
Springer Proceedings in Mathematics & Statistics

Norbert Marwan
Michael Riley
Alessandro Giuliani
Charles L. Webber Jr.    Editors

Translational 
Recurrences
From Mathematical Theory to 
Real-World Applications



Springer Proceedings in Mathematics & Statistics

Volume 103



Springer Proceedings in Mathematics & Statistics

This book series features volumes composed of select contributions from work-
shops and conferences in all areas of current research in mathematics and statis-
tics, including OR and optimization. In addition to an overall evaluation of the
interest, scientific quality, and timeliness of each proposal at the hands of the
publisher, individual contributions are all refereed to the high quality standards of
leading journals in the field. Thus, this series provides the research community with
well-edited, authoritative reports on developments in the most exciting areas of
mathematical and statistical research today.

More information about this series at http://www.springer.com/series/10533

http://www.springer.com/series/10533


Norbert Marwan • Michael Riley
Alessandro Giuliani • Charles L. Webber Jr.
Editors

Translational Recurrences
From Mathematical Theory to Real-World
Applications

123



Editors
Norbert Marwan
Potsdam Institute for Climate Impact
Research

Potsdam
Germany

Michael Riley
Department of Psychology
University of Cincinnati
Cincinnati, OH
USA

Alessandro Giuliani
Istituto Superiore di Sanita
Rome
Italy

Charles L. Webber Jr.
Health Sciences Division, Department
of Cell and Molecular Physiology

Stritch School of Medicine
Loyola University Chicago
Maywood, IL
USA

ISSN 2194-1009 ISSN 2194-1017 (electronic)
ISBN 978-3-319-09530-1 ISBN 978-3-319-09531-8 (eBook)
DOI 10.1007/978-3-319-09531-8

Library of Congress Control Number: 2014948758

Mathematics Subject Classification (2010): 37M10, 62-06, 62-07, 62H-xx, 93-06

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Recurrence phenomena are regularly experienced in our daily lives. Recurrences are
ubiquitous in the real world and constitute fundamental properties of dynamical
systems. Starting with the seminal work of Poincaré in the late nineteenth century
(who proved the existence of recurring states in autonomous Hamiltonian systems),
the study of recurrences has grown within and across various scientific disciplines.
The relatively recent introduction of the recurrence plot (1987) has paved the way
for interdisciplinary success stories whereby this simple tool is becoming a unifying
force across numerous scientific fields. Indeed, the combined efforts of investigators
representing different disciplines are finding common ground with recurrence plots
as applied to their specific systems of interest.

On a biannual basis, international symposia on recurrence plots are providing a
platform for lively and fruitful debate on both the theoretical and practical domains
of recurrence strategies. Unexpected collaborations are being formed that cut across
interdisciplinary boundaries. A common vocabulary is being forged which makes
“foreign” systems understandable to “strangers” as it were. Starting almost a decade
ago, four previous recurrence plot symposia were conducted in Potsdam, Germany
(2005); Siena, Italy (2007); Montreal, Canada (2009); and Hong Kong, China
(2011).

This volume features 13 selected papers from the Fifth International Symposium
on Recurrence Plots in Chicago, Illinois, USA (August 2013). For this particular
meeting, special emphases were placed on biological, behavioral, and cognitive
systems as well as on the analysis of coupled systems using cross-recurrence
methods. These methodological developments and applications highlight the
current interest in bivariate and multivariate applications of recurrence analysis to
real-world, complex systems.

This book showcases several important examples of the continuing success of
recurrence plot strategies across disciplines. Spiegel et al. and Crowley et al. are
using recurrence plots to construct novel measures of dissimilarity for multivariate
cluster analysis of automotive operational profiles or bivariate detection of dis-
similarity between macroeconomic data. Multivariate recurrence-based clustering
can also be used to improve the efficiency of brain–computer interfaces as shown by
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Uribe et al. and Dos Santos et al. are underscoring the potential of support vector
machines based on recurrence quantification measures for the detection of patho-
logical cardiovascular conditions. This strategy is contrasted by Gonzáles et al. who
are using traditional recurrence quantifications to compare different variables of the
cardiovascular system. Fusaroli et al. are exploring the utility of cross-recurrence
analysis to investigate social interactions as well as to delineate crucial challenges
and make recommendations for further developments of this approach. Coey et al.
and Tolston et al. are studying the complexity of behavioral tasks and examining
the coupling of interpersonal coordination by applying cross recurrences. Cross
recurrences (besides recurrence networks) are also used by Guhathakurta et al. to
study similarities in stock and commodity markets. Sipers et al. are introducing
important methodological approaches using recurrence analysis for complex valued
signals as well as providing the theoretical foundation for understanding redun-
dancies in recurrence plots. A novel recurrence criterion that can be applied to a
special kind of amplitude-varying signals (e.g., for studying transients) is suggested
by Ioana et al. Rawald et al. are developing an efficient parallelization scheme for
recurrence plot-based calculations, addressing the challenge of recurrence analysis
of very long time series.

The papers within this volume represent just a portion of the many other con-
tributions presented at the recurrence plot symposium in Chicago. All such con-
tributions indicate that the applicability of this nonlinear methodology is increasing
and that there remains huge potential for interdisciplinary applications, knowledge
exchanges, and collaborations. We hope that this volume will encourage the
development and application of recurrence plot-based methods in numerous and
diverse fields of study.

Finally, we would like to acknowledge the generous financial support contrib-
uted by Dr. Pieter de Tombe, Professor and Chairperson of the Department of Cell
and Molecular Physiology, Loyola University Chicago, Division of Health
Sciences. The organizing committee also thanks Connie Webber for arranging all
the social events and administrative responsibilities necessary for the successful
running of any scientific conference. Lastly, we are very grateful to our publisher,
Springer, for giving us the opportunity to bring these selected papers together
within one volume in timely fashion.

Potsdam Norbert Marwan
Cincinnati Michael Riley
Rome Alessandro Giuliani
Chicago Charles L. Webber Jr.
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A Recurrence Plot-Based Distance Measure

Stephan Spiegel, Johannes-Brijnesh Jain and Sahin Albayrak

Abstract Given a set of time series, our goal is to identify prototypes that cover
the maximum possible amount of occurring subsequences regardless of their order.
This scenario appears in the context of the automotive industry, where the goal is
to determine operational profiles that comprise frequently recurring driving behav-
ior patterns. This problem can be solved by clustering, however, standard distance
measures such as the dynamic time warping distance might not be suitable for this
task, because they aim at capturing the cost of aligning two time series rather than
rewarding pairwise recurring patterns. In this contribution, we propose a novel time
series distance measure, based on the notion of recurrence plots, which enables us
to determine the (dis)similarity of multivariate time series that contain segments of
similar trajectories at arbitrary positions. We use recurrence quantification analysis
to measure the structures observed in recurrence plots and to investigate dynamical
properties, such as determinism, which reflect the pairwise (dis)similarity of time
series. In experiments on real-life test drives from Volkswagen, we demonstrate that
clustering multivariate time series using the proposed recurrence plot-based distance
measure results in prototypical test drives that cover significantly more recurring pat-
terns than using the same clustering algorithm with dynamic time warping distance.

1 Introduction

Clustering of times series data is of pivotal importance in various applications [1] such
as, for example, seasonality patterns in retail [2], electricity usage profiles [3], DNA
microarrays [4], and fMRI brain activity mappings [5]. A crucial design decision
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2 S. Spiegel et al.

of any clustering algorithm is the choice of (dis)similarity function [6, 7]. In many
clustering applications, the underlying (dis)similarity function measures the cost of
aligning time series to one another. Typical examples of such functions include the
DTW and the Euclidean distance [8–10].

Alignment-based (dis)similarity functions, however, seem not to be justified for
applications, where two time series are considered to be similar, if they share common
or similar subsequences of variable length at arbitrary positions [11–14]. A real-
life example for such an application comes from the automotive industry, where
test drives of vehicles are considered to be similar, if they share similar driving
behavior patterns, i.e. engine behavior or drive maneuvers, which are described by
the progression of multiple vehicle parameters over a certain period of time [15, 16].
In this scenario, the order of the driving behavior patterns does not matter [17], but
the frequency with which the patterns occur in the contrasted time series.

Recent work [18] on time series distance measures suggests to neglect irrelevant
and redundant time series segments, and to retrieve subsequences that best charac-
terize the real-life data. Although subsequence clustering is a tricky endeavor [19],
several studies [11–14, 20] have demonstrated that in certain circumstances ignor-
ing sections of extraneous data and keeping intervals with high discriminative power
contributes to cluster centers that preserve the characteristics of the data sequences.
Related concepts that have been shown to improve clustering results include time
series motifs [11, 12], shapelets [13, 14], and discords [20].

In this contribution, we propose to adopt recurrence plots (RPs) [21–23] and
related recurrence quantification analysis (RQA) [24–26] to measure the similarity
between multivariate time series that contain segments of similar trajectories at arbi-
trary positions in time [17]. We introduce the concept of joint cross recurrence plots
(JCRPs), an extension of traditional RPs, to visualize and investigate multivariate pat-
terns that (re)occur in pairwise compared time series. In dependence on JCRPs and
known RQA measures, such as determinism, we define a RecuRRence plot-based
(RRR) distance measure, which reflects the proportion of time series segments with
similar trajectories or recurring patterns respectively.

In order to demonstrate the practicability of our proposed recurrence plot-based
distance measure, we conduct experiments on both synthetic time series and real-
life vehicular sensor data [15–17]. The results show that, unlike commonly used
(dis)similarity functions, our proposed distance measure is able to (i) determine
cluster centers that preserve the characteristics of the data sequences and, further-
more, (ii) identify prototypical time series that cover a high amount of recurring
patterns. The rest of the paper is organized as follows. In Sect. 2 we state the gen-
eral problem being investigated. Subsequently we introduce traditional recurrence
plots as well as various extensions in Sect. 3. Recurrence quantification analysis and
corresponding measures are discussed in Sect. 4. Our proposed recurrence plot-based
distance measure and respective evaluation criteria are introduced in Sect. 5. The
experiments results are presented and discussed in Sect. 6. Finally we conclude with
future work in Sect. 7.
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2 Problem Statement

Car manufacturers aim to optimize the performance of newly developed engines
according to operational profiles that characterize recurring driving behavior. To
obtain real-life operational profiles for exhaust simulations, Volkswagen (VW) col-
lects data from test drives for various combinations of driver, vehicle and route.

Given a set X = {X1, X2, . . . , Xt } of t test drives, the challenge is to find a
subset of k prototypical time series Y = {Y1, . . . , Yk} ∈ X that best comprehend
the recurring (driving behavior) patterns found in set X . Test drives are represented
as multivariate time series X = (x1, . . . , xn) of varying length n, where xi ∈ R

d is a
d-dimensional feature vector summarizing the observed measurements at time i . A
pattern S = (xs, . . . , xs+l−1) of X = (x1, . . . , xn) is a subsequence of l consecutive
time points from X , where l ≤ n and 1 ≤ s < s + l − 1 ≤ n. Assuming two time
series X = (x1, ..., xn) and Y = (y1, . . . , ym) with patterns S = (xs, . . . , xs+l−1)

and P = (yp, . . . , yp+l−1) of length l, we say that S and P are recurring patterns
of X and Y if d(S, P) ≤ ε, where and d : X × X → R

+ is a (dis)similarity function
and ε is a certain similarity threshold. Note that recurring patterns of X and Y may
occur at arbitrary positions and in different order.

Since we aim to identify k prototypical time series that (i) best represent the set
X and (ii) are members of the set X , one can employ the k-mediod clustering
algorithm.

3 Recurrence Plots

Recurrence plots (RPs) are used to visualize and investigate recurrent states of
dynamical systems or rather time series [26, 27]. Even though RPs give very vivid
and impressive images of dynamical system trajectories, their implicit mathematical
foundation is deceptively simple [21]:

Rx
i, j (ε) = Θ(ε − ||xi − x j ||) xi ∈ R

d , i, j = 1 . . . n (1)

where x is a time series of length n, || · || a norm and Θ the Heaviside function.
One of the most crucial parameters of RPs is the recurrence threshold ε, which
influences the formation of line structures [22]. In general, the recurrence thresh-
old should be chosen in a way that noise corrupted observations are filtered out,
but at the same time a sufficient number of recurrence structures are preserved.
As a rule of thumb, the recurrence rate should be approximately one percent with
respect to the size of the plot. For quasi-periodic processes, it has been suggested to
use the diagonal line structures to find the optimal recurrence threshold. However,
changing the threshold does not preserve the important distribution of recurrence
structures [26].
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A general problem with standard thresholding methods is that an inappropriate
threshold or laminar states cause thick diagonal lines, which basically corresponds
to redundant information. Schultz et al. [27] have proposed a local minima-based
thresholding approach, which can be performed without choosing any particular
threshold and yields in clean RPs of minimized line thickness. But this approach
comes with some side-effects, e.g., bowed lines instead of straight diagonal
lines.

Furthermore, it is important discuss the definition of recurrences, because dis-
tances can be calculated using different norms [21]. Although the L2-norm is used
in most cases, the L∞-norm is sometimes preferred for relatively large time series
with high computational demand [26].

Although traditional RPs only regard one trajectory, we can extend the concept
in a way that allows us to study the dynamics of two trajectories in parallel [23]. A
cross recurrence plot (CRP) shows all those times at which a state in one dynamical
system occurs in a second dynamical system. In other words, the CRP reveals all
the times when the trajectories of the first and second time series, x and y, visits
roughly the same area in the phase space. The data length, n and m, of both systems
can differ, leading to a non-square CRP matrix [22, 24].

C Rx,y
i, j (ε) = Θ(ε − ||xi − y j ||) xi , y j ∈ R

d , i = 1 . . . n, j = 1 . . . m (2)

For the creation of a CRP, both trajectories, x and y, have to present the same
dynamical system with equal state variables because they are in the same phase
space. The application of CRPs to absolutely different measurements, which are not
observations of the same dynamical system, is rather problematic and requires some
data preprocessing with utmost carefulness [22].

In order to test for simultaneously occurring recurrences in different systems,
another multivariate extension of RPs was introduced [23]. A joint recurrence plot
(JRP) shows all those times at which a recurrence in one dynamical system occurs
simultaneously with a recurrence in a second dynamical system. With other words,
the JRP is the Hadamard product of the RP of the first system and the RP of the
second system. JRPs can be computed from more than two systems. The data length
of the considered systems has to be the same [22, 24].

J Rx,y
i, j (εx , εy) = Θ(εx − ||xi − x j ||) · Θ(εy − ||yi − y j ||) (3)

xi ∈ R
d1, y j ∈ R

d2, i, j = 1 . . . n

Such joint recurrence plots have the advantage, that the individual measurements
can present different observables with different magnitudes or range. They are often
used for the detection of phase synchronization [22, 24].

Since this work aims at clustering test drives, which involves pairwise
(dis)similarity comparisons of multivariate time series, we propose a combination of
joint and cross recurrence plot, namely (JCRP) joint cross recurrence plot. A JCRP
shows all those times at which a multivariate state in one dynamical system occurs
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simultaneously in a second dynamical system.

JCRx,y
i, j (ε1, . . . , εk) = Θ(ε1 − ||x1

i − y1
j ||) · . . . · Θ(εk − ||xk

i − yk
j ||) (4)

xi , y j ∈ R
d , i = 1 . . . n, j = 1 . . . m

For the creation of a JRCP both trajectories, x and y, need to have the same
dimensionality or number of parameters d, but can have different length, n and
m. We shall see that JCRPs are very useful, because they enable us to compare
two multivariate systems with the same set of observables that can have different
magnitudes. In other words, the introduced JCR notation allows us to determine an
ε-threshold for each individual parameter, which is advantageous for observables
with different variance. A toy example for JCRPs is given in the following:

x =
{
dfcghGATHERSPEEDlmknhDECELERATEghfkd
rsqtpACCELERATORxywzvBRAKEPEDALtvswr

y =
{
kdhfSLOWDOWNglbkchdgfGATHERSPEEDnkml
tpsBRAKEPEDALzrysxtwvACCELERATORxtwv

Assume two multivariate time series x and y which comprise the speed and accel-
erator signal recorded during different car drives. Both time series contain multivari-
ate states or rather string sequences that occur in both systems. The corresponding
JCRP of x and y, as illustrated in Fig. 1, shows the times at which a multivariate state
occurs simultaneously in both systems. Furthermore, the diagonal line structure in
Fig. 1 reveals that both trajectories run through a similar region in phase space for a
certain time interval. With other words, both systems contain the same multivariate
pattern, which represents that the driver hits the ‘ACCELERATOR’ pedal and the
vehicle simultaneously ‘GATHERSPEED’. In Sect. 4 we discuss how to interpret
single recurrence points and diagonal line structures, and explain how to use them
to define a distance measure for time series with certain distortions or invariance.

4 Recurrence Quantification

Recurrence quantification analysis (RQA) is used to quantify the structures observed
in recurrence plots [22]. RQA is grounded in theory, but possesses statistical utility
in dissecting and diagnosing nonlinear dynamic systems across multiple fields of
science [28]. The explicit mathematical definition to distinct features in recurrence
plots enables us to analyze signals that are multivariate, nonlinear, non-stationary
and noisy.

The global (large-scale) appearance of a RP can give hints on stationarity and reg-
ularity, whereas local (small-scale) patterns are related to dynamical properties, such
as determinism [28]. Recent studies have shown that determinism, the percentage
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kdhfSLOWDOWNglbkchdgfGATHERSPEEDnkml
tpsBRAKEPEDALzrysxtwvACCELERATORxtwv
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Fig. 1 Joint cross recurrence plot (JCRP) of sample drive x and y from our toy example, with
ε = 0

of recurrence points that form lines parallel to the main diagonal, reflects the pre-
dictability of a dynamical system [22].

Given a recurrence matrix R with N × N entries generated by any of the intro-
duced recurrence plot variations, such as our proposed JCRP, we can compute the
determinism DET(ε, lmin) for a predefined ε-threshold and a minimum diagonal line
length lmin as followed [22, 24]:

DET (ε, lmin) =
∑N

l=lmin
l · P(ε, l)∑N

i, j=1 Ri, j (ε)

P(ε, l) =
N∑

i, j=1

{ (
1 − Ri−1, j−1 (ε)

) · (
1 − Ri+l, j+l (ε)

) ·
l−1∏
k=0

Ri+k, j+k (ε)

}
(5)

where P(ε, l) is the histogram of diagonal lines of length l with respect to a certain
ε neighborhood.

In general, processes with chaotic behavior cause none or short diagonals, whereas
deterministic processes cause relatively long diagonals and less single, isolated recur-
rence points [22, 29]. In respect to JCRPs, diagonal lines usually occur when the
trajectory of two multivariate time series segments is similar according to a certain
threshold. Since we aim to measure the similarity between time series that contain
segments of similar trajectories at arbitrary positions, which in turn cause diagonal
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line structures, we propose to use determinism as a similarity measure. According to
the introduced JCRP approach, a high DET value indicates high similarity or rather a
high percentage of multivariate segments with similar trajectory, whereas a relatively
low DET value suggests dissimilarity or rather the absence of similar multivariate
patterns.

However, data preprocessing like smoothing can introduce spurious line struc-
tures in a recurrence plot that cause high determinism value. In this case, further
criteria like the directionality of the trajectory should be considered to determine the
determinism of a dynamic system, e.g. by using iso-directional and perpendicular
RPs [22, 24, 26]. In contrast to traditional recurrence plots, perpendicular recurrence
plots (PRPs) consider the dynamical evolution of only the neighborhoods in the per-
pendicular direction to each phase flow, resulting in plots with lines of the similar
width without spreading out in various directions. Removing spurious widths makes
it more reasonable to define line-based quantification measures, such as divergence
and determinism [30]. Another solution is to estimate the entropy by looking at
the distribution of the diagonal lines [26]. The entropy is based on the probability
p(ε, l) that diagonal lines structures with certain length l and similarity ε occur in
the recurrence matrix [22, 24].

Recurrence plots (RPs) and corresponding recurrence quantification analysis
(RQA) measures have been used to detect transitions and temporal deviations in
the dynamics of time series. Since detected variations in RQA measures can easily
be misinterpreted, Marwan et al. [25] have proposed to calculate a confidence level
to study significant changes. They formulated the hypothesis that the dynamics of a
system do not change over times, and therefore the RQA measures obtained by the
sliding window technique will be normally distributed. Consequently, if the RQA
measures are out of a predefined interquantile range, an observation can be con-
sidered significantly. Detecting changes in dynamics by means of RQA measures
obtained from a sliding window have been proven to be useful in real-life appli-
cations such as comparing traffic flow time series under fine and adverse weather
conditions [29].

Since recurrence plot based techniques are still a rather young field in nonlinear
time series analysis, systematic research is necessary to define reliable criteria for
the selection of parameters, and the estimation of RQA measures [26].

5 Recurrence Plot-Based Distance

According to our formalization of joint cross recurrence (JCR) in Eq. 4 and the
denotation of the determinism (DET) in Eq. 5, we can define our RecuRRence Plot-
based (RRR) distance measure as follows:

RRR(ε, lmin) = 1 − DET(ε, lmin) (6)
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Since the DET value ranges from 0 to 1, depending on the proportion of diagonal
line structures found in a JCR plot, the RRR distance is 0 if the trajectory of both
dynamical systems is identical and 1 if there are no similar patterns at any position
in time.

Although our proposed RRR distance measure can be used as a subroutine for
various time series mining tasks, this work primarily focuses on clustering. Our aim
is to group a set of t unlabeled time series T into k clusters C with centroids Z .
In order to evaluate the performance of the time series clustering with respect to
our RRR distance, we suggest to quantify the number of similar patterns that recur
within the established clusters. Therefore, we define the following cluster validation
index:

E(k) = 1

t − k

∑
z∈{Z}

∑
c∈{Cz\z}

R R R(z, c) (7)

According to our problem setting, the more patterns occur jointly when comparing
each centroid z ∈ {Z} with all objects c ∈ {Cz \ z} of the corresponding cluster, the
lower E , the better our clustering, and the more characteristic are the corresponding
prototypes.

Furthermore we are going to evaluate the clustering of time series according to
the index I [31], whose value is maximized for the optimal number of clusters:

I (k) =
(

1

k
· E(1)

E(k)
· Dk

)p

(8)

The index I is a composition of three factors [31], namely 1/k, E(1)/E(k), and
Dk . The first factor will try to reduce index I as the number of clusters k increases.
The second factor consists of the ratio of E(1), which is constant for a given dataset,
and E(k), which decreases with increase in k. Consequently, index I increases as
E(k) decreases, encouraging more clusters that are compact in nature. Finally, the
third factor, Dk (which measures the maximum separation between two clusters over
all possible pairs of clusters), will increase with the value of k, but is bounded by the
maximum separation between two points in the dataset.

Dk = k
max
i, j=1

||zi − z j || (9)

Thus, the three factors are found to compete with and balance each other crit-
ically. The power p is used to control the contrast between the different cluster
configurations. Previous work [31] suggests to choose p = 2.

The index I has been found to be consistent and reliable, irrespective of the
underlying clustering technique and data dimensionality, and furthermore has been
shown to outperform the Dunn and David-Bouldin index [31].
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6 Evaluation

The goal of our evaluation is to assess how well the RRR distance is suited for:
(i) clustering time series that contain similar trajectories at arbitrary positions (in
Sect. 6.1), and (ii) identifying prototypical time series that cover as much as possible
recurring patterns (in Sect. 6.2).

6.1 Synthetic Data

This controlled experiment aims at visualizing the clustering results of the proposed
RRR distance measure compared to the DTW distance.

We generated a labeled dataset, which consists of nine time series from three
different categories, called Wave, YoYo and Peak. Each category comprises three
time series characterized by multiple occurrence of the same artificial patterns at
arbitrary positions. The dataset consists of univariate time series of equal length, as
shown in Fig. 2. To visualize the clustering results of the RRR and DTW distance, we
applied agglomerative hierarchical clustering with complete linkage on the synthetic
dataset.

Figure 3 illustrates the generated hierarchical cluster trees for both examined dis-
tance measures on the synthetic time series. The first observation to be made is that
RRR perfectly recovers the cluster structure provided by the ground truth, given our
knowledge that there are three categories. In contrast, the DTW distance fails and
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Fig. 2 Univariate synthetic time series with artificially implanted patterns (red color) at arbitrary
positions, where each time series belongs to one of three groups (Wave, YoYo, and Peak)
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Fig. 3 Cluster tree (dendrogram) of multivariate synthetic time series (introduced in Fig. 2) accord-
ing to the DTW and RRR distance. The x-axis reveals the distance between the time series being
merged and the y-axis illustrates the corresponding name and shape of the time series

assigns time series of different categories to the same cluster at an early stage. The
second observation to be made is that RRR is able to recover the ground truth even
if a large portion of the time series is noisy. The DTW distance, however, groups
time series into the same clusters, if they have globally a similar shape. Therefore,
the noisy parts of the time series supersede or superimpose the relevant recurring
patterns.

6.2 Real-Life Data

This experiment aims at assessing the time series prototypes identified by the pro-
posed RRR distance measure compared to the DTW distance.

For our evaluation we consider the VW DRIVE dataset, which consists of 124
real-life test drives recorded by one vehicle operated by seven different individuals.
Test drives are represented as multivariate time series of varying length and com-
prise vehicular sensor data of the same observed measurements. Since we aim to
identify operations profiles that characterize recurring driving behavior, we exclu-
sively consider accelerator, speed, and revolution measurements, which are more or
less directly influenced by the driver. The complete VW DRIVE dataset contains
various other measurements, such as airflow and engine temperature, and can be
obtained by mailing the first author of this paper.
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Fig. 4 Determinism (DET) value for changing similarity threshold ε and minimum diagonal line
length lmin for accelerator, speed and revolution signal; based on the cross recurrence plots (CRPs)
of 10 randomly selected pairs of tours from our DRIVE dataset. Note that the DET was averaged

To measure the (dis)similarity of the VW DRIVE time series using our proposed
RRR distance, we first need to determine the optimal similarity threshold ε and pattern
length lmin for each of the considered measurements, such that a considerable amount
of the recurring patterns is preserved.

Figure 4 shows the determinism value for the accelerator, speed, and revolution
signal, in regard to different parameters settings. We can observe that for all con-
sidered signals the DET value decreases with increasing pattern length lmin and
decreasing similarity threshold ε. Furthermore, Fig. 4 reveals that the speed signal
is highly deterministic, meaning that the same patterns occur frequently, whereas
the acceleration and revolution signal are less predictable and show more chaotic
behavior.

Since we aim to analyze all signals jointly by means of the proposed joint cross
recurrence plot (JCRP) approach, we have to choose a pattern length or rather min-
imum diagonal line length lmin that is suitable for all signals. In general, we are
looking for relatively long patterns with high similarity. In other words, we aim to
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(a) (a) (b) (b)

Fig. 5 Evaluation of RRR and DTW distance for clustering a univariate and b multivariate time
series of our DRIVE dataset. We compare the index E for the number of clusters k where the
(normalized) index I reaches its maximum. The results are based on 1,000 runs of k-mediods
clustering with random initialization

find a parameter setting with preferably large lmin and small ε which results in a DET
value that is above a certain threshold. To preserve the underlying characteristics or
rather recurring patterns contained in examined data, at least 20 % of the recurrence
points should form diagonal line structures, which corresponds to DET ≥ 0.2. Based
on this criterion we choose lmin = 5 and ε = 14/2/40 for the accelerator, speed, and
revolution signal respectively. Note that the individual signals were not normalized,
wherefore the ε-threshold represents the accelerator pedal angle, kilometers per hour,
and rotations per minute.

To identify prototypical time series using RRR and DTW distance respectively,
we applied k-mediods clustering with random initialization. For evaluation purpose
we computed index I and E for a varying number of k prototypes. The results of
index I were normalized in a way that the highest value, which indicates the optimal
number of clusters, equals one. Since index E is a sum of RRR values (see Eq. 7)
and RRR = 1 − DET , the lower E , the higher the average DET value, and the more
recurring (driving behavior) patterns are comprised of the prototypes identified by
the respective distance measure.

Figure 5 shows the empirical results for clustering univariate and multivariate time
series of the VW DRIVE dataset using RRR and DTW distance respectively. Since
the VW DRIVE dataset consists of ‘only’ 124 test drives recorded by one and the same
vehicle, the optimal number of clusters for both RRR and DTW distance is rather
small. However, the proposed RRR distance is able to find cluster configurations
with lower index E values or rather prototypes with higher amount of recurring
patterns than the DTW distance. In case of univariate time series (a), in particular
speed measurements, RRR and DTW achieved an index E value of around 0.52
and 0.65 for the optimal number of clusters, which corresponds to a determinism
value of 0.48 and 0.35 respectively. In the multivariate case (b), RRR and DTW
reached an index E value of around 0.74 and 0.84 for the optimal number of clusters,
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which corresponds to determinism value of 0.26 and 0.16 respectively. As might be
expected, the results for the univariate time series are better than for the multivariate
case, because the search space expands and the probability of recurring patterns
decreases with an increasing number of dimensions or measurements respectively. In
both cases, however, our RRR distance performs about 10 % better than the compared
DTW distance, meaning that the identified prototypes contain 10 % more recurring
(driving behavior) patterns.

7 Conclusion

This work is a first attempt to solve time series clustering with nonlinear data analy-
sis and modeling techniques commonly used by theoretical physicists. We adopted
recurrence plots (RPs) and recurrence quantification analysis (RQA) to measure the
(dis)similarity of multivariate time series that contain segments of similar trajectories
at arbitrary positions and in different order.

Strictly speaking, we introduced the concept of joint cross recurrence plots
(JCRPs), a multivariate extension of traditional RPs, to visualize and investigate
recurring patterns in pairwise compared time series. Furthermore, we defined a recur-
rence plot-based (RRR) distance measure to cluster time series with order invariance.

The proposed RRR distance was evaluated on both synthetic and real-life time
series, and compared with the DTW distance. Our evaluation on synthetic data
demonstrates that the RRR distance is able to establish cluster centers that preserve
the characteristics of the time series. The results on real-life vehicular data show that,
in terms of our cost function, RRR performs about 10 % better than DTW, mean-
ing that the determined prototypes contain 10 % more recurring driving behavior
patterns.

Worthwhile future work includes (1) the investigation of RQA measures which
quantify recurring patterns with uniform scaling, (2) the application of speed-up
techniques for RP computations, and (3) the formalization/analysis of an RP-based
distance metric.
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Fast Computation of Recurrences in Long Time
Series

Tobias Rawald, Mike Sips, Norbert Marwan and Doris Dransch

Abstract We present an approach to recurrence quantification analysis (RQA) that
allows to process very long time series fast. To do so, it utilizes the paradigm Divide
and Recombine. We divide the underlying matrix of a recurrence plot (RP) into sub
matrices. The processing of the sub matrices is distributed across multiple graphics
processing unit (GPU) devices. GPU devices perform RQA computations very fast
since they match the problem very well. The individual results of the sub matrices
are recombined into a global RQA solution. To address the specific challenges of
subdividing the recurrence matrix, we introduce means of synchronization as well
as additional data structures. Outperforming existing implementations dramatically,
our GPU implementation of RQA processes time series consisting of N ≈ 1,000,000
data points in about 5 min.

1 Introduction

Many different systems show recurring behavior and its study has attracted attention
in almost all scientific fields. The climate system can express recurring behavior due
to Milankovich cycles [1], seasonal changes, El Niño/Southern Oscillation, etc. The
study of these recurrences allows for a better understanding of the climate system;
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its past as well as its future [2–4]. The cardiorespiratory system is investigated by its
recurrence properties to get insights in its mechanisms or to measure dysfunctions for
diagnosing life threatening conditions [5–9]. Recurrence analysis is promising for
investigating brain activity [10] and early detection of epileptic states [11]. Further-
more, it is applied to monitor engines and technological processes, like power gener-
ation gas turbines health, cutting processes or crack detection in materials [12–14].

Recurrence plots (RPs) and recurrence quantification analysis (RQA) are power-
ful methods for analyzing recurrences in measured time series [15]. Their application
in many fields have proven their potential for various kinds of analyses [16]. A recur-
rence plot is a two-dimensional representation of a time series when a m-dimensional
phase space trajectory recurs to former (or later) states. Recurrence of a state at time
i at a different time j is captured within a two-dimensional squared matrix r [15]:

ri, j = Θ
(
ε − ∥∥xi − x j

∥∥)
, xi ∈ R

m, i, j = 1 . . . N . (1)

Both of its axes represent the set of states in temporal order. N is the number
of considered states xi (length of phase space trajectory). ε is a threshold dis-
tance, ‖ · ‖ a norm, and Θ(·) the Heaviside function. A pair of states that fulfills
the threshold condition is assigned with the value 1 (recurrence point), whereas a
pair that is considered to be dissimilar is assigned with the value 0. Further details
about the reconstruction of phase space vectors from a scalar time series, the recur-
rence parameters, as well as the typical visual characteristics of RPs can be found
in [15].

Small scale structures in the RP, like diagonal lines, are used to define measures of
complexity establishing the recurrence quantification analysis (RQA) [15, 17, 18].
As an example, we present the RQA measure percent determinism (DET ):

DET =
∑N

l=dmin
l HD(l)∑N

i, j=1 ri, j
. (2)

It is the fraction of recurrence points that form diagonal lines; HD(l) is the number
of diagonal lines of exactly length l and dmin is a minimal length necessary to be
a diagonal line. This measure characterizes the deterministic nature of a dynamical
system from a heuristic point of view (further discussions can be found in [15, 19]).
Further measures quantify average line lengths or the complexity of the line length
frequency distributions HD(l) (diagonal lines) and HV(l) (vertical lines).

The time complexity of basic RQA measures is O(N 2), where N denotes the
number of data points. This property hampers an efficient computation for very long
data. Furthermore, current implementations are limited by the memory these tools
can manage. The CRP Toolbox for MATLAB [20] is limited to N < 10,000 data
points when calculating the entire RP; for standard PC configurations even less, i.e.,
N < 5,000 data points. The RQA software by Webber [21] is capable of processing
only up to N = 5,000 data points.
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We present an algorithm based on the concept of Divide and Recombine (D&R)
that allows RQA of very long time series in Sect. 2 and evaluate our algorithm in
Sect. 3. In Sect. 4 we highlight the utilization of our approach for a concrete applica-
tion example taken from the climate research domain.

2 Our Approach

2.1 Divide and Recombine

D&R is a very general approach to address large computational problems. The basic
idea is to divide a data set into small sub sets allowing the fast computation of ana-
lytical results of the subsets. The intermediate results of the sub sets are recombined
into a global solution.

The main application of D&R as presented by Guha et al. in [22] is to enable
the analysis of big data sets. They use the MapReduce [23] framework to distrib-
ute the data and analytical computation between several computing nodes. In contrast,
the central challenge in the context of RQA is not the amount of data itself but rather
that the determination of RQA measures is compute intensive. To meet this challenge,
we utilize the paradigm D&R as follows.

We divide the underlying matrix of a RP, the so called recurrence matrix [see Eq. 1]
into small sub matrices (Divide). For each sub matrix, we compute RQA measures in
a massively parallel manner on GPU devices. This includes especially the detection
of diagonal and vertical lines. The key issue of the divide step is distributing RQA
computations of sub matrices between multiple GPU devices. In a final step, the
individual results of the sub matrices are recombined into a global RQA solution
(Recombine).

Having distributed the computational load to several GPU devices using D&R, we
further reduce the runtime by exploiting the parallel processing capabilities of a GPU
device itself. We subdivide the processing within a sub matrix into a set of subtasks
that can be processed concurrently. The underlying workflow of our approach is
summarized in Fig. 1.

An important challenge with D&R for RQA is that diagonal and vertical lines may
spread over multiple sub matrices (see Fig. 2). To compute a valid global frequency
distribution of diagonal and vertical line lengths, we introduce the carryover buffer.
A carryover buffer is a data structure that allows to share information about the length
of diagonal or vertical lines that exceed a sub matrix. In the following, we describe
how our approach addresses the challenges of computing valid global frequency
distributions of diagonal and vertical line lengths (see Sect. 1).
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Global
RQA

Result

(a) (b)

(c)
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…

Fig. 1 Our D&R approach. a Given a recurrence matrix. b We divide the recurrence matrix into
a set of sub matrices. c We distribute sub matrices to several GPU devices. For each sub matrix,
we compute the frequency distributions of diagonal and vertical lines. The computation of the
frequency distributions of a single sub matrix is done in a massively parallel manner on a GPU
device by identifying independent sub tasks; depicted as dotted arrows. d The individual results are
recombined into a global RQA solution

2.2 Detection of Vertical and Diagonal Lines

To determine vertical lines within the i th column of the recurrence matrix r, the
computation starts at element ri,0, representing its first element. The index j is
increased until the first recurrence point (see Sect. 1) has been found. Assuming the
element ri, j is a recurrence point, the counter representing the length of the current
vertical line is increased by 1. This counter is initially set to 0. If ri, j+1 is also a
recurrence point, the counter is increased again. If ri, j+1 is not a recurrence point,
the vertical line stops at ri, j . We then update the frequency distribution of vertical
line lengths HV(l), reset the line length counter to 0 and continue the detection of
vertical lines at ri, j+2. Note, each column of the recurrence matrix has a separate
line length counter attached.

Subdividing r, its columns are split into a number of parts belonging to different
sub matrices. We introduce the vertical carryover buffer to address this challenge.
For each column of r it stores the length of a vertical line that exceeds the horizontal
border of a sub matrix.

Figure 3 compares the detection of vertical lines using (a) the recurrence matrix as
a whole with applying (b) the vertical carryover buffer to the set of sub matrices. The
states of the carryover buffer element corresponding to the column containing the
vertical line after processing a particular sub matrix are shown above the recurrence
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(a) (b)

Fig. 2 Challenges of divide and recombine for RQA. The single diagonal and vertical line in (a)
are distributed between several sub matrices in (b). a Full recurrence plot. b Divided recurrence
plot

plot. If a vertical line reaches the last element of a column of a sub matrix, the
carryover buffer element stores its current length. Otherwise its value is 0.

The value of the carryover buffer element is used as input for processing parts
of the i th column of r that belong to the adjacent sub matrix. To compute valid
results, applying the carryover buffer requires a particular order of processing the sub
matrices. We present the vertical execution order rule that reflects this dependency.

A sub matrix of r is referred to as Sg,h . The sub matrix representing the bottom
left corner of the recurrence matrix has the indices g = 0 and h = 0.
Vertical Execution Order Rule Suppose a sub matrix Sg,h with g being the hori-
zontal index and h being the vertical index. All sub matrices Sg,n with 0 ≤ n < h
have to be processed before Sg,h is processed.

Sub matrices which do not share any element of the carryover buffer can be
processed concurrently. This allows us to compute the local frequency distribution
of vertical line lengths of multiple sub matrices at the same time.

This concept can easily be adapted to the detection of diagonal lines, including
the use of a carryover buffer and a particular order of execution concerning the set
of sub matrices. The major difference is that a diagonal line may transcend not only
the horizontal but also the vertical borders of sub matrices. Furthermore, the size of
the carryover buffer is equivalent to the number of diagonals of r.

Figure 4 illustrates the detection of diagonal lines. For the purpose of demonstra-
tion, the RP contains only a single diagonal line of length 6. Since diagonal lines
may cross horizontal as well as vertical sub matrix borders, we define a diagonal
execution order rule that reflects this property.
Diagonal Execution Order Rule Suppose a sub matrix Sg,h with g being the hor-
izontal index and h being the vertical index. All sub matrices Sm,n that fulfill either
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(a)
 

(b)
 

Fig. 3 Detection of vertical lines. Detecting the vertical line in (a) is straight-forward. Performing
the processing on multiple sub matrices in (b) requires to preserve the execution order I. → I I. →
I I I. The intermediate states of the carryover buffer element corresponding to the column after
processing each sub matrix (2, 5 and 0) are depicted above the recurrence plot. a Full recurrence
matrix. b Multiple sub matrices

(a) (b)

Fig. 4 Detection of diagonal lines. Given a full recurrence matrix in (a), the detection of the diagonal
line is straight-forward. By dividing the recurrence matrix in (b), the diagonal line stretches over
5 sub matrices. To preserve the validity of the detection result, they must be processed in the order
I. → I I. → I I I. → I V . → V . The intermediate states of the corresponding carryover buffer
element is depicted on the right next to the recurrence plot. a Full recurrence matrix. b Multiple
sub matrices
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the condition (0 ≤ m ≤ g) ∧ (0 ≤ n < h) or (0 ≤ m < g) ∧ (0 ≤ n ≤ h) have to
be processed before Sg,h is processed.

3 Performance Evaluation

To evaluate our approach, we compare the performance characteristics of three RQA
implementations. We contribute an implementation of our D&R approach using
version 1.1 of the OpenCL framework for parallel programming of heterogeneous
systems [24]. To fulfill the performance requirements, we use the low-level program-
ming language C++ for implementing the host program.

The hardware setup of the experiment consists of an off-the-shelf desktop work-
station, containing an Intel i5-3570 quad-core CPU at up to 3.80 GHz and 16 GB of
main memory. It also includes a NVIDIA GeForce GTX 690 that provides two GPU
processors running at up to 1.019 GHz; each of them is supplied with 2 GB of mem-
ory. In the context of heterogeneous computing, each GPU processor is treated as a
separate computing device. The workstation runs on a 64-bit version of OpenSuse
12.1 with version 4.2.1 of CUDA.

To reduce the impact of outliers, we repeat each experiment five times. Measuring
the runtime, we rely on the chrono package of the Boost library [25] with an accuracy
up to one millisecond.

As stated in [26], it is important to compare optimized code that is running on the
GPU to optimized CPU code. For this reason, we compare the massively parallel GPU
implementation approach to two non-distributed, non-D&R CPU implementations.
As a baseline we refer to a single-threaded C++ implementation. Additionally, we
employ a parallel C++ implementation that is extended with OpenMP statements.
It executes the detection of diagonal and vertical lines using multiple CPU threads.

Table 1 Runtime for RQA calculation for time series of varying length

Length OpenCL (1 × GPU) (s) OpenCL (2 × GPU) (s) OpenMP (CPU) Single thread (CPU)

20,000 0.8 0.8 1.1 s 5.6 s

40,000 1.8 1.7 4.4 s 22.3 s

60,000 3.1 2.5 10.0 s 50.2 s

80,000 4.6 3.4 17.7 s 1 min 29.2 s

100,000 6.3 4.5 27.6 s 2 min 19.5 s

120,000 8.4 5.6 39.9 3 min 21.0 s

140,000 10.7 6.7 54.3 s 4 min 33.2 s

160,000 13.3 8.2 1 min 10.9 s 5 min 56.8 s

180,000 16.2 9.7 1 min 29.7 s 7 min 30.9 s

200,000 19.3 11.4 1 min 50.7 s 9 min 16.8 s

Parameters are embedding dimension m = 2 and embedding delay τ = 2
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Fig. 5 Runtime comparison. Our GPU implementation (OpenCL) of D&R outperforms both the
single-threaded (C++) and multi-threaded (OpenMP) non-D&R CPU implementations. Balancing
the work between two GPU processors, the runtime can be reduced additionally up to 40 %

Table 1 and Fig. 5 compare the runtime of the three implementations based on a
time series capturing the Sinus wave. We vary the length of the time series between
20,000 and 200,000 data points with a step size of 20,000. For each experiment we use
the same parameters for reconstructing the states from the time series (see Sect. 1).
Furthermore, we set the size of the sub matrices processed by a GPU processor to
20,000 × 20,000 elements.

In all cases, our OpenCL implementation outperforms the multi-threaded OpenMP
implementation (up to a factor >5) and the single-threaded C++ implementation
(up to a factor >28) using only one GPU processor. Using both GPU processors
available, the runtime can be reduced additionally up to 40 %.

4 Application to Climate Data

In the following we will investigate the hourly temperature dynamics by RQA, which
will be applied on a measurement record of hourly air temperature in Potsdam.
This record is one of the longest, non-interrupted, hourly climate records in the
world. In our analysis it is covering the period from 1893 until 2011 (although the
measurements are still ongoing), resulting in 1,043,112 data points (see Fig. 6a). For
the period between 1893 and 1974, the warming trend of the annual mean temperature
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Fig. 6 a Hourly temperature in Potsdam. b Annual mean temperature in Potsdam and warming
trend for the periods 1893–1974 and 1975–2011

was 0.46 K per century, but after 1974 the trend rose to 3.4 K per century (see Fig. 6b).
In the following we will consider the full time period as well as the two periods 1893–
1974 (718,776 data points) and 1975–2011 (324,336 data points) separately.

To study the short-term dynamics, we remove the annual trend (seasonal cycle)
from the data by phase averaging, resulting in an anomaly temperature record. We
use a time delay embedding of dimension m = 5 and delay τ = 3, which have
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Table 2 RQA results for the full time series of hourly temperature anomaly data of Potsdam as
well for the two periods 1893–1974 and 1975–2011

Measure 1893–2011 1893–1974 1975–2011

RR 0.12 0.12 0.13

DET 0.94 0.94 0.94

L 8.4 8.4 8.6

LAM 0.96 0.97 0.96

been found by false nearest neighbors approach for finding m [27] as well as a
combined autocorrelation and visual recurrence plot inspection approach for finding
an optimal τ [28]. We calculate the four RQA measures (1) recurrence rate R R,
(2) determinism DET , (3) average diagonal line length L , and (4) laminartity L AM
[15] for a recurrence threshold of ε = 1 (Euclidean norm). These measures reflect
different aspects of the short-term dynamics, e.g., predictability. We find that all four
measures do not remarkably change for the full period and the sub periods 1893–1974
and 1975–2011 (see Table 2). This result suggests that, in contrast to the longer time-
scales, the short-term dynamics, and, thus, the short-term weather predictability, has
not (yet) changed due to the climate change.

The calculation of these RQA measures benefits highly from our D&R approach,
which makes the calculations possible for these long time series. We apply the
same implementations as well as the same experimental environment as described in
Sect. 3. Using the single-threaded common RQA software, it takes over six hours to
calculate the RQA for the full time period, whereas the OpenMP implementation still
needs over one and a half hour. The OpenCL implementation allows to reduce the
runtime to about five minutes, using two GPU processors (see Table 3, Fig. 7). This
significant runtime improvement of RQA will allow comprehensive investigations
of big data collections of weather data, consisting of thousands of time series similar
to the present Potsdam temperature record.

Despite its performance improvements, it is of great importance that the GPU
implementation computes correct RQA results. Table 4 compares a selection of RQA
measures computed by the different implementations for the period between 1893
and 2011. It shows that the GPU implementation calculates the same results as the

Table 3 Runtime for RQA calculation for the full time series of hourly temperature anomaly data
of Potsdam as well for the two periods 1893–1974 and 1975–2011

Computation schema 1893–1974 1975–2011 1893–2011

OpenCL (1 × GPU) 4 min 40 s 57 s 10 min 11 s

OpenCL (2 × GPU) 2 min 25 s 30 s 5 min 10 s

OpenMP (CPU) 44 min 38 s 9 min 5 s 1 h 33 min 58 s

Single thread (CPU) 2 h 59 min 25 s 36 min 35 s 6 h 18 min 4 s
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Fig. 7 Runtime for RQA calculation for the full time series of hourly temperature anomaly data
of Potsdam as well for the two periods 1893–1974 and 1975–2011

Table 4 Results for the RQA measures recurrence rate R R, determinism DET , average diagonal
line length L , and laminarity L AM computed by the different implementations for the period
1893–2011

Measure OpenCL (1 × GPU) OpenCL (2 × GPU) OpenMP (CPU) Single thread (CPU)

RR 0.12 0.12 0.12 0.12

DET 0.94 0.94 0.94 0.94

L 8.4 8.4 8.4 8.4

LAM 0.96 0.96 0.96 0.96

single-threaded C++ and the multi-threaded OpenMP implementation. In addition,
distributing the computations between two GPU processors does not influence the
results.

5 Conclusion

We present an approach based on the paradigm of D&R that allows to perform
RQA on very long time series (>1,000,000 data points) efficiently. By splitting
the underlying matrix of a RP into a set of sub matrices, we are able to distribute
the computational load between several GPU devices; each sub matrix is processed
individually. We address the problem of diagonal and vertical lines transcending the
borders of multiple sub matrices by introducing the diagonal and vertical carryover
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buffer as global data structures. To preserve the correctness of the RQA measures,
we provide specific execution order rules for processing the individual sub matrices.

In comparison to a parallel CPU implementation using OpenMP, we can improve
the runtime performance significantly up to factor >9, using two GPU processors.
Our experiments have shown that GPU devices are well suited to compute basic
RQA measures.

The application of the proposed RQA implementation to a specific problem from
climate research has demonstrated its potential for an efficient recurrence study and
will allow future RQA investigations of very long time series.
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Unthresholded Recurrence Plots
for Complex-Valued Representations
of Narrow Band Signals

Aloys Sipers, Paul Borm and Ralf Peeters

Abstract We address the information content of unthresholded recurrence plots for
complex-valued signals admitting a Fourier series representation (including periodic
and sampled signals). Unthresholded recurrence plots of complex-valued signals
contain the information of two real-valued signals simultaneously and can therefore
be used to study the relationship between these signals. The graph theoretic procedure
in our recent work [1], which was developed to characterize the uniqueness conditions
for real-valued signals, is extended to the class of complex-valued signals. The special
properties of complex signal representations provide alternative ways to employ
unthresholded recurrence plots on narrow band signals. Examples and an application
from EEG analysis clarify the results.

1 Introduction

Recurrence plots (RPs) are a signal analysis method that was initially introduced to
visualize characteristics of a trajectory in a phase space [2]. Later, to go beyond the
visual impression, different measures of quantification of RPs were introduced, see
[3, 4]. These techniques have been applied in a variety of different disciplines, such
as finance, economy, earth sciences, biology, neuroscience, physiology, engineering,
physics and chemistry. In the last decade an impressive increase of the application
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of methods based on RPs can be observed, see the bibliography collected on the
website [5]. Some of the pitfalls which can occur during the application of RPs are
highlighted in [6].

Given a finite-interval continuous-time real-valued signal x(t), with t ∈ [0, 1)

say, its corresponding recurrence plot is constructed with the time-delay embedding
method (cf. [7]) in three steps:

(1) An embedding dimension M and a time-delay τ ∈ (0, 1) are chosen, and an
associated M-dimensional vector trajectory X (t) is constructed as:

X (t) =

⎛
⎜⎜⎜⎝

x(t)
x(t + τ)

...

x(t + (M − 1)τ )

⎞
⎟⎟⎟⎠ , t ∈ [0, 1). (1)

Here, for technical convenience (to avoid having to take finite interval effects
explicitly into account), the signal x(t) is periodically extended from the interval
[0, 1) to all of R.

(2) The unthresholded recurrence plot (URP) is defined as (the graph of) the intra-
trajectory distance function URPX (u, v), given by

URPX (u, v) = ‖X (u) − X (v)‖, u, v ∈ [0, 1), (2)

in which ‖ · ‖ denotes the Euclidean norm.
(3) For a given positive threshold ε, the binary (thresholded) recurrence plot is

defined as

RPε
X (u, v) =

{
1 if URPX (u, v) ≤ ε,

0 if URPX (u, v) > ε.
(3)

In this paper we study the information content of URPs of complex-valued signals.
They are defined in a similar manner, with the Euclidean norm ‖ · ‖ in step (2)
generalized to trajectories that are now in C

M . This theoretical study on URPs of
complex-valued signals is new and may serve as a starting point for applications of
URPs and RPs on complex-valued signals which are constructed from real world
data. Furthermore, the special properties of complex signal representation are used
to employ URPs in alternative ways on signals with a narrow band power spectrum.
The information content of URPs and RPs of real-valued signals has been studied in
[1, 8–13], respectively.

In Sect. 2, we study the information content of URPs of zero mean continuous-
time complex-valued signals on [0, 1) which admit a Fourier series representation.
We build upon our recent work of [1] where real-valued signals were analyzed. As in
that case, we show that for any complex-valued signal its power spectrum is entirely
determined by its URP, regardless of the choice of M and τ . It is easily seen that a URP
does not carry information on the mean of a signal (hence the zero mean assumption),
nor on a unimodular scaling factor, nor on complex conjugation. We provide sufficient
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conditions on M and τ which guarantee that a zero mean complex-valued signal w(t)
can be uniquely recovered from its URP, up to conjugacy and a unimodular factor.
They extend the necessary and sufficient conditions for real-valued signals given in
[1]. In general, when these conditions are not satisfied, it depends on M , τ , and the
frequency content of the actual signal w(t) itself, which information can be recovered
from its URP. These results have implications for real-valued signals too, because
recurrence plots of complex-valued signals relate to joint recurrence plots for two
real-valued signals; see [14].

In Sect. 3, we address another application of complex-valued signal representa-
tions by studying signals with a narrow band power spectrum. Then, in Sect. 4, the
information content and the structure of URPs for narrow band signals are illustrated
by two examples. First, we investigate four different settings for M and τ , which
cause complex signals with magnitudes having different morphology to exhibit iden-
tical URPs. Second, an application with real measurement data from EEG analysis
involving an alpha rhythm is presented, to illustrate the use of URPs on complex-
valued narrow band signals in alternative ways. We compare the frequency con-
tent on horizontal (or vertical) and on diagonal lines in a URP, and we illustrate
how this information can be used to approximate the envelope of the underlying
signal.

Section 5 concludes the paper. All the proofs are collected in the Appendix.

2 Unique Reconstruction of a Complex-Valued Signal
from Its Unthresholded Recurrence Plot

In this section we extend the results of [1] for real-valued signals, to the class of
complex-valued signals w(t) = x(t) + iy(t). Here, x(t) and y(t) denote the real
and the imaginary part of w(t), respectively. For a given embedding dimension and
time-delay the corresponding trajectories relate similarly as W (t) = X (t) + iY (t).
For all time instances u and v it holds that W (u) ≈ W (v), i.e., a near recurrence
occurs, if and only if both X (u) ≈ X (v) and Y (u) ≈ Y (v). Therefore, recurrence
plots of complex-valued signals are closely related to joint recurrence plots (JRPs),
see [14]. To be precise, a binary (thresholded) joint recurrence plot is defined as
the product of the RPs of the signals x(t) and y(t), which may be constructed for
different embedding dimensions, different time-delays and different thresholds:

JRPεX ,εY
X,Y (u, v) := RPεX

X (u, v)RPεY
Y (u, v).

Note that URPW (u, v)2 = ‖W (u)− W (v)‖2 = ‖X (u)− X (v)‖2 +‖Y (u)−Y (v)‖2.
Therefore RPε

W (u, v) = 1 if and only if (‖X (u) − X (v)‖2 + ‖Y (u) − Y (v)‖2)/ε2 ≤
1, while JRPεX ,εY

X,Y (u, v) = 1 if and only if max{‖X (u) − X (v)‖/εX , ‖Y (u) −
Y (v)‖/εY } ≤ 1. This makes clear that the RP of a complex-valued signal employs
the 2-norm, while the JRP of two real-valued signals employs a mixture of the
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Fig. 1 a Real-valued signals x(t) and y(t) with joint recurrences. b Joint recurrence plot of x(t)
and y(t) (top) recurrence plot of the complex-valued signal w(t) = x(t) + iy(t) (bottom)

2-norm and the maximum-norm. However, topologically these norms are equivalent
(i.e., they define the same families of open sets), so that small distances for one norm
correspond to small distances for the other norm. An example of a joint recurrence
plot of two real-valued signals and the recurrence plot of the corresponding complex-
valued signal for equal embedding dimensions M = 2, equal time delays τ = 0.2
and equal thresholds ε = 0.1, is displayed in Fig. 1b. The signal values giving rise
to the joint recurrence in JRPX,Y (u, v) and the recurrence in RPX+iY (u, v), are indi-
cated by squares and circles in Fig. 1a. The corresponding time instants are u = 0.3,
u + τ = 0.5, v = 0.6 and v + τ = 0.8. This demonstrates that a recurrence plot
of a complex-valued signal contains joint information on two real-valued signals.
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We shall investigate to which extent a recurrence plot of a complex-valued signal
also contains individual information about the two real-valued signals.

As a URP does not contain information on the mean of a signal, without loss of
generality we focus attention on the class of complex-valued zero mean signals w(t).
We restrict to signals on [0, 1) which admit a Fourier series representation which
converges pointwise almost everywhere and has finite energy:

w(t) =
∑
k∈Z

wke2πkti , with w0 = 0, and
∑
k∈Z

|wk |2 < ∞. (4)

Then for such a signal w(t), for a given embedding dimension M and time-delay τ ,
the trajectory W (t) is:

W (t) =
∑
k∈Z

wke2πkti Tk, (5)

in which (for all k ∈ Z)

Tk =

⎛
⎜⎜⎜⎝

1
zk

...

z(M−1)k

⎞
⎟⎟⎟⎠ , with z = e2πτ i . (6)

When considering the inner product 〈W (u), W (v)〉 (with linearity in the first argu-
ment) as a two-variable function of u, v ∈ [0, 1), it is obtained that

〈W (u), W (v)〉 =
∑
p∈Z

∑
q∈Z

wpwqe2π(pu−qv)i 〈Tp, Tq〉. (7)

This constitutes a 2-dimensional Fourier series representation of 〈W (u), W (v)〉, with
2D-Fourier coefficients wpw−q〈Tp, T−q〉. Note that 〈Tp, Tq〉 = 〈Tp+r , Tq+r 〉 for all
integers p, q, r . An explicit expression for the inner product 〈Tp, Tq〉 is provided by
[1, Lemma 3.1]. It holds that 〈Tp, Tq〉 	= 0 if and only if [(p − q)τ ∈ Z] ∨ [(p −
q)Mτ /∈ Z]. Also, 〈T0, T0〉 = M .

The 2D-Fourier coefficients of 〈W (u), W (v)〉 enable the computation of the 2D-
Fourier coefficients of URPW (u, v)2, which are given by the following proposition.

Proposition 1 Let w(t) = ∑
k∈Z

wke2πkti be a complex-valued zero mean signal
from our class. Let W (t) be its trajectory for the embedding dimension M and time-
delay τ . Then a 2D-Fourier representation of its squared URP is given by

URPW (u, v)2 =
∑
p∈Z

∑
q∈Z

Wp,qe2π(pu+qv)i , (8)

in which the 2D-Fourier coefficients are given by
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W0,0 = 2M
∑
k∈Z

|wk |2 (9)

Wp,0 = 〈Tp, T0〉
∑
k∈Z

wk+pwk (p 	= 0) (10)

W0,q = 〈Tq , T0〉
∑
k∈Z

wk+qwk (q 	= 0) (11)

Wp,q = −〈Tp+q , T0〉
(
wpw−q + w−pwq

)
(p, q 	= 0). (12)

Note that Wp,q = Wq,p and W−p,−q = Wp,q for all integers p and q. By choosing
q = −p 	= 0, it follows that Wp,−p = −M(|wp|2 + |w−p|2). Therefore, when the
URPs (for the same time-delay embedding) of two signals with Fourier coefficients
{wk}k∈Z and {vk}k∈Z happen to coincide, it holds that |wp|2+|w−p|2 = |vp|2+|v−p|2
for all p ∈ Z

+. Observe that |wp|2 + |w−p|2 denotes contribution of the frequency
p to the power of w(t). Because the 2D-Fourier coefficients of a URP characterize
it uniquely, this proves the following result.

Corollary 1 Let w(t) = ∑
k∈Z

wke2πkti and v(t) = ∑
k∈Z

vke2πkti be two complex-
valued zero mean signals from our class. Let W (t) and V (t) be their trajectories,
respectively, for the same time-delay embedding. If their URPs coincide, then also
the power spectra of the signals w(t) and v(t) coincide. i.e., for all k ∈ Z it holds
that |wk |2 + |w−k |2 = |vk |2 + |v−k |2.

Sufficient conditions for the reconstruction of a complex-valued signal w(t) from its
URP can also be given, in terms of the following associated graph GW .

Definition 1 Let w(t) = ∑
k∈Z

wke2πkti be a complex-valued zero mean signal
from our class. Let W (t) be its trajectory for the embedding dimension M and time-
delay τ . Then define the associated graph GW as the simple undirected graph for
which:

(1) the nodes are labeled by positive indices from the set

KW = {k ∈ Z
+ | wk 	= 0 ∨ w−k 	= 0},

(2) two distinct nodes labeled p, q ∈ KW are adjacent if and only if both 〈Tp, Tq〉 	=
0 and 〈Tp, T−q〉 	= 0.

The following theorem contains the main reconstruction result of this section. Note
that we will call a graph complete if all nodes are connected to all nodes, including
self-loops.

Theorem 1 Let w(t) = ∑
k∈Z

wke2πkti and v(t) = ∑
k∈Z

vke2πkti be two complex-
valued zero mean signals from our class. Let W (t) and V (t) be their trajectories,
respectively, for the same time-delay embedding. If the unthresholded recurrence
plots URPW and URPV coincide and the associated graph GW is complete, then
the signal v(t) is determined by w(t) up to conjugacy and a unimodular factor, i.e.,
there exists a unimodular constant α such that v(t) = αw(t) or v(t) = αw(t).
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Recall that the graph GW has positively labeled nodes k ∈ KW which in fact cor-
respond to the pairs of indices (k,−k). Also, adjacency requires both 〈Tp, Tq〉 and
〈Tp, T−q〉 to be nonzero. These are more restrictive conditions than what we have
used for real-valued signals in [1], where we were able to give necessary and suf-
ficient conditions for the unique reconstruction of a signal from its URP (up to a
sign). It is still an open question to find necessary and sufficient conditions for the
reconstruction of complex-valued signals.

In the case of a complete graph GW , Theorem 1 implies that the magnitudes
|v(t)| and |w(t)| coincide. This means that a URP with a complete graph uniquely
determines the magnitude of the underlying complex-valued signal. On the other
hand, if the graph GW is not complete then signals with magnitudes of different
morphology can exhibit identical URPs. The first example of Sect. 4 demonstrates
this.

3 Unthresholded Recurrence Plots for Narrow Band Signals

Motivated by practical applications, we now focus on real-valued signals with a nar-
row band power spectrum. A narrow band signal can be considered as an amplitude
modulated sinusoid. Due to the special properties of an associated complex signal
representation, the well-known ‘analytic signal’, the results of the previous section
can be used to employ unthresholded recurrence plots an alternative way.

Definition 2 For a given real-valued zero mean signal x(t) = ∑
k∈Z

xke2πkti , the
complex-valued analytic signal z(t) is defined as follows:

z(t) = 2
∑
k>0

xke2πkti . (13)

Consequently: x(t) = Re (z(t)).

The trajectory Z(t) of the analytic signal z(t) associated with x(t) is given by:

Z(t) = 2
∑
k>0

xke2πkti Tk . (14)

Proposition 2 Let z(t) = 2
∑

k>0 xke2πkti be an analytic signal. Suppose that the
squared unthresholded recurrence plot URPZ (u, v)2 = ‖Z(u) − Z(v)‖2 can be
expressed as a 2D-Fourier series:

URPZ (u, v)2 =
∑
p∈Z

∑
q∈Z

Zp,qe2π(pu+qv)i .



38 A. Sipers et al.

Then the 2D-Fourier coefficients Zp,q can be expressed through the coefficients xk

of the real-valued signal x(t) as:

Zm,n =
⎧⎨
⎩

−4〈Tm+n, T0〉xm x−n for m > 0, n < 0,

−4〈Tm+n, T0〉x−m xn for m < 0, n > 0,

0 otherwise.
(15)

An analytic signal is a special case of zero mean complex-valued signal
w(t) = ∑

k∈Z
wke2πkti , with wk = 0 for k ≤ 0, i.e.: w(t) = ∑

k>0 wke2πkti . For the
class of analytic signals, Corollary 1 therefore reduces to the following result.

Corollary 2 Let w(t) = ∑
k>0 wke2πkti and v(t) = ∑

k>0 vke2πkti be two zero
mean analytic signals from our class. Let W (t) and V (t) be their trajectories, respec-
tively, for the same time-delay embedding. If their URPs coincide, then also the power
spectra of the signals w(t) and v(t) coincide: for all k > 0 it holds that |wk | = |vk |.

Because the complex conjugate of a nontrivial analytic signal is not itself an
analytic signal, Theorem 1 reduces to the following result.

Theorem 2 Let w(t) = ∑
k>0 wke2πkti and v(t) = ∑

k>0 vke2πkti be two zero mean
analytic signals from our class. Let W (t) and V (t) be their trajectories, respectively,
for the same time-delay embedding. If the unthresholded recurrence plots URPW

and URPV coincide and the associated graph GW is complete, then the signal v(t) is
determined by w(t) up to a unimodular factor, i.e., there exists a unimodular constant
α such that v(t) = αw(t).

We now turn to narrow band analytic signals z(t)which can be regarded as a amplitude
modulated carrier signals:

z(t) = e2πcti (2xc + w(t)) , (16)

where c ∈ Z
+ denotes the index of the corresponding Fourier coefficient xc and

also the carrier frequency (which is integer because we consider periodic signals
with period 1). The complex-valued signal w(t) = ∑

k∈Z
wke2πkti is referred as the

modulating signal, which has:

wk =
{

2xc+k for k > −c ∧ k 	= 0,

0 for k ≤ −c or k = 0.
(17)

A geometric interpretation of Eq. (16) is given in Fig. 2. There, the narrow band signal
z(t) is represented as a rotating vector

−→
OQ = −→

OP + −→
PQ. The vector

−→
OP represents

the constant signal 2xc and the vector
−→
PQ represents the modulating signal w(t), both

rotating at a constant angular velocity 2πc.
The following proposition interrelates the trajectories, the URPs, and the graphs

of the analytic signal z(t) and the modulating signal w(t).

Proposition 3 Let c ∈ Z
+ be a carrier frequency and x(t) a zero-mean periodic

signal from our class. Then:
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O

P

Q

2 cπ

Fig. 2 Geometric interpretation of a narrow band signal z(t) or its trajectory Z(t) as a rotating

resultant
−−→
O Q of a constant vector

−→
O P and a modulating vector

−→
P Q, all rotating at angular velocity

2πc

(1) The trajectory Z(t) of the analytic signal z(t) can be expressed trough the tra-
jectory W (t) of the modulating signal w(t) as:

Z(t) = e2πcti diag (Tc) (2xcT0 + W (t)) . (18)

in which diag(Tc) denotes the diagonal matrix having the entries of the vector
Tc along its main diagonal.

(2) Let URPZ and URPW be the unthresholded recurrence plots of the analytic
signal z(t) and the modulating signal w(t), respectively. If c(u − v) ∈ Z then:

|Z(u) − Z(v)| = |W (u) − W (v)| , (19)

URPZ (u, v) = URPW (u, v), (20)

in which | · | denotes the entry-wise absolute value.
(3) The 2D-Fourier coefficients Wp,q of URPW (u, v)2 can be expressed through the

2D-Fourier coefficients Zp,q of URPZ (u, v)2 as:

Wp,q = Zp+c,q−c + Zq+c,p−c. (21)

(4) The nodes of the graph GW can be obtained from the nodes of the graph G Z as:

KW = {k ∈ Z
+ | xc+k 	= 0 ∨ xc−k 	= 0}. (22)
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Figure 2 also provides a geometric interpretation of part (1) of this proposition. Now,
the trajectory Z(t) is represented as a rotating vector

−−→
O Q = −→

O P + −→
P Q, rotating at

a constant angular velocity 2πc. The vectors
−→
O P and

−→
P Q now represent the con-

stant vector diag (Tc) (2xcT0) = 2xcTc and the modulating trajectory diag (Tc) W (t),
respectively.

In order to go beyond the visual impression yielded by RPs, several measures
which quantify structures in RPs, have been proposed in [3] and are known as
recurrence quantification analysis (RQA). These measures are based on horizon-
tal (or vertical) and on diagonal lines of an RP. An important difference between the
unthresholded recurrence plots URP2

X and URP2
Z for narrow band signals lies in the

frequency content of their restrictions to these lines.
Since we consider complex-valued periodic signals with period T = 1 it holds that
fk = k

T = k. Therefore, for convenience we shall call the indices k also frequencies.

Proposition 4 Let x(t) be a zero-mean real periodic signal with period 1, which
has a finite Fourier series with the frequency range {c − d, . . . , c + d}. Then:

(1) The restrictions of URPX (u, v)2 to horizontal, vertical and diagonal lines, have
the frequency ranges:

v is constant : {0, . . . , 2d} ∪ {c − d, . . . , c + d} ∪ {2c − 2d, . . . , 2c + 2d};
u is constant : {0, . . . , 2d} ∪ {c − d, . . . , c + d} ∪ {2c − 2d, . . . , 2c + 2d};
u − v is constant : {0, . . . , 2d} ∪ {2c − 2d, . . . , 2c + 2d}.

(2) The restrictions of URPZ (u, v)2 to horizontal, vertical and diagonal lines, have
the frequency ranges:

v is constant : {0, . . . , 2d} ∪ {c − d, . . . , c + d};
u is constant : {0, . . . , 2d} ∪ {c − d, . . . , c + d};
u − v is constant : {0, . . . , 2d}.

(3) The frequency ranges {0, . . . , 2d}, {c−d, . . . , c+d} and {2c−2d, . . . , 2c+2d}
are mutually disjoint if and only if c > 3d.

Note that, contrary to URPX (u, v)2, the restrictions of URPZ (u, v)2 to horizontal,
vertical and diagonal lines, have no frequencies in the range {2c −2d, . . . , 2c +2d}.
Also note that the frequency range of the restriction of URPZ (u, v)2 to diagonal
lines only depends on the bandwidth 2d of the signal x(t). These properties appear
as elongated contours along the diagonal lines in URPZ .

To illustrate this result, we here present an example. We consider a real signal
x(t) = ∑−18

k=−22 xke2πkti +∑22
k=18 xke2πkti , involving just five different frequencies,

for which the Fourier coefficients are given by:
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Fig. 3 a Signal x(t) and its envelope ± |z(t)|, b magnitude spectrum of x(t), c URP of the real
signal x(t), d URP of the analytic signal z(t)

x18 = x−18 = 3e−5i ,

x9 = x−9 = 4e3i ,

x10 = x−10 = 6e4i ,

x11 = x−11 = 5e−2i ,

x22 = x−22 = 2e−6i .

The signal x(t) and its analytic signal z(t) have the frequency range {c−d, . . . , c+d}
for the settings c = 20 and d = 2. The signal x(t) and its envelope ± |z(t)| are
displayed in Fig. 3a. The magnitude spectrum of x(t) is displayed in Fig. 3b. The
unthresholded recurrence plots URPX and URPZ are computed for the settings M =
4 and τ = 1

3 and are displayed in Fig. 3c and d, respectively. The magnitude spectra
of URPX (u, v)2 and URPZ (u, v)2 on the horizontal lines (u, v) = (t, 0.625), the
vertical lines (u, v) = (0.625, t) and on the diagonal lines (u, v) = (t + 0.125, t),
with t ∈ [0, 1), are displayed in Fig. 4a and b, respectively. These figures demonstrate
that different parts of the spectrum can be investigated in isolation, by studying
appropriately selected lines in the URPs of either x(t) or z(t).
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Fig. 4 Magnitude spectra along selected lines [a u = 0.625 or v = 0.625, b u − v = 0.125] in the
squared URPs of the signal x(t) (top) and its analytic signal z(t) (bottom)

4 Examples, Including an Application in EEG Analysis

To illustrate the main results and techniques of the previous sections, we here present
two more examples.

In the first example we investigate four different settings for M and τ , which
may cause complex-valued signals with morphologically different magnitudes still to
exhibit identical URPs. This example serves to demonstrate the limitations that apply
to the interpretation of a URP, emanating from the choice of embedding dimension
and time-delay.

In the second example we consider an application in EEG analysis, which concerns
a digitally sampled measurement signal featuring a so-called alpha rhythm. The
measured alpha rhythm is band-pass filtered to obtain the so-called alpha band signal.
We investigate the unthresholded recurrence plots of the associated analytic signal
and the modulating signal for a given choice of the carrier frequency.

Example 1 Different complex-valued signals exhibiting identical URPs. For four
different settings of M and τ we give pairs of complex-valued signals v(t) =∑2

k=−2 vke2πkti , w(t) = ∑2
k=−2 wke2πkti with morphologically different magni-

tudes but identical URPs. In accordance with Corollary 1 it holds that |v−k |2+|vk |2 =
|w−k |2 + |wk |2, for k ∈ 1, 2.
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Fig. 5 Graphs, magnitudes and URPs for different settings of embedding dimension M and time-
delay τ , for four different pairs of signals v(t) and w(t) specified in the text

The associated graphs GV and GW in all cases have exactly 2 nodes, labeled 1 and 2.
Adjacency of those nodes depends on the values of M and τ . Recall that two distinct
nodes p, q ∈ KW are adjacent if and only if both 〈Tp, Tq〉 	= 0 and 〈Tp, T−q〉 	= 0.

(i) M = 4 and τ = 1
6 , see Fig. 5a.

v−2 = 6, v−1 = 1, v1 = −3, v2 = −2i,
w−2 = 6i, w−1 = −1, w1 = 3, w2 = 2.

The graph is not complete, since the nodes 1 and 2 are not adjacent.
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(ii) M = 4 and τ = 1
8 , see Fig. 5b.

v−2 = 0, v−1 = 3, v1 = −4, v2 = 5i,
w−2 = 3, w−1 = 0, w1 = 5i, w2 = 4.

The graph is not complete, since the nodes 1 and 2 both have no self-loops.
(iii) M = 6 and τ = 1

8 , see Fig. 5c.

v−2 = 0, v−1 = 1, v1 = 1, v2 = 2 + 2i,
w−2 = −2i, w−1 = 1, w1 = 1, w2 = 2.

The graph is not complete, since the node 2 has no self-loop.
(iv) M = 6 and τ = 1

4 , see Fig. 5d.

v−2 = 1, v−1 = 0, v1 = 2 + 2i, v2 = 1,

w−2 = 1, w−1 = −2i, w1 = 2, w2 = 1.

The graph is not complete, since the node 1 has no self-loop.
This example demonstrates that for certain ‘unfortunate’ choices of M and τ the

magnitude of the underlying complex-valued signal cannot be uniquely retrieved
from the URP. In such cases, in view of Theorem 1, the graphs associated with the
URPs are incomplete.

Example 2 EEG analysis featuring an alpha rhythm. In EEG analysis an EEG signal
is decomposed into five band signals corresponding to the delta (0.1–4 Hz), theta
(4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) frequency
bands, see [15]. These basic EEG frequency bands are understood to reflect dif-
ferent functional processes in the brain.

From a digitally sampled EEG measurement signal we consider an excerpt of
N = 500 samples, exhibiting an alpha rhythm, with a duration of T = 2 s. Alpha
rhythms are characterized by a clear peak in their magnitude spectrum for a frequency
in the alpha band (8–12 Hz), see Fig. 6a. The alpha band signal x(t), see Fig. 6b, is
obtained from the alpha rhythm by selecting the coefficients with frequencies fk = k

T
in the alpha frequency band, i.e. k ∈ {16, . . . , 24}. For the setting c = 20 (i.e. fc = c

T
= 10 Hz), the modulating signal w(t) is constructed from the analytic signal z(t) using
Eq. (16). The URPs of the signal z(t) and the signal w(t), for the settings M = 3 and
τ = 1

50 T = 0.04 s, are both displayed in Fig. 7. Note that τ is an integer multiple of
the sampling time Δt := T

N = 0.004 s.
The graph G Z has 9 nodes: k ∈ K Z = {16, . . . , 24}. The graph GW has 4

nodes: k ∈ KW = {1, . . . , 4} which are obtained from K Z by using part (4) of
Proposition 3. Since M and the denominator of τ

T are co-prime, it follows from Part
(2) of [1, Corollary 3.5] that the graphs G Z and GW are complete. Consequently, the
signal z(t) is determined up to a unimodular factor by URPZ , and the signal w(t) is
determined up to conjugacy and a unimodular factor by URPW .
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Fig. 6 a Measured alpha rhythm signal (top), b selected alpha band signal (top), and their corre-
sponding magnitude spectra (bottom)

According to part (1) of Proposition 3 it holds that URPZ (u, v) an URPW (u, v)
coincide on the diagonal lines 10(u − v) ∈ Z, but they are different between these
lines. Some of these diagonal lines are indicated by dashed black lines in the upper
triangular part of URPW , see in Fig. 7. In view of part (2) of Proposition 4 it holds
that the signals z(t) and w(t) have frequency ranges { k

T | |k| ∈ {c − d, . . . , c +
d}} and { k

T | |k| ∈ {1, . . . , d}}, respectively, for the settings c = 20 and d = 4.
Therefore the restrictions of URPW (u, v)2 to horizontal, vertical and diagonal lines,
all have the frequency range { k

T | |k| ∈ {0, . . . , 2d}} = { k
2 | |k| ∈ {0, . . . , 8}}. The

restriction of URPZ (u, v)2 diagonal lines has the latter frequency range too, whereas
the restrictions to horizontal and vertical lines also have higher frequencies in the
range { k

T | |k| ∈ {c − d, . . . , c + d}} = { k
2 | |k| ∈ {16, . . . , 24}}.

In EEG amplitude modulation analysis, the envelopes of EEG band signals are
studied, see e.g. [16–20]. In this example, the envelope ±|z(t)| of the alpha band
signal x(t) is displayed in Fig. 6b. The horizontal and vertical lines in URPZ provide
information about the magnitude |z(t)|. To illustrate this, we approximate |z(t)| by√

|z(t−τ)|2+|z(t)|2+|z(t+τ)|2
3 = ‖Z(t− 1

2 (M−1)τ )‖√
M

. The norm ‖Z(t − 1
2 (M − 1)τ )‖ in the

latter term can be computed by using an identity provided by [1, Proposition 5.1]:

T 2‖Z(t)‖2 = T

T∫
0

URPZ (u, t)2du − 1

2

T∫
0

T∫
0

URPZ (u, v)2du dv. (23)
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Fig. 7 URPs of the analytical signal z(t) and the modulating signal w(t)
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Fig. 8 Approximation for the envelope |z(t)| (dashed) constructed from horizontal lines in URPZ ,
and the corresponding approximation error (solid)

The integrand in the single integral term is a restriction of URPZ to the horizontal line
corresponding to a given time instance t . The double integral has a constant value

which is independent of t . The approximation
‖Z(t− 1

2 (M−1)τ )‖√
M

(dashed graph) and the

approximation error
‖Z(t− 1

2 (M−1)τ )‖√
M

− |z(t)| (solid graph) are displayed in Fig. 8.
This example shows how the frequency range of the complex-valued modulating
signal w(t) can be determined from the frequency range of the restrictions of URP2

Z
to diagonal lines. It also demonstrates how the envelope of the real-valued narrow
band signal x(t) is related to the information content of the horizontal and vertical
lines in URPZ . As a new alternative method for EEG amplitude modulation analysis
one could study URPW instead.
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5 Conclusions and Discussion

When considering URPs as a tool to extract information from complex-valued sig-
nals, we have argued in this paper that it is important to first establish which infor-
mation can or cannot be recovered from URPs.

In Sect. 2 we extended our work [1], concerning URPs of real-valued signals, to
complex-valued signals. There we focused on computing the Fourier coefficients
wk of w(t) from the 2D-Fourier coefficients Wp,q of URPW . We showed that a
signal w(t), with a complete associated graph GW , can be uniquely recovered from
its URP up to conjugacy and a unimodular factor, see Theorem 1. If the graph
GW is not complete then signals with morphologically different magnitudes can
exhibit identical URPs. The first example of Sect. 4 demonstrates this. We also related
recurrence plots of complex-valued signals to joint recurrence plots which allows
studying the relationship between two real-valued signals, see [14]. It is found that
recurrence plots of complex-valued signals can be used to locate joint recurrences in
a pairs of real-valued signals.

In Sect. 3, we used the special properties of complex signal representation to
study signals with a narrow band power spectrum. For a given choice of the carrier
frequency, a corresponding modulating signal can be computed from the analytic
signal. Modulating signals provide an alternative way to employ URPs for studying
narrow band signals. The trajectories, URPs and the graphs of the analytic signal
and the modulating signal are related in Proposition 3. The frequency ranges of
restrictions of a URP on horizontal, vertical and diagonal lines are investigated to
explain the elongated contours along the diagonal lines in the URP of the analytic
signal. It is shown how the frequency range of restrictions on horizontal and vertical
lines differs from that on diagonal lines. It is found how the frequency ranges of these
restrictions for a real-valued signal differ from those of the corresponding analytic
signal. We also illustrated how the information content on horizontal and vertical
lines in a URP can be used to approximate the envelope of the underlying narrow
band signal. These results are demonstrated by the second example of Sect. 4.

A couple of research questions still remain open. (1) One important question
concerns redundancy in the URP, being a 2-dimensional representation of a 1-
dimensional signal, which is currently under investigation. The question arises to
which extent a selected part of a URP may still contain all the information contained
in the entire URP. This is of importance for relating subpatterns in a unthresholded
recurrence plot URPW to localized (morphological) properties of the underlying
complex-valued signal w(t). (2) To quantify patterns that occur in RPs, several mea-
sures have been proposed in the literature, see e.g. [3], that are used in recurrence
quantification analysis (RQA). An important question concerns the generalization
of these measures to RPs of complex-valued signals.

Acknowledgments This research is conducted in collaboration with and supported by BrainMarker
BV, the Netherlands, in the course of its development of a decision support system for EEG based
brain state analysis.
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Appendix

Proof of Proposition 1 Observe that

‖W (u) − W (v)‖2 = ‖W (u)‖2 − 〈W (u), W (v)〉 − 〈W (v), W (u)〉 + ‖W (v)‖2.

For arbitrary t we have:

‖W (t)‖2 =
∑
p∈Z

∑
q∈Z

wpwq〈Tp, Tq〉e2π(p−q)ti =
∑
k∈Z

∑
q∈Z

wq+kwq〈Tk, T0〉e2πkti

=
∑
k∈Z

〈Tk, T0〉e2πkti
∑
q∈Z

wk+qwq .

For t = u and t = v this specializes to:

‖W (u)‖2 =
∑
p∈Z

〈Tp, T0〉e2πpui
∑
k∈Z

wk+pwk,

‖W (v)‖2 =
∑
q∈Z

〈Tq , T0〉e2πqvi
∑
k∈Z

wk+qwk .

For 〈W (u), W (v)〉 we have already presented the expression

〈W (u), W (v)〉 =
∑
p∈Z

∑
q∈Z

wpwq〈Tp, Tq〉e2π(pu−qv)i

=
∑
p∈Z

∑
q∈Z

wpw−q〈Tp+q , T0〉e2π(pu+qv)i .

It follows that

〈W (u), W (v)〉 + 〈W (v), W (u)〉 =
∑
p∈Z

∑
q∈Z

〈Tp+q , T0〉 (
wpw−q + w−pwq

)
e2π(pu+qv)i .

Using w0 = 0, it follows for p = q = 0 that:

W0,0 = 2M
∑
k∈Z

|wk |2.

For p 	= 0, q = 0:
Wp,0 = 〈Tp, T0〉

∑
k∈Z

wk+pwk .

For p = 0, q 	= 0:
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W0,q = 〈Tq , T0〉
∑
k∈Z

wk+qwk .

And for p 	= 0, q 	= 0:

Wp,q = −〈Tp+q , T0〉(wpw−q + w−pwq). (24)

��
Proof of Theorem 1 First observe that the URPs for w(t) and v(t) coincide if and
only of their 2D-Fourier representations coincide. This requires that

∑
k∈Z

|wk |2 =
∑
k∈Z

|vk |2,

〈Tp, T0〉
∑
k∈Z

wk+pwk = 〈Tp, T0〉
∑
k∈Z

vk+pvk, for all p 	= 0,

〈Tp+q , T0〉(wpw−q + w−pwq) = 〈Tp+q , T0〉(vpv−q + v−pvq), for all p, q 	= 0.

As we have seen, choosing q = −p 	= 0 in the third of these conditions implies that:
|wp|2 +|w−p|2 = |vp|2 +|v−p|2 for all p ∈ Z

+. Summation over all p then implies
the first of these conditions. Likewise, choosing p = k + p̃ and q = −k in the third
of these conditions gives: 〈Tp̃, T0〉(wk+ p̃wk + w−k+ p̃w−k) = 〈Tp̃, T0〉(vk+ p̃vk +
v−k+ p̃v−k). Summation over all k ∈ Z now implies the second of these conditions.
Therefore, the two URPs coincide if and only if the third condition holds.

To address this condition, a special subclass of 2 × 2 complex matrices is intro-
duced. For all α, β ∈ C define the associated matrices S(α, β) as:

S(α, β) =
(

α β

β α

)
.

For this subclass, note that S(α, β)S(γ, δ) = S(αγ +βδ, αδ+βγ ) and det S(α, β) =
|α|2 − |β|2. It follows that the subclass of invertible matrices S(α, β) forms a
multiplicative group (under ordinary matrix multiplication), with S(α, β)−1 =
S(

α

|α|2 − |β|2 ,
−β

|α|2 − |β|2 ). The intersection of this group with the group of unitary

matrices (for which inversion coincides with Hermitian transposition) consists of the
matrices S(α, β) with |α|2 + |β|2 = 1 and αβ = 0 (i.e., either α = 0 and |β| = 1,
or |α| = 1 and β = 0).

The usefulness of this matrix group lies in the observation that two identities

Wp,−q = −〈Tp−q , T0〉(wpwq + w−pw−q)

W−p,−q = −〈T−p−q , T0〉(w−pwq + wpw−q)

are jointly captured by the matrix identity
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S(wp, w−p)S(wq , w−q)∗ = −S

(
Wp,−q

〈Tp−q , T0〉 ,
W−p,−q

〈T−p−q , T0〉
)

, (25)

provided that 〈Tp−q , T0〉 and 〈T−p−q , T0〉 are both nonzero. When p and q are adja-
cent nodes in the graph GW , this condition holds; this is implied by the completeness
assumption for the graph GW . Then the corresponding 2D-Fourier coefficients Wp,−q

and W−p,−q coincide with their counterparts Vp,−q and V−p,−q , respectively, if and
only if

S(wp, w−p)S(wq , w−q)∗ = S(vp, v−p)S(vq , v−q)∗.

We consider two different cases.

(a) Suppose that |wp| 	= |w−p| for some p ∈ KW . Then S(wp, w−p) is invertible.
Upon choosing q = p, we have that S(wp, w−p)S(wp, w−p)

∗ = S(vp, v−p)

S(vp, v−p)
∗ can be rewritten as S(wp, w−p)

−1S(vp, v−p)S(vp, v−p)
∗

S(wp, w−p)
−∗ = I . Therefore: S(vp, v−p) = S(wp, w−p)S(α, β) for some

unitary matrix S(α, β). For the choice q 	= p, we then have that S(wp, w−p)

S(wq , w−q)∗ = S(vp, v−p)S(vq , v−q)∗ becomes equivalent to S(vq , v−q) =
S(wq , w−q)S(α, β), involving the same unitary matrix S(α, β). Now it is easily
verified that if α = 0 then vq = βw−q for all q ∈ KW , i.e.: v(t) = βw(t) for a
unimodular constant β. Alternatively, if β = 0 then vq = αwq for all q ∈ KW ,
i.e.: v(t) = αw(t) for a unimodular constant α.

(b) Suppose that |wp| = |w−p| for all p ∈ KW . Then for the choices p = −q = k
and p = q = k we obtain the two conditions:

|wk |2 + |w−k |2 = |vk |2 + |v−k |2,
wkw−k = vkv−k .

It follows that vk = ukwk and v−k = ukw−k for some unimodular factor uk .
Then the normalized (unimodular) quantities Vk := vk|vk | and Wk := wk|wk | satisfy

Vk = uk Wk , V−k = uk W−k and VpV−q + V−pVq = WpW−q + W−pWq . Hence:(
u p
uq

− 1
) (

u p
uq

− Wq W−q
Wp W−p

)
= 0 if and only if u p = uq or u pWpW−p = uq Wq W−q .

First, suppose Wm W−m 	= WnW−n and um = un for some m, n ∈ KW . For k ∈
KW we have uk = um or uk Wk W−k = um Wm W−m . Similarly, it holds that uk = un

or uk Wk W−k = unWnW−n . Since uk Wk W−k = um Wm W−m and uk Wk W−k =
unWnW−n cannot both hold true, it follows that uk = um or uk = un . This implies
that for all k ∈ KW : uk = α for some unimodular constant α. Hence Vk = αWk for
all k if and only if vk = αwk for all k, which holds if and only if v(t) = αw(t).

Otherwise, suppose um 	= un . Again, for k ∈ KW we have uk = um or
uk Wk W−k = um Wm W−m . Similarly, it holds that uk = un or uk Wk W−k =
unWnW−n . Since uk = um and uk = un cannot both hold true it follows that
uk Wk W−k = um Wm W−m or uk Wk W−k = unWnW−n . This implies that for all
k ∈ KW : uk Wk W−k = um Wm W−m = unWnW−n = β for some unimodular con-
stant β. Hence uk Wk W−k = u pWpW−p = uq Wq W−q = β for some unimodular
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constant β. Therefore Vk = βW−k for all k if and only if vk = βw−k for all k, if and
only if v(t) = βw(t).

Finally, suppose Wm W−m = WnW−n for all m, n ∈ KW . Then uk = un or
uk Wk W−k = unWnW−n implies uk = un . Hence, for all k ∈ KW : uk = α for some
unimodular constant α. Therefore Vk = αWk for all k if and only if vk = αwk for all
k, if and only if v(t) = αw(t).

��
Proof of Proposition 3

(1) From Eq. (16) we have that:

z(t + mτ) = e2πc(t+mτ)i (2xc + w(t + mτ)) = e2πcti e2πcmτ i (2xc + w(t + mτ))

In this expression, the factor e2πcmτ i is the (m + 1)-th diagonal entry of the
matrix diag(Tc). The factor 2xc +w(t +mτ) is the (m +1)-th entry of the vector
2xcT0 + W (t).

(2) Suppose c(u − v) ∈ Z, then e2πcui = e2πcvi . Hence Z(u) − Z(v) =
e2πcui diag (Tc) (Z(u) − Z(v)), which implies that |Z(u) − Z(v)| = |W (u) − W (v)|
and ‖Z(u) − Z(v)‖ = ‖W (u) − W (v)‖.

(3) First, suppose m = c + p > 0 and n = q − c < 0. Then, from Proposition 2
and Eq. (17) it follows that:

Zc+p,q−c = −4xc+pxc−q〈Tp+q , T0〉 = −wpw−q〈Tp+q , T0〉,

Second, suppose m = p − c < 0 and n = c + q > 0. Then, from Proposition 2
and Eq. (17) it follows that:

Zp−c,c+q = −4xc−pxc+q〈Tp+q , T0〉 = −w−pwq〈Tp+q , T0〉,

Then, for p < c and q < c:

Wp,q = −〈Tp+q , T0〉
(
wpw−q + w−pwq

) = Zp+c,q−c + Zq+c,p−c.

(4) The result follows immediately from Definition 1 and Eq. (17). ��
Proof of Proposition 4

Write Z(t) = e2πcti V (t).

(1) Horizontal, vertical and diagonal lines in URPX . Horizontal lines (u, v) = (t, t0)
and vertical lines (u, v) = (t0, t):
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URPX (u, v)2 = ‖X (t) − X (t0)‖2

=
(

‖X (t0)‖2 + 1

2
‖V (t)‖2

)

−2Re
(

e2πcti 〈V (t), X (t0)〉
)

+1

2
Re

(
e4πcti 〈V (t), V (t)〉

)
.

The first, second and third term have frequencies in the ranges {0, . . . , 2d},
{c − d, . . . , c + d} and {2c − 2d, . . . , 2c + 2d}, respectively. Diagonal lines
(u, v) = (t + τ0, t):

URPX (u, v)2 = ‖X (t + τ0) − X (t)‖2

= 1

2

∥∥∥e2πcτ0i V (t + τ0) − V (t)
∥∥∥2

+1

2
Re

(
e4πcti 〈e2πcτ0i V (t + τ0) − V (t), e−2πcτ0i V (t + τ0) − V (t)〉

)
.

The first and second term have frequencies in the ranges {0, . . . , 2d} and {2c −
2d, . . . , 2c + 2d}, respectively.

(2) Horizontal, vertical and diagonal lines in URPZ . Horizontal lines (u, v) = (t, t0)
and vertical lines (u, v) = (t0, t):

URPZ (u, v)2 = ‖Z(t) − Z(t0)‖2

=
(
‖Z(t0)‖2 + ‖V (t)‖2

)

−2Re
(

e2πcti 〈V (t), Z(t0)〉
)

.

The first and second term have frequencies in the ranges {0, . . . , 2d} and {c −
d, . . . , c + d}, respectively.
Diagonal lines (u, v) = (t + τ0, t):

URPZ (u, v)2 = ‖Z(t + τ0) − Z(t)‖2 =
∥∥∥e2πcτ0i V (t + τ0) − V (t)

∥∥∥2
.

The latter term has frequencies in the range {0, . . . , 2d}.
(3) The maximum of the first frequency range is lower than the minimum of the

second frequency range if and only if c > 3d. Similarly, the maximum of the
second frequency range is lower than the minimum of the third frequency range
if and only if c > 3d.
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Quantifying Redundancy and Information
Content of Lines in Recurrence Plots Using
the Theory of Framework Rigidity

Aloys Sipers, Paul Borm and Ralf Peeters

Abstract We address redundancy in the information content of unthresholded re-
currence plots (URPs). The theory of framework rigidity is employed to explain and
analyze this redundancy geometrically. First we show that the domain of a URP can
be restricted to just a finite number of vertical or horizontal lines without loss of
information. Then we construct a globally rigid framework to demonstrate a similar
property for diagonal lines. This result gives theoretical support to recurrence quan-
tification analysis (RQA), which analyzes and extracts features from an RP along
such lines. Third, we construct a finite set of curves, one of which is a contour line,
for which it again holds that the URP contains all information along them. This links
the information content of lossy (thresholded) recurrence plots to that of URPs. This
study is also a starting point in employing redundancy to improve existing recurrence
plots based methods and algorithms, and to develop new ones. Several examples clar-
ify the methods and an application from EEG artifact detection shows some of their
practical potential.

1 Introduction

Recurrence plots (RPs), see [1], are a popular tool for the visualization of the behavior
of dynamical systems, in particular for their phase space trajectories. Recurrence
quantification analysis (RQA), see [2, 3], provides RP based methods to further
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analyze and quantify RPs and the underlying dynamical behavior. RQA proceeds by
selecting horizontal, vertical and diagonal lines in recurrence plots and computing
various quantities from them. Potential problems and pitfalls related to different
aspects of the application of RPs are pointed out in [4]. The methods based on RPs
have been successfully applied to various fields in the natural sciences as well as
in engineering and in economy. See, for instance, the bibliography collected on the
recurrence plot website [5], which shows an impressive increase of such applications
over the last decade.

Recurrence plots can also be used to analyze scalar signals x(t) by first embedding
them in an M-dimensional trajectory space. Given a finite-interval continuous-time
real-valued signal x(t), with t ∈ [0, 1) say, the time-delay embedding method of [6]
constructs such a trajectory X (t) as:

X (t) =

⎛
⎜⎜⎜⎝

x(t)
x(t + τ)

...

x(t + (M − 1)τ )

⎞
⎟⎟⎟⎠ , t ∈ [0, 1). (1)

The embedding dimension M and the time-delay τ ∈ (0, 1) are specified by the user,
for which some techniques are available in the literature, e.g. involving the average
mutual information (AMI) [7] for M , or the false nearest neighbors fraction (FNNF)
[8] for τ . Next, the unthresholded recurrence plot (URP) is defined as (the graph of)
the intra-trajectory distance function for X (t):

URPX (u, v) = ‖X (u) − X (v)‖, u, v ∈ [0, 1), (2)

in which ‖ · ‖ denotes a norm. While several other norms are also popular in the
literature, such as the 1-norm and the maximum norm, we will exclusively use the
Euclidean norm here. Also, to avoid having to take finite interval effects explicitly
into account, the signal x(t) and its trajectory X (t) are periodically extended from
the interval [0, 1) to all of R. Finally, for a given positive threshold ε, the binary
(thresholded) recurrence plot is defined as

RPε
X (u, v) = Θ (ε − ‖X (u) − X (v)‖) , u, v ∈ [0, 1), (3)

in which Θ denotes the Heaviside function (i.e. Θ(x) = 1 for x ≥ 0 and Θ(x) = 0
otherwise). Recurrence plots can likewise be defined for discrete-time signals and
trajectories in an obvious way, by restricting t , u and v to a discrete set of time instants
(and choosing τ accordingly).

For a proper understanding of the information content of a recurrence plot, we
have previously addressed the relationship between the URP and its underlying sig-
nal x(t) using Fourier analysis and graph theory; see [9]. Generically it holds that
URPX determines x(t) up to a sign and an additive constant, but more information
from x(t) may sometimes be lost, depending on the frequency content of x(t) and
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on the choice of the embedding parameters M and τ . Earlier work in this area is
found in [10, 11], while the relationship between the RP and x(t) was previously
investigated in [12–15]. In the present paper we study redundancy of information
in URPs themselves. One obvious aspect of URPs and RPs is their symmetry with
respect to the diagonal u = v. Since URPs are a 2-dimensional representation of
a 1-dimensional object (the trajectory in M-dimensional space), it should also not
come as a surprise that it carries much more redundant information. We first address
the joint information content of horizontal and vertical lines in a URP and we show
how this determines the (redundant) information in other parts of that URP. As an
example, we show how our results on redundancy in URPs can be employed for the
detection of similar signal segments. (Other detection methods based on RPs can
also be found in [16–18].) For further studies on lines structures in RPs, see e.g. [2,
19, 20]. We shall also briefly address the information in diagonals and in contour
lines of a URP. This aims to better understand the information which is preserved in
an RP, as an RP is obtained from a URP by thresholding.

Because a URP captures distance information between pairs of points on the trajec-
tory X (t), it is natural to employ the theory of framework rigidity, see [21–23], to
explain geometrically the redundant distance information in a URP. Following [23],
we introduce some preliminary definitions and notation. A configuration P in R

M

is a finite set of N points P = {P1, P2, . . . , PN }. Let G be a simple graph on the
nodes 1, 2, . . . , N , then a bar-and-joint framework (or simply a framework) in R

M ,
denoted by G(P), is the graph G together with the configuration P , where each node
n of G is located at the point Pn . Each edge (m, n) in G is viewed as a rigid bar
of length equal to ‖Pm − Pn‖, and each node in G as a joint – with full rotational
freedom for all its adjacent bars. Two frameworks G(P) and G(Q) are said to be
equivalent if ‖Pm − Pn‖ = ‖Qm − Qn‖ for all edges (m, n) of G. They are said
to be congruent if ‖Pm − Pn‖ = ‖Qm − Qn‖ for all pairs of nodes m and n in the
graph G. This is the same as saying that G(Q) can be obtained from G(P) by an
isometry. A framework G(P) is called rigid if there is an ε > 0 such that every
framework G(Q) which is equivalent to G(P) and for which ‖Pn − Qn‖ < ε for all
n = 1, 2, . . . , N , is also congruent to G(P). A framework is called globally rigid if
this holds for every ε > 0, i.e. if every framework G(Q) which is equivalent to G(P)

is congruent to G(P). A complete graph always gives a globally rigid framework
for every embedding dimension M . See Fig. 1 for an example of four frameworks in
R

2 illustrating these concepts, where the nodes (joints) are represented by dots and
the edges (bars) by straight lines.

In this paper we consider frameworks G(X ) which involve a configuration
of points X = {X1, . . . ,XN } located on a trajectory X (t). i.e. for all nodes
n = 1, . . . , N of G: Xn = X (tn) for some set of time instants t1, . . . , tN . Note that
global rigidity of G(X ) then expresses the property that all the values of URPX (u, v)
with u, v ∈ {t1, . . . , tN } are determined by the subset of such values with (u, v) cor-
responding to the edges of G.
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Fig. 1 The frameworks in a and b are equivalent. When embedded in R
2, both are rigid. They are

not congruent, therefore they are both not globally rigid. When embedded in R
3 they are both also

no longer rigid. The frameworks in c and d are congruent and both are globally rigid. The graph G
is complete; therefore global rigidity holds for arbitrary embedding dimensions ≥ 2

The paper is structured as follows. In Sect. 2, we show that the whole URP can be
reconstructed from the information content of a set of selected horizontal or vertical
lines in a URP. The geometrical interpretation and the use of redundancy in recur-
rence plot analysis is demonstrated and evaluated by three examples. First, redundant
distance information in a trajectory and in its URP is illustrated geometrically. Sec-
ond, we show that the choice of the embedding parameters M and τ may influence
the number of lines needed in the URP to capture all the information. Third, an
application in EEG analysis involving eye blink artifact detection is presented, to
demonstrate how redundancy can be employed to reduce the analysis region for the
URP. In Sect. 3, we construct globally rigid frameworks with points which relate
to diagonals of a URP, and then we extend that approach to (approximate) contour
lines. This aims to better understand the information which is (and which is not)
preserved in RPs. Section 4 concludes the paper. All the proofs are collected in the
Appendix.
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2 Redundancy in URPs and the Information Contained in
Vertical Lines

In this section we show with basic geometry how an entire URP can be reconstructed
from the information it carries in a few well selected horizontal or vertical lines.
Because URPX is constructed from the intra-trajectory distances of X (t) in the
embedding space R

M , it is clear that it is invariant under isometric transformation
of X (t), which makes it natural to employ affine geometric tools. To formalize this
we have the following basic results.

Lemma 1 Let VX be the smallest affine subspace of R
M which contains the trajec-

tory X (t). Denote k = dim(VX ). Let Tb = {t0, t1, . . . , tk} be a set of time instants
such that {X (t0), X (t1), . . . , X (tk)} constitutes an affine basis for VX . Each point
X (t) can then be written in a unique way as X (t) = ∑k

m=0 αm(t)X (tm) with affine
coordinates αm(t) ∈ R, satisfying

∑k
m=0 αm(t) = 1.

Relative to the point X (t0), let the trajectory be represented by X̃(t) := X (t)−X (t0),
so that a basis for the linear space VX − X (t0) is given by the columns of the matrix
B := (

X̃(t1) . . . X̃(tk)
)
. Note that for this basis, the coordinate vector of X̃(t) is

the unique vector α(t) satisfying X̃(t) = Bα(t). Its entries coincide with the affine
coordinates: α(t) = (α1(t), . . . , αk(t))T . We then have that:

(1) The coordinate vector α(t) of X̃(t) is given by

α(t) = (BT B)−1 BT X̃(t). (4)

(2) The values URPX (u, v) of the unthresholded recurrence plot satisfy:

URPX (u, v)2 = (A(u) − A(v))T
(

BT B
)−1

(A(u) − A(v)) , (5)

where
A(t) := BT X̃(t) = BT Bα(t). (6)

(3) For m = 1, . . . , k, the entries Am(t) of A(t) are given in terms of URPX by:

Am(t) = 1

2

(
URPX (t0, tm)2 + URPX (t0, t)2 − URPX (tm, t)2

)
. (7)

(4) For m, n = 1, . . . , k, the entries
(
BT B

)
m,n of the Gram matrix BT B are given

by: (
BT B

)
m,n

= Am(tn) = An(tm). (8)

Combining parts (2), (3) and (4) of this lemma, it follows that URPX (u, v) can be
computed from the joint information stored at certain other locations in the URP. We
have the following theorem.
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Theorem 1 Let VX be the smallest affine subspace of R
M containing the trajectory

X (t). Denote k = dim(VX ). Let Tb := {t0, t1, . . . , tk} be a set of time instants such
that {X (t0), X (t1), . . . , X (tk)} is an affine basis for VX . Then:
(1) The entire unthresholded recurrence plot URPX (u, v) can be computed from the
restriction of URPX (u, v) to the k + 1 vertical lines of points (u, v) with u ∈ Tb.
(2) Let Ta ⊆ [0, 1) be an arbitrary subset of time instants. Then the restriction
of URPX (u, v) to Ta × Ta can be computed from the restriction of URPX (u, v) to
Tb × (Tb ∪ Ta).

According to part (1) of this theorem, the dimension k of the affine subspace VX

determines how many vertical lines jointly carry all the information in a URP. (By
symmetry, this likewise holds for horizontal lines.) The value of k is bounded from
above by the embedding dimension M , but it may also vary with the choice of
time-delay τ . We can make this precise for time-delay embeddings of real periodic
signals x(t) which have a Fourier series representation x(t) = ∑

p∈Z
cpe2πpti . For

such signals it holds that the complex Fourier coefficients cp satisfy c−p = cp for
all p ∈ Z. The corresponding trajectory X (t) is given by X (t) = ∑

p∈Z
cpe2πpti Tp,

in which the complex-valued vectors Tp ∈ C
M are given by:

Tp =

⎛
⎜⎜⎜⎝

1
z p

...

z(M−1)p

⎞
⎟⎟⎟⎠ , with z = e2πτ i . (9)

See also [9], where this class was used extensively. We then have the following result.

Proposition 1 Let x(t) be a real periodic signal with a Fourier series representation
x(t) = ∑

p∈Z
cpe2πpti . Let k be the dimension of the smallest affine subspace VX

of R
M containing the trajectory X (t) = ∑

p∈Z
cpe2πpti Tp. Define the set K X :=

{p ∈ Z \ {0} | cp �= 0} and define the linear subspace V of C
M as the span of the set

of vectors Tp with p ∈ K X . Then:
(1) k = dim(V).
(2) Let r be the cardinality of the set {pτ(mod 1) | p ∈ K X }, i.e. the total number of
different fractional parts of the quantities pτ with p ∈ K X . Then k = min{M, r}.
For values of τ that are not rational, all the quantities pτ(mod 1) with p ∈ K X are
different. Then part (2) of this proposition shows that k = min{M, |K X |} and the di-
mension k of VX attains its maximal value (i.e. for the situation where τ is varied but
M and the signal x(t) are fixed). Because the vectors Tp all depend continuously on
τ , it follows from part (1) that the same maximal value of k is also attained in open
neighborhoods of such irrational values for τ and hence it is attained generically.
However, for some special rational choices of τ (e.g. in combination with finite sets
K X ), the value of k may drop.
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To further clarify the findings of this section, we now give three examples. In the first
example we explain geometrically the redundant distance information contained in
a URP. In the second example we investigate the impact of different choices of τ ,
which may lead to different values of the dimension k = dim(VX ). In the third ex-
ample we investigate an application in EEG analysis. It concerns a digitally sampled
measurement signal containing eye blink artifacts. We demonstrate how the set of
time instants Tb in Theorem 1 can be chosen to reduce the analysis region from the
entire URP to only a part.

Example 1 Parts of a URP constructed from vertical lines in that URP

To illustrate Theorem 1 and the underlying Lemma 1, we consider a trajectory X (t)
in R

2 and a set of time instants Tb = {t0, t1, t2}, for three different choices of Ta .
(i) Let Ta = {u0, v0}.
From Lemma 1 we have that URPX (u0, v0) is determined by the entries of A(u0),
A(v0) and BT B. The entries of BT B are in turn given by the entries of A(t1) and
A(t2). The entries of a vector A(t) are determined by URPX (t0, t), URPX (t1, t),
URPX (t2, t), URPX (t0, t1) and URPX (t0, t2). With t ∈ {t1, t2, u0, v0}, it therefore
follows that URPX (u0, v0) is determined by:

(1) The values URPX (t0, t1), URPX (t0, t2) and URPX (t1, t2), which equal the
lengths of the three black solid lines in Fig. 2a. Note that this constitutes the
complete graph for the affine basis of trajectory points {X (t0), X (t1), X (t2)} for
Tb.

(2) The values URPX (t0, u0), URPX (t1, u0) and URPX (t2, u0), which equal the
lengths of the three red solid lines in Fig. 2a. These values fix the position of the
point X (u0) relative to the affine basis under (1).

(3) The values URPX (t0, v0), URPX (t1, v0) and URPX (t2, v0), which equal the
lengths of the three green solid lines in Fig. 2a. These values fix the position
of the point X (v0) relative to the affine basis under (1).

The key geometric observation is that the framework G(P) with P consisting of the
trajectory points for the time instants Ta ∪ Tb and which has all the possible edges
except for the edge between X (u0) and X (v0) (represented by the blue dashed line in
Fig. 2a), is a globally rigid framework. Therefore the value of URPX (u0, v0) is fixed.
In Fig. 2b, the corresponding points in the recurrence plot URPX are indicated: the
blue dot for (u0, v0), three black dots for (t0, t1), (t0, t1), (t1, t2), three red dots for
(t0, u0), (t1, u0), (t2, u0), and three green dots for (t0, v0), (t1, v0), (t2, v0). Because
of symmetry, and because the values of any URP along the diagonal u = v are all
zero, the statements of Theorem 1 follow (also for horizontal lines).
(ii) Let Ta = [α, β] be a subinterval of [0, 1].
The restriction of URPX (u, v) to the grid points Tb × Tb again corresponds to the
complete graph for the affine basis of points X (t0), X (t1) and X (t2), previously in-
dicated by the solid black triangle in Fig. 2a. The restriction of URPX (u, v) to the
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Fig. 2 Geometric representation of redundant distance information: a in a trajectory; b in its URP

three vertical line segments with coordinates in Tb × [α, β], captures the distances
between the points X (t) with t ∈ [α, β] and the three points of the affine basis; it
fixes the position of these points X (t) relative to the basis. Taking u0, v0 ∈ [α, β], the
restriction of URPX (u, v) to the square area [α, β] × [α, β] can then be constructed
in a point-by-point manner as described under (i).
(iii) Suppose Ta = [0, 1]. This is case (ii) for the special choice α = 0 and β = 1.
Then from the restriction of URPX (u, v) to the three vertical lines with (u, v) in
{t0, t1, t2} × [0, 1], see Fig. 2b, all of URPX (u, v) can be constructed.

Example 2 Influence of the embedding parameters M and τ on redundancy

Consider a zero-mean real-valued signal of the form x(t) = ∑2
p=−2 cpe2πpti with

c−p = cp �= 0 for p ∈ K X = {−2,−1, 1, 2} and c0 = 0. Let the embedding
dimension be chosen as M = 4. The corresponding trajectory X (t) is contained in a
smallest affine subspace VX of R

4, which is in fact a linear subspace because of the
zero-mean property. It therefore coincides with the intersection of R

4 and the space
V spanned by the four vectors Tp ∈ C

4 with p ∈ K X . According to Proposition 1(1)
we have that: k = dim(VX ) = dim(V) = rank

(
T−2 T−1 T1 T2

)
. The latter matrix

is a Vandermonde matrix for the 4 complex numbers in the set {z2, z, z, z2} with
z = e2πτ i . These are numbers on the complex unit circle and depend on τ . To find
the value of k we must count how many different values are contained in this set.
From Proposition 1(2) (and since M = 4) we have that k also equals the cardinality
r of {pτ(mod 1) | p ∈ K X }. We compute k for four different rational values of τ .

(1) τ = 1
2 . Then z = eπ i = −1 and |{z2, z, z, z2}| = |{−1, 1}| = 2. Alternatively,

r = |{pτ(mod 1) | p ∈ K X }| = |{0, 1
2 }| = 2. Both approaches give k = 2.

(2) τ = 1
3 . Now z = e2π i/3 and |{z2, z, z, z2}| = |{e2π i/3, e4π i/3}| = 2. Also,

r = |{pτ(mod 1) | p ∈ K X }| = |{ 1
3 , 2

3 }| = 2. It again follows that k = 2.
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(3) τ = 1
4 . Here z = eπ i/2 = i and |{z2, z, z, z2}| = |{i,−1,−i}| = 3. Likewise,

r = |{pτ(mod 1) | p ∈ K X }| = |{ 1
4 , 1

2 , 3
4 }| = 3, whence k = 3.

(4) τ = 1
5 . In this case

z = e2π i/5 and |{z2, z, z, z2}| = |{e2π i/5, e4π i/5, e6π i/5, e8π i/5}| = 4. Similarly,
r = |{pτ(mod 1) | p ∈ K X }| = |{ 1

5 , 2
5 , 3

5 , 4
5 }| = 4. Now k attains its maximal

possible value (for the given choice of M and x(t)): k = 4.

This example shows that different choices of τ may sometimes produce different
values of k. Recall that the number k + 1 gives the number of vertical lines to which
a URP can be restricted without loss of information. Note also that it follows from
the results of [9] that for the given values of M , τ and K X , the URP determines the
underlying zero-mean signal x(t) up to a sign choice in each of the cases (2) and (4),
whereas in case (1) it determines x(t) up to two sign choices, and in case (3) up to
one sign choice and one complex unimodular factor. Therefore it does not generally
hold that a URP which is less informative on x(t) will have fewer lines that still
contain all its information.

Example 3 Reduction of the region of analysis for eye blink artifact detection

We present an application in EEG analysis to illustrate how redundancy in a URP
can be used to reduce the search region for the detection of morphologically similar
signal segments. From a digitally sampled EEG measurement signal (with sampling
frequency 250 Hz) we took an excerpt of N = 2, 500 samples with a total duration
of T = 10 s, containing 7 eye blink artifacts. From this discrete-time measurement
signal a continuous-time signal x(t) was constructed, interpolating the measurement
values to let x(t) have a finite Fourier series. It is shown in Fig. 3a. The eye blink
artifacts are clearly visible, as they occur as upward peaks having a significantly
higher amplitude than the rhythmic brain activity contained in the signal. The corre-
sponding URP was computed for the time-delay embedding parameters M = 55 and
τ = 0.004 with u and v ranging over the interval [0, 10]; it is displayed in Fig. 3b.
It has distinctly yellow strips which mark the location of the onset of eye blinks in
the signal x(t). The choice of a high embedding dimension helps to locate the eye
blinks, as it induces corresponding maxima in the URP, plotted in red.

For testing purposes, a second signal y(t) was generated by adding Gaussian
zero-mean white noise w(t) with variance σ 2 = 25 to the signal x(t) at the sample
times, i.e. before interpolation. The high variance of the noise makes that the eye
blink artifacts are no longer easily observed in the signal by mere inspection and
simple thresholding does not allow their detection. This noise corrupted signal y(t)
is shown in Fig. 3c and its URP (for the same embedding parameters as before) is
given in Fig. 3d.

The theory of this section indicates that all the information of the URP is also still
contained in a limited number of vertical lines of the URP, which can be bounded
above by M + 1. One may for instance focus attention on vertical lines which are
close to each other, i.e. on a vertical strip of the URP. Note that a vertical strip which
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Fig. 3 a The interpolated EEG signal x(t), containing 7 eye blink artifacts. b The URP of x(t).
c The noise corrupted signal y(t) = x(t) + w(t) with Gaussian zero-mean white noise w(t) with
variance 25. d The URP of y(t)

aligns with an eye blink artifact allows one to locate the other artifacts in the URP
for the clean signal x(t) by searching for the local maxima in the URP. However, the
same result can still be obtained for vertical strips which do not align with eye blink
artifacts. In fact, for the URP of the noisy signal y(t), the strips which do not align
with eye blinks seem to be more promising for avoiding false positive detections
(which for instance might occur near the vertical line with u = 6.3).

3 Distance Information Carried by Diagonals and Contour Lines

In the previous section we have demonstrated that a URP can be restricted without
loss of information to just k+1 of its vertical (or horizontal) lines, corresponding to an
affine basis of VX . We took a geometric approach, constructing a globally rigid graph
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connecting any two points X (u) and X (v) to all of the affine basis {X (t) | t ∈ Tb}.
The distance information contained in the selected vertical lines of the URP then
admits the computation of URPX (u, v).

In the present section we investigate the information content of different sets of
lines or curves in a URP, also involving the construction of a globally rigid graph.
We first study the situation for diagonals, which like vertical and horizontal lines
are also used for RQA. In the discussion that follows we assume that the periodic
trajectory X (t) is nontrivial and sufficiently smooth (i.e. continuous or continuously
differentiable with respect to t). For such X (t) and its URP, a graph G and an
associated framework G(X ) are now constructed in the following way.

• Choose an initial time instant t0 ∈ [0, 1), a time step Δt > 0, and an integer N .
Let k be the dimension of the affine trajectory space VX .

• For n = 1, 2, . . . , N , define the time instants tn by:

tn = tn−1 + Δt (mod 1). (10)

i.e. tn increases linearly with n with fixed increments Δt , but the time instants are
‘wrapped around’ from 1 back to 0 in view of periodicity of X (t).

• Let G have the nodes {0, 1, . . . , N } and the edge set {(i, j) | 1 ≤ j − i ≤ k + 1}.
• Let X = {X0,X1, . . . ,XN } with Xn = X (tn) for n = 0, 1, . . . , N be a configura-

tion consisting of trajectory points, and G(X ) the corresponding
framework.

If N is sufficiently large, then periodicity of the sequence of time instants will
occur if and only if Δt is rational. If Δt is irrational, the sequence will be dense
and any two points u, v ∈ [0, 1) will be approximated arbitrarily closely by some
time instants ti and t j in the sequence. Now suppose that k + 1 consecutive points
X (tn), . . . , X (tn + k) always constitute an affine basis for VX . Then the framework
G(X ) is globally rigid: by construction, any k + 2 consecutive points form a clique
(i.e. a complete subgraph) which is globally rigid and fixes the position of its first
(last) point relative to the last (first) k + 1 points. Any k + 3 consecutive points are
then covered by two such overlapping cliques, of which the overlap consists of an
affine basis of k + 1 consecutive points, fixing the relative positions of the first and
last points and hence their distance.

The points (tn, tn+1) all lie on the diagonal line D1 described by v = u +
Δt (mod 1) in the domain of a URP. Because of the periodic nature of the URP,
we will identify opposite sides of a URP and allow curves and lines to be con-
tinued across them. Likewise, the points (tn, tn+2) all lie on the diagonal line D2
described by v = u + 2Δt (mod 1). Continuing in a similar fashion, we have for
� = 3, . . . , k + 1 that the points (tn, tn+�) all lie on the diagonal line D� described
by v = u + �Δt (mod 1). If the value of the URP is known along the diagonal lines
D1, . . . , Dk+1, then the lengths of the bars in the framework G(X ) are all known,
and by global rigidity the distance between any two points X (ti ) and X (t j ) can be
computed. Continuity of X (t) makes that such points can be used to approximate
X (u) and X (v) arbitrarily closely. This gives the following theorem.
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Theorem 2 Let X (t) ∈ R
M be a continuous periodic trajectory with period T = 1.

Let k = dim(VX ), where VX is the smallest affine subspace of R
M containing X (t)

for all t ∈ [0, 1). Let Δt ∈ (0, 1) be irrational and consider the k + 1 diagonal
lines D1, . . . , Dk+1 given by D� : u 	→ v = u + �Δt (mod 1). If an initial point
t0 exists such that for all n ∈ N, with tn = t0 + nΔt (mod 1), the subset of k + 1
consecutive trajectory points X (tn), . . . , X (tn+k) gives an affine basis for VX , then
the domain of URPX (u, v) can be restricted to the diagonals D1, . . . , Dk+1 without
loss of information.

This theorem strongly suggests that, generically, the information of a URP is not
only contained along k + 1 of its vertical lines, but also along k + 1 suitably chosen
diagonals. The remaining open issue concerns the existence of an initial time instant
t0 with the properties required by the theorem, for a suitable large class of trajectories
X (t).
We proceed to study the information content of k +1 curves in the URP, one of which
is a contour line. To fix terminology, the level set Ld of a URP for a given value d > 0
is defined to consist of all the points (u, v) for which U R PX (u, v) = d. A level set
typically consists of one or several curves which are contour lines of the URP; they
make up the connected components of the level set Ld . Again we identify opposite
sides of a URP so that contour lines can continue across them. Note that a (binary,
thresholded) RP is basically obtained from a URP by determining the level set for a
specified value d = ε. This study aims to better understand the loss of information
that occurs when thresholding a URP to produce an RP.

We now construct a graph G and an associated framework G(X ) largely as before
when studying diagonals, but with the following adaptations.

• We choose an additional distance value d > 0, but the time step Δt is no longer
needed.

• For n = 1, 2, . . . , N , the time instants tn are no longer generated according to
Eq. (10), but instead by:

tn = min{t̃ > tn−1 | URPX (t̃ (mod 1), tn−1) = d} (mod 1). (11)

i.e. tn is the earliest time instant after tn−1 for which ‖X (tn) − X (tn−1)‖ = d,
where time instants are ‘wrapped around’ from 1 back to 0 in view of periodicity
of X (t).

For the construction to produce a valid sequence {t0, t1, . . . , tN }, a sufficient condition
that we will assume to hold is 0 < d < D/2, where D = maxu,v URPX (u, v).
(Continuity of the periodic trajectory X (t) guarantees D to exist and to have a finite
value.) As before, we again assume that any subsequence of k + 1 consecutive
trajectory points X (tn), . . . , X (tn+k) gives an affine basis of VX . Then the graph G
is again globally rigid.

We have that ‖X (tn) − X (tn−1)‖ = d for all n = 1, 2, . . . , N , which shows
that the corresponding points (tn−1, tn) in the domain of URPX are all located, by
construction, on the level set Ld . Equation (11) defines tn as a function of tn−1,
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which we denote by C1. The graph of this function may be a single contour line
for the value d, or be composed of parts of one or several contour lines of Ld .
The points (tn−2, tn) with n = 2, 3, . . . , N in general do not lie on a single level
set. The function which generates tn from tn−1 is denoted by C2. It is obtained by
applying two steps of the recursion of Eq. (11), showing that C2 = C1 ◦ C1. When d
is small and X (t) continuously differentiable, which admits local linearization, this
curve approximates a subset of the level set L2d . This subset may consist of a single
contour line, or of various parts of one or several contour lines. This depends on the
curvature of the trajectory and on how nearby different sections of the trajectory can
be. Likewise, the points (tn−3, tn) with n = 3, . . . , N lie on the graph of the function
C3 = C1 ◦ C1 ◦ C1, which, for small d, approximates a subset of L3d . Continuing in
a similar fashion, we construct k + 1 curves C� which pass through the sets of points
{(tn−�, tn) | n = �, � + 1, . . . , N } for � = 1, 2, . . . , k + 1, respectively, and which,
for small d, approximate subsets of the level sets Ld , L2d , ..., L(k+1)d . These curves
C� are characterized recursively by C� = C1 ◦ C�−1. They have a continuous graph
if and only if C1 is continuous.

We now sketch how, if C1 happens to be continuous and for a well chosen value
of d, the values of the URP along the curves C1, . . . , Ck+1 can be used to compute
the distance between two points X (u0) and X (v0). Let t0 = u0 and construct the
sequence of time instants u1, u2, . . . , uN as described above. Then, by construction,
the points (un, un+�) are located on the curve C� for all n = 0, 1, . . . , N − �.
Because of global rigidity of the graph G, the information in the URP along the
curves C1, . . . , Ck+1 fixes the distance between any two points X (ui ) and X (u j ).
For sufficiently large N , exploiting periodicity of the trajectory X (t), we aim for a
situation in which the sequence of time instants un becomes dense in the interval
[0, 1). Before, for the diagonals D�, this required Δt to be irrational. For the current
situation this requires the distance value d to be chosen such that the sequence of
time instants un again does not become periodic. It also requires that the range of
C1, and hence the range of each curve C�, is dense in [0, 1). In this way, the time
instant v0 can be approximated arbitrarily closely by a subsequence of time points
un j . Consequently, also the value of URPX (u0, v0) can be obtained with arbitrary
precision from the values URPX (u0, un j ).

If C1 is continuous and describes a contour line then, even though this proce-
dure has numerical drawbacks and is not advocated from a practical point of view, it
strongly suggests that, for a suitably selected value of d, the information contained in
the URP along the curves C1, . . . , Ck+1 determines URPX (u, v) completely. More
generally, if C1 is discontinuous and in particular if its range is not dense in [0, 1),
then a similar statement holds if instead of using the curve C1, one uses the multi-
valued function of which the graph is the level set Ld . Along with this, the curves
C� should then be replaced by the graphs of the multi-valued functions obtained by
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composing Ld with itself multiple times. This level set Ld determines the recurrence
plot RPd

X (u, v). Thresholding is a lossy operation and for an RP it is well known that
it contains in general less information than the URP. The above discussion makes
clear that by adding the information along another k well selected curves or level
sets of the URP, loss of information can be avoided.

Example 4 Information along curves in the URP

To illustrate the constructions of this section, we consider a zero-mean periodic signal
x(t) which is specified by

x(t) = 8 sin(2π t) + 2 cos(4π t + 1

5
) + sin(6π t + 1). (12)

It is shown in Fig. 4a. It has a finite power spectrum with the corresponding index
set K X = {−3,−2,−1, 1, 2, 3}. We choose the embedding parameters M = 2 and
τ = 1

5 , for which the 2-dimensional periodic trajectory X (t) is given in Fig. 4b. Note
that VX = R

2 and k = dim(VX ) = 2. A contour plot of the resulting URP is shown
in Fig. 4c, while the RP for the threshold value ε = 5 is displayed in Fig. 4d. Three
specific level sets, consisting of contour lines for the URP values d = 5, 2d = 10,
and 3d = 15, are presented in Fig. 4e.

In Fig. 4f the three curves C1, C2, and C3 for d = 5 are given. These are closed
curves when opposite sides of the square plot area are identified, consistent with the
periodicity of X (t). The curve C1 coincides with a contour line of the URP (and also
of the RP) for d = 5. The curves C2 and C3 are approximations of contour lines
for the URP values 2d = 10 and 3d = 15, respectively. (They are not very close
approximations, since d is not really small.)

Starting from an initial time t0 = u0 = 0.05, the corresponding points X (un)

generated with d = 5 for n = 0, 1, . . . , 13 are shown on the trajectory in Fig. 4b.
By definition, these are such that ‖X (un) − X (un−1)‖ = 5 for n = 1, . . . , 13.
The curve C2 in the URP captures the distances ‖X (un) − X (un−2)‖, while the
curve C3 captures the distances ‖X (un) − X (un−3)‖. The globally rigid graph G
has all the edges corresponding to these distances and is also displayed in Fig. 4b. It
follows that the curves C1, C2, and C3 jointly carry sufficient information to compute
URPX (u0, un) for all n. The corresponding locations in the URP are also displayed
in Fig. 4f. Note that the points X (u11), X (u12) and X (u13) are located on X (t) in
between the pairs of points X (u0) and X (u1), X (u1) and X (u2), and X (u2) and
X (u3), respectively. If n is increased further, this eventually produces many more
points in these intervals, which can then be used to approximate any given point X (v)
and the value URPX (u0, v).
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Fig. 4 a The zero-mean periodic signal x(t) of Example 4. b The trajectory X (t) in R
2, the

configuration of trajectory points X = {X (u0), . . . , X (u13)}, and the globally rigid framework
G(X ). c The unthresholded recurrence plot URPX (u, v) for M = 2 and τ = 1

5 . d The recurrence
plot RP5

X (u, v) for the threshold ε = 5. e The level sets (contour lines) for the values d = 5,
2d = 10, 3d = 15. f The curves C1, C2, C3 and their points for times t = u0, u1, . . . , u13



70 A. Sipers et al.

4 Conclusions and Discussion

In Sect. 2, we used properties of rigid frameworks to explain geometrically how
the information contained by a URP along a finite number of vertical lines, can be
used to reconstruct the entire URP. This result holds for arbitrary trajectories X (t),
which need not come from a scalar signal through time-delay embedding. In Sect. 3
we presented a similar result for diagonal lines, and also for curves which coincide
with or approximate contour lines. However, the proofs of those results strongly
exploit periodicity of X (t). The number of lines (or curves) needed to avoid loss of
information in all these results is computed as k +1, where k equals the dimension of
the space VX . We neither claim nor conjecture that this number is minimal. In fact,
especially when a continuous periodic scalar signal x(t) is time-delay embedded
to produce the trajectory X (t), it may well be that fewer lines still contain all the
information of a URP.

When a discrete-time recurrence plot is considered, the results of Sect. 2 still hold.
The same goes for diagonal lines when Δt is chosen as a multiple of the sampling
time which is relatively prime to the total number of measurements. The curves
C1, . . . , Ck+1, though, are less easy to generalize to discrete-time, because they may
involve time instants that are no integer multiples of the sampling time.

Regarding the information contained in a (thresholded) RP, we note that our results
suggest that the information from a finite number of other curves in the URP may
help to restore full information. In our opinion it does not seem likely that the choice
of these curves is very critical, although convenient choices may give easier proofs.
An interesting topic for further research is to investigate whether the contour lines in
multi-level recurrence plots (obtained from URPs by thresholding at several levels
instead of just one) may carry the full information of a URP.

In Example 3 we showed how the results of Sect. 2 can be combined with char-
acteristics of an EEG signal to develop a novel method for artifact detection using
vertical lines. Similar approaches can be investigated which involve diagonal lines or
(approximate) contour plots. This theoretical study may serve as a basis to improve
existing recurrence plots based methods and algorithms, and we expect it to provide
new opportunities for signal analysis and feature selection.
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Appendix

Proof of Lemma 1.
(1) For X (t) ∈ VX we have that X (t) = ∑k

m=0 αm(t)X (tm) in which the
affine coordinates α0(t), α1(t), . . . , αk(t) add up to 1. For the translated trajectory
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X̃(t) = X (t) − X (t0) it then holds that: X̃(t) =
(∑k

m=0 αm(t)X (tm)
)

− X (t0) =(∑k
m=0 αm(t)X (tm)

)
−

(∑k
m=0 αm(t)X (t0)

)
= ∑k

m=1 αm(t)(X (tm) − X (t0)) =
Bα(t). This shows how the affine coordinates of X (t) are related to the linear vector
space coordinates of X̃(t) for the basis in the columns of B.
The matrix B has full column rank k, so the k × k Gram matrix BT B is invertible.
From X̃(t) = Bα(t) it then follows upon premultiplication by (BT B)−1 BT , that
α(t) = (BT B)−1 BT X̃(t), which proves part (1) of the lemma.
(2) With the given definition of A(t) in terms of the coordinate vector α(t), the right-

hand side of Eq. (5) becomes: (α(u) − α(v))T BT B
(
BT B

)−1
BT B (α(u) − α(v))

= (α(u) − α(v))T BT B (α(u) − α(v)) = ‖B (α(u) − α(v)) ‖2 = ‖X̃(u) − X̃(v)‖2.
(3) Since A(t) = BT X̃(t), the entry Am(t) equals the inner product 〈X̃(tm), X̃(t)〉.
It is well-known that an inner product between two vectors w1 and w2 on a
real vector space can be expressed in terms of its induced norm as 〈w1, w2〉 =
1
2 (‖w1 + w2‖2 − ‖w1‖2 − ‖w2‖2). Choosing w1 = X̃(tm) and w2 = −X̃(t), and
noting that ‖X̃(t)‖2 = URPX (t, t0)2, part (3) of the lemma follows.
(4) This follows from the observation that

(
BT B

)
m,n = 〈X̃(tm), X̃(tn)〉 = Am(tn),

where m and n can be interchanged because of symmetry. ��

Proof of Theorem 1.
Suppose that (u0, v0) ∈ Ta × Ta . Then, from part (2) of Lemma 1it follows that
URPX (u0, v0) is determined by the vectors A(u0) and A(v0), and the matrix BT B.
From part (3) of Lemma 1, the vector A(u0) is determined by the restriction of
URPX (u, v) to Tb ×{u0}. Similarly, the vector A(v0) is determined by the restriction
of URPX (u, v) to Tb × {v0}. Hence, the difference A(u0) − A(v0) is determined by
the restriction of URPX (u, v) to Tb × {u0, v0}.
From part (4) it follows that the matrix BT B is determined by the restriction of
URPX (u, v) to Tb × Tb.
Together, this implies that the value of URPX (u0, v0) is determined by the restriction
of URPX (u, v) to Tb × (Tb ∪ {u0, v0}). (Recall that symmetry applies to any URP.)
Part (2) of the theorem now follows by letting u0 and v0 range over all of Ta . Part
(1) then follows by taking Ta = [0, 1). ��

Proof of Proposition 1.
Clearly, the trajectory X (t) is contained in the space spanned by the vectors Tp.
The dimension k of the affine space Vx is equal, by definition, to the dimension
of the linear vector space obtained as VX − X0 for any point X0 contained in VX .
Choosing X0 = c0T0 = c0(1, . . . , 1)T , which is contained in VX as it is the mean
of all the points for one period of the periodic trajectory X (t), we therefore focus of
the translated trajectory X̃(t) = X (t)− c0T0 = ∑

p∈Z\{0} cpe2πpti Tp. By definition

of K X , this equals X̃(t) = ∑
p∈K X

cpe2πpti Tp.
For M ≥ 2, two vectors Tp and Tq are equal if and only if z p = zq , which holds

if and only if (p − q)τ is integer. We therefore consider the equivalence relation on
K X defined by: p ∼ q if and only if (p − q)τ ∈ Z. Then the equivalence classes are
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characterized by the fractional parts of the numbers pτ , with p ∈ K X . We now define
RX := {pτ(mod 1) | p ∈ K X } and L := RX/τ ⊂ N. The set L is used to index these
equivalence classes. For each � ∈ L the corresponding equivalence class is given by
M� := {p ∈ K X | pτ = �τ(mod 1)}. With this notation the set K X can be partitioned

into its equivalence classes and we may write X̃(t) = ∑
�∈L

(∑
p∈M�

cpe2πpti
)

T�.

First, it is noted that: (1) M� is not empty for all � ∈ L; (2) cp �= 0 for all
p ∈ M�; (3) the functions e2πpti are all independent harmonic functions on [0, 1]
for all p ∈ Z. This proves part (1) of the proposition, and for all � ∈ L we have that∑

p∈M�
cpe2πpti �≡ 0 on [0, 1]. Second, it is observed that any selection of j ≤ M

vectors {T�1, . . . , T� j } with distinct indices �1, . . . , � j ∈ L , is independent (because
these vectors can be joined to form the columns of a Vandermonde matrix). Hence, it
follows that dim(VX ) = min{M, |L|}. This proves part (2) because r = |K X | = |L|.

Finally, for M = 1 the proposition is also easily verified to hold. ��
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Abstract This work concerns the analysis of non-stationary signals using
Recurrence Plot Analysis concept. Non-stationary signals are present in real-life
phenomena such as underwater mammal’s vocalizations, human speech, ultrasonic
monitoring, detection of electrical discharges, transients, wireless communications,
etc. This is why a large number of approaches for non-stationary signal analysis
are developed such as wavelet analysis, higher order statistics, or quadratic time-
frequency analysis. Following the context, the methods defined around the concept
of Recurrence Plot Analysis (RPA) constitute an interesting way of analyzing non-
stationary signals and, particularly, the transient ones. Starting from the phase space
and the recurrence matrix, new approaches [the angular distance, recurrence-based
autocorrelation function (ACF), average-magnitude difference function (AMDF) and
time-distributed recurrence (TDR)] are introduced in order to extract information
about the non-stationary signals, specific to different applications. Comparisons with
existing analysis methods are presented, proving the interest and the potential of the
RPA-based approaches.
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1 Introduction

Physical phenomena are naturally characterized by specific measures which progress
in time. This evolution is quantified for the observer in recorded time series. Hereby,
many of these recordings describe stochastic, deterministic—chaotic processes and
carry information along with disturbances. Such processes can be met in weather’s
evolution, in speech and acoustic signal processing, for example.

Our study starts from the concept of recurrence—one main property of conserva-
tive dynamic systems [1]. For the first time in 1987, Eckmann proposed the recurrence
plot (RP) as a tool describing multi-dimensional trajectories of dynamic systems [2].

Therefore, the recurrence plot analysis (RPA) concept was used in real-life appli-
cations implying deterministic-chaotic and random components. Each of these com-
ponents requires a certain method to emphasize its nature. Specific structures and
topologies on the RP provide a comprehensive description of dynamic process under
study [3], hereby this approach is more general.

Specific characteristics of the studied system can be highlighted by the phase space
representation. We can underline Lorenz’s works that exploited the properties of the
attractor in the weather pattern studies [4]. In acoustic signal processing, a current
field of great interest is the study of underwater mammal behavior by processing
signals and identifying vocalizations and clicks, extensively described in [5].

Another important application field is the ultrasound signal processing for mon-
itoring industrial installation such as pipes, metallic structures, etc. [5]. A general
framework is defined by the non-intrusive testing and measurement principles. The
major problem encountered in this application is the signal’s deformations that makes
complex the process of parameter estimation such as time-of-flight.

The above mentioned examples represent just few real-life applications where
the processing of signals, highly non-stationary, is a central part. The traditional
methods are mainly based on time-frequency [6] and time-scale analysis [7]. There
are a lot of contributions, in the last two decades, falling in these two broad classes
of techniques. Despite of each contribution, the common element is the hypothesis
on the analyzed signal (e.g. short-time stationary, in the general case of spectrogram-
based processing) or on the expected time shape of the signal, which allows us to
pre-define the analyzing wavelet function, for example.

In this work, we propose an alternative of non-stationary signal analysis, based
on the phase space representation, defined from the signal’s samples [8–14].

Compared to the wavelet-based approach that requires the definition of an appro-
priate wavelet function, [7, 15, 16] the RP-based representation is obtained by using
only signal’s samples, conferring also more flexibility and robustness.

The purpose of our work is to show how the RP-based method can be used to
characterize a non-stationary signal which describes certain natural phenomena.

The work is organized as follows: the second section describes the main idea
of the RPA, the third section illustrates the signal processing approach of the RPA
highlighting the angular distance, as well as the vector signal processing approach.
In the fourth section, we point out the results in real applications developed in our



Recent Advances in Non-stationary Signal Processing. . . 77

research activity. The last part of the paper consists of conclusions and discussions
on the subject.

2 Recurrence Plot Analysis and Non-stationary
Signal Processing

The main idea of the RPA is to highlight recurrent states present in the analyzed time
series. Let us consider the following time series:

x = {x [1] , x[2], . . . , x [N ]} (1)

Then, this time series can be represented in a phase space. Its values become the
coordinates of the m-dimensional space and, consequently, the vector sample is:

−−→
x (w)
ι =

m∑
k=1

x

[
i −

[
w − 1

2

]
+ (k − 1) d

]
−→ek (2)

where w = 1+(m−1)d. If (w−1) is an odd number, then i = [w−1
2

] + 1, N − [w−1
2

]
,

respectively i = [w−1
2

] + 1, N − [w−1
2

] − 1, if (w − 1) is an even number. m is the
embedding dimension, d is the delay and −→ek is the unit vector of the axes that define
the phase space. The half-window

[w−1
2

]
centers the time index, i , in the middle of

the vector sample
−−→
x (w)
ι and it represents the a priori “memory” of the vector. Accord-

ing to [14], if d = 1, the result is a full vector sample [it contains successive samples
from the recorded time series from Eq. (1)].

Fig. 1 Recurrence plot analysis representation



78 C. Ioana et al.

For the experiments presented in this work, the embedding dimension and the
delay are chosen using the false nearest neighbor and the mutual information,
respectively, [16–19]. Then the distances between the vectors in the phase space
are represented on the distance matrix, Eq. (3). When compared with a threshold, the
recurrence matrix is obtained, Eq. (4). A graphical representation is given in Fig. 1.

Di, j = D
(−−→

x (w)
ι ,

−−→
x (w)

J

)
(3)

Ri, j = �

(
ε (i) − D

(−−→
x (w)
ι ,

−−→
x (w)

J

))
(4)

where D (·, ·) is a distance applied on the vectors from the phase space (Euclidean
distance [16, 20], L1 norm [17], angular distance [14], scalar dot product distance
[14], etc.).

In signal processing theory, a well-known approach for transient process is the
time-frequency analysis based on the wavelet transform that could provide very
good results in the sense of the decomposition parsimony. If the analyzing wavelet is
appropriately chosen, the wavelet-based decomposition is characterized by a reduced
number of wavelet coefficients that describes the transient behavior of the signal.

The main advantage of the wavelet analysis is the multi-scale analysis [21].
This analysis indicates signal characteristics that other processing techniques could
miss, such as trends, breakdowns, discontinuities, etc. While the Short Time Fourier
Transform provides a constant time and frequency resolution, the wavelet analysis
performs a multiresolution analysis (Fig. 2) [7, 15, 22].

Although the two methods, RPA and wavelet analysis, are based on totally dif-
ferent concepts (the recurrence of the system’s trajectory in the phase space and the
time-frequency representation, respectively), they are both able to highlight similar
behaviors of a process like trends, sudden changes, discontinuities [23–30].

Several comparisons are shown between the two methods along with widely used
signal processing methods (as matched filter, spectrogram, zero crossing).

The major advantage of the RPA is that it does not need any orthogonal basis or
any a priori information about the studied system (unlike the wavelet analysis that
requires the definition of the analyzing mother wavelet that must be close to parts of
the signal to analyze). The method works in applications where a reference signal
is not available (unlike the matched filter method) and it is more robust to noise in
terms of signal detection and localization [31]. More details can be found in Sect. 4.

Next section deals with the development of signal processing methods based on
the RP concept. A new distance is introduced and studied in the signal processing
context.
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3 Recurrence Plot Analysis in Signal Processing

The section presents our contributions in the signal analysis field using the recurrence
plot context:

• The definition of the angular distance which contributes to the analysis of signals
composed by time-shifted and attenuated components having the same time-shape

• The introduction of the Vector Signal Processing-based measures for more accurate
detection of the transient components of the signals.

Comparisons with classical techniques are done for signals coming from some real-
applications we deal with in our research.

3.1 The Angular Distance

Traditionally, the distance matrix is obtained, as indicated previously, by computing
the pair-wise Euclidean distance between all points in the phase space. This dis-
tance could not reveal recurrences in the case of signals having similar time-shifted
components but with different amplitudes. These recurrences are met in the case of
multi-path environment propagated signals, where the signal arrived at the reception
has multiple reflexions and attenuated/delayed versions of the source signal.

This is often the case of transient signals propagated in a multi-path environment
as illustrated, in simulated conditions, in Fig. 2.

Fig. 2 Time series of transient signals in a multi-path channel; the signal si arrives at the
receiver at different moments and its amplitude is strongly attenuated by the channel: s1 [n] =
sin

(
2π 4

fs
n
)

.e

(
−2 n

f e

)
, n = 1, 200; s2 [n] = sin

(
2π 4

fs
n
)

, n = 1, 25; s3 [n] = 0.2 ·
sin

(
2π 4

fs
n
)

.e

(
−1.2 n

f e

)
, n = 1, 200; s4 [n] = sin

(
2π 2

fs
n
)

, n = 1, 100; fs = 200 Hz
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Fig. 3 The graphical representation of the Euclidean distance (a) and the angular distance (b) plot-
ted in a 3D phase space

In order to highlight the recurrences, despite the magnitude’s differences between
the components, the angular distance is defined as:

D
(−−→

x (w)
ι ,

−−→
x (w)

J

)
= arccos

⎛
⎜⎜⎝

−−→
x (w)
ι .

−−→
x (w)

J∥∥∥∥
−−→
x (w)
ι

∥∥∥∥ .

∥∥∥∥
−−→
x (w)

J

∥∥∥∥

⎞
⎟⎟⎠ (5)

where
−−→
x (w)
ι ·

−−→
x (w)

J is the scalar product of the two vector samples. Using this distance,
it is possible to identify the points of the trajectory placed in the solid angle and
that correspond to the components with different amplitudes. Unlike the Euclidean
distance (Fig. 3a), the angular distance (Fig. 3b) quantifies the aperture delimited by

the position vectors
−−→
x (w)
ι and

−−→
x (w)

J .
Figure 3b illustrates how the points corresponding to the trajectories of two pulses

with different amplitudes are located using the angular distance while in the case of
Euclidian one (Fig. 3a) the two trajectories might be separated depending on the
sphere parameter.

The amplitude invariance is studied at a smaller scale considering a sine wave with
a linear amplitude variation. The angular distance emphasizes only the direction of the
state vectors, while RPA is sensitive to this amplitude variation using the Euclidean
distance. The angular distance reveals the presence of the sine wave (Fig. 4) although
its amplitude varies.

The main advantage provided by this method is that the structure from the dis-
tance/recurrence matrix appears clearer and has the same value, independent of
the magnitude’s variation. RP obtained with the angular distance is potentially an
amplitude-invariant RP, useful in practical applications.

The angular distance provides a RP representation where the phase space origin is
extremely important. In real applications, this approach can be exploited in order to
eliminate the drawback caused by the attenuation in multiple propagating paths. In
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Fig. 4 The angular distance (left side) and the Euclidean distance (right side) applied on a sine
wave superimposed to a linear trend, m = 3 and d = 8 (w = 17)

Fig. 5 The Euclidean distance (left side) and the angular distance (right side) applied on the signal
propagated in a multi-path environment (Fig. 3) where m = 3 and d = 8 (w = 17)

such applications, presented in our work as an illustration of RPA’s practical interest,
the only information which counts is the time of arrival. On the other hand, the
amplitude-invariance can be dramatic in other applications and it is necessary to be
very careful in the decision of using the angular distance.

Figure 5 illustrates the angular distance as well as the Euclidean distance for the
test signal from Fig. 2. Therefore it highlights the interest of such distance.
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As a conclusion, the angular distance-based RPA provides an interesting tool
for characterizing signals with similar component, but characterized by different
amplitudes.

3.2 Vector Signal Processing (VeSP)

This section investigates some tools for vector signal processing defined from the
RP concept.

3.2.1 Vector Signal Processing Covariance

The classical definition of the covariance of two signals x and y is:

C (x, y) = 1

N

N∑
i=1

(x [i] − mx )
(
y [i] − my

)
(6)

where mx , my are the mean values of the signals x and y, respectively and N is the
number of samples considered for computation.

In Eq. (6), if we replace signals x and y with their vector samples defined as in

(2)
−−→
x (w) and

−−→
y(w), the vector sample-based covariance is obtained [14]:

C (w)

(−−→
x (w),

−−→
y(w)

)
= 1

N

N∑
i=1

(−−→
x (w)
ι − �m−−→

x (w)

) (−−→
y(w)
ι − �m−−→

y(w)

)
(7)

In order to have the same number of samples, N , the vector sample is zero padded
so that it has the same number of samples as its corresponding time series [14].

When using two signals of different lengths, it is necessary to zero pad one signal

so that the two signals,
−−→
x (w), respectively

−−→
y(w) have the same lengths and the vector

sample covariance may be computed.
For simplicity reasons we consider d = 1.

The mean value �m−−→
x (w)

is the average of the vectors
−−→
x (w)

(
�m−−→

x (w)
= 1

N

∑N
i=1

−−→
x (w)
ι

)
.

Moreover, if w = 1, then C (1) = C , therefore the Eq. (7) is the generalized version
of Eq. (6).

This approach was proposed only for short time series, such as partial discharges
(recorded in high-voltage electrical cables presenting insulation faults)where only
a few samples are available, because the phenomena happen very quickly. When
N is sufficiently large, then the coordinates of the mean value of the vector sample
approach the mean of x, so there is no new information available.
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3.2.2 Vector Signal Processing Quantification (VeSP)

Three new measures in RPA domain [14] have been proposed using as a starting point
the distance/recurrence matrix, being treated from signal processing perspective.
Hereby, the recurrence-based auto-covariance function is defined as [14, 20]

AC F (w) [n] =
N−n∑
i=1

Di,i + n (8)

AC F (w)
ε [n] =

N−n∑
i=1

Ri,i + n (9)

where n = 0, N − 1, Di, j , and Ri, j are the distance and recurrence matrix,
respectively, given in Eqs. (3) and (4). This measure quantifies the recurrence points
on the diagonal lines of the distance matrix (Eq. 8) and the ε dependent recurrence
matrix (Eq. 9). When w = 1, the AC F (1) function is the classical auto-covariance
function.

Further, the extended version of the function is the AC F (w) recurrence-based
average magnitude difference function, AM DF (w) . Its definition is:

AM DF (w) [n] = 1

N − n

N−n∑
i=1

Di,i + n (10)

AM DF (w)
ε [n] = 1

N − n

N−n∑
i=1

Ri,i + n (11)

where n = 0, N − 1.
The AM DF (w)[n] function determines the mean distance from reference states

and is also found in the literature as the generalized autocorrelation function or the
τ - recurrence rate [16].

In terms of signal processing, one major application is the estimation of the
fundamental frequency of a signal.

The AM DF (w)
ε [n] function was applied on a signal of 500 samples having dif-

ferent signal to noise ratios. The fundamental frequency was actually obtained from
the fundamental period estimation, T f . Its estimation was obtained from the time

difference between two successive maximums of AM DF (w)
ε [n]. The same idea can

be also found in [32].
For the noisy signal from Fig. 6, the VeSP parameters are w = 5 and ε = 1.2. The

fundamental frequency is obtained, from the graph of the AM DF (w)
ε function.

The second VeSP measure developed is the dynamic range norm. From the origin
of the phase space, it is defined as:
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Fig. 6 VeSP AMDF applied on a narrow-band signal with a 15 dB SNR

Fig. 7 A noise-free signal (a) and its noisy version (SNR = 15 dB) (b) containing a linear transition
between two steady states. The representation (t, w) is computed for each corresponding vector
sample

DR0 [i] = maxk

{−−−−→
x (w)
ι (k)

}
− mink

{−−−−→
x (w)
ι (k)

}
(12)

where
−−−−→
x (w)
ι (k) is the k-th element of vector sample

−−→
x (w)
ι .
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From Fig. 7, it can be observed that in terms of signal’s phase changes, the dynamic
range norm has a similar effect as the first order derivative. Therefore, at sudden
changes, the dynamic range norm provides an impulse.

The third measure proposed is the time distributed recurrence and is defined
as [14]:

T DR(w)
ε [n] = 1

N

N∑
i=1

Ri,n (13)

where n = 1, N , N is the length of the signal and Euclidian distance is used. This
approach quantifies the recurrence points from the columns of the recurrence matrix,
being very useful in transient detection applications. This is due to the fact that
sudden changes (states different from all other states of the phase space) are clearly
“visible” on the recurrence/distance matrix. The corresponding vector samples have
a solitary position in the phase space. Therefore, the column average changes signif-
icantly for these states.

For transient detection, we define the complementary normalized version of
T DR(w)

ε [n]:

T DR(w)
ε (n) = 1 − T DR(w)

ε [n]

max
{

T DR(w)
n [n]

} (14)

Figure 8 presents the use of this measure for the detection of transient compo-
nents of a signal. The synthetic signal from Fig. 9a is detected independently of the
amplitude of the signal.

Moreover, when applied on a recording of an electrical arc [33], Fig. 9b shows that
all the components are detected. The reflexions after the electrical arc are highlighted
by the proposed function, although late ones are highly attenuated.

4 Results in Applications

The next section illustrates some real-life applications where the proposed concepts
are applied. Comparisons with existing techniques are done, highlighting the practical
interest of the RP-based methods.

4.1 Ultrasound Measurement

The ultrasound-based measurement is an important domain in the field of predictive
surveillance of equipments. A common challenging problem encountered in this
field is the estimation of the travel time between a transmitting transducer and the
receiving one. In the non-destructive testing (for example, when the transmitter and
the receiver are located in the same place), the propagation time multiplied with wave
velocity informs about the position of a possible crack reflected by the emitted wave.
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(a) (b)

Fig. 8 Time detection curves using T DR(w)
ε (n) function: a synthetic signal of a transient and its

two reflections (each transient contains 10 samples) for w = 17 (m = 3, d = 8, ε = 0.3), b real
signal from an electric arc recorded with an electric arc locator (the signal contains the discharge
and its reflections) for w = 31 (m = 4, d = 10, ε = 0.9)

Fig. 9 Measurement configuration (a) and the received signals in the flow direction and counter-
direction (b)

Another application of interest is the non-intrusive flow metering that consists of
generating and receiving an acoustic signal in two ways: one—the acoustic signal is
transmitted in the flow direction (Fig. 9a), second—in counter-direction [34]. Two
such signals are presented in Fig. 9b.

Therefore, the difference of propagation times is �tpropag = tpropag(r) −
tpropag(d) which is proportional to the flow rate [34]. The performance of flow rate
metering is strongly dependent on the precision of propagation time estimation.

The envelope of the signal is classically obtained from the absolute value of the
analytic signal. The transit time is estimated using the threshold [14]:
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T h = mean {Env} + max {Env}
2

(15)

where Env is the envelope of the signal. This threshold is fixed to half value between
the mean of the noise and the maximum detected value. This way of threshold
selection shown practically efficiency and robustness [14].

This method, widely used by current flow metering techniques, is often affected
by the inherent deformations of the envelope (due to the propagation) that influences
the precision of propagation time (or time-of-flight) measurements.

As mentioned in [14], the effect of Eq. (15) is similar to the effect of the first order
derivative in terms of signal’s phase changes.

Figure 10 presents the results obtained using Hilbert transform and dynamic range
norm. Hilbert transform was computed using the analytical signal, while the envelope
was computed using Eq. (12). It can be noticed that the dynamic range norm provides
a more accurate estimation of the signal’s envelope. We apply on the envelopes the
threshold proposed in Eq. (15). When applying different signal-to-noise ratios of real
colored Gaussian noise, we succeeded to improve time estimation, therefore, the flow
velocity—with at least 10 % (for 10 m/s water velocity) by using the DR0 measure
instead of the Hilbert transform.

4.2 Monitoring Electrical Discharges

The appearances of electrical discharges in the equipments are often signs of a system
which starts to develop faults. The detection and localization of the discharges sources
are important operation in the field of predictive surveillance. This is the case of
localization of electrical arcs present in solar panel requiring a definition of a multi
sensor system, given the large perimeter of the surveillance. Localization based on
the ultrasound transient signals is proposed in [33] by taking advantage of the VeSP
processing of transient signals, as presented in Sect. 3.

The multi-sensor localizing system is formed of four acoustic sensors S1, S2, S3
and S4 placed in a 3D configuration as presented in Fig. 11.

Each sensor records the electrical arc coming from the photovoltaic panel.
The experiments were done by placing the photovoltaic panel in the following
position:Ox = 0, Oy = 125 and Oz = −35 cm, where O is the center of the
arc locator system and the directions of the axis are presented in Fig. 11a.

In this configuration, the photovoltaic panel generated an electrical arc. All four
sensors recorded the electrical arc. Then, several traditional methods (matched fil-
tering with pre-recorded reference of an electrical arc, Wavelet, Spectrogram, Zero
Crossing) were applied.

Statistical signal processing (Higher Order Statistics or Maximum Likelihood
Estimation) can only detect the electrical arc (or any transient signal), but their use
for localization is more problematic [35]. For the localization part, the estimation of
time-of-arrival (TOA) is crucial. As shown in the following part, the TOAs are more
accurately estimated from the RPA, conducting to a more precise localization.
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Fig. 10 Acoustic signal and the Hilbert envelope (a), respectively the dynamic range norm envelope
(using w = 13 (m = 4, d = 4, ε = 0.75).) (b) and the threshold versions of the envelopes: Hilbert
transform (c), dynamic range norm (d)
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Fig. 11 The multi-sensor system for arc localization (a) and the experimental setup of the arc
locator system (b)

It is obvious that each of the traditional methods manages to detect the presence
of the electrical arc. For the localization part, the time of arrival of the electrical arc
is determined.

The traditional methods were compared with the VeSP approach in terms of
accuracy of time-of-arrival estimation.

The results for the VeSP approach were obtained using the T DR(w)
ε (n) measure

and they are presented in Fig. 12.
Space localization is obtained using the times of arrival at each sensor and was

applied for each method. Knowing the speed of sound in the air, it is only a matter
of geometry to exactly locate the source, as in Eq. (16):

⎧⎨
⎩

dS1 P − dS2 P = v · t12
dS2 P − dS3 P = v · t23
dS3 P − dS4 P = v · t34

(16)

where

dSi P =
√

(xSi − xP )2 + (ySi − yP )2 + (zSi − zP )2 (17)

where i = 1, 4 · Si (xSi , ySi , zSi ). is the -th sensor of the arc locator system with its
positions relative to the origin. P(xP , yP , zP )is the electrical arc position relative to
the origin. v is the speed of sound in the air and ti(i+1) = ti − t(i+1), where ti is the
time of arrival of the electrical arc at sensor Si .

Localization precision depends on the times of arrival obtained with each method
and is presented in Fig. 13.

The best results, in terms of relative errors obtained from 16 experimental config-
urations (each of these configurations concerned around 100 trials), were obtained
using the VeSP approach and the Matched Filter. Still, the latter presents the major
drawback because it always needs a reference signal not available all the time.
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(b)

(d)(c)

(a)

Fig. 12 The time detection curves [using w = 17 (m = 3, d = 8, ε = 0.9).] of the electrical arc
recorded at each sensor: a the result for sensor S1, b the result for sensor S2, c the result for sensor
S3, a) the result for sensor S4

It can be noticed that the VeSP approach offers more precise results than the
conventional signal processing methods.

Table 1 The relative error
for the localization precision
obtained for each proposed
method

Method Relative error (%)

VeSP 4.8

Matched filter 5

Wavelet 10.4

Spectrogram 9

Zero crossing 9,8
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Fig. 13 The spatial localization obtained solving the geometrical system based on the times of
arrival: black—real position of the electrical arc, blue—VeSP localization, red—Matched Filter
localization, green—Wavelet localization, pink—Spectrogram localization, cyan—Zero Crossing
localization

5 Discussion

The RP method offers new information in the analysis of non-stationary signals
characterizing industrial or natural processes. When the process is driven by several
parameters, many of them being hard to determine or control, the method is well
suited.

According to [31], in applications where a reference signal is available, the
matched filter method provides faster results with high accuracy even at a very low
SNR. In this case, the RPA is also limited, as other signal analysis methods.

Another limitation of the method is given by the high number of samples contained
in the recorded signal for non-stationary processes. This number depends on the
sampling frequency which should be suited to the studied phenomena.

Future studies aim to use the RPA method in the context of adaptive waveform that
best characterizes the physical process. As an example, the turbulence is a complex
phenomena and the use of the RP method may bring new insight in this matter.

Also, we intend to implement the RPA signal processing measures in other pro-
gramming languages than MATLAB which may overcome the limitations given by
the increased memory demand and diminished speed computation.

6 Conclusions

This paper shows that the Recurrence Plot Analysis concept brings new tools in
the world of signal processing. Through the interesting representations in the phase
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space which are driven by measurements, one has new qualitative and quantitative
information about the process under study.

The RP (VeSP) method proved to be flexible, allowing developing new distances
and measures between the vectors from the phase space. As a central contribution, we
mention the angular distance which is more powerful than the Euclidean distance, if
the main interest is to characterize amplitude-varying signals. This characteristic may
be very well exploited in the application of detecting transients and their reflections.
This application presents a major interest in underwater environment, in high voltage
cable monitoring, in radar, etc.

As we were able to demonstrate, the RP (VeSP) method is a very good alter-
native for detection and localization of transients in applications such as ultrasonic
measurements and electrical discharge monitoring.

Future works will focus on the perspective of data-driven multi-resolution analy-
sis and on correlating the parameters of the method with real physics phenomena.
Nevertheless, this can only be done by extending the application area and validating
the theory with real experiments.
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A Recurrence-Based Approach for Feature
Extraction in Brain-Computer Interface Systems
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Romis Attux, Eleri Cardozo and Diogo C. Soriano

Abstract The feature extraction stage is one of the main tasks underlying pattern
recognition, and, is particularly important for designing Brain-Computer Interfaces
(BCIs), i.e. structures capable of mapping brain signals in commands for external
devices. Within one of the most used BCIs paradigms, that based on Steady State
Visual Evoked Potentials (SSVEP), such task is classically performed in the spectral
domain, albeit it does not necessarily provide the best achievable performance. The
aim of this work is to use recurrence-based measures in an attempt to improve the
classification performance obtained with a classical spectral approaches for a five-
command SSVEP-BCI system. For both recurrence and spectral spaces, features
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were selected using a cluster measure defined by the Davies-Bouldin index and the
classification stage was based on linear discriminant analysis. As the main result,
it was found that the threshold ε of the recurrence plot, chosen so as to yield a
recurrence rate of 2.5 %, defined the key discriminant feature, typically providing a
mean classification error of less than 2 % when information from 4 electrodes was
used. Such classification performance was significantly better than that attained using
spectral features, which strongly indicates that RQA is an efficient feature extraction
technique for BCI.

1 Introduction

The main objective of a Brain-Computer Interface (BCI) is to provide an alterna-
tive communication channel for human beings without using the classical biological
efferent pathways. In the last decade, these systems have experienced a remarkable
development due to the greater availability of low cost instrumentation and com-
putational resources [1, 2]. In particular, the use of BCI in the context of assistive
technology is very important for people suffering from stroke, spinal cord injury,
degenerative disorders (e.g. amyotrophic lateral sclerosis), and any conditions that
impose drastic limitations to communication and mobility [3]. Presently, it is esti-
mated that, only in Europe, there are almost 300 thousand people with spinal cord
injury (SCI), with eleven thousand new injuries occurring every year [4]. Moreover,
approximately 40 % of the total population of patients with SCI are quadriplegics
and it is known that loss of motor functions significantly decreases the quality of
life [2].

To accomplish a rehabilitation purpose, BCI systems typically consist of well-
characterized components, being signal acquisition, processing and feedback stages
the main ones, as illustrated in Fig. 1. Within this general scheme, the typical approach
for brain signal acquisition relies on the recording of surface EEG, being the process-
ing and feedback stages strongly dependent on the adopted BCI paradigm [1]. The
BCI paradigm refers to the process of inducing a stable electrical pattern in the brain to
be detected and recognized, being finally associated with an external command. A
classical example is that of task imagery, i.e. the request to perform a mental task
associated with well-defined motor actions, something that can be detected in a spe-
cific cortical area (e.g. the motor cortex) and, in general, suitably classified. Another
commonly employed BCI paradigm can be formulated in terms of evoked potentials,
such as those present in the P300 response—a potential elicited by the process of
focusing attention in events occurring with low probability—and the Steady State
Visual Evoked Potentials (SSVEP) [1].

In the SSVEP paradigm, different commands (like those defining the direction of
the movement of a wheel-chair) are presented to the user as visual stimuli flickering
with different frequencies, and the user is requested to focus on the command that
he/she wants to perform. In this case, the electrical activity of the visual cortex tends
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Fig. 1 A general BCI system

to synchronize with the visual stimulus chosen by the user and a simple spectral
analysis can be used in order to identify the command selected by the person [5].

Once the BCI paradigm has been defined, the processing and feedback can also be
specified in a more precise manner. Most works use a structure composed of feature
extraction, feature selection and classification stages. These stages are essential for
performing pattern recognition and classification, being thus crucial to define the
external command.

Although classical spectral analysis is widely used for feature extraction in
SSVEP-BCI systems, it can lead to non-optimal classification results depending on
the employed visual stimulation apparatus or require a large amount of data for suit-
ably training the classifier. In this chapter, a new recurrence-based feature extraction
approach for BCI systems based on the SSVEP paradigm is presented. It is shown
here that the threshold ε of the Recurrence Plot (RP), defined so as to match a specific
Recurrence Rate (RR), is the key feature to separate the classes (which correspond
to the commands), providing a better performance in comparison to a strategy based
on spectral analysis. The results are indicative of the potential of recurrence analysis
in the context of BCI, raising quite interesting application perspectives.

This work is organized as follows: Sect.2 presents the instrumentation and the
experimental procedure employed in the context of the BCI system used here. This
section also briefly introduces the signal processing techniques explored for feature
extraction, feature selection and classification. Section 3 exhibits the system perfor-
mance (in terms of mean classification error) when the proposed recurrence-based
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approach is employed and a comparison with different feature selection heuristics
operating in the spectral domain. Finally, this chapter is concluded with a discussion
about the developed ideas and potential extensions.

2 Methods

2.1 Experimental Setup and Experimental Procedure

In the performed experiments, the brain signals were acquired by means of surface
EEG [1], due to its simplicity and non-invasive character. For the acquisition, digiti-
zation and amplification of the EEG signals, the g.USBamp system of the g.tec com-
pany1 was employed. This device allows the simultaneous capture of 16 channels,
with 24-bit resolution each, through a USB 2.0 connection to a desktop computer.
The device is shown in Fig. 2a.

The EEG was recorded using 16 dry electrodes with 8-pin each (the g.SAHARA
g.tec system), which are built using a special gold alloy (see Fig. 2a). These electrodes
were placed in 16 locations defined by the international 10–20 system [1], which
were chosen in accordance with the SSVEP response (i.e. emphasizing signals in the
visual cortex): Fz, Cz, Pz, Oz, PO3, PO4, O1, O2, P3, P4, Iz, POz, PO7, PO8, O9,
O10. Furthermore, two reference electrodes were placed in each mastoid. Figure 2b
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Fig. 2 a Equipment and configuration for EEG signals capture. In b the orange circles represent
the visual cortex region and the blue circles define other interesting positions along the medial
longitudinal fissure

1 http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features.

http://www.gtec.at/Products/Hardware-and-Accessories/g.USBamp-Specs-Features
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illustrates the cap layout, in which the letters F, T, C, P and O correspond, respectively,
to the frontal, temporal, central, parietal and occipital lobes, with odd numbers used
to reference the left hemisphere and even numbers the right one.

Before starting the acquisition session, it was ensured that all electrodes had
impedance values below 5 k�, which represents a common limit employed during
EEG recordings. The amplifier was configured with a bandpass filter of 0.1–60 Hz and
a notch filter at 60 Hz for all EEG channels, in order to cancel out DC components
interference and noise. A sampling frequency of 128 Hz was used throughout all
acquisitions.

In order to register the signals, the BCI2000 software2 was employed. This soft-
ware is particularly interesting due to its ability to create different experiments with
multiple settings for capturing the data, which were first stored in files with a specific
BCI2000 format and subsequently imported by MATLAB, in which functions from
the statistical signal processing toolbox were used.

To carry out the visual stimulation, a set of four light-emitting diodes (white
LEDs) was used, driven in four different frequencies, namely 13, 18, 21 and 25 Hz.
These values were chosen in view of previous studies that showed strong SSVEP
responses evoked in this range [5].

Three healthy subjects (ages 21, 25, 28; one woman) with no previous history
of neurological diseases participated in this study. The study was approved by the
ethics committee of University of Campinas, and all subjects signed an informed
consent previous to data acquisition. Subjects sat on a comfortable chair placed at a
distance of 0.5 m both from the LEDs and the computer screen. The same ambient
light level was maintained during the execution of all experiments. Figure 3a, b show,
respectively, the LED set-up and the interface used in the BCI2000 software for the
execution of the experiments and for the capture of data.

For every subject, four different sessions for data acquisition were held five
minutes apart from each other. The sessions comprised four separate runs interleaved
by a pause of one minute. The last session had only three runs.

Fig. 3 a Visual stimulation platform used to evoke the SSVEP response. b Interface requesting the
user to focus on a specific LED

2 http://www.schalklab.org/research/bci2000.

http://www.schalklab.org/research/bci2000
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Each run was composed of 25 trials associated with 5 different tasks (four visual
stimuli plus no command). Therefore, there were a total of 15 × 25 = 375 trials
per subject, with 375/5 = 75 the total number of trials for each task. Subjects were
instructed to stay still during every run.

Each image was continuously displayed during 6 seconds. After this period of
time, the screen went blank for 1.5 s before the next image appeared. During the
resting condition, the subject could rest the eyes. The pause period between each run
was long enough to allow the subject to stretch and move around.

2.2 Signal Processing Techniques

After the EEG signals were acquired, a pre-processing stage took place, consisting in
the normalization of each recorded time series with respect to the maximum absolute
value found therein. Thereafter, feature extraction was performed with the aim of
representing each trial of a given electrode in a suitable space, which, in this work,
may correspond to either the recurrence or the spectral domain.

The recurrence domain is defined by Recurrence Quantification Analysis (RQA)
measures obtained for a given trial. As described by [6], the classical RQA measures
correspond to the percentage of determinism (DET), the entropy of the diagonals
(ENTR) and the length of the longest diagonal of the map (Lmax) (excluding the
main diagonal). The L-∞ norm was used for quantifying the distance between the
points in the reconstructed state space, given its lower computational cost [6]. An
adaptive recurrence plot was used to minimize the recurrence plot variability, thus
avoiding inappropriate choices of ε and providing a better comparison between maps
from different EEG electrodes. The RP parameters were defined after a preliminary
analysis concerning the use of a variable threshold as reported in [7, 8]. The threshold
ε of the map was defined to match a Recurrence Rate (RR) of 2.5 %—with an
embedding dimension m = 5 and a time delay τ = 5—being also employed as
a feature. The DET measure was calculated for different diagonal intervals, being
DET1 associated with the percentage of determinism related to diagonal lengths
from 5 to 10, DET2 from 5 to 15, DET3 from 10 to 15, DET4 from 10 to 20, DET5
from 15 to 20, DET6 from 15 to 25. This partition is useful to detect deterministic
sources with different characteristics [9]. In general, the diagonals obtained in the
recurrence plot were small, which justifies the upper limit established by DET6.

The spectral attributes were determined using the classical Welch method for
computing the Power Density Spectrum (PDS). In this approach, each trial was
divided into 8 sub-blocks of identical length (with 170 points each) using a Hamming
window function with 50 % superposition, i.e. with an amount of 85 overlapping
points. Each block was once again divided in segments of 128 points: padding with
zeros the last segment and wrapping them, the Discrete Fourier Transform (DFT) of
each of the eight segments was obtained—implying in a spectral resolution of 1 Hz—
and the square of its absolute value calculated, followed by the average concerning
all sub-blocks. For implementation details, see [10, 11].
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The feature selection stage was implemented based on the cluster measure defined
by the Davies-Bouldin (DB) index [12]. This measure combines in a single expres-
sion two main relevant aspects of data clustering: the minimization of the intraclass
distance and the maximization of the distance between classes, which can be math-
ematically described by:

DB = 1

M

M∑
i=1

max
i �= j

[
diam (Ci ) + diam

(
C j

)
d

(
μi , μ j

)
]

(1)

where d
(
μi , μ j

)
is the distance between the centers of classes i and j , diam (Ci ) is

the maximum distance between all pairs of samples in class i , and M is the number
of classes. Hence, low values of the DB index indicate good class discrimination,
while higher values indicate less favorable scenarios. For this reason, the inverse of
the DB index was employed as a rank measure (DBinv), being each class defined
by the set of trials labeled with the same visual stimulus.

Finally, the classification stage was based on Linear Discriminant Analysis (LDA)
[13], since it is straightforward to implement, fast to train and widespread in the BCI
literature (see, for instance, [14]). In this approach, a linear combination w of the
features x that better separates the classes is found, providing a decision surface in the
form: wT x+c = 0, for a threshold c. Considering two normal multivariate distributed
classes with means μ1 and μ2 and covariance matrices C1 and C2, respectively, the
LDA approach consists in finding the weights w that maximize the ratio concerning
the variance between the classes and the variance within the classes:

S = σ 2
between

σ 2
wi thin

= (wT (μ1 − μ2))
2

wT (C1 + C2)w
. (2)

It is possible to show that this criteria is satisfied for w ∝ (C1 + C2)
−1(μ1 − μ2)

and the threshold c is given by 1
2 wT (μ1 + μ2). Once the training stage has been

performed, trials with attribute vectors x are classified according to their position in
the attribute space relative to the achieved decision hyperplane. The multi-class case
was treated here analyzing all pairs of classes.

3 Results

Built in accordance with the experimental setup described in Sect. 2, Fig. 4 shows
a typical DBinv map containing the main relevant features for class separation in
spectral (Fig. 4a) and in recurrence-based attribute spaces (Fig. 4b), obtained for
subject S1.

Some important conclusions can be drawn from the results shown in Fig. 4. For
instance, it can be clearly noted that the electrode O9 was the one with best separa-
tion performance for both spectral and recurrence-based approaches for this specific
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Fig. 4 Discriminant analysis using the inverse of the Davies-Bouldin index for a spectral and b
recurrence attributes associated to S1. In this last figure, the threshold ε of the map is denoted by ep

subject. Effective separability was also attained with the Iz electrode in both attribute
spaces. These locations completely agreed with the main cortical areas activated in
SSVEP experiments, and, usually, the same promising electrode positions were iden-
tified in both attribute spaces analyzed here, despite there being a great variability
concerning the achieved positions for different subjects, as commonly observed in
BCI experiments.

Furthermore, Fig. 4b reveals that the threshold ε of the map was an effective
attribute for separating the classes, the classical RQA measures having not reached a
similar performance. This is a result observed for all subjects and probably follows
from the adaptation of the recurrence plot in order to match a specific recurrence
rate, a scenario that favors the adapted variable ε when comparing different recur-
rence patterns. The adoption of an adaptive recurrence plot is justified by the great
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variability of the obtained signals, which made it difficult to find a general choice of
a fixed ε for obtaining suitable recurrence plots.

Another particular RQA advantage was that the relevant features were much more
concentrated—in terms of the number of attributes—in the recurrence scenario than
in the spectral domain, which simplifies the automatic selection. For instance, if we
consider class dispersion in the feature space, it is clear that the combination of the
best PSD attributes with higher DBinv values could lead to correlated features with
bad discrimination performance (Fig. 5a). On the other hand, the selection of the best
PSD attributes considering different electrodes (selected by ranking the sum of all
their respective PSD coefficients) can be more informative for separation (Fig. 5b).
However, a clearly better separation scenario was attained in the recurrence-based
attribute space as shown in Fig. 5c. In this case, note that both Fig. 5c and b used
information from electrodes O9 and Iz, but class “down” (red points concentrated at
the origin) was much more close to the “rest” state in the spectral domain, there also
being intersections of other states in general. In fact, the classification error attained
in Fig. 5b was 16.49 %, while in Fig. 5c this measure dropped to 3.81 %, i.e. 4 times

Fig. 5 Classes dispersion for a spectral attributes just ranked by DBinv measure; for b the best PSD
attributes in the most promising electrodes according to DBinv value; and for c recurrence-based
attributes domain associated to S1
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lower. In this last case, the decision hyperplanes that separate class 1 (“up” state)
from class i , with i = 2, 3, 4, 5 (in which the hyperplane color is associated with
the color of the respective class), are shown, in order to illustrate the attribute space
partition and that only few classification mistakes were made.

In addition to the classification performance attained here, the results described in
Fig. 5 show that the recurrence analysis allowed the adoption of a simple heuristic for
combining the features i.e. taking the attained ε for matching a specific recurrence rate
ranked by DBinv index, while the analysis on the spectral domain would require a
multi-objective optimization approach: a search that maximizes the DBinv measure,
and, at the same time, minimizes the correlation between the selected attributes,
which naturally poses a more complex task.

In order to investigate the classification performance in these different spaces,
some simple heuristics for attribute selection were established. The first one consisted
in simply taking the RQA features ranked by the DBinv index (black dots in Fig. 6).
The second heuristic took the features ranked with the DBinv measure in the spectral
domain (red dots in Fig. 6). The third ranked the electrodes according to the sum of
the DBinv index of all frequency coefficients for that electrode and selected the PSD
coefficients in the frequency of the visual stimulation (i.e. 13, 18, 21 and 25 Hz - blue
dots in Fig. 6). The fourth heuristic ranked the electrodes such as in the third one and
took the PSD coefficient with highest DBinv value for each electrode (green dots
in Fig. 6). In all cases, the number of attributes was progressively increased and a k-
fold cross-validation scheme was used to evaluate the mean classification error [13].

The evolution of the mean classification error can be observed in Fig. 6 for all
subjects. It can be clearly noted that the recurrence-based attributes (specifically the
threshold of the map that corresponds to the first 16 attributes) drastically dropped
the classification error to lower than 10 % when 5 attributes were used and practically
to 0 % with less than 8 features. In general, the performance achieved in the spectral
domain was lower, with a mean classification error lower than 10 % attained only
when more than 20 attributes were used in both second and third heuristics. The
fourth heuristic took, progressively, the best PSD coefficients for different electrodes
previously ranked, providing the better spectral scenario. Note that after using all
the best coefficients of the 16 electrodes, this approach just attained a classification
performance close to the recurrence scenario for S2 and a difference around 5 %
for S1 and S2. In summary, using the best feature for different electrodes led to a
faster convergence towards the minimal error and a better final performance in the
recurrence-based attribute space.

Finally, a clear difference between the heuristics used for feature selection in the
spectral domain can be also noted. Concerning heuristics 2 and 3, the free selection
based on the DBinv score provided, at first, a better classification performance with
a faster drop in the mean classification error, which was overcome by the selection
based on the coefficients associated with the visual stimulation frequencies when
few electrodes were taken into account (2 or 3 for all subjects). Interestingly, the
best spectral scenario (heuristic 4) established that just the selection of the best PSD
coefficient of each electrode could provide a low classification error (around 5 %)
without requiring information concerning all the visual stimulation frequencies as
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Fig. 6 Evolution of the classification error for a progressive increase in the number of attributes
concerning the three aforementioned heuristics for subjects a 1, b 2 and c 3

commonly used in SSVEP- BCI systems. Such information could be helpful for
designing BCI systems with just a few trials for training.

4 Discussion and Conclusions

In this work, the problem of efficient feature extraction for pattern recognition in
SSVEP-based BCI was addressed. The obtained results clearly indicates the poten-
tial of using RQA in this task: it reached, indeed, a better performance than classi-
cal spectral analysis, commonly employed in this context. Curiously, it was found
that the threshold of the recurrence plot was the key attribute to perform the class
separation, which reveals the versatility of this complexity measure. In fact, if, on
the one hand, the classical RQA measures are related to the diagonal structures in
the RP and its generative deterministic rule [6], on the other hand, the recurrence
rate is intrinsically associated with the quadratic Rényi entropy and other important
information-theoretic measures can also be derived from it [6, 15].
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In the present experiment, when the quadratic Rényi entropy is fixed (as a conse-
quence of fixing the RR), the different attained recurrence plot thresholds reflect a
particular metric of the recurrence structure of the signals that explain a fixed num-
ber of points. Note that this measure resembles that derived from the estimation of
the correlation sum as introduced by [16] for the determination of the correlation
dimension (D2). In fact, the method used here just fixes the recurrence rate and
makes use of the threshold for comparison between the different classes, instead of
doing the opposite, when different thresholds define recurrence rates and a curve fit
is used for obtaining D2 in the classical approach [6, 16]. Interestingly, the procedure
adopted here allowed overcoming the variability of EEG signals (and the recurrence
plot drawbacks associated with it), and, at the same time, providing a better char-
acterization of the temporal signal structure. The characterization of EEG signals
in terms of the correlation dimension or nonlinear time series analysis has already
been performed in the literature [17, 18], and the present work defines a particular
application in the BCI context.

As a main drawback to the proposed recurrence-based approach, it can be men-
tioned the computational cost associated with the evaluation of an adaptive recur-
rence plot for this purpose, since BCI systems usually require a fast signal processing
framework for real-time operation. Such limitation emphasizes the requirement for
fast (dedicated) platforms for recurrence analysis, defining a natural extension to this
work. The application of RQA for other BCI paradigms (e.g. motor imagery) also
outlines a trend for future investigation.
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Response to Active Standing of Heart Beat
Interval, Systolic Blood Volume and Systolic
Blood Pressure: Recurrence Plot Analysis

Hortensia González, Oscar Infante and Claudia Lerma

Abstract Recurrence quantitative analysis (RQA) indexes of beat-to-beat heart-beat
interval and systolic blood pressure (SBP) have helped to understand the dynamical
response to active standing. The peripheral blood volume is another variable of
the cardiovascular control system with a crucial role during active standing since
re-distribution of blood volume is necessary to counteract the gravity force and to
provide enough blood supply to vital organs. Beat-to-beat photoplethysmographic
systolic blood volume (SBV) oscillations may be useful to study the cardiovascular
control if it is considered as a regulatory system with relevant local differences
compared to blood pressure regulation. There are no previous reports of the SBV
dynamical response to active standing. In this work we study simultaneously the
dynamical response of heart-beat interval, SBP and SBV to active standing through
comparison of RQA indexes evaluated during supine position and during active
standing in 19 healthy volunteers. We show that in response to orthostatic stress,
SBV oscillations have dynamic changes similar, but not identical, to SBP and the
heart-beat interval. This suggests that these three variables are complementary for a
better evaluation of the cardiovascular dynamics.

1 Introduction

The heart-beat varies after every single cycle (heartbeat, i.e. beat-to-beat), in order
to adjust itself to the continuously changing living conditions that an organism must
face. Although the heart possesses its own intrinsic cardiac nervous system with
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thousands of neurons of diverse type, it has to coordinate with and integrate to the
information coming from the entire body [1]. We know that this is done mainly
by the autonomous nervous system (ANS) via its two subdivisions: sympathetic
and parasympathetic, each of them with complementary and apparently reciprocal
functions and their characteristic medium lag activation and fast inhibition. However
the two branches of the ANS are not algebraically additive. Instead they interact in a
dynamic fashion and either reciprocity or co-activation of both branches may occur
[2]. Besides all this, there are upper coordination centers at the central nervous
system, and our bodies count on long term regulatory processes like endocrine or
paracrine systems; short term mechano-sensorial signals to communicate the degree
of effort or total mechanical work done and demanded; and metabolic sensors that
detect oxygen, glucose or ATP availability in every single cardiac cycle [2–4].

Given all the afore mentioned factors participating in heart rate regulation, it is
useful to count with a well-described autonomic stress paradigm as is the change from
the supine to the standing position (orthostatism), which is associated to a reduction
in vagal outflow to the sinus node and with an increase in sympathetic nerves activity
to compensate the sudden drop of blood pressure to the brain; the fast pressure drop
produced by the blood sequestered in the limbs can be compared with a traumatic loss
reducing the cardiac filling pressure [5]. Vasoconstriction reflex and increased heart
rate are very important adjustments to the orthostatic stress; it has been assumed that
the level of sympathetic vasomotor activity elicited in response to orthostatic stress
reflects the degree of unloading of the arterial and cardiopulmonary baroreceptors.
These adjustments must remain as long as the standing up position persists [5–7].

Linear heart rate variability analysis used to evaluate autonomic regulation dur-
ing orthostatism is characterized by increased mean heart rate, decreased variability
and mean total power in the frequencies spectrum [8]. More recently several non-
linear indexes have been evaluated in healthy subjects and in patients with different
pathologies [9–11]. Besides describing nonlinear properties of the heart rate vari-
ability, clinical applications have been shown for some of them (e.g. independent
prognosis of cardiac death in survivors of myocardial infarction) [8, 11]. However,
rigorous application of most nonlinear time series analysis methods need long and
stationary time series and their uncritical application to biological data can lead to
serious misleading conclusions [12, 13]. Therefore, nonlinear methods with applica-
bility to short and noisy data, as in the case of heart rate variability, are continuously
developed with the aim of revealing non evident changes in the cardiovascular control
system [14, 15]. This is the case of Recurrence Plots Analysis. Recurrence is a basic
feature of many dynamical systems, including physiological ones, and it measures
the repeated occurrence of a given state of the system through a quantitative recur-
rence analysis (RQA). The application of RQA has shown that several properties of
heart rate recurrence plots are different in diabetic patients compared to healthy sub-
jects [16], and also that several RQA indexes are sensitive to orthostatic challenge in
healthy and neuropathy subjects, helping to understand the mechanism that regulate
the chronotropic activity of the heart [17–20]. However, heart rate variability by itself
is not enough to understand the cardiovascular regulation [21].
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1.1 Systolic Blood Pressure and Systolic Blood Volume

The importance of the sympathetic nervous system in the short-term regulation of
blood pressure via the modulation of peripheral vascular tone and cardiac output is
well established [7]. The study of the systolic blood pressure (SBP) variability is
used to assess the autonomic sympathetic regulation towards the blood vessels, and
combined with heart rate it is used to evaluate the baroreflex mechanism, mainly by
estimation of the baroreflex sensitivity [22]. The dynamical behavior of SBP has also
been studied with nonlinear methods, including the recurrence plots analysis [23].
From the cardiovascular point of view, blood pressure is one of the main variables
that the cardiovascular system is trying to keep bounded within a dynamic range that
guarantees enough perfusion to all body tissues. In this sense, blood pressure can
be considered as a regulated variable, while heart rate is one of the effectors that is
permanently adjusted by the control system [24]. The dynamical behavior of these
two variables is strongly associated by feedback loops of the cardiovascular system,
for example, the negative feedback loop between blood pressure and heart rate in
the baroreflex mechanism [25]. Given this association, heart rate and SBP variability
are not orthogonal variables, and therefore the understanding of the cardiovascular
regulation with only these two variables remains limited [26].

As a third study variable, in this work we consider the blood volume variability,
evaluated by the photoplethysmographic systolic blood volume (SBV) [5, 26]. SBV
is also a variable of the control system and may add relevant information regarding
the cardiovascular regulation. SBV is modulated by direct influence from the sympa-
thetic nervous system but not by the parasympathetic nervous system [7, 25–27], and
other mechanisms involved, such as the baroreflex, are also relevant [26, 27]. SBV
behavior has been characterized mainly by linear methods such as spectral analy-
sis [25, 28]. However, little is known about the dynamical properties of SBV, and
there are no previous studies of the recurrence plot of this variable. Considering their
intricate physiological association, it is important to learn how these three physiolog-
ical variables co-evolve: SBP, SBV and heart-beat interval in different physiological
context; and as a first approximation we are using the recurrence plots and QRA to
compare their dynamical changes during the orthostatic challenge in healthy patients.

The aim of this study was to assess the effects of active orthostatic stress as revealed
by recurrence plots and RQA indexes for three relevant cardiovascular physiological
outputs: heart beat interval, SBP and for the first time, SBV oscillations.

2 Methods

Nineteen healthy volunteers, age 20–40 years old were included in the study. The
volunteers fulfilled the following inclusion criteria: no known history of diabetes
mellitus, cardiovascular disease or any other kind of chronic or acute disease, no
medication indicated, no-smokers. All subjects were asked to avoid intake of stim-
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ulants such as caffeine during 12 h before the study and they gave their informed
consent to participate in this study. The study protocol is in accordance with the
principles outlined in the Declaration of Helsinki of 1975 (as revised in 1989), and
it was approved by the Ethics Committee of the hospital (Instituto Nacional de
Cardiología Ignacio Chávez, México), protocol number 12–763.

Non-invasive blood pressure recordings were obtained with a Finometer and blood
volume was estimated with a photoplethysmograph during supine position and ortho-
statism at a sampling frequency of 200 samples per second. The pressure sensor was
secured on the middle finger of the left hand, with the arm resting on a sling to reduce
hand movements. A calibration was made for each person by compressive sphygmo-
manometry. In each body position, the recording started after 5 min of stabilization
and lasted 15 min. The recordings were processed to identify SBP and SBV value of
each heartbeat, and to calculate all inter beat intervals (IBI). The pertinence of using
only systolic values was shown before by our group [26].

2.1 Beat Detection Process

Ad-hoc techniques were implemented by computer programs in Matlab (Mathworks,
Inc) described previously [26]. Briefly, the blood pressure signal was filtered by a
second derivative algorithm, it was rectified to positive values and a threshold was
applied in order to find the peaks that correspond to SBP [29]. Correct identification
of SBP for all heartbeats was verified manually. IBI was obtained from the time
difference of SBP between consecutive heartbeats.

2.2 Systolic Blood Volume

The photoplethysmographic oscillations are associated with blood volume changes
in the microvascular bed of tissue that are observed around the average blood volume
[5, 26]. Since PPG pulse is not a direct quantitative measurement it is represented in
arbitrary units (a.u). We used a two LED reflectance system that has been character-
ized previously [30].

2.3 Recurrence Plot Construction

Recurrence plots exhibit characteristic large and small scale patterns that are caused
by fundamental dynamic behavior, e.g. short diagonals lines reveal similar local
evolution of different parts of the trajectory, while horizontal and vertical black lines
appear when a state does not change for some time. Random processes do not exhibit
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those linear structures [31, 32]. The main step for the visualization of recurrence in
a time series or data set is the calculation of the N × N matrix,

Ri, j = �
(
εi − ∥∥−→xι − −→x j

∥∥)
,

where N is the number of data, εi is a predefined threshold distance, ‖·‖ is a norm (e.g.
the Euclidean norm), and � is the Heaviside function. A multidimensional state space
is reconstructed from the one dimensional beat to beat time series, applying a time
delay embedding method. Each point in the reconstructed phase space represents
the state of the system at a given moment and is determined by m coordinates of a
given embedding dimension. To obtain all these reconstructed data we used the tools
developed by Norbert Marwan and colleagues, the Cross Recurrence Plot Toolbox
for Matlab [available from the toolbox for complex systems (TOCSY) webpage:
http://tocsy.pik-potsdam.de/crp.php].

Embedding delay was estimated with both autocorrelation function and mutual
information minima without finding significant differences. Embedding dimension
was estimated by means of false nearest neighbor method. Since the estimated dimen-
sion was smaller than 10 in all times series, we set the embedding dimension = 10,
which is in accordance with the recommendation of Webber [33] and other references
[34, 35]. The distances between individual points in the matrix corresponding to a
state of the system at a given time were calculated using the option Maximum norm
fixed recurrence rate (“rr”) in the toolbox for auto recurrent plots [15, 31, 36].

Besides the visual inspection of recurrence plot that help to recognize different
characteristics between different physiological conditions, we applied a quantitative
analysis of the generated patterns (RQA). We measured the following parameters:
percentage of determinism (the percentage of recurrence points forming diagonals
from all recurrence points), mean diagonal length, Lmax (length of the longest diag-
onal line), trapping time (time in which the dynamics remains trapped in a certain
state), mean length of the vertical lines, laminarity (proportion of recurrence points
forming vertical or horizontal lines), Vmax (maximal verticality), T1 (recurrence
time of first type) and T2 (recurrence times of second type) [31]. Specifically, T2
is able to detect very weak transitions with high accuracy, both in clean and noisy
environments. T1 has the distinguished merit of being more robust to the noise level
and not sensitive to the parameter changes of the algorithm [37]. Also entropy was
obtained. It is defined as the Shannon information entropy of the line length distri-
bution [38]. Shannon Entropy is related to the amount of data needed to identify a
particular state of the system.

Normal distribution of RQA indexes was tested with Kolmogorov-Smirnov tests.
The variables that did not satisfy the normality test were transformed by a natural
logarithm. Mean values of the RQA indexes were compared between supine position
and active standing with paired t tests. A p value <0.05 was considered statistically
significant (ANOVA). The statistical analysis was performed using the Statistical
Package for the Social Sciences (SPSS) program, version. 15.0(SPSS, Inc).

http://tocsy.pik-potsdam.de/crp.php
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3 Results

3.1 Recurrence Plots

Figures 1 and 2 show two examples of the three underlying time series used to pro-
duce each RP of healthy volunteers in clinostatism and orthostatism: IBI, SBP and
SBV. Globally they show a significant content of high frequency oscillations (“fast
cycles”), combined with some oscillations of lower frequencies. In the corresponding
recurrence plot during supine position, the high frequency oscillations are reflected
in regularly distributed diagonal lines, parallel to the identity line. The small diag-
onals are tramped in well-formed squares and rectangles. The white vertical spaces
correspond to slow transient changes; and it is also possible to recognize a slow drift
along some time series. Some differences were found in the associated patterns to
IBI, SBP and SBV in the same person. In most cases the SBP and SBV plots seem
like filters of the pattern observed in the IBI plot, with less fast cycles (Figs. 1 and 2
in supine position), like a progressive smoothing effect.

In contrast, in the standing up position there is an increase in both intercalated
white regions and the density of points forming square zones (laminarity). Compared
to supine position, during orthostatism the time series shows a decrease in the high
frequency oscillations and increase in low frequency oscillations (Figs. 1 and 2).

The corresponding recurrence plot has important qualitative changes: it still shows
diagonal lines but they are less fine and more scattered than the ones observed in
supine position, while more regions have white vertical spaces in correspondence
with slow transient changes in the time series. With careful inspection or visual
training it could be possible to know if the plots correspond to a standing up person.

3.2 Recurrence Indexes from QRA

Table 1 summarizes our findings. In response to active standing there was no change
in embedding dimension of all variables, but the embedding delay of both IBI and
SBV increased significantly. On IBI, active standing caused significant increment
in laminarity, trapping time, recurrence time of the first type (T1) and recurrence
time of the second type (T2). In SBP, the only significant changes in response to
active standing were: decrease in mean diagonal length, longest diagonal length, and
increase in T1. In response to active standing, SBV showed significant increase in
laminarity, T1 and T2.

3.3 In Trend and Out of Trend

Looking at Table 1 it is possible to appreciate that there were three indexes with
p-values that almost reached statistically significance (0.05 < p < 0.10). We decided
to examine the individual variation of those groups of indexes: the group with sig-
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Fig. 1 Time series and recurrence plots from subject number 13. IBI= inter beat interval, SBP =
systolic blood pressure, SBV= systolic blood volume. Recurrence plots parameterswere: embedding
dimension = 10, fixed recurrence rate = 7 %, and ad-hoc embedding delay (estimated with each
corresponding auto-correlation function)

nificant differences and the group with differences almost statistically significant.
Figure 3 shows examples of the first group of indexes.

We found, for example, that laminarity variation for IBI increased in response to
orthostatism in 18 out of 19 subjects, although in a different extent within subjects



116 H. González et al.

Fig. 2 Time series and recurrence plots from subject number 8. IBI = interbeat interval, SBP =
systolic blood pressure, SBV = systolic blood volume oscillations. Recurrence plots parameters
were: embedding dimension = 10, fixed recurrence rate = 7 %, and ad-hoc embedding delay
(estimated with each corresponding auto-correlation function)

(Fig. 3a). The same expected consistency was found in IBI recurrence rate which
decreased during orthostatism (Fig. 3b), and in TT1of SBP and laminarity of SBV
which increased during orthostatism (Fig. 3c, d). These types of consistent responses
to orthostatism was observed for all other indexes with significant p-values (p < 0.05).
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Table 1 Quantitative recurrence analysis of heart beat intervalvariability (IBI), systolic blood
pressure (SBP) and systolic blood volume oscillations (SBV), evaluated from 19 healthy subjects
during resting conditions (supine position) and during active standing (orthostatism)

IBI SBP SBV

Supine position

Embedding delay (heartbeats) 7 ± 5* 9 ± 3 8 ± 2*

Embedding dimension 6 ± 1** 6 ± 1 6 ± 1

Recurrence rate (%) 6.3 ± 0.4* 5.9 ± 0.4 6.4 ± 0.3**

Ln (determinism) −0.78 ± 0.45 −0.40 ± 0.32 −0.29 ± 0.23

Mean diagonal length 3.24 ±1.67 3.72 ± 1.41* 4.23 ± 1.83

Ln (longest diagonal length) 3.14 ± 0.96 4.04 ± 0.92* 4.13 ± 0.85*

Ln (entropy) −0.06 ± 0.56 0.27 ± 0.45** 0.38 ± 0.45

Laminarity 0.48 ± 0.12* 0.70 ± 0.13 0.79 ±0.11*

Trapping time 2.60 ± 0.32* 3.37 ± 0.82 37.2 ± 28.4

Maximal verticality 22.4 ± 12.7 33.0 ± 19.0 37.2 ± 28.4

Recurrence type of 1st type 12.0 ± 1.6* 11.5 ± 3.2* 11.7 ± 2.5*

Recurrence type of 2nd type 17.3 ± 2.6* 23.9 ± 7.5 31.1 ± 10.5*

Orthostatism

Embedding delay (heartbeats) 14 ± 5 9 ± 4 9 ± 2

Embedding dimension 7 ± 1 6 ± 1 5 ± 1

Recurrence rate (%) 5.6 ± 0.6 6.0 ± 0.3 6.2 ± 0.2

Ln (determinism) −0.66 ± 0.22 −0.53 ± 0.19 −0.22 ± 0.11

Mean diagonal length 2.58 ± 0.20 2.68 ± 0.36 3.72 ± 1.00

Mean diagonal length 2.58 ± 0.20 2.68 ± 0.36 3.72 ± 1.00

Ln (longest diagonal length) 2.76 ± 0.80 2.91 ± 0.77 3.62 ± 0.76

Ln (entropy) −0.02 ± 0.20 0.04 ± 0.23 0.46 ± 0.20

Laminarity 0.67 ± 0.09 0.72 ± 0.09 0.88 ± 0.06

Trapping time 3.05 ± 0.30 3.13 ± 0.51 4.59 ± 1.23

Maximal verticality 27.8 ± 14.2 25.9 ± 15.2 48.2 ± 29.7

Recurrence type of 1st type 15.2 ± 2.9 13.7 ± 2.3 13.1 ± 2.8

Recurrence type of 2nd type 28.4 ± 6.2 28.2 ± 8.4 45.8 ± 18.9

* p ≤ 0.05 (supine position versus orthostatism, paired t-test)
** 0.05< p < 0.10 (supine position versus orthostatism, paired)

On the other side, when we review the indexes with almost significantly differences
like Shannon’s Entropy of IBI, or determinism of SBP, we identify two or three well
defined subsets of response to orthostatism within each index (Fig. 4a, b). This implies
that there can be two or three types of variations in the response to orthostatism, even
though they all correspond to young healthy subjects. Due to the high dispersion in
the response of each index, the t-test between supine position and orthostatism did
not reach a significant difference.
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Fig. 3 Examples of quantitative recurrence plot analysis indexes with a consistent response to ortho-
statism (showed as a significant paired t-test, p < 0.05, between supine position and orthostatism)

Fig. 4 Examples of quantitative recurrence plot analysis indexes with no significant changes in
response to orthostatism (showed as paired t-test, 0.05 < p < 0.10, between supine position and
orthostatism)
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Fig. 5 Temporal variation in inter beat interval QRA indexes: a example of a QRA index with
statistically significant difference (p < 0.05) between supine and orthostatism, b example of a QRS
index with non-significant difference (0.05 > p < 0.10)

Another way to consider this inter-individual variation in indexes which were
almost statistically different is to analyze the temporal evolution of relevant indexes
in both studied conditions. Figure 5 (upper left panel) shows the temporary evolution
of IBI Laminarity for the supine condition and Fig. 5 (upper right panel) for the
orthostatic position.

Most of the subjects have the same type of change in their QRA index, inde-
pendently of their particular trajectory, and only a few deviate from the overall
trend. On the other hand, for the QRA indexes that resulted almost significant,
such as the Shannon’s Entropy (Fig. 5, lower panels) we found cases that markedly
deviate from the overall trend. However, these cases correspond to healthy
persons too.
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4 Discussion

In our study the recurrence plots showed a consistent pattern of more clustering of
points during orthostatism with respect to supine position. The quantitative assess-
ment with the RQA indexes confirmed these observations of the effect of orthostatic
stress in healthy subjects: IBI, SBP and SBV variability and complexity were reduced
and the characteristics of their dynamics were changed by orthostatism, which is
consistent with previous reports about RQA from IBI alone [19, 20], or from IBI
and SBP [23].

In standing position, that represents a physiologically activated state, theRP had
higher laminarity and trapping time, that is, a long permanence of the system in a
particular state, with a reduction in the number of states that are visited, as can be seen
for a larger proportion of white spaces. It seems that for a more activated condition
(i.e. active orthostatism) the predominance of a smaller number of dynamic states is
important, and therefore, the demanded physiological status is reached with a smaller
set of combined adjustments.

There were similarities in the response of SBV and IBI, but the response of RQA
indexes was not identical in the 3 evaluated variables. There was more parallelism in
the significant QRA indexes between IBI and SBV than between IBI and SBP. This
suggests that despite the known high correlation between these 3 variables, the car-
diovascular control exerts different influences on them in response to active standing.
Previous work with different methodology showed that during passive orthostatism,
complexity of IBI decreases while complexity of SBP remained unchanged, suggest-
ing that complexity indexes from IBI and SBP provide complimentary information
[21]. Our work agrees with these ideas considering the following: (i) we observed
a response to active orthostatism that is consistent with decreased complexity in
several recurrence plot indexes of IBI, SBP and SBV, (ii) there were fewer indexes
in SBP that changed significantly, compared to IBI, indicating that SBP have less
dynamical changes in response to active standing, and (iii) several of the indexes that
changed significantly in SBP were different from those that changed in IBI or SBV,
which also supports the hypothesis that these 3 variables provide complementary
information.

Our results also indicate an association between changes in dynamical behavior of
IBI, SBP and SBV with an increased sympathetic predominance. This confirms that
the autonomic modulation of the cardiovascular control responds to the orthostatic
stimulus [20], but also suggests that some other mechanism, as regional vasomotor
activity may have an important role. The finding can be suitable to appreciate a
differential condition of the three variables in a clinical evaluation of health and
disease.

Clinical considerations of decreased variability, complexity and IBI nonlinear
dynamics reflected in RQA indexes has been used for detection of heart rate deregu-
lation in various pathological conditions including chronic fatigue syndrome, hyper-
tension, diabetes mellitus, chronic renal failure, and ventricular arrhythmia [19, 20].
One of the greatest interests of clinicians is to be able to associate the condition of
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the autonomic balance, or autonomic tone, with the risk of disease or to gain some
insights for therapeutics management. For example, in myocardial infarction sur-
vivors, the observation of high laminarity has been associated with an increased risk
for life threatening arrhythmia [15].

Overactivity of the sympathetic nervous system is both a major early prognostic
indicator for hypertension and a conspirator affecting the heart, vasculature, renin-
angiotensin system and immune system. As sympathetic overactivity appears to be
present before the hypertensive phenotype, its early antagonism should be considered
a potential preventative measure before end organ damage becomes irreversible and
hypertension becomes drug resistant [39, 40]. Therefore, having new tools to evaluate
augmented sympathetic activity in health condition as those here analyzed becomes
very relevant.

Another interesting aspect was to review some particular QRA indexes close to
reach statistical significance; we applied to them the same methodology and data
protocol; so they pose the question of considering a broader spectrum of results as
corresponding to a healthy condition. Maybe it is necessary to develop a more per-
sonalized approach to distinguish between health and disease or to learn to recognize
the individualized evolution to disease. As Richard Levins remarks:

If we fail to define the problem big enough, then many important impacts on a variable come
from outside the domain of the problem and are treated as “random”or”error. Contrary to
common sense, big problems are often more soluble than small ones [41]

In conclusion, we have shown that in response to orthostatic stress, SBV oscillations
have dynamic changes similar but not identical to SBP and IBI. This suggests that
these three variables are complementary for a better evaluation of cardiovascular
dynamics.

Also we discussed the convenience to develop a more personalized assessment
of the physiological condition, for example the level of activity of the sympathetic
nervous system based on more statistical indexes and their variances.
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Recurrence Quantification Analysis
as a Tool for Discrimination Among Different
Dynamics Classes: The Heart Rate Variability
Associated to Different Age Groups
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Abstract We propose a classification method based on recurrence quantification
analysis (RQA) combined with support vector machines (SVM). This method com-
bines in an effective way various quantitative descriptors to allow a refined discrim-
ination among dynamical non linear systems that presents dynamics which are very
similar to each other. To show how effective this methodology is, firstly, based on
synthetic data, it is applied on time series generated from the logistic map with nearby
parameter values and in the chaotic regime. Next, it is applied to human biosignals,
namely, heart rate variability (HRV) time series obtained from four groups of indi-
viduals (premature newborns, full-term newborns, healthy young adults, and adults
with severe coronary disease). Roughly the proposed methodology works as follows:
The signals are transformed into recurrence plots (RP) and a set of RQA statistical
features (recurrence rate, determinism, averaged and maximal diagonal line lengths,
entropy, laminarity, trapping time, and length of longest vertical line) are extracted
to form the input vector for a SVM classifier. Results show that the method discrim-
inates groups of different ages with classification accuracy better than 75 %. Given
that heart rate continuously fluctuates over time and reflects different mechanisms to
maintain cardiovascular homeostasis of an individual, the results obtained may allow
to draw important information on the autonomic control of circulation in normal and
diseased conditions.
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1 Introduction

Heart rate variability (HRV) is a non-invasive measure related to the balance of the
activities of sympathetic and parasympathetic divisions of the autonomic nervous
system [1]. This variability is normal and indicates the heart ability to response to the
environmental and physiological stimuli [2]. The balance of nervous system activities
results in a nonlinear behaviour of the HRV time series. In general autonomic and
parasympathetic activities attenuate with age [3], which is related with reduction of
the HRV [4] (comparing the normal healthy adult and older-age adult).

There are several methods for HRV analysis [5], for example, standard linear
techniques (time and frequency domain analysis) and nonlinear methods (corre-
lation dimension analysis, largest Lyapunov exponent, central tendency measure,
Poincare plot). However, none of them, from our knowledge, is regarded as univer-
sally applicable or effective for all the cases related to HRV analysis. In this study we
propose a methodology that is based on the recurrence plot and recurrence quantifi-
cation analysis. In recent years, recurrence plot (RP) and recurrence quantification
analysis (RQA) have been applied to study different dynamics systems [6, 7], in nat-
ural science, physics [8], biological systems, and physiological processes involving
heart rate variability [9–12]. Given its intrinsic discrete character, RQA is particu-
larly suited for the analysis of HRV time series and allows for a direct quantification
of the complex dynamics of heart rhythm modulation [13, 14].

RQA is a useful tool and helps to understand the variation of the autonomic ner-
vous system over time. The major advantage of RQA and recurrence plots (RPs) over
standard HRV analysis are their applicability to non stationary data and also their
sensitivity to subtle changes in the cardiovascular system dynamics. These aspects
enable RPs to be used in the characterization of changes in the basic cardiovascular
parameters during both physiological and pathological conditions. But the analysis
of HRV time series using only RQA statistics is known as not being able to pro-
vide consistent enough information to achieve a suitable classification. And our goal
here is to have an effective method that allows one enough sensitivity to properly
differentiate systems with very similar dynamics. This desired amplification in the
discrimination sensitivity using the SVM in combination with the RQA, will be
shown here in the subsequent sections. In this work, combined with SVM, we evalu-
ated RQA measures to discriminate and identify groups of different ages, including
information about the system.

2 Materials and Methods

2.1 Experimental Database

The study comprised a total of 148 tachograms divided into four groups: 26 full-term
newborns (FNB) (8 days on average), 48 premature newborn (PNB) (±27.4 days),
61 healthy young adults (HYA) (20.7 ± 1.6 years), and 61 adults in preoperative
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evaluation for coronary artery bypass grafting for severe coronary disease (SCD)
(58.4 ± 10.2 years). All tachograms are from databases from previous studies
of Transdisciplinar Nucleus for Chaos and Complexity Study (NUTECC/Brazil)
[15, 16]. There are time series with 15 min up to 1 h recording period from patients
in a supine rest position without visual and sound stimulations.

The equipment used to collect signal was Polar Monitor (S810i or RS800), which
has been proven [17–19] to be feasible and reliable for measuring HRV according
to recognized standards [20]. At a sampling rate of 1000 Hz, this device captures
successive intervals between heartbeats, namely NN, in the normal sinus rhythm (i.e.,
initiated by the sinoatrial node). All these studies were approved by the respective
ethic committee. All NN time series were filtered to remove artifacts using an adaptive
filter which takes into account the peculiarities of the signal to be analyzed [5].

2.2 Recurrence Quantification Analysis

Defined as a repeated occurrence in time of a given state of a system, recurrence is a
basic attribute of many dynamical systems. It means that along the time a trajectory
comes repetitively close in the state space of points previously visited. Embedding
the time series in a appropriate dimensional space and then plotting in a matrix the
recurrences according to a tolerance rule results a recurrence plot (RP), which is
a graphical representation of the recurrences in the dynamical system. The visual
features of such plots are appealing and reveal patterns not previously viewed in the
original series [13].

RP represents the autocorrelation in the signal at all possible time scales. Since
the diagonal marks the identity in time, long-range correlations are associated to
points far from the main diagonal, whereas the elements near the principal diagonal
correspond to short-range correlations. Diagonals reflect the repetitive occurrence of
similar states in the system dynamics and express the similarity of system behavior
in two distinct time sequences. To quantity such features, recurrence quantification
analysis (RQA) has been introduced for measuring quantitative information con-
tained in recurrence plots [21].

For instance, the density of recurrence points in a recurrence plot is defined as
recurrence rate (RR), giving the probability that a specific rate will recur. Parameters
based on the diagonal lines are determinism (DET, the percentage of recurrence
points forming diagonals from all recurrence points), averaged diagonal line length
(L), maximal diagonal line length (Lmax), and entropy (which denotes the Shannon
entropy of the histogram of the lengths of diagonal segments and thus indicates the
complexity of the deterministic structure of the system).

Verticals are also important structures in a RP in that they reflect the persistence
of one state during some time interval. The parameters derived from vertical lines are
laminarity (LAM, the proportion of recurrence points forming verticals), trapping
time (TT, the mean length of vertical lines), and the maximal length of a vertical,
Vmax. Low TT, LAM, and Vmax values imply high complexity in the systems
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dynamics, since the state of the system stays only for a short time in a state similar to
the previously occurring state. Theoretically, diagonal and vertical structures would
not occur in random (stochastic) as opposed to determinist process [7].

2.3 SVM Classifier

Support Vector Machines (SVMs), developed by [22], are supervised learning tech-
niques used for classification, regression analysis and learning tasks. Such techniques
can be applied to the solution of problems related to text categorization, image analy-
sis, and bioinformatics [23]. The main idea behind this classifier is to construct a
hyperplane that maximizes the distance (so-called margin) to the nearest data points
pertaining to two classes as pictured in Fig. 1.

The classifier was trained from the previously discussed dataset which, in an
empirical way, was divided into the training and test sets enumerated in Table 1.

Fig. 1 Examples of separation of two classes using an SVM classifier: a two classes linearly
separable, b two classes with nonlinear separation, and c separation achieved by a hyperplane in a
high-dimensional space

Table 1 Number of training and test sets employed in the SVM classifier

Groupsa Training set Test set Total of cases for comparison

FNB (26) and PNB (48) 17 and 17 9 and 9 26 and 26

FNB (26) and HYA (61) 17 and 17 9 and 9 26 and 26

PNB (48) and HYA (61) 30 and 30 18 and 18 48 and 48

FNB (26) and SCD (61) 18 and 18 8 and 8 26 and 26

PNB (48) and SCD (61) 30 and 30 18 and 18 48 and 48

HYA (61) and SCD (61) 45 and 45 16 and 16 61 and 61
aFNB full-term newborn, PNB premature newborn
HYA—healthy young adult, SCD—adult with severe coronary disease
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Fig. 2 Structure of the
methodology for discrimi-
nation of HRV clinical groups

The class label (PNB, FNB, HYA, SCD) for each NN interval time series was assigned
by a cardiologist.

For each time series, eight RQA features were extracted to form the input for the
classification step (Fig. 2). The SVM classifier was assessed from the LIBSVM open
library [23] and executed 100 times for each RQA feature for comparison between
two clinical groups. Detailed information about learning and classification algorithm
can be found in [22, 23]. For each execution of the code, the training and test cases
were randomly selected from which was obtained the average accuracy, defined as
the percentage ratio of the number of cases correctly classified to the total number
of cases used for classification.

3 RQA Plus SVM: Discriminating Almost Similar Dynamics

To show the effectivity of the proposed the methodology RQA+SVM, we used
the logistic map time series (xn+1 = r ∗ xn ∗ (1 − xn)) for values r = 3.68,
r = 3.7 and r = 3.9 (see Fig. 3). For each value of the dynamic parameter r , 30
time series were generated, each one with 2,000 points (the first 200 points were
discarded to allow transients to die out), with x(0) ∈ [0.1, 0.8], and an incremental
step Δx(0) = 0.0241.

For the study of the RQA measures, the RP parameters to the logistic map
were selected embedding dimension (m = 1), delay (τ = 1) and threshold radius
(ε = 0.1). Details about these values are given in [7].

To the SVM classifier three groups are assigned (according r values: r = 3.68,
r = 3.7 and r = 3.9). We used 21 time series for each group of the training set
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Fig. 3 Bifurcation diagram of the logistic map with a zoomed in view in the region of the r
parameters chosen: r = 3.68, r = 3.7 and r = 3.9
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accuracy (<a>±δ a)

r=3.68 and r=3.7

r=3.7 and r=3.9

r=3.68 and r=3.9

Fig. 4 Average accuracy and standard deviation (〈a〉±δa) obtained by the SVM of the comparison
between two time series groups to Logistic Map. (A) r = 3.68 and r = 3.7, (B) r = 3.7 and r = 3.9
(red line); r = 3.68 and r = 3.9 (blue line). The proper level of accuracy (75 % or higher) is indicated
by points to the right of the dashed vertical line

and 9 to the test set. The average accuracy and standard deviation obtained by SVM
are displayed in Fig. 4. In this figure an accuracy equal to 1 means that all of the
cases tested (100 %) were correctly classified, while a zero value means that all
cases were not properly classified. For accuracy values above the threshold of 75 %,
the dynamics of the analyzed groups are considered to be similar. We can observe
that for the pair of groups (r = 3.68, r = 3.7) the RQA features are more similar
than the pairs of groups (r = 3.68, r = 3.9) and (r = 3.7, r = 3.9). These results
demonstrate the ability of the methodology RQA + SVM to differentiate groups with
almost similar dynamics.
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4 Application: Using HRV to Discriminate Physiological Age

The main objective of this study was to analyze RQA measures as a tool to discrim-
inate HRV time series recorded from different clinical groups. Typical HRV time
series and RP patterns are shown in Figs. 5 and 6, from which the peculiarities of
each recurrence plot and the corresponding HRV series are noticeable. For these
plots and throughout the present study the RP parameters were selected as: m = 3,
τ = 3, and ε = 8. The choice of embedding dimension (m = 3) was based on results
from the false nearest neighbor method [24]. We chose the minimum value for m that
presented minimum percentage of false neighbors. This value was adopted for the
time series analyzed, standardizing all the data set. Time delay for embedding was
set at the first minimum of the mutual information function [25], since the embedded
signals have the minimum overlapping information. The tolerance level, following
the recommendation of [26], was selected to ensure the percentage of recurrence
points lying between 0.1 and 0.2 % to obtain reliable values for the RP parameters.
Detailed discussions about the RP parameters are found in [13, 14, 26].

For each group, the extracted RQA features are displayed in Figs. 7 and 8. We can
notice that for the pairs of groups (SCD, HYA) and (FNB, PNB) the RQA features are
similar. Then to further examine the ability of RQA features to differentiate groups
of different ages we applied SVM classification.

A similar plot to those for the RQA measures (Figs. 7 and 8) is obtained when
using the mean value and standard deviation of the HRV time series. We see in Fig. 9a
that the groups FNB and PNB can be distinguished from the groups SCD and HYA
in terms of the average values of the NN intervals. But since an NN interval gives
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Fig. 5 Examples of NN time series and RPs for a FNB and b PNB groups (embedding
dimension=3, delay=3 and threshold=8)
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Fig. 6 Examples of NN time series and RPs for a HYA and b SCD groups (embedding dimen-
sion= 3, delay= 3 and threshold= 8). Example of RPs for each time series groups (embedding
dimension= 3, delay= 3 and threshold= 8)
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Fig. 7 Average values and standard deviation to RQA diagonal parameters for each group

(in milliseconds) the duration of a heartbeat, the values displayed in Fig. 9a are only
correlated with the mean heart rate for the time series of each group. However we
emphasize that the mean value of the NN interval, i.e., the heartbeat average is not
enough to characterize the homeostasis of an individual, which is a dynamical process
that is reflected in the heart rate variability. On the other hand, upon analyzing the
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Fig. 9 Average values for the full set of HRV time series by taking for each series: a the NN interval
and b the beat-to-beat NN interval variability

set of series in terms of beat-to-beat NN interval variability, the separation between
groups is no longer possible as demonstrated in Fig. 9b.

The average accuracy values of RQA indexes obtained from SVM through com-
parison between groups of different ages are reported in Fig. 10. It is seen that RQA
indices are better at distinguishing groups the larger is the age difference. In fact, for
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Fig. 10 Average accuracy and standard deviation (〈a〉±δa) obtained by SVM from the comparison
between two NN intervals time series groups to RQA indexes. a Full-term newborn (FNB) and
premature newborn (PNB), b healthy young adult (HYA) and adult with severe coronary disease
(SCD), c premature newborn and healthy young adult (red line); full-term newborn and healthy
young adult (blue line), d premature newborn and adult with severe coronary disease (blue line);
full-term newborn and adult with severe coronary disease (red line)

close age difference as in Fig. 10a, b the average accuracies are restricted to 50 and
60 %, respectively. Nevertheless, this might indicate that age difference between the
HYA and SCD groups is more significant than in groups FNB and PNB. In support
to this conclusion, we see in Fig. 5 that the recurrence plots for the groups FNB and
PNB look more similar than the RPs for the HYA and SCD groups (Fig. 6).

In addition, comparison of newborns with older individuals yields higher accu-
racy, namely, 80 % as demonstrated in Fig. 10d and 90 % in Fig. 10c. It is to be
mentioned, however, that a larger age difference does not necessarily imply a larger
accuracy, i.e., the larger accuracy in Fig. 10c is related to an age difference smaller
than that in Fig. 10d.

5 Conclusion

The present study was concerned with recurrence quantification analysis (RQA) of
HRV time series for groups of individuals with different ages. RQA was proven to
be a powerful discriminatory tool to detect the degree of determinism of the systems
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examined. Among the four groups studied, all the RQA measures (Figs. 7 and 8) were
lower in the healthy young adults (HYA). Low TT, Lam, and Vmax, for instance,
imply high complexity in the system’s dynamics. This result is in line with the
concept that high complexity is a general feature of healthy dynamics compared to
pathological conditions.

We also verified that RQA measures were able to differentiate groups, with the
results demonstrating that better discrimination is achieved the higher the age dif-
ference is. It was noted in Fig. 10c, d, however, that a higher age difference does
not imply a higher discriminatory accuracy. The closeness of the comparison of the
SCD group with the newborns (PNB and FNB) and the higher degree of dissimilarity
between the HYA group and the newborns reflect the fact that the comparisons were
quantified in terms of HRV, which is age dependent. This result shows that the HRV
decreases with age as described in [3, 4].

Given that HRV time series reflects the complex interactions of different control
loops of the cardiovascular control system, the results obtained here provide impor-
tant information on the autonomic control of circulation in normal and diseased
conditions. In addition, the approach discussed here permits an automatic analysis
of a large number of time series, thus making the method useful in clinical sets and
in epidemiological studies to analyze HRV series or other biomedical signals.
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Analyzing Social Interactions: The Promises
and Challenges of Using Cross Recurrence
Quantification Analysis

Riccardo Fusaroli, Ivana Konvalinka and Sebastian Wallot

Abstract The scientific investigation of social interactions presents substantial
challenges: interacting agents engage each other at many different levels
and timescales (motor and physiological coordination, joint attention, linguistic
exchanges, etc.), often making their behaviors interdependent in non-linear ways.
In this paper we review the current use of Cross Recurrence Quantification Analysis
(CRQA) in the analysis of social interactions, and assess its potential and challenges.
We argue that the method can sensitively grasp the dynamics of human interactions,
and that it has started producing valuable knowledge about them. However, much
work is still necessary: more systematic analyses and interpretation of the recurrence
indexes and more consistent reporting of the results,more emphasis on theory-driven
studies, exploring interactions involving more than 2 agents and multiple aspects
of coordination,and assessing and quantifying complementary coordinative mecha-
nisms. These challenges are discussed and operationalized in recommendations to
further develop the field.

1 Introduction

Human beings possess an impressive ability to coordinate their actions and goals—
from the small scale of the dyad, all the way up to the largest scales that span social
groups and societies. We coordinate while dancing [1], we excel at managing com-
plicated traffic situations [2], we effectively share information and make important
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collective decisions with colleagues and family members [3], and we even organize
larger scale processes to sail massive battleships [4] and coordinate complex political
systems [5]. Increasingly, the study of human cognition and behavior is focusing on
the ways we interact to create such cognitive and behavioral synergies: the ways
people effectively engage each other through language and actions, managing to
coordinate their cognitive processes and even physiology, in order to create rapport,
share information and achieve joint goals [6, 7]. Much is at stake in this enterprise,
since social interactions do not only lie at the core of our private and economic well-
being, but are also thought to be one of the most crucial aspects in mental health and
healthy development [8].

In this article we discuss some of the crucial challenges in analyzing social interac-
tions. Within this framework we introduce Cross Recurrence Quantification Analysis
(CRQA). We systematically review the studies that have employed CRQA to analyze
the unfolding of social interactions and the results they report.1 The aim is to critically
evaluate the potential of the method in assessing the quality of various interactions.
Finally we discuss the challenges still to be faced and we provide recommendations
to further develop the field.

2 Analyzing Social Interactions: The Challenges

When compared to the classical research paradigms in cognitive psychology, the
study of human interactions presents tough methodological challenges to the cogni-
tive scientist [9]. In an interaction there are at least two agents, most often employing
several expressive modalities (e.g. words, prosody, gestures, posture, etc.) and contin-
ually influencing each other, in ways that are difficult to capture when the individual
behaviors are analyzed separately [10–12]. Much of the research in social cognition
has either focused on the quantification of intra-personal phenomena, or confined
research to ask very basic questions, such as “how strongly aligned are the interact-
ing agents?” [13], assuming homogeneous and stationary behavior across the whole
episode of interest. This approach has produced valuable insights into human inter-
actions: by measuring how similar the frequency of given behaviors are between
interacting individuals, it has been shown that people engaged in interactions tend
to imitate each other’s gestures [14] and align their lexicon and syntax [15, 16].

However, interactions are more complex than that. Doing the same thing is not
enough to make an effective joint decision, or to coordinate on who is going to
pass through a narrow train corridor first. Much in interactions is about not doing
the same thing, establishing differential roles (e.g. a leader and a follower) [17–19],
complementing each other (e.g. following a question with an answer, or produc-

1 The review was accomplished by searching for “cross recurrence” and “crqa” on PubMed, Google
Scholar and Web of Science (on October 1st 2013) and then manually selecting the articles analyzing
social interactions. We followed up on the bibliography of these articles to individuate further
relevant ones. The resulting list counts 41 articles, 34 of which reporting empirical studies and the
rest being reviews or method papers. To these we added 6 submitted, but not yet published papers.
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ing complementary actions to better coordinate a task) [20, 21]. This is especially
emphasized through the use of culturally evolved routines (e.g. how to greet, how to
apologize and how to repair misunderstandings) and scripts which enable to maxi-
mize efficiency (e.g. military rules of conduct and codes for emergencies) [10, 22].

In addition, interactions tend to behave in non-stationary ways. For example,
imagine the escalation inherent in a heated discussion where interlocutors keep top-
ping each other’s voice or periods of high engagement followed by disengagement
in attacker-defender exchanges in sports [23]. This implies that the statistical mea-
sures of moment-to-moment interactions (such as the mean and the range of values)
might vary over time, defying the assumptions of linear methods [24, 25], and poses
important methodological problems for the field of quantitative interaction studies.

We introduce CRQA as a way to cope with at least some of theseissues, and show
how this non-linear method has proven suitable in quantifying many non-stationary
coordinative patterns across various modalities and interactions, as well as discuss
the challenges that it still faces.

3 An Introduction to Cross Recurrence Quantification Analysis

CRQA was introduced by Zbilut et al. [26] as an extension of Recurrence Quantifica-
tion Analysis (RQA, for a comprehensive discussion of the method, see [27]). RQA
is a more articulated non-linear equivalent of auto-correlation. It reconstructs the
dynamical system underlying a time-series, maps its possible states and quantifies
the trajectory of the system through these states [28]. RQA thus grants quantita-
tive indexes of how strongly patterned the behavior of a system is, which kinds of
patterns are repeated and how complex/flexible the repetitionsare. CRQA could anal-
ogously be defined as a more sophisticated non-linear equivalent of cross-correlation:
it quantifies the strength, but also the form and complexity of the shared dynamics of
two systems. By reconstructing the possible states of the two systems and assessing
the points in time in which they visit similar states, CRQA quantifies how often the
two systems display similar patterns of change or movement, and how complex the
structure of the entrainment between their trajectories is.

Several parameters have been suggested to articulate the structure of the coordina-
tion between two systems. Cross Recurrence Rate (RR) represents the “raw” amount
of similarities between the trajectories of the two systems (the degree to which they
tend to visit similar states). The structure of the similarities can be assessed along
the diagonal and the vertical dimension. Diagonal structures represent periods in one
time series that follow similar paths in their time-evolution to those in another time
series, when aligned or shifted in time. The more closely coupled the two systems
are, in terms of sharing the same paths, the more recurrences will be organized in
diagonal lines. The measure that captures the rate of recurrence points forming diag-
onal lines is called determinism (DET) of the interaction between the two time series.
The average length of the diagonal lines (L) represents the time that both systems
stay attuned. The longest diagonal line on a recurrence plot (LMAX) represents the
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longest uninterrupted period of time that both systems stay attuned, which serves as an
indicator of stability of the coordination: for example, sensitivity to noise and exter-
nal perturbations creates unstable sequences of coordination and therefore a shorter
longest diagonal line. It is also possible to measure how complex the attunement
between the systems is (entropy or ENTR): if the diagonal lines tend to all have the
same length the attunement is very regular (low ENTR), otherwise the attunement
is complex (high ENTR). Finally, by analyzing which delay maximizes recurrence
(diagonal recurrence profile, or DiagProfile), it is possible to observe the direction
of the coordination, that is, if there is an asymmetry with one interlocutor leading
the other. Diagonal structures thus highlight shared trajectories and their properties.

As an example, we simulated a strong and consistent coupling between two oscil-
lators (i.e. the black and red time-series) in the line plot in Fig. 1a. Immediately below,
the coupling can be observed in the cross-recurrence plot in the form of very evident
diagonal structures. In Fig. 1b we introduced strong white Gaussian noise, creating
two time-series with less stable coupling. This is reflected in the much weaker diago-
nal structures (fewer recurrences organized in diagonal lines and much shorter lines)
in the cross-recurrence plot.

Vertical structures in a cross-recurrence plot quantify the propensity of the tra-
jectories to stay in the same region (i.e. repeat the same value). In particular, the
percentage of recurrence points forming vertical lines (as opposed to being isolated
dots) is informative of the laminarity (LAM) of the interaction, and the average
length of the vertical lines (trapping time, or TT) represents the average time two
trajectories stay in the same region. As an example, in Fig. 1c we display the effects
of stabilizing the two time-series at two moments (the flat lines in the line plot).
The permanence of the trajectories in the same region (repeating the same value) is
reflected in the vertical structures in the cross-recurrence plot.

While these examples are all of continuous variables, which have initially been the
main focus of CRQA analyses, recent studies have developed ways to also explore the
recurrence and cross recurrence of nominal sequences. These include sequences of
phonemes, words, and coded behavior, such as the presence or absence of a particular
gesture, or a nod [24, 30].

CRQA thus might constitute an answer to some of the issues posed by the analysis
of social interactions: It enables the analysis of the shared dynamics of two time series.
It is highly sensitive to the temporal structure of the interactions and to their nonlinear
trends. It can cope with a wide variety of data, thus quantifying interactions between
people in a wide range of modalities. Its output is highly articulated, allowing a fine-
grained understanding of the structure of the shared dynamics between two agents.
In the following section we investigate these potentialities, by critically reviewing
the aspects of human interactions to which the method has been applied, and the
picture that the results of the analyses enable us to sketch.
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(a) (b)

(c)

Fig. 1 Examples of diagonal and vertical recurrence structure. The plots were generated using the
CRP toolbox for Matlab [29]
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4 CRQA and Social Interactions: From Swinging Pendula
to Conversation

A first crucial question to be answered is: can CRQA be used to assess the cou-
pling between two systems (i.e. interpersonal coordination) at all? In other words,
can it successfully assess the same dynamics assessed by other dynamical systems
models, which are already widely used and very successful in capturing interper-
sonal phase and anti-phase synchronization [31–33]? In order to address these ques-
tions, Shockley et al. demonstrated the effectiveness of the method in assessing
and quantifying coupling between two physical systems, above and beyond linear
methods including cross-correlation and spectral analysis [34], by capturing shared
dynamics using CRQA (quantified via both diagonal and vertical recurrence struc-
tures). It is thus no surprise that CRQA has been effectively employed to show basic
synchronization phenomena between interacting agents. For example, people swing-
ing pendula in a coordinated fashion show strong and stable coordination (high RR
and LMAX, see [35]).

Given the complexity often present in any system’s behaviors, it is, however,
crucial that CRQA indexes are compared to an appropriate baseline, so to ensure
that the degree of coordination they express is indeed due to coupling between the
systems analyzed. A commonly employed baseline is the use of shuffled data, which
maintains distributional properties but not the information contained in the tem-
poral sequence of the data. In some cases, surrogate pairs are a more appropriate
control condition, which consist of computing cross recurrence of time-series from
mismatched pairs (e.g. matching the data from person A from pair 1 with the data
from person B from pair 2). In surrogate pairs the overall individual structure is
maintained, but the coupling dynamics are disrupted. The advantage of surrogate
pairs is that they preserve the temporal organization of the overall event (e.g. the
experimental task) as reflected in the individuals’ time-series, but disrupt the actual
dynamics between interacting agents. However, this control conditionis problematic
in at least two cases: if the coordination analyzed involves turn-taking with alter-
nate production of behavior of varying length (e.g. a conversation), the temporal
structure of adjacent turns and the different lengths of the time-series would not be
respected. A second problematic case is nominal time-series with sparse data, such
as coded nodding, for which computer simulations have shown that shuffled data
are a more conservative baseline [36]. Finally, a few studies have employed within
pair contrasts: for example, in Ramenzoni et al. [37] the same pairs performed both
interactive and non-interactive but otherwise similar tasks, with the non-interactive
condition providing an ideal baseline. Analogously, Konvalinka et al. [38] compares
the levels of heart rate coordination during a religious ritual with coordination before
the ritual itself.

Once the sensitivity of CRQA to interpersonal coordination has been established
against an appropriate baseline, the second question is: what does it add to a simpler
phase analysis? CRQA is particularly useful for analyzing shared dynamics between
signals that are not necessarily periodic in nature, or rather, whose periodic quali-
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ties are more complex, and hence relative phase analysis is not so straightforward.
CRQA has thus been applied to many different aspects of complex interpersonal
coordination, which would not be easily amenable to phase analysis, ranging from
physiological to motor, linguistic and even conceptual ones.

A series of studies has shown how physiological signals, such as heart rate, also
coordinate between individuals. Konvalinka et al. hypothesized physiological coor-
dination to be involved in the community consolidating effects of highly arousing
rituals. They investigated a fire walking ritual in Spain, showing that heart rhythms of
firewalkers were more closely matched by heart rhythms of spectators who were their
relatives or friends than those of non-related spectators, during the course of the ritual
(higher RR, DET, LMAX, ENTR and LAM, see [38])—despite the fact that they did
not have the same behavior. Fusaroli et al., in a less dramatic setting, investigated
heart rate coordination in collective Lego construction tasks [39]. Groups of five
participants built Lego models of abstract notions such as “trust” and “safety” alter-
natively as individuals (“Build your own individual model of trust”) and collectively
(“As a group build a model of trust that you all agree upon”). Interpersonal heart rate
coordination (RR, L and ENTR) was shown to be significantly present in all groups
both during individual and collective trials against shuffled baseline. However, a
contrast with surrogate pairs showed no difference in individual trials—coordination
being likely driven by task constraints as all participants in all groups were doing sim-
ilar things—and higher levels of coordination during collective trials—coordination
being likely driven by actual interactions.Not least, coordination during collective
trials was shown to grow over time.

Focusing on motor coordination, Ramenzoni et al. assigned pairs of participants
an interpersonal precision task: one participant holds a circle and the other has to
keep a pointer inside the circle without touching its sides [11, 37, 40]. Hand and
postural movements were strongly and stably coordinated across participants (RR
and LMAX higher than in a non-interactive task), and increasing the difficulty of
the task with smaller circles increased the coordinative structures. Analogously, sta-
ble coordinative structures were highlighted in groups of pedestrians walking in a
crowded space (higher LMAX than control conditions, see [2]), and in duos and
quartets of musicians and dancers [41, 42].

Interpersonal motor coordination appears very early in development: Reddy
et al. investigated the specific structures of interpersonal coordination in infants antic-
ipating being picked up [43]. Employing a pressure mat, the researchers showed that
legs and arms of the infant are significantly coordinated (higher RR) with the mother
already at 2 months of age, while full-bodied coordination appears at a later stage.

Notably, all of these studies have used high recurrence as the marker of coor-
dination. However, Wallot et al. [44] present less straightforward findings. Pairs of
participants built Lego cars together, while their hand-movements and heart rates
were monitored. While significant behavioral and physiological coordinative struc-
tures were found (DET), they were negatively correlated with the effectiveness of the
interaction measured in terms of functionality and aesthetic appeal of the resulting
cars. These results might be interpreted as an effect of task constraint: doing the same
thing might be counter-productive to effective collective construction, while distrib-
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uting different subtasks—a division of labor strategy implying different actions for
each participant—would be a better strategy.

Motor coordination has also been observed during conversations, where language
acts as a highly effective social coordination device [16, 45, 46]. For instance, pairs
of participants engaged in a joint problem-solving task show high coordination (RR
and LMAX) in their postural sway, even when they are not looking at each other
[47, 48]. In a follow up experiment, Shockley et al. showed that postural sway
coordination is mediated by two factors: interlocutors employing increasingly similar
speech patterns, and actual interaction as opposed to simply repeating the same
words in unison [49]. However, Richardson et al. report significant unintentional
coordination (RR and LMAX) of hand-held pendula when pairs of participants solve
a joint task while able to see each other, but where verbal interactions do not seem
to have an effect [50]. This might be due to postural sway being a more natural part
of linguistic interactions than swinging hand-held pendula.

While postural sway and hand-held pendula coordination might seem a simple
byproduct of verbal coordination, or at most a facilitation of social rapport [51],
other forms of coordinated behavior might have a more explicit functional role: for
example, shared attention often relies on head movement and gaze coordination.
It has been observed in several conversational contexts that interlocutors tend to
coordinate gaze direction (high RR and low DiagProfile, [52]) and head movements
(high RR, DET, L, LMAX, ENTR, LAM, TT, [53]), the latter which is mediated by
dominance (higher scores for pairs with a dominant interlocutor) and gender (higher
scores for women).

Gaze direction has been extensively explored in conversational scenarios by
Richardson, Dale et al. The researchers recorded the speech and eye movements
of one set of participants as they described pictures of six cast members of a TV sit-
com. A second set of participants listened to these descriptions while looking at the
same pictures. Gaze was highly coordinated between participants (RR), especially
at a 2 s lag; in addition, the level of coordination correlated with the comprehension
of the description [54]. When pairs of participants were asked to actively discuss
pictures, the delay disappeared: they looked at the same elements at the same time
[55]. In a third experiment, the researchers manipulated how much shared knowl-
edge the participants had on the pictures to be discussed. Higher amount of shared
knowledge generated higher coordination in eye movement [56]. In a final study,
pairs of participants were presented with the same set of abstract shapes portrayed
in different orders and they had to alternate in directing each other so that the orders
would match. As the participants developed a common language to refer to these
shapes, their eye-movements became increasingly coordinated at lag 0, suggesting
that they sampled the world in increasingly similar and effective ways [57]. Analo-
gously, it has been shown that eye-movement recurrence is statistically higher when
anaphoric and referential expressions are used [55, 58].In other words, specific lin-
guistic items can be used as devices to further increase coordination. These results are
supported by Jermann and Nussli’s study, which reports increased gaze coordination
(RR) in programmers jointly analyzing code, when they are allowed to talk and/or
select portions of the text for each other [59]. In other words, by developing and
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implementing a shared language, participants develop effective interpersonal atten-
tion management systems [60]. These effects are not just limited to gaze or head
movement coordination, but also include behavioral matching of facial expressions,
nodding, touching face, chin-resting, and manual gestures. Evidence for this comes
from a systematic study investigating all of these behavioral measures during a task
oriented conversation, where synchronous behavior matching was found across all
the parameters (RR and DiagProfile) [36].

Up to now we have discussed how language facilitates motor coordination. How-
ever, the conversation itself also becomes coordinated between interlocutors as they
manage turn-taking, adapt to each other’s tone and language, construct shared rou-
tines, etc. The structure of turn-taking has been analyzed in many different ways:
nominal sequences of 1s (interlocutor speaking) and 0s (interlocutor being silent)
[52, 53, 61, 62], employing utterance length [63, 64], or simply the sequence of
interlocutors [65]. In all cases CRQA showed significant amounts of coordination
(RR, cf. [52, 64]), tendency to keep attuned (DET [65]), synchronization (DiagPro-
file, [52, 62]) and in general diagonal and vertical recurrence structures [53, 63]. The
amount of coordination has been reported to positively correlate with the experiential
quality of the interaction [52, 64] and with the familiarity between interlocutors [65].
In other words, when we converse we (unsurprisingly) coordinate our utterances, this
coordination is easier when we have familiar interlocutors, and the more coordinated
we are the better the experience of the interaction.

From the developmental perspective, just as Reddy et al. [43] showed the coor-
dinative adjustments in infants’ movements, studies have demonstrated prosodic
(fundamental frequency) coordination already from 3 months [66] and turn-taking
coordination in children from at least 1 year of age [63]. However, turn-taking coor-
dination seems to change in nature, being more rigid and repetitive (higher verti-
cal structures) in younger children, and more flexible and extended (more promi-
nent diagonal structure) in older ones [63]. Cognitive impairment (adults, [52]) and
developmental disorders (children with autism, [62]) involve a statistically lower
amount of coordination and lack of immediate responsiveness (lower RR and higher
DiagProfile). However, the amount and the function of coordination cannot be so
simplistic described. For example, an exploratory study on adolescents with Moebius
syndrome (involving congenital facial paralysis) shows high levels of conversational
coordination in pitch and speech rate (RR, DET, L, LMAX), which decrease after
an intervention aimed at improving social skills [67].

A few studies have also attempted to tackle the coordination of linguistic contents.
Orsucci et al. [30, 68–70] tested CRQA of more symbolic aspects of language: they
analyzedtranscripts of conversations by focusing on the recurrence of sequences of
3 characters roughly corresponding to morphemes.2 A natural conversation showed
stronger coordinative patterns and attunement (RR and DET) than a clinical psy-
chotherapy session, during which the patient’s production tended to drift away from
the therapist’s. Dale and Spivey have investigated the coordination of syntactical

2 The characters (including spaces) are converted to numbers, the embedding dimensions are set to
3, and the threshold to 0, to respect the categorical nature of the data.
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patterns of words in children and caregivers engaged in naturalistic conversations
(from the CHILDES corpus),reporting significant syntactic coordination (RR). While
the coordination decreased as they grew up, it changed direction: initially the chil-
dren followed adults, to increasingly assume leadership at later stages [71]. Louwerse
et al. investigated the coordination of dialog acts (questions, answers, instructions,
etc.), discourse connectives (“Alright”, “ok”, “hmm”) and landmark descriptions in
conversations where pairs of participants had to give each other instructions on how
to draw a path on a map [36, 72]. Interestingly, they observed significant amounts
of coordinative structures (RR and DiagProfile), which would decrease over time as
the participants developed more minimal and effective ways to coordinate. However,
when the difficulty of the task was increased, coordinative structures also increased.

Fusaroli et al. analyzed several aspects of linguistic coordination at once in a
series of task-oriented conversations [3, 73]. They analyzed coordination in turn-
taking(as sequences of 1 and 0 s), prosody (as fundamental frequency) and mor-
phemes (as sequences of 3 characters)—and assessed it in relation to the efficacy
of the conversations in enabling accurate solution of the task (a joint decision mak-
ing). Pairs of participants showed consistent coordinative structures (L and ENTR)in
all linguistic aspects analyzed, when compared to shuffled controls. However, the
researchers argued that while CRQA quantifies the shared dynamics between partici-
pants, it might not capture other coordinative structures, for instance, complementary
dynamics in which an interlocutor would share information only to be answered by
the other making a decision. Little alignment would be found there due to the different
prosodic and lexical patterns involved in the two distinct conversational moves, but
not for lack of tight coordination. These dynamics were better captured by employing
RQA on the conversation as a whole without discriminating between interlocutors,
and therefore highlighting how patterned and routinized the conversation became
trial after trial. In a comparative analysis, while CRQA of prosody and morphemes
positively correlated with performance, RQA of all aspects (turn-taking, prosody
and morphemes) consistently provided better predictors of performance, with each
aspect contributing non-overlapping information [61]. In other words, the best way to
capture effective coordination was to look at how routinized the interactions became,
making the decision making process as standardized, quick and efficient as possible.
Those routines manifested at a lexical, prosodic and pause level. CRQA was not fully
able to capture these complementary dynamics, but RQA was.

Angus et al. took an even more radical approach [74–77]. Being interested in the
conceptual structure of conversations they organized the words used in the corpus
in conceptual clusters, according to their co-occurrences within the same speech-
turns, or to pre-defined conceptual domains. They then analyzed the coordination
of these conceptual clusters, defining new recurrence indexes taking into account
the timescale (adjacent, mid-range, global), direction (backward and forward) and
type (auto vs. cross recurrence). While still exploratory, these indexes of conceptual
recurrence nicely characterized case studies including phone conversations, diagnos-
tic interviews in clinical settings, and aircraft transcripts.
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5 Challenges and Recommendations

We have shown that CRQA is suitable for analyzing many different aspects of coor-
dination, from low-level physiological and motor synchronization, to complex joint
actions and even symbolic and conceptual aspects of conversations. While several
papers report case studies (11 out of 35), or limited numbers of participants, an
increasing amount is scaling up the use of CRQA to statistically relevant samples
(18 out of 35). The most basic indexes of recurrence—RR, DiagProfile and LMAX—
have been shown sensitive to a wide range of conditions—such as gender, age, dom-
inance, familiarity, modality of interaction and difficulty of the interaction—and to
be reflected in the experience of the interaction. Other indexes—such as DET, L,
ENTR, TT and LAM—are more sparsely employed, making it difficult to produce
a clear picture of their relevance and meaning.

The most common result is that social interactions display higher amount and
structure of recurrence than controls; however, a few isolated findings present more
nuanced or even opposite findings, which seem worthy of further development and
testing (cf. Challenge 2). We argue that the studies have demonstrated great promise
for using CRQA to study social interactions, but that this analysis in relation to
interaction is still in its birth, and we have only begun to ask many of the relevant
questions. In particular we feel that the field faces 7 crucial challenges:

Challenge 1: to use CRQA when it is most appropriate and make its advantages
explicit. Many researchers in psychology have shied away from applying CRQA to
their data, even when working with continuous time-series that exhibit a non-linear,
non-stationary structure. CRQA is a powerful but complex tool for the analysis of
interaction data with an initial steep learning curve, and it has an articulated output
that is often tricky to interpret. Thus, it might seem overly and unnecessarily compli-
cated to scientists trained in more traditional methods. While it has proven capable of
capturing basic periodic coordination (an important result to establish the validity of
the method), for time-series that are predominantly linear in nature it might be more
appropriate to use simple correlation-based analysis. Similarly, for quantifying non-
linear coupling between certain periodic signals, phase analysis might be sufficient.
Not by chance, recent research on basic synchronization skills in clinical populations
has been conducted with analysis of phase and coupled oscillators models by authors
well versed in CRQA [31, 33, 78]. While perfectly able to analyze these phenomena,
CRQA gives its best on more complex and noisy data, which make it easier to justify
its use. By more explicitly making CRQA one of the tools in the scientist’s toolbox,
arguing for its well-aimed use and showcasing its advantages over linear models for
complex noisy data, it will be easier to get it accepted in mainstream research.

Challenge 2: to complement exploratory studies with theory-driven ones. This
second challenge is shared with much of the investigations in social interactions. It
is an informative and necessary step to explore the behavior of CRQA indexes in
different coordinative contexts and on different aspects of coordination. However,
such exploration should lead to theory-driven studies.
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A first step in this direction is a more systematic exploration and report of indexes
of cross recurrence across different types of interactions and modalities, which would
be very useful in pinning down general patterns indicative of different coordination
types. This could lead to the possibility of more fine-grained analyses in new contexts,
where multiple CRQA indexes could be used to better assess the type of coordinative
behavior—whether it is synchronized, stationary, and whether there are distinctive
changes in coordinative structures throughout the interaction itself (i.e. mutual adap-
tation changing into leader-follower dynamics). In parallel, researchers should more
consistently report their results: not only report all CRQA indexes to facilitate a more
fine-grained grasping of the coordinative dynamics involved, but also effect sizes and
statistical power (currently missing from the large majority of the studies reviewed).
This would enable an easier planning of follow-up studies and facilitate cumulative
science [79–82].

However, a more substantial step is the construction of conceptual models of
coordination, which could generate hypotheses as to which recurrence indexes would
be impacted by a manipulation, in which direction and, possibly, which range of effect
sizes would be interesting. While RQA/CRQA has been really useful in analyzing
non-linear dynamics across various modalities of human interaction, its interpretation
and impact is sometimes unclear given the exploratory nature of most of these studies.
For example, finding stronger coordination (i.e. higher RR, DET, LMAX) between
certain motor activities of two people engaged in an interaction versus not interacting
is interesting, but not particularly surprising. How can we use this information to
make predictions about future behavior, about the outcome of the interaction, or for
example, about the strength of rapport between two people? Some preliminary ideas
are suggested by the studies reviewed, others by ongoing conceptual reflections in
the field of interactions studies. For instance, a few studies seem to suggest that
vertical structure and consistent delay in DiagProfile are related to simpler and more
hierarchical interactions, while diagonal structures and low or alternating delay could
be related to fluid, bidirectional, and flexible interactions. A second line of results
questions the straightforward relation between amount and structure of recurrence
and successful coordination, which is often assumed. In parallel, more conceptual
studies have been developing the idea of alignment in social interactions as only one
of the mechanisms at play, especially useful to initially establish the coordination and
later to signal and repair problems, or even reinforce coordination if the difficulty of
the task increases [83]. However, many forms of coordination include complementary
dynamics, roles, and routines, which would require more nuanced analyses and could
involve a decrease in recurrence diagonal structures. Thus, CRQA indexes might not
increase with more fluent coordination and might not necessarily correlate with
performance. This model could be used to hypothesize high presence of diagonal
structures at the beginning of an interaction, which would decrease over time.

These are only initial suggestions: the study of social interactions in general
needs more explicit models of coordination, and empirical investigations developed
to assess and compare them [6, 10].

Challenge 3: to take into account multiple aspects of coordination at once and
their interdependence. Studies like the ones performed by Louwerse [36], Fusaroli
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et al. [39, 61] are promising in these respects in that they systematically investigate
several aspects of coordination at once and offer the possibility to map their inter-
connections. Dale and Louwerse are exploring how the many coordinated aspects of
interpersonal behavior highlighted in their previous study relate to each other [72].
Analogously, Fusaroli et al. are exploring the connections between speech, actions,
and heart rate coordination to understand what are the means through which phys-
iological coordination is achieved [39]. It might be expected that not all aspects of
coordination behave equally: for instance, achieving high levels of shared dynamics
in motor behavior might create the enough common ground to enable interlocutors
to effectively diversify their linguistic behavior [36], or vice versa highly shared
linguistic dynamics might make complementary actions possible [44]. In any case,
multivariate analyses of the multiple aspects seem necessary to account for many
aspects of coordination at once [84, 85].

This might seem at odd with the previous challenge (more theory-driven studies
to complement the explorative ones). We argue that it is possible to design a theory-
driven experiment, with precise hypotheses, and complement it with exploratory
analyses of a wider range of coordinative aspects and CRQA indexes, which will
help generate new hypotheses for further studies.

Challenge 4: to account for multiple forms of coordination: complementarity and
routines. Interestingly, the studies mentioned in the previous challenge also raise
additional important issues for the study of coordination and the use of CRQA: In
Louwerse et al., while the recurrence rate of many behaviors tends to grow over
time, it decreases for others, in particular for language. In Fusaroli et al. CRQA
parameters are a much worse index of effective coordination than Recurrence Quan-
tification Analysis of the overall conversation [61]. Several other studies have shown
that complementarity (rather than symmetry in action) is crucial for facilitation of
coordination, as well as action understanding [10, 11, 21, 86, 87]. For example,
when trying to move a table from one room to another, two people might produce
complementary movements in order to more effectively achieve this goal—one per-
son faces away from the table, grasping it with their hands behind them, while the
other grasps it with their hands in front of them, facing the table [88]. Similarly,
complementarity was encountered in a study where participants moved a marble in
one direction by either one participant holding her edge of the tablet while the other
is lifting it or one participant lowering her edge of the tablet while the other one is lift-
ing it [89]. A cross-recurrence plot of the hand-accelerations of participants, which
was the dependent measure in this study, would either show strong cross-recurrence
(when one participant would accelerate by lowering the tablet and the other one
would accelerate by lifting the tablet) or weak cross-recurrence (when one would
accelerate by lifting the tablet, but the other one would hold her hands still). In this
case, an increase in cross recurrence structure does not equate to better coordination,
but a more nuanced and task-specific understanding of coordinative structures has to
be produced.

Fusaroli et al. [61] argued that in conversations and other kinds of coordination
characterized by turn-taking complementarity might be captured by running RQA
on pooled data from both participants: e.g. the whole conversation, without discrim-
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inating between interlocutors. Unfortunately, this does not seem a viable solution for
assessing complementarity in tightly coupled motor interactions, where all agents
continuously produce behavior. Whether CRQA can be developed to address com-
plementarity in interaction remains an open question.

Challenge 5: to better understand how individual behaviors affect interpersonal
coordination (and viceversa). Many studies have investigated the distinctive behav-
iors of people with mental and developmental disorders. For instance, RQA has been
effectively used to characterize the distinctive speech patterns of people with autism,
schizophrenia, depression and right hemisphere damage [90–93]. However, there is
no model to understand how such individual patterns impact conversations and are
therefore related to the social impairment these patients experience. More investiga-
tions and methodological development are needed to build more articulated models
of coordination and advance our understanding in these fields.

Challenge 6: to account for multiple time scales at play in the interaction. Social
interactions include processes and phenomena happening at many time scales [94,
95]. Continuous reciprocal adaptation might be a necessity when initiating an inter-
action and learning to coordinate with each other. However, interacting agents might
gradually stabilize conventions such as local routines and even employ socially estab-
lished scripts. How do we take these numerous time-scales into account? Angus
et al. have developed interesting measures of conceptual recurrence reflecting short,
mid and long range coordination [74]. More general forms of multi-scale recurrence
quantification analysis have only recently started to be developed, but they might be
crucial in solving these issues [96–100].

Challenge 7: to analyze interactions with more than two participants. Social
interaction often involves more than two participants. Most current studies split the
groups in sets of dyads [38, 39] and one uses aggregative measures [2]. It is an
open challenge to preserve the group dynamics. Joint recurrence, network theory
and probabilistic graphical models could provide ways to do so.

While many of these challenges require conceptual and methodological devel-
opment, we advance some recommendations (often applying to the study of social
interactions in general, irrespective of the methods employed), which would help
developing the field:

• When possible attempt theory-driven predictions to identify relevant aspects of
behavior, relevant recurrence indexes, and direction and size of the effect hypoth-
esized. These predictions should take into consideration the form of coordination
required by the task employed: for instance a task encouraging differential roles
between the participants might yield less cross recurrence and diagonal structures
when effectively coordinated than ineffectively. In this case, CRQA might not be
the best method to use, as it would be difficult to tell whether less recurrence is
because of weaker coupling, or complementary movements. On the contrary, a
task based on similar roles would imply effective coordination with high levels
of diagonal structures.Also, it would be useful to specify at which time-scale one
would expect shared dynamics, as initial short-term alignment might be replaced
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by complementary roles and only be visible on longer time-scales as the partici-
pants switch roles.

• Systematically use control conditions and appropriate baselines. Since CRQA
involves defining optimal parameters for each dataset (e.g. via normalizing and
thresholding procedures), it is not always clear what constitutes statistically signif-
icant synchronization/coordination. Hence, appropriate control conditions should
be designed, or failing that shuffled surrogates and false-pair-surrogates should be
employed.

• Support the development of a finer grasp of the coordinative structures observed by
reporting analyses on all recurrence indexes and not only the most common or the
significant ones. When reporting results add a paragraph integrating the pattern of
effects across the measures, which might help specifying which particular aspects
of an interaction contributed to an outcome. For instance, an increase in L and
LMAX could suggest that the duration of only one of many different time intervals
during the interaction is crucial for the outcome, while an increase in L without a
substantial increase in LMAX could be suggestive of a more systematic back-and-
forth in an interaction, where a clear alternation between behaviors is crucial.If
necessary, less theory-drivenanalyses and interpretationscouldbe reported in the
appendixes/supplementary materials.

• Support cumulative research and reproducibility, by calculating and reporting
effect size and statistical power. Also, when possible, apply more advanced statisti-
cal methods, such as resampling methods to RQA/CRQA parameters (jackknifing,
bootstrapping) to better estimate statistical precision [101].

6 Conclusions

In general, CRQA shows great promise for better understanding of the multiple
timescales and parameters underlying social interactions. Important groundwork has
been performed on a wide range of interpersonal phenomena: from physiological
synchronization to complex joint actions and conversations. In this paper we have
delineated seven crucial challenges and suggested a few recommendations to further
develop the field. We believe that cumulative and theory-driven approaches,the analy-
sis of complementarity,and more-than-two-agent interactions are some of the main
challenges CRQA is still facing in its application to the study of social interaction.
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Cross-Recurrence Quantification Analysis
of the Influence of Coupling Constraints
on Interpersonal Coordination
and Communication
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and Kevin Shockley

Abstract This chapter describes a methodological strategy for studying the influ-
ence of coupling constraints on interpersonal coordination using cross-recurrence
quantification analysis (CRQA). In Study 1, we investigated interpersonal coordina-
tion during conversation in virtual-reality (VR) and real-world environments. Con-
sistent with previous studies, we found enhanced coordination when participants
were talking to each other compared to when they were talking to experimenters. In
doing so we also demonstrated the utility of VR in studying interpersonal coordina-
tion involved in cooperative conversation. In Study 2, we investigated the influence
of mechanical coupling on interpersonal coordination and communication, in which
conversing pairs were coupled mechanically (standing on the same balance board)
or not (they stood on individual balance boards). We found a relationship between
movement coordination and performance in a conversational task in the coupled con-
dition, suggesting a functional link between coordination and communication. We
offer these studies as methodological examples of how CRQA can be used to study
the relation between interpersonal coordination and conversation.

1 Introduction

When people converse they exhibit a tendency to coordinate with their conversational
partners. For example, classic studies using videotaped evaluations of dyadic inter-
actions have shown that people are likely to nod and gesture in synchrony and recip-
rocation with their partners (interactional synchrony [1, 2]), and when they listen to
an engaging speaker they are likely to share postural configurations with that speaker
[3, 4]. In subsequent years, available technology has evolved considerably beyond
the hand scoring of video tapes, creating both new possibilities and new challenges
for interpersonal coordination research. For example, the movements that people
produce exhibit meaningful structure at many scales of variation [5, 6], and this
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can be captured objectively and accurately using modern motion tracking technol-
ogy. The high-resolution, continuous signals afforded by this equipment yield a
rich source of data for detailed analysis of interpersonal coupling. However, these
types of continuous time-domain signals can present a range of challenges, includ-
ing non-stationarity and irregularity, making them unsuitable for many conventional
analyses that are based on assumptions of stationarity and normality. Moreover, typ-
ical summary measures, such as mean and standard deviation of individual time
series statistics—statistics that work well for quantifying individual performance—
are not designed to index the degree of coordination between individuals. In answer
to these challenges, this chapter describes a methodological strategy for studying
interpersonal coordination that attempts to overcome problems presented by com-
plex time-series.

In subsequent sections, we demonstrate two applications of cross-recurrence
quantification analysis (CRQA [7–10]), an extension of recurrence quantification
analysis (RQA; [8, 11–14]), both of which are methods that are well-suited for
the analysis of complex, irregular time series data. Importantly, CRQA, is espe-
cially well-suited to capture the coupling between the time-evolving dynamics of
noisy, nonstationary time series data. While there are several sophisticated time series
methods that may be used to analyze interpersonal coordination, including wavelet
analysis [15, 16] and cross-spectral coherence [17], CRQA methods are particu-
larly useful for studying postural sway dynamics which are notoriously irregular and
non-stationary (e.g. [11]), and these methods have proven invaluable for quantifying
interpersonal coordination across a range of contexts (see [18] for a recent review).
In the present work, we therefore utilize CRQA to quantify interpersonal postural
coordination.

Previous research using CRQA to quantify interpersonal coordination has shown
that spontaneous coordination of postural sway—the continuous, low-amplitude, and
complex pattern of fluctuation of the position of the body’s center of mass—arises
when two people engage in cooperative conversation [19–21]. Shockley et al. [19]
developed an experimental paradigm that involves tracking participants’ postural
sway while they converse to jointly solve a find-the-differences puzzle, a task in which
each participant views a picture that is similar to that viewed by the other, except
for a few subtle differences which they are asked to find via conversation. When
participants converse with each other to solve the task, their postural sway becomes
coordinated, regardless of whether they can see each other. This postural coordination
emerges from constraints imposed by the cooperative nature of the tasks which go
beyond purely biomechanical constraints resulting from coordinated speech patterns
[22]. In other words, postural coordination seems to reflect cognitive coordination
and the intention of the participants to work together to solve the puzzle [23]. This
latter idea is complemented by findings suggesting that motor behavior is causally
related to the evolution of cognitive trajectories [24, 25]. Given this understanding,
evaluating changes in interpersonal movement coordination may prove to be a means
of detecting otherwise covert variations in cognitive alignment between conversing
individuals.
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The present chapter reports two experiments that used CRQA to quantify how
interpersonal coordination between conversing dyads changed in response to manip-
ulations of certain coupling parameters. A variety of factors might serve to couple
the activities of two conversing individuals. In Study 1, we focused on perceptual
factors that might be involved in coupling two conversants’ activities using a rela-
tively simple virtual-reality (VR) environment. Study 2 focused on factors that might
play a role in coupling when individuals are mechanically linked to each other via
the support surface.

In Study 1, we implemented the find-the-differences task of Shockley et al. [19]
to determine whether interpersonal coordination occurs when individuals interact in
a VR environment. It has been shown that direct visual access to a conversational
partner may not be a necessary condition for emergent interpersonal coordination
[19], though several other studies investigating rhythmic interpersonal coordination
have shown that visual coupling parameters are important for interpersonal coordi-
nation [16, 26]. The consequence of the nature of visual coupling in interpersonal
contexts, therefore, requires further investigation. Moreover, Study 1 is important for
methodological reasons—if interpersonal coupling is equivalent in a VR setting as in
a real environment, then the powerful tools of VR can be implemented to study inter-
personal coordination. This is important because VR allows for manipulations that
may not be possible or easy to achieve in a real environment, such as manipulating
one person’s movements artificially to attempt to enhance or disrupt interpersonal
coordination.

In Study 2, individuals performed the same find-the-differences task while cou-
pled mechanically (they stood on the same balance board) or not (they stood on
individual balance boards). It has been shown that standing on unstable support sur-
faces adversely affects the stability of postural sway [27], measures of interpersonal
coordination [21], and performance on cognitive tasks [28]. It is thus important to
determine how biomechanical factors influence interpersonal coordination and, thus,
effective communication.

2 Study One: The Influence of Informational Coupling
on Interpersonal Coordination

This experiment quantified interpersonal coordination between participants who
interacted in a virtual-reality (VR) environment while performing find-the-differences
tasks. Our experimental design partly followed that of Shockley et al. [19] by inves-
tigating the effects on interpersonal coordination of task-partner, crossed with the
additional factor of task environment. Participants performed the find-the-differences
task either with each other, or with confederate task partners, but while in the pres-
ence of the other participant and his or her task partner (interpersonal coordination
was only assessed between the two participants). Following Shockley et al., interper-
sonal coordination was measured in this study via CRQA of postural sway. We also
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directly compared interpersonal coordination in VR with interpersonal coordination
in the real world to determine if the overall amount of coordination, the temporal
structure of the coordination, and the overall stability of the coordination were of
similar magnitudes in VR and the real world.

With respect to task environment, we predicted that we would find the same
patterns of coordination in both the real world and VR conditions, and that these
patterns would be comparable to those that were found in the original investigation
by Shockley et al. [19]. This prediction was motivated, in part, by the finding in
Shockley et al. that participants did not have to see each other to coordinate with
each other. Regarding the task-partner manipulation, we predicted (again following
Shockley et al.) that coordination would be higher within pairs when they were
discussing the pictures together rather than with confederate partners.

2.1 Method

Twenty-eight participants (14 pairs), recruited from the University of Cincinnati
Psychology Department Participation Pool, took part in this IRB-approved study
after giving written consent to participate. Participants received course credit in
return for their participation. All participants were screened to ensure the absence of
neurological and movement disorders.

Motion data were obtained using an Optotrak Certus system (Northern Digital
Industries, Waterloo, Ontario, Canada) with a sampling rate of 30 Hz. Participants
wore spandex bodysuits with 34 motion-tracking markers affixed to their legs, arms,
and torso. They also wore running gloves with motion tracking markers affixed to the
dorsal sides of the gloves. This full-body motion was projected onto the movements
of virtual avatars in a custom OpenGL program. Participants wore Vissette 45 head-
mounted displays (Cybermind, Maastricht, the Netherlands) with a resolution of
1,280 × 1,024 pixels and a transparent visor. In the VR conditions, the displays
were turned on and an occluding cover was placed over the transparent visor, while
in the real-world conditions the displays were turned off and the occluding covers
removed.

During their conversational tasks, participants stood 195 cm apart from each other
with their heels approximately shoulder-width apart, and were allowed to move
their upper bodies freely. The pictures on a given trial were identical, except for 10
differences in each set. Participants were asked to find the differences by discussing
the details of their pictures with one another or with their confederate partners.
Different picture sets were employed for each trial. The order of picture presentation
was completely randomized, with the exception of the very first picture, which was
the same practice picture for all pairs.

In the real-world condition, the pictures were attached to wooden stands to the
immediate left of each participant at approximately eye-level. Participants looked at
the picture to the side of their partner and could not see their partner’s picture on
their own left. In the VR condition, the pictures were in the same relative location,
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but were hi-definition digital copies of the real-world pictures (color bitmap images
measuring 960 × 720 pixels). During the task, pairs were instructed to say “That’s
a difference” whenever they discovered, or thought they discovered, a difference.
To index task performance, researchers kept track of the conversation in real time
and verified the pair’s self-reported performance against picture puzzles identical to
those being discussed.

The environment manipulation was crossed with a task-partner manipulation, in
which participants either solved the puzzles with each other or with a confederate
partner. In these conditions, each confederate stood to the side of their respective
partner, out of the direct line of sight of either of the participants. Confederates were
instructed to record differences found and to attempt to perform as naïve participants
during the trials by engaging in each conversation as if they had never seen a given
picture before. The purpose of the confederate condition was to serve as a de facto
control condition, in that participants were performing the same basic task but were
not interacting with each other. Trials were blocked by condition and the blocks were
randomized. There were four trials in each condition, plus one practice trial, yielding
17 trials per pair, each lasting 130 s.

Measures of anterior-posterior (AP) movements from the torso (the lower back)
and from the front of the head were analyzed. The phase space of each time series was
reconstructed using the method of delays [29] by unfolding the recorded time series
into a 7-dimensional phase space using a time delay of 62 samples. For CRQA,
a radius of 27 % of the mean distance separating points in the phase space was
considered a recurrent point (i.e., a shared postural configuration).

Prior to CRQA, the first and last 5 s of data were truncated to remove transients.
Data were then analyzed for anomalies that sometimes occur with optical motion
tracking systems, which appear as very large amplitude spikes of short duration. To
do this, a 14 Hz, 2nd order, high-pass Butterworth filter was applied to the data and
deviations between the filter and the data that were determined to be outliers via the
Grubb’s outlier test were removed from the original signal. Time series were then
analyzed for amount of missing data, and any trial with greater than 40 contiguous
missing samples was removed from the analysis. Any missing data points in retained
observations were then interpolated with a cubic spline and the signal was then
filtered with a 14 Hz, 2nd-order, high-pass Butterworth filter. The marker at the torso
location resulted in a large amount of lost data due to its relative positioning with
respect to the camera configuration, resulting in a decreased sample for that location
compared to the head.

Of the dependent measures that are available using CRQA, three were used: Per-
cent recurrence (%REC), percent determinism (%DET), and maximum diagonal line
length (LMAX). %REC is the total number of instances that two time series visit
coinciding regions in their phase spaces, and in the context of human movement coor-
dination has been shown to be a measure of global coordination that doesn’t take into
account the temporal patterning of the recurrent points [30, 31]. %DET is a measure
of the total number of recurrent points that are located along diagonal lines, defined
in the reported analyses as two contiguous recurrent points. This measure indexes
the probability that a given recurrent point forms part of a recurring series, which
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Table 1 Differences found in the find-the-differences tasks from Experiment 1

Task partnera Real environment Virtual environment

M (SE) M (SE)

Confederate 3.37 (0.34) 4.62 (0.44)

Participant 3.85 (1.00) 4.56 (0.61)
an=7

gives insight into the structure of the coordination, since single chance recurrences
lower %DET. LMAX is the longest diagonal line in the recurrence matrix—literally
how long the two time series can maintain a common pattern—and is thus a measure
of the stability of the observed coordination.

2.2 Results

Results from CRQA and task performance were sorted by condition and analyzed
for outliers at the trial level, with any observation that was an outlier for any variable
being removed from all measures obtained for that trial (e.g., if an observation was
an outlier in the %REC distribution for a given condition, then that trial was removed
from %REC, %DET, LMAX and task performance analyses). Data from each pair
were then averaged over trials in each condition, yielding one observation per pair per
condition. These reduced data were again assessed for outliers, with any observation
that was an outlier for a given variable being removed for all variables, removing
that pair from subsequent analyses. Data were then submitted to separate two-way
within-subjects analyses of variance (ANOVAs) with environment (real or VR) and
task-partner (confederate or participant) as factors.

Task performance data are presented in Table 1. There were no significant main
effects of environment or task partner on task performance, nor was there an inter-
action of environment and task partner on task performance (all p > 0.05).

The CRQA variables were affected by both the environment and task partner
manipulations. At the torso, there was a main effect of task partner on %REC, F(1,
6) = 6.28, p = 0.046, %DET, F(1, 6) = 18.35, p = 0.005, and LMAX, F(1, 6) =
7.51, p = 0.034, with all three being higher when participants were talking with each
other than when they were talking with the confederates (see Fig. 1; an example CRQ
plot is shown in Fig. 2).

With respect to head movement, we found that being immersed in the virtual
environment rather than completing the task in the real world resulted in increased
%REC, F(1,11)= 10.12, p = 0.009, %DET, F(1,11) = 14.61, p = 0.003, and
LMAX, F(1,11) = 11.96, p = 0.005, indicating that head coordination patterns were
altered by VRimmersion in a way that increased the overall similarity of the two
participants’ head movements as well as the shared structure and pattern stability of
head movements within interacting pairs.There was also a main effect of task-partner
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Fig. 1 Mean values from CRQ analyses of torso and head data from study one, where participants
solved picture puzzles in either a real or virtual environment while working with either each other
or confederate partners. Error bars represent (±) one standard error
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Fig. 2 CRQ plots created using torso data from a pair participating study one. a A trial in which
the pair were conversing with confederates in VR. b The same pair, but data were from a trial during
which the individuals were conversing with each other in VR

on LMAX measured at the head, F(1,11) = 8.27, p = 0.015—coordination patterns
between participants were higher when they were talking to each other versus when
they were talking to the confederates.
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There was also an interaction between environment and task partner on LMAX
measured at both the torso, F(1, 6) = 7.89, p = 0.031, and the head, F(1, 11) = 5.53,
p = 0.038. Simple-effects analyses found no differences in LMAX of head or torso
coordination when participants were talking with each other or with confederates in
the real world condition (ps > 0.05), but coordination pattern stability was greater
when participants were talking to each other than when talking with confederates in
the VR condition for both the head, p = 0.027, and the torso, p = 0.014.

2.3 Discussion of Study One

Similar to the original findings of Shockley et al. [19], we found a main effect of
task partner on %REC measured at the torso, meaning that participants shared more
postural configurations when they were discussing the pictures as a pair rather than
when they were separately discussing the pictures with confederate partners. We
also found that task partner affected %DET and LMAX in the same manner on
measurements at the torso. Thus, in line with our hypothesis, we found evidence
of the influence of informational coupling via verbal communication on movement
patterns using CRQA measures. This suggests that VR settings are sufficient to
support interpersonal postural coordination, and, apparently, to support interpersonal
cognitive coordination, given that performance of the joint find-the-differences task
was equivalent across the VR and real-world conditions. This finding may have many
important practical implications for using VR technologies for collaborative work
and training.

Unexpectedly, we also found that when pairs were working in the VR condition
their head movements exhibited greater similarity and more shared patterns than
when they performed the task in the real world condition. This finding complements
findings of Stoffregen et al. [20], in which participants performed the same find-the-
differences task, but under different visual constraints. Those authorsevaluated the
influence of target distance and target size on postural coordination crossed with
the same task-partner manipulation reported here and in Shockley et al. [19]. They
found that when participants were discussing closer targets or larger targets they
exhibited greater shared head configurations than when they discussed targets that
were farther away or smaller. Their findings, along with the present findings, show
the sensitivity of interpersonal coordination to visual constraints. Specifically, the
effect of the environment manipulation was more pronounced at the head, where it
affected all three CRQA variables in the same direction, with enhanced coordination
in the VR condition.

Additionally, we found interactions between task-partner and environment at both
the head and the torso, in that when pairs discussed their pictures with each other in
the VR they had a greater amount of coordination stability compared to when they
conversed with confederates, but this did not hold in the real-world condition. One
interpretation of these findings may be that the relatively sparse nature of the vir-
tual environment allowed the individuals to focus more intently on the task, thereby
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strengthening the stability of coordination that governed the interaction. However,
prior research has also shown a differential influence of virtual and real-world condi-
tions on visual entrainment [32], indicating that more research in this area is required.
It is possible that these differences are attributable to different demands for ocular
convergence and accommodation—objects in VR headsets that are projected at differ-
ent distances require variations in convergence but mostly invariant accommodation,
which can lead to discomfort and salient differences between VR displays and real
environments [33]. However, in the current study, both the avatar and pictures were
displayed at a constant distance in the VR, which likely diminishes this concern.

3 Study Two: The Influence of Mechanical Coupling
on Interpersonal Coordination and Communication

Shockley et al. [23] hypothesized that postural coordination during cooperative con-
versations may reflect the functional organization that supports the joint goals of
individuals engaged in the conversation. In other words, the postural coordination
during conversation may embody coordination of cognitive process in communica-
tion. This embodiment thesis implies the mutual influence of body and cognition:
Cognition or emotion alters bodily processes, and the bodily processes can also bring
about change in cognition or emotion [34]. In particular, bodily coordination is not
just a by-product of cognitive processes of communication, but an integral aspect
of cognition that unfolds across different scales [35]. Hence, an alteration of inter-
personal postural coordination should in turn influence the linguistic coordination
that occurs during conversation, which in turn may influence the effectiveness of
communication.

In the present study, we manipulated parameters affecting postural coordination
by requiring participants to stand and balance on balance boards (long wooden boards
secured atop circular dowels running along their length) while engaging in the find-
the-differences conversational task described in study one. During half of the trials,
both participants balanced on the same balance board (coupled condition). In the
other half of the trials, participants balanced on separate balance boards (uncoupled
condition; see Fig. 3).

The goal was to investigate how mechanical coupling would influence postural
coordination and, ultimately, communication. During all trials, participants were
able to become informationally coupled through conversation, and during half of the
trials they were coupled mechanically via a shared balance board. We predicted this
physical coupling should increase postural coordination above levels brought about
by the informational coupling established by verbal communication alone. According
to the functional organization thesis outlined above, shared postural configurations
should facilitate better communication and, hence, task performance. We thusbreak
predicted that when CRQA measures were higher (i.e., greater coordination), the
pairs would find more differences (i.e., communication would be more effective).
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Opaque Curtain

Coupled 
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Uncoupled 
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Fig. 3 An overview of the method used in study 2. a The positions of participants in the coupled
and uncoupled conditions. An opaque curtain was hung from the ceiling to prevent participants
from seeing each other’s picture, and small pieces of foam were attached to each corner of the
balance boards to dampen the rocking motion. b A pair of puzzle stimuli used in the experiment.
Participants discussed their respective pictures in order to find differences while their movements
and task performance were recorded

3.1 Method

Thirty-four participants (17 pairs) performed the same find-the-differences task
described in Study 1. This study employed a repeated-measures design, in which
individuals stood on either the same or separate balance boards, depending upon
the coupling condition. Each board was made of a 60.96 × 243.84 × 1.90 cm flat
plywood sheet. Two 121.92 cm length dowels with 5.08 cm diameter were secured
underneath the boards along their major axes in order to create a pivot point. Four
5 × 7 × 10.5 cm pieces of foam were attached underneath four corners of the board
with the 5 × 7 cm surface attached to the board. These foam pieces damped the
rocking motion of the board and simplified the balancing task. Thin carpeting was
secured to the top of the surface of each board to protect participants from splinters
and from slipping. A picture stand for holding the find-the-differences task stimuli
was placed 195 cm in front of each participant at approximately eye-level (155 cm
from the floor). A black opaque curtain was hung between the two participants span-
ning from the board to the picture stands in order to prevent pairs from seeing both
pictures, though they could still see each other in their peripheral vision. Participants
were asked to actively balance the board throughout each trial, and were discouraged
from simply resting their weight at a fully tilted position.

The experimental sessions consisted of a single practice trial and two blocks of
four trials each of the coupled and uncoupled conditions. Each trial lasted for three
minutes. The order of the blocks was randomized. In the practice trial, the same
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puzzle was used for all pairs. In the remaining eight experimental trials, the order of
the puzzles was randomized. In the practice trial, the dyads stood on the same balance
board, each facing in the same direction, with their AP axes orthogonal to the major
axis of the board, meaning that postural sway was destabilized primarily in the AP
direction. Participants were positioned such that one participant stood approximately
60 cm from the left edge and the other stood the same distance from the right edge.
The coupled condition was identical to the practice session, except that new puzzles
were used. In the uncoupled condition, participants stood on two different balance
boards, which were aligned along their major axes and positioned with their minor
axes adjacent. During these trials, each participant stood about a quarter of the board
length from the adjacent ends of the two boards. Hence, they were standing in at the
same relative distance from one another as they were in the coupled condition.

The movements of the participant’s heads and torsos were tracked at a 50 Hz
sampling rate with the same motion tracking system described in study one. Task
performance was also indexed in the same manner as in study one. Each sensor was
attached to the back of participant’s heads and torsos using elastic Velcro belts and
headbands. The time series data for analyses were taken from the AP movement of
the head and torso. These data were prepared in the same manner as in study one,
and then submitted to CRQA using a delay of 103 samples, an embedding dimension
of 7, and a radius of 27 % of the mean distance separating points in reconstructed
space.

3.2 Results

A log transformation was applied to %REC and LMAX to correct positively skewed
data. Extreme outlier values of CRQA in each condition were detected and removed
via Tukey’s method with a three interquartile range threshold. A linear mixed-effects
model was employed to analyze the obtained measures [36], with conditions and
trial numbers included as repeated-measure factors with an unstructured covariance
structure. Additionally, CRQA measures and trial numbers (to control for potential
learning effects) were used to predict task performance. These analyses were con-
ducted separately for the coupled and uncoupled conditions. Only significant effects
(p < 0.05) are reported.

Estimated marginal means for CRQA measures and task performance can be seen
in Table 2. Analyses showed that increases in %REC of the two participants’ head
movements positively predicted increases in performance in the coupled condition,
t(15.83) = 6.59, p < 0.001. The relation between %DET for interpersonal head
movement coordination and performance showed a similar pattern, where increases
in %DET predicted increases in performance in the coupled condition, t(16.31) =
3.15, p = 0.006. Finally, LMAX for interpersonal head movement coordination also
positively predicted performance in the coupled condition, t(21.60) = 3.46, p =
0.002.
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Table 2 Mean values of CRQA measures and differences found in the find-the-differences tasks
from Experiment 2 (standard errors in parentheses)

CRQA Measurea Uncoupled Coupled

%RECb

Head 0.14 (0.02) [−0.96 (0.05)] 0.14 (0.025) [−0.97 (0.06)]

Torso 0.09 (0.01) [−1.09 (0.02)] 0.12 (0.016)[−1.05 (0.05)]

%DET

Head 99.82 (0.02) 99.81 (0.02)

Torso 99.72(0.03) 99.74 (0.04)

LMAXb

Head 56.96 (4.08) [1.73 (0.03)] 60.93 (5.30) [1.74 (0.03)]

Torso 48.52 (2.66) [1.66 (0.02)] 55.87 (5.47) [1.70 (0.04)]

Differences found 6.33 (0.24) 6.34 (0.29)
an = 17
bCalculations based on log10 transformed values in brackets

3.3 Discussion of Study 2

Contrary to our predictions, CRQA measures of coordination between participants
were not greater in the coupled versus the uncoupled condition. Nonetheless, the
balance board was found to moderate the relation between coordinated head move-
ments and the effectiveness of communication (operationalized as the number of
differences during the task). In the coupled condition, coordinated head movement
exhibited a positive relation to the number of differences found, while no such rela-
tion was found in the uncoupled condition. It is important to note that this relation
held for log-transformed values of %REC and MAXLINE, meaning that the relation
was not strictly linear.

With respect to the lack of effect of coupling condition on coordination, we observe
that when participants shared a board, they had to continuously compensate for each
other’s movements. In other words, the mechanical link between two participants may
have disrupted, rather than enhanced, coordination. This is consistent with comments
from several participants who said that balancing on a shared board was more diffi-
cult than balancing independently on separate boards. This is also consistent with the
findings of Stoffregen et al. [21], who found that when participants were standing
on an unstable rather than a stable surface, the enhanced coordination that nor-
mally occurs during conversation was absent. Additionally, interpersonal coordina-
tion has been observed to become attenuated in difficult stance conditions [37]. These
observations might suggest that interpersonal coordination is a fragile phenomenon.
We note that, at some level, interpersonal postural coordination surely must depend on
postural stability and coordination at the intra-personal level, which depends in part
on mechanical support. However, it might not be the case that mechanical constraints
necessarily override interpersonal constraints. Instead, a variety of sources of con-
straint, stemming from task demands, perceptual factors, biomechanical variables,
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and other sources, may interact to determine postural stability and coordination at
the intrapersonal and interpersonal levels [38]. The nested relation between intraper-
sonal postural stability and interpersonal postural coordination is an important issue
for future research.

Regarding the relation between movement coordination and task performance, one
way to interpret the divergent influence between balance board conditions is that when
participants were mechanically coupled, they met two simultaneously shared task
demands: balancing the board together and maintaining effective communication. In
that effective communication required stable visual access to the target pictures, it is
likely that the tasks were functionally dependent. In this case, the positive relation
between head movement coordination and task performance in the coupled condition
may indicate that successful participant pairs were able to coordinate their postural
movements in order to obtain the visual information necessary for ongoing problem
solving during the conversational task.

4 Conclusion

The present experiments illustrate how CRQA contributes a broader robust method-
ology that can be used to study human interactions (see [18] for a recent review). The
results of the two studies described show that manipulations of perceptual (i.e., infor-
mational) and mechanical coupling variables can influence the coordination observed
between two conversing individuals, and that CRQA measures are sensitive to these
changes.

With respect to perceptual coupling (Study 1), we demonstrated that visual con-
straints influence the coordination observed between two conversing individuals. In
doing so, we also showed that virtual environments are suitable for evaluating the
influence of visual information on interpersonal coordination and communication.
This finding presents potential for new possibilities for manipulating visual informa-
tion beyond those offered in real world contexts, which would allow finer evaluation
of how visual constraints influence the movement coordination that occurs during
communication. Moreover, the present results, considered along with the findings of
Stoffregen et al. [20], may indicate that visual manipulations influence the coordina-
tive structure that emerges during cooperative conversation. Specifically, both studies
found that talking to a task partner enhanced interpersonal movement coordination,
but only at the head (cf. Shockley et al. [19], who only found enhanced coordination
at the waist). Given that gaze coordination has been shown as an index of joint atten-
tion (e.g., [39]), future studies may also be warranted to directly manipulate head
coordination while tracking participants gaze patterns. This could serve to address
why changes in head coordination did not influence communication in Study 1, in
spite of the fact that previous studies have shown an influence of gaze coordination
on effective communication [40, 41].

Finally, in Study 2, we demonstrated that manipulating movement coordination
can impact effective communication, and we showed how measures obtained from
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CRQA are related to this outcome. This finding is consistent with Shockley et al.’s
[23] suggestion that the movement coordination observed during conversation may
embody the cognitive coordination required for effective communication, and implies
that the relation between coordination and communication may be bidirectional. We
suggest that this finding invites a more comprehensive investigation of how move-
ment coordination (as indexed by CRQA and other methods) influences effective
communication.

Acknowledgments These studies were sponsored by NFS grant BCS-0926662.
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Recurrence Quantification as an Analysis
of Temporal Coordination with Complex
Signals

Charles A. Coey, Auriel Washburn and Michael J. Richardson

Abstract Ample past research demonstrates that human rhythmic behavior and
rhythmic coordination reveal complex dynamics. More recently, researchers have
begun to examine the dynamics of coordination with complex, fractal signals. Here,
we present preliminary research investigating how recurrence quantification tech-
niques might be applied to study temporal coordination with complex signals.
Participants attempted to synchronize their rhythmic finger tapping behavior with
metronomes with varying fractal scaling properties. The results demonstrated that
coordination, as assessed by recurrence analyses, differed with the fractal scaling of
the metronome stimulus. Overall, these results suggest that recurrence analyses may
aid in understanding temporal coordination between complex systems.

1 Introduction

Human behavior is structured in both obvious and non-obvious ways. It is readily
apparent when someone runs to catch a train before it leaves the station that their
behavior is coordinated (i.e., non-random with respect) to the environment. But,
there are more subtle layers of structure in behavior, such as the complex patterns
of variation in the intervals between the runner’s strides. Despite the imperceptible
nature of this fine-grained structure, research shows it is an essential characteristic
of human behavior and that it too might be coordinated with the environment and
the behaviors of other actors.

Repeated measurements of human behavior, from simple motor performances
(e.g., rhythmic finger tapping), to basic perceptual processes (e.g., visual search), to
cognitive operations (e.g., choice reaction times), to attitudes and emotions (e.g., self-
esteem ratings), all tend to show fractal, power-law structure. That is, the measure-
ment series bears a dependency wherein the size of a fluctuation (S) in behavior scales
as a constant power of how often fluctuations of that size occur (f), S( f ) = 1/ f α.
Typically, in natural and healthy behavior, the scaling exponent (α) falls near 1,

C.A. Coey (B) · A. Washburn · M.J. Richardson
Department of Psychology, University of Cincinnati, Cincinnati, OH, USA
e-mail: coeyca@mail.uc.edu

© Springer International Publishing Switzerland 2014
N. Marwan et al. (eds.), Translational Recurrences, Springer Proceedings
in Mathematics & Statistics 103, DOI 10.1007/978-3-319-09531-8_11

173



174 C.A. Coey et al.

indicating an inverse proportionality between the size and frequency of fluctuations
which is scale free, much like geometric fractal objects. Changing the frequency
by a constant amount results in a constant change in power regardless of the exact
frequencies examined [1]. Unlike a truly random, ‘white noise’ signal (α = 0), such
‘pink noise’ scaling involves a dynamic pattern of variation in which successive
observations are not independent of one another. Instead, pink noise is said to be
‘persistent’ and entails long-range correlation such that observations are positively
correlated over considerable lengths of time. Interestingly, many research projects
have shown that experimental manipulations, and other psychologically-relevant fac-
tors, can reliably alter this scaling and shift α toward random variation or even further
toward an ‘anti-persistent’, ‘blue noise’ pattern of fluctuation (α = −1).1

More recently, several research projects have found that the scaling properties
of two interacting systems tend to match one another (e.g., [2–6]). Remarkably,
this ‘complexity matching’ effect seems to only be partially accounted for by tight
coordination at the immediate timescale. That is, although the scaling exponents of
the two systems are highly correlated, the two series are not strongly synchronized
with each other. These findings naturally have led to questions as to the form of the
temporal coordination underlying complexity matching [3, 7, 8]. How exactly can
two systems, interacting through an exchange of energy or information, match one
another’s ‘global’, fractal structure without strong, ‘local’ synchronization?

Further investigation of complexity matching critically depends on techniques
to assess the nature and degree of coordination between two behavioral series.
Most recently, researchers have begun to explore techniques capable of capturing
both short- and long-range dependencies, as well as the scaling relations defining
the co-variation of two series [5, 6]. Here, we present some preliminary research
investigating how cross-recurrence quantification analysis (CRQA) may aid in under-
standing temporal coordination between two complex systems. CRQA is a highly-
articulated technique that provides analysis of how two signals co-evolve through the
same abstract phase space over the entire span of measurement. CRQA also provides
an abundance of (albeit potentially redundant) information about the coordination of
the two series in its various outcome measures. For these reasons, we thought CRQA
might serve as an advantageous compliment to the other techniques employed as
analyses of the complexity matching phenomenon. It is important to note at the
outset, however, that these recurrence analyses do not assess the complexity (i.e.,
power-law scaling) of behavior (see [9] for an analogous argument). Rather, these
analyses quantify aspects of the variability of behavior in phase space. Although the
complexity and variability of behavioral signals are likely related in empirical data,
the outcomes of the recurrence analyses may not be taken to speak to complexity
directly.

1 There are ample resources available for those readers interested in the details of fractal analyses
[1, 10, 11] and the current theoretical debates [12–14].
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2 The Experiment

The current study was conducted as a pilot experiment in a larger project designed to
investigate complexity matching in finger tapping behavior. We first sought to deter-
mine if complexity matching was present when participants tapped to recordings
of other participants’ tapping behavior, as the extant research either had individ-
ual participants coordinate with mathematically-generated stimuli [4] or had two
participants interact in real time under bi-directional coupling conditions [3]. Thus,
we recorded tapping behavior from an initial sample of participants under differ-
ent experimental conditions, and then used these series as metronome stimuli for a
second sample of participants.

More specifically, in our initial sample, we had participants undergo two trials of
tapping behavior. In the first trial, participants performed a continuation task in which
they synchronized to a 500 Hz (2 bps) metronome for a short period (10 s), and then
attempted to maintain that tapping interval after the metronome was discontinued. In
the second trial, participants performed a synchronization task in which they simply
synchronized their taps to the metronome for the entire trial. The inter-tap interval
(ITI) series from both trials were submitted to two fractal analyses. Consistent with
the past research on fractal scaling in tapping behavior (see [15]), both fractal analyses
showed the ITI series tended toward persistent, ‘pink’ scaling during continuation
tapping (α ≈ 0.75) and toward anti-persistent, ‘blue’ scaling in synchronization
tapping (α ≈ −0.60).

From this initial sample, we selected a set of 11 series to serve as metronome
stimuli for our second sample of participants. It is important to note that only the
variation in the onset of taps was retained in the inter-onset interval (IOI) of the result-
ing metronomes. All variation in the length of the taps was eliminated by equalizing
the duration of each tone in the resulting metronome series. Five series from the
synchronization condition formed a set of ‘blue’ metronomes ranging from strong
(α = −0.80) to mild (α = −0.41) anti-persistent structure. Six series from the con-
tinuation condition served as ‘pink’ metronomes ranging from strong (α = 1.06) to
mild (α = 0.41) persistent structure. Participants in the second sample also com-
pleted continuation and synchronization trials. During synchronization, however,
they heard 1 of the 11 fractal metronomes. We collected 33 participants, with 3 in
each of these 11 possible metronome conditions.

The design of this experiment allowed us to investigate the extent to which the
recurrence analysis can capture the dynamics underlying temporal coordination with
complex stimuli. Specifically, we examined if auto-recurrence quantification analysis
(RQA) would suggest different dynamics in the participants ITI series as a function
of the metronome type (i.e., pink vs blue), whether these differences in recurrence
actually did (albeit indirectly) reflect the complexity of the ITI series (as assessed
by fractal analyses), and what cross-recurrence analysis between the ITI and IOI
series might suggest as to the nature of the coordination between the participant and
metronome systems.
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3 The Results

We have tried to provide sufficient detail here about the specifics of the many analyses
we conducted, but there are a number of technical points that have been omitted due
to the limited available space. Where possible, we have provided references for the
reader interested in learning more about these analyses.

3.1 Fractal Scaling and Complexity Matching

As a first step, we thought it necessary to demonstrate the complexity matching
phenomenon was present in our series. To this end, we used two standard fractal
analyses; power spectral density (PSD) and detrended fluctuation analysis (DFA).
The outcomes of these techniques are generally equivalent, but as they do operate in
different ways [16] we used both to corroborate our results.2 The outcome of PSD is
the scaling exponent (α) as described above, but DFA instead outputs Hurst exponents
(H). To directly compare these two analyses we rescaled the Hurst exponents (where
2(H − 0.5)= α; see [17]). In keeping with standard practice, every ITI series was
integrated prior to submission to DFA (see [1, 6]).

It is also important to note that, at this stage, the participants’ ITI series were
initially treated separately from the metronome IOI series. That is, the ITI series,
from both the continuation and synchronization conditions, first underwent several
pre-processing steps (e.g., outlier removal, linear detrending). The final processed
series were submitted to fractal analysis and their scaling exponents compared across
tapping conditions and to the scaling of the metronome IOI series.

In general, PSD and DFA showed the same pattern of results. Just as in the
first phase of the study, ITI series during continuation tapping revealed persistent,
pink noise scaling and showed a marked decrease in α during synchronization. Here
though, there were also significant interactions (PSD: p=0.001, ηp2 =0.28; DFA:
p= 0.013, ηp2 =0.18) between the blue and pink metronome groups across the tap-
ping conditions (Fig. 1). Whereas the blue metronome group showed a large decrease
in α from continuation to synchronization (PSD: p=0.001, d=1.10; DFA: p=0.002,
d=0.96), the decrease in α for the pink metronome group was marginally significant
at best (PSD: p=0.079, d=0.44; DFA: p=0.122, d=0.38).3

2 These two fractal analyses are frequently used in studies of human behavioral data, but there are
also maximum-likelihood techniques that are superior for verifying actual power-law scaling (see
[18, 19]).
3 The primary difference between the two analyses is that, although both indicate the ITI series
of participants synchronized with blue metronomes to be near-random on average (α ≈ 0), PSD
estimated α in the remaining conditions to be substantially greater than DFA (α ≈ 0.7 versus 0.5).
This difference, however, likely has little bearing on the further analyses described below.
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Fig. 1 Scaling exponents as a function of tapping condition and metronome group as estimated by
power spectral density (left) and detrended fluctuation analysis (right)

Fig. 2 Scatterplots for the relationship between participant ITI and metronome IOI scaling expo-
nents for both power spectral density (left) and detrended fluctuation analysis (right) techniques.
Blue metronomes are indicated by filled-in circles and pink metronomes by empty circles

Consistent with past research on complexity matching, we wanted to examine the
correlation between the scaling of the participants’ ITI series and the metronomes’
IOI series. Simple correlations did reveal a moderate positive relationship for both
PSD (r=0.58, p<0.0005) and DFA (r=0.57, p<0.0005). Interestingly, there
seemed to be far greater variance in the participants’ ITI scaling for the blue
metronomes than for the pink metronomes (see Fig. 2). Given this heteroscedastic-
ity, and the non-independence of observations sharing the same metronome stimulus,
these correlations may not be the ideal statistical test for these data. Nonetheless,
these results do suggest a considerable degree of complexity matching was present
in our tapping task.

In order to examine the temporal coordination dynamics related to this complex-
ity matching effect, we turned to the recurrence quantification techniques. Prior to
submitting participant ITI and metronome IOI series to cross-recurrence analysis,
however, we chose to examine the ITI series with auto-recurrence analysis in hope
of relating recurrence outcomes (concerning variation within phase space) to the
complexity of the series (as revealed by the fractal analyses).
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3.2 Recurrence Quantification Analysis and Fractal Scaling

Recently many researchers have employed both recurrence quantification and fractal
analyses [20–24]. Some have noted apparent associations between the results of the
two methods [25]. Others have determined that the optimal models for classifying
certain pathological conditions combine the outcomes of both methods [26–29].
Nonetheless, there has been relatively little exploration of the relationship between
these two analyses in empirical data. With regard to the current study, validating
that differences in recurrence measures actually are related to the complexity of
the series is an important step, as many artifacts can influence recurrence analyses
(see [30, 31]).

To begin, we performed auto-recurrence quantification analysis (RQA) on the
very same participant ITI and metronome IOI series that we submitted to the two
fractal analyses. As with the fractal techniques, there are several technical details
that must be considered in preparing RQA (see [24, 32–34]). Most importantly,
some preliminary analyses must be conducted in order to determine a few, criti-
cal parameter settings (i.e., delay, embedding dimension, radius). We followed the
standard protocol in choosing these parameters (average mutual information, false
nearest neighbors). It is also important to note that we used the integrated series
(as submitted to DFA) in both the preliminary calculations and in the RQA. The
preliminary steps suggested a delay of 25, an embedding dimension of 3, and a
radius of 10 % the mean distance between points. We used these parameters and
examined four of the possible outcomes from RQA: the total percent recurrence
(REC), mean line length (MLL), percent determinism (DET), and entropy (ENT).
We chose these four outcomes as they are relatively standard in analyses of human
behavior, and ultimately to capture different (albeit highly interrelated) aspects of
coordination between participant and metronome in the cross-recurrence analysis. In
particular, REC was intended to capture the overall ‘amount’ of coordination, MLL
and DET to capture the ‘stability’ of periods of coordination, and ENT to capture
the ‘homogeneity’ in the periods of coordination.

Overall, all of the RQA outcomes revealed the same general pattern as found in
the fractal analyses. That is, there was a very large decrease in all the outcomes from
continuation to synchronization for those in the blue metronome group, and little to
no decrease for those in the pink metronome group. One notable difference between
the RQA outcomes is that REC and MLL showed sizable differences between the two
metronome groups in the continuation conditions, whereas these group differences
were not evident in DET and ENT (Fig. 3). As this effect was absent in the two fractal
analyses, this finding suggested that DET and ENT might be more strongly related
to the fractal scaling of the tapping behavior.

The convergence of the RQA results with those of the fractal analyses was also
evident on a case-by-case basis. To this point, we calculated difference scores across
the continuation and synchronization conditions, for each outcome variable, for every
participant. We then computed correlations between the two difference variables
for the fractal analyses (PSD-shift; DFA-shift) with the four difference variables
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Fig. 3 Percent recurrence (top left), mean line length (top right), percent determinism (bottom
left), and entropy (bottom right) as a function of tapping condition and metronome group

for the RQA outcomes (REC-shift; MLL-shift; DET-shift; ENT-shift). These tests
all revealed a strong relationship (0.72 ≤all r’s ≤0.90, all p’s<0.0001) between
the shift in fractal scaling and in the recurrence outcomes across the two tapping
conditions. As before, the DET and ENT (r≈0.85) outcomes seemed to be more
strongly related to the fractal scaling than REC and MLL (r≈0.75).

To more fully understand the relation between the complexity (fractal scaling)
of the tapping behavior and the dynamic structure revealed by recurrence analysis,
we also examined the ITI dynamics as embedded in phase space. To illustrate, we
chose two example series from each metronome group (see Fig. 4). The difference
between the series was not readily apparent ‘by eye’ in the raw ITI series. In fact,
the series had similar overall variability (Blue: SD=9.48; Pink: SD=10.74), but
the structure of that variability over time was very different between the two series
(Blue:α = −0.03; Pink:α = 0.75). The long-term, coherent trends entailed in
the persistent structure of the pink series, when cumulatively summed, led to much
greater variability than the near-random blue series. This structure also translated
into the trajectory of the series through phase space. Not only did the pink series
show much greater variability, but also a more coherent (less ‘noisy’) trajectory
through phase space. Thus, the differences in complexity revealed by the fractal
analyses did reliably translate into differences in the dynamics assessed by RQA.
The pink series accordingly yielded larger recurrence outcomes (REC=1.88, MLL=
58.90, DET=89.19, ENT=4.16) than did the blue series (REC=0.71, MLL=6.50,
DET=26.69, ENT=1.62).

Collectively, these analyses suggested that the recurrence outcomes did capture
the different dynamics in the tapping behavior, particularly DET and ENT. Again,
this is not to imply that the recurrence technique assesses the complexity of these
series directly, but only that there was a reliable mapping between the two analy-
sis techniques for the tapping behavior under study. Thus, we proceeded to the
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Fig. 4 Raw ITI series (top row), integrated series (middle row), and phase space trajectories (bottom
row) for an example series from the blue and pink group. Note, although the scale is the same for
the two raw series, it differs dramatically for the integrated series and the phase space

cross- recurrence analysis to examine the shared dynamical structure (i.e., coor-
dination) between the participants’ ITI series and the metronome IOI series.

3.3 Cross-Recurrence and Temporal Coordination

It was, in principle, possible to simply submit the ITI and IOI series as they were
to cross-recurrence quantification analysis (CRQA) by embedding both series in the
same phase space. As noted above, however, this would have ignored the fact that
the participant and metronome time series were initially treated separately. That is,
the participant ITI series were pre-processed by a set of criteria that did not need to
be applied to the metronome IOI series. The result was that there was no guarantee
that, for a given trial, the 100th ITI in the participant series actually corresponded in
real time to the 100th IOI in the metronome series. So, we utilized a different pre-
processing procedure for the series submitted to CRQA. We paired each tap to its near-
est metronome beat and eliminated any extraneous observations (i.e., taps for which
the nearest metronome beat was nearer to another tap). The ITI and IOI series were
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calculated from these tap-beat paired series, respectively. Finally, the ITI series went
through all the same pre-processing steps as before, and in cases where a particular
ITI was to be eliminated (e.g., met outlier criteria) the paired IOI was also eliminated.

We conducted a number of preliminary analyses to ensure that this alternate
method of pre-processing the data did not substantially alter the previous findings.
The scaling exponents defining these new series were strongly correlated with the
original scaling exponents (PSD: r=0.98, p < 0.0001; DFA: r=0.97, p < 0.0001)
and there were small differences in exact values on average (PSD: 0.01; DFA: 0.002).
As before, we also found strong correlations between the fractal scaling of these new
ITI series and the accompanying IOI series for both PSD (r=0.69, p<0.0001)
and DFA (r=0.67, p<0.0001). These findings showed that the fractal scaling and
complexity matching revealed in the original analyses did not change for this new
processing method, and so we proceeded to CRQA.4 From our initial findings, we
were most interested in DET and ENT. We did also examine REC and MLL, however,
and the results were generally consistent with those of DET and ENT.

There were a number of possible analyses to assess the relationship between these
CRQA outcomes and the degree of complexity matching. As seen above, one com-
mon method of assessing complexity matching is to simply correlate the scaling expo-
nents of two time series. We knew from the preliminary tests that the scaling expo-
nents from the participant and metronome were strongly correlated, but we also tested
whether the two metronome groups differed in their degree of complexity matching.
The blue metronome group showed weaker correlations (PSD: r=0.31, p=0.27;
DFA: r=−0.10, p=0.72) than did the pink metronome group (PSD: r=0.49,
p=0.04; DFA, r=0.52, p=0.03). Moreover, the raw difference in the participant and
metronome scaling exponents was greater for the blue metronome (PSD: M= 0.47,
SD=0.58; DFA: M=0.39, SD=0.38) than the pink metronome (PSD: M=−0.18,
SD=0.24; DFA: M=−0.09, SD=0.21). Interestingly, these group differences are
also apparent in the CRQA outcomes. The blue metronome group showed substan-
tially lower DET (M=9.74, SD=8.11) and ENT (M=0.77, SD=0.11) than did the
pink metronome group (DET: M=86.42, SD=11.03; ENT: M=4.37, SD= 1.16).
As above, these results suggested a reliable mapping between the CRQA outcomes
and the complexity matching revealed by the two fractal analyses.

Although the relation between CRQA and the fractal methods held at the scale
of group differences, we also wanted to consider a finer-grained scale. To do so,
we calculated the absolute value of the difference between the scaling exponents
for the participants and the metronome as a rudimentary ‘complexity match’ score.
These scores showed generally significant correlations with the CRQA outcomes
both for PSD (DET: r=−0.37, p=0.04; ENT: r=−0.32, p=0.07) and for DFA
(DET: r = −0.46, p=0.01; ENT: r=−0.43, p=0.01), which suggested that greater
differences between the scaling exponents of participant and metronome were asso-
ciated with lower DET and ENT.

4 Preliminary examination of the new ITI series suggested that the same parameter settings for
delay (25), embedding dimension (3), and radius (10 % of the mean distance). Every series was also
Z-scored prior to CRQA to ensure both series were on a standard scale.
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Fig. 5 Two example CR plots from the blue (left) and pink (right) metronome conditions. These
plots reflect cases with near equal percent recurrence, but the plot for the pink metronome case
reveals greater structure in the coordination between the participant and metronome

Collectively, these analyses suggested that the shared structure assessed by CRQA
outcomes and the cross-recurrence (CR) plots might provide insight as to the nature
of the coordination defining complexity matching. The two plots above (Fig. 5) rep-
resent two trials, one from each of the different metronome groups. These two cases
are interesting because they are comparable in terms of their overall recurrence (Blue:
REC=1.32; Pink: REC=1.27), but very different in the measures of the structure of
that recurrence (Blue: DET=28.13, ENT=1.53; Pink: DET=79.74, ENT=3.30).
This difference in the behavioral structure shared between the participant and the
metronome is apparent in the CR plots.

Interestingly, the two instances reflected in these CR plots also are comparable in
terms of their ‘complexity matching’ (i.e., simple difference in scaling exponents).
That is, in both the blue and pink metronome case, the difference between the scaling
of the participant ITI series and metronome IOI series was relatively small (PSD,
α-difference ≈ 0.21; DFA, α-difference ≈ 0.14). This finding suggests that although
coordination with a blue signal might yield ‘bluer’ behavior, and a pink signal to
‘pinker’ behavior, the actual coordination between signal and behavior might differ
considerably. Specifically, coordination (i.e., instances of recurrence) with a blue
metronome seemed to be less ‘stable’ (lower MLL and DET) and to be more homo-
geneous (lower ENT). Hence, these findings suggest that beyond the discussion of
whether the complexity matching phenomenon is driven by local coordination there
are questions as to the dynamical structure of that coordination.

As before, a fuller appreciation of these effects can be gained by examination
of the dynamics as embedded in phase space. The participant ITI series and the
metronome IOI series for the two example cases presented in the above CR plots are
shown above (Fig. 6). Again, the long-term trends entailed in the pink noise pattern
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Fig. 6 The raw ITI series (outliers included) for the series portrayed in the example CR plots (top
row), the pre-processed, integrated participant ITI (black) and metronome IOI (grey) series (middle
row), and the Z-scored ITI and IOI series embedded in phase space (bottom row)

of variation yielded a more coherent trajectory through the phase space. With respect
to coordination, these more coherent trajectories yielded to greater structure in cross-
recurrence for the pink metronome group. That is, the ITI and IOI series tended to
‘move together’ through the phase space for longer periods, which ultimately led to
longer lines of recurrence (MLL), more recurrent points on lines (DET), and a more
heterogeneous distribution of line lengths (ENT).

4 Conclusion

The results of the current experiment suggest that the structure of the coordina-
tion between two complex systems might itself be characteristically different under
different conditions. Although these findings do propose an interesting new idea,
it is important to remember that these results are preliminary and that further testing
and validation are imperative. We thus acknowledge some of the limitations of the
current work below and suggest some directions for future research.

First and foremost, there is some question as to how precisely the outcomes of
CRQA map onto the dynamical structure revealed by fractal analysis. Again, the
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recurrence techniques do not directly quantify the same complexity of a signal (i.e.,
power-law scaling) as fractal methods. As stated before, recurrence analyses are more
readily understood as capturing the variability in phase space associated with the fun-
damental dynamics. Our analyses demonstrate that this variability does indeed reflect
the complexity in our measured behavior, although generally complexity cannot be
inferred from variability alone (see [9]). One must be mindful of this distinction
when interpreting what the outcomes of recurrence techniques mean with respect to
the complexity of a behavior.

Secondly, though the results of this introductory study are encouraging, further
research is required to validate the use of CRQA to assess the coordination driving
complexity matching. For instance, even within the context of finger tapping tasks,
a more controlled and thorough study should be conducted to replicate these initial
results, and a series of careful surrogate analyses should be run to substantiate the
data from the experimental conditions. Moreover, these analyses should be applied
to instances of complexity matching in different behavioral tasks to assess whether
this use of CRQA can be reliably generalized.

Lastly, CRQA should be carefully compared to other possible analyses of the
complexity matching phenomenon. For instance, joint recurrence analysis [24, 32]
has several potential advantages in comparison to CRQA, and should be evaluated
as an alternative. Similarly, recent research has explored detrended cross-correlation
analysis in study of complexity matching [6], and these two techniques should be
compared to ensure CRQA provides unique and helpful information.

Despite these limitations, we contend that recurrence techniques remain a viable
option for researching the dynamics of temporal coordination underlying the com-
plexity matching effect. First, recurrence analysis is a sensitive analysis with several
different outcomes, each of which can provide information as to different aspects of
coordination. Second, recurrence analysis is a flexible technique and it readily treats
time series of different lengths, even those considerably shorter than those accept-
able for fractal analysis. Third, there are several potential avenues within recurrence
methods yet to be explored. Information concerning fractal scaling and complexity
matching might be available in other quantifiable aspects of the recurrence plots,
or in examination of the phase space itself. We do hope that future research will
continue to survey this rich technique.
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Synchronicity Assessment Using
a Non-parametric Dynamic
Dissimilarity Measure

Patrick Crowley and Christopher Trombley

Abstract In this paper, we introduce a non-parametric dynamic dissimilarity
measure (DDM) of synchronicity based on recurrence plots, which is particularly
suited to use in small samples. The measure attempts to capture the dissimilarity
of the topology of the dynamics of time series, based on an epoch analysis of the
cumulative sums of data series. The measure is applied to US State macroeconomic
data and is used to assess how synchronous US State business cycle variables are
with US aggregates.

1 Introduction

Social scientists often refer to variables as being synchronized if they exhibit
co-movement. But generally co-movement in social science is measured from a
long term perspective, using relatively large datasets, and employing simple mea-
sures such as maximal windowed correlations to indicate synchronization, or more
complex techniques such as cointegration and concordance measures from factor
models (see [1, 2]), if data permits. Otherwise, if only small samples are available,
then most social scientists resort to simple correlations as a measure of synchronic-
ity. Macroeconomic researchers in particular are typically faced with small data sets
(relative to those found in natural and environmental sciences) and so more often
than not, when these conditions arise they appeal to regression analysis or basic
correlation to assess synchronization.

Macroeconomists in particular are also concerned specifically with the synchro-
nization of business cycles (the boom and bust cycles that are a stylized fact in
economics), and so are particularly focused on correlations of economic growth pat-
terns across countries or regions as a way of measuring economic integration across
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regions or geographic areas that have some facet of economic policy in common
(such as a common currency). But when applying synchronization measures econo-
mists often face major problems in interpreting these measures (such as with account-
ing for lag or lead effects), and also the distributional assumptions of these measures
might not be appropriate.

In this study we therefore introduce a simple non-parametric dynamic dissimilarity
measure (DDM) that can be applied to economic and other data series to overcome
some of the issues encountered when using small datasets. We present this DDM
for assessing synchronization, which is derived from recurrence plot techniques, as
a relatively simple approach particularly suited to small sample stochastic empirical
data. In the paper, for illustrative purposes, we apply this technique to US State
macroeconomic data.

The paper is organized as follows: Sect. 2 presents two different ways of assessing
the degree of synchronization with small data samples, while Sect. 3 looks at an
application using the methodology employed in this study. Section 4 then concludes.

2 Measurement of Synchronization

The topic of synchronization is vast, with probably the best reference on the subject
being [3], which details the myriad forms of synchronization in nonlinear science.
In this section we first explore the cross-recurrence methodology for synchronicity
detection, and then we introduce the new measure, both of which are specifically
applied to small sample measurement of synchronization.

2.1 Cross-Recurrence Methodology for Synchronicity Detection

The first measure of synchronization presented here is based on recurrence plots.
Recurrence plot analysis is now over 20 years old (see [4] for the first contemporary
application) and the quantification of these plots is much more recent (see [5, 6])
but the notion of recurrence has a much longer pedigree in mathematics (see [7]).
Recurrence plots first originated from work done in mathematics and physics but
now has a considerable following in a variety of fields.1 There are several excellent
introductions available to RQA and recurrence plots, not least those by [8, 9]. There
are very few papers that apply recurrence plot techniques to macroeconomic issues,
the notable exceptions being [10–13].

In terms of the mathematical background, a recurrence plot is calculated from a
phase space trajectory, that can be reconstructed using Takens’ embedding theorem
(see [14]). However, here we simplify the usual exposition of recurrence plots and

1 Norbert Marwan’s website catalogues all the articles published using recurrence plots and RQA,
and is a veritable mine of information on this topic. See http://www.recurrence-plot.tk.

http://www.recurrence-plot.tk
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consider just the dynamics of the raw data xi (i = 1, . . . , N ). To derive the recurrence
features of the series then every point in the series xi is tested to see whether it is
close to another point, i.e., the distance Di, j between these two points i and j

Di, j (x, y) = ∥∥xi − y j
∥∥ (1)

is less than a specified threshold ε. In this case the value one (a black dot in the
recurrence point) is assigned to this point in a k × k-array (the auto-recurrence plot):

Ri, j = Θ(ε − Di,j(x, x)) (2)

where xi and yi in (Eq. 1) are two series such that x = y in the auto-recurrence case,
and ε is the predefined “threshold” and Θ is the Heaviside function. Following [15]
the cross recurrence plot is defined by considering two different time series x and y:

C Ri, j = Θ(ε − Di,j(x, y)) (3)

where in this instance xi and y j in (Eq. 1) are two series such that x �= y. This
gives a thresholded cross recurrence matrix C Ri, j which, dependent on the value of
ε contains either 0s (the white areas in the plots) or 1s (the black areas in the plots).

In an auto-recurrence plot, the main diagonal is always present, as every point
in the series is identical to the same point in the series, so there will always be a
diagonal line (1’s down the main diagonal of the thresholded Ri, j matrix), once all
points in the series are considered. In the cross recurrence plot if line-like patterns that
correspond to diagonal lines on the leading diagonal in the recurrence plot appear, the
two series are identical, but this is obviously a special case. If line-like patterns that
correspond to diagonal lines in the recurrence plot appear in other parts of the cross-
recurrence plot, it implies similar dynamics, but these implying short lived periods
of synchronization or phasing of the two cycles. This line, if it can be identified, is
termed the “line of synchronization” or LOS [15]. These observations also hold when
not applying the thresholding but using the distance matrix (Eq. 1) itself (instead of
lines we consider then the line-like patterns formed by the lowest distance values in
the matrix).

Next, complexity measures can be derived to characterize the cross-dynamics
of a given series. For two series these will be characterized as diagonal lines (not
necessarily on the main diagonal), which demonstrate similar dynamics maybe at
different points in time. Following [16] the distributions of the diagonal line lengths
can be written as Pt (l) for each diagonal parallel to the main diagonal, where t = 0
denotes the main diagonal, t > 0 denotes diagonals above the main diagonal (a lead)
and t < 0 denotes diagonals below the main diagonal (a lagged dynamic). RQA was
initiated by [5] and has now been introduced into mainstream physics through the
study of nonlinear dynamics. A good summary is available in [9].

The starting point in this paper is the analysis conducted in [12] with cross recur-
rence plots. Here we take the example of the real Gross State Product (GSP) growth
rate for Texas and the real GDP growth rate for the US, and display the unthresholded
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Fig. 1 (Left) Cross recurrence plot of Real GDP growth for Texas versus US. (Middle) Cross
recurrence plot of GDPPI inflation for Oregon versus US. (Right) Cross recurrence plot of the
unemployment rate for Hawaii versus US

version in Fig. 1(left). These data series are annual (that is all that is available by State
in the US), so that there are only 25 observations available for the analysis. In the
upper part of the figure the data is reproduced, and in the lower part of the figure the
color scale denotes the distance between the two series with red denoting a small
distance up to blue areas which denote large distances. Any diagonal lines in the plot
indicate the synchronous dynamics in both series with a diagonal going up from the
lower left to the upper right being the “line of identity” (LOI). In other words if there
was just a red line going diagonally through the plot this would indicate identical
series. If an unthresholded plot is used, the line of synchronous movements, other-
wise termed the LOS, can be plotted using a search algorithm (see [15, 17]) to detect
the best path through the plot. The LOS thus indicates coincident synchronicity and
it is apparent that this is fairly consistent in the first part of the period in question in
Fig. 1(left). Synchronicity though appears to break down in the late part of the cycle
leading up to the 2001 recession, but once the recession hits (observations 13–15 in
red in the upper figure), synchronicity is restored. In the growth period of the last
business cycle, there doesn’t appear to be a great amount of synchronization in growth
until the most recent downturn hits in 2008, and then for the remainder of the period
in question the two series are highly synchronous and convergent again. This is also
shown by a return of the LOS to the leading diagonal in the cross recurrence plot.
These results are consistent with the finding that synchronous behaviour in economic
growth nearly always occurs during the recessionary period of the business cycle,
but occurs much less frequently during the growth phase of the business cycle.2

Further examples are given for different US States for the other variables used in
this study. Figure 1(middle) shows the cross recurrence plot for Oregon for GSPPI
(Gross State Product Price Index) inflation measure against the US GDPPI (GDP
Price Index) inflation measure. This particular State was chosen because of its relative

2 Crowley and Schultz [19] have termed this phenomena “intermittent synchronicity”.
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asynchronous dynamic with the US. Here the LOS is much less obvious in the cross
recurrence plot, and the algorithm that chooses the LOS doesn’t appear to detect any
consistent synchronicity beyond roughly 2004 onwards.

Lastly, we produce the cross recurrence plot for Hawaii against the US for the
unemployment rate in Fig. 1(right). Hawaii does not seem to have been particularly
synchronous with the rest of the US until the most recent business cycle from 2002
to present. Nevertheless there does seem to have been a variable lag synchronous
effect at work throughout the 1990 s and this is detected by the algorithm generating
the LOS. Note as well that the movements in the two unemployment rates are similar
from 2003 onwards, but the LOS cannot jump in the CRP so that it reflects this high
degree of concurrent synchronization.

So in the context of employing traditional cross recurrence plots to analyze syn-
chronicity in economics, there are several issues, and these are:

(a) that economic series are stochastic in nature, so that synchronicity might be
detected only at certain points in time;

(b) that the cross recurrence plot LOS measure is only designed to detect similar
dynamic movements in variables due to time scaling, rather than similar patterns
of directional dynamics in stochastic time series (see [15]); and

(c) that cross recurrence plots also incorporate an analysis of convergence, which is
not the focus here.

Although recurrence quantification analysis does account for (a) above, we wish
to focus in solely on the degree of synchronicity, so we wish to abstract from (c) and
place the spotlight on (b), so as to concern ourselves only with directional dynamics.

2.2 A Small Sample Measure of Synchronization Based
on Dynamic dissimilarity

We next introduce a measure of synchronization based on a dynamic dissimilarity
measure (DDM), by focusing on the similarity of the dynamics by taking the distance
measure between the cumulative sum of any two series, and seeing how this varies
through time within an epoch analysis framework.

Each time series is first transformed into a stationary growth rate (e.g. by log
first differencing real GDP to obtain economic growth rates) or stationary source
variables are used (such as unemployment rates), and then a cumulative summation
variable of this stationary variable is created:

Xi =
i∑

j=1

(logx j − logx j−1) (4)

We refer to these modified time-series, Xi , as cumulative unsigned summation (CUS)
series. Distance matrices, Di, j for each CUS series are then created using the standard
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Euclidean distance metric as described in [8] and this operation is identical to (Eq. 1).
To evaluate the dissimilarity between two time series, we then perform an epoch
(moving window) analysis with a three sample window incremented one sample at a
time, where in the bivariate case D1i, j denotes the epoch window for Xi containing
N N values of Di, j for the epoch window of size N × N . For each epoch the DDM
is computed by taking the difference between the paired values in the epochs from
each time series, which for the bivariate case we denote as D1i, j and D2i, j :

Ei, j = ∣∣D1i, j − D2i, j
∣∣ (5)

where Ei, j represents the differenced epoch window for the first series etc., and i, j
are the time points in a particular epoch. Note that for example in the case where
N = 3: (i) the dynamics included in the comparison can range over 4 periods, as
each point in itself can represent a change in the distance matrix; (ii) the Ei, j matrix
incorporates both lead and lag dynamics as it includes off-diagonal elements as well;
and (iii) that the range in values for Ei, j is from 0 to max{D1i, j , D2i, j }. A value of
Ei, j = 0 clearly denotes complete synchronization between the two series.

Finally we take the average value of the components of Ei, j :

DDM =
∑N

i, j=1 Ei, j

N 2 (6)

to obtain a DDM which represents the total dissimilarity between D1 and D2 for
a particular epoch. This process can be done for a single variable against another
variable (as is shown above) to create a synchronicity-proxy or can be repeated for
each possible pair of time series so as to create a “super” dissimilarity matrix for all
variables by epoch. In the latter case, the dissimilarity matrix at each time step is
then averaged to estimate the total dissimilarity between members of the set for a
particular temporal window. The final product is then a one dimensional time series
representing the synchronization in dynamic between members of a set with smaller
values indicating greater synchronicity.

Once the absolute differences have been evaluated for a set of variables they can
also be plotted to show the “within-group” average level of dissimilarity between all
the members of the group.

To summarize then, the methodology is as follows:

(i) Cumulate all the (signed or unsigned) series;
(ii) Form a distance matrix Di, j for the cumulative series by calculating the distance

of every point from every other point, then squaring, sum and square root;
(iii) Now form an epoch window over the set of cumulative distance measures Di, j

which we label as matrix D1i, j ;
(iv) Now subtract the matrix D2i, j from the equivalent matrix D1i, j to form another

matrix, Ei, j ;
(v) Average the values of Ei, j to obtain a dynamic dissimilarity/synchronicity mea-

sure between the two series.
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Although the method described above is similar to the approach described in [18]
for finding optimal lag or lead structures, the present method is not concerned with
lead or lag structures but is solely concerned with using the general approach to
construct a non-parametric measure of synchronicity. This DDM described here was
first applied by [19] to EU data to show how signed macroeconomic synchronicity
between European Union member states is intermittent, and in this paper we use
an unsigned (Euclidean distance) measure as a means of assessing synchronicity in
small samples.

3 Application to US State Macroeconomic Data

3.1 Background

Given the longevity of the US monetary union, which is partly due to the fact that the
monetary union was part of the political union that took place at the same time in 1776,
one would expect a high degree of economic convergence between its constituent
parts. The reason for this expectation is that policies enacted at the federal level,
most notably fiscal and monetary policy, should have provided a common component
which could be found across all 50 states.3

Of course being part of an economic and monetary union could also generate
specific industry dynamics which give rise to agglomeration effects, and hence faster
growth in a specific location (for example technology in relation to Silicon Valley in
California, or banking and securities in relation to New York), but if these location
effects are spread fairly evenly across the country, then these effects will likely not
overpower the impact of federal policies at the State level. At the same time, similar
regional characteristics might come into play here as certain industries (such as
agricultural industries) might dominate regionally, giving a higher degree of regional
co-movement.

This clearly merits some exploration, given that the US has long been regarded
as an optimal currency area (OCA).4 But why is this the case? Obviously the fiscal
record of each US State government is not a significant factor as it would be in the
European Union, as most US States have enacted balanced budget amendments so
relatively little debt is issued compared with Gross State Product (GSP) (California is
a recent exception to this, as was New York State back in the 1980s). Several papers

3 Of course fiscal policy enacted by Congress can be aimed at a particular set of States (for example
disaster relief after a hurricane), or its impact might incidentally give greater benefits to a specific
state (for example defense spending in relation to the Californian economy). Similarly monetary
policy that benefits financial institutions might have a greater impact on those regions of the country
that have a greater concentration of financial industry (such as New York and Illinois).
4 There is little research as to the nature of the US monetary union in terms of its macroeconomic
characteristics. This is partly due to the severe data limitations on availability of State macroeco-
nomic data.
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have established that the US can be regarded as an optimal currency area not only
because of the convergence in many macroeconomic measures, but also because of
the perceived synchronization between most US States and macroeconomic measures
for the country as a whole (see [20] for an example in relation to globalization and
in particular an unpublished paper by [21]). Of course the major policy measures are
taken at the Federal level, not only by Congress through US fiscal policy but also
there is the Federal Reserve (Fed) monetary policy. Not only this, but also if there
are regional shocks which depress certain States, there is a relatively high degree of
labor mobility due to a high degree of linguistic and cultural homogeneity. Thus most
economists view the major criteria for being a single currency area as largely met in
the US (usually for counter-factual reasons given the longevity of the arrangement),
and therefore because of the common monetary policy one might expect a high
correlation of business cycle variable movements between the participants of the
US monetary union. This is the basic thesis for the application presented in this
application, which explores the nature of the co-movement in growth and other
business cycle variables.

3.2 Business Cycles and OCA Theory

The standard tool used in economic literature to evaluate the adequacy of a monetary
union is the OCA theory, originated by [22, 23], with refinements by [24] and [25].
The OCA theory compares the benefits and costs to countries participating in a
currency area. Benefits include lower transaction costs, price stabilization, improved
efficiency of resource allocation, and increased access to product, factor, and financial
markets. The main cost, however, is the country’s loss of sovereignty to maintain
national monetary and exchange rate policies. Both costs and benefits depend on the
nature of exogenous shocks affecting potential member countries and the speed with
which they adjust to them. The costs tend to be lower (higher) if shocks are symmetric
(asymmetric) and market mechanisms are quick (slow) to restore equilibrium after
the shock. Nonetheless, the existence of heterogeneities across countries does not
necessarily imply that monetary integration cannot be achieved. This follows from the
endogeneity argument—originally proposed by [26], which suggests that countries
become more similar when they form a monetary union.

The synchronicity in movement of economic growth rates is economically
important for 2 underlying reasons:

1. the more globalized the world becomes, the more likely that trade and financial
flows will cause greater “synchronization” in growth rates between countries—
known in the literature as the “international business cycle”; and

2. for collections of administrative entities that use the same currency (such as the
US dollar, the Canadian dollar and the euro area member states of the European
Union), similar movements in economic growth rates can either indicate
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(i) ex-ante the suitability for adopting the same monetary policy (the optimal
currency area (OCA) theory5); or

(ii) ex-post, the fact that monetary policy has been a factor in making these
countries have similar patterns of growth (the endogenous OCA theory).

There has long been recognition of the propagation phenomenon of business
cycles between countries (the main mechnanisms being trade and capital flows).
The main indicator of this propagation is the synchronicity of turning points in
business cycles (noted by [27, 28] in the real business cycle literature) but what is not
recognized here is that the economic growth dynamic between these turning points
(usually the recessions or peaks of business cycles) can be radically different between
countries or in this case, US States. This observation has given rise to the notion and
study of growth cycles in the context of the dynamic of economic growth between
these turning points (see [29, 30]). From an empirical perspective there have been
some efforts to empirically extract cycles for measurement and comparison across
countries using frequency domain techniques (see [31–33]) but only limited research
has been conducted in this area.

In the US, as the US dollar has been the adopted currency of the US for so
long (despite the private printing of notes in the 19th century), according to the
theory it should clearly be an OCA ex-post, and indeed many studies have shows
that the majority of US States do exhibit high correlations in growth dynamics, but
some research has indicated that the geographic extremes of the country (Hawaii,
Alaska and Florida in particular) do exhibit some independent growth dynamics.
Little research has been done in this vein in terms of analysis of US State business
cycle synchronicity using measures other than conventional correlation measures.

Only in the last decade has the question been asked as to whether increased-
break business cycle synchronization is driven more by global or regional factors,
and whether this has changed over time. Research by [34] first noted that cyclical
convergence was much more a global rather than a regional phenomenon, but more
recently, using spectral analysis [35] showed that the convergence at lower frequen-
cies was due to common cycles, in other words globalization. In the latter study
though [35] only used the US, UK and the euro area to assess this, so this could have
been due to anomalies associated with the UK situation rather than being a general
result. [20] provides strong evidence in support of the conventional wisdom that
rising global integration over time, through either trade or foreign direct investment
flows, raises a state economy’s business cycle correlation with the world economy.
Interestingly openness to trade and investment promotes greater business cycle syn-
chronization within regional US economies than with the rest of the world. If our
results mirror those found by [20], then we should expect to find that there is a trend
to greater synchronization between US State data over time.

To summarize, we are assessing whether the similarity in business cycle variables
(economic growth, inflation and unemployment) changes over time, and whether the
variance in synchronicity between States and the US aggregate has changed through
time.

5 The original and seminal contribution here was made by [22].
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3.3 Data

There is very little purely macroeconomic data available by US State, but we select
three variables directly related to the business cycle, namely:

3.3.1 Economic Growth

Here we measure economic growth at time t , as gt , by taking the real Gross State
Product (GSP) at time t , yt , and transforming it by taking natural log first differences
as follows:

gt = ln(yt ) − ln(yt−1) (7)

Unfortunately this dataset is only available from 1987, so once log first differences
are taken, the data runs from 1988 to 2011, giving 23 datapoints. The data is sourced
from the Bureau of Economic Analysis (BEA). Data was available by State and for
the US as a whole.

A sample of these economic growth rates is plotted. Figure 2 shows the data for
the States in one particular region—notably the BEA Southwest region, comprising
Arizona, New Mexico, Texas and Oklahoma.

Figure 2 (left) shows that even with specific geographical regions of the US, growth
rates at any point in time can be quite different, but that in general the turning points
in the business cycle (most notably the 2008–2010 US recession) are synchronized.
Even so, it is clear that Arizona had a much deeper recession than Texas did, which
was likely due to the fallout from the housing market collapse, where Arizona had
much more highly inflated prices than Texas.

Synchronization in growth rates might be expected to be much less coordinated in
more geographically dispersed parts of the country though, most notably in Alaska
and Hawaii, so in Fig. 2 (right) we plot the growth in real GSP for Alaska, Hawaii,
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Fig. 2 (Left) Real GDP growth rate for South West US States. (Right) Geographically dispersed
US State GSP growth
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Florida and New York (New York is selected to represent a highly synchronized US
state).

Interestingly Alaska appears not to have been affected by the recent economic
downturn until several years later, and to a much smaller extent whilst Hawaii appears
to have been affected with a lag, but as severely as Florida. In the growth period there
appears to be little synchronization in growth during this period with large 2 year
cycles in Alaska, and smaller growth cycles in other States.

As economic growth is considered to be an important measure of the health of the
economy, we also reproduce the figures from the BEA which show the latest levels
of growth in individual states in Appendix A.

3.3.2 Inflation

Here this is proxied by the GSP deflator, as a Consumer Price Index (CPI) is only
available for urban areas, and so does not cover all States, and even when there is
a major urban center in a specific State, it might not reflect prices for the whole
of a larger State. Once again the natural log first difference is taken (to create the
equivalent of an inflation rate), and also the data is similarly sourced from the BEA6

and contains just 23 datapoints. This dataset had to be derived from BEA data on
real GSP and nominal GSP.

Figure 3 (left) shows the data for the Southwestern US States, and Fig. 3 (right)
shows the data for the Far Western US States. In Fig. 3(left) the inflation data for
New Mexico, Texas and Oklahoma are fairly synchronized in the last growth phase
after the 2001 recession, and move very closely together into a deflationary period
during the recent downturn from 2007–2009, before rebounding in 2010. Arizona
however does not appear to follow the trend of the other 3 States—although inflation
slows in the late part of the last decade, there is actually a slight pickup in inflation
going into the recession, followed by a fall in inflation as there is a pickup in inflation
elsewhere in the region. In the Far West region of the US, Fig. 3 (right) shows that
the States concerned exhibit a very narrow range of inflation rates in the early part
of the period, but the range of inflation rates widens out in the late 1990s with
inflation highest in Nevada and lowest in Oregon. There appears to have been greater
synchronicity in inflation during the most recent downturn, although Oregon appears
to have experienced lower inflation rates than the other 3 States throughout the
period.

3.3.3 Unemployment

This is taken as the usual definition of the unemployment rate, i.e., the number of
unemployed divided by the labor force. This is available from 1976 onwards, both

6 Two series had to be spliced together to create this series. Details are available from the author
on request.
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Fig. 3 (Left) GSPPI inflation for Southwestern US States. (Right) GSPPI inflation for Far West
US States

monthly and annually from the Bureau of Labor Statistics. Two versions of this
series are used in the analysis—one that uses the full data span available and the
other which uses only the data from 1988 to 2011 so as to be comparable with the
economic growth and inflation variables detailed above.

Unemployment is usually viewed as a lagging indicator when referencing the
business cycle, and in Fig. 4 (left) for the Southwestern US States, this appears to
be very much the case. Unemployment magnitudes are, however, different accross
the region with unemployment rates peaking at around 7 % in Oklahoma but at over
10 % in Arizona. One of the worst parts of the country to be hit by large increases
in unemployment rates was the Great Lakes region, and the relevant unemployment
rates are shown in Fig. 4 (right). Perhaps the most interesting aspect of this figure
is the fact that for all these US States the unemployment rates were higher in the
early 1980s recession than in the most recent economic downturn. Once again, the
movement in the unemployment rates is fairly well synchronized across all the States.
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Great Lakes US States
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3.4 Results

Results here are presented for each US State vs the US aggregate. An alternative
approach which is currently being explored is to look at intra-State synchronicity
and then average these over all States or a collection of States (e.g. for a specific
geographical BEA region).

3.4.1 Economic Growth

In this section we review the results of applying the technique above to US state
economic growth data, which we plot by BEA region. As shown in appendix A there
are 8 BEA regions. As some US states are extremely large relative to the rest of
the US, we construct aggregates for each State for real GDP such that the aggregate
represents [US real GDP—State i GDP] and then conduct the dissimilarity exercise
on the State vs this aggregate. For purposes of statistical testing, we use the 95 %
confidence limit on the actual distribution of States.

In Figs. 5 and 6 we display the results by State collected by BEA region In Fig. 5
(left) it is noticeable that Oregon and Hawaii track into the shaded (significant) area
in the figure denoting significant asynchronicity with the US as a whole. Another
feature of all these figures relating to real GDP growth is the fact that most of
the US states clearly had similar dynamics going through the last major economic
downturn in 2008 (this represents the window centred on 2008, so covers 2007–
2009), but that there are some notable exceptions. So for example in 2008, in Fig. 5e
North Dakota appears to have been an exception, and did not experience the same
recessionary dynamics that the rest of the country faced, and also Virginia in Fig. 6b
and Wyoming in Fig. 5f appear to have faced somewhat different growth dynamics
during the recession. Overall, for the period as a whole there appears to have been a
slight increase in synchronicity in growth (as measured by the fall in dissimilarity),
which mirrors the results of [20].

In Fig. 7 (left) both the mean dissimilarity and the standard deviation of the DDM
are plotted. The results clearly confirm the increase in synchronicity documented
earlier, and a small fall in standard deviation.

The kernel estimate of the PDF is given in Fig. 7 (right). The 95 % confidence
interval under the null hypothesis of similar dynamics is shown in the figure and is
at 0.2102.

As a robustness check on the qualitative results obtained above, we repeat the
exercise in Appendix B for personal income over a longer time period and using
quarterly data. The qualitative results are similar although not identical, but that
is not surprising as personal income is a nominal variable and also it is only one
component of GDP.
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Fig. 5 Real GSP growth of a Far West State. b Great Lakes State. c Mid East State. d New England
State. e Plains State. f Rocky Mountain State versus US national aggregate

3.4.2 Inflation

In this section we repeat the exercise conducted above but instead for the growth
in the real GSP deflator, which is derived from simple calculations using published
estimates of state real GSP and state nominal GSP.

Figures 8 and 9 show the dissimilarity plots for the real GDP deflator variable.
Here the pattern is a little different, with a clear divergence in GDP deflator growth
rates in the 2007–2009 downturn, so noticeably at the 2008 mid-point. Clearly the
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Fig. 6 Real GSP growth of a South East State. b South East State. c South West State versus US
national aggregate
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Fig. 7 (Left) Mean and standard deviation of dissimilarity measure for real GSP growth versus US
aggregate. (Right) Kernel density estimation for US real GDP growth synchronization measure

distribution of different inflation dynamics widens out on entering the recession but
is more convergent coming out of the recession in 2009. Oregon, Delaware, Ohio and
West Virginia appear to have had quite different dynamics from other states during
the last recession. The general trend in synchronicity though is definitely towards
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Fig. 8 Real GSP deflator growth of a Far West State. b Great Lakes State. c Mid East State. d New
England State. e Plains State. f Rocky Mountain State versus US national aggregate

less synchronization during the last downturn and recovery and likely is related to
the differing experiences of States to the housing boom and bust before and during
the last recession.

The mean and standard deviation of the DDM are plotted by year in Fig. 10 (left).
There has been a clear decrease in synchronization after 2000, and in fact greater
variation in levels of synchronicity since 1995. This greater dispersion could reflect a
widening gap between the States which contain major urban areas, and those which
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Fig. 9 Real GSP deflator growth of a South East State. b South East State. c South West State
versus US national aggregate
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Fig. 10 (Left) Mean and standard deviation of dissimilarity measure for inflation vs US aggregate.
(Right) Kernel density estimation for US GSPPI growth synchronization measure

are still mostly rural, in terms of their housing markets and also in terms of a general
widening in the cost of living between these two types of States.

The estimate of the kernel density function is provided in Fig. 10 (right). The 95 %
confidence interval under the null hypothesis of similar dynamics is shown in the
figure and is at 0.1137, indicating a greater degree of similarity in inflation dynamics
between US States than for economic growth.
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Fig. 11 Unemployment rates of a Far West State. b Great Lakes State. c Mid East State. d New
England State. e Plains State. f Rocky Mountain State versus US national aggregate

3.4.3 Unemployment

Here we use unemployment rates as defined by the Bureau of Labor Statistics (BLS)
as the basis for creating dissimilarity indices by State.

In Figs. 11 and 12 we present the same synchronization exercise for the State
unemployment rates against the US rate. Here the dynamics of unemployment across
the states have been quite similar, in the sense of there being a falling degree of
synchronicity going into 3 of the 4 past recessions, but a rising degree of synchronicity
coming out of these recessions (with the notable exception of the 2001 recession).
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Fig. 12 Unemployment rates of a South East State. b South East State. c South West State versus
US national aggregate

What is noticeable here though is that the general trend was, up until the last reces-
sion, an increase in synchronicity of unemployment rates. Also it is noteworthy that
the spike in dissimilarity during the last downturn in economic growth was not as high
as for the recession of 1982–1983. In Fig. 13 (left) the mean and standard deviation
of the DDM are now plotted, and show a decrease in synchronicity since 2000, with
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Fig. 13 (Left) Mean and standard deviation of dissimilarity measure for unemployment rate ver-
sus US aggregate. (Right) Kernel density estimation for US unemployment rate synchronization
measure
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the mean dissimilarity rising during the 2000s and then accelerating upwards going
into the last recession. The standard deviation plot seems to have been on a slow
decline up until 2005, when the dispersion of unemployment rate synchronicities
appears to have widened. This is an unexpected result, as the popular perception is
that unemployment generally in the US was highly synchronized between US States
during the economic boom of the mid-2000s.

Once again, the kernel density estimate for the pdf of the dissimilarity measure is
shown in Fig. 13 (right) and the 95 % confidence interval under the null hypothesis of
similar dynamics is shown in the figure and is at 0.0406, which signifies much greater
synchronization than for either economic growth or inflation. As the unemployment
rate is the ratio of two large stock variables, and economic growth is the rate of
change of a flow variable, this greater dynamic conformity with the unemployment
rate is to be expected.

4 Conclusions

The main purpose of this paper is to present a measure of time series synchronicity,
that is particularly suited to small samples, and is derived from the recurrence plot
approach. The measure is non-parametric, is not dependent on stationarity of data
and is fully flexible in terms of encompassing specified lead and lag dynamics. The
measure was successfully applied to the evaluation of synchronicity in an example
of macroeconomic data for US States compared with the US aggregate. In the latter
case we have used the measure as a means of detecting whether synchronicity in
macroeconomic variables measured at the US State level occurs consistently through
time, and whether there are certain US states that are less synchronous with the US
on aggregate than others.

Our findings are that the measure shows the time-varying level of synchronicity
for a small dataset consisting of US State macroeconomic variables. In the latter
case, although regions are fairly well grouped together in terms of similar economic
dynamics, there are some notable differences within regions, whereby states like
Alaska, which is geographically part of the Far West region, nevertheless seems
to have a rather different business cycle from the rest of the country. The results
indicate that synchronicity has been on upward trend for real GDP growth and on a
downward trend for the unemployment rate, but that there has been little change in
synchronicity of inflation rates. Our results also confirmed the long-standing finding
that growth synchronicity among the US states seems to be at its highest when
entering a recession, and least similar when exiting a recession.

In terms of future research, one of the uses of this methodology that would be
informative in the sphere of economics7 would be to test whether being in a monetary
union causes greater macroeconomic synchronicity in business cycle variables—this
would require data on similar variables for other monetary unions and then data from

7 We acknowledge one of the reviewers of this paper for suggesting this approach.
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a collection of countries that are not part of monetary unions to act as a control group.
In terms of the methodology itself, future research could also employ varying epoch
window sizes (with more temporally disaggregated data) to test if the results are
robust to such changes, and if so whether an optimal window size could be derived.
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Appendix A: BEA regions

Here we duplicate the most recent results from the BEA for real GSP growth. In
Fig. 14 the real GDP by State is given for 2012. As can be seen, the 8 BEA regions
do not correspond to the 12 Federal Reserve districts,

Figure 15 also shows the economic growth dynamic following the last economic
downturn by BEA region. Clearly the Southwest has had the largest rebound, and
the New England area has had only a moderate rebound since the last recession.

Fig. 14 Real GSP growth by US State for 2012
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Fig. 15 Economic growth dynamic by BEA region

Fig. 16 Mean and standard
deviation of dissimilarity
measure for personal income
versus US aggregate
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Appendix B: Personal Income

Here, as a robustness check for our results as applied to US State macroeconomic
data, we report the results of an identical exercise, except with personal income
(sourced from the BEA) by State which contains quarterly data from 1950. We use
a 12 quarter epoch window, which is equivalent to the 3 year window used with the
annual data for real GDP growth. Figure 16 shows the mean and standard deviations
for the dissimilarity metric. Once again, the trend in the mean is downwards, with
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an uptick on both entering and exiting the last recession—this is a difference with
the real GDP measure, which only showed an increase on exiting the recession. On
exiting the recession, the standard deviation also increases.
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Abstract The relationship between the temporal evolution of the commodity market
and the stock market has long term implications for policy makers, and particularly
in the case of emerging markets, the economy as a whole. We analyze the complex
dynamics of the daily variation of two indices of stock and commodity exchange
respectively of India. To understand whether there is any difference between emerg-
ing markets and developed markets in terms of a dynamic correlation between the
two market indices, we also examine the complex dynamics of stock and commod-
ity indices of the US market. We compare the daily variation of the commodity
and stock prices in the two countries separately. For this purpose we have consid-
ered commodity India along with Dow Jones Industrial Average (DJIA) and Dow
Jones-AIG Commodity (DJ-AIGCI) indices for stock and commodities, USA, from
June 2005 to August 2008. To analyse the dynamics of the time variation of the
indices we use a set of analytical methods based on recurrence plots. Our stud-
ies show that the dynamics of the Indian stock and commodity exchanges have a
lagged correlation while those of US market have a lead correlation and a weaker
correlation.
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1 Introduction

The relationship between the temporal evolution of the commodity market and the
stock market is of utmost importance for investors and other market participants. It
has long term implications for policy makers, and particularly in the case of emerg-
ing markets, the economy as a whole. The history of commodity markets dates back
much more than that of the stock market. Traditionally, commodity markets had been
primarily consumption markets with some investment opportunities as opposed to
the stock market which is an investment market only. The commodity as an option of
financial investment and an alternative to traditional assets, had always been attrac-
tive because of its ability to add to diversification benefits. However, the majority
of investments in commodity markets took place in over the counter markets as
opposed to the exchange traded stock markets. The dynamics of the two markets
were, therefore, governed by different characteristics. This fact coupled with the
lack of consistent and reliable data from the over-the-counter markets has made
reliable studies of the interrelationship between the dynamics of the two markets
difficult, especially in emerging markets like India where exchange based spot and
derivatives trading of commodities is relatively new. But with the evolution of the
exchange based trading of commodity spot and derivatives markets it is now possible
to study and capture the complex dynamics of both stock and commodity markets
and compare their interrelationship. In a recent work by Reddy and Sebastin, the
dynamics of information transfer among the commodity spot, commodity deriva-
tives, and stock markets in India are studied, using the information theoretic concept
of entropy, which captures complex relationships as well [1].

In spite of having a long history of derivatives trading in commodity markets, the
history of exchange traded commodity futures trading in India is rather short. The first
commodity trading exchange of India Multi-commodity exchange (MCX) started
operating from November 2003. However, since then there has been a phenomenal
growth in volume and turnover in this exchange. From a mere 9 million Indian rupees
in 2004 the trading volume has increased to over 1 billion Indian rupees in 2013. By
2008 it had already grown by up to 438 million Indian rupees. This growth is not
unique to the commodity sector; stock market volume has also continued its growth
during the same period. The market capitalisation of the National stock exchange
grew from 8.63 trillion to 21.23 trillion Indian rupees between 2003 and 2008. This
concurrent growth is of importance from the investment portfolio perspective as the
inclusion of commodities adds depth and diversification to the portfolio.

The importance of this study, therefore, lies in investigating the utility of the
commodity as a diversification tool. Under normal circumstances, we would expect
the correlation between the stock and commodity markets to be low. Only then
can commodities be used as an avenue for diversification. But in India, we may
expect a different scenario. If we look at traditional investment practices in India,
people tend to invest a constant proportion of their portfolios in gold. Thus, when
investment goes up, both commodity prices and stock prices will rise, due to the
increased complementary demand for these assets. Recently, with the introduction
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of commodity futures, oil has also taken an important position in the Indian portfolio
(incidentally, in 2007, 28 % of the trading volume of commodity futures in MCX
was contributed by gold, while 56 % was contributed by crude oil). We would thus
expect a different relationship to exist between the stock and commodity markets in
India when compared to some other developed economy like that of the USA.

The complex dynamics of two investment markets is best understood by analyzing
a time series representing the price movement of the respective markets using tools of
nonlinear dynamics. Keeping this in mind we analyze the movement of the daily close
value of two indices of stock and commodity exchange, respectively, of India. To
understand whether there is any difference between emerging markets and developed
markets in terms of the dynamic correlation between the two market indices, we
compare it with the US market. We use a set of methods based on maximal correlation
[2] and recurrence plots [3, 4].

A simple cross-correlation study based on Pearson correlation measures could
indicate a degree of correlation between the time series under study. To start with,
we will compute the Pearson correlation for both US and Indian markets. Despite
the true nature of the dynamics, this linear approach might yield some initial inter-
esting results in a first order approximation. However, in order to get deeper insights
we have to consider potential nonlinear properties, because there is ample empirical
evidence against the assumption of simple linear dynamics in economics. Theoreti-
cally, there is no reason to believe that economic systems must be intrinsically linear
(cp. [5–7]). Empirically, a great number of studies show that financial time series
exhibit nonlinear dependencies (cp. [8–16]). Hence, “A natural frontier for financial
econometrics is the modelling of nonlinear phenomena” [6]. Testing for nonlinearity
has become popular in the financial econometrics literature in recent years, though
the focus is on financial markets of developed countries. In principle, testing for
nonlinearity can be viewed as a general test of model adequacy for linear models
[17] and it has been argued that if the underlying generating process for a time series
is nonlinear in nature, then it would be inappropriate to employ linear methods. For
instance, most of the widely applied statistical tests like the unit root or stationary
tests, the Granger causality test, and the cointegration test are all built on the basis
of a linear autoregressive model. [18, 19], among others, illustrated that the adop-
tion of linear stationarity tests are inappropriate in detecting mean reversion if the
true data generating process is in fact a stationary nonlinear process. On the other
hand, the Monte Carlo simulation evidence in [20] indicated that the standard linear
cointegration framework presents a mis-specification problem when the true nature
of the adjustment process is nonlinear and the speed of adjustment varies with the
magnitude of the disequilibrium. Thus, if the underlying process of a time series is
indeed nonlinear in nature, we would have to resort to empirical methods the like
non-parametric cointegration test due to [20], nonlinear stationarity tests [19, 21,
22], and nonlinear causality tests [23].

This requires the application of alternative methods over and above simple Pearson
correlation measure to understand the degree of nonlinear correlation between the
time series. We used the alternating conditional expectation algorithm (ACE) to
test the correlation between the time series [24]. The ACE algorithm showed that
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the functional form of the data sets under examination are clearly nonlinear. This
encouraged us to use nonlinear methods to study the interrelationship between the
time series. This also motivated us to go for a study of the entire time evolution
of the time series to understand whether they co-evolve or not, by using the cross
recurrence plot and recurrence quantification analysis [3, 4], which has already been
successfully applied to financial and economic data [16, 25, 26]. Recent extensions
in recurrence network analysis allow us to estimate topological dimensions from
time series like the transitivity dimensions [27]. Motivated by this, we construct the
transitivity dimensions of the two markets and see whether topological measures
reinforce our findings in recurrence analysis.

The structure of the paper is as follows. In Sect. 2, we briefly describe the source
and nature of the data. In Sect. 3 we discuss all the tests performed, giving the
background theory of our analysis before commenting upon the results. In Sect. 4 we
perform the comparative analysis of the results of our tests. Finally we summarise
our conclusions in Sect. 5.

2 Data

Our analysis is based on daily time series of the S and P CNX NIFTY (NIFTY)
and MCX-COMDEX (commodity) index of India as well as Dow Jones Industrial
Average (DJIA) stock index and Dow Jones-AIG Commodity Index (DJ-AIGCI) of
USA (Fig. 1). From the respective exchange web sites (www.nseindia.com, www.
mcxindia.com, www.djaverages.com, www.nasdaq.com/symbol/ucd) historical data
respectively for NIFTY, NCX, DJIA and DJ-AIGCI have been collected for the period
from June 2005 to August 2008 (both months inclusive). Considering this time period,
the sub-prime period is not completely excluded from the analysis. The initial few
months when the first shock affected the market are still included, but the long
period of global recession after this initial period are not. The idea was to capture
the beginning of the stock market crash and see whether the commodity market
was reacting in a correlated manner. Our purpose was to understand whether there is
anything endogenously different in the two markets. The S and P CNX Nifty is a well-
diversified 50 stock index (traded in the National Stock Exchange, India) accounting
for 25 sectors of the Indian economy. MCX-COMDEX is a composite futures index
comprising of commodity futures of diversified sectors traded in MCX India. MCX-
COMDEX is based on futures prices of 15 different commodities, comprising of
three sub-indices which represent the major sector groupings in commodity trading:
metals, energy, and agricultural products. DJIA is a composite index computed from
stock prices of 30 largest and most widely held public companies in the USA. DJ-
AIGCI is a composite index composed of future contracts on 19 physical commodities
traded on US exchanges.

For our analysis, we have used the z-score of the original index time series, i.e.,
we have normalized all time series to have a mean of zero and standard deviation of
one (no log change or change data used).

www.nseindia.com
www.mcxindia.com
www.mcxindia.com
www.djaverages.com
www.nasdaq.com/symbol/ucd
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Fig. 1 Normalized values of daily close of NIFTY and MCX-COMDEX (top), as well as of daily
close of DJIA and DJ-AIGCI (bottom)

3 Background of Examinations

3.1 Alternating Conditional Expectation (ACE) Algorithm and
Maximum Correlation Function (MCF)

The ACE algorithm [24] estimates the transformations Φ(x) and �(y) giving rise to
the maximal multiple correlation of a response y and a set of predictor variables x:

MC = 〈Φ(x)�(y)〉√〈Φ2(x)〉〈�2(y)〉
!= max . (1)

These real-valued measurable mean-zero functions �(y) and Φ(x) (with
!= max

meaning that the correlation is maximal for the found �(y) and Φ(x)) are then called
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optimal transformations, and MC is called maximal correlation. A study of these
transformations can give the insight into the relationships between these variables.

To calculate the optimal transformations, we have used an adaptive partitioning
algorithm as described in [2]. The ACE and MCF functions of the CRP toolbox [28]
use this algorithm except for two differences:

1. The output is not normalized with respect to the mean values of the optimal
transformations, so the mean values may not necessarily be zero.

2. The data are rank ordered before the calculation of the optimal transformations.
This leads to a simpler computation of conditional expectation values.

The algorithm (but not the particular subroutine of estimating the conditional
expectation values) is described in [2, 29, 30].

Although this algorithm is meant for exploring whether there is a relationship
between response and predictor variables, we have used the stock and commodity
index data as if a predictive relationship exists between them, and then found whether
in such a case the programme detects a correlation or not.

3.2 Recurrence Analysis

Natural processes can have a distinct recurrent behavior (e.g., Milankovich cycles, El
Niño phenomenon, extreme flooding events, epileptic seizures). Recurrence of states
xi ∈ R

m (with m the dimension of the phase space), in the meaning that states are
arbitrary close after some time, is a fundamental property of deterministic dynamical
systems.

Eckmann et al. have introduced a tool which visualizes the recurrence of states xi

in phase space [3]: the recurrence plot. A recurrence plot (RP) is a visualisation of
state- space dynamics that shows all those times at which a state of the dynamical
system recurs:

Ri,j = �(ε− ‖ xi − xj ‖), xi ∈ R
m, i, j = 1, . . . , N, (2)

where R is the recurrence matrix, N is the number of considered states xi, ε is a
threshold distance, ‖ · ‖ a norm, and �(·) the Heaviside function. A recurrence
of a state at time i at a different time j is, thus, marked within a two-dimensional
squared matrix with ones and zeros. Both axes of the recurrence matrix are time axes.
This representation is called recurrence plot (RP). RPs has shown to be useful for
analysing short and non-stationary data [4].

In our study we apply the RP in order to reveal the characteristics of the dynamics
of the economic time series under investigation. For an economic time series, the
patterns over time tell us whether the series is disrupted, non-stationary or nonlinear
in nature. By comparing RPs of two economic time series we can visually infer
whether the dynamical systems governing the time series are similar, or not.
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3.2.1 Embedding Parameters

If only one observable is available, the phase space can be reconstructed using time-
delay embedding [4]. Thus, we need to choose an appropriate value for the time
delay d and the embedding dimension m. Several methods have been developed to
best estimate m and d. Frequently used methods are the Average Mutual Information
Function (AMI) for the time delay [31] and the False Nearest Neighbors (FNN)
method for the embedding dimension [32]. As for the embedding delay, we chose
such a value where the mutual information has its first minimum or changes its
scaling behavior, and for the embedding dimension, we use such a value for m where
the number of false nearest neighbours in the phase space vanishes.

3.2.2 Structures in Recurrence Plots

The initial purpose of RPs was the visual inspection of recurrences of phase space
trajectories. The view on RPs gives hints about the time evolution of these trajectories.
RPs exhibit characteristic large scale typology and small scale patterns (texture). The
typology offers a global impression which can be characterized as homogeneous,
periodic, drift, and disrupted [4]. Small scale structures are single dots, diagonal lines
as well as vertical and horizontal lines (the combination of vertical and horizontal
lines obviously forms rectangular clusters of recurrence points). For a recurrence
analysis, the diagonal and vertical line structures are important.

A diagonal line Ri+k,j+k = 1 (for k = 1, . . . , l, where l is the length of the diagonal
line) occurs when a segment of the trajectory runs parallel to another segment, i.e.,
the trajectory visits the same region of the phase space at different times. The length
of this diagonal line is determined by the duration of such similar local evolution of
the trajectory segments and can give an idea about its divergence behavior, i.e., the
faster the trajectory segments diverge, the shorter are the diagonal lines.

A vertical (horizontal) line Ri,j+k = 1(for k = 1, . . . , v, where v is the length of
the vertical line) marks a time length in which a state does not change or changes very
slowly. It seems, that the state is trapped for some time. This is a typical behavior of
laminar states (intermittency).

These small scale structures are the base of a quantitative analysis of the RPs.
Though the visual interpretation of RPs requires some experience, their quantifi-

cation offers a more objective way for the investigation of the considered system.
A detailed discussion on the application and interpretation of RPs and the various
structures in a RP can be found in [4].

3.2.3 Cross Recurrence Plot

The cross recurrence plot (CRP) is a bivariate extension of the RP and was introduced
to analyze the similarity and synchronization of the states of two different dynamical
systems [33]. Suppose we have two dynamical systems, each one represented by the
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trajectories xi and yi in a d-dimensional phase space. Analogously to the RP, Eq. (2),
the corresponding cross recurrence matrix is defined by

CRx,y
i,j (ε) = �(ε − ‖xi − yi‖), i = 1, . . . , N, j = 1, . . . , M (3)

where the length of the trajectories of xi and yi are not required to be equal, and hence
the matrix CR is not necessarily square. Note that both systems are represented in
the same phase space, because a CRP looks for those times when a state of the
first system recurs to one of the other system. If the embedding parameters are
estimated from both time series, but are not equal, the higher embedding should be
chosen. However, the data under consideration should be from a comparable process
(physically the same). Here, we consider the different markets as physically very
similar. Moreover, we do not compare a specific variable (like trading volume of a
specific good) from these markets but a generalized index value. This additionally
supports our consideration of using physically similar variables in our application.
For a detailed discussion on RPs and CRPs we refer to [4, 33].

The CRP of two identical trajectories coincides with the RP of one of the tra-
jectories and contains the main diagonal or line of identity (LOI). However, if the
trajectories are not equal or their evolution happens on different time scales, the LOI
will be somewhat displaced, disrupted or bowed and is called line of synchronisation
(LOS).

For our analysis, we use the CRPs to visually inspect the interrelationship between
the two economic time series under investigation. By looking at the pattern, i.e.,
the LOS, we can infer whether the two systems are completely uncorrelated or a
relationship exists between them with some lead or lag. If the LOS is shifted to
the right then we can conclude that there is a delayed relationship between the two
time series. The other possible bivariate extension of RPs, the joint recurrence plot,
is not applicable here because it tests for simultaneous recurrences, but we are also
interested in changes of time scales. The potential of recurrence plot based approaches
for analyzing financial and economics data was shown in [16, 25, 26].

3.3 Quantification of Recurrence Plots

A quantification of recurrence plots (Recurrence Quantification Analysis, RQA) was
developed in order to distinguish between different appearances of RPs [34, 35].
Measures which base on diagonal structures are able to find chaos-order transitions,
whereas measures based on vertical (horizontal) structures are able to find chaos-
chaos transitions (laminar phases) [4].

Using the histogram of diagonal line lengths (see Sect. 3.2.2), we define the frac-
tion of recurrence points forming diagonal lines as a measure called determinism
DET ,

http://dx.doi.org/10.1007/978-3-319-09531-8_3
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DET =
∑N

l=lmin
l P(l)∑N

l=1 l P(l)
, (4)

where P(l) is the histogram of the diagonal lines of exactly length l, and lmin is a
minimal length a diagonal structure should have to be counted as a line. Processes with
uncorrelated or weakly correlated, stochastic or irregular chaotic behaviour cause
none or very short diagonals, hence, small DET . In contrast, regular deterministic
processes lead to longer diagonals and less isolated recurrence points, resulting in
higher values of DET . This measure can also be interpreted as characterizing the
predictability of the system.

The average diagonal line length

L =
∑N

l=lmin
l P(l)∑N

l=lmin
P(l)

(5)

gives the average time that two segments of the trajectory are close to each other,
and can be interpreted as the mean prediction time.

Analogously to the definition of the determinism in Eq. (4), we can use the his-
togram of the vertical lines of exactly length v, and define the fraction of recurrence
points forming vertical structures in the RP as the laminarity LAM

LAM =
∑N

v=vmin
vP(v)∑N

v=1 vP(v)
. (6)

The computation of LAM is realized for those v that exceed a minimum length vmin

in order to decrease the influence of the tangential motion (time-continuous systems
that are discretized with sufficiently high sampling rate and an appropriately large
threshold ε result in a large amount of recurrences coming from succeeding states
xi, xi+1, xi+2, . . .). LAM represents the occurrence of laminar states in the system
without describing the length of these laminar phases. In particular, LAM decreases
if the RP consists of more isolated recurrence points than vertical structures.

The average length of vertical structures is given by

TT =
∑N

v=vmin
vP(v)∑N

v=vmin
P(v)

, (7)

and is called trapping time. As in the case of LAM, the computation of TT requires
the consideration of a minimal length vmin as well. The trapping time estimates the
mean time that the system will abide at a specific state, i.e., how long the state will
be trapped.

Both LAM and TT have been proven to be useful for describing the dynamics
of discrete systems and studying chaos-chaos transitions. RQA consists of further
measures which are not used in this study. RQA as the whole is a very powerful
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technique for quantifying differences in the dynamics of complex systems and has
meanwhile found numerous applications, e.g., in astrophysics, biology, engineering,
geo- and life sciences, or protein research [35].

Recent developments combined recurrence analysis with the complex network
approach [36, 37]. By considering the recurrence plot R as the adjacency matrix of
a network A = R − 1, several measures from complex networks statistics can be
applied and used as alternative measures of complexity characterizing the geometrical
properties of the phase space trajectory. For example, the transitivity coefficient,

T =
∑N

i,j,k=1 Aj,kAi,jAi,k∑N
i,j,k=1 Ai,jAi,k(1 − δj,k)

, (8)

measuring the fraction of closed triangles in the network, is a good measure to
distinguish regular from irregular dynamics [38]. Based on geometric considerations,
T can be used to construct a dimensionality measure, the transitivity dimension,

DT = log T

log(3/4)
, (9)

providing a theoretically understandable measure for complexity, as more com-
plex/irregular behaviour belongs to higher dimensional dynamics than periodic/
regular behavior [39].

RQA measures can be computed in moving windows along the main diagonal
(sub-RPs). This allows us to study their time dependence and can be used for the
detection of transitions. Yet, one key question in empirical research concerns the
confidence bounds of the calculated RQA measures. Schinkel et al. have suggested a
bootstrap method to estimate the confidence of the RQA measures [40]. This method
is based on the bootstrapping of line structures from the RP (or the sub-RP), allowing
to estimate an empirical test distribution of all of the used RQA measures. We have
used 95 % confidence level for the statistical evaluation of these measures.

The measures DET , LAM, L, and TT are not used as absolute indices of the
dynamic state (i.e., chaotic, random, laminar, etc.). Instead we will consider their
relative movement over time when comparing the two systems,i.e., the stock market
index and commodity market index. By comparing their movement, we try to detect
whether they move concurrently or absolutely independent of each other.

All analysis was performed by using the Cross Recurrence Plot Toolbox, Version
5.15 (R28.4) 21-Jul-2009 (http://tocsy.pik-potsdam.de).

4 Results

First, we compute the Pearson correlation for the two markets separately. We find
that the correlation between DJIA and DJ-AIGCI indices were much lower (0.23)
as compared to that between NIFTY and MCX (0.62). Next we proceed with the

http://tocsy.pik-potsdam.de
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nonlinear analysis in order to get further details of the nature of correlation. We have
calculated the MCF for a maximal lag of 20 days (the length of the boxcar window
was 11). For the calculation of the CRPs, the important parameters are embedding
dimension and time delay. If the embedding parameters are estimated from both time
series, but are not equal, the higher embedding was chosen [4]. Using the methods
mentioned in Sect. 3.2.1, we got the same parameters for both Indian data sets, i.e.,
we found an embedding dimension of 5 and a time delay of 4. For the US data set
we used the same embedding parameters because those were the higher embedding
parameters amongst the two time series, viz., the DJIA time series. We used the CRP
and maximum norm method for finding out the neighbours of the plot. For the RQA
we used the same embedding parameters and a threshold parameter of 0.1, kept the
bootstrapping sample size at 500, used a 95 % level of confidence. The used window
size was 100 days and step size was 10 days.

4.1 ACE and Maximum Correlation Function

A close look at the ACE and MCF results of Nifty and MCX time series (Fig. 2),
and those of DJ-AIGCI and DJI, respectively (Fig. 3), reveals a clear difference
in the two markets. The optimal transformations for Nifty and MCX time series
are a monotonous function, with a linear part for low values (Fig. 2). In contrast,
the optimal transformations for DJ-AIGCI and DJI reveal a non-monotonous and
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Fig. 2 Optimal transformations for NIFTY and MCX-COMDEX (top). Maximal correlation func-
tion for NIFTY and MCX-COMDEX (bottom) with rather constant value of 0.99, indicating a high
level of nonlinear correlation
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Fig. 3 Optimal transformations for DJIA and DJ-AIGCI (top). Maximal correlation function for
DJIA and DJ-AIGCI (bottom) with rather constant value of 0.73, indicating a rather law correlation
in the US markets (“low” from the view point of the maximal correlation)

strongly nonlinear function (Fig. 3). For a lag of seven days, we found a maximum
correlation of 0.98 for Nifty and MCX-COMDEX, while for the DJIA and DJ-AIGCI
the maximum correlation is only 0.70, at a lead of eight days. These results suggest
a simpler relationship between the commodity exchange index and stock exchange
index of India, which is also confirmed by its strong correlation, whereas the US
market is much more complex and unpredictable, i.e., much weaker correlation in
the US market (as the maximum correlation is significant only for very high values,
i.e., larger than 0.95). This points towards a greater interrelation within the Indian
markets. In India the lagged relationship suggests the commodity market follows the
stock market. Since the maximum correlation in the US is not significant we are not
too concerned about the nature of such correlation, i.e., lead or lag.

Next we look for a lagged maximal correlation (MCF). We have found a maximum
in the MCF at lag 7 for the stock and commodity market in India (Fig. 3). This suggests
a delayed relationship between the markets. The low (non-significant) values of MCF
for the US market do not allow a conclusion about delayed relationships (Fig. 4).

We now proceed with the recurrence analysis of the data set to capture the relative
changes of the dynamics of the respective indices as also to find out the interrela-
tionship between the indices.
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Fig. 4 Cross Recurrence Plot of time series representing daily close values of the stock market
index CNX-NIFTY and commodity market index MCX-COMDEX in India

4.2 Cross Recurrence Plot

The CRP of NIFTY and MCX-COMDEX reveal a pattern which suggests a rela-
tionship between these two indices for India (Fig. 4). The pattern indicates partly a
co-evolution of the two time series, as indicated by the connected structure of low
values in the CRP, which we consider to be the LOS. The shifting of the LOS is an
indication of a lagged relationship. The LOS is changing with time, suggesting that
the relationship between the stock and commodity markets is not constant. The CRP
contains two disruptions at May 2006 and January 2008 which correspond to stock
market crashes.

In contrast, the CRP of the DJIA and DJ-AIGCI does not show a well connected
structure of low distance values, which could be interpreted as a LOS (Fig. 5). Only
between March 2007 and January 2008, some lagged relationship seems to be appar-
ent. This suggests a weaker relationship between the NIFTY and MCX-COMDEX
what is in line with the correlation results.
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Fig. 5 Cross Recurrence Plot of time series representing daily close values of the stock market
index DJIA and commodity market index DJ-AIGCI in the USA

4.3 Recurrence Quantification Analysis

Next we compare the time variation of the RQA measures in order to check for
similar dynamics. The variations of the DET , L, LAM, and TT values of the index
data reveal changes between different dynamics, e.g., from more predictable to less
predictable (DET). Such dynamical changes in the NIFTY data are well concurrent
to that of the MCX-COMDEX data but with a small lag (Fig. 6). The values, though
not identical in absolute terms, are increasing and decreasing in a similar fashion,
except during March 2008, where the two time series appear to be out of sync. This
means that the respective change of states of the two systems, i.e., the corresponding
markets’ dynamics, is closely related to each other. If one looks carefully at the
DET values, one will notice that the DET values for both NIFTY and MCX are
almost concurrent during July 2005 to October 2006, and also June 2007 onwards.
We also find similar regime specific behaviour in other RQA variables as well. The
concurrence departs in 2006 after a crash in the stock markets and again reappears
when the market rebounds. We can infer that the stock market crash affects the
two markets differently, with the commodity market recovering faster than the stock
market, therefore leading to the departure of the concurrence.

The values of DET , L, LAM, and TT of the DJ-AIGCI and DJI data reveal a much
less synchronised variation of the dynamical properties than in the Indian markets
(Fig. 7). There are more epochs when the two values are out of sync or even negatively
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Fig. 6 DET , L, LAM, and TT
values with 95 % confidence
limits for time series
representing daily close
values of the stock market
index CNX-NIFTY and
commodity market index
MCX-COMDEX in India.
The values reveal changes
between different dynamics
like degree of predictability.
We can see how the two
indices are concurrently
changing in their dynamics
except for March 2008
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Fig. 7 DET , L, LAM, and TT
values with 95 % confidence
limits for time series
representing daily close
values of the stock market
index DJIA and commodity
market index DJ-AIGCI in
USA. The values show that
the US indices are
significantly different in their
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Fig. 8 Transitivity Dimensions of the commodity and stock market indices

correlated. This suggests a weaker link between the dynamics of the two markets
and a significant difference in the predictability of the stock and commodity markets.
Pearson correlation between the RQA values of NIFTY and MCX ranges between
0.25 and 0.55, while for DJIA and DJ-AIDCI we find correlation between 0.05
and 0.1 only. These findings corroborate our conclusions on the closer interrelation
between the Indian exchanges than the US exchanges.

We conclude our analysis by comparing the transitivity dimension of the chaotic
dynamics of the two markets. We find two epochs of higher transitivity dimension
of the daily close of MCX, one between June 2005 and November 2006 and another
after July 2008, with a decrease between November 2006 and July 2008, coinciding
with a similar evolution of the close values of NIFTY, the stock market index of
India (Fig. 8). The evolution of the transitivity dimensions of daily close of DJIA,
the US stock market index, and of DJAIGCI, the US commodity market index, are
not as similar as for the Indian counterpart, although we find a decrease between
October 2006 and January 2008. In comparison to the Indian markets, the higher
values of transitivity dimension in the US indices indicate a more complex/ irregular
dynamics.
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5 Conclusions

In the research presented, we have compared the variability of stock and commodity
markets in India and US and found clear differences between the Indian and the US
market behavior. We have used a nonlinear approach to measure correlation based
on the alternating conditional expectation (ACE) algorithm and maximum correla-
tion function (MCF). We found that the correlation between the Indian Markets is
much stronger than in the US. While the maximal correlation between the stock and
commodity markets in India is quite high, the correlation between the US stock and
commodity markets is low and negligible. The relationship for the Indian markets
is lagged by seven days. Furthermore, we have applied the recurrence plot analysis
to look at different aspects of the dynamics. Based on cross recurrence plots, we
found distortions in the link between the stock and commodity markets during stock
market crashes and when the relationship between the stock and commodity markets
is changing or diverging (in terms of lags). The recurrence quantification analysis
(RQA) suggested a concurrence between the Indian stock and commodity markets
in terms of coinciding predictability while these markets in the US were mostly out
of sync. These findings are supported by transitivity dimension which reflects the
changes between regular and complex market behavior, which coincides in the Indian
markets, but is more divergent in the US markets.

From these findings we can infer that the Indian and the US markets behave dif-
ferently. In India both markets are probably linked by external factors, like global
market behavior, which influences the economic state of India in all sectors, i.e., in
stock exchange and commodity markets in a similar way. There is a long tradition in
India of investing in metals, particularly gold, in the form of ornaments and jewellry.
Such dependance on commodities as a constant source of hedging has created an
investment psychology that could have driven the Indian investors to invest a fixed
proportion of their wealth always in commodity futures. This has resulted in concur-
rent investments in stock and commodity leading to stronger correlation. One reason
for the lagged relationship could be that after every initial boom in the stock market,
investors start piling up a portion of their wealth in commodity and vice versa. In
India, since people have routes to diversify in commodity markets through informal
channels like ornaments and utensils, they may treat the commodity futures exchange
as an alternative to the informal market. That is why they seem to invest in both stock
and exchange traded commodities concurrently.

Globally two commodities, namely oil and gold, play important roles in portfolio
management. In the case of gold we already see that the Indian market has reasons to
behave differently than US market. We can also find from investment trends that oil
also, rather than the entire commodity futures, has a similar place in the investment
portfolios of India, which means that whenever investment goes up, it goes up almost
simultaneously both in stock and commodity markets. Finally, it may be inferred that
exchange traded commodities may not be a useful diversification avenue for investors
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in India as yet. However, the exchange traded commodity market is relatively new
in India. The dynamics will probably undergo a change with time as the market in
India further develops.
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