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      Induction and Function of Type I IFNs 
During Chlamydial Infection 
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           Introduction 

  Chlamydia trachomatis  infection is the leading sexually transmitted bacterial infec-
tion (STI) in the US, as reported by CDC. The global burden of chlamydial infec-
tion is likely higher than that reported for STI, as ocular trachoma caused by 
chlamydiae continues to be the leading cause of preventable blindness in the world 
[ 1 ].  Chlamydia  spp. also cause signifi cant disease in livestock. In women,  C. tra-
chomatis  is a major cause of pelvic infl ammatory disease, ectopic pregnancy, and 
infertility [ 2 ]. Chlamydial infections can be self-limiting, providing evidence for 
the development of protective immune responses [ 3 ,  4 ]. However, infection induces 
mostly short-term immunity that is strain (serovar) specifi c, so the risk of  re- infection 
is high, and carries an increased risk of tissue damaging effects [ 5 ]. Human epide-
miologic studies also indicate increased risk of disease with repeated infection 
[ 6 ,  7 ]. Consequently, a great deal of research has focused on understanding chla-
mydial biology and the immune responses to chlamydial infection, with an obvious 
goal to develop a vaccine that will induce protective responses to  Chlamydia  while 
avoiding responses that lead to pathology. In this chapter, we will focus on one such 
innate immune response, the type I IFNs in chlamydial pathogenesis, with empha-
sis on their role during infection and the mechanism of induction during chlamydial 
infection.  
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    The Pathogen and Pathogenesis 

 Gram-negative  Chlamydia  sp. are obligate intracellular pathogens with a relatively 
small genome (1–1.3 Mbp) and a unique developmental cycle [ 8 ,  9 ]. The fi rst step 
in the intracellular chlamydial infection is attachment of the infectious and meta-
bolically inactive elementary body (EB) to the host cell surface. Once the EB enters 
the cell by endocytosis, it modifi es the vacuole to inhibit phagolysosome fusion, and 
remains confi ned in a membrane bound vacuole, termed the “inclusion,” during its 
entire developmental cycle [ 10 – 12 ]. Inside the early inclusion the EB transforms 
into the metabolically active reticulate body (RB) form by a process that involves 
DNA de-condensation [ 13 ] and reductive cleavage of the outer membrane protein 
complex [ 14 ,  15 ]. Rather than being strictly non-fusogenic with the host vesicular 
traffi cking pathways, the chlamydial inclusion selectively fuses with sphingomyelin 
containing exocytic vesicles en route to the plasma membrane from the Golgi 
[ 16 ,  17 ]. Inclusion formation and acquisition of sphingomyelin are initiated very 
early in the cycle [ 17 ], a phenomenon driven by early chlamydial protein synthesis 
[ 18 ]. Inside the inclusion, the RB multiplies by binary fi ssion [ 10 ] and the inclusion 
expands to occupy signifi cant parts of the cytosol during  C. trachomatis  infection. 
Specifi c molecular triggers generated in the RBs likely due to its local environment, 
initiate the conversion of RBs to EBs towards the latter part of the chlamydial devel-
opmental cycle, a process that occurs asynchronously. Eventually, by multiple exit 
mechanisms [ 19 ], the infected cells are lysed and the released EBs go on to infect 
neighboring cells. The sequential conversion from the specialized EB to RB and 
then back to EB is a unique feature of chlamydial biology. 

 Unlike several facultative intracellular pathogens, chlamydiae are not equipped 
with toxins that damage the host cells.  C. trachomatis  strictly infects mucosal 
epithelial cells during a genital infection and conjunctival cells during an ocular 
infection. The host response to  C. trachomatis  is initiated by infected epithelial 
cells [ 20 ] and sustained by professional infl ammatory cells and neighboring unin-
fected cells. Chlamydial ligands recognized by surface and intracellular pathogen 
recognition receptors (PRRs) initiate chemokine and cytokine production as early 
as 3 h post infection in vivo, suggesting that entry of viable chlamydiae into host 
cells is suffi cient to induce a response [ 21 ]. Using the mouse model of chlamydial 
genital tract infection [ 22 ], it has been shown that infl ammatory responses are a 
major determining factor in oviduct pathology. Following bacterial ascension to 
the oviducts, infected epithelial cells respond to bacterial signals by producing 
cytokines and chemokines [ 20 ] that act locally to recruit PMNs and other immune 
cells [ 21 ]. PMNs are partially protective in the cervix and uterus because they 
restrict on-going chlamydial replication, amplify cytokine signaling and reduce 
pathogen load by attacking infected cells [ 23 ]. However, PMN recruitment to the 
oviducts is excessive and prolonged, leading to distal blockage and formation of 
hydrosalpinx or salpangitis [ 21 ,  23 – 26 ]. The contribution of innate immune path-
ways, such as TLR2, IL-1R, IFNAR, TNFR in PMN recruitment and oviduct 
pathology has been demonstrated using gene knockout mice [ 27 – 33 ]. On the other 
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hand, CD4 +  Th1 cells that produce a predominant IFN-γ response are critical to the 
control of chlamydial genital and ocular infection, and enhanced Th1 immune 
responses correlate with protection from infection and disease in both animal 
models and humans [ 34 – 38 ].  

    Induction of Type I IFNs During Chlamydial Infection and Its 
Biological Implications 

 Induction of type I IFNs has been observed in multiple cell types including oviduct 
epithelial cells [ 39 ], macrophages [ 40 ,  41 ], fi broblasts (McCoy cells) [ 42 ], and 
mouse DC [ 43 ] infected in vitro with multiple chlamydial strains. Therefore, the 
ability to induce IFN-β in response to intracellular  C. trachomatis  infection appears 
relatively conserved.  C. pneumoniae , on the other hand does not induce signifi cant 
levels of IFN-β expression in epithelial cells, which could be a result of its ability to 
degrade TRAF3 [ 44 ]. 

 Type I IFNs are largely inhibitory to chlamydial growth during in vitro infec-
tions. Early studies showed signifi cant inhibition of  C. trachomatis  infectivity in 
HeLa cells treated with different isotypes of IFN-α [ 45 ]. IFN-β treatment of macro-
phages treated with LPS also resulted in signifi cant killing of  C. psittaci , as observed 
with IFN-γ-treatment and this was attributed to activation of indoleamine dioxygen-
ase (IDO) activity. IDO decyclizes tryptophan to  N -formyl kyneurine resulting in 
reduction in tryptophan pool in the cells affecting chlamydial growth [ 46 ]. Further, 
inhibition of chlamydial growth by TNFα was shown to be partly mediated through 
an autocrine function of IFN-β enhancing the activity of IDO and could be blocked 
by tryptophan [ 47 ]. Treatment of murine fi broblasts (L cells) with type I IFNs was 
also shown to signifi cantly reduce the yield of  C. trachomatis  LGV biovar [ 48 ]. 
Besides its role in chlamydial killing, IFN-β was shown to contribute to IFN-γ 
expression and in induction of CXCL10 in mouse macrophages infected with 
 C. pneumoniae  [ 40 ] and  C. muridarum  [ 41 ], respectively. 

 The protective effect of IFN-α/β observed in vitro was not recapitulated during 
in vivo  C. muridarum  infection, both in the lungs and genital tract. In the lung infec-
tion model,  Ifnar  −/−  mice showed less bacterial burden, weight loss, and less pathology 
in comparison to control mice, which was attributed to lower macrophage apoptosis in 
the absence of IFNAR signaling [ 49 ]. During genital  C. muridarum  infection,  Ifnar  −/−  
mice displayed a slightly enhanced clearance of infection and signifi cantly reduced 
oviduct pathology [ 28 ]. The improved bacterial clearance in  Ifnar  −/−  mice was associ-
ated with an increase in antigen-specifi c T cells in the iliac nodes, enhanced CD4 +  T 
cell recruitment to the genital tract and an increased level of the IFN-γ-inducible pro-
tein, CXCL9 in genital secretion. A similar outcome of overall enhanced infection 
clearance and reduced pathology was observed in genital chlamydial infection during 
IFN-β neutralization in wild-type mice [ 30 ]. However, in this study a slight increase in 
infectious burden was observed at day 4 post infection during IFN-β depletion, 
which was not sustained and the IFN-β depleted mice went on to clear infection at a 
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faster rate than the mice receiving control sera. A similar outcome of increased 
 infection load at day 4 post infection, which was not sustained was also observed in 
mice defi cient for the transcription factor IRF3, which is essential for IFN-β induction. 
These data suggest that IFN-β likely has an anti-chlamydial activity early in infection, 
but its negative impact on the infl ammatory cells and T cells is not protective to the 
host. Indeed, the T cells from the iliac lymph nodes of  Irf3  −/−  and  Ifnar  −/−  mice dis-
played an enhanced antigen-specifi c T cell response. IRF3 KO mice also developed 
signifi cant uterine pathology unlike  Ifnar  −/−  or IFN-β depleted mice, suggesting that 
IRF3 could play an IFNAR/IFN-β independent role in uterine horn protection [ 30 ]. 

 Recent discovery of a new family member of type I IFNs, IFN epsilon (IFN-ε), 
has generated interest due to its exclusive expression in the mouse and human geni-
tal tract [ 50 ,  51 ].  Ifnε  − / −  mice were shown to have slightly enhanced chlamydial 
infection, suggesting a protective role in infection. IFN-ε signals by the same recep-
tor, IFNAR used by IFN-α/β. Possible explanations for the discordant results during 
infection between  Ifnε  − / −  and  Ifnar  −/−  could be a result of a direct role for IFN-ε in 
chlamydial killing, its regulation by sex hormones and/or a constitutive role in 
imparting resistance to genital tract epithelia in an IFNAR-independent manner. 

 To understand the mechanism behind the confl icting role of type I IFN in vitro 
and in vivo, the pleiotropic immune functions of this cytokine in vivo needs further 
understanding. Type I IFNs are a potent regulator of adaptive immunity, affecting 
multiple cell types, including macrophages, lymphocytes, and DCs. IFNα/β induces 
the expression of several interferon response genes (IRG), which are important for 
Th1 maturation [ 52 ]. Type I IFNs have also been implicated in the generation of 
cytotoxic T cells and promotion of in vivo T cell proliferation [ 53 ] and T cell sur-
vival [ 54 ]. However, type I IFNs are also known to inhibit IFNγ-induced MHC class 
II expression [ 55 – 57 ] a function that contradicts its Th1 stimulatory role. Type I 
IFNs have also been shown to inhibit maturation and activation of mouse Langerhans 
cells [ 58 ]. IFN-β has been reported to augment [ 59 ] or downregulate IL-12 and 
CD40 expression in DC [ 60 ]. Further, therapeutic administration of IFN-β in mul-
tiple sclerosis patients led to inhibition of IL-12, augmentation of IL-10 production 
[ 61 ] and inhibition of IL-1β production [ 62 ]. The paradoxical effect of IFN-β on the 
expression of Th1-type immune responses partly depends on the timing of DC 
exposure (during maturation vs. mature) to IFNβ [ 52 ]. Type I IFNs are also pro- 
apoptotic and induce the expression of a number of pro-apoptotic genes, which 
could play a major role in pathological outcomes during infection. Overall, the det-
rimental effect of IFN-β during chlamydial infection is a likely result of inhibition 
of Th1-response, a reduction in IFNγ responsiveness, and induction of an apoptotic 
response. These results have been largely inferred from gene knockout mice studies 
and antibody depletion studies. It is possible that the pathological outcome could be 
different if the mice were treated with recombinant IFN-β. Treatment of mice with 
recombinant IFN-β has been shown to downregulate IL-1β levels signifi cantly at 
multiple steps [ 62 ]. Since IL-1 signaling is a major player in oviduct pathology dur-
ing genital chlamydial infection, this may be protective to the  oviducts during infec-
tion [ 29 ]. Therefore, the overall effects of IFN-β during chlamydial infection in vivo 
is likely determined by its levels in the local tissue, and assigning a benefi cial or 
detrimental role to it would be contextual.  
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    Mechanism of IFN-β Induction During Chlamydial Infection 

 Multiple host PRRs can induce IFN-β expression during viral or bacterial infection 
[reviewed in [ 63 ]]. Purifi ed  E. coli  LPS is a potent stimulator for TLR4 pathway and 
routinely used as a positive control for TLR4 activation [ 64 ]. However, chlamydial 
lipopolysaccharide (LPS) has low endotoxic activity [ 65 ,  66 ], which is attributed to 
the higher hydrophobicity of its lipid A moiety with fatty acids of longer chain 
length and the presence of non-hydroxylated fatty acids ester-linked to the sugar 
backbone. Therefore, chlamydiae stimulate TLR4 poorly, although there is one 
report demonstrating detection of chlamydial LPS by TLR2 [ 67 ]. Besides LPS, 
other bacterial ligands can stimulate TLR4, as in the case of purifi ed hsp60 from 
 Chlamydia  spp. [ 68 ] However, during chlamydial infection, there is limited role for 
TLR4 in IFN-β induction [ 41 ]. Cell invasion and intracellular growth is a prerequi-
site for IFN response during chlamydial infection. This prerequisite would suggest 
that intracellular receptors would be preferred over membrane-expressed receptors 
during infection. 

 Early studies showed that  C. muridarum -induced IFN-β is independent of TLR2 
and TLR4, and some contribution from MyD88 pathway was suggested [ 41 ]. 
However, no contribution of TLR7 and TLR9 in IFN-β expression was observed 
and TLR4-MyD88 double knockout macrophages induced similar levels of IFN-β 
compared to WT macrophages [ 69 ]. Further, cytosolic RNA sensing RLR and 
MAVS pathways were dispensable for this response [ 69 ]. This study went on to 
show that the adaptor for DNA sensing, STING was essential for IFN-β induction 
during  C. muridarum  infection in both mouse and human epithelial cells [ 69 ]. 
STING was found to localize in close proximity to the inclusion [ 69 ]. These data 
suggested that DNA sensors or chlamydial cyclic di-AMP could be contributing to 
this response. Indeed, recently it was shown that cyclic di-AMP is produced by 
 C. trachomatis  EBs [ 70 ]. The contribution of second messenger cyclic di-AMP in 
IFN-β expression was shown by infecting HEK293T cells overexpressing STING, 
and transfected with IFN-β promoter-driven luciferase reporter construct and by 
using fi broblasts from STING-defi cient mice. Recent studies from our laboratory 
involved screening of multiple DNA sensors during chlamydial infection and a pre-
dominant contribution of the DNA sensor cGAS was observed in multiple cell types 
in response to infection using multiple  C. trachomatis  serovar [ 71 ]. The discovery 
of cGAS as a requirement for IFN-β induction during chlamydial infection suggests 
that chlamydial DNA is available for sensing on the cytosolic side of the inclusion 
membrane. In support of this, cGAS was found  distinctly localized on the cytosolic 
side of the chlamydial inclusion membrane and signifi cant co-localization of cGAS 
and STING was observed after infection. 

 Besides DNA and cyclic dinucleotide sensing by STING, other receptors have 
also been shown to contribute to  Chlamydia -induced IFN-β. During  C. pneumoniae  
infection in HUVEC cells, signaling through MAVS was found to be essential for 
IRF3 activation [ 72 ]. MAVS associates with TRAF3, leading to activation of IRF 
transcription factors and IFN-β expression [ 73 ]. It was reported that TLR3 
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 contributes to IFN-β induction in mouse oviduct epithelial cells, during  
C.  muridarum  infection [ 74 ]. The requirement for TLR3 for IFN-β in a bacterial 
infection is unique to  Chlamydia . However, it has not been shown how TLR3 inter-
acts with the chlamydial inclusion and the nature of chlamydial ligand engaged is 
unclear. Since STING was shown to be essential for IFN-β expression during chla-
mydial infection in the same cell type [ 69 ], it is unclear if there is any interaction 
between the two pathways. Taken together, these data suggest the use of more than 
one host receptors for IFN-β induction during chlamydial infection. These 
 differences in observation could be due to: (1) differences between  C. trachomatis  
vs.  C. pneumoniae  infection, (2) use of multiple pathways in cell types tested and 
their ability to compensate for each other, and/or (3) infection dose. The use of 
multiple receptors to induce the expression of the same cytokine may not be unique 
to  Chlamydia  spp., as multiple receptors have been suggested to play a role in IFN-β 
induction during  L. monocytogenes  infection [ 75 – 78 ]. The signaling of type I IFN 
by  Chlamydia  is summarized in Fig.  1 .

  Fig. 1    Model(s) for IFN beta expression during chlamydial infection. ( a ) An electron micrograph 
of chlamydial inclusion containing metabolically active RBs. ( b ) An enlarged image of an RB, its 
interaction with the host ER outside the inclusion membrane, and the proposed model(s) for IFNβ 
expression during infection. At least three models have been proposed for chlamydial recognition 
with two demonstrating the requirement for the adaptor protein STING in IFNβ induction during 
infection. In the fi rst model, chlamydial EB (not shown) produce cyc di-AMP that directly inter-
acts with STING to result in IFN-β induction. In the second, the host DNA sensor cGAS was found 
to be essential for this response, with evidence for cGAMP production during infection. In support 
of this model, cells lacking the exonuclease TREX-1 show enhanced IFN-β expression during 
infection, implicating DNA as a ligand for this response. In an alternative third model, TLR3 
knock down resulted in a decrease in IFN-β expression in a mouse oviduct cell line. The ligand 
engaged and its interaction with TLR3 is unknown       
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       Chlamydial Ligands for IFN-β Response 

 The presence of enzymes essential for cyclic-di AMP synthesis and the  demonstration 
of the presence of cyclic-di AMP in  C. trachomatis  EB [ 70 ] indicates cyclic-di 
AMP as a compelling ligand for IFNβ induction. Simultaneously, the signifi cant 
requirement for cGAS for  Chlamydia -induced IFN-β indicates DNA and cGAMP 
as a possible ligand for IFNβ induction during chlamydial infection [ 71 ]. Although 
this study does not show a direct interaction of DNA with cGAS, evidence for 
cGAMP production was provided by demonstration of its functional transfer. HeLa 
cells knocked down for cGAS or STING lose their ability to induce IFN-β upon 
infection, which was surprisingly rescued following their co-culture. These data 
suggest that cGAMP produced in cGAS competent cells during infection can func-
tion in trans by migrating to STING +  cells to induce IFN-β. These results are based 
on a recent study that showed that cGAMP can cross gap junctions between epithe-
lial cells and provide cells adjacent to an infected cell intrinsic immunity indepen-
dent of IFNAR signaling [ 79 ]. cGAMP binds to the same pocket in STING as cyclic 
di-AMP/di-GMP, but at a much lower concentration with higher affi nity [ 80 ]. 
Indeed, the cGAS product, 2′3′cGAMP, is a much more potent ligand of STING 
than all other bacterial cyclic di-nucleotides described [ 81 ]. Further, human STING 
is responsive only to cGAMP and unresponsive to the STING ligands CMA [ 82 ] 
and cyclic di-AMP/cyclic di-GMP [ 83 ], unlike mouse STING which is responsive 
to both cyclic dinucleotides and cGAMP [ 84 ]. These studies signifi cantly shift the 
importance of cGAMP over bacterial cyclic dinucleotides during  C. trachomatis  
infection in human cells. However, how chlamydial DNA is transferred to cytosol 
remains unclear at this point. Manzanillo et al. [ 85 ] have shown that during 
 Mycobacterium tuberculosis  infection, phagosomal permeabilization mediated by 
the bacterial ESX-1 secretion system allows cytosolic recognition pathways access 
to DNA [ 85 ]. Numerous studies have linked IFN-β expression to bacterial secretion 
systems [ 78 ,  86 – 88 ]. Small molecule inhibitors of type III secretion system (T3SS) 
were shown to abrogate IFN-β expression in  C. muridarum  infected cells [ 89 ], sug-
gesting a similar role for chlamydial T3SS in permeabilization of inclusion mem-
brane. Previous studies [ 90 ] have shown that chlamydial reticulate bodies (RB) 
make direct contact with the inclusion membrane, likely through T3SS. These could 
be potential permeabilization points where nucleic acids could leak into cytosol and 
made available for host recognition. It has been shown that  Chlamydia  hijacks the 
host ER and several ER proteins were found localized on inclusion membrane [ 91 , 
 92 ]. The localization of the ER protein STING [ 69 ] and cytosolic cGAS in close 
proximity to the inclusion membrane suggest that STING could serve as a mem-
brane scaffold for the interactions between DNA-cGAS to take place. An alternative 
source of DNA detected could be host mitochondrial DNA released following dam-
age to mitochondria in  Chlamydia - infected  cells. This argument is countered by the 
observation that  Chlamydia  spp. inhibit host apoptosis and no mitochondrial dam-
age has been observed in the fi rst 24 h of infection [ 93 ]. However, in the environ-
ment of other innate receptor recognition and production of cytokines like TNFα, it 
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is possible that mitochondrial damage occurs during in vivo infection and may also 
contribute to DNA sensor-mediated activation.  

    Future Directions and Perspectives 

 A fascinating feature of IFN-β inducing pathways is the resources used by the cell 
to detect a wide variety of pathogens to generate this important cytokine. During 
evolution of the immune system, viral infections likely drove this arm of innate 
immunity to the complex form to which it presently exists. During infection with an 
intracellular bacteria, the host cells responds as it would to a viral infection, detect-
ing cytoplasmic nucleic acids and producing IFN-β. However, IFN-β is insuffi cient 
to eradicate bacterial infection and not protective to the host during in vivo infection, 
as in the case of chlamydial infection. In such circumstances, one can speculate that 
the intracellular bacteria likely exploit this antiviral pathway to its advantage. For an 
STI pathogen such as  C. trachomatis  that does not cause death, this would result in 
a prolonged infection period in the host leading to increased transmissibility. Based 
on studies from the mouse model, we can predict that type I IFNs likely contribute 
to the persistent chlamydial infection reported in humans. This could be particularly 
relevant during chlamydial-viral co-infection. For instance during co-infection of  
C. trachomatis  with human papilloma virus, the type I IFN response resulting from 
the viral infection is likely to benefi t  C. trachomatis  infection. Whether this results 
in persistent infection for either or both pathogens is not clear, although there is 
some evidence for  C. trachomatis  infection to be a risk factor for persistent HPV 
infection [ 94 ]. Over the last decade, a lot has been learnt about type I IFN induction 
and its role in chlamydial infection. However, the exact molecular mechanism 
involved in IFN-β mediating host pathology is unclear. Further, the interaction of 
multiple PRRs and their cell type-specifi c role needs further elucidation. Over the 
following decade, we expect discovery of antagonists that can potentially block the 
pathological arm of this innate response during infection, simultaneously enhancing 
a protective T cell response during chlamydial infection.     
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