
Dealing with Usability
in Model-Driven Development Method

Lassaad Ben Ammar(B), Abdelwaheb Trabelsi, and Adel Mahfoudhi

University of Sfax, ENIS, CES Laboratory,
Soukra Road km 3,5, B.P: 1173-3000, Sfax, Tunisia

{lassaad.ben-ammar,adel.mahfoudhi}@ceslab.org,
abdelwaheb@gmail.com

Abstract. Usability is crucial for the acceptance of Interactive Systems
(IS) by end users. Unusable User Interfaces (UI) are probably the main
reason why IS fail in actual use. This can explains the increasing num-
ber of Usability Evaluation Method proposed in the literature. However,
most of these methods are focused on the final product which greatly
reduced the ability to go back and makes major changes. Recently, and
due to the increasing interest in Model Driven Engineering (MDE) para-
digm, the conceptual models have become the backbone of the IS devel-
opment process. Therefore, evaluating the usability from the conceptual
models would be a significant advantage with regard to saving time and
resources. The present chapter proposes an early usability evaluation
method that is based on conceptual models. The usability evaluation
can be automated taking as input the conceptual models that represent
the system abstractly. As an output it provides a usability report which
contains the detected usability problems. The usability report is ana-
lyzed in order to identify the source of problems and suggest changes in
the development process.

Keywords: Conceptual model · Model Driven Engineering · Early
usability evaluation

1 Introduction

Usability is a quality attribute that has been pointed out as being one of the
most important factors in the acceptance of Interactive Systems (IS) by end
users. It denote the extent to which specific users can use a product to efficiently
and effectively achieve specific goals in a specific context of use [1]. For many
years, usability has been perceived as related to the User Interface (UI) [2].
Consequently, usability evaluation is considered late at the development process
once the UI is implemented. At this stage, the ability to go back and makes
major changes in the design is greatly reduced.

Recently, it has been suggested that usability should be performed from the
beginning of the development process in order to increase user experience and
c© Springer International Publishing Switzerland 2014
S. Hammoudi et al. (Eds.): ICEIS 2013, LNBIP 190, pp. 405–420, 2014.
DOI: 10.1007/978-3-319-09492-2 24



406 L.B. Ammar et al.

decrease maintenance costs [3–5]. This has motivated the proposition of meth-
ods for the early usability evaluation. Among these methods, those following the
Model-Driven Engineering (MDE) approach seem to be the most appropriate
for the early usability evaluation. In a MDE approach, conceptual models are a
primary artefact in the development process. The UI code is (semi-) automati-
cally generated by means a model compiler that takes the conceptual model as
input. Hence, evaluating the usability from the conceptual models would be a
significant advantage with regard to saving time and resources.

The analysis of some research works that deal with usability in an MDE
method highlight some gaps. The main limitation is the lack of precise details
given (selection of attributes, scores interpretation, etc.) which makes difficult
to understand how these approaches could work correctly in practical settings.

This chapter aims to delineate a method for evaluating usability from the
early stage of an MDE method by defining metrics for conceptual primitives
that constitute conceptual models. The proposed method can be applied auto-
matically taking the conceptual model, that represents a system abstractly, as
input. It is based on the usability model presented in [6] which is empirically
validated.

The proposed method focuses on the Cameleon reference framework pre-
sented in [7] which structure the UI development interface on four level of
abstraction, starting from task specification to a running interface: Task and
Concepts, Abstract User Interface (AUI) Concrete User Interface (CUI), and
Final User Interface (FUI). We have selected the Cameleon framework because
it provides a unifying MDE framework for the development of UI that can be
able to adapt to the context of use while preserving usability. Such UIs are
namely Plastic. In this framework, focus is generally placed on data and func-
tional modeling, disregarding usability aspects. Therefore, there is a need to
extend the Cameleon framework in order to promotes usability as a first class
entity in the development process.

We structure the remainder of this paper as follows. While Sect. 2 presents
an outline of the usability evaluation methods quoted in the literature, Sect. 3
provides a description of our proposed method for early usability evaluation. A
case study is presented in Sect. 4 in order to show the usefulness of our proposal
to the uncovering of potential usability problems. Finally, Sect. 5 presents the
conclusion and provides perspectives for future research work.

2 Related Works

Usability evaluation is often defined as methodologies for measuring the usability
aspects of a user interface and identifying specific problems [8]. There exist
several methods targeting the usability evaluation of user interfaces. In this
section, we focus our interest in the analysis of model-based methods since our
main motivation is to integrate usability issues into a model driven development
approach.

The usability evaluation has attracted the attention of both Human Com-
puter Interaction (HCI) community and Software Engineering (SE) communities.



Dealing with Usability in Model-Driven Development Method 407

The SE community proposed a quality model in the ISO/IEC 9126-1 standard
[9]. In this model, usability is decomposed into Learnability, Understandability,
Operability, Attractiveness and Compliance. However, the HCI community has
shown in the ISO/IEC 9241-11 standard [1] how usability can be measured in
term of Efficiency, Effectiveness and User Satisfaction. Although both standards
are useful, they are too abstract and need to be extended or adapted in order to
be applied in a specific domain.

Some initiatives to extend both standards are proposed over the last few
years. Seffah et al. [10] analyzed existing standards and surveys in order to
detect their limits and complementarities. Moreover, the authors unify all these
standards into a single consolidated model called Quality in Use Integrated Mea-
surement QUIM. The QUIM model includes metrics that are based on the sys-
tem code as well as on the generated interface. This makes the application of
the QUIM to a model driven development process difficult.

Abrahão and Insfrán [3] proposed an extension of the ISO/IEC 9126-1 usabil-
ity model. The added feature is intended to measure the user interface usability
at an early stage of a model driven development process. The model contains
subjective measurement which raises the question about its applicability at the
intermediate artifacts. Besides, it lacks of any detail about how various attributes
are measured and interpreted.

The usability of a multi-platform user interface generated with an MDE app-
roach is evaluated in [11]. The evaluation is conducted in term of effectiveness,
efficiency and user satisfaction. The usability evaluation is based on the experi-
ments with end-users. This dependency is incompatible with an early usability
evaluation.

Panach et al. [12] proposes an early usability measurement method. The
usability evaluation is carried out early in the development process since the con-
ceptual model. The main limitation of this proposal is that metrics are specific to
the OO-method [13]. Therefore, they cannot be applied to other method, which
is a disadvantage. They need some adaptation in order to be used (adopted) in
other similar methods.

The analysis of the related works allows us to underline some limitations.
The majority of the existing proposals lack of guidelines about how usability
attributes and metrics are measured and how to interpret their scores. Besides,
usability has not been defined in a consistent way across the methods just men-
tioned. The majority of models includes metrics that are based on the system
code as well as on the generated interface which makes their application to a
model-driven development process difficult.

It becomes clear that usability evaluation in a MDE approach for the devel-
opment of UI is still an immature area and many more research works are
needed. In order to covers this need, we propose to integrate usability issues
into the Cameleon framework. The proposed method is intended to evaluate he
usability from the conceptual model. For that reason, we opted for the usability
model presented in [6] wherein usability metrics are based on the conceptual
primitives.



408 L.B. Ammar et al.

3 Proposed Usability Evaluation Method

3.1 Overview

The Cameleon framework provides a user interface development process which
defines four essential levels of abstraction: Task & Domain, Abstract User Inter-
face (AUI), Concrete User Interface (CUI) and Final User Interface (FUI). The
development process takes as input the conceptual models in order to generate
the final executable user interface. In this framework, the conceptual models cov-
ers the AUI and the CUI levels. The CUI model is the most affected by usability.
Therefore, we opted to perform the evaluation from this level. To do that, we
proposes a set of usability metrics which are based on the conceptual primitives
of this model. The usability evaluation is implemented as a model transforma-
tion which takes the CUI model as input and the usability model as a parameter.
As outcome, it provides a usability report which contains the detected usability
problems. Usability problems are analyzed in order to identify their sources and
suggest possible changes in order to improve the usability of future UI obtained
as part of the transformation process (see Fig. 1).

Fig. 1. Incorporating usability into a model-driven development framework.



Dealing with Usability in Model-Driven Development Method 409

3.2 Usability Evaluation

Usability evaluation is a process that entails three main steps: (1) Select
Attributes, (2) Select Metrics and (3) Establish Rating Levels. In what follows,
we briefly describe each step.

Select Attributes. The first step in a usability evaluation method is usually to
identify a set of usability attributes. Usability attributes can be either External
or Internal. Attributes which can be measured once the system is implemented
are called External. Attributes which can be measured before implementing the
system are called Internal. In this chapter, we focus our interest in the identi-
fication of a set of internal attributes. The main objective is to make possible
the evaluation without requiring the system implementation. Besides, measuring
internal usability can lead to a full automation process.

For the Learnability sub-characteristic, which refers to the attributes of a soft-
ware product that facilitate learning, it can be measured in terms of Prompt-
ing, Predictability and Informative Feedback. All these attributes are closely
related to the user characteristics. For example, a novice user need to be guided
throughout the entire application. Hence, prompting and feedback are essential
mechanisms to help user to easily learn the application.

The Understandability sub-characteristic refers to the attributes that facil-
itate understanding. We propose four attributes in order to be able to mea-
sure this sub-characteristic. The first attribute is the Information Density which
is the degree in which the system will display/demand the information to/from
the user in each interface. The Brevity focus on the reduction of the level of
cognitive efforts of the user (number of action steps). The short term memory
capacity is limited. Consequently, shorter entries reduce considerably the proba-
bility of making errors. Besides, the Navigability pertains to the ease with which
a user can move around in the application. Finally, Message Concision concerns
the use of few words while keeping expressiveness in the error message. Some
of these attributes are closely related to the platform features. For example, the
screen size has strong influences to the information density and the navigabil-
ity attributes. Other are related to the users’ capacity such as the short term
memory.

The Operability sub-characteristic includes attributes that facilitate the user’s
control and operation of the system. Attributes such as Explicit user action, User
Operation Cancellability and User Operation Undoability can be used to mea-
sure the degree of control that users have over the treatment of their actions. The
Error Prevention attribute refers to the means available to detect and prevent
data entry errors, command errors, or actions with destructive consequences.
The screen size of the platform being used can affect this control when it does
not allow displaying button like undo, cancel, validate, etc.

The Attractiveness sub-characteristic includes the attributes of software prod-
uct that are related to the aesthetic design to make it attractive to user. We argue
that some aspect of attractiveness can be measured with regard to the Font Style
Uniformity and Color Uniformity. The Consistency measure the maintaining of



410 L.B. Ammar et al.

the design choice to similar contexts. The user preferences in term of color or font
style are related to the attractiveness attributes. It should be noted that some
environment features (e.g. indoor/outdoor, luminosity level) affect the choice of
the color in order to obtain a good contrast which give more clear information.

Figure 2 shows an overview of our proposal for attributes specification.

Fig. 2. The proposed usability model.

Select Metrics. All the attributes presented in the previous Section are abstract
and can not be measured directly. They need to be more decomposed and
detailed in order to be quantified. In order to be able to measure the inter-
nal attributes we need to define some metrics for each attributes. It should be
noted that metrics are intended to measure the internal usability from the con-
ceptual models. Hence, metrics are defined based on the conceptual primitives
that constitute the conceptual models of a specific MDE method. The applica-
bility of our method is shown in the present chapter through the MDE method
presented in [14]. The main reason of the choice of such method is its compliance
to the Cameleon framework and the use of the BPMN notation to describe the
user interface models. The BPMN notation is based on the Petri networks which
allows the validation of metrics. In what follows, we list the definition of some
examples of these metrics. We listed later the indicators defined for each one of
the following metric:

– Information Density: The Information Density of a user interface can be mea-
sured in terms of the number of the components per user interface. we propose
four metric to measure this attribute: average of input element per UI, average
of action element per UI, navigation element per UI and total of element per
UI.



Dealing with Usability in Model-Driven Development Method 411

– Brevity: The human memory capacity is so limited. Hence, each task that
require several step will decrease the user satisfaction. The user interface
should allow users to accomplish their tasks in a few number of steps. We
propose the number of steps (counted in keystrokes) required to accomplish
a task as a metric to quantify the brevity.

– Navigability: The navigability measure the level of facilities that the system
will provide to navigate throughout several interfaces. We propose the average
of navigation elements per UI as an internal metric to measure the navigability
attribute.

– Message Concision: Since the quality of the message is a subjective measure,
we propose the number of word as an internal metric to measure the quality
of the message.

– Error Prevention: To prevent user against error while entering data, we pro-
pose to use a drop down list instead of text field when the input element have
a set of accepted values.

Establish Rating Levels. The metrics defined previously provides a numerical
value that need to have a meaning in order to be interpreted. The mechanism
of indicator is restored in order to reach such goal. It consists in the attribut-
ion of qualitative values to each numerical one. Such qualitative values can be
summarized in: Very Good (VG), Good (G), Medium (M), Bad (B) and Very
Bad (VB). For each qualitative value, we assign a numerical range. The ranges
are defined build on some usability guidelines and heuristics described in the
literature. Next, we detail the numeric ranges associated with some metrics in
order to be considered as a Very Good value.

– Information Density: several usability guidelines recommend minimizing the
density of a user interface [15]. We define a maximum number of elements per
user interface to keep a good equilibrium between information density and
white space: 15 input elements (ID1), 10 action elements (ID2), 7 navigation
elements (ID3), and 20 elements in total (ID4) [12].

– Brevity: some research studies have demonstrated that the human memory
has the capacity to retain a maximum number of 3 scenarios [16]. Each task
or goals requiring more than 3 steps (counted in keystrokes) to be reached
decreases usability (Minimal Action MA).

– Navigability: some studies have demonstrated that the first level navigational
target (Navigation Breadth NB) should not exceed 7 [17].

– Message Concision: since the quality of the message can be evaluated only by
the end-user, the number of the word in a message is proposed as an internal
metrics to assess message quality (Word Number WN). A maximum of 15
words is recommended in a message [12].

– Error Prevention: The system must provide mechanisms to keep the user from
making mistakes [18]. One way to avoid mistakes is the use of ListBoxes for
enumerated values. Panach et al. [12] recommend at least 90 % of enumerated
values must be shown in a ListBox to improve usability (ERP).



412 L.B. Ammar et al.

Metrics which are extracted from the proposition of [12] are extracted with their
ranges of values. In fact, this ranges are empirically validated. For the others
metrics, the ranges of values to consider the numeric value as Very Good are
taken into consideration in order to estimate the value to be considered as Very
Bad. The Medium, Bad and Good values are equitably distributed once we have
the two extremes. The Table 1 shows the list of indicators that we have been
defined.

Table 1. Proposed indicators.

Metric VG G M B VB

ID1 ≺15 15 ≤ ID1 ≺ 20 20 ≤ ID1 ≺ 25 25 ≤ ID1 ≺ 30 ID1 ≥ 30

ID2 ≺10 10 ≤ ID2 ≺ 13 13 ≤ ID2 ≺ 16 16 ≤ ID2 ≺ 19 ID2 ≥ 19

ID3 ≺7 7 ≤ ID3 ≺ 10 10 ≤ ID3 ≺ 13 13 ≤ ID3 ≺ 16 ID3 ≥ 16

ID4 ≺20 20 ≤ ID4 ≺ 30 30 ≤ ID4 ≺ 40 40 ≤ ID4 ≺ 50 ID4 ≥ 50

MA ≺2 2 ≤ MA ≺ 4 4 ≤ MA ≺ 5 5 ≤ MA ≺ 6 MA ≥ 6

NB ≺7 5 ≤ NB ≺ 10 10 ≥ NB ≺ 13 13 ≤ NB ≺ 16 NB ≥ 16

WN ≺15 15 ≤ WN ≺ 20 20 ≤ WN ≺ 25 25 ≤ WN ≺ 30 WN ≥ 30

3.3 Automatic Usability Evaluation Process

Conducting the usability measurement manually is a tedious task. That is why
we propose to automatize this process by implementing it as a model transfor-
mation process. The model transformation process requires two model as input
(the user interface model and the usability model) and provides as outcome a
usability report which contains the detected usability problem. In the model
transformation literature, the definition of the meta-model1 is a prerequisite in
order to formalize the approach and use a model in a productive way. With
regard to the usability meta-model, Fig. 3 show the proposed meta-model.

With regard to the usability report, we propose a simple meta-model which
explain the usability problem using the following scheme: the description of the
usability problem, the related attribute is the sub-characteristic and attribute in
the model that are affected by the usability problem, the level of the detected
problem and the recommendation to solve such problem (Fig. 4).

It should be noted that the usability evaluation is implemented as a model
transformation that take the usability model as a parameter to the transfor-
mation engine. To do this, we reformulate the parameterized transformation
principles initiated by [19].

1 A meta-model is a language that can express models. It defines the concepts and
relationships between concepts required for the expression of the model.



Dealing with Usability in Model-Driven Development Method 413

Fig. 3. Usability meta-model.

Fig. 4. Usability report meta-model.

3.4 Results Analysis and Suggestion of Recommendations

The main objective of this step is to analysis the Usability Report in order to
identify the source of the problems and suggest some changes either in the AUI
model or in the transformation module. Hence, two reports are produced as an
output of this step.

– The first report contains the identifier of the transformation rules that can
undergo a slight modification.

– The second report contains the conceptual primitives that have to be modified
in order to improve the expressiveness of the AUI model.

As regard to the first report, usability problems that are related to the Brevity and
the Information Density attributes usually depend on the transformation rules.



414 L.B. Ammar et al.

Transformation rules that maximize the Brevity needs to concretize several pan-
els in the some window instead of several window related by a navigation element.
Such concretization decrease the number of step (counted in keystroke) required
to accomplish a task. Hence, the Brevity is increased. However, the number of wid-
get will be increased which decrease the Information Density. The transformation
rule can be modified to concretize several panel with the take into account of the
total number of elements which should not exceeds a threshold (e.g., 20 elements
per UI).

As regard to the second report, we show a simple example to better explain
the impact of the usability problems. There are several way to support the
Prompting attribute. Among these way we quote the use of a label that display
additional information in order to better guide users while entering data. Addi-
tional information may be the required data format or the range of accepted
values. The AUI model should provide this information during its transforma-
tion. For example, in the underlying method, the UIComponent class should
have an attribute (type String) named for example Additional Information. Such
attribute contain the additional information to be displayed when it is necessary
in order to ensure the prompting.

It should be noted that this step usually requires the intervention of usability
experts. We hope that after some experiments we can automatize this step.

4 An Illustrative Case Study

This section investigates a case study in order to illustrate the applicability of our
proposal. The purpose is to show the usefulness of our proposal in the assessment
of the user interface usability. The research question addressed by this case study
is: Does the proposal contribute to uncover usability problem since the conceptual
model?

The case study is a Requesting a credit to buy a car. The scenario is adapted
from [20]. To get information about the credit to buy a car, a bank client does not
have to go to the bank branch since the bank portals offer an interactive system
which allows resolving such problem. The bank client can perform several tasks
using this system: get information about buying tips, simulate a credit to buy a
car, request the credit, receive request in line, and communicate with the credit
department, etc. For reason of simplicity, we are interested in the <<Request
the Credit>> task.

We suppose to have the abstract user interface from Fig. 5 as a result of the
transformation of the task model <<Request the Credit>> following the model
transformation explained in details in [14]. The result of the transformation
is an XML file which is in accordance with the AUI metamodel (left part of
Fig. 5). To better clear up the user interface layout, we develop an editor with
the Graphical Modeling Framework (GMF) of eclipse. The sketch of the user
interface presented by the editor is shown in the right part of Fig. 5.

An ordinary transformation which takes as input the abstract user interface
model allows producing the concrete user interface model of Fig. 6. It should



Dealing with Usability in Model-Driven Development Method 415

Fig. 5. Abstract user interface.

Fig. 6. Concrete user interface.

be noted that this transformation was done taken into account a context of use
defined by the analyst. The context is the following: a laptop as an interac-
tive device (normal screen size), an Englishman as a tourist with a low level of
experience.

In order to evaluate the concrete user interface, we pursue a reduced version of
the usability evaluation process presented in [21]. The purpose of the evaluation
is to evaluate the usefulness of the proposed model to discover the usability
problems presented in the evaluated artifact. The product part to be evaluated



416 L.B. Ammar et al.

is the concrete user interface model. The selected attributes are the Information
Density and the Error Prevention. The metrics selected to evaluate the former
attributes are ID2 and ERP. The indicators are those presented in Table 1.

The result of the evaluation is a usability report model which contains the
detected problems (see Fig. 7).

Fig. 7. Automatic usability evaluation.

– Usability problem N1: There are enough elements in the user interface which
increase the information density.
Related attribute: Understandability/Information Density
Level: M
Recommendation: Replace each panel by a window with the take into account
of the relationship between panel.

– Usability problem N2: There is no means which prevents the user against error
while entering data.
Related attribute: Operability/Error Prevention.



Dealing with Usability in Model-Driven Development Method 417

Level:B
Recommendation: Each input element with limited values should be displayed
in a dropdown list to protect user against error while entering values (e.g.
typos).

The second evaluation to be conducted takes an �iPAQ Hx2490 Pocket PC�
as platform. The migration to such platform raises a new redistribution of the
user interface elements. The small screen size (240 × 320) is not sufficient to
display all information. The number of the concrete component to be grouped is
limited to the maximum number of concepts that can be manipulated (5 in the
case of <<iPAQ Hx2490 Pocket PC>>). Therefore, the user interface elements
are redistributed on several windows (see Fig. 8).

Fig. 8. Concrete user interface for small screen size.

The redistribution of interface elements on several windows will bring more
steps to reach the goal. It should be noted that with a small screen size the
Information Density and the Brevity are the most relevant usability attributes
to affected. The problem is that these two attributes have a contradictory impact.
It is recommended to distribute the concrete components on several screens in
order to obtain better Information Density. However, redistribute elements from
one screen to several will influence negatively the Brevity attributes (see Fig. 9).



418 L.B. Ammar et al.

Fig. 9. Usability report.

Learned Lesson
The case study allow us to learn more about the potentialities and limitations
of our proposal and how it can be improved. The proposed method allows the
detection of several usability problems since the early stage of the development
process. The evaluation process may be a means to discover which usability
attributes are directly supported by the modeling primitives or to discover lim-
itations in the expressiveness of these artifacts. The ranks of indicators are
extracted from existing studies which do not consider the context variation.
Therefore, many more experimentations are needed in order to propose a repos-
itory of indicators in several cases (medium screen size, small screen size, large
screen size). Another important aspect which must be studied is the contradic-
tory affect of usability attributes. For example, the information density and the
brevity has a contradictor affect. Increasing the information density will decrease
certainly the brevity attribute.

5 Conclusions and Future Research Works

This chapter presents a method for integrating usability issue as a part of a
user interface development process. The proposed method extends the Cameleon
reference framework. The usability evaluation can be conducted early in the
development process (from the conceptual models). The objective is to discover
the usability problems presented in the conceptual models. The result of the
evaluation is a usability report which contains the usability problems detected
during the evaluation step. The analysis of these problems and the identification
of their sources allows usability experts to suggest some changes either in the
conceptual model or in the model compiler. This can avoid usability problems
to occurs in each future UI obtained as part of the development process.

If compared to the existing proposals, our framework presents three main
advantages: (1) costs are very low: internal usability evaluation reduce consider-
ably the development costs and maintainability, (2) system does not have to be



Dealing with Usability in Model-Driven Development Method 419

implemented, (3) it provides a proper details about how to measure attributes
and interpret their scores.

The continuity of our research work leads directly to the investigation of
the usability-driven model transformation, the relationship between usability
attributes and their contradictory influence to the whole usability of the user
interface. The automation of the recommendation step is among the perspective
that can be investigated in future works.

References

1. ISO/IEC: ISO/IEC 9241. Ergonomic Requirements for Office Work with Visual
Display Terminals (VDTs). ISO/IEC (1998)

2. Seffah, A., Metzker, E.: The obstacles and myths of usability and software engi-
neering. Commun. ACM 47, 71–76 (2004)

3. Abrahão, S.M., Insfrán, E.: Early usability evaluation in model driven architecture
environments. In: QSIC, pp. 287–294 (2006)

4. Molina, F., Toval, A.: Integrating usability requirements that can be evaluated in
design time into model driven engineering of web information systems. Adv. Eng.
Softw. 40, 1306–1317 (2009)

5. Panach Navarrete, J.I., Juristo Juzgado, N., Pastor, Ó.: Introducing usability in a
conceptual modeling-based software development process. In: Atzeni, P., Cheung,
D., Ram, S. (eds.) ER 2012 Main Conference 2012. LNCS, vol. 7532, pp. 525–530.
Springer, Heidelberg (2012)

6. Ben Ammar, L., Mahfoudhi, A.: An empirical evaluation of a usability measure-
ment method in a model driven framework. In: Holzinger, A., Ziefle, M., Hitz,
M., Debevc, M. (eds.) SouthCHI 2013. LNCS, vol. 7946, pp. 157–173. Springer,
Heidelberg (2013)

7. Calvary, G., Thevenin, D.: A unifying reference framework for the development of
plastic user interfaces. In: Nigay, L., Little, M.R. (eds.) EHCI 2001. LNCS, vol.
2254, pp. 173–192. Springer, Heidelberg (2001)

8. Nielsen, J.: Usability Engineering. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1993)

9. ISO/IEC: ISO/IEC 9126. Software engineering - Product quality. ISO/IEC (2001)
10. Seffah, A., Donyaee, M., Kline, R.B., Padda, H.K.: Usability measurement and

metrics: a consolidated model. Softw. Qual. Control 14, 159–178 (2006)
11. Aquino, N., Vanderdonckt, J., Condori-Fernández, N., Dieste, O., Pastor, O.:

Usability evaluation of multi-device/platform user interfaces generated by model-
driven engineering. In: Proceedings of the 2010 ACM-IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, ESEM ’10, New York,
NY, USA, ACM, pp. 30:1–30:10 (2010)

12. Panach, J.I., Condori-Fernández, N., Vos, T.E.J., Aquino, N., Valverde, F.: Early
usability measurement in model-driven development: definition and empirical eval-
uation. Int. J. Softw. Eng. Knowl. Eng. 21, 339–365 (2011)

13. Gómez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent
web applications. IEEE Multimedia 8, 26–39 (2001)

14. Bouchelligua, W., Mahfoudhi, A., Mezhoudi, N., Daassi, O., Abed, M.: User inter-
faces modelling of workflow information systems. In: Barjis, J. (ed.) EOMAS 2010.
LNBIP, vol. 63, pp. 143–163. Springer, Heidelberg (2010)



420 L.B. Ammar et al.

15. M. Leavit, Shneiderman, B.: Research Based Web Design & Usability Guidelines
(2006)

16. Lacob, M.E.: Readability and Usability Guidelines (2003)
17. Murata, M., Uchimoto, K., Ma, Q., Isahara, H.: Magical number seven plus or

minus two: syntactic structure recognition in Japanese and English sentences. In:
Gelbukh, A. (ed.) CICLing 2001. LNCS, vol. 2004, pp. 43–52. Springer, Heidelberg
(2001)

18. Bastien, J.C., Scapin, D.L.: Ergonomic criteria for the evaluation of human-
computer interfaces. Technical report RT-0156, INRIA (1993)

19. Vale, S., Hammoudi, S.: Context-aware model driven development by parameter-
ized transformation. In: Proceedings of the 1st International Workshop on Model
Driven Interoperability for Sustainable Information Systems (MDISIS’08) Held in
Conjunction with the CAiSE’08 Conference, pp. 121–133. Springer, Heidelberg
(2008)

20. Guerrero, J.: A methodology for developing user interfaces to workflow information
systems (2010)

21. Ben Ammar, L., Mahfoudhi, A., Abid, M.: A usability evaluation process for plastic
user interface generated with an mde approach. Software Engineering Research and
Practice, pp. 323–329. CSREA Press, Las Vegas (2012)


	Dealing with Usability in Model-Driven Development Method
	1 Introduction
	2 Related Works
	3 Proposed Usability Evaluation Method
	3.1 Overview
	3.2 Usability Evaluation
	3.3 Automatic Usability Evaluation Process
	3.4 Results Analysis and Suggestion of Recommendations

	4 An Illustrative Case Study
	5 Conclusions and Future Research Works
	References


