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Abstract In this paper dynamic analysis and control of fully-constrained parallel
cable robots are studied in detail. In dynamic analysis, it is assumed that the dom-
inant dynamics of cable can be approximated by linear axial spring. Furthermore,
variable stiffness formulation for the cables is employed in modeling process. To
overcome vibrations caused by inevitable elasticity of cables, a composite control
law is proposed based on singular perturbation theory. Using the proposed control
algorithm the dynamics of the cable robot is divided into two subsystems namely
slow and fast. Then, based on the results of singular perturbation theory, stability
analysis of the total system is performed. Finally, the effectiveness of the proposed
composite control law is investigated through several simulations on a planar parallel
cable robot.

1 Introduction

Although the robots are extensively used in industries, their application in long-
reach robotics such as inspection and repair in shipyards, is limited and still is in
infancy. Cable robots are a special class of parallel robots in which the rigid links
are replaced by cables. Cable robots possess some useful properties such as large
workspace capability, transportability and ease of assembly/disassembly, reconfig-
urability and economical structure and maintenance [1]. Consequently, cable robots
are exeptionally suitable for many applications such as, handling of heavy mate-
rials [2], high speed manipulation [3, 4], cleanup of disaster areas [5], very large
workspace applications [6, 7], and interaction with hazardeous environment [8].

However, replacing the rigid links by cables, introduces many new challenges in
the study of cable robots compared to that of conventional robots, amongst them
control is the most critical one. Unlike the rigid links, cables can only apply tensile
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forces and not compressive forces. Due to this physical limitation, well-known con-
trol theories can not be used directly for the cable robots and they must be modified so
that thay can provide positive tension for the cables. Dynamic behavior of the cables
is another major challenge in mechanical design and control of this class of robots.
Cables are usually elastic elements and may encounter some unavoidable situations
such as elongation and vibration. In applications which require high bandwidth or
high stiffness of the system, vibration may be a serious concern [9]. In terms of
control, proposed control algorithms for this class of robot shall be designed to damp
such vibrations.

Control of cable robots has received limited attention compared to that of conven-
tional robots. With assumption of massless rigid string model for the cable, several
efforts have been devoted to finding an efficient control strategy with positive cable
tensions. Lyapunov based control [4], PID control [10], computed torque method
[11], sliding mode [12] and adaptive PD control [13] are some control schemes
being used in the control of cable robots. Kawamura et al. have proposed a PD con-
troller accompanied with gravity compensation and internal forces in the cable-length
coordinates [4]. They have analyzed the stability of motion based on Lyapunov the-
orem and vector closure conditions. Alp and Agrawal used PD control with gravity
compensation in task space coordinates and analyzed asymptotic stability of the sys-
tem [14]. Inverse Dynamics Control (IDC) or computed torque technique is another
control scheme which is used in [11]. Fang et al. used nonlinear feed forward control
laws in the cable length coordinates [15]. They proposed optimal tension distribution
algorithm to compensate dynamic errors.

In these studies cables are treated as ideal massless rigid strings and cables elastic-
ity is not considered. However, in practice especially in high-speed applications, this
assumption may affect overal performance of the robot. In these cases, it is impor-
tant to model both the static and dynamic effects of flexible cables. But, modeling
the dynamic effects of elastic cables is an extremely comprehensive task. It is also
important to note that the obtained models must not only be sufficiently accurate,
they have to be suitable for controller synthesis, as well. Therefore, in practice it
is recommended to include only dominant dynamic effects in the dynamic analy-
sis. Ottaviano and Castelli have analyzed the effects of cables’ mass and elasticity
and their effects on pose capability of the cable robots [16]. They have shown that
cables masses can be neglected if the ratio of the end-effector to cables masses is
large or generally, the ratio of the end-effector wrenches to the cables tensions is
small. Using natural frequencies of the system, Diao and Ma in [9] have shown that
in fully–constrained cable robots transversal vibrations of cables have very limited
effects on the total vibration of the end-effector and can be ignored compared to that
of axial flexibility. Therefore, dominant dynamic characteristics of the cable can be
modeled by an axial spring in dynamic modeling of fully-constrained cable robots.
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According to these results, in this paper linear axial spring is used to model dominant
dynamics of cable and by this means a more precise model of fully-constrained cable
robots is derived for the controller design and stability analysis of such robots.

Cables elasticity may affect the precision of the cable robot, requiring appropriate
control strategies. Efficient control design for the cable robots is very complicated
when cable dynamic characteristics is considered and research on this topic is in
infancy. Meunier et al. used multi loop control scheme for a large cable mechanism,
in which the inner loop deals with cable model. This loop uses H∞ controller and gain
scheduling technique for adaptation of H∞ with cable lengths, and in the outer loop
an inverse dynamics control in addition to a PID controller is used [17]. However,
in this research stability analysis of the closed–loop system has not been performed.
Using elastic massless model for cable in [1], a new model for the cable robots is
derived and a new control algorithm is proposed. This control algorithm is formed
in cable length space and uses internal force concept. Stability of the closed-loop
system is analyzed through Lyapunov theory and vector closure conditions. Using
singular perturbation theory a new control algorithm has been developed in [18]. In
this research cables are modeled by linear axial spring but with constant stiffness
and stability analysis is performed based on the singular perturbation theory [19].

The structure of this paper is as follows. First, dynamics of cable robot with ideal
rigid cables is elaborated and a new control algorithm is proposed for it. In the follow-
ing sections, dynamics of cable robots with elastic cables is derived using variable
stiffness formaulation for the cables. A composite control structure is proposed for
this model, which consists of a rigid control term according to corresponding slow or
rigid model of the system and a corrective term for vibrational damping. Then, using
singular perturbation theory and Tikhonov’s theorem total stability of the system is
analyzed and sufficient conditions for the asymptotic stability of the closed-loop sys-
tem are derived. Finally, to demonstrate the effectiveness of the proposed controller,
simulation results on a planar cable robot are examined in details.

2 Control of Rigid Cable Driven Parallel Robots

In this section we assume that the elasticity of cables can be ignored and cables
behave as massless rigid strings. Based on this assumption the standard model for
the dynamics of n-cable parallel robot with actuators is [1, 10]

Meq(x)ẍ + Ceq(x, ẋ)ẋ + Geq(x) = JT u (1)

In which,

⎧
⎪⎨

⎪⎩

Meq(x) = rM(x) + r−1JT ImJ
Ceq(x, ẋ) = rC(x, ẋ) + r−1JT Im J̇
Geq(x) = rG(x)

(2)
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where x ∈ R6 is the vector of generalized coordinates, M(x) is the inertia matrix, Im

is diagonal matrix of actuator inertias reflected to the cable side of the gears, C(x, ẋ)

represents the Coriolis and centrifugal terms, G(x) is the gravitational terms, r is
radius of cable drums and u represents the input torque. J represents the Jacobian
matrix of the system and relates ẋ to derivative of the cable length vector L̇ = Jẋ.
Although these equations are nonlinear and complex, they have some properties
which are beneficial in the controller design [1].

Property 1 Inertia matrix Meq(x) is symmetric and positive definite.
Property 2 Matrix Ṁeq(x) − 2Ceq(x, ẋ) is skew symmetric.

2.1 Control Algorithm

Given a two times continuously differentiable reference trajectory xd for (1), consider
the following control law for JT u

JT u = Meq(x)ẍd + Ceq(x, ẋ)ẋd + Geq(x) + Kp(xd − x) + Kv(ẋd − ẋ) (3)

where Meq , Ceq and Geq are defined as (2) and Kp, Kv are diagonal matrices of
positive gains for the PD control part of the proposed control scheme. Since in the
fully-constrained cable robots the Jacobian matrix of the manipulator is non-square
and the system is redundantly actuated, (3) is an underdetermined system of equations
and has many solutions if JT J is invertible. In this case, the general solution of (3)
is,

u = u + Q (4)

Here, u is the minimum solution of (3) derived by using the pseudo-inverse of JT

and is given by

u = J(JT J)−1(Meq (x)ẍd + Ceq (x, ẋ)ẋd + Geq (x) + Kp(xd − x) + Kv(ẋd − ẋ)) (5)

and, Q spans the null space of JT and must satisfy

JT Q = 0 (6)

Q can be physically interpreted as internal forces. It means that this term does
not contribute into motion of the end-effector and only provides positive tension
in the cables. With this notation, the proposed control scheme can be implemented
according to Fig. (1). In this paper we assume that the system always satisfies the
vector closure conditions [4] and at all times, positive internal forces can be produced
such that the cables are in tension.
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Fig. 1 Internal force control structure

2.2 Stability Analysis

Substituting (4) in (1) and using (6), we can write the closed loop system as

Meq(x)ë + Ceq(x, ẋ)ė + Kpe + Kvė = 0 (7)

where

e = xd − x

Consider the following Lyapunov function for the closed loop system (7)

VR = 1

2
ėT Meq(x)ė + 1

2
eT Kpe (8)

VR is positive for all e �= 0 because based on property 1, Meq is positive definite.
The time derivative of Lyapunov function V is given by [18]

V̇R = −ėT Kvė ≤ 0 (9)

As it has been fully elaborated in [18] this controller can suitably stabilize the rigid
system asymptotically.

3 Robot with Elastic Cables

As mentioned earlier, in practice the overal performance of the cable robot may be
affected by vibrations caused by inevitable elasticity of the cables [4, 9]. Thus, elastic-
ity of cables must be considered in the modeling process and control schemes should
be designed so that they stabilize the system and damp the vibrations efficiently. New
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research results show that in fully-constrained cable robots, dominant dynamics of
cables are longitudinal vibration [9]. Therefore, axial spring model may suitably
used to describe the effects of dominant dynamics of cable.

In order to model a general cable driven robot with n elastic cables assume
that: L1i : i = 1, 2, ..., n denotes the length of i-th cable with tension which can
be measured by pot-string. L2i : i = 1, 2, ..., n denotes the cable length of the
i-th actuator which may be measured by shaft encoder. If the system is rigid, then
L1i = L2i ,∀i . Let us denote:

L = (L11, L12, · · · , L1n, L21, L22, · · · , L2n) = (LT
1 , LT

2 ) (10)

In a cable driven robot, the stiffness of cables is a function of cable lengths which
are changing during the motion of the robot. Using linear axial spring model with
Young’s modulus E and cross-sectional area A for the cables, the instantaneous
potential energy of i-th cable is

pi = E A(L1i − L2i )
2

2L2i

With this notation the total potential energy of the system can be expressed by: P =
P0 + P1, in which, P0 denotes the potential energy of the rigid robot and P1 denotes
the potential energy of the cables and can be formulated by:

P1 = 1

2
(L1 − L2)

T K(L2)(L1 − L2) (11)

where, K is the stiffness matrix of the cables during the motion which is a function
of L2. Assume that all cables have the same Young’s modulus E and cross-sectional
area A,1 then

K(L2) = E A · diag−1(L2) (12)

Furthermore, kinetic energy of the system is

T = 1

2
ẋT M(x)ẋ + 1

2
q̇T Im q̇ (13)

In which, x denotes the generalized coordinates in Cartesian space, q is the motor
shaft position vector, M(x) is the mass matrix and Im is the actuator moments of
inertia. Using Euler-Lagrange formulation and some manipulations, final equations
of motion can be written in the following form:

1 This assumption does not reduce the generality of problem, since for the general case it can be
easily reached by variable scaling.



Dynamic Analysis and Control of Fully-Constrained Cable Robots … 167

M(x)ẍ + N(x, ẋ) = E AJT diag−1(L2) · (L2 − L1) (14)

Im q̈ + r E A · diag−1(L2) · (L2 − L1) + H(L2, L1) = u (15)

in which,

N(x, ẋ) = C(x, ẋ)ẋ + G(x) , L2 − L0 = rq

H(L2, L1) = − r

2
E A · diag−2(L2) · diag(L2 − L1) · (L2 − L1)

In these equations L0 is the vector of cables length at x = 0 and J is the Jacobian
matrix of the system and relates ẋ to derivative of the cable length vector L̇1 = Jẋ,
and other parameters are defined as before. For notational simplicity we assumed
that all Young’s modulus E and cross-sectional A of cables are the same and E A is
large with respect to other system parameters. To idealize the assumption of large
cable stiffness and small cable damping, we assume that E A is of order O(1/ε2)

(ε is a small scalar parameter), and furthermore, the damping terms in the cables are
neglected.

Equations (14) and (15) represent cable robot as a nonlinear and coupled system.
This representation includes both rigid and flexible subsystems and their interactions.
The model of cable robot with elastic cables will be reduced to (1) as E A tends to
infinity. Furthermore, the new formulation preserves the properties of rigid model (1),
such as positive definiteness of inertia matrix and skew symmetry property.

3.1 Control

In this section we show that the control law (3) which is proposed under assumption
of perfect rigidity, can be extended for cable robot with elastic cables. First, consider
a composite control law by adding a damping term to the control law (3) in the form
of

u = ur + Kd(L̇1 − L̇2) (16)

in which, ur is given by (3) in terms of x. Furthermore, Kd is a constant positive
diagonal matrix whose diagonal elements are designed to remain in order of O(1/ε).
Note that

L2 = rq + L0 =⇒ L̇2 = r q̇ , L̈2 = r q̈ (17)

Apply control law (16) in (15) and define variable z as

z = E A(L2 − L1) (18)

The closed loop dynamic equation reduces to
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r−1Im z̈ + Kd ż + rdiag−1(L2) ·
[

E AI − 1

2
diag−1(L2) diag(z)

]

z (19)

= E A(ur − r−1ImL̈1)

By the assumption on E A and the choice for Kd we may write

E A = K1

ε2 ; Kd = K2

ε
(20)

where, K1 , K2 are O(1). Therefore, (19) can be written as

ε2r−1Im z̈ + εK2ż + rdiag−1(L2) ·
[

K1I − ε2

2
diag−1(L2)diag(z)

]

z (21)

= K1(ur − r−1ImL̈1)

Now Eqs. (14) and (21) can be rewritten together:

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT diag−1(L2)z (22)

ε2r−1Im z̈ + εK2ż + rdiag−1(L2).

[

K1I − ε2

2
diag−1(L2)diag(z)

]

z (23)

= K1(ur − r−1ImL̈1)

System (22) and (23) is written in a singularly perturbed form. The variables z and
ż have the interpretation of ‘fast’ variables while the end-effector position variables
x and ẋ (or L1 , L̇1) are representing ‘slow’ variables. Using the results of singular
perturbation theory, elastic system (22) and (23) can be approximated by two sub-
systems, namely the quasi-steady state or slow subsystem and boundary layer or fast
subsystem. With ε = 0, Eq. (23) yields

z̄ = r−1diag(L̄1)(ūr − r−1Im
¨̄L1) , L̄1 = L̄2 (24)

in which, the overbar variables represent the variables when ε = 0. Substitute (24)
into (22).

M(x̄) ¨̄x + C(x̄, ˙̄x) ˙̄x + G(x̄) = r−1JT (ūr − r−1Im
¨̄L1)

Substitute ¨̄L1 = J ¨̄x + J̇ ˙̄x in above equation:

(rM(x̄) + r−1JT ImJ) ¨̄x + (rC(x̄, ˙̄x) ˙̄x + r−1JT Im J̇ ˙̄x) + rG(x̄) = JT ūr

or
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Meq(x̄) ¨̄x + Ceq(x̄, ˙̄x) ˙̄x + Geq(x̄) = JT ūr (25)

Equation (25) is called the quasi-steady state or slow subsystem. Note that (25) is the
rigid model (1) in terms of x̄. Using Tikhonov’s theorem [19], for t > 0 the elastic
force z(t) and the end-effector position x(t) satisfy

z(t) = z̄(t) + ηηη(τ) + O(ε) (26)

x(t) = x̄(t) + O(ε) (27)

where, τ = t/ε is the fast time scale and ηηη is the fast state variable and satisfies
boundary layer equation

r−1Im
d2ηηη

dτ 2 + K2
dηηη

dτ
+ r K1diag−1(L1)ηηη = 0 (28)

Considering these results, elastic system (22) and (23) can be approximated up to
O(ε) as

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT diag−1(L1)(z̄ + ηηη(τ))

r−1Im
d2ηηη

dτ 2 + K2
dηηη

dτ
+ r K1diag−1(L1)ηηη = 0

According to (24)

Meq(x)ẍ + Ceq(x, ẋ)ẋ + Geq(x) = JT (ur + rdiag−1(L1)ηηη(τ)) (29)

r−1Im
d2ηηη

dτ 2 + K2
dηηη
dτ

+ r K1diag−1(L1)ηηη = 0 (30)

Since the gain K2 can be chosen suitably such that the boundary layer (28) becomes
asymptotically stable, it follows that, with sufficiently small values of ε, the response
of the elastic system (14) and (15) with the composite control (16), will be nearly the
same as the response of rigid system (1) with the rigid control ur alone, after some
initially damped transient of fast variables ηηη(t/ε).

3.2 Stability Analysis

Control of rigid model and its stability analysis were discussed in previous section.
It was demonstrated that the boundary layer or fast subsystem (28) is asymptotically
stable, due to damping term. Separate stability of boundary layer and quasi-steady
state subsystems does not generally guarantee that the total system is stable [19]. In
this section the stability of the total system is analyzed, based on stability analysis
of the subsystems.
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Consider dynamic equations of elastic system (29) and (30), and control law (4)
from previous section. Then

Meq(x)ë + (Ceq(x, ẋ) + Kv)ė + Kpe = −rJT diag−1(L1)ηηη(t/ε) (31)

r−1Im
d2ηηη

dt2 + Kd
dηηη
dt + r E Adiag−1(L1)ηηη = 0 (32)

Let us denote y = [
eT , ėT

]T
and h = [

ηηηT , η̇ηηT
]T

, in which e = xd − x, then one
may write

ẏ = Ay + B [I 0] h (33)

ḣ = Ãh (34)

where

A =
[

0 I
−M−1

eq Kp −M−1
eq (Kv + Ceq)

]

B =
[

0
−rM−1

eq JT diag−1(L1)

]

Ã =
[

0 I
−r2 E AI−1

m diag−1(L1) −rI−1
m Kd

]

Lemma 1 There is a positive definite matrix Kd such that the closed-loop system
described with (34) is asymptotically stable.

Proof Consider the following Lyapunov function

VF = hT Wh , W = 1

2

[
r2Kd rIm

rIm Im

]

(35)

In order to have positive definite W, according to the Shur complement, it is sufficient
that Kd > Im . Differentiate VF along trajectories of (34)

V̇F = −hT Sh (36)

in which,

S =
[

r3 E A diag−1(L1) 0.5r2 E A diag−1(L1)

0.5r2 E A diag−1(L1) r(Kd − Im)

]

According to Shur complement, S is positive definite, if and only if,

Kd > Im

Kd − (Im + .25E A diag−1(L1)) > 0 (37)
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in which, Kd and Im are diagonal positive definite matrices. Regarding to workspace
constraints

0 < γ ≤ L1i ≤ β (i = 1, 2, · · · , n) (38)

where γ and β are positive constants. Thus, if

Kdi > Imi + .25E Aγ −1 (i = 1, 2, · · · , n) (39)

then, V̇F becomes negative definite and closed-loop system described by (34) is
asymptotically stable.

Theorem 1 There exist positive definite controller gains Kv, and Kd , to stabilize
the closed-loop system (33) and (34) asymptotically.

Proof Consider the following composite Lyapunov function

V (y, h) = VR + VF (40)

where, VR is the Lyapunov function for the rigid subsystem, and VF is the Lyapunov
function for the fast subsystem (28). Differentiate V (y, h) along trajectories of (33)
and (34):

V̇ (y, h) = V̇R + V̇F = −ėT Kvė − r ėT JT diag−1(L1)ηηη − hT Sh (41)

According to Rayleigh-Ritz inequality,

− hT Sh ≤ −λmin(S)‖h‖2 (42)

Furthermore,

− ėT Kvė ≤ −λmin(Kv)‖ė‖2

−r ėT JT diag−1(L1)ηηη ≤ r |ėT JT diag−1(L1)ηηη| ≤ rγ −1σmax (JT )‖ė‖‖h‖ (43)

in which, λmin and σmax denote the smallest eigenvalue and the largest singular value
of the corresponding matrices, respectively. Using above inequalities, one may write

V̇ (y, h) ≤ −λmin(Kv)‖ė‖2 + rγ −1σmax (JT )‖ė‖‖h‖ − λmin(S)‖h‖2

Or

V̇ (y, h) ≤ [ ‖ė‖ ‖h‖ ] ·
[ −λmin(Kv) 0.5rγ −1σmax (JT )

0.5rγ −1σmax (JT ) −λmin(S)

] [ ‖ė‖
‖h‖

]
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in order to guarantee V̇ (y, h) ≤ 0, it is necessary to have

λmin(Kv)λmin(S) > 0.25r2γ −2σ 2
max (J

T ) (44)

Condition (44) may be simply satisfied by choosing appropriate values for Kv in
(3) and Kd for the fast subsystem. Negative semi-definiteness of V̇ (y, h) implies
that y and h are bounded. This indicates that V̈ (y, h) is bounded. Hence, V̇ (y, h) is
uniformly continuous. Using Barbalat’s lemma one may conclude that ė → 0 and
h → 0 as t → ∞. Now, according to uniform continuity of ë, it can be concluded
that ë → 0 as t → ∞. As a result the total closed-loop system (33) and (34) becomes
asymptotically stable.

4 Case Study

To show the effectiveness of the proposed control algorithm a simulation study has
been performed. In the following simulation study, the results of the closed–loop
performance of a planar cable driven manipulator are investigated. Our model of a
planar cable robot consists of an end-effector that is connected by four cables to the
base platform shown in Fig. (2a). As it is shown in Fig. (2), Ai denote the fixed base
points of the cables, Bi denote points of connection of the cables on the end-effector,
Li denote the cable lengths, and αi denote the cable angles. The position of the center
of mass of the end-effector P, is denoted by P = [x p, yp], and the orientation of the
manipulator end-effector is denoted by φ with respect to the fixed coordinate frame.
Hence, the manipulator possesses three degrees of freedom x = [x p, yp, φ], with one
degree of actuator redundancy. Furthermore, the Jacobian matrix of the manipulator,

Bi

Ai

A3A4

A1

α1

L i

B2

B3 B4

B1

y

x

A2

ˆ
iS

iE
P

(a) (b)

Fig. 2 a The schematics of planar cable mechanism. b Vector definitions for Jacobian derivation
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Table 1 Inertial parameter of
the planar cable robot

Parameter Symbol Nominal value

End-effector mass m 2.5 Kg

End-effector inertia Iz 0.03 Kg.m2

Actuator inertia Imi 0.6 Kg.m2

Gear ratio N 50

Gravity acceleration g 9.8 m/s2

Drum radius r 3.5 cm

Fig. 3 The closed-loop system experiences instability, if only rigid controller ur is applied
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Fig. 4 Suitable tracking performance of the closed-loop system to smooth reference trajectories;
Proposed control algorithm

which relates the length variable velocities L̇1 to the end-effector velocities ẋ , is
given by

L̇1 = Jẋ (45)

Note that the Jacobian matrix J is a non-square 4 × 3 matrix, since the manipulator
is redundantly actuated.

The equations of motion for the end-effector can be written in the following form

Mẍ + G = F

in which, x = [x p, yp, φ], and by considering flexibility in the cables, according to
(14) and (15)
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Fig. 5 Simulation results showing the cables tension for smooth reference trajectories

F = JT E A · diag−1(L2)(L2 − L1) , L2 = rq + L0

Im q̈ + r E A · diag−1(L2)(L2 − L1) − r

2
E A · diag−2(L2)diag(L2 − L1)(L2 − L1) = u

and,

M =
⎡

⎣
m 0 0
0 m 0
0 0 Iz

⎤

⎦ and G =
⎡

⎣
0

mg
0

⎤

⎦

All mechanical parameters of the cable robot are given in Table (1). In order to
demonstrate a high flexible system E A is intentionally chosen very low (EA=1,000).
To show the effectiveness of the proposed composite control algorithm suppose that
the system is at the origin and has to track the following smooth reference trajectories
in x , y, and φ coordinates,

xd = 0.4 + 2e−t − 2.4e−t/1.2

yd = 0.4 + 2e−t − 2.4e−t/1.2

φd = 0.1π sin(0.1π t)
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in which, the task space variables x p, yp and φ reach a final value of 0.4, 0.4 and
0.1π from the zero states, respectively. The controller is based on (16) and consists
of rigid control ur given by (3) and the corrective term. Controller gain matrices are
chosen as Kp = 200 I3×3, Kv = 25 I3×3, and Kd = 250 I4×4 to satisfy the stability
conditions. In the first step, rigid control ur alone is applied to the manipulator. As is
illustrated in Fig. (3), the manipulator experiences instability if only the rigid control
ur is applied to the system. The main reason for instability is the divergence of its
fast variables. Figure (4) illustrates dynamic behavior of the closed-loop system with
the proposed control algorithm. Internal force Q is used whenever at least one cable
becomes slack (or L1i < L2i , i = 1, . . . , 4) to ensure that the cables remain in
tension. Although, the system is very flexible the proposed control algorithm can
suitably stabilize the system. As it is seen in this figure, position and orientation
outputs track the desired values very well and the steady state errors are very small,
while as it is shown in Fig. (5), all cables are in tension for the whole maneuver. The
simulation results clearly show the effectiveness of the proposed control algorithm
to stabilize the system, while achieving positive tension in the cables.

5 Conclusions

In this paper modeling and control of parallel cable robots with elastic cables are
examined in detail. In the modeling process of this class of manipulators cables are
modeled by linear axial springs, and the model of fully constrained cable driven robot
is derived using Euler-Lagrange approach. Since in this type of robots cables must
remain in tension in the whole workspace, the notion of internal force is introduced
and it is used in the proposed control algorithm. The proposed composite control
algorithm consists of three components. Rigid control according to the rigid model
of the system, the internal force to ensures that all cables are in tension, and a damping
term in cable length space to stabilize fast subsystem. Then, the model of the system
is formulated in the standard form of singular perturbation theory and fast and slow
variables are separated and incorporated in the stability analysis. The stability of the
closed-loop system is analyzed through Lyapunov second method, and it is shown
that the proposed composite controller is capable to stabilize the system in presence
of flexible cables. Finally, the performance of the proposed composite controller is
examined by simulation results performed on a planar cable robot.

References

1. Khosravi MA, Taghirad HD (2011) Dynamic analysis and control of cable driven robots with
elastic cables. Trans Can Soc Mech Eng 35(4):543–557

2. Bostelman R, Albus J, Dagalakis N, Jacoff A (1994) Applications of the NIST robocrane. In:
Proceedings of the 5th international symposium on robotics and manufacturing, pp 403–410



Dynamic Analysis and Control of Fully-Constrained Cable Robots … 177

3. Maeda K, Tadokoro S, Takamori T, Hiller M, Verhoeven R (1999) On design of a redundant
wire-driven parallel robot WARP manipulator. In: Proceedings of IEEE international confer-
ence on robotics and automation, pp 895–900

4. Kawamura S, Kino H, Won C (2000) High-speed manipulation by using parallel wire-driven
robots. Robotica 18(3):13–21

5. Roberts R, Graham T, Lippitt T (1998) On the inverse kinematics, statics, and fault tolerance
of cable-suspended robots. J Rob Syst 15(10):649–661

6. Taghirad HD, Nahon MA (2008) Kinematic analysis of a macro-micro redundantly actuated
parallel manipulator. Adv Rob 22(6–7):657–687

7. Yao R, Tang X, Wang J, Huang P (2010) Dimensional optimization design of the four-cable-
driven parallel manipulator in FAST. IEEE/ASME Trans Mechatron 15(6):932–941

8. Riechel A, Bosscher P, Lipkin H, Ebert-Uphoff I (2004) Concept paper: cable-driven robots
for use in hazardous environments. In: Proceedings of 10th international topical meeting on
robot remote system in hazardous environment, Gainesville, pp. 310–317

9. Diao X, Ma O (2009) Vibration analysis of cable-driven parallel manipulators. Multibody Syst
Dyn 21:347–360

10. Khosravi MA, Taghirad HD (2012) Experimental performance of robust PID controller on a
planar cable robot. In: Cable-driven parallel robots, Springer, Stuttgart, pp 337–352

11. Williams RL, Gallina P, Vadia J (2003) Planar translational cable direct driven robots. J Rob
Syst 20(3):107–120

12. Ryoek S, Agrawal S (2006) Generation of feasible set points and control of a cable robot. IEEE
Trans Rob 22(3):551–558

13. Kino H, Yahiro T, Takemura F (2007) Robust PD control using adaptive compensation for
completely restrained parallel-wire driven robots. IEEE Trans Rob 23(4):803–812

14. Alp A, Agrawal S (2002) Cable suspended robots: feedback controllers with positive inputs.
In: Proceedings of the American control conference, pp 815–820

15. Fang S, Franitza D, Torlo M, Bekes F, Hiller M (2004) Motion control of a tendon-based parallel
manipulator using optimal tension distribution. IEEE/ASME Trans Mechatron 9(3):561–568

16. Ottaviano E, Castelli G (2010) A study on the effects of cable mass and elasticity in cable-based
parallel manipulators. In: ROMANSY 18 robot design, dynamics and control, vol 524. Chapter
I, pp 149–156

17. Meunier G, Boulet B, Nahon M (2009) Control of an overactuated cable-driven parallel mech-
anism for a radio telescope application. IEEE Trans Control Syst Tech 17(5):1043–1054

18. Khosravi MA, Taghirad HD (2014) Dynamic modeling and control of parallel robots with elas-
tic cables: singular perturbation approach. IEEE Trans Rob. doi:10.1109/TRO.2014.2298057

19. Kokotovic P, Khalil HK, O’Reilly J (1986) Singular perturbation methods in control: analysis
and design. Academic Press, New York

http://dx.doi.org/10.1109/TRO.2014.2298057

	12 Dynamic Analysis and Control  of Fully-Constrained Cable Robots  with Elastic Cables: Variable Stiffness Formulation
	1 Introduction
	2 Control of Rigid Cable Driven Parallel Robots
	2.1 Control Algorithm
	2.2 Stability Analysis

	3 Robot with Elastic Cables
	3.1 Control
	3.2 Stability Analysis

	4 Case Study
	5 Conclusions
	References


