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Abstract Experimental results indicate that time invariant linear elastic models for
cable-driven parallel robots show a significant error in the force prediction during
operation. This paper proposes the use of an extended model for polymer cables
which allows to regard the hysteresis effects depending on the excitation amplitude,
frequency, and initial tension level. The experimental design as well as the parameter
identification are regarded.

1 Introduction

A cable-driven parallel robot, in the following simply called cable robot, is a parallel
kinematic machine mainly consisting of a platform, cables, and winches as shown
in Fig. 1. The cables connect the platform to the winches which in turn control the
platform pose by changing the cable length. The control inputs for the winches
usually are computed using a simplified kinematic robot model which regards the
platform and frame geometry under the assumption that the attachment points at the
platform and the contact points at the winch are time invariant. Methods for design
and workspace computation of such systems can be found in [3, 4, 10, 12]. Extended
kinematic models also include the pulley geometry at the winches and result in higher
positioning accuracy [9]. The cable robot IPAnema at Fraunhofer IPA uses Dyneema
cables instead of conventional steel cables which brings the advantage of the lower
weight but at the same time introduces a more complex elastic behavior in the most
relevant force transition element of the cable robot. It showed that the Dyneema
polyethylene cables have a changing elastic behavior over time, are subject to settling
effects, are sensitive to overload, and show hysteresis effects. Since it is very difficult
to build the models and identifying the related parameters using models from different
fields such as tribology, viscoelasticity, and multibody systems, here we propose a
black box approach to model the drive chain. While white box modeling demands a
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Fig. 1 Overconstrained cable-driven parallel robot

very good knowledge of the inner relations of a system, black box modeling tries to
identify the system behavior by observing the input output behavior of a system.

In the fist part of the paper the modeling of the cables is shown. The second part
deals with the parameter identification, while the third part shows the evaluation of
the model for different input signals.

2 Robot and Cable Elasticity Model

The minimal robot model usually running in a numerical control to operate a robot
is based on a solely geometrical model as shown in Fig. 2 including the m platform
and winch attachment points bi and ai with i = 1 . . . m, respectively. The cables can
be modeled in different ways depending on the demanded degree of accuracy. The
most simple model is just the geometrical model without elastic behavior, meaning
that the inverse kinematic equation
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Fig. 2 Kinematic loop for one cable

li = ai − (r + Rbi ) (1)

can be used to compute the cable length li = ‖li‖2 from a given platform posi-
tion r and rotation R. More complex models deal with pulleys by introducing time
variant anchorage points and handle non negligible cable mass by utilizing catenary
equations to model the cable sagging [5, 11].

Since the mass of the cables of the IPAnema robot is small in comparison to the
applied tension level it is not necessary to regard the cable sagging in the model. For
cable force control, admittance control, and parameter identification it is necessary
to predict the cable force very accurately. The force and torque equilibrium of a cable
robot is described by the structure equation

[
u1 · · · um

b1 × u1 · · · bm × um

]
︸ ︷︷ ︸

AT

⎡
⎢⎣

f1
...

fm

⎤
⎥⎦

︸ ︷︷ ︸
f

+
[

fp
τp

]
︸ ︷︷ ︸

w

= 0 (2)

where AT is the well known structure matrix [12], ui = li ‖li‖−1
2 is a unit vector in

direction of the cables, f is the vector of cable forces and w is the external wrench.
Going from the kinematic model to a linear elastic model of type
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fi =
{

fi = ciΔli for Δli > 0
0 for Δli < 0

(3)

with Δli = lSP,i − li where ci is the cable stiffness and lSP,i is the set point for
the cable length while li is the actual cable length in the workspace one can achieve
a more accurate prediction. Modeling the cable forces in this way gives acceptable
results for positive cable tensions, but leads to numerical problems in case of Δli < 0
due to the discontinuity and the zero area.

Comparing the linear elastic model with experimental data showed that cables also
come along with a hysteresis behavior which depends on the actuation frequency,
amplitude, tension level and amplitude as well as the current angle of the cables with
regards to the redirection pulleys of the robot. Different models such as the Bouc–
Wen-Model, Bilinear Model, Bingham Model, or Polynomial model can be used to
describe the hysteresis behavior [1, 2, 6]. A single tensioned cable of the robot can
be seen as single degree of freedom system with an elastic–plastic behavior whose
hysteresis by means of the cable elongation x can be described by two polynomial
functions, one for the upper part and one for the lower part

FU(x) =
nP∑

i=0

ai xi , ẋ > 0 (4)

and

FL(x) =
nP∑

i=0

(−1)i+1ai xi , ẋ < 0, (5)

respectively. Under the assumption of displacement anti-symmetry one can compute
the hysteresis function by combining Eqs. (4) and (5) to

F(x, ẋ) = g(x) + h(x)sgn(ẋ) (6)

with the polynomials

g(x) = a1 + a3x3 + · · · + am xng

h(x) = a0 + a2x2 + · · · + an xnh
(7)

where ng is an odd number and nh = ng − 1. The degree of the polynomials can
be chosen according to the expected accuracy. The sum of the polynomials g(x)

and h(x) can be interpreted as the superposition of an anhysteretic nonlinear elastic
part and hysteretic nonlinear damping part as shown in Fig. 3. The expression in
Eq. (6) allows to describe the hysteresis for a certain amplitude A independent of
the current velocity state. Experiments showed that the hysteretic behavior of the
cable is different comparing very small an very large amplitudes. Extending the
model in order to deal with variable amplitudes and replacing the solely polynomial
description by a velocity depended damping expression one can write
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Fig. 3 Decomposition of a hysteresis curve into its anhysteretic nonlinear elastic part and its
nonlinear damping part

F = K0 + K1(A)x + K2(A)x2 + K3(A)x3 + Sa|v|α(A)sgn(v)

A(Aω)α(A)lπ
(8)

where the first amplitude dependent polynomial part, now describes the nonlinear
non hysteretic spring behavior and the second part of the equation deals with the
velocity depended hysteretic damping forces. The hysteretic part is parameterized
by the area of the hysteresis Sa and the viscoelastic damping factor α. In case of
α = 0 the second part of Eq. (8) gets independent of the velocity representing dry
friction behavior. The energy dissipation in one cycle for a given friction behavior is

l =
∫ T/2

0 sin (ωt)α(A)+1 dωt∫ T/2
0 sin (ωt)2 dωt

= 2π

T/2∫
0

sin (ωt)α(A)+1 dωt (9)

where T is the time of oscillation and ω is the angular frequency (Fig. 3).

3 Design of Experiments and Parameter Identification

Considering Eq. (8) for a given amplitude level, one has a five dimensional parameter
space where the first parameter K0 determines the pretensioned cable state with
A = 0 and v = 0 reducing the identification problem to four dimensions

pM = [
K1 K2 K3 Sa

]T
. (10)
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Table 1 Parameter
sensitivity

K1 K2 K3 Sa

Sensitivity 1.1 0.1 0.03 0.3

The amplitude model is considered separately. While the parameter identification
problem for pM has to deal with the problem of finding the inverse mapping function
from four to one dimensions pM = f −1

M (rM), the identification of pM,i = fA,i(A)

is just a one dimensional problem. For an efficient measurement and identification
process it is important to have a good selection of model parameters and measure-
ment samples. A good selection of model parameters means a high sensitivity with
regards to the objective function and a good selection of samples means maximized
information gain with a minimal number of samples. To obtain the optimal number
of parameters necessary for the model identification, the sensitivity of the parameters
is computed by

S = O2 − O1

Ō12

(
I2 − I1

Ī12

)−1

. (11)

This sensitivity metric gives the relative normalized change of the output O with
regards to the input I using the averages Ō and Ī . Parameters with a low sensitivity
do not have to be regarded in the model. As can be seen in Table 1, elements with an
order higher than three can be neglected in the model. The influence of the parameters
K1 and Sa are visualized in Figs. 4 and 5.

The selection of measurement samples was done according to a D-optimal design
of experiments giving a set of tuples (pM,i , rM,i ), i = 1 . . . nD where nD is the num-
ber of measurements and rM,i is the ith error function for the parameter identification
problem given by

ri (p) = F(p, xi ) − FM,i (12)

Fig. 4 Parameter sensitivity of K1
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Fig. 5 Parameter sensitivity of Sa

Assuming only small deviations Δp it is possible to use linearization around p0
which gives the Jacobian Jrp. From that the optimum parameter set can be found by
minimizing the least squared error using the objective function

popt = min

(
1

2

nD∑
i=0

(
F(p, xi ) − FM,i

)2

)
. (13)

Using the linearization one can compute the minimal solution for Eq. (13) by solving
the well known normal equation

JT
rpJrpΔp = JT

rpΔr. (14)

In case that the error of the model is small, a local optimization scheme such as
the Levenberg Marquardt algorithm can be used to find the optimal parameter set.
Having a good initial guess p0 is essential for a successful parameter identification. It
showed that local optimization is a good choice for long term parameter tracking or
repeated adjustment after certain time periods, but did not work well for the very first
identification process. Nonlinearities and the huge initial errors demanded for more
global optimization techniques such as simulated annealing or genetic optimization
procedures which can be used to identify the global optimum.

4 Experimental Results

For measurement, the platform is fixed at the origin such that no interaction between
the cables can occur. The excitation function for the cable elongation and it’s asso-
ciated velocity is chosen as
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Table 2 Parameter
sensitivity

K1 K2 K3 Sa

Sensitivity −16.8863 2.411 1.0472 1.1698

Δl = −A cos(ωt) (15)

Δl̇ = v = Aω sin(ωt)

For this excitation function the damping force can be calculated as

Fh = c|Aω sin(ωt)|αsgn(sin(ωt)) (16)

where c is damping function

c = Sa

⎛
⎝2A(Aω)α

T/2∫
0

sin (ωt)α+1 dωt

⎞
⎠ . (17)

with Sa describing the area of the hysteresis function. The cables were actuated
with an amplitude ranging from 0.1 mm up to 1.5 mm. The pretension level was
chosen at 60 N. Running the test was done by generating the cable length set points
according to the experimental design using Matlab. The length for each cable in
the joint space was commanded by a TwinCat3 controller connected to industrial
synchronous servo motors. Force sensors between the cables and the platform were
used to measure the cable forces. The force data together with the actual cable lengths
were stored in a csv file by TwinCAT and used for model identification in Matlab.
Using the actual cable lengths instead of the commanded cable lengths is important
to reduce errors introduced by system dead time and controller delay. The results
of the parameter identification process can be found in Table 2. The comparison of
measurements and simulation results after the identification process gave an average
model error of 0.4 N for a static pose. Checking the model prediction after a few
days of operation, the model and the real system already started to diverge as can be
seen in Fig. 6 where the cable force already shows an offset of 0.4 N to the previously
created model. This may be caused by temperature changes, cable settlement and
high tension states resulting in lasting changes in the cable’s elastic behavior. Using
the model for a sinusoidal excitation, a randomly shaped signal can be approximated
by a Fourier decomposition. A trapezoidal and a triangular signal where used as test
signals to verify the model for different shaped inputs. The Fourier decomposition
of the triangular function for example is given by

f (t) = 8A

π2 (sin(ωt) − 1

32 sin(3ωt) + 1

52 (sin(5ωt)) − · · · ). (18)

The comparison of the curve progression of the Fourier based force model and the
actual measurements are shown in Fig. 7 for an approximation with the first three
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Fig. 6 Comparison of hysteresis model and measurements after approximately for days of operation

Fig. 7 Triangular test signal with Fourier approximation

Fourier coefficients. The related error shown in Fig. 8 has a maximum magnitude
of ±1.5 N at the peak points. The model prediction is based on the whole set of
measurement samples which provides knowledge about the past and future of the
signal at a certain time stamp. Using the model in a real scenario one has to use
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Fig. 8 Hysteresis function and error for a triangular test signal

Fig. 9 Pulley assembly of the cable-robot demonstrator. a Pulley for cable redirection. b Cable
and bearing forces

a continuous-time Foruier transformation to deal with the unknown future of the
signal, or the numerical control has to feed forward the positioning set points of the
cables. While the prediction for a small area around the initial pose was accurate,
experimental results showed that the model error increased depending on the platform
pose in the workspace. This is is caused by the elasticity of the pulley mounting and
the damping behavior of the pulley bearings. To get better model prediction for the
whole workspace, these influences have to be regarded in the elasticity model of
the power trains. Introducing the angle α to measure the wrapping length of the
cable as shown in Fig. 9b, its influence on the stiffness of a single powertrain is
experimentally determined as can be seen in Fig. 10. The influence of angle α on the
hysteresis behavior is shown in Fig. 11.
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Fig. 10 Hysteresis and stiffness behavior in relation to the pulley angle α

Fig. 11 Damping behavior in relation to the pulley α

The effect may be caused by the increased wrapping angle and the direction of
the changing force vector as shown in Fig. 9b, increasing the reaction and friction
force at the pulley bearing according to

Fi = f
√

2 cos(αi + 1). (19)

The angle of attack also influences the torque applied to the bearing on the frame
and therefore influences the observed elasticity in the cables.
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5 Conclusion and Outlook

In this paper an improved cable model was presented which allows to regard the
hysteresis effect during force computation. The approach can be used to improve
force algorithms and the identification of geometrical robot parameters in an auto
calibration procedure which relies on the force sensors for data acquisition. The sim-
plicity of the model allows to compute the force values in a deterministic time slot,
meeting the demand of real-time algorithms. While the model gives significantly
better results than the linear elastic model it showed that the cable behavior not only
depends on local parameters such as the amplitude, but also on more global and
time variant parameters such as the platform pose. Beside that, the actual robot and
the model tend to diverge over time depending on the operating load and environ-
mental conditions. Further experiments will be executed to evaluate the long term
parameter stability of the robot parameters depending on operational time. It also
would be interesting to investigate the influence of overload on the cables alone and
in interaction with the surrounding support structure.
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