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typhimurium  

             Bojan     Shutinoski     and     Subash     Sad    

           TLR-Dependent Induction of Type I IFNs 

 During infectious disease a host can recognize pathogens by various receptors  unifi ed 
under the term pathogen recognition receptors (PRR). These receptors initiate signal-
ing cascades to alert the host immune system of the imminent danger associated with 
the invading pathogen, which commits the immune system to fi rst restraining and 
ultimately, clearing off the pathogen [ 1 ]. Such signaling results in activation of the 
innate immune response, which in turn leads to amplifi cation of the adaptive branch of 
the immune system [ 2 ]. Among the best described PRRs is the family of the Toll-like 
receptors (TLRs). These receptors are expressed by most if not all host cells, are local-
ized on the host cell surface and at the endosomal compartment or both cell surface 
and endosomes, depending on the cell type. For recognition and activation of TLR4 by 
LPS, a set of adaptor proteins, MD2 and CD14, are necessary. These adaptor proteins 
are located extracellularly. The MD2–TLR4 complex is able to distinguish smooth or 
rough forms of LPS [ 3 ], where CD14 relays the signal accordingly [ 4 ]. For the rough 
form, the signaling through TLR4 is MyD88- dependent, and when smooth LPS serves 
as ligand, the TRIF-mediated signaling cascade is the dominant form of downstream 
gene activation [ 4 ]. The distinction between smooth and rough form is based on the 
oligosaccharide component of the LPS [ 5 ,  6 ]. LPS on the surface of  Salmonella  is of 
the smooth form, which suggests that the TRIF pathway is the predominant mecha-
nism of type I IFN expression. The lipid A component of LPS is also highly infl amma-
tory, which activates the MyD88 pathway, and synthetic structures with modifi cation 
of lipid A have been shown to selectively induce the TRIF pathway [ 7 ]. Furthermore, 
the modifi cations of lipid A also determine how potent if any the signaling cascades 
are activated. Namely, LPS comprised of hexa- and hepta-acetylated lipid A is strongly 
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infl ammatory, in contrast to tetra-acetylated lipid A [ 8 ,  9 ]. The pathogenic  Salmonella  
LPS has the smooth oligosaccharide component and the hexa-acetylated lipid A. This 
assures that the host cells are strongly engaged and potent infl ammatory response is 
mounted. Type I interferon production in response to TLR4 engagement occurs pre-
dominantly through a MyD88 independent, TRIF-dependent mechanism [ 10 ]. 

 Recent studies have shown that  Salmonella  exploits this induction of a strong 
infl ammatory response to promote its intracellular survival [ 11 ,  12 ]. CpG treatment 
of mice that normally resolve  S. typhimurium  infection resulted in host susceptibil-
ity [ 12 ]. This was due to the enhanced intracellular proliferation of  Salmonella , 
which requires expression of the  Salmonella  pathogenicity island 2 (SPI-2) genes 
[ 12 ]. In another study, when TLR2-TLR4-TLR9 triple knock-out mice were infected 
with  Salmonella , they survived better than combinations of double knock-outs of 
the same TLR members [ 11 ]. Again this was shown to operate through induction of 
SPI-2 genes, which were induced in response to TLR engagement. Activated TLR9 
recruits MyD88, IRAK1, IRAK4, and TRAF6 to phosphorylate/activate IRF7, fol-
lowed by IRF7 translocation in the nucleus where it can activate type I IFNs produc-
tion [ 13 ]. This is summarized in Fig.  1 .
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  Fig. 1    Major induction pathways of type I IFNs by  Salmonella  and role of type I IFN during infec-
tion at the cellular level.  Salmonella  SPI-1 effectors induce its engulfment in a SCV or phagosome 
where the SPI-2 effectors get induced. Although many functions are described for SPI-2 effectors, it 
remains unclear whether they regulate type I IFN production. Once in the phagosome or SCV, acti-
vated TLR9 can relay signals to IRF7 to stimulate IRGs and the TLR5 similar to TLR4 via MyD88 
pathway activates the NF-κB complex. LPS activated TLR4, signals through MyD88 or TRIF-
dependent pathways. The MyD88 pathway, via activated NF-κB, leads to induction of proinfl amma-
tory cytokines and chemokines and the TRIF pathway leads to IRF3 activation and type I IFN 
production. The type I IFN produced then engages the IFNAR to induce production of several hun-
dreds of interferon regulated genes or gamma-activated sequences (GAS) via autocrine loop.  IKK  
inhibitor of NF kappa-B kinase,  TRAF  tumor necrosis factor receptor-associated factor       
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       Type III Secretion System-Dependent Induction of Type I IFN 

  Salmonella  infects various types of cells. While phagocytic cells such as  macrophages 
and dendritic cells can rapidly phagocytose  Salmonella , the non-phagocytic cells 
are infected through a type III secretion system (T3SS) encoded in the SPI-1 cluster 
of genes. The T3SSs are needle-like structures canonically used by bacteria to 
bridge bacterial cytoplasm with the host cytosol and translocate proteinaceous 
effector molecules, which in case of pathogenic bacteria subvert host cell signaling 
[ 14 ]. The SPI-1 induces host cell structures that promote engulfment of  Salmonella  
and its intracellular translocation into vacuoles, termed  Salmonella  containing vacu-
oles, SCVs. Professional phagocytic cells don’t require SPI-1 to phagocytose 
 Salmonella , and once intracellular, the host could potentially recognize other 
pathogen- associated molecular patterns (PAMPs) beside LPS. However, SPI-1 is 
active in the phagocytic cells as well. PrgJ, a capping protein    of the T3SS of SPI-1, 
gets removed from the needle structure of T3SS and enables secretion of  Salmonella  
effectors. This allows  Salmonella  to engage the NLRC4 infl ammasome [ 15 ]. 
Flagellin, which is expressed by  Salmonella , and is needed for its virulence, serves 
as a signal for TLR5 and NLRC4 infl ammasome engagement, which in turn leads 
to activation and production of proinfl ammatory cytokines [ 16 ]. The fl agellum is 
evolutionary related to the T3SS machinery and in certain conditions can secrete 
proteins as well [ 17 ,  18 ]. By engaging the infl ammasomes, the production of active 
IL-1β is maintained, which is able to positively feed into the type I IFN production 
by inhibiting the DUBA, deubiqutinase known to remove K63 ubiquitination of 
TRAF3 [ 19 ]. K63 ubiquitination of TRAF3 is a major modifi cation required for 
IFN gene expression [ 20 ]. 

 In a study that addressed the role of caspase-8 during  Salmonella  infection it was 
shown that caspase-8 is recruited to the infl ammasome complex. This recruitment 
was shown to be specifi c to  S. typhimurium  infection and as part of that complex it 
contributed positively to IL-1β production [ 21 ]. The production of active IL-1β 
seems to be fi ne-tuned, as it is shown that SipB, a  Salmonella  SPI-1 effector protein, 
promotes its production [ 22 ]. Active IL-1β has many other functions, yet the IL-1R 
signaling by modulating TRAFs remains instrumental for type I IFN production 
[ 13 ,  20 ]. It is important to note that IL-1 signaling can also accelerate the degrada-
tion of IFNAR by activating kinases that add phospho-moiety to a so-called degron 
sequence within the IFNAR protein [ 23 ], therefore adding complexity to the role of 
IL-1 signaling in type I IFN production and signaling. 

 Microarray studies focused on the host response to  Salmonella  infection revealed 
that many genes are specifi cally activated. RAW24.7, a murine macrophage cell line 
infected by  S. typhimurium , was assessed for gene expression. The following genes 
were found to be upregulated: MIP-1α, MIP-1β, MIP-2α, IL-1β, TNF receptor, 
CD40, IκBα, IκBβ, NF-E2, IRF1, and c-rel among many [ 24 ]. In a similar study it 
was shown that SPI-1 effectors exploit host pathways that are independent of TLR 
engagement. Many genes in uninfected control remained at same expression level 
as cells infected by SPI-1 mutant  Salmonella  strain [ 25 ]. In that same study STAT3, 
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a transcriptional factor with pleiotropic effects was upregulated [ 25 ], which in 
 cooperation with IRF1 regulated the production of IL-10 [ 26 ]. Indeed, IL-10 is an 
anti- infl ammatory cytokine, which has been shown to promote the intracellular pro-
liferation of  Salmonella  [ 27 ].  

    Role of Type I IFNs During  Salmonella  Infection 

 In various infectious disease models (e.g.,  Listeria ,  Mycobacteria ,  Trypanosoma , 
 Candida ), it has been shown that IFNAR-defi cient mice display enhanced survival 
[ 28 – 31 ]. Similarly, IFNAR-defi cient mice display enhanced survival during infec-
tion with virulent  S. typhimurium  [ 32 ]. It is conceivable that pathogens from differ-
ent domains of life or classes have converged in utilizing mechanisms of subverting 
the host immune defenses, and the above-mentioned examples would reiterate the 
importance of type I IFN signaling in host–pathogen interactions. The complexity 
of interferon signaling pathways and its impact on  Salmonella  pathogenesis was 
further revealed in another study in which UBP43-defi cient mice (alternatively 
known as USP18) were shown to have elevated type I interferon signaling, yet 
these mice were able to control  Salmonella  better in vivo, since the splenic bacte-
rial burden was reduced in UBP43-defi cient mice; however, there was no differ-
ence in host susceptibility between WT and UBP43-defi cient mice [ 33 ,  34 ]. UBP43 
is a member of the “Ubiquitin specifi c protease” family that cleaves ISG15, a 
 ubiquitin-like posttranslational modifi cation (PTM) of proteins, which appears to 
be dependent on IFN-signaling [ 35 ]. The mechanism behind the better control of 
 Salmonella  in UBP43-defi cient mice was attributed to the sustained and hyperac-
tive JAK-STAT1 signaling, as the failure to remove ISG15 from the JAK1 resulted 
in prolonged JAK1-STAT1 signaling [ 36 ]. Furthermore, UBP43-defi cient mice dis-
played elevated expression of genes that are dependent on type I IFN signaling 
(ISGs), and were hypersensitive to LPS-induced septic shock [ 33 ]. While these 
results may appear to be at odds with the phenotype obtained in IFNAR-defi cient 
mice, however, the UBP43 defi cient mice display elevated infl ammatory signaling 
in contrast to IFNAR-defi cient mice. Elevated infl ammatory signaling in UBP43-
defi cient mice may promote initial clearance of bacteria, but the overt infl amma-
tory response may lead to fatality at a later time period. Work on  Salmonella  
invasiveness after treatment with type I IFN, suggests that epithelial cells are less 
susceptible to invasion [ 37 ], and because of that impaired invasion it is argued that 
mice challenged intragastrically with  Salmonella  show enhanced survival if treated 
with type I IFNs [ 38 ]. 

 Furthermore type I IFN signaling is implicated in the regulation of  infl ammasome 
activation, and stimulation of necrosome formation, both presently understood as 
distinct signaling complexes. Infl ammasomes are protein complexes that enable 
activation of infl ammatory caspases, which drive immune responses by stimulating 
the production of proinfl ammatory cytokines, and by inducing pyroptosis, a mecha-
nism of proinfl ammatory cell death [ 39 ]. Work done on elucidating the mechanisms 
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involved in infl ammasome regulation by IFNAR signaling indicated that type I IFN 
inhibits the production of IL-1β, through regulation of the NLRP3, leading to 
reduced transcript levels of pro-IL-1β [ 40 ]. Yet still, during infection with gram-
negative bacteria, type I IFN promotes IL-1β production by controlling caspase- 11 
activity [ 41 ], and most likely such duality is dependent on the amount of IFN-β. 

 Necrosome is a protein complex that when assembled leads the host cell to 
necroptosis, a proinfl ammatory mechanism of cell death. Typically it is induced by 
TNFα-TNFR1 interaction in the absence of apoptosis [ 42 ]. During  S. typhimurium  
infection of macrophages it was shown that type I IFN signaling stimulates necro-
some activation leading to necrotic cell death, where IFNAR KO bone marrow mac-
rophages showed enhanced survival [ 32 ]. Type I IFN signaling is the critical 
check-point of necrosome activation in macrophages. During in vivo infection, 
IFNAR-defi cient mice had more macrophages, which correlated to better control of 
 Salmonella . Additionally, the abrogated cytokine signaling downstream of IFNAR 
can also be a contributing factor, as the pleiotropic effects of IFN signaling can 
modulate subsequent downstream cytokine and chemokine signaling. Necroptosis 
is induced by IFN-α/β and IFN-γ signaling pathways independent of death receptors 
signaling, but dependent on Protein kinase RNA-activated (PKR) and Fas-associated 
death domain (FADD) [ 43 ]. Further, even TNF-dependent necrosome activation 
appears to be dependent on type I IFN signaling (S. Sad, unpublished). 

 A hallmark of necroptosis is the release of damage associated molecular patterns 
(DAMPs) that can act as “secondary” ligands during host–pathogen interactions 
and can become major drivers of infl ammatory responses, although their contribu-
tion is often neglected. Necrosome activation that is associated with  Salmonella  
infection that is notorious for inducing host cell death generates overt pathology 
leading to adverse outcome. During infections by pathogens that are able to inhibit 
caspases, necroptosis can be regarded as a backup mechanism that initiates infl am-
matory cell death and alerts the immune system defenses. Specifi cally, in  Salmonella  
infection, the outcome and progression are multifactorial and will not be only 
dependent on type I IFN signaling [ 44 ], yet the IFNAR-defi cient mice show signifi -
cantly reduced susceptibility to  Salmonella  infection [ 32 ].  

    Final Remarks 

 New pathways of type I IFN signaling have emerged that seem to indicate that the 
impact of type I IFN signaling may be highly dependent on the disease context [ 45 ]. 
The IFNAR KO mice have been used extensively in many studies and have revealed 
both the positive and negative role of type I IFN signaling. At the cellular level the 
role of type I IFN signaling is also complex. Resistance to LPS shock is mediated 
by ablation of type I IFN signaling, as IFNAR1 KO, but not the IFNAR2 KO, mice 
are resistant to LPS [ 45 ,  46 ]. Type I IFN appears to be a key mechanism that impacts 
infl ammasome and necrosome activation, although the precise mechanistic details 
are lacking currently. These two distinct signaling complexes, infl ammasome and 
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necrosome, might have substantial cross-talk since both are controlled by type I 
IFN.  Salmonella  is a chronic intracellular pathogen, which results in persistent 
 activation of immune response. It is therefore quite conceivable that type I IFN 
signaling plays a key role in this process, which results in a deleterious host  outcome 
due to persistent pathology.     
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