
Reengineering of Object-Oriented Software
into Aspect-Oriented Ones Supported

by Class Models

Paulo Afonso Parreira Júnior1(&), Rosângela Dellosso Penteado1(&),
Matheus Carvalho Viana1(&), Rafael Serapilha Durelli2(&),

Valter Vieira de Camargo1(&),
and Heitor Augustus Xavier Costa3(&)

1 Departament of Computer Science, Federal University of São Carlos,
São Carlos, Brazil

{paulo_junior,rosangela,matheus_viana,

valter}@dc.ufscar.br
2 Computer Systems Department, University of São Paulo, São Carlos, Brazil

rdurelli@icmc.usp.br
3 Departament of Computer Science, Federal University of Lavras,

Lavras, Brazil
heitor@dcc.ufla.br

Abstract. Object-Oriented Software Reengineering (OO) into Aspect-Ori-
ented Software (AO) is a challenging task, mainly when it is done by means of
refactorings in the code-level. The reason is that direct transformation from OO
code to AO one needs of several design decisions due to differences of both
paradigms. To make this transformation more controlled and systematic, we
propose the use of concern-based refactorings, supported by class models. It
allows design decisions to be made during the reengineering process,
improving the quality of the final models. An example is presented to assess the
applicability of the proposed refactorings. Moreover, we also present a case
study, in which AO class models created based on the refactorings are com-
pared with another obtained without the aid of them. The data obtained indi-
cated that the use of the proposed refactorings improved the efficacy and
productivity of maintenance groups during the process of software
reengineering.

Keywords: Concern-based refactorings � Class models � Aspect-Orientation �
Reengineering

1 Introduction

Aspect-Orientation (AO) can be used in the revitalization of Object-Oriented (OO)
legacy software. AO allows encapsulating the so-called ‘‘crosscutting concerns’’
(CCC) - software requirements whose implementation is tangled and scattered by
functional modules - in new abstractions such as pointcuts, aspects, advices and inter-
type declarations [12].

� Springer International Publishing Switzerland 2014
S. Hammoudi et al. (Eds.): ICEIS 2013, LNBIP 190, pp. 296–313, 2014.
DOI: 10.1007/978-3-319-09492-2_18

Reengineering from OO to AO in code-level is not an easy task due to existing
differences between concepts related to both approaches. However, if the reengi-
neering process was supported by models, it could facilitate future maintenance. In
this paper we propose the use of concern-based refactorings on OO class models
annotated with information of CCC to obtain AO models. In the context of this paper,
annotated OO class models are UML OO class models whose elements (classes,
interfaces, attributes and methods) are annotated with stereotypes corresponding to the
CCC that exist in the software. The main idea is that concern-based refactorings can
be applied to transform these models into AO models.

There are many studies in the literature that present code-based refactorings [8, 10,
13, 14, 19]. Our main reasons to create and apply concern-based refactorings
supported by models (‘‘model-based refactorings’’ in the rest of this paper) are:

(i) code-level refactorings can be applied to transform OO software in AO ones.
However, this transformation is usually done in one step, which has as input an
OO code and as output an AO one. It makes the reengineering process less
flexible, because the responsibility to generate a code that follows good design
practices of AO is on the refactorings. The transformation supported by model-
based refactorings introduces at least one more step in the process before gen-
erating the final code. Thus, to ease the inflexibility of the process, in this step
the outcome AO model can be modified by the software engineer according to
the environment and stakeholder requirements;

(ii) generally, the source code is the only available artifact of the legacy software.
Applying model-based refactorings, both the legacy software and the generated
software will have a new type of artifact (i.e., UML class models), improving
their documentation; and

(iii) unlike the code-based refactorings, model-based ones are platform independent.
Thus, models can be transformed and good designs can be produced regardless
of programming language.

A set of nine model-based refactorings was developed [1]. It is subdivided into: (i)
three generic refactorings, which are concern-independent refactorings; and (ii) six
specific refactorings to the following concerns: persistence (subdivided into connec-
tion, transaction and synchronization management), logging and Singleton and
Observer design patterns [6]. Due to the limitation of space, only five of them are
presented in more details in this paper. The AO class models presented in this paper
are based on AOM (Aspect-Oriented Modeling) approach proposed by Evermann [4].

The remainder of this paper is structured as follows. Some concepts related to the
AOM approach proposed by Evermann, the annotated OO class models and the
computational support DMAsp [3], used to generate automatically annotated OO class
models, are discussed in Sect. 2. The generic and specific refactorings are presented in
Sect. 3. An example that illustrates the use of one generic refactoring is shown in
Sect. 4 and an evaluation of whole set of refactorings is presented in Sect. 5. Some
related works are summarized in Sect. 6. Finally, conclusions and suggestions for
future work are presented in Sect. 7.

Reengineering of Object-Oriented Software 297

2 Background

ProAJ/UML (UML Profile for AspectJ) is one of the most used approaches to model
AO software [4]. This approach consists of a set of stereotypes that can be applied on
UML class models, such as:

• \\CrossCuttingConcern[[: it is an extension of the Package meta-class, in
the UML meta-model. Its aim is to encapsulate aspects related to the same cross-
cutting concern;

• \\Aspect[[: it extends the UML Class meta-class. Its goal is to cluster pointcuts
and advices in an aspect and to allow aspects to extend classes or aspects and
implement interfaces;

• \\Advice[[: it is a BehavioralFeature meta-class extension. Its aim is to asso-
ciate advices with aspects; and

• \\PointCut[[: it is a StructuralFeature meta-class extension, whose goal is to
specify a static behavior. Its modelling is performed by concrete subclasses of
PointCut, such as CallPointCut and ExecutionPointCut.

These stereotypes are used in the AO class models generated with the application of
the refactorings proposed in this work. Furthermore, OO class models annotated with
information of CCC are used in the proposed refactorings. These annotations are
represented using stereotypes on the left side of the classes, interfaces, attributes and
methods identifiers. Figure 1 illustrates a class annotated with indications of persis-
tence CCC. The DMAsp (Design Model to Aspect) tool [3], developed in a previous
work, is used to generate automatically the annotated OO class models.

Based on the concept of annotated OO class models, the following concepts,
proposed by Figueiredo [5], were adapted to the context of this work and are com-
mented in the refactoring descriptions.

• Components Affected by a Concern are software elements such as classes,
interfaces, attributes and methods which have indications of this concern. These
elements are annotated with stereotypes of the concern that affect them;

• Primary Concern is the main concern of a component and it is related to the reason
by which it was created. For example, the openConnection method (Fig. 1) was
created to open database connections. Then ‘‘Persistence’’ is the primary concern of
this method. The primary concerns are identified by the prefix ‘‘Pri_’’ in the
stereotypes;

• Secondary Concern of a component corresponds to functions that this component
plays. However, these functions are not directly related to the reason for which it
was created. The Account class and its method withdraw, Fig. 1, were created
to perform the business rules of a hypothetical banking system. Thus ‘‘Persistence’’

Fig. 1. An UML class annotated with information about persistence CCC.

298 P.A.P. Júnior et al.

is a secondary concern in these components. The secondary concerns are identified
by the prefix ‘‘Sec_’’ in the stereotypes; and

• Well-modularized Components are software elements composed only by the
primary concern for which they were created. For example, the openConnec-

tion method (Fig. 1) is considered well-modularized, because the only type of
stereotype of this method is a primary concern related to ‘‘Persistence’’ concern.

3 Model-Based Refactorings

Hannemann [9] proposed the following classification of AO software refactorings:

(i) conventional OO refactorings adapted for AO software. These refactorings
only involve OO elements. The difference between these refactorings and the
well-known OO refactorings is they are aware of the existence of AO elements;

(ii) specific refactorings for AO software. These refactorings involve OO and AO
elements and they are specific to lead to the AO abstractions, such as aspects,
pointcuts, etc.; and

(iii) crosscutting concerns refactorings. Also called concern-based refactorings,
they should take all the elements (classes, aspects, interfaces, etc.) that partic-
ipate in a crosscutting concern and their relationships into consideration. This
happens, because concerns usually are manifested in several components.

A set of nine concern-based refactorings is shown in Table 1. Only five of them are
described in this paper with more details. The remaining refactorings were omitted for
reasons of limitation of space and can be found in [16].

The refactorings are presented with: (i) Acronym and Name of the Refactoring;
(ii) Application Scenario, which defines the situations the refactoring can be applied;
(iii) Motivation, which presents some problems caused by tangling and scattering of
CCC; and (iv) ProAJ/UML Mechanism, which is a set of steps to obtain an AO class
model from an OO one, according to the ProAJ/UML profile.

3.1 Generic Refactorings

The generic refactorings are responsible for transforming an annotated OO class
model to a partial AO class model. The generated model is named ‘‘partial’’, because

Table 1. Model-based refactorings.

Generic Refactorings
Name Description

R-1 Encapsulating a Secondary Concern with Association Relationships.
R-2 Encapsulating a Secondary Concern with Generalization/Specialization Relationships.
R-3 Extracting a Primary Concern.

Specific Refactorings
Name Description

R-Connection Encapsulating the CCC responsible for managing database connections.
R-Transaction Encapsulating the CCC responsible for managing database transactions.

R-Sync Encapsulating the CCC responsible for managing database synchronization.
R-Logging Encapsulating the CCC responsible for controlling the application of logging record.
R-Singleton Encapsulating the CCC corresponding to the Singleton design pattern.
R-Observer Encapsulating the CCC corresponding to the Observer design pattern.

Reengineering of Object-Oriented Software 299

the existing CCC may not be well-modularized yet. In this case, there still can exist
classes/interfaces, methods and/or attributes affected by crosscutting concerns. All
three generic refactorings are presented as follows.

R-1. Encapsulating a Secondary Concern with Association Relationships.

Application Scenario: when there are classes with Primary Concerns (Crosscutting
Concerns) which are Secondary Concerns in other classes and these classes are
related through association/aggregation relationships.

Motivation: the invocation of methods of classes which Primary Concern is a
Crosscutting Concern can improve the tangling/scattering of this concern, hurting
the software maintenance.

ProAJ/UML Mechanism: 1) Create a CrossCuttingConcern element called “CCC”,
in which “CCC” represents the concern name that is being modularized; 2) Inside
the element created previously, add an Aspect element called “CCCAspect”; 3)
Move each well-modularized attribute and method from the classes affected by the
concern to the “CCCAspect” element; and 4) Move all classes that have the concern
in analysis as a Primary Concern to the “CCC” element.

R-2. Encapsulating a Secondary Concern with Generalization/Specialization
Relationships.

Application Scenario: when there are classes with Primary Concerns (Crosscutting
Concerns) which are Secondary Concerns in other classes and these classes are
related through generalization/specialization relationships.

Motivation: the override of methods of classes which Primary Concern is a
Crosscutting Concern can improve the tangling/scattering of this concern, hurting
the software maintenance.

ProAJ/UML Mechanism: 1) Create a CrossCuttingConcern element called “CCC”,
in which “CCC” represents the concern name that is being modularized; 2) Inside
the element created previously, add an Aspect element called “CCCAspect”; 3)
Move each well-modularized attribute from the classes affected by the concern to
the “CCCAspect” element; 4) For each well-modularized method from the classes
affected by the concern, create a “IntroductionMethod” element to add this method
to the aspect “CCCAspect”; and 5) Move the inherence and interface realization to
the aspect “CCCAspect”, using “DeclareParents” elements.

R-3. Extracting a Primary Concern.

Application Scenario: when there are classes with Secondary Concerns, which are
Crosscutting Concerns and these ones are not Primary Concerns in any classes.

Motivation: some crosscutting concerns can be scattered in several classes and there
are not specific classes that implement them. One concern of this type is not a
Primary Concern in any class of the application. This scenario represents a high
level of concern tangling and a low level of software modularization.

ProAJ/UML Mechanism: 1) Create a CrossCuttingConcern element called “CCC”,
in which “CCC” represents the concern name that is being modularized; 2) Inside
the element created previously, add an Aspect element called “CCCAspect”; and 3)
Move each well-modularized attribute and method from the classes affected by the
concern to the “CCCAspect” element.

300 P.A.P. Júnior et al.

Looking at the application scenarios of these refactoring we understand that: ‘‘no
matter what concern we are dealing, the scenario described above represent a low
level of modularization’’.

Reengineering of Object-Oriented Software 301

For example, based on the R-3 refactoring, we already can apply a modularization
strategy to this concern, whatever it is, putting all the well-modularized elements
(attributes and methods) related to this concern in a specific module, in this case, an
aspect. In all refactorings presented above, only well-modularized elements are moved
to the aspect, avoiding problems related to the dependence of other concerns.

3.2 Specific Refactorings

The specific refactorings are responsible for transforming partial AO class models in
final ones. These refactorings are named ‘‘specific’’, because they only can be applied
to a specific type of concern. For example, there is a specific refactoring to the
transaction management concern that generates an AO class model with the modu-
larization of this concern using aspects. Six specific refactorings were developed, as
presented in Table 1.

These refactorings were created based on the most common strategies for
implementing these types of crosscutting concerns. For example, the database con-
nection concern is usually implemented with a class responsible for creating con-
nections and each persistent method must open the connection at the beginning of its
execution and close it at the end. In another example, the singleton pattern is generally
implemented as follows [6]: (i) create an attribute of the same type of the Singleton
class; (ii) become private the constructor of the Singleton class; and (iii) create a
method responsible for keeping only one instance of the Singleton class. Therefore, it
is possible to define some steps for modularization of this type of concern, based on
the most common strategies for implementing them.

The specific refactorings are applied on the models generated by the generic
refactorings. Thus, in ProAJ/UML Mechanism description, aspects created previously
are mentioned. To illustrate this case the refactorings R-Singleton and R-Transaction
are presented.

Unlike the generic refactorings, in this case, we can use some more specific steps
to modularize the CCC, because they are well-known concerns. Thus, for example, in
the case of the Singleton concern, the aspect created by a generic refactoring has been
transformed into an abstract one and for each class affected by this concern one aspect
has been created. This strategy follows a good practice for AO design suggested by
Piveta [18]. Furthermore, it is similar to Hannemann and Kiczales’ solution [7] and
was adapted to the context of annotated OO class models.

3.3 Considerations About the Refactorings

Some of the main reasons to apply generic refactorings are: (i) the application of
generic refactorings can facilitate the achievement of a better AO model: wrong
decisions made by software engineers, due to their inexperience, can prejudice the AO
model quality. Thus, an initial modularization strategy offered by these refactorings
can minimize this problem; and (ii) generic refactorings can be applied to any type
of concern, even to those concerns that are not widely known as crosscutting

302 P.A.P. Júnior et al.

concerns: it is not easy to identify whether a particular concern is or not a crosscutting
concern. Thus, with the help of generic refactorings, we can identify scenarios that
demonstrate or provide evidence of the existence of crosscutting concerns in software.
For example, the application scenario for the refactoring R-3 states a configuration
that can evidence the existence of a crosscutting concern (many classes of software
related to a secondary concern in these classes).

There is not a specific sequence to apply generic refactorings proposed in this
work. The steps created for refactoring are applied when a specific element is well-
modularized, i.e., when there is no interference of other concerns in this element.
Moreover, some modularization strategies described in the steps of the refactoring
were considered to avoid interference in the order of execution of the refactoring.
Similarly to what happens with the generic refactorings, the order in which the spe-
cific refactorings are applied does not interfere in the final AO class model. It happens
because each refactoring acts only on a particular concern at a time, not compromising
elements related to other concerns.

The manual execution of the steps described in the refactoring presented on class
models of software for medium and large scale can be hard and error-prone. Thus, an
Eclipse plug-in called MoBRe (Model-Based Refactorings) was developed to perform
tasks related to refactoring of crosscutting concerns in a semi-automatic way. MoBRe
[17] allows transforming an annotated class model into a partial AO class model,
when the generic and specific refactorings are applied. The AO class models generated
can be visualized within the Eclipse.

4 Example of Use

To present the applicability of the proposed refactorings, an example, using the Health
Watcher software [20], is presented. This software registers complaints in the health
area and it was chosen because it: (i) has an OO and an AO version; and (ii) was
modularized by expert software engineers by using best practices of AO design.

The crosscutting concern partially modularized in this example is the Singleton
pattern, represented by the ‘‘Singleton’’ stereotype. Other crosscutting concerns affect
this application, such as connection and transaction management, represented by the
‘‘Conn’’ and ‘‘Trans’’ stereotypes, but the modularization of them is not performed in
this paper because of limitations of space.

One part of Health Watcher OO class model, responsible for the maintenance of
the patient complaints, is presented in Fig. 2. This model is annotated by using ste-
reotypes of the concerns that affect the software classes, according to the information
provided by Soares et al., [20].

The HealthWatcherFacade class provides methods necessary for execution
of the business logic of the application, as complaints registration, diseases, and
symptoms. The singletonHW and singletonPS attributes and the getI-

nstanceHW and getInstancePS methods have ‘‘Singleton’’ as Primary Concern,
because they were created specifically for implementing the Singleton pattern. The
same way, ‘‘Conn’’ and ‘‘Trans’’ are Primary Concerns of the IPersistence-

Mechanism interface and the PersistenceMechanism class, because they were

Reengineering of Object-Oriented Software 303

created for implementing these concerns. The HealthWatcherFacade class has
‘‘Trans’’ and ‘‘Singleton’’ as Secondary Concerns, because this class was not created
for implementing these concerns, but it is affected by them. This information about
what concerns are primary or secondary one was provided by the Health Watcher
developers.

According to the scenario of tangling/scattering of the model presented in Fig. 2,
the singleton concern can be initially refactored by the R-3 refactoring. This happens
because ‘‘Singleton’’ is a Secondary Concern in some classes of this model and it is
not a Primary Concern in none other classes. After applying the R-3 refactoring to the
‘‘Singleton’’ concern, the partial AO class model presented in Fig. 3 was obtained.

The changes made were: (i) the SingletonAspect aspect was created; and (ii)
the singletonHW and singletonPS attributes and the getInstanceHW and

Fig. 2. A UML class stereotyped with CCC indications.

Fig. 3. Health watcher AO class model obtained through R-3 refactoring.

304 P.A.P. Júnior et al.

getInstancePS methods were moved to the SingletonAspect aspect. It is
because these elements are well-modularized in the HealthWatcherFacade and
PersistentMechanism classes.

The application of the R-Singleton refactoring was omitted for reasons of limi-
tation of space and can be found in [1].

5 Evaluation

The crosscutting concern modularization may be performed with or without the
assistance of refactorings. In the second case, the process of modularization is
extremely dependent on the expertise of the software engineer. He/She must have
knowledge about the crosscutting concerns to be modularized and best practices and
strategies for the modularization of these concerns. Refactorings minimize this
dependence, making the final product (modularized software) more standardized and
improving its quality.

The question we want to answer with this case study is: how much can the
refactorings affect the efficacy of the modularization process and the productivity of
the maintenance group? In this context, productivity is defined as the time that a
group takes to modularize the crosscutting concerns of a software product. Besides,
efficacy consists in verifying whether all crosscutting concerns were suitably modu-
larized or not. Thus, the case study was carried out and it is shown in the next
subsections.

5.1 Case Study Definition

The efficacy and productivity evaluation of the refactorings was performed in two
ways:

(i) comparing the generated AO class models with another version of them, obtained
from a reverse engineering using the AO code found in the literature (in this
study, we use the JSpider AO code available in [11]). To do this, a set of seven
Metrics for Modularization were used to compare both versions of the appli-
cation AO class model (Table 2). All of them, except MQ and AVG(MQ), accept
the following values: 1.0 – Completely Compliant; 0.5 - Partially Compliant; and

Table 2. Metrics for modularization.

Reengineering of Object-Oriented Software 305

0.0 – Not Compliant. These values are assigned to the metrics for modularization
by specialists after comparing the models created by the participants of this
experiment to the models obtained from the literature. The metrics MQ and
AVG(MQ) accepts values between [0.0; 5.0] and the higher the value of them, the
better is the modularization of a concern; and

(ii) comparing the time spent by each participant to complete the modularization of a
given OO class model. For this, we used the metric Productivity (Pr), given to the
Formula (1). The higher the value of Pr, the better is the productivity of a
participant.

Pr ¼ AVG MQð Þ = T; ð1Þ

where AVG(MQ) is the average of the metric Modularization Quality and T is the
time (in hours) spent by a participant to modularize the crosscutting concerns.

5.2 Case Study Planning

(a) Selection of Context and Formulation of Hypothesis. The study was carried out
with graduate students at the Federal University of São Carlos. The system used as
object of study was JSpider [11], a highly configurable and customizable Web Spider
engine. The participants had to modularize the Logging and Singleton crosscutting
concerns and generate an AO class model from the OO model classes of the JSpider
application.

Four hypotheses were elaborated (Table 3), two of which refer to the efficacy and
two ones refer to the productivity. Besides, the metrics MQ and Pr were used for
formulating the hypotheses.

(b) Selection of Variables and Participants. Independent variables are those
manipulated and controlled during the experiment. In this context, they are the way
how the participants performed the modularization: with or without the use of the
refactorings. Dependent variables are those under analysis, whose variations must be

Table 3. Hypotheses of the case study.

306 P.A.P. Júnior et al.

observed. In this experiment, they are the efficacy and productivity. The participants
were selected through a convenient non-probabilistic sampling.

(c) Design of the Experiment. The distribution of the participants in groups was done
by using a profile characterization questionnaire.

The questions were about their level of experience in OO and AO, modularization
and UML profile to modelling AO software. All questions had the possible answers: 1
- None; 2 - Basic; 3 - Medium; 4 - Advanced; 5 - Expert. The obtained values are
plotted in the graph shown in Fig. 4.

The groups were created as follows: Group A - participants P1 to P5; Group B -
participants P6 to P10. The average of expertise of Group A is approximately 1.86 and
Group B, 1.80, representing that the groups were balanced. To separate the experts
and novices we have defined the value 1.75 (horizontal line in Fig. 4). This value was
defined according to our experience with the required knowledge to perform the
modularization of CCCs. Above this value the participants were considered experts
(P1, P2, P6 and P9) and below novices (P3, P4, P5, P7, P8 and P10). It is important to
notice that both groups have the same number of expert and novice participants.

The documents used in this experiment were: (i) a registry form to be filled out
with information related to the execution of the study; (ii) a script of execution with
the steps to be followed to perform the experiment; and (iii) the description of the
proposed refactorings. The registry form contained the participant name, the appli-
cation to be modularized, the starting time and the observations and/or problems
noticed by the participant. The script of execution contained a list of tasks that the
participants should carry out and had the goal of assisting them and minimizing the
possibility of failures during the execution. The description of the proposed refact-
orings presents the refactoring according the template used in Sect. 3.

The experiment was divided in three phases. In the first phase (Training), we
conducted a training aimed at homogenizing the knowledge of the participants on the
modularization of crosscutting concerns using hypothetical applications. In the second
phase (Pilot) all participants had to discover how to modularize the persistence
concern that crosscuts pieces of the HealthWatcher application manually and using the
proposed refactorings. The goal of the pilot was to minimize the difficulties of

Fig. 4. Expertise of the participants.

Reengineering of Object-Oriented Software 307

following the steps described in the refactorings. Besides, the pilot also was intended
to avoid that problems related to the filling out of the forms could interfere in the
results of the experiment. In the third phase (Execution) the goal was to modularize
the Logging and Singleton concerns in the JSpider application. Different types of
concern between Execution and Pilot phases were used to avoid that the knowledge on
the persistence concern obtained in the previous phase (pilot) to influence the results.

(d) Collected Data. Tables 4 and 5 show the data obtained in third phase of the
experiment (Execution) by the Groups A and B, respectively (AoE means Average of
the Experts and AoN means Average of the Novices).

The participants, assigned by ‘‘P#’’, and the titles of the table columns are pre-
sented in first line. The time used by the participants for performing the modular-
ization is presented in lines from 2 to 3. The concern names are presented in lines 3
and 10 and the values of the metrics described in Table 2 are presented in lines from 5
to 10 (for the Singleton concern) and from 12 to 17 (for the Logging concern). The
average of the metric MQ and the value of the metric Pr are presented in lines 19 and
20. The columns that contain the data of participants classified as experts were
highlighted in gray color.

(e) Data Analysis. Regarding the Efficacy and Productivity, Tables 4 and 5 show that
most of participants that used the proposed refactorings got better results than those
ones that do not used them.

Regarding the Productivity, just one of the participants that used the proposed
refactorings was less productive. Although there was an extra task to be carried out (to
follow the steps described in the refactorings), the developer will need to modify the
models during the process of refactoring less times, thus minimizing the final time to
perform the activity.

Table 5. Execution of the case study - Group
B (without refactorings).

Data P6 P7 P8 P9 P10 AVG AoE AoN
Time (m) 38 45 60 60 30 46 49 45
Time (h) 0,63 0,75 1,0 1,0 0,5 0,78 0,69 0,83

Singleton Pattern
CC_As 1,0 1,0 0,0 0,0 1,0
CM_AM 1,0 1,0 0,0 0,0 1,0
CC_PA 0,0 0,0 0,0 0,0 0,0
CC_GSR 0,0 0,0 0,0 0,0 0,0
CS_PC 0,0 0,0 0,0 0,0 1,0
MQ 2,0 2,0 0,0 0,0 3,0 1,4 1,0 1,7

Logging
CC_As 1,0 1,0 0,5 0,0 1,0
CM_AM 1,0 1,0 0,0 0,0 0,5
CC_PA 0,5 1,0 0,0 0,0 0,0
CC_GSR 0,0 0,0 0,0 0,0 0,0
CS_PC 0,0 0,0 0,0 0,0 1,0
MQ 2,5 3,0 0,5 0,0 2,5 1,7 1,3 2,0

Results
AVG(MQ) 2,3 2,5 0,3 0,0 2,8 1,6 1,1 1,8
Pr 3,63 3,33 0,3 0,0 5,6 2,57 3,48 1,97

Table 4. Execution of the case study – Group
A (with refactorings

Data P1 P2 P3 P4 P5 AVG AoE AoN
Time (m) 35 47 60 60 60 52 41 60
Time (h) 0,58 0,78 1,0 1,0 1,0 0,87 0,68 1,0

Singleton Pattern
CC_As 1,0 1,0 1,0 1,0 1,0
CM_AM 1,0 1,0 1,0 1,0 1,0
CC_PA 1,0 1,0 0,5 1,0 0,5
CC_GSR 1,0 1,0 1,0 1,0 1,0
CS_PC 1,0 1,0 1,0 1,0 1,0
MQ 5,0 5,0 4,5 5,0 4,5 4,8 5,0 4,7

Logging
CC_As 1,0 1,0 1,0 1,0 1,0
CM_AM 1,0 1,0 1,0 1,0 1,0
CC_PA 1,0 1,0 0,5 0,5 0,5
CC_GSR 1,0 1,0 1,0 1,0 1,0
CS_PC 1,0 1,0 1,0 1,0 1,0
MQ 5,0 5,0 4,5 4,5 4,5 4,7 5,0 4,5

Results
AVG(MQ) 5,0 5,0 4,5 4,8 4,5 4,8 5,0 4,6
Pr 8,57 6,38 4,5 4,8 4,5 5,75 7,48 4,6

308 P.A.P. Júnior et al.

As it can be observed in Fig. 5, the average of metric MQ, when the participants
had the aid of the refactorings was higher than the one when they did not have this aid.
According to this chart, the value of the metric MQ was 206 % higher, in average, for
all participants, and 344 % higher, in average, for participants classified as experts and
150 % higher, in average, for participants classified as novices).

Analogously, in Fig. 6, the average of metric Pr also was better when the par-
ticipants used the refactorings. This chart presents productivity 124 % higher, in
average, for all participants, and 115 % higher, in average, for participants classified
as experts and 134 % higher, in average, for participants classified as novices).

It is also possible to notice in Figs. 5 and 6 that the refactorings helped more
expert participants than non-expert ones. It happened maybe because the description
of the proposed refactorings was not well detailed enough to guide non-expert par-
ticipants to modularize the concerns correctly.

(f) Hypothesis Testing. After outlier analysis, it was noticed that none outlier was
identified and the hypotheses tests were performed. The verification of the normality
of the distribution sample data was made using the non-parametric test called Shapiro-
Wilk [15].

The aim of the hypothesis test is to verify if the null hypothesis (H0Ef and H0EPr)
can be rejected, with some significance degree, in favor of an alternative hypotheses
(H1Ef or H1Pr) based in the set of data obtained.

The t-test test was applied to the set of sample data in two stages, because of the
existence of two dependent variables, Efficacy and Productivity were observed. In first
stage, the sample relative to the values of the metric Pr was compared. In second one,
the comparison was made using samples referring to the values of MQ metric. For the
purpose of this study, the minor degree of significance a was used in both stages to
reject the null hypothesis and the maximum degree of significance equal to 5 % was
considered.

First Stage. Based in two independent samples (PrWR and PrWOR) with averages
equals to 5.75 and 2.57, respectively in Tables 4 and 5, the null hypothesis (H0Pr)
could be rejected with 0.0151 % of significance. In others words, it is possible to

Fig. 5. Average of the metric MQ. Fig. 6. Average of the metric Pr.

Reengineering of Object-Oriented Software 309

assure with 99.9 % of accuracy that the average of the values of the productivity
obtained by the participants that used the refactorings is different.

Second Stage. Based in two independent samples (MQWR and MQWOR) with averages
equals to 4.8 and 1.6, respectively, the null hypothesis (H0Ef) could be rejected with
0.0007 % of significance. In others words, it is possible to assurance with 99.9 % of
accuracy that the average of the values of the efficacy obtained using the refactorings
is different as compared to not using the refactorings.

With the rejection of H0, it can be stated that the observed differences in the
average of efficacy and productivity of the participants who used the refactorings and
participants who have not use them, have statistical significance. Thus, the change in
efficacy and productivity of the groups was due to the strategies for software modu-
larization adopted in the experiment, i.e., with or without refactorings.

As presented in Figs. 5 and 6, the average value of the metric MQ of the partic-
ipants who used the refactorings was higher than that of the participants who have not
used (MQWR [MQWOR). These data show that the use of refactorings for modular-
ization of crosscutting concerns is generally more effective than when such refactoring
are not used.

Analogously, with respect to productivity, it was expected that the systematic
description of the steps of refactorings becomes more agile the execution of the
participants’ tasks. Based on the data and hypothesis test, there are evidences that the
use of refactorings can increase the productivity of a group.

(g) Threats to the Validity of the Study. Concluding Validity: the t-test was adopted
because our study was a project with one factor with two treatments. This is the most
suitable test for projects with this configuration, which the aim is to compare the
obtained averages from two distinct treatments. The t-test usually requires normally
distributed data. So, the Shapiro-Wilk test was applied and the result was positive for
our study.

Internal Validity: a point that may have influenced the results of the experiment is the
use of graduate students as participants. However, they were not influenced by
the conductors of this study and we did not show any expectation in favor or against
the refactorings proposed in this paper. Besides, the students were properly grouped
according to their experience levels in order to have homogeneous groups. This was
done to avoid that a group could finish the tasks much earlier than other group. The
participants did not receive any grade for the participation.

External Validity: an important bias is the choice of the concerns to be modularized in
the experiment. Different types of concern were used to avoid that the knowledge on a
specific concern obtained in the training phase to influence the results in other phases
of the experiment. Another bias in this case study is that the proposed refactorings
have been applied in software of fairly small size that cannot reflect the real scenario
of a company that develops/maintains software. It is intended to replicate such
experiment with different participants, concerns and applications, in order to isolate
the obtained results from these possible influences.

310 P.A.P. Júnior et al.

6 Related Works

Many works have been proposed for refactoring of OO software to AO ones and the
refactorings are only applied at source-code level, from OO to AO [8, 10, 13, 14, 19].
Moreover, it was noted a lack of related works related to model-based refactorings.

Boger [2] developed a plug-in for the CASE tool ArgoUML that support UML
model-based refactorings. The refactoring of class, states and activities is possible,
allowing the user to apply refactorings that are not simple to apply at source-code
level. Van Gorp [21] proposed a UML profile to express pre and post-conditions of
source-code refactorings using Object Constraint Language (OCL) constraints. The
proposed profile allows that a CASE tool: (i) verify pre and post-conditions for the
composition of sequences of refactorings; and (ii) use the OCL consulting mechanism
to detect bad smells.

The differential of this work in relation to others is the proposal to construct an AO
model considering OO class models annotated with stereotypes representing cross-
cutting concerns.

From the conducted case study was performed an evaluation of the obtained
results with the support of AO metrics. It was realized that the use of proposed
refactorings allows to obtain high quality AO models because: (i) it provided a step by
step guide to modularization of certain CCC; and (ii) the proposed refactorings were
elaborated considering good design AO practices. Therefore, the use of these re-
factorings can lead to build high quality AO models, because it prevents software
engineers to choose inappropriate strategies for modularization of crosscutting con-
cerns. The limitations of this study is considered: (i) lack of a more quantitative
evaluation of the computational support and the proposed refactorings; (ii) the need
for new metrics to improve the evaluation process of the refactorings; (iii) lack of
studies about the security semantics of legacy software after the application of re-
factorings; and (iv) a little amount of refactorings for CCC.

7 Final Considerations and Future Works

The idea of using annotated OO class models to build AO models was adopted
because they can bring the following benefits: (i) it helps to visualizing possibilities
for modularization without using AO; (ii) provides higher level of abstraction by
helping the software understanding; (iii) the generated models serves as documenta-
tion for the AO software and legacy ones and are independent of programming
language.

As future works we intend: (i) to determine if, by means of a controlled experi-
ment, the AO project model generated with the use of refactorings has better benefits
than an AO project only obtained with code refactorings; (ii) to develop new specific
refactorings for other types of concerns such as security, exception handling, among
others; (iii) to create a module for detecting the impacts that can cause a refactoring on
a particular software before being applied; and (iv) to proposed strategies for guar-
antee the behaviour-preservation of OO and AO models after using the refactorings.

Reengineering of Object-Oriented Software 311

Acknowledgements. The authors would like to thank CNPq for the financial support
(Proc. No. 133140/2009-1 and 560241/2010-0).

References

1. Parreira Júnior, P.A., et al.: Concern-based refactorings supported by class models to
reengineer object-oriented software into aspect-oriented ones. In: International Conference
on Enterprise Information Systems (ICEIS), 2013, Angers/FR (2013)

2. Boger, M., Sturm, T.: Tools-support for model-driven software engineering. In:
Proceedings of Practical UML-Based Rigorous Development Methods (2001)

3. Costa, H.A.X., Parreira Júnior, P.A., Camargo, V.V., Penteado, R.A.D.: Recovering class
models stereotyped with crosscutting concerns. In: Session Tool of XVI Working
Conference on Reverse Engineering, Lille, France (2009)

4. Evermann, J.: A metalevel specification and profile for aspectj in UML. In: AOSD. Victoria
University Wellington, Wellington (2007)

5. Figueiredo, E., Sant’Anna, C., Garcia, A., Lucena, C.: Applying and evaluating concern-
sensitive design heuristics. In: Brazilian Symposium on Software Engineering, Fortaleza
(2009)

6. Gamma, E., Helm, R., Johnsn, R., Vlisside, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

7. Hannemann, J., Kiczales, G.: Design pattern implementation in java and aspectj. In:
Conference on Object-Oriented Programming Systems, Languages and Applications.
SIGPLAN Notices, Vol. 37(11), pp. 161–173. ACM (2002)

8. Hannemann, J., Murphy, G.C., Kiczales, G.: Role-based refactoring of crosscutting
concerns. In: AOSD, New York, pp. 135–146, (2005)

9. Hannemann, J.: Aspect-oriented refactoring: classification and challenges. In: International
Workshop On Linking Aspect Technology and Evolution, Bonn (2006)

10. Iwamoto, M., Zhao, J.: Refactoring aspect-oriented programs. In: International Workshop
On Aspect-Oriented Modeling With UML, Boston, pp. 1–7 (2003)

11. JSpider. j-spider.sourceforge.net/. Accessed January 2013
12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-C., Irwin, J.:

Aspect-oriented programming. In: Aks�it, Mehmet, Matsuoka, Satoshi (eds.) ECOOP 1997.
LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

13. Marin, M., Moonen, L., Van Deursen, A.: An approach to aspect refactoring based on
crosscutting concern types. Sigsoft Softw. Eng. Notes 30(4), 1–5 (2005)

14. Monteiro, M.P., Fernandes, J.M.: Towards a catalogue of refactorings and code smells for
aspectj. In: Rashid, A., Aks�it, M. (eds.) Transactions on Aspect-Oriented Software
Development I. LNCS, vol. 3880, pp. 214–258. Springer, Heidelberg (2006)

15. Montgomery, D.C.: Design and Analysis of Experiments, 5th edn. Wiley, New York (2000)
16. Parreira Júnior, P.A.: Recovering aspect-oriented class models from object-oriented

systems by model-based refactorings. Master Dissertation. UFSCar, São Carlos. Brazil
(2011) (in Portuguese)

17. Parreira Júnior, P.A., Penteado, R.A.D., Camargo, V.V., Costa, H.A.X.: Mobre: refactoring
from annotated OO class models to AO class models. In: CBSoft Tools Session, São Paulo/
SP (2011) (in Portuguese)

18. Piveta, E., Moreira, A., Pimenta, M., Araújo, J., Guerreiro, P., Price, T.: Avoiding bad
smells in aspect-oriented software. In: International Conference on Software Engineering
and Knowledge Engineering, Boston, pp. 81–87 (2007)

312 P.A.P. Júnior et al.

http://j-spider.sourceforge.net/

19. Da Silva, B.C., Figueiredo, E., Garcia, A., Nunes, D.: Refactoring of crosscutting concerns
with metaphor-based heuristics. Electron. Notes Theor. Comput. Sci. (Entcs) 233, 105–125
(2009)

20. Soares, S., Laureano, E., Borba, P.: Implementing distribution and persistence aspects with
AspectJ. In: ACM Conference OOPSLA’02, pp. 174–190 (2002)

21. Van Gorp, P., Stenten, H., Mens, T., Demeyer, S.: Towards Automating Source-Consistent
UML Refactorings. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 144–158. Springer, Heidelberg (2003)

Reengineering of Object-Oriented Software 313

	Reengineering of Object-Oriented Software into Aspect-Oriented Ones Supported by Class Models
	Abstract
	1 Introduction
	2 Background
	3 Model-Based Refactorings
	3.1 Generic Refactorings
	3.2 Specific Refactorings
	3.3 Considerations About the Refactorings

	4 Example of Use
	5 Evaluation
	5.1 Case Study Definition
	5.2 Case Study Planning

	6 Related Works
	7 Final Considerations and Future Works
	References

