indices (k, —k). Also, adjacency requires both (T, T;) and
(T, T—4) to be nonzero. These are more restrictive conditions than what we have
used for real-valued signals in [1], where we were able to give necessary and suf-
ficient conditions for the unique reconstruction of a signal from its URP (up to a
sign). It is still an open question to find necessary and sufficient conditions for the
reconstruction of complex-valued signals.

In the case of a complete graph Gy, Theorem 1 implies that the magnitudes
[v(t)] and |w(t)| coincide. This means that a URP with a complete graph uniquely
determines the magnitude of the underlying complex-valued signal. On the other
hand, if the graph Gw is not complete then signals with magnitudes of different
morphology can exhibit identical URPs. The first example of Sect.4 demonstrates
this.

3 Unthresholded Recurrence Plots for Narrow Band Signals

Motivated by practical applications, we now focus on real-valued signals with a nar-
row band power spectrum. A narrow band signal can be considered as an amplitude
modulated sinusoid. Due to the special properties of an associated complex signal
representation, the well-known ‘analytic signal’, the results of the previous section
can be used to employ unthresholded recurrence plots an alternative way.

Definition 2 For a given real-valued zero mean signal x(t) = > ;.7 Xk &2kt the
complex-valued analytic signal z(¢) is defined as follows:

2(1) =2 e (13)
k>0
Consequently: x(t) = Re (z(1)).
The trajectory Z(¢) of the analytic signal z(¢) associated with x(¢) is given by:

Z(t) =2 xe™ Ty (14)
k>0

Proposition 2 Let z(1) =23, x;e¥ X1 be an analytic signal. Suppose that the
squared unthresholded recurrence plot URPz(u,v)? = |Z(u) — Z(v)||* can be
expressed as a 2D-Fourier series:

URPz(u.v)* = D" > %, ;e Perani,
pEL g€l
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Then the 2D-Fourier coefficients 2, 4 can be expressed through the coefficients x
of the real-valued signal x (t) as:

—4Tpsn, To)xmx—;,, form > 0,n <0,
G = =4 Tpgn, To)X—pxy form <0,n >0, (15)
0 otherwise.

An analytic signal is a special case of zero mean complex-valued signal
w(t) =217 wreZT i withwy = 0fork < 0,i.e.w(r) = > k=0 wie2™k For the
class of analytic signals, Corollary 1 therefore reduces to the following result.

Corollary 2 Let w(t) = > g w2 gnd v(r) = > k=0 vk be two zero

mean analytic signals from our class. Let W (t) and V (t) be their trajectories, respec-
tively, for the same time-delay embedding. If their URPs coincide, then also the power
spectra of the signals w(t) and v(t) coincide: for all k > 0 it holds that |wi| = |vi|.

Because the complex conjugate of a nontrivial analytic signal is not itself an
analytic signal, Theorem 1 reduces to the following result.

Theorem 2 Letw(t) = >, _owie?™  andv(t) = 3, vke*™ " be two zero mean
analytic signals from our class. Let W (t) and V (t) be their trajectories, respectively,
for the same time-delay embedding. If the unthresholded recurrence plots URPw
and URPYy coincide and the associated graph Gy is complete, then the signal v(t) is
determined by w(t) up to a unimodular factor, i.e., there exists a unimodular constant
o such that v(t) = aw(t).

We now turn to narrow band analytic signals z(¢) which can be regarded as a amplitude
modulated carrier signals:

2(1) = ¥ (2x, + w(t)), (16)

where ¢ € Z% denotes the index of the corresponding Fourier coefficient x. and
also the carrier frequency (which is integer because we consider periodic signals
with period 1). The complex-valued signal w(t) = ZkeZ wkeZ"k’ ! is referred as the
modulating signal, which has:

2Xcqi fork > —c ANk #0,

0 fork < —cork =0. a7

Wi =
A geometric interpretation of Eq. (16) is given in Fig. 2. There, the narrow band signal
s — —
z(t) is represented as a rotating vector OQ = OP + PQ. The vector OP represents
—
the constant signal 2x. and the vector PQ represents the modulating signal w(¢), both
rotating at a constant angular velocity 2mc.

The following proposition interrelates the trajectories, the URPs, and the graphs
of the analytic signal z(¢) and the modulating signal w(t).

Proposition 3 Let ¢ € 7T be a carrier frequency and x(t) a zero-mean periodic
signal from our class. Then:
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2w

Fig. 2 Geometric interpretation of a narrow band signal z(¢) or its trajectory Z(t) as a rotating

resultant O Q of a constant vector O P and a modulating vector P Q, all rotating at angular velocity
2me

(1) The trajectory Z(t) of the analytic signal z(t) can be expressed trough the tra-
jectory W(t) of the modulating signal w(t) as:

Z(t) = e " diag (T.) 2x.To + W (1)) . (18)

in which diag(T,) denotes the diagonal matrix having the entries of the vector
T, along its main diagonal.

(2) Let URPz and URPyw be the unthresholded recurrence plots of the analytic
signal z(t) and the modulating signal w(t), respectively. If c(u — v) € Z then:

[Z(u) = ZW)| = W) — WH)]|, (19)
URPz(u,v) = URPw (u, ), (20)

in which | - | denotes the entry-wise absolute value.
(3) The 2D-Fourier coefficients W), 4 of URPw (u, v)? can be expressed through the
2D-Fourier coefficients Z), 4 of URPz(u, V)2 as:
Vg = Zpteg—c + Zg+ep—c- @D
(4) The nodes of the graph Gw can be obtained from the nodes of the graph G z as:

Kw = {k € Z" | xcx # OV xe—g # O} (22)
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Figure 2 also provides a geometric interpretation of part (1) of this proposition. Now,
—> —
the trajectory Z(t) is represented as a rotating vector O Q = O P + P (), rotating at
=

a constant angular velocity 2w c. The vectors W) and P Q now represent the con-
stant vector diag (7;) (2x.To) = 2x.T, and the modulating trajectory diag (7.) W (¢),
respectively.

In order to go beyond the visual impression yielded by RPs, several measures
which quantify structures in RPs, have been proposed in [3] and are known as
recurrence quantification analysis (RQA). These measures are based on horizon-
tal (or vertical) and on diagonal lines of an RP. An important difference between the
unthresholded recurrence plots URP§( and URP% for narrow band signals lies in the
frequency content of their restrictions to these lines.

Since we consider complex-valued periodic signals with period T = 1 it holds that
fr = % = k. Therefore, for convenience we shall call the indices k also frequencies.

Proposition 4 Let x(t) be a zero-mean real periodic signal with period 1, which
has a finite Fourier series with the frequency range {c —d, ..., c 4+ d}. Then:

(1) The restrictions of URPx (u, v)? to horizontal, vertical and diagonal lines, have
the frequency ranges:

v is constant : {0, ...,2d}U{c—d,...,c+d}U{2c—2d,...,2c+ 2d};
u is constant : {0, ...,2d}U{c—d,...,c+d}U{2c—2d,...,2c+ 2d};
u — v isconstant : {0, ...,2d} U {2c —2d, ..., 2c + 2d}.

(2) The restrictions of URPz(u, v)? to horizontal, vertical and diagonal lines, have
the frequency ranges:

% is constant - {0, ...,2d}U{c—d,...,c+d};
u is constant : {0, ...,2d}U{c—d,...,c+d};
u — v is constant : {0, ..., 2d}.

(3) The frequency ranges {0, ...,2d}, {c—d,...,c+d}and{2c—2d, ..., 2c+2d}
are mutually disjoint if and only if ¢ > 3d.

Note that, contrary to URPy (u, v)2, the restrictions of URP  (u, v)2 to horizontal,
vertical and diagonal lines, have no frequencies in the range {2c —2d, ..., 2c +2d}.
Also note that the frequency range of the restriction of URPz(u, v)? to diagonal
lines only depends on the bandwidth 2d of the signal x (). These properties appear
as elongated contours along the diagonal lines in URP.

To illustrate this result, we here present an example. We consider a real signal
x(t) = 08, ek LS ek involving just five different frequencies,
for which the Fourier coefficients are given by:
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Fig. 3 a Signal x(¢) and its envelope = |z(#)|, b magnitude spectrum of x(¢), ¢ URP of the real
signal x(7), d URP of the analytic signal z(¢)

The signal x () and its analytic signal z(¢) have the frequency range {c—d, . .., c+d}
for the settings ¢ = 20 and d = 2. The signal x(¢) and its envelope £ |z(t)| are
displayed in Fig.3a. The magnitude spectrum of x(¢) is displayed in Fig.3b. The
unthresholded recurrence plots URPx and URP are computed for the settings M =
4andt = % and are displayed in Fig.3c and d, respectively. The magnitude spectra
of URPx (u, v)? and URPZ(u, v)? on the horizontal lines (u,v) = (r,0.625), the
vertical lines (1, v) = (0.625, ¢) and on the diagonal lines (u, v) = (¢t + 0.125, 1),
witht € [0, 1), are displayed in Fig. 4a and b, respectively. These figures demonstrate
that different parts of the spectrum can be investigated in isolation, by studying
appropriately selected lines in the URPs of either x (¢) or z(¢).
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Fig. 4 Magnitude spectra along selected lines [a u = 0.625 or v = 0.625, b u — v = 0.125] in the
squared URPs of the signal x(¢) (fop) and its analytic signal z(¢) (bottom)

4 Examples, Including an Application in EEG Analysis

To illustrate the main results and techniques of the previous sections, we here present
two more examples.

In the first example we investigate four different settings for M and 7, which
may cause complex-valued signals with morphologically different magnitudes still to
exhibit identical URPs. This example serves to demonstrate the limitations that apply
to the interpretation of a URP, emanating from the choice of embedding dimension
and time-delay.

In the second example we consider an application in EEG analysis, which concerns
a digitally sampled measurement signal featuring a so-called alpha rhythm. The
measured alpha rhythm is band-pass filtered to obtain the so-called alpha band signal.
We investigate the unthresholded recurrence plots of the associated analytic signal
and the modulating signal for a given choice of the carrier frequency.

Example 1 Different complex-valued signals exhibiting identical URPs. For four
different settings of M and t we give pairs of complex-valued signals v(r) =
S e ey = 32, wie?™ 1 with morphologically different magni-
tudes but identical URPs. In accordance with Corollary 1 it holds that [v_ |2+ |vi|> =
Iw_k|? + |wi|?, fork € 1, 2.
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Fig. 5 Graphs, magnitudes and URPs for different settings of embedding dimension M and time-
delay 7, for four different pairs of signals v(¢) and w(¢) specified in the text

The associated graphs Gy and Gy in all cases have exactly 2 nodes, labeled 1 and 2.
Adjacency of those nodes depends on the values of M and t. Recall that two distinct
nodes p, g € Ky are adjacent if and only if both (T),, T;;) # 0 and (T, T—;) # 0.

(i) M=4andt = %, see Fig. Sa.

Vvoo=6, v.1 =1, vi=-3,v,=-2i,
W_o=6i, w_1=—1,w; =3, wy=2.

The graph is not complete, since the nodes 1 and 2 are not adjacent.
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(il)) M =4 and t = g, see Fig. 5b.

1
8’
v_o =0, v_1 =3, vi = —4, v, = 5i,
w_o=3,w_1 =0, w =5i, wr =4.

The graph is not complete, since the nodes 1 and 2 both have no self-loops.
(iii) M =6and T = %, see Fig. 5c.
v_, =0, voi=1, vi=1, vy =2+ 2i,
Wy =-2i,w_1=1,w =1, wy =2.

The graph is not complete, since the node 2 has no self-loop.
(iv) M=6andt = 4—1‘, see Fig.5d.

voo=1, v_1 =0, vi=2+42i,v=1,
w_o=1,w_; =-=2i, w =2, wy = 1.

The graph is not complete, since the node 1 has no self-loop.

This example demonstrates that for certain ‘unfortunate’ choices of M and t the
magnitude of the underlying complex-valued signal cannot be uniquely retrieved
from the URP. In such cases, in view of Theorem 1, the graphs associated with the
URPs are incomplete.

Example 2 EEG analysis featuring an alpha rhythm. In EEG analysis an EEG signal
is decomposed into five band signals corresponding to the delta (0.1-4 Hz), theta
(4-8Hz), alpha (8—12Hz), beta (12-30Hz), and gamma (30-100Hz) frequency
bands, see [15]. These basic EEG frequency bands are understood to reflect dif-
ferent functional processes in the brain.

From a digitally sampled EEG measurement signal we consider an excerpt of
N = 500 samples, exhibiting an alpha rhythm, with a duration of T = 2s. Alpha
rhythms are characterized by a clear peak in their magnitude spectrum for a frequency
in the alpha band (8§-12Hz), see Fig. 6a. The alpha band signal x(¢), see Fig. 6b, is
obtained from the alpha rhythm by selecting the coefficients with frequencies f; =
in the alpha frequency band, i.e. k € {16, ..., 24}. For the settingc = 20 (i.e. fo = %
=10Hz), the modulating signal w(¢) is constructed from the analytic signal z(¢) using
Eq. (16). The URPs of the signal z(¢) and the signal w(t), for the settings M = 3 and
T = %T = 0.04s, are both displayed in Fig. 7. Note that 7 is an integer multiple of
the sampling time A := L+ = 0.004s.

The graph Gz has 9 nodes: k € Kz = {16, ...,24}. The graph Gy has 4
nodes: k € Ky = {l,...,4} which are obtained from K by using part (4) of
Proposition 3. Since M and the denominator of  are co-prime, it follows from Part
(2) of [1, Corollary 3.5] that the graphs G 7 and Gy are complete. Consequently, the
signal z(t) is determined up to a unimodular factor by URP, and the signal w(t) is
determined up to conjugacy and a unimodular factor by URPyy.

I~~~
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Fig. 6 a Measured alpha rhythm signal (fop), b selected alpha band signal (top), and their corre-
sponding magnitude spectra (bottom)

According to part (1) of Proposition 3 it holds that URP 2 (u, v) an URPw (u, v)
coincide on the diagonal lines 10(u — v) € Z, but they are different between these
lines. Some of these diagonal lines are indicated by dashed black lines in the upper
triangular part of URPy, see in Fig.7. In view of part (2) of Proposition 4 it holds
that the signals z(#) and w(t) have frequency ranges {% | k| € {c—d,...,c+
d}} and {% | |k| € {1,...,d}}, respectively, for the settings ¢ = 20 and d = 4.
Therefore the restrictions of URPy (u, v)2 to horizontal, vertical and diagonal lines,
all have the frequency range {X | [k| € {0,...,2d}} = {§| k| € {0,..., 8}}. The
restriction of URP (u, v)? diagonal lines has the latter frequency range too, whereas
the restrictions to horizontal and vertical lines also have higher frequencies in the
range{%| k|l € {c—d,...,c+d}} = {§| k| € {16, ...,24}}.

In EEG amplitude modulation analysis, the envelopes of EEG band signals are
studied, see e.g. [16-20]. In this example, the envelope =£|z(¢)| of the alpha band
signal x (¢) is displayed in Fig. 6b. The horizontal and vertical lines in URPz provide
information about the magnitude |z(¢)|. To illustrate this, we approximate |z(¢)| by

—)2 2 2 Z(—+(M=1)7) .
\/W Ol +|Z(§)‘ Hz@Dl2 _ i/ﬁ I The norm Z(— %(M —1)7)| in the

latter term can be computed by using an identity provided by [1, Proposition 5.1]:

T
T2 Z0))? = T/URPZ(u, 02du —
0

N =

T T
/ / URP(u,v)>dudv.  (23)
0 0
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Fig. 8 Approximation for the envelope |z(¢)| (dashed) constructed from horizontal lines in URPZ,
and the corresponding approximation error (solid)

The integrand in the single integral term is a restriction of URP7 to the horizontal line
corresponding to a given time instance ¢. The double integral has a constant value

_Lem—
W (dashed graph) and the

— |z(#)| (solid graph) are displayed in Fig.8.
This example shows how the frequency range of the complex-valued modulating
signal w(t) can be determined from the frequency range of the restrictions of URP%
to diagonal lines. It also demonstrates how the envelope of the real-valued narrow
band signal x(¢) is related to the information content of the horizontal and vertical
lines in URPZ. As a new alternative method for EEG amplitude modulation analysis
one could study URPy instead.

which is independent of 7. The approximation

L 1Z@—L -0y
approx1mat10n CIror —M
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5 Conclusions and Discussion

When considering URPs as a tool to extract information from complex-valued sig-
nals, we have argued in this paper that it is important to first establish which infor-
mation can or cannot be recovered from URPs.

In Sect.2 we extended our work [1], concerning URPs of real-valued signals, to
complex-valued signals. There we focused on computing the Fourier coefficients
wi of w(t) from the 2D-Fourier coefficients %), ;, of URPy. We showed that a
signal w(t), with a complete associated graph Gw, can be uniquely recovered from
its URP up to conjugacy and a unimodular factor, see Theorem 1. If the graph
Gw is not complete then signals with morphologically different magnitudes can
exhibit identical URPs. The first example of Sect. 4 demonstrates this. We also related
recurrence plots of complex-valued signals to joint recurrence plots which allows
studying the relationship between two real-valued signals, see [14]. It is found that
recurrence plots of complex-valued signals can be used to locate joint recurrences in
a pairs of real-valued signals.

In Sect.3, we used the special properties of complex signal representation to
study signals with a narrow band power spectrum. For a given choice of the carrier
frequency, a corresponding modulating signal can be computed from the analytic
signal. Modulating signals provide an alternative way to employ URPs for studying
narrow band signals. The trajectories, URPs and the graphs of the analytic signal
and the modulating signal are related in Proposition 3. The frequency ranges of
restrictions of a URP on horizontal, vertical and diagonal lines are investigated to
explain the elongated contours along the diagonal lines in the URP of the analytic
signal. It is shown how the frequency range of restrictions on horizontal and vertical
lines differs from that on diagonal lines. It is found how the frequency ranges of these
restrictions for a real-valued signal differ from those of the corresponding analytic
signal. We also illustrated how the information content on horizontal and vertical
lines in a URP can be used to approximate the envelope of the underlying narrow
band signal. These results are demonstrated by the second example of Sect.4.

A couple of research questions still remain open. (1) One important question
concerns redundancy in the URP, being a 2-dimensional representation of a 1-
dimensional signal, which is currently under investigation. The question arises to
which extent a selected part of a URP may still contain all the information contained
in the entire URP. This is of importance for relating subpatterns in a unthresholded
recurrence plot URPy to localized (morphological) properties of the underlying
complex-valued signal w(¢). (2) To quantify patterns that occur in RPs, several mea-
sures have been proposed in the literature, see e.g. [3], that are used in recurrence
quantification analysis (RQA). An important question concerns the generalization
of these measures to RPs of complex-valued signals.

Acknowledgments This researchis conducted in collaboration with and supported by BrainMarker
BY, the Netherlands, in the course of its development of a decision support system for EEG based
brain state analysis.
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Appendix
Proof of Proposition 1 Observe that

W @) = W= W) > = (W), W) — (W), W) + W)

For arbitrary r we have:

[W()|? = Z Z Wi (T, T,)eX P01 = Z ZWqukW_q(Tk, To) 27k

pEZ g€ keZ qel
2mkti —
= D Tk, To)e™ > wiy g7
keZ q€Z

For t = u and ¢ = v this specializes to:

IW@)1> = D (T, To)e”™ ™ " wiy pk,

PEZ keZ

2 2 i —

IW W = D (Ty, To)e™™ " D" wiyg Wi
g€’ keZ

For (W (u), W(v)) we have already presented the expression

(W), W) = Z Zw,,w_q<Tp, T,)e ¥ (Pu—avi

pEL qeZ

—_ 2 + [
= S i (Tysg, T PtV
peL qeZ

It follows that

(W), W) + (W), W) = D D (Tpig. To) (wpiv—g + W pwg) 27 PUTIE
pEZ qel

Using wg = 0, it follows for p = ¢ = 0 that:
Hoo=2M D lwil*.
keZ

For p #0,9 =0:
Wpo = (Tp. To) D_ Wit pWi.
keZ

For p =0,q #0:
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%,q = (Tqv To) Zwk+qw_k~
keZ

And for p #0, g # O:
Wpg = —(Tpig> To)WpW—g +W_pwg). (24)

O

Proof of Theorem 1 First observe that the URPs for w(z) and v(¢) coincide if and
only of their 2D-Fourier representations coincide. This requires that

Dol ="l
keZ keZ
(Tp. To) D Wi pi = (Tp. To) D vipVi. forall p #0,
keZ keZ
(Tpaq, ToYWpw—g +W_pwy) = (Tp1q, To) VpV—4 +V_pv,), forall p,q #0.

As we have seen, choosing ¢ = —p # 0 in the third of these conditions implies that:
|w,,|2 + |w_,,|2 = |v,,|2 + |v_p|2 forall p € ZT. Summation over all p then implies
the first of these conditions. Likewise, choosing p = k 4+ p and ¢ = —k in the third
of these conditions gives: (T, To) Wit Wk + W_igw—k) = (T5, To) Vg Vi +
V_ iy pV—k). Summation over all k € Z now implies the second of these conditions.
Therefore, the two URPs coincide if and only if the third condition holds.

To address this condition, a special subclass of 2 x 2 complex matrices is intro-
duced. For all «, 8 € C define the associated matrices S(«, 8) as:

wn=(32)

For this subclass, note that S (e, 8)S(y, 8) = S(ay +B8, @8+ By)anddet S(a, B)

l|> — |B|?. It follows that the subclass of invertible matrices S(«, 8) forms

multiplicative group (under ordinary matrix multiplication), with S(e, 8)~!
o —

o =7 o — e ereton o1 e sroupe

matrices (for which inversion coincides with Hermitian transposition) consists of the

matrices S(«, 8) with |a|> 4+ |8]> = 1 and a = O (i.e., either = 0 and |B| = 1,

or |¢| =1and B8 = 0).

The usefulness of this matrix group lies in the observation that two identities

el

5). The intersection of this group with the group of unitary

Wp—q = —(Tp—g, To)(wpWwg + W_pw_g)
Wop—q=—T-p—q, To)(W_pwg +Wpw_g)

are jointly captured by the matrix identity
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* Wp’,q Wipyfq
Swp, w—p)Swg, w—y)" = =8 , ) (25)
(Tp—q’ TO) <T—p—q1 T0>

provided that (T), 4, To) and (T4, Tp) are both nonzero. When p and ¢ are adja-
cent nodes in the graph G, this condition holds; this is implied by the completeness
assumption for the graph Gy . Then the corresponding 2D-Fourier coefficients %/, _,
and #_, _, coincide with their counterparts ¥}, _, and ¥_,, _,, respectively, if and
only if

SWp, w_p)Swy, w—_g)* =Sy, v_p)S(vg, v_¢)*.

We consider two different cases.

(a) Suppose that |[wp| # [w_,| for some p € Kw. Then S(w,, w_) is invertible.
Upon choosing ¢ = p, we have that S(w,, w_,)S(wp, w_,)* = S(v,,v_)p)
S(vp,v_p)* can be rewritten as S(w,, w_p)_lS(vp, vep)Sp, v_p)*
Swp,w—_p)~* = I. Therefore: S(vp,v_p) = S(wp, w_,)S(a, B) for some
unitary matrix S(«, B). For the choice ¢ # p, we then have that S(w,, w_))
Swg, w—g)* = S(p,v—p)S(vq, v—q)* becomes equivalent to S(vy,v_y) =
S(wg, w—g)S(a, B), involving the same unitary matrix S(e, 8). Now it is easily
verified that if « = 0 then v, = Bw_, forall g € Ky, i.e.:v(t) = Bw(r) for a
unimodular constant 8. Alternatively, if 8 = 0 then v; = aw, forall ¢ € Ky,
i.e.: v(t) = aw(t) for a unimodular constant .

(b) Suppose that [w,| = |[w_,| for all p € Ky. Then for the choices p = —q =k
and p = g = k we obtain the two conditions:

2 2 2 2
Wil™ + Iw—k|” = [ve|™ + v—il”,

WiW_k = VgV_k.

It follows that vi = wugwi and v_; = upw_; for some unimodular factor wuy.

Then the normalized (unimodular) quantities Vi := I‘v}_il and Wy := vav}_il satisfy

Vi =uxWe, Vg = uyeW_p and V, Vg + V_,V, = W, W_, + W_, W,. Hence:
(52 = 1) (3 - wewrs) = Oifand only if up = ug or up Wy Wop = g Wy W—y.

u Uy
%irst, supplose W W_y # W,W_, and u,, = u, for some m,n € Ky.Fork €
Kw we have uy = u,, or uy Wi W_ = uyy Wy, W_,,. Similarly, it holds that uy = u,
or uyuWiW_y = u,W,W_,. Since uy WiW_ = uyy W, W_,, and u; W, W_; =
u, W, W_,, cannot both hold true, it follows that u; = u,, or uy = u,. This implies
that for all k € Kw: u; = « for some unimodular constant «. Hence V; = o W for
all k if and only if vy = awy for all k, which holds if and only if v(z) = aw(z).
Otherwise, suppose u,, # u,. Again, for k € Kw we have uy = u, or
uWiW_y = upW,, W_,,. Similarly, it holds that uy = u, or yu Wy W_; =
u, W,W_,,. Since uy = u,, and up = u, cannot both hold true it follows that
uWiW_r = upyWy, W, or uyu WeW—_ = u, W, W_,,. This implies that for all
ke Kw: uWeW_p = upyWy,W_,,, = u, W,W_,, = B for some unimodular con-
stant 8. Hence uy WiW_y = u,W,W_, = u,WyW_, = B for some unimodular
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constant 8. Therefore V, = BW_ for all k if and only if vy = fw_ for all k, if and
only if v(t) = Bw(t).

Finally, suppose W, W_,, = W,W_, for all m,n € Kw. Then uy = u, or
urWiW_y = u, W, W_,, implies u; = u,,. Hence, for all k € Kw: u; = o for some
unimodular constant «. Therefore Vy = a Wy for all k if and only if vy = awy for all
k, if and only if v(¢) = aw(?).

O

Proof of Proposition 3
(1) From Eq.(16) we have that:

2(t +mt) = g2melt+mi 2xe +w(t +m1)) = g2meti J2memti 2x¢c +w(t +m1))

In this expression, the factor 2“7 is the (m + 1)-th diagonal entry of the
matrix diag(T.). The factor 2x, +w(t +mt) is the (m + 1)-th entry of the vector
2x.Tp + W(1).

(2) Suppose c(u — v) € Z, then exmeui  — o2V Hence Z(u) — Z(v) =
ezn"“idiag (T;) (Z(u) — Z(v)), which implies that |Z(u) — Z(v)| = |W(u) — W ()|
and | Z(u) = ZW)|| = [|W(u) = WO)I|.

(3) First, suppose m = c+ p > 0andn = g — ¢ < 0. Then, from Proposition 2
and Eq. (17) it follows that:

ffc+p,q—c = _4xc+pxc—q<Tp+q7 To) = _pr—q(Tp—&-q’ To),

Second, suppose m = p —c¢ < 0 and n = ¢ + ¢ > 0. Then, from Proposition 2
and Eq. (17) it follows that:

o@pp—c,c+q = —4xc—pXerq{Tptq> To) = —wW=pwg({Tp+q, To),

Then, for p < candg < c:

g = —Tpiq: To) (WpW—g + W_pWg) = Lprcg—c + Zgte,pc-
(4) The result follows immediately from Definition 1 and Eq. (17). m]
Proof of Proposition 4

Write Z(t) = €271V (1).

(1) Horizontal, vertical and diagonal lines in URPy. Horizontal lines (u, v) = (¢, t9)
and vertical lines (u, v) = (fy, t):
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URPy (1, v)? = [ X (1) — X (t0) |12
2, 1 2
=anmn+5nwnn)
~2Re (7HV (1), X (1))

+%Re (e47mi (V(), W)) .

The first, second and third term have frequencies in the ranges {0, ..., 2d},
{c—d,...,c+d}and {2c — 2d, ..., 2c + 2d}, respectively. Diagonal lines
(u,v) =(t+1o,1):

URPx (1, v)* = [ X(t + 1) — X0

L oreroi 2
> He el (1 4 79) — V(t)”

1 ) ) o
+5Re (e“’”“ (€7 (1 4 10) — V1), e V(T + 10) — V(t))) .

The first and second term have frequencies in the ranges {0, . .., 2d} and {2¢ —
2d, ..., 2c + 2d}, respectively.

Horizontal, vertical and diagonal lines in URPz. Horizontal lines (u, v) = (¢, o)
and vertical lines (u, v) = (fo, t):

URPZ(u,v)* = | Z(t) — Z(t0)|?
= (1> + 1vol?)

—2Re (e2“” V@), Z(to))) .

The first and second term have frequencies in the ranges {0, ..., 2d} and {c —
d,...,c+ d}, respectively.
Diagonal lines (u, v) = (¢ + 10, ):

URP,(u,v)2 = | Z(t + 10) — Z(W)||? = ”eZWO"V(r +10) = V() ”2

The latter term has frequencies in the range {0, ..., 2d}.

The maximum of the first frequency range is lower than the minimum of the
second frequency range if and only if ¢ > 3d. Similarly, the maximum of the
second frequency range is lower than the minimum of the third frequency range
if and only if ¢ > 3d.
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