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Abstract The use of condition monitoring (CM) data in degradation modeling for
fault detection and remaining useful life (RUL) estimation have been growing with
increasing use of health and usage monitoring systems. Most degradation modeling
methods requires fault detection thresholds to be established. When the CM mea-
sure exceeds the detection threshold, RUL prediction is then performed using a
time-invariant dynamical model to represent the degradation path to the failure
threshold. Such approaches have some limitations as detection thresholds can vary
widely between individual units and a single dynamical model may not adequately
describe a degradation path that evolves from slow to accelerated wear. As such,
most degradation modeling studies only focuses on segments of their CM data that
behaves close to the assumed dynamical model. In this paper, the use of Switching
Kalman Filters (SKF) is explored for both fault detection and remaining useful life
prediction under a single framework. The SKF uses multiple dynamical models
describing different degradation processes from which the most probable model is
inferred using Bayesian estimation. The most probable model is then used for
accurate prediction of RUL. The proposed SKF approach is demonstrated to track
different evolving degradation path using simulated data. It is also applied onto a
gearbox bearing dataset from the AH64D helicopter to illustrate its application in a
practice.

Keywords Switching kalman filter � Fault detection � Degradation modeling �
Remaining useful life

R. Lim (&)
Senior Engineer, Republic of Singapore Air Force, Singapore, Singapore
e-mail: r.limchikeong@cranfield.ac.uk

D. Mba
Head of Turbo-Machinery and Icing Group, Cranfield University, Bedford , UK
e-mail: d.mba@cranfield.ac.uk

© Springer International Publishing Switzerland 2015
P.W. Tse et al. (eds.), Engineering Asset Management - Systems,
Professional Practices and Certification, Lecture Notes in Mechanical Engineering,
DOI 10.1007/978-3-319-09507-3_6

53



1 Introduction

The prevalence of health and usage monitoring systems (HUMS) on aircrafts in the
past decades has fuelled the growth of using condition monitoring (CM) data in
degradation modeling for health assessment of critical systems [1]. A wide variety
of approaches in use of CM data for degradation modeling were comprehensively
reviewed by different authors [1–4]. These data driven approaches are broadly
classified into three main categories namely, physics-based methods, artificial
intelligence methods and statistical methods. Physics-based method uses deter-
ministic model of the system and can be very complex to develop. Artificial
intelligence methods such as neural networks and support vector machines can
handle highly non-linear problems but it requires huge number of training data
which is often not available in practice. Amongst the three, statistical method is the
most widely used in industry where conventional statistical process control and
trend extrapolation are most commonly applied [3]. Advanced statistical methods
such as Hidden Markov Models and cluster analysis can classify faults better but
not widely used in practice due again to unavailability of training data. Most of the
applications in the literature used experimental or simulated data for model training
and little work was done with fielded applications [4]. In this paper, the switching
Kalman filters (SKF) is investigated for fault detection and remaining useful life
(RUL) of rolling element bearing and applied to both simulated and actual CM data
gathered from AH64D helicopter.

2 Literature Review

TheKalmanfilter is a stochasticfiltering process,which recursively estimates the state
of a dynamic system in the presence of measurement noise and process noise, by
minimizing the mean squared error [4]. The Kalman filter has been a widely applied
concept in navigation and is also used in fields such as signal processing and
econometrics. The Kalman Filter requires less training data compared to other sta-
tistical andAI techniques as it reliesmainly on individual system’smeasurement data.
However, the dynamical behavior of the system is required and be represented as a
state-space model. In prognostic application, the Kalman filter was applied to predict
the RUL of electrical connections [5] and electrolytic capacitors [6]. In these appli-
cations, the Kalman filter was used to adaptively track changes in the degradation
process of the system and the dynamical model describing the degradation process
was assumed to be time invariant. However, the degradation process in components
can be uncertain and evolve over time as seen in bearingwear tests [7]. For example, in
Fig. 1, the vibration measurement of a serviceable bearing can be stationary with
measurement noise. When slow stable wear from damage such as surface pitting
occurs, the vibration can gradually rise as a linear function. When accumulated
damage is severe and unstable, the vibration rises rapidly in higher order functions.
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As such, a single dynamical model may not adequately represent the different
degradation processes. Consequently, this can cause predictions to diverge or
fluctuate depending on whether the degradation process is under or over-fitted. This
constraint is often seen in works [8, 9] where only measurements above an
established threshold are considered in the analysis as those below does not behave
according to the assumed dynamical model. For such problems, SKF can track the
dynamics of the degradation process as it changes. RUL prediction is then per-
formed based on the most probable dynamical model representing the degradation
process. To do this, the SKF consists of multiple linear state-space models; like the
basic Kalman filter, and it can switch between these models through a weighted
combination across time. It is popularly used to track multiple moving targets but
has also been applied in meteorology [10] and econometric [11]. SKF is applied
here to track the different bearing degradation processes shown in Fig. 1. By
tracking the dynamical behavior of different degradation processes, fault detection
can be performed without using pre-established detection thresholds. It also helps
maintainers to predict RUL more accurately by distinguishing between stable and
unstable wear and performing prediction only when unstable wear is detected.

3 Background

This section provides a brief review of the Extended Kalman filter, dynamic
Bayesian network, SKF and their application towards fault detection and RUL
estimate of rolling element bearing.

3.1 Extended Kalman Filter

As mentioned, the Kalman filter recursively estimates the state mean and covari-
ance of a linear process by minimizing the mean square error. The Extended
Kalman filter (EKF) is a non-linear extension which uses linear approximation of
the non-linear function to estimate the state mean and covariance [12, 13].

Unstable 
wear

normal

Stable wear

Fig. 1 Evolution of
degradation process across
time
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The linear approximation performed through first and second-order taylor series
expansion of the non-linear function is most commonly used and the first-order is
adopted here. The discrete state-space model describing a non-linear process is
given by:

xt ¼ f xt�1ð Þ þ qt�1; yt ¼ h xtð Þ þ rt ð1Þ

where xt is the true but hidden state of the system and yk is the observable mea-
surement of the state. f(.) is the fundamental matrix describing the system dynamics
and h(.) is the measurement matrix and both are functions assumed to be contin-
uously differentiable. qt�1 �N 0;Qtð Þ is the process noise and rt�1 �N 0;Rtð Þ is the
measurement noise. The EKF estimates the value of xt, given the measurement, yt
by filtering out the noises. This is carried out using the ‘Prediction’ and ‘Update’
steps also known as the Ricatti Equations [13] are shown as follows.

Prediction Step:

Predicted state estimate : x̂t ¼ f xt�1; t � 1ð Þ
Predicted estimate covariance P̂t ¼ F xt�1; t � 1ð ÞPt�1F

0
xt�1; t � 1ð Þ þ Qt�1

ð2Þ

Update Step:

Measurement residual : vt ¼ yt � h x̂t�1; tð Þ
Residual covariance Ct ¼ H x̂t; tð ÞP̂tH

0
x̂t; tð Þ þ Rt

Kalman Gain Kt ¼ P̂tH
0
x̂t; tð ÞC�1

t

Updated state estimate xt ¼ x̂t þ Ktvt

Updated estimate covariance Pt ¼ ðI � KtH x̂t; tð ÞÞP̂t

ð3Þ

where F(.) and H(.) are the Jacobians of f(.) and h(.) are given by

F xt�1; t � 1ð Þ ¼ of xt�1; t � 1ð Þ
ox

����
x̂t�1jt�1

; H x̂t; tð Þ ¼ oh xt; tð Þ
ox

����
x̂tjt�1

; ð4Þ

3.2 Switching Kalman Filter

The switching Kalman filter may be represented as a dynamic Bayesian network. In
each time step, both the model switch variable, St and state variable, xt are hidden
and have to be inferred from the observations, yt. For a system with multiple
dynamics which are described with n Kalman filters, the size of the belief state will
increase exponentially at each time step to nt. As such, inferring the probability of
every state at each time step becomes intractable. To overcome this problem,
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approximation method like the Generalised Pseudo Bayseian (GPB) algorithm as
described in [12] was adopted. In each time step, the state and covariance estimates
from all the filters in the previous time step are combined with weights assigned

according to the mix probabilities of the model switch variable, Sijjt and the model
transition probability, Zij as shown in Eqs. (5) and (6).

Model switching probabilities: Sijjt ¼ ZijSit�1Pn
i¼1 ZijS

i
t�1

ð5Þ

Weighted state and covariance estimates:

~x jt�1 ¼
Xn
i¼1

Sijjt x
i
t�1; ~Pj

t�1 ¼
Xn
i¼1

Sijjt Pi
t�1 þ xit�1 � x jt�1

� �
xit�1 � x jt�1

� �0n o
ð6Þ

with the weighted state and covariance estimates, the usual Kalman filter as shown
in Eqs. (2) and (3) is carried out for each filter model with each yielding a predicted
state, x̂ jt�1 and covariance, P̂ j

t�1 estimate. The likelihood of each filter is then
determined with Eq. (7) using their measurement residual, vit. The probability of
each model at the current time step can then be obtained as shown in Eq. (8). The
weighted state and covariance estimate update for the current time can also be
determined using Eq. (9). A detailed description of SKF is available in [14] and a
good demonstration of SKF with use of GPB is shown in [15].

Likelihood of filter frommeasurement residual: Lit ¼ Nðvit; 0;Ci
tÞ ð7Þ

Probability of each model:

Sit ¼
Lit

Pn
i¼1 ZijS

i
t�1

� �
Pn

i¼1 Lit
Pn

i¼1 ZijS
i
t�1

� � ð8Þ

The weighted state and covariance estimate update are computed as follows:

xt ¼
Xn
i¼1

Sitx
i
t; Pt ¼

Xn
i¼1

Sit Pi
t x

i
t � xk

� �
xit�1 � xt
� �0n o

ð9Þ

4 SKF Formulation for Tracking Varying Degradation
Processes

In this analysis, it is assumed that component degradation is monotonically
increasing and it evolves from normally operating to stable wear and then unstable
wear. For bearings, a linear, polynomial or exponential model is used to describe
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the different trends in the vibration-based degradation measure [16–18]. A Kalman
filter is built for each of them and they are used together in the SKF. For the
exponential filter, extended Kalman filter is applied due to its non-linear form. The
state transition Fi(.) is obtained from the Jacobian of the state equations using
Eq. (4). It is assumed that the process noise entering the system only consists of
zero mean white noise qa and qb which models the wear rate parameters at and bt
stochastically. The state, transition and process noise covariance for each filter are
shown below with subscripts 1, 2 and 3 denoting the zero, first order and expo-
nential Kalman filters respectively.

Zero Order polynomial model (Normal Operation)

State : xt ¼ xt�1

State Transition : F1;t ¼ 1

Process Noise : Q1;t ¼ 0; yt ¼ xt þ rt
Measurement : H1;t ¼ 1

ð10Þ

1st Order polynomial model (Stable Wear)

State : xt ¼ xt�1 þ at�1Dt; at ¼ at�1 þ qa

State Transition : F2;t ¼
1 Dt

0 1

� �

Process Noise : Q2;t ¼
0 0

0 qa

� �

Measurement : yt ¼ xt þ rt; H2;t ¼ 1 0½ �0

ð11Þ

Exponential model (Unstable Wear)

State : xt ¼ xt�1e
bt�1Dt; bt ¼ bt�1 þ qb

State Transition : F3;t ¼ ebt�1Dt xt�1Dtebt�1Dt

0 1

" #

Process Noise : Q3;t ¼
0 0

0 qb

� �

Measurement : yt ¼ xt þ rt; H3;t ¼ 1 0½ �0

Model transition matrix : Z ¼
0:99 0:005 0:005

� 0 0:99 0:01

� 0 � 0 � 1

2
64

3
75

ð12Þ
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Initial model probabilities, state and covariance estimate:

S0 ¼ 0:98 0:01 0:01½ �; x0 ¼ y0; a0 ¼ 0; b0 ¼ 0;P0 ¼ I ð14Þ

For the SKF, the state transition matrix Z is set such that the system tends to
remain in its own state with Zii * 1. It is also assumed that the degradation rate can
only progress i.e. from normal to stable and unstable degradation but not the
reverse. However, Zij is assigned a value approximately zero for i > j as a value of
zero can cause underflow problems in Eq. (8) when implemented as a software
program. The initial model probability, S0 is set with high probability that its in
normal condition. The initial state estimate, x0 is initialized to the first measurement
and initial parameters a0 and b0 are zero. The initial covariance matrix, P0 is set
arbitrarily with an identity matrix, I.

5 Diagnostics of Evolving Degradation Processes Using
Simulated Data

The SKF approach to track the degradation processes is demonstrated here using
simulated data. Figure 2 shows different evolving degradation processes; (1) nor-
mally operating to unstable wear at t = 150 h and (2) normally operating to stable
wear at t = 100 h and then unstable wear at t = 200 h. The simulated degradation
measurements are generated using the measurement equations from Eqs. (11–13).
An additive measurement noise, r�N 0; 0:082ð Þ is added all three processes. For
stable wear, a wear rate parameter, a = 0.01 is adopted with process noise,
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Fig. 2 Simulated degradation processes with measurement and process noise: (1) normally
operating to unstable wear at t = 150 h and (2) normally operating to stable wear at t = 100 h and
unstable wear at t = 200 h
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qa �N 0; 0:0012ð Þ. For unstable wear, a wear rate parameter, b = 0.04 is adopted
with process noise, qb �N 0; 0:0042ð Þ.

The ideal case where the dynamical models of the degradation processes and
their measurement and process noise are known is shown here. Figures 3 and 4
shows the SKF results in tracking the evolving degradation processes. It can be seen
that the SKF is able to track and estimate the most probable degradation process
well using the dynamical behavior of the measurement. For normal to unsteady
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Fig. 3 Normal to unstable wear (Top left) Filtered state and most probable model (Bottom left)
Model probabilities, (Top and bottom right) Estimated parameters at and bt
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Fig. 4 Normal to stable and unstable wear (Top left) Filtered state and most probable model,
(Bottom left) Model probabilities, (Top and bottom right) Estimated parameters at and bt
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wear, the SKF detects the change at 158 h compared to 150 h. For normal to steady
and then unsteady wear, the SKF detects the change at 116 h and 208 h compared to
100 h and 200 h respectively. The SKF lags behind the actual transition times as it
is performing the estimation in real-time and requires adequate measurements from
the dynamical process. In addition, it can estimate the wear rate parameters, a and
b well at *0.001 and *0.04. It should be noted that the estimation will not
converge towards the exact parameter value due to inherent noise added to the
measurements.

6 Case Study on AH64D Helicopter Tail Rotor Gearbox
Bearing

The SKF approach is applied to vibration CM data from the AH64D Tail Rotor
Gearboxes (TRGB) in a practical scenario. The bearing CM data and results from
the SKF is shown in Fig. 5. The measurement error, r = 3.2e−4 is obtained by
taking the variance of the stationary measurements when the TRGB is in a good
condition and this can vary between individual gearboxes. The process error, qs
contains the uncertainty of the filters in modeling the real world [13]. It is obtained
by tuning the SKF model with similar defect cases and is assumed to be the same
across gearbox bearings. The SKF formulations are applied with qs set initially as a
small percentage of the measurement error, R. The SKF model is then applied on
the CM data and qs is tuned till the model is acceptably consistent yet responsive to
changes in the degradation processes. In this study, qs = 5e-8 is obtained by tuning
the model using CM data from other TRGB with similar failure. Form Fig. 5, it can

Fig. 5 TRGB CM data (Top left) filtered state and most probable model, (Bottom left) Model
probabilities, (Top and bottom right) Estimated parameters at and bt
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be seen that the SKF can adaptively track the different bearing degradation pro-
cesses with the process noise tuned from other gearboxes. However, when the CM
measurements are not increasing monotonically at *200 h, the SKF has to take a
longer time before it converges. Instead of relying on the absolute value of the CM
measurements, the SKF uses the dynamic behavior between the current and past
measurement to diagnose the degradation state. Therefore, it is not dependent on a
fixed threshold which are typically derived from statistical evaluation of large
numbers of past failure cases. Another key advantage of this technique for diag-
nosis is that it provides the probability of which degradation process the bearing is
in. In comparison, the widely used, statistical process control (SPC) approach only
triggers when the measurement is above a statistical limit and no further infor-
mation is available. The quantitative probability measure from the SKF allows more
support for maintenance engineers as the probabilities of the bearing conditions can
be compared in the event of an outlier measurement.

7 Prediction of Remaining Useful Life

The SKF infers the most probable dynamic model to be applied at each time step
for prediction and the RUL of the bearing is predicted whenever an unsteady wear
is detected. The RUL is predicted by propagating the weighted state and covariance
estimates obtained from Eq. (8) at each time step using Eq. (2) and determining the
time when the degradation state crosses the failure threshold. The α–λ metric [19] is
applied to evaluate the performance of this prognostic evaluation as shown in
Fig. 6.

The α-λ metric compares the actual RUL to the predicted RUL with converging
α bounds that provides an accuracy region. The α bounds are application specific
and a prediction is correct if it falls within the alpha bounds. From Fig. 6, the
prognostic algorithm performs well as its accuracy improves quickly with time
within the 30 % bounds. However, there are points on the RUL trajectory that lies
outside the accuracy zone towards the end of useful life which is a behavior
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reportedly observed in [20] as well. This behavior could be attributed to unsteady
vibration levels as the accumulated damage in the bearing becomes sizeable and
could perhaps be addressed by lowering the failure threshold limit. Besides the
RUL estimate, most of the lower confidence bound, which is important for con-
servative estimate of the RUL prediction are close to the lower 30 % accuracy
bound as well.

8 Conclusion

In this study, the use of SKF is applied for fault detection and RUL estimation. The
method is applied to both simulated data and actual helicopter gearbox bearing with
promising results. The SKF model allows for degradation processes to evolve
through time from which the underlying dynamical process would be inferred
accordingly. The advantages of this approach are that it does not depend on a fixed
threshold for fault detection and it can model the different degradation processes as
they evolve. This approach also provides maintainers with more information for
decision-making as a probabilistic measure of the state of bearing degradation is
available. From the prognostic performance metric, it was shown that the RUL
estimates have high accuracy when it is inferred that the degradation process is
likely to be unstable. This in turn can provide maintainers with higher confidence
on the predicted RUL for maintenance planning. A drawback of this method is that
it requires frequent acquisition of measurement for the filter estimation which may
not be readily available in practice.
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