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      Production and Action of Type I Interferons 
in Host Defense 

             Paul     J.     Hertzog    

           Introduction 

    The interferons (IFNs) are a family of cytokines that function in the host response 
to environmental stress [ 1 ]. The evolution of the IFN response has adapted to per-
form a wide range of physiological and pathological functions. The IFNs are classi-
fi ed into three types distinguished by amino acid similarity; cognate receptors, 
through which they signal; and to a lesser extent, the production stimulus and cell. 
Type I IFNs are a multi-gene family composed of 13 IFNα subtypes, a single IFNβ, 
IFNε and IFNω, and other species-specifi c members, produced by most cell types 
and acting via IFNAR 1 and 2 receptors [ 2 ]. Type II IFN has a single member, IFNγ, 
produced mainly by activated NK and T cells and signaling via IFNGR1 and 2 
receptors [ 3 ]. Type III or IFNλ has two members, produced by many cell types 
stimulated by pathogens and acting via IFNL1 and IL10Rβ receptors [ 4 ]. This 
review will focus on type I IFNs, setting the scene for their role in host defence 
against bacterial infections. IFNs have multiple effects on cells, which include ren-
dering them resistant to viral infection, modulating proliferation, differentiation, 
survival and migration, as well as other specialized functions [ 5 ]. Thus, IFNs can 
regulate the development and activation of most effector cells of the innate and 
adaptive immune response. Type I IFNs signal via the JAK/STAT signaling pathway 
to regulate the expression of genes that encode the effector proteins of the response 
including antiviral and antibacterial effectors. Their broad effects on a range of tar-
get cells   , necessitates a fi ne balance in the IFN response to ensure protection of the 
host against insult and a return to homeostasis, but avoid potential toxicity or chronic 
disease. Excessive IFN production contributes to acute septic shock in animal 
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models, and long-term deregulation of type I IFN signaling contributes to the patho-
genesis of autoimmune diseases such as systemic lupus erythematosus. 
Understanding the regulation of type I IFN production and the actions of this family 
of proteins on cells is necessary to gain insights into their role in the pathogenesis 
of bacterial infections. In some cases, particularly with extracellular pathogens, 
IFNs are protective, whereas they increase susceptibility to intracellular 
pathogens.  

    Production of Type I IFNs 

 The production of type I IFNs was fi rst described in response to viral infection and 
remains best characterized in response to these pathogens [ 6 – 8 ]. Nevertheless, it is 
increasingly evident that type I IFN production is activated by a wide variety of 
stimuli, including bacteria [ 9 ], physiological stimuli [ 10 ,  11 ] and cancer cells [ 12 , 
 13 ]. The deluge in information characterizing the pattern recognition receptors 
(PRRs) that sense “danger” signals has provided considerable explanation of the 
mechanism whereby type I IFNs are produced [ 14 – 16 ]. Once PRRs bind ligand, 
they engage intracellular signaling molecules, often specifi c for the PRR family 
involved, and then activate kinases that in turn activate a restricted range of tran-
scription factors such as NFκB and the interferon regulatory factors (IRFs) that 
stimulate the induction of pro-infl ammatory cytokines and type I IFNs, respectively. 
The IRFs are a nine-member family of latent transcription factors involved in type I 
IFN production (IRF1, 3, 5, 7) and signaling (IRF9), among other functions [ 17 ]. As 
discussed in detail below, IRF3 is activated by many PRRs to induce IFNβ gene 
expression (in conjunction with NFκB and AP1) but not the expression of IFNαs. 
On the other hand, IRF7 is also activated by many PRRs, but can activate expression 
of IFNβ and IFNα subtypes. In addition, IRF5 and IRF1 appear more restricted in 
their upstream activation pathways and these also activate IFNα gene expression. 

  TLRs  1, 2, 4, and 6 are cell surface PRRs that sense cell surface or secreted 
ligands, or pathogen-associated molecular patterns (PAMPs). The TLR4 signaling 
pathway activated by Gram negative bacterial lipopolysaccharide (LPS) in complex 
with MD2 and LBP is the best characterized and prototypic PRR signaling pathway. 
Ligand activated TLR4 engages four TIR domain-containing adaptor molecules: 
MyD88 and Mal, which activate the NFκB pathway, and TRAM and TRIF, which 
activate the IRF3 previously phosphorylated upstream by TBK and IKKε [ 14 – 16 ]. 
This pathway, in conjunction with NFκB, activates expression of IFNβ specifi cally, 
since this is the only type I IFN with neighboring IRF3 and NFκB binding elements 
in its promoter.  Escherichia coli  and  Salmonella  are strong    activators of TLR4, 
whereas other bacteria such as  Helicobacter pylori  produce LPS that only weakly 
stimulates TLR4, which may explain their relative virulence [ 9 ]. 

 TLR2 usually acts as a heterodimer with TLR1 or TLR6 and recognizes different 
peptidoglycans to activate the NFκB pathway driven pro-infl ammatory cytokines 
via MyD88 and Mal. This signaling pathway is not usually associated with  activation 
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of IRFs and IFN production. However, exceptions have been reported [ 18 ],  including 
a study involving the commensal  Lactobacillus  [ 19 ], but the details of the pathways 
remain to be fully elucidated. 

 TLRs 3, 7, 8, and 9 are endosomal sensors of nucleic acids including dsRNA 
(TLR3), ssRNA (TLR7/8) and bacterial CpG DNA (TLR9). TLR3 is the only fam-
ily member that does not utilize MyD88, but signals via TRIF. These endosomal 
TLRs recruit adaptors and activate TBK and/or IKKε, which in turn activate IRF7 
and 3 to drive the induction of IFNαs and IFNβ [ 16 ]. TLR9 senses  Staphylococcus 
aureus  and activates IFN production via IRF1 [ 20 ]. Group A and B  streptococci  are 
recognized by TLR7 and activate IFNs via IRF1 [ 21 ]. 

 The RIG I-like family of receptors ( RLRs ) including RIG-I, MDA5 and LGP2 
were originally identifi ed as cytosolic sensors of viral 5′-triphosphorylated RNA 
[ 22 ]. Once activated, they are recruited to mitochondria or associated membranes, 
bind adaptors MAVS/IPS and subsequently activate TBK/IKKε, which phosphory-
late IRFs, which themselves translocate to the nucleus and induce expression of 
IFNα and IFNβ genes [ 23 ,  24 ]. 

  STING  was discovered as a molecule that mediated the induction of IFNβ in 
response to cytosolic DNA from pathogens or necrotic cells [ 25 ]. Subsequent stud-
ies cast doubt on whether the endoplasmic reticulum-localized STING directly 
bound DNA (reviewed in [ 26 ]). It was found that STING was the receptor for cyclic 
di-nucleotides such as c-di AMP or c-di GMP which act as PAMPs, for example in 
macrophages infected with  Listeria monocytogenes , after listerolysin O-mediated 
(LLO) their release from vacuoles, possibly via DDX41 [ 27 – 29 ]. Another STING 
activating PAMP is cGMP-AMP generated by the IFN-inducible enzyme cGAS, 
which is important in sensing cytosolic DNA and initiating the innate immune 
response to pathogens. DNA from  Chlamydia muridarum  [ 30 ],  Myocbacterium 
tuberculosis  [ 31 ] and  Legionella pneumophilia  [ 32 ] have also been shown to acti-
vate STING and induce IFNβ expression. 

    Cytosolic Sensors 

  DAI  was the fi rst reported cytosolic sensor of DNA from viruses or bacteria, induc-
ing IFN via TBK and IRF3 [ 33 ]. DAI senses  Streptococcus pneumoniae  [ 34 ]. 
Another study showed that  DNA-dependent RNA polymerase III  converts cyto-
solic DNA into RNAs that act as PAMPs to activate RIG-I [ 35 ]. DNA released into 
the cytosol during infection with  Francisella tularensis  is sensed by the  AIM2  
infl ammasome which in turn activates IRF3 and type I IFN production [ 36 ,  37 ].  
L. monocytogenes  also activates the AIM2 infl ammasome [ 38 ].  NOD 1 and 2  have 
been speculated to induce IFN production in response to sensing muramyl dipeptide 
(MDP) from organisms including  M. tuberculosis  [ 39 – 41 ]. 

 Thus, the various PRRs constitute a repertoire of sensors, strategically located 
through evolution, at different subcellular locations to ensure the detection of a 
pathogen component, be it outside the cell, in endosomes, free in the cytoplasm, 
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associated with organelles or in the nucleus. The various PRR signal transduction 
pathways activate one of the IRFs (1, 3, 5, or 7) and occasionally NFκB, to bind 
promoter elements in type I IFN genes. To complement the upstream signaling path-
ways, the promoters of the 13 IFNα subtypes and IFNβ genes each contain a distinct 
number and arrangement of transcription factor binding sites to ensure that one or 
some of these essential cytokines are produced in response to infection with a broad 
range of pathogens—both viral and bacterial. This promoter diversity is also likely 
to be important in determining the IFN subtypes produced by different cell types. A 
thorough investigation of the many transcription factor binding sites in the promot-
ers of the various type I IFN genes is yet to be performed. However, type I IFNs are 
not only produced by haemopoietic cells as traditionally thought (originally called 
“leukocyte” IFN), and recent studies have brought attention to their production by 
epithelial cells as well [ 42 ,  43 ]. Depending on the expression of signaling mole-
cules, different cell types will differ in their pathways, the repertoire of type I IFNs 
and the amounts they produce. For example, plasmacytoid dendritic cells (DC) 
express high levels of constitutive IRF7 and therefore rapidly produce high levels of 
IFNα compared to other cells. Other cell types respond slower because signaling 
molecules like IRF7 have to be fi rst induced by IFN. 

 Two decades of studies in mice defi cient in Ifnar 1, through which all type I IFNs 
signal, have demonstrated the crucial role of this family of cytokines in sculpting 
the response to viral and bacterial infections [ 44 ,  45 ]. Consistent with this scenario, 
type I IFNs are never all produced, rarely singly (except IFNβ discussed below) and 
usually in subsets: for example, some IFNαs +/− IFNβ. 

 In addition to the mammalian cell components, properties of the pathogen also 
determine the nature of the type I IFN response. For viruses, whether they constitu-
tively harbor RNA or DNA, single or double stranded, determines the cellular PRR 
response. Pathogens also activate different PRRs depending on their cellular niche. 
For bacteria, whether they are intracellular or extracellular pathogens and the nature 
of virulence factors (such as pore-forming toxins) that might be necessary to 
“release” PAMPs to the responding cellular compartment, will determine the nature 
of the response.   

    Type I IFN Signaling:Receptors 

 All type I IFNs characterized to date transduce signals via interaction with the 
receptor components, IFNAR1 and IFNAR2. IFNAR2 is the high affi nity binding 
chain and can be differentially spliced to produce a “long” form which transduces 
signals (IFNAR2c); a truncated transmembrane isoform that contain little or no 
signaling capacity (IFNAR2b); and a soluble form (IFNAR2a). IFNAR2a and c 
isoforms are conserved between human and mouse, whereas IFN2b is specifi c to 
humans [ 46 – 48 ]. Studies in the murine model have demonstrated that in vitro, sol-
uble IFNAR2a has the capacity to either block signaling or facilitate signaling via a 
process called trans-signaling whereby soluble receptor binds ligand and presents it 

P.J. Hertzog



5

to the signaling receptor chain [ 49 ]. This process can be a major form of signaling 
as for IL6, but remains to be determined for the type I IFNs. is [ 50 ]. In vivo studies 
have recently indicated that soluble IFNAR2a does not block responses to IFNβ 
[ 51 ]. The IFNAR 1 chain has been shown to have very low affi nity for binding type 
I IFNs (with one exception, discussed below), but combines with IFNAR2 to gener-
ate a high affi nity trimeric complex. IFNAR1 is essential for transducing signals for 
all type I IFNs characterized so far, as determined from numerous studies of IFNAR1 
defi cient mice. Both receptors appear to be expressed broadly making most cells 
responsive to IFN, but there have not been extensive studies on the surface expres-
sion of receptor components on individual cell types or at different stages of the host 
responses.  

    Type I IFN Signaling: Signal Transduction Pathways 

 Once ligand engages the receptors, the IFNAR1-associated TYK2 and the IFNAR2- 
associated JAK1 kinases are activated and phosphorylate receptor tyrosine residues 
[ 52 ,  53 ]. These form docking sites for signal transducers and activators of transcrip-
tion (STATs), which are themselves phosphorylated, dissociate from the receptors, 
dimerize and translocate to the nucleus via interaction with importins, and activate 
the transcription of IFN-regulated genes (IRGs) [ 54 ]. Studies have shown that the 
docking sites for STATs are in the IFNAR2 component of the receptor [ 52 ,  55 ,  56 ]. 
The canonical transcription factors of the type I IFN pathway is ISGF3 (composed 
of a STAT1:STAT2) and IRF9 (also called p48 or ISGF3γ because it is induced by 
IFNγ). Nevertheless, type I IFNs also activate STAT3, and dimers of STAT3:STAT3 
or STAT1:STAT3 can bind GAS sites (interferon-gamma activated sites) in IRGs 
(sometimes wrongly thought to be IFNγ-specifi c) [ 54 ]. Indeed, type I IFNs can 
activate all STATs (4, 5, and 6) depending on the cell type. Indeed in PBMCs, 
STAT5 is the main STAT activated [ 57 ,  58 ]. 

 There are other signaling pathways activated by type I IFNs. Indeed JAK kinases 
have other substrates [ 59 ] and also function to stabilize the IFNAR1 at the plasma 
membrane [ 60 ]. STAT independent signaling was reported for both type I and type 
II IFNs in STAT-defi cient cells using transcriptional profi ling [ 61 ], but the signaling 
pathways responsible were not pursued in those studies. Numerous “alternative” 
type I IFN signaling pathways have been described, including MAPK (p38 and 
ERK), NFκB and PI3K/AKT pathways [ 57 ,  62 ]. The best characterized of these is 
the p38 and Erk MAP kinase (MAPK) pathways, which modulate IRG mRNA 
translation via activation of Mnk kinases [ 63 ]. Activation of AKT/mTOR (mam-
malian target of rapamycin) signaling is also initiated by IFNs, impacting on trans-
lation of IRG mRNA [ 64 ,  65 ]. The relative contribution of these and other alternative 
IFN signaling pathways is likely to be cell and context dependent. For example, 
type I IFN signaling in T cells has been reported to utilize T cell receptor signaling 
molecules for antiproliferative activities [ 66 ].  
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    Type I IFN Signaling: Interferon Regulated Genes 

 There have been many studies documenting the nature of IRGs individually for past 
decades and more recently by transcriptional profi ling by microarrays. In an attempt 
to capture an overview of the response, we have catalogued available microarray 
datasets of IFN treated cells or organisms; the data is reanalyzed and annotated then 
placed in a searchable database called the Interferome (v 2.0   http://interferome.its.
monash.edu.au    ) [ 67 ,  68 ]. This represents a tool for identifying a gene as an IRG, or 
more importantly, for searching a dataset for IRGs. This collection has identifi ed 
more than 2,000 IRGs (more depending on the statistical cut-off applied) across 
species, IFNs, and tissue types. These genes encode the effector proteins that medi-
ate the different biological activities of the IFNs. The number of genes in any given 
condition is usually smaller, often hundreds, and there is considerable difference 
between different cells or tissues. There are overlaps between type I, II, and III regu-
lated genes and some apparently IFN type-specifi c genes, although comparisons are 
often diffi cult because of differences in experimental conditions [ 69 ]. Tools such as 
the Interferome are important in fi nding IRG “signatures” associated with disease 
that might represent modulation of a particular pathway. We have used Interferome 
and associated tools to identify an IFN signature activated in HIV infected dendritic 
cells (a gene set regulated by IRF1, despite HIV suppression of IFN production 
[ 70 ]) and another gene signature suppressed in breast cancer metastases (regulated 
by IRF7; [ 13 ]). Interestingly, an IFN signature has been characterized in latent 
 M. tuberculosis  infection that appears to correlate with disease pathogenesis and is 
consistent with studies in animal models showing a role for type I IFN signaling in 
susceptibility to this pathogen (reviewed in [ 71 ]). 

 The best characterized IRGs are those involved in protecting cells from viral 
infection; individual ones such as 2′–5′ oligoadenylate synthetase, PKR and Mx 
proteins, having been well characterized for many years [ 72 ]. Recently, elegant, 
comprehensive screening studies of 350 IFN inducible genes have highlighted new 
IRGs with direct antiviral activities [ 72 ]. The studies may inform similar rationales 
for characterizing the effector functions (anti-bacterial, immunoregulatory) of the 
many other IRGs. In broad terms the broad repertoire of antiviral IRGs has the abil-
ity to restrict different stages of the viral life cycle and different types of viruses, 
providing broad protection against infection.  

    Type I Interferon Regulated Antibacterial Responses 

 Unlike the antiviral effects of type I IFNs, the effects of IFN on bacterial infections 
are relatively poorly characterized. In general, type I IFNs are protective against 
extracellular bacterial infections, yet exacerbate infections with intracellular bacte-
ria. This is at least in part due to the differences in organ and cell specifi city, the 
direct effects of IFNs, the impact on cell survival and indirect actions via regulation 
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of the innate and adaptive immune responses [ 43 ,  73 ,  74 ]. Examples of direct acting 
antibacterial IRGs include iNOS, NADPH oxidase, nox-2 [ 73 ,  75 ]; TRAIL [ 76 ]; 
and phospholipidscramblase 1 (PLSCR1) [ 77 ]; GTPases [ 78 ].  

    Type I Interferon Regulated Immune Responses 

 There are many different IRGs, intrinsic or extrinsic to immune cells that can affect 
the traffi cking, development, differentiation, survival, and activity of most innate 
and adaptive immune cells in response to infections, cancer, and infl ammatory dis-
eases (reviewed in [ 74 ,  79 ]). Particular cells and responses have been documented 
to be important in the response to bacterial infections. TNFα and IFNγ up- regulation 
by type I IFNs increases protection from  S. pneumoniae  infection [ 21 ]. Repression 
of type I IFN induced chemokines CXCL10 and CCL5 reduces cells neutrophil 
infi ltration and impairs clearance of  Pseudomonas aeruginosa  from infected lungs 
[ 80 ,  81 ]. By contrast, type I IFNs suppress the production of other chemokines such 
as CCL2, CXCL4 and CXCL9, which recruit monocyte/macrophage and neutro-
phils [ 75 ] leading to exacerbation of infection by  C. muridarum.  Other IRGs include 
cytokines that activate or repress immune responses including IL10 [ 82 ], IL27, and 
IL17 [ 83 ] and FOXP3 which is important in Treg function [ 74 ]. Another IFN 
induced effect that is important in regulating responses to bacterial infection is the 
induction of apoptosis in infi ltrating cells [ 84 ]. It is well known that IFNs can regu-
late the expression of different cell death pathways including bcl-2 and bcl-X [ 85 ] 
and caspase 11 [ 86 ] and that IFNs play a role in mediating necroptosis of  Salmonella 
typhimurium  infected macrophages [ 87 ].  

    Cross-Talk, Feedback, and Feed Forward 

 There have been numerous publications about cross-talk of type I IFNs with other 
systems. In general terms, many of the receptors and signaling components of other 
signaling systems are, in fact, IRGs and the positive or negative regulation of these 
factors underlie the basis of cross-talk [ 88 ]. These include other cytokines (reviewed 
in [ 5 ]) likely due to priming of STAT levels [ 89 ], TLRs and RLRs [ 5 ], and the 
infl ammasome [ 90 ,  91 ]. Indeed, we and others have demonstrated that type I IFNs 
prime the basal levels of hundreds of IRGs, many of which play central roles in 
signaling by other systems [ 42 ,  92 ]. Important among these are negative regulators 
such as SOCS1, which are not only rapidly and strongly IFN inducible but play 
important roles in dampening responses to type I and type II IFNs, other cytokines 
and TLRs [ 93 – 95 ]. Indeed neonatal mice defi cient in SOCS 1 die from multi-organ 
infl ammation in the absence of SOCS1 suppression of type I [ 94 ] and type II IFN 
signaling [ 93 ].  
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    Special Case Study of IFNβ 

 As discussed above, IFNβ is different from other type I IFNs in being the only one 
induced by LPS, thus playing a central role in response to bacteria [ 92 ,  96 ]. In addi-
tion, the promoter of IFNβ is unusual in having AP1 sites that can be activated by 
the fos/jun and MAP kinase pathway. This pathway is activated during macrophage 
development in response to M-CSF and in osteoclast development in response to 
RANK Ligand [ 11 ]. The inhibitory effect of on IFNβ on the proliferation of these 
myeloid cells may be important in the regulation of pathogen responses. In addition 
to selective production of IFNβ relative to other type I IFNs, it has a higher binding 
affi nity to receptors and is more potent than the members of the IFNα family in anti- 
proliferative assays on certain cell types. It is a singularly effective therapeutically 
in multiple sclerosis [ 97 ]. However, until recently, there has been no mechanistic 
explanation for differential activities of IFNb relative to other type I IFNs.. 

 De Weerd et al. [ 97 ] demonstrated that IFNβ but not IFNα formed a complex 
with IFNAR1 in the absence of IFNAR2. Crystallization of the IFNβ:IFNAR1 com-
plex showed extensive contacts of this IFN with the receptor over a much larger 
surface area in that crystal structure than any potential IFNα:IFNAR1 [ 98 ]. Further 
studies of  Ifnar2  null cells showed that while the binding of IFNβ to IFNAR1 did 
not induce canonical STAT signaling as expected, there were signals transduced. 
Approximately 230 genes were induced by this novel IFNβ:IFNAR1 signaling axis 
by an uncharacterized pathway. Induced genes included several such as TREM1, 
TREML4, TGM2, and CCL2, which had known roles in the response to sepsis. 
Using an in vivo murine model of LPS-induced septic shock, it was demonstrated 
that this unique IFNβ:IFNAR1 signaling axis was important in mediating the previ-
ously described IFN-mediated toxicity. 

 Specifi cally, this study shows molecular mechanisms whereby IFNβ can trans-
duce specifi c signals with pathophysiological importance. In general terms it opens 
the door for discovering previously elusive selective actions of other type I IFNs by 
differential interaction with IFNAR1 and IFNAR2. Similarly, cells may regulate the 
response to type I IFNs by differential regulation of the cell surface expression of 
IFNAR1 and IFNAR2.  

    Special Case Study of IFNε 

 Recently, the function of a specialized type I IFN was reported. IFNε was characterized 
as a type I IFN based on sequence homology, the location of the gene in the type I 
IFN gene locus on human chromosome 9p (and syntenic murine chromosome 16) 
and its signaling through IFNAR1 and IFNAR2 [ 42 ,  99 ]. Recombinant IFNe protein 
induced “classical” IRGs like other type I IFNs and this signaling was abrogated in 
cells from  Ifnar1  or  Ifnar2  defi cient mice [ 42 ]. However, the expression patterns 
and regulation of this gene showed unique features. Unlike other type I IFNs, it was 
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not pathogen inducible and was constitutively expressed. This constitutive 
 expression was most notable in the female reproductive tract (FRT). Also unlike 
other type I IFNs, its expression was regulated by hormones: stimulated by estrogen 
and repressed by progesterone. Accordingly, its expression fl uctuated during the 
female cycle, was dramatically reduced at the time of embryo implantation in the 
mouse, and was reduced to virtually undetectable in post-menopausal women, when 
estrogen levels decline. The in vivo functional importance of IFNε was determined 
in IFNε-defi cient mice. These mice were more susceptible to viral infection with 
HSV and bacterial infection with  C. muridarum.  The constitutive production of 
IFNε in the epithelial cells of the endometrium maintained the basal expression of 
many IRGs including those involved in pathogen defense (Mx, ISG 15, IRGM1) 
and PRR sensing and primary signaling (IRF7). This priming of the innate immune 
response by constitutive IFNε ensures protection of the FRT mucosa from early 
stages of viral and bacterial infection. Furthermore, the absence of IFNε also 
restricted bacterial clearance, consistent with the continued production of this pro-
tective cytokine before and throughout the course of infection since this pathogen 
did not modulate IFNε expression in vivo. The levels of NK cells, which have been 
shown to aid clearance of pathogen, correlated with the levels of IFNε: administra-
tion of recombinant mu IFNε to IFNε-null mice restored the depleted levels of NK 
cells and decreased the number of bacteria recovered 3 days post infection. 
Interestingly, IFNε is the only type I IFN that protects the FRT from  Chlamydia  
infection . Ifnar1  defi cient mice show less severe disease; indicating the exacerba-
tion of disease by production of (presumably conventional, α/β) type I IFNs; shown 
by adoptive transfer experiments to be acting on CD8 T cells driving disease patho-
genesis [ 75 ]. This is similar to infections with other intracellular bacteria such as 
 L. monocytogenes ,  F. tularensis ,  M. tuberculosis , in which disease pathology is 
exacerbated by type I IFNs (refer above). 

 Thus, the actions of IFNε in protecting the FRT highlight several general prin-
ciples that might be applicable to IFN anti-pathogen strategies in general: (1) it is a 
direct example of how regulating expression in a particular way can achieve specifi c 
and functional protection; (2) it shows a specifi c adaptation of the innate immune 
response to suit organ-specifi c requirements of host defense; and (3) it shows how 
compartmentalization of an IFN response can achieve opposite outcomes— 
epithelial production of IFNε is protective, whereas mucosal production of conven-
tional IFNs exacerbates disease through their action on immune cells.  

    Concluding Remarks 

 The type I IFNs have pleiotropic effects on host defense due to their ability to regu-
late the parenchymal cells under attack by infectious agents or the innate and adap-
tive immune cells that traffi c to and from the site of infection. While we have made 
considerable advances in understanding mechanisms of signal transduction via the 
IFNARs, JAK/STAT and other signal transduction pathways, we are only just 
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beginning to understand the cell context and temporal specifi cities of type I IFN 
signaling and responses. This is manifest in the different transcription profi les 
identifi ed in different cell types responding to IFNs, which represents only a part of 
the available repertoire of IRGs that encode the effector molecules. Understanding 
and harnessing the specifi city of the response will make inroads into understanding 
and dealing with the current and emerging threats posed by bacteria and other 
pathogens.     
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