
Efficient Calibration of Cable-Driven Parallel
Robots with Variable Structure

Dragoljub Surdilovic, Jelena Radojicic and Nick Bremer

Abstract This paper presents an efficient practical approach for the combined
explicit and implicit approximated calibration of cable-driven parallel robots (wire
robots, CDPR) mainly developed to tackle the problems with variable system
structures, i.e. often reconfigurable common robot platform. Indeed, the developed
calibration procedure can also be applied to the systems with stationary (end-effector-
i.e. gripper-like) platforms, however the benefits of the new methods are mainly
expressed in the variable structure systems. The variable structure CDPR systems
cover classes of robots in which the common robot platform represents a working
object to be manipulated, itself. Such systems are typical in novel CDPRs referred as
extended-cranes wire robots or rehabilitation wire robots (e.g. STRINGMAN [1]).
An additional specific system case belonging to the considered class is large mobile
CDPR developed for applications in agriculture, which with changes of the appli-
cation fields should be often periodically reconfigured and commissioned (cali-
brated). The paper provides detailed mathematical modelling of the novel calibration
approach based on the parameter sensitivity analysis of the robot kinematic models
including wire pulley systems. The implementation of the calibration procedures
including required sensory systems and control supports has also been considered.
Finally, practical examples illustrate the performance of the developed calibration
method.
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1 Introduction

The cable-driven parallel robots (CDPR) or wire-robots have been recently addressed
in numerous researches focusing on their advantages for implementing large spans,
fast moving, lightweight and heavy-duty active spatial mechanisms. In comparison to
a more general class of cable robots (e.g. spatial advanced robotized crane systems),
the wire robots, especially the so called over-constrained structures, offer benefits
such as ease of reconfiguration and adaptation to specific applications. Thereby
the robot structures may be often changed, commonly by exchanging the working
platform or varying locations of the robot wires attachments (pulleys, winches) in
the space. Moreover, in specific CDPR systems, the change of common working
platform or wire locations is closely related to the robot function.

A typical example represents the gait rehabilitation robot STRINGMAN [1]. This
wire robot is unique, since its common platform interconnecting all cables represents
the upper body of a patient (Fig. 1). The wires are connected to a harness carried by
a patient performing gait training. The role of STRINGMAN is to provide weight
suspension and gait balancing support (see [1] for more details). The procedures
of patient attachments (Fig. 1) and detachments, facilitated by specific wire-tension
control algorithms (based on force and impedance control) and patient lift-systems,
represent a part of typical robot operations. The dimensions of the established “plat-
form” practically vary for each patient, and efficient robot calibration and commis-
sioning become crucial functions of the control system. Typical for the STRINGMAN
are considerable inaccuracies, due to elasticity of the harness (human body attach-
ment), which are tackled by the control system, relying on the interaction (force and
impedance) control, rather than on the position control, supported by human tracking
sensors (IMU, local wire-position sensors, vision etc.).

Another typical variable CDPR system requiring continuous calibration repre-
sents the so called extended-crane systems (Fig. 2). An extended-crane represents a
combination of a wire robot and a conventional crane. The robot configuration is
created to support task decomposition between the overhead crane (mainly performs

Fig. 1 STRINGMAN—patient attachments supported by lifting-system and wire-attach function
(position based force/damping control)



Efficient Calibration of Cable-Driven Parallel Robots with Variable Structure 115

Fig. 2 Extended-crane system

the weight balancing and gross motion) and the side wire system (mainly responsi-
ble for fine lateral positioning and orientation). The extended crane can considerably
improve flexibility and efficiency of assembly of heavy parts with complex irregular
geometry. The side wires have been still applied for such operations in industrial prac-
tice but in pure manual manipulation form, to support fine-positioning of heavy parts
carried by cranes. However, such repetitive operations are due to higher inertia of
handling parts (ergonomic safe limit is ca. 20 kg) quite dangerous for human health
and may cause serious back-pain problems. In extended crane systems the work-
piece itself represents a common platform providing several attachment points. The
side-wires (winches) carriers are commonly realized by mobile units with uncertain
locations (Fig. 2). Fast calibration after commissioning, as well as following each
new part attachment, should improve wire-robot models and model-based control.

A further example of variable structure and reconfigurable wire robot systems
represent large CDPRs for agricultural applications (Fig. 3). To meet higher system
flexibility and application requirements in various agricultural plants, it is convenient
to implement these systems by means of mobile pillars that transport winches and
platform, and can be fixed on stand-on legs at some locations to provide stable wire-
robot structure [2]. The exact locations of winches thereby should be identified by
calibration after system configuration/reconfiguration and commissioning.

Calibration, i.e. estimation of geometric and kinematic parameters of CDPRs,
or in more general case of parallel robots, has been recently addressed in several
researches [2–8]. Both system classes with characteristic structures, including closed-
loops between attached legs/wires and platform, offer a specific possibility for the
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Fig. 3 Large wire-robots with mobile pillars for agricultural applications

calibration based only on internal (proprioceptive) sensing, referred to as “implicit
loop method” [3]. As remarked by Wampler et all. [2], closed-loop relations provide
additional information for calibrations that are equivalent to the end-point pose mea-
surements in convenient industrial-robots with open kinematic chains. Additionally,
redundancy of over-constrained wire-robots provides supplementary information for
calibration [4]. The procedures for wire-robot calibration based on “implicit loop
method” and proprioceptive sensors applications (e.g. local motor rotation/sliding
sensors used for control purposes) are often referred to as “self-calibration” [4, 5].
Various specific self-calibration procedures (referred to as tension- and jitter-based
self-calibration) have been developed in [6] for a planar wire-robot structures, in
which some wires keep the length constant while remaining wires vary length or
tension.

As is well known, the self-calibration in complex (e.g. non-negligible pulleys)
and large wire-robots structures described by non-linear models, including wire cable
elasticity [9, 10] with considerable parameter uncertainties may become also com-
plex and converge to local minima that provide wrong information for identification.
Linearized iterative methods that include direct-kinematics in the loop [6], also in
general doesn’t ensure convergence (contraction processes), producing the steps that
deteriorate calibration procedure. Therefore complete identification schemes that
tackle both parameter and pose uncertainties have been recently proposed [6].

In large scale robots (Figs. 2 and 3), however, the self-calibration procedure may
become time-consumable and information from the external sensors can considerably
improve the calibration, especially in non-linear systems with expressed cable sag
and elasticity effects [8]. Thereby beside costly laser trackers [8] also relatively
cheap sensors, such as cameras [3] or IMU’s [1] (with additional external sensors,
i.e. closed-loop based data fusion and drift compensation) may be applied.

This paper provides novel calibration methods that combine force/impedance
control with external/internal CDPR calibration, which is based on affordable sen-
sors and quite efficient for calibration of frequently reconfigurable wire-robots. This
approach is based on an explicit linearized mathematical parameter sensitivity model
of complex wires structures including pulleys. To cope with large dimension and
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non-linearity, an approximation method based on sequential linear programming
(SLP) and linear recursive approximations based on smaller calibration sub-problems
[11] has been developed. Several simulation examples demonstrate the feasibility and
robustness of the calibration performance against higher parametric deviations and
measurement disturbances.

2 Kinematic Analysis

Kinematic models of wire-robots provides background for detailed parameter
sensitivity analysis In Fig. 4, a general model of wire-robot with n-wires (i=1,…, n)
is given. In a over-constrained wire-robot structure ensuring 6DOF motion plus wires
tension is n ≥ 7. Using the notion from (Fig. 4), the position of the i th wire platform
attachment point Bi is defined by

pi = ai + Li = p + bi (1)

where ai and bi are position vectors of pulley and platform attachment points Ai and
Bi wrt. base and local platform frames respectively, p is the position vector of the
platform reference frame and

Li = −−→
Ai Ci + −−→

Ci Ti + li (2)

where li is the wire-length vector, while Ci and Ti denote centre of the pulley and
wire tangent points (Fig. 4).

During an arbitrary platform displacement, the wire performs a complex
composite motion consisting of: transferred motion, representing the entire wire

Fig. 4 Wire-robot structure
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plane {Ai Bi Ci Ti } rotation (rolling motion of the pulley) around the fixed pulley axis
ei , and relative motion in the wire plane. The relative motion consists of relative
translation i.e. change of the relative length in the actual cable direction (due to cable
control, i.e. via a winch or linear slider mechanism (not presented in the Fig. 4), and a
relative rotation of the wire around the pulley (i.e. point Ti that represents actual pole
of the velocity). Based on this analysis, the expressions for absolute wire end-point
velocities and accelerations are obtained

vi = ṗi = ωei × Li + ωr i × li + ∗
l i = vp + ωp × bi (3)

ai = p̈i = εei × Li + εr i × li + ωei × (ωei × Li ) + ωei × (ωr i × li ) + ωr i

× (ωr i × li ) + 2(ωei + ωr i ) × ∗
l i + ∗∗

l i = ap + ε p × bi + ωp × (ωp × bi )

(4)

where ωei and εei denote pulley rotation velocity and acceleration around ei (Fig. 5),
ωr i and εr i relative wire rotation velocity and acceleration around wire-plane

normal ni ,
∗
li and

∗∗
l i are linear wire relative velocity and acceleration due to cable

length changes, vp and ωp, ap and ε p are platform linear and angular velocities
and acceleration vectors respectively. Relative velocity components and their direc-
tions are shown in (Fig. 5). The projections of the velocity and acceleration vectors
(3, 4) into wire-length vector direction, defined by unit vector li0 = li/li , i.e. scalar
multiplication of these equations by li0 yields the magnitudes of wire linear relative
velocity

∗
l i = [l T

i0 − l T
i0 bi ]tp (5)

where tp = [vT
p ωT

p ]T is the platform twist vector, while bi denotes skew-symmetric

3×3 matrix formed from the elements of the vector bi in order to represent the vector
product in the matrix form. Scalar multiplication of (4) by li0 yields the magnitude

Fig. 5 Velocity vectors components
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of wire relative acceleration

∗∗
l i = ω2

ei
[(�ei ×�Li )·�ni ][(�ei ×�ni )·�li0]+ω2

ri
li +[l T

i0 −l T
i0 bi ]ṫp−l T

i0 ωpbiωp (6)

where the first two components represent the projections of centrifugal accelera-
tions components (corresponding to the pulley and relative wire rotations), while the
remaining parts define projections of platform tangential and centrifugal accelera-
tions into the wire directions.

The expressions for vectors of angular pulley and wire relative rotations are
obtained by scalar multiplication of (3) by vectors nli = ni × li0 and ni respec-
tively in terms of platform twist vector

ωei = 1

(�ei × �Li ) · �ni
[nT

i − nT
i bi ]tp (7)

ωri = 1

li
[−l T

i0 ni l T
i0 ni bi ]tp (8)

3 Wire-Robot Jacobian and Its Time-derivative

The relationship between relative wire velocity, defining the cable length variations,
and platform twist vector is defined by the wire-robot Jacobian

∗
l = Jt p (9)

where
∗
l = [∗l1 . . .

∗
l i . . .

∗
l n]T and Jacobian matrix J ∈ �n×6 is

JT =
[

l10 · · · li0 · · · ln0
b1l10 · · · bi li0 · · · bn ln0

]
(10)

The time derivative of wire Jacobian is obtained by differentiating (9) (the same
result is obtained by substituting (7) and (8) in (6))

∗∗
l = Jṫp + J̇tp (11)

where based on (10) is

J̇T =
[

l̇10 · · · l̇i0 · · · l̇n0

ḃ1l10 + b1 l̇10 · · · ḃi li0 + bi l̇i0 · · · ḃn ln0 + bn l̇n0

]
(12)
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Taking into account that the time derivatives of the constant intensity vectors li0
and bi (considering an ideal rigid platform) are

l̇i0 = ωei × li0 + ωri × li0
ḃi = ωi × bi

(13)

and substituting (7) and (8) yields

J̇ = tT
p ⊗ J = tT

p ⊗ [JT
1 . . . JT

i . . . JT
n ]T (14)

where J is a n(6) × 1(6) block matrix (numbers outside parenthesis define block
matrix dimension, while within parenthesis the dimension of each block-matrix ele-
ment has been given), ⊗ is the Kronecker’s product (each block-element of J is by
tT

p multiplied) and the block element Ji ∈ �6×6 has the form

Ji =
⎡
⎣− 1

li
ni li0l T

i0 ni − 1
(�ei ×�Li )·�ni

ni l T
i0 ei

1
li

ni li0l T
i0 ni bi + 1

(�ei ×�Li )·�ni
ni l T

i0 ei bi

− 1
li

bi ni li0l T
i0 ni − 1

(�ei ×�Li )·�ni
bi ni l T

i0 ei
1
li

bi ni li0l T
i0 ni bi + 1

(�ei ×�Li )·�ni
bi ni l T

i0 ei bi + bi li0

⎤
⎦

(15)

4 Parameter Sensitivity Model

The kinematic model sensitivity analysis provides a framework for the development
of the calibration procedure. The above presented CDPR kinematic model includes
several parameters definitions: robot structure (vectors �ei and �ai , pulley radius ri ),

platform dimension, i.e. wire attachment points (vectors �̃bi , where ·̃ -denotes vectors
in local-platform coordinate systems), and variable platform position and rotation
vectors xp = [pT

p oT
p ]T . The rotation vector op takes different forms dependent

on selected rotation presentation (e.g. axis-angle, Cardan-, Euler- etc. angles). The
measurable wire length si , on a sliding- or a winch drive, consists of the active
wire-length li and the pulley arc of the contact length (Fig. 6). The basic kinematic
relationships for the calibration thus include

si = riδi + li
pi = ai + Li = p + bi = p + Rb̃i

Li = −−→
Ai Ci + −−→

Ci Ti = ri

[
�ei × �ni − 1

li
li × �ni

] (16)

where δi =≺ Ai Ti is the circular segment angle between points Ai and Ti

(see Fig. 6). The kinematic loop closure between two wire chains i and j over the
platform requires additionally

ai − a j + Li − L j = R(b̃i − b̃ j ) (17)
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Fig. 6 Wire transmission chains with linear sliders (left) and winches (right)

Fig. 7 Right-triangles relationships

The kinematic model parameters (16–17) uniquely define the position and ori-
entation of platform, i.e. wire attachment points Bi , in the space. By means of
these parameters two basic kinematic tasks inverse (IK) and direct-forward kine-
matics (DK) can be solved. The IK is trivial in CDPRs, mainly based on simple
geometric considerations: starting from given xp, i.e. known Bi , determining the
tangent on pulley (Thales’ circle), following by computation of δi and finally si (16).
Further transformation to corresponding motor angle or linear drive position is also
easy and depends on specific transmission train (Fig. 7). As well known, DK that
determines platform pose starting from measured si appears to be more complex in
parallel manipulators, and has been usually solved by iterative numeric procedures
[9] optimized for real-time applications (control).

In the reconfigurable systems, however, the fixed wire-robot parameters (�ei , �ai , �̃bi )

are unknown or uncertain and should be estimated before operation. The linearization

of (16) around an initial nominal parameter-model configuration (�ei0, �ai0, �̃bi0) and
an initial model pose (p0, R0) yields

�ai + �Li = �p + R0 �b̃i + �o R0b̃i0

�si = ri�δi + �li (18)

where �o represents skew-symmetric matrix of infinitesimal platform rotations. The
above equations provide a framework for a complete identification concerning both
parameter and pose uncertainties.
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The efficiency of the calibration can be improved by considering explicit

dependency between wire-robot parameters (�ei , �ai , �̃bi ) and cable length �li (�si )

deviations
li = li

(
ai , b̃i , ei , p, o

)
= li

(
ai , b̃i , ei , x

)
(19)

and

dli = ∂li
∂xT

dx + ∂li

∂b̃T
i

db̃i + ∂li
∂aT

i

dai + ∂li
∂eT

i

dei

�li = ∂li
∂xT

�x + ∂li

∂b̃T
i

�b̃i + ∂li
∂aT

i

�ai + ∂li
∂eT

i

�ei (20)

The relationship between�li and the platform pose deviations�x = [
�pT �oT

]T

is governed by the wire-robot Jacobian (9–10).

∂li
∂xT

=
[

l T
i0 −l T

i0 b
i

]
(21)

The Jacobian (10) and the equivalence between linear displacement �p, i.e. �pi ,
and platform parameters deviations �b̃i , given by �pi = R�b̃i , yields

∂li

∂b̃T
i

= l T
i0 (22)

The partial derivatives of li with respect to remaining parameter vectors may be
computed based on the geometrical relations in right triangles (Fig. 7)

l2
i = Ci Bi

2 − r2
i

Ci Bi
2 = (Li · ei )

2 + ((Li × ei ) · ni − ri )
2

L2
i = (Li · ei )

2 + ((Li × ei ) · ni )
2 (23)

yielding

l2
i = L2

i − 2 ((Li × ei ) · ni )
2 (24)

From (23–24), considering generalized partial derivative transformation

∂li
∂uT

i

= ∂
(
l2
i

)1/2

∂uT
i

= 1

2li

∂
(
l2
i

)
∂uT

i

= 1

2li

∂
(
L2

i − 2ri (Li × ei ) · ni
)

∂uT
i

(25)
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and taking into account the relationships

∂L2
i

∂aT
i

= −2LT
i and

∂ ((Li × ei ) · ni )

∂aT
i

= − (ei × ni )
T (26)

yields the desired partial derivatives with respect to ai

∂li
∂aT

i

= 1

li

(
−LT

i + ri (ei × ni )
T
)

= − 1

li

−−→
Ci Bi

T
(27)

In other words, an infinitesimal variation δ ai that is orthogonal to
−−→
Ci Bi doesn’t cause

the variation of the cable length δli = 0 (Fig. 8).
Finally the variations δei which are compatible with other constraints (small

rotations of ei around Ai ), cause

∂li
∂eT

i

= ri

li

LT
i ei

(Li × ei ) · ni
LT

i (28)

Due to constrained space the proof of (28), which is also based on relationship
(23–25), as well as on the statement that Li is not changed during ei variations (points
Ai and Bi remain fixed) (Fig. 5), is omitted. The deviations δei of pulley axes are
related to small angular rotations (errors) around two orthogonal axes defined by the
rotation vector δ oi with respect to a local coordinate frame attached to the ei . This
relationship is defined by

δei = δoi × ei = δoi ei = −ei δoi = −Ri ẽi RT
i δoi = −Ri ẽi δõi (29)

where “∼” denotes vectors defined by projections into local frames, Ri is rotation
matrix of this frame with respect to the base coordinate system. Substituting (29)
into (28) defines parameter sensitivity of the li variations to small axis ei deviations
δõi = [ δõi x δõiy 0 ].

The parameter sensitivity model (17–29) provides a framework for the develop-
ment of novel calibration procedures that is described in the following.

Fig. 8 Geometric proof of
(26)—virtual displacement in
direction orthogonal to �Ci Bi
doesn’t produce wire-length
changes (δli =0)
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5 Calibration Procedure

Let us consider the extended-crane system in (Fig. 9) and the large over-constrained
agricultural robots (Fig. 10). In principle, the calibration starts from a new wire-robot
(on the example of an extended-crane) to be configured by attaching the wires to
the common-workpiece (platform). At the beginning the winches have been fixed at
known but uncertain locations defined by ai w.r.t. a base frame of reference. The crane
transports the workpiece to the assembly locations and the operator can manually
attach the wires using local winch force/impedance (precisely damping) control.
Thereby the wire-tension, i.e. force sensors, built in all winches (see [13] for more
details), including also the main crane wire, have been utilized. After attachment,
the tension wire control ensures the tension of all wires that are required to fix the
workpiece in a desired, but also uncertain pose x j (j= 1…Nx ), where Nx denotes
number of poses used in calibration. The local wires have been calibrated to provide
an effective wire length measurements si (i= 1,…n) of the winches, for each pose.
For the measurements of x j after initial point calibration (details have been also
omitted), various sensors such as IMU’s with additional drift compensation sensors
(including also internal implicit wire-robot sensors and constraints equations) and
Kalman-filtering techniques may be used (it is not the focus of this paper).

Fig. 9 Configuration of an extended crane system: transportation, wires attachment and tension
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Fig. 10 Deviation model of a large span wire-robot

During calibration the platform moves to the poses x j,for example by combining
the Cartesian space jogging and wire-tension control ensuring a steady-state stable
pose. A previous selection of the points (calibration experiment design ensuring some
optimality criterion, see [14]), may considerably improve the quality of identification,
however, it is also out of the scope of this paper.

Calibration can be described briefly as the following problem. For the given set
of measurements M = {x j , si (x j )}, and initial (model) parameters values P̂ =
{âi ,

ˆ̃bi , êi }, identify the system parameters P = {ai , b̃i , ei } that in an optimal way
fit the set of measurements and kinematic model constraints (17–21).

The calibration procedure involves the following linear approximation steps
(Algorithm 1):

• Estimation of initial wire lengths based on the IK model

l̂i j = l−1
i

(
âi ,

ˆ̃bi , êi , x j

)

• Estimation of wire active lengths based on total cable length measurements taking
nominal values for the non-measurable wire contact arc δi j ≈ δ̂i j based on

l̄i j = si j − riδi j

• Optimal fitting of parameters by minimizing cable length errors (squares) �li j =
l̄i j − l̂i j . Using derived explicit sensitivity model (26) this leads to solving a linear
regression problem, in the considered case

�a = inv
(

RT R
)

RT �lN j

where the regression matrix R ∈ �N j ·n×n·3 includes parameter Jacobians (10).
In the illustrative example, 20 platform measuring points have been selected nearly

to the middle of the working space (which may be realized by practical tensions)
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(Fig. 10). Instead of an extended crane, an over-constrained robot with n=8 wires has
been considered. This robot represents an example of large agricultural wire-robot
(Fig. 10) with the nominal span of 100 m and relatively large parameter perturbations.
For the sake of simplicity only estimation of a will be considered. For this purpose a
set of the following attachment points for simulating measurements has been selected

a0 = [50 −50 −50 50 50 −50 −50 50
50 50 −50 −50 50 50 −50 −50
25 25 25 25 0 0 0 0]

As initial model parameters the following vector has been selected with a relatively
large initial deviation 2-norm of �a(0) ≈ 4 (m)

â = [46.9980 −52.3952 −51.0638 51.9303 48.0770 −51.5475 −50.4222
48.1406 52.0706 47.5845 −53.0748 −50.4700 52.5282 53.4440

−50.2576 −48.4173 22.3897 28.2407 26.6444 22.3588 −2.8097
−3.4949 1.3985 2.3109]

If we neglect the position measurements errors (ideal sensors case), the Algorithm
1 converges very fast, reducing the initial errors after only few steps to 2-norm
�a ≈ 10−10(m). The cable length (and contact arc angles δi j ) residuum become
also almost nullified.

However, this is a very simplified case that doesn’t meet the practice, since the
platform position measurements are also erroneous. Therefore the position errors
have been randomly added to any measurements with again relative large errors, with
uniform distribution errors and 2-norm �x(0) ≈ 0.04 (m). When the errors have been
included, the linear regression fitting converges to an optimum with relatively large
deviations and 2-norm �a(4) ≈ 0.1987 (m). Thereby relatively large residuum’s of
cable lengths 2-norm �l(4) ≈ 0.0415(m) (often of the same order as initial �x) has
been achieved, where the index in parenthesis denotes number of iterations.

These residua cannot be reduced by further iterations since a local optimum has
been reached. In order to advance the calibration, a logical improvement may be the
estimation of both �a and position errors measurements �x. However, this leads
to a large linear optimization problem with commonly very bad conditioning and
scaling of the regressor. The linear constrained fitting algorithms may limit para-
meters exploding, however, bad convergence and numerical errors remains typical
problems. In order to tackle these limitations, a next sequential optimization step has
been proposed.

The aim of the next sequential sub-estimation step (Algorithm 2) is to

• identify position errors by means of the wire robot Jacobian and thus to reduce
(commonly after next few steps 2-norm �l < 0.0001(m);

• reduce further the residuum �a by performing sequential optimization with more
stable fitting of smaller problems. Thereby both �x and �a gradients have to be
computed iteratively.
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As a result the cable length error can be considerably improved, while �a reduc-
tion remains usually not significant (0.10 m) (dependent on selected start points).

To remove further �a errors, finally the following sub-problem has to be solved
(Algorithm 3)

• self-calibration by checking all possible closed loops with the wires based on
(17–19) (there are totally 28 loop closure equations for each point in the considered
case).

After this step finally the typical results have been achieved: 2-norm �a < 0.01
(m), while 2-norm �l < 10−4(m) has been kept small by iterative position errors
estimations.

Commonly all the above Algorithms steps require a few iterations (4–6) repre-
senting smaller sub-problems and are quite suitable for real-time applications.

a = [50.0032 −49.9968 −49.9968 50.0032 50.0032 −49.9968 −49.9968
50.0032 49.9905 49.9905 −50.0095 −50.0095 49.9905 49.9905

−50.0095 −50.0095 25.0025 25.0025 25.0025 25.0025 0.0025
0.0025 0.0025 0.0025]

It is worth mentioning that the calibration of pulley axes orientation errors δõi appears
to be sensitive to the wire contact arc δi j ≈ δ̂i j errors which are not measurable.
Therefore the calibration of these angles based on both parameter sensitivity model
and internal loop closure must be performed synchronously.

6 Conclusion

This paper has presented the detailed modeling of wire-robot kinematic models
parameter sensitivity and application for calibration in general wire-robot systems
with pulley elements. The novel algorithms include exact mathematical models to
avoid complex numerical procedures and apply sequential gradient methodology to
cope with large parameters fitting and bad conditioning problems.

The developed calibration procedures appear to be especially effective for vari-
able structure CDPR systems, which cover classes of robots in which the common
robot platform represents a working object to be manipulated, itself. Such systems
are typical in novel CDPRs referred as extended-cranes wire robots under devel-
opment at IPK. An illustrative example presents the performance of the developed
calibration algorithms for large-scale cable robots with relatively higher parameter
uncertainities.

The future work will focus on implementation in the mock-up extended crane
system of which a presentation has been planned in September 2014.
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