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Abstract Solving the forward kinematics (FK) of parallel robots is known to be a
difficult task and the problem is even more complex for cable driven parallel robot
(CDPR): the system of equations that has to be solved is larger than with rigid legs
as first the static equations have to be taken into account and, second because the
deformation of the cables because of their elasticity and their mass may play a role,
while being described by a relatively non algebraic complex model. We consider in
this paper any arbitrary CDPR whose cables may present a significant deformation
due to their elasticity and own mass and we present for the first time an interval
analysis based generic algorithm that allows to calculate in a guaranteed manner all
the FK solutions and illustrate its use for a CDPR with 8 cables.

1 Introduction

Cable-driven parallel robot (CDPR) have the mechanical structure of the Gough plat-
form with rigid legs except that the legs are cables whose length may be controlled.
We will assume that the output of the coiling system for cable i is a single point Ai ,
while the cable is connected at point Bi on the platform (Fig. 1). Classical kinematics
problem are the inverse kinematics (find the lengths of the cables for a given pose of
the platform) and the forward kinematics (FK) (find the pose(s) of the platform for
given cable lengths). Solving the FK of parallel robots is one of the most challenging
problem in modern kinematics. Two categories of FK may be distinguished:
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Fig. 1 Cable driven parallel
robots with sagging cables
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• real-time FK: used for control purposes with the objective of determining the
current pose of the robot. It need to be fast (running within a sampling time of the
robot controller) and uses the knowledge that the solution is “close” to a known
pose. It may also be used for simulation purposes

• full FK: the purpose is to determine all solutions of the FK. It is used off-line for
determining the possible initial states of the robot when running a simulation

We will see later on that the real time FK is not a problem and we will address only
the full FK. This problem has been addressed for CDPRDs in a very preliminary
stage only very recently and under restrictive assumptions on the behavior of the
cables. Indeed we may consider:

• non-deformable cables: they are aligned along the direction Ai Bi

• elastic cables: they are also aligned along Ai Bi but their lengths depend upon the
tension to which they are submitted

• catenary cables: they exhibit elasticity and their own mass leads to a deformed
shape

Most of the kinematic works have assumed non-deformable cables. For robots having
at least 6 cables the FK is equivalent to the one of classical parallel robots (for more
than 6 cables at most 6 will be under tension simultaneously [1]). With less than 6
cables the problem is still open as the geometrical constraints relating the length of
the cables to the pose leads to less equations than unknowns, which imposes to add
the 6 additional statics equations and the cable tensions as additional unknowns. For
a CDPR with m cables the minimal system has 6 + m equations in 6 + m unknowns,
to be compared with the system of 6 equations for the Gough platform. Although
there has been progress recently to solve these problems [2–4] there are still a lot of
progress to be made in order to determine the maximal number of solutions according
to m, solutions that should have only positive tensions and are stable.
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If we assume elasticity in the cables there has been some works for the IK [5, 6]
but to the best of our knowledge the FK has never been addressed in the general case.

This paper addresses the most general case of FK for CDPR having catenary type
cables. Very few works have addressed the IK and FK of such a robot [7–9] and none
have considered the general case.

2 Problem Statement

2.1 Cable Model

We will assume cables with linear density μ, cross-section A0 and E will denote
the Young modulus of the cable material. A reference frame O, x, y, z will be used
and the coordinates of the Ai points are known in this frame. In the vertical plane of
the cable we may assume that the cable is attached at point A with coordinates (0,0)
while the other extremity is attached at point B with coordinates (xb, yb) (Fig. 2).
The vertical and horizontal forces Fz, Fx are exerted on the cable at point B and the
cable length at rest is L0. With this notation the coordinates of B are related to the
forces Fx , Fz [10] by:

xb = Fx (
L0

E A0
+ sinh−1(Fz) − sinh−1(Fz − μgL0

Fx
)

μg
) (1)

zb =
√

F2
x + F2

z − √
F2

x + (Fz − μgL0)2

μg

+ Fz L0

E A0
− μgL2

0

2E A0
(2)

2.2 The FK Problem

We consider a spatial robot with m cables whose lengths will be denoted L1
0, . . . , Lm

0 .
Without loss of generality we will assume that the Young modulus, linear density and
cross-section of the cables are identical. The problem we have to solve is to determine
all the possible poses of the platform being given the L j

0 and the location of the Ai ,
together with the external forces/torques F that act on the platform. In terms of
unknowns we will assume a minimal representation of the pose with 6 parameters



6 J.-P. Merlet and J. Alexandre-dit-Sandretto

A(0,0)

B(xb,yb)

Fx

Fz

Fig. 2 A deformed cable

and we have also the 2m unknown forces Fi
x , Fi

z , for a total of 6 + 2m unknowns.
Note that to express these forces in the reference frame we need to establish a rotation
matrix Rot that rotates the planar frame around the z axis by an angle ui so that in the
reference frame we get the force acting on the platform F as F = Rot(−Fx , 0,−Fz)

T

and hence for cable j Fj = (−F j
x cos u j , F j

x sin u j , F j
z ). If we assume that the

external force acting on the platform is the gravity and that the platform mass is M
the mechanical equilibrium imposes that:

j=m∑

j=1

F j
x cos u j = 0

j=m∑

j=1

F j
x sin u j = 0

j=m∑

j=1

F j
z = Mg (3)

If C is the center of mass of the platform we get also

j=m∑

j=1

CBj × Fj = 0 (4)

In terms of equations we have the 2m Eqs. (1), (2) and the 6 static equations that
express the mechanical equilibrium of the platform. Hence we end up with 6 + 2m
equations so that solving the FK requires to solve a square system, which will usually
have a finite number of solutions. It may also been seen that the FK in that case is much
more complex than the FK of the Gough platform (it has 2m additional equations)
and that the classical methods used to determine an upper bound of the maximum
number of solutions (Bezout number, elimination, Gröbner basis) cannot be applied
here as Eqs. (1), (2) are not algebraic.
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3 Solving the FK

As a theoretical solving appears to be difficult to be used we will have to resort
to a numerical solving method, that has to provide all the solutions. We will use an
interval analysis (IA) approach, which guarantees to find all the solutions lying within
some given ranges. The basis of IA is the interval evaluation: being given a function
f (x1, . . . , xn) in n variables and assuming that each variable xi lies in the range
[xi , xi ] the interval evaluation of f is a range [A, B] such that ∀xi ∈ [xi , xi ], i ∈
[1, n] we have A ≤ f (x1, . . . , xn) ≤ B. There are multiple ways to define an interval
evaluation but the most simple is the natural evaluation: each mathematical operator
has an interval equivalent (for example the addition interval operator + is defined
as [a, b] + [c, d] = [a + c, b + d]) and transforming any function by using the
interval operators allows to calculate the interval evaluation. One of the property
of the interval evaluation [A, B] is that if A > 0 of B < 0, then f cannot cancel
whatever is the value of the variables in their ranges. Note that an interval evaluation
may be overestimated: there may not be value of the variables in their respective
range such that f (x1, . . . , xn) = A or f (x1, . . . , xn) = B. Indeed overestimation
may occur because of multiple occurrences of a given variable that are considered
as independent: for example the evaluation of x − x when x ∈ [−1, 1] is [−2, 2].
But the size of the overestimation decreases with the width of the variable ranges.

The second key ingredient of IA is the branch and bound algorithm. A box B is
defined as a set of ranges for the variables. If for a given box we have f (B = [A, B]
with A < 0, B > 0, then we select one of the variable, xi bisect its range in two
and create two new boxes B1,B2 that are identical to B except for the range for xi

which result from the bisection. These boxes are stored in a list and will be processed
later on. We will see in the next section that if a box is tiny enough we may determine
if it includes a single solution and compute this solution with an arbitrary accuracy.

However we will not use the minimal set of equations for the FK. Indeed the
pose of the platform will not be represented by the coordinates of C and three
orientation angles. The motivation is that coordinates xb, zb in (1, 2) will be obtained
after using the rotation matrix and will include several occurrences of the rotation
angles, possibly leading to large overestimation. We prefer to represent the pose
of the platform by the 12 coordinates in the reference frame of 4 of the points
Bi , which are not coplanar (we assume here that B1, B2, B3, B4 are chosen). With
this choice the coordinates of any point M on the platform may be obtained as
OM = α1OB1 + α2OB2 + α3OB3 + α4OB4 where the α are known constants.
Such a representation allows one to obtain the coordinates of the B j , j > 4 and
of the center of mass C . As we have now 12 unknowns for representing the pose
of the platform instead of 6 with the minimal representation we need 6 additional
equations that are obtained by stating that the distance between a pair of points in
the set B1, . . . B4 is a known constant. Note that these equations are not sufficient
to fully describe the geometry of the platform (e.g. the equations does not allow to
differentiate if a B j point is over or under the plane that includes the three other
points). Another test is needed and we will use the fact that for any point M of the
platform there exist constants β j such that
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BjM = β1BjBk + β2BjBl + β3BjBk × BjBl, j, k, l ∈ [1, 4] (5)

It remains to manage the angles ui : formally they can be obtained using the equation

x j
b sin(u j ) + y j

b cos(u j ) = 0 (6)

where x j
b , y j

b are the coordinates of B j in the reference frame. But by so doing

their interval evaluation will be relatively large even for small width for the x j
b , y j

b
intervals, especially if j > 4. Hence we prefer to add them as additional unknowns
and to use (6) as additional equations. Hence we end up with 12 + 3m unknowns
for 12 + 3m equations. Note that we have checked that solving this system in the
context of a real-time FK is not difficult as soon as a certified strategy is used [11]:
this strategy allows one to determine the current pose of the robot or eventually that
the pose is too close to a singularity (in which case the FK has an infinite number of
solutions).

An IA approach impose to determine a domain in which are located all the solu-
tions. This can be easily done for the x j

b , y j
b variable that are restricted to lie within

the convex hull of the Ai points. This can also be done for z j
b , the z coordinate of

B j that cannot be greater than the highest z coordinate of the Ai points and cannot
be lower than the length obtained if we assume that the cable is vertical and bears
the platform. As for the ui as the cable have to lie within the convex hull of the Ai

we can also get bounds for these variables. It remains the variables Fx , Fz which
have no natural bounds except that Fx cannot be negative. We will first define m new
variables λ j such that F j

z = λ j Fx (which allows one to have simpler expressions
for (1, 2). We take then as upper bound for Fx 10 times the value of mg and for the λ

a range of [−10, 10] (at the extremities of this range the cables are almost vertical).

3.1 Determining Exact Solutions

The classical IA branch and bound algorithm assume that if the width of a box is
smaller than a small value and the interval evaluations of all equations include 0, then
we have found an approximate solution of the system. Here we proceed in another
way: for each box of the algorithm we run a few iterations of the Newton-Raphson
scheme with as estimate of the solution the center of the box H . Note that even if
the NR algorithm converges there is no guarantee (1) that the result is indeed an
approximate solution of the system, (2) that the solution lie within the box or even
within the search space, (3) that the result satisfies the constraint (5). In order to check
if the result is really a solution of the system we use Kantorovitch theorem [11] that
allows one to verify that there is indeed a single solution of the system in a ball
centered at H with a known radius. If this test succeed we have furthermore the
property that the NR scheme, initialized with H as guess point, converges toward
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the solution. We will see in the implementation section that this property will allow
us to compute an approximation of the solution with an arbitrary accuracy.

As soon as a solution H0 is found it is stored and in a first step we will assume
that there is no other solution in a ball centered at H0 with a given radius, this being
applied only on the 12 coordinates of the point B1, . . . , B4. Any box that is fully
included in this ball will be eliminated and if a box has an intersection with the ball,
then the intersection part will be removed from the box. Our purpose in this first
step is to determine balls that include a solution and possibly others. In a second
step we will run the algorithm on this ball and this check will be faster because the
search domain will be drastically reduced. With this approach the IA algorithm is
guaranteed to complete.

3.2 Heuristics

A drawback of the usual IA branch and bound algorithm that eliminates boxes only
according to the interval evaluation of the equations is that is not efficient as soon as
we have complex equations with multiple occurrences of the variables. But several
heuristics allows one to drastically improve the efficiency of the algorithm. A first
set of heuristics is called the consistency approach, which is based on a rewriting
of the equations. Consider for example the equation that described that the distance
between the points of a pair of Bi point is constant. This equation is written as

(xi
b − x j

b )2 + (yi
b − y j

b )2 + (zi
b − z j

b)2 = d2
i j (7)

which may be rewritten as

(xi
b − x j

b )2 = d2
i j − (yi

b − y j
b )2 − (zi

b − z j
b)2

Let [A, B] denote the interval evaluation of the right hand-side of this equation. We
deduce that

• if B < 0 the equation has no solution
• if A ≤ 0, B ≥ 0 then −√

B + x j
b ≤ xi

b ≤ −x j
b + √

B

• if A ≥ 0 then xi
b belongs to [−√

B + x j
b ,−√

A + x j
b ] ∪ [√A + x j

b ,
√

B + x j
b ]

With this approach we may improve the range for any variable in the equation or even
eliminate a box without having to use the bisection process. It is important to note that
if the set of variable is denoted x and we are able to write an equation under the form
g(xi ) = G(x) the consistency requires an inverse operator of g in order to be able to
update xi . This also motivate our choice not to use the minimal representation of the
pose but a more algebraic formulation whose inverse is trivial. In our implementation
the consistency is applied on all equations of the system and for all variables. It is
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also used on Eq. (5) and on the equations BiBj.BiBk = di j dik cos(θ) where θ is the
known angle between the lines going through (Bi , B j ) and (Bi , Bk).

Another efficient heuristic is the 3B method. Assume that we have a box and select
one of the variable xi whose range is [xi , xi ]. We change this range to [xi , [xi + ε],
where ε has a small value. Interval evaluation of the equations and the consistency
are used to determine if this new box may include a solution. If the answer is negative
we can safely modify the initial box by setting the range for xi to [xi + ε, xi ]. This
process is applied for all variables but also on the right side of the interval for xi .

Another approach is used for the equations that have multiple occurrences of the
same variable. We calculate the gradient of these equations and it interval evaluation
for the current box. If this evaluation has a constant sign we set the variable to the
appropriate lower or upper bound of the range to improve the interval evaluation.
This process has to be recursive: as soon as a variable is set to an extremity of its
range, then the interval evaluation of the gradient for another variable may become
of constant sign.

Another important issue is the choice of the variable that will be selected for
the bisection process. Our strategy is to bisect in priority the 12 coordinates of the
B1, . . . B4 until the width of their interval is lower than a given threshold. Indeed
these variables play an important role in the equations: if they are fixed the Eqs. (1),
(2) admit a single solution that correspond to the minimal potential energy of the
cables.

3.3 Implementation

The algorithm is implemented using the interval arithmetics of BIAS/PROFIL1 while
the higher level uses the functions of our ALIAS library2 that mixes a C++ library
and a Maple interface. The Maple interface has allowed to generate most of the C++
code for the algorithm and includes an arbitrary accuracy Newton scheme which
allow us to calculate an approximation of the solution with n digits, the n-th digit
being guaranteed to be exact, n being a number given by the end-user.

Another property of the Maple interface is that it allows one to implement the
algorithm in a distributed manner, i.e. running the algorithm on several computers.
Indeed it must be noticed that in the solving scheme the treatment of a given box
is independent from the treatment of the other boxes to be processed. This allow to
have a master program that manages the list of boxes to be processed and the list
o solutions and an arbitrary number m of slave computers. The master computer
process the initial box until it has a fixed number of boxes in its list. Then it sends
the top boxes to the slave computer that a few iterations of the solving algorithm
and send back to the master the eventual solution and the boxes that remain to be

1 http://www.ti3.tuhh.de/keil/profil/index_e.html.
2 http://www-sop.inria.fr/coprin/developpements/main.html.

http://www.ti3.tuhh.de/keil/profil/index_e.html
http://www-sop.inria.fr/coprin/developpements/main.html
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Fig. 3 The robot developed for the ANR Cogiro project. Although the robot is real we present a
CAD drawing that allows one to better figure out the CDPR

Table 1 Coordinates of the attachment points on the base (in meters)

x y z x y z

−7.175 −5.244 5.462 −7.316 −5.1 5.47

−7.3 5.2 5.476 −7.161 5.3 5.485

7.182 5.3 5.488 7.323 5.2 5.499

7.3 −5.1 5.489 7.161 −5.27 5.497

treated. As the communication overhead is small compared to the computing time
of the algorithm the distributed version allows to divide the processing time by m.

4 Example

We consider the large scale robot developed by LIRMM and Tecnalia as part of
the ANR project Cogiro [7] (Fig. 3). This robot is a suspended CDPR (i.e. there is
no cable pulling the platform downward) with 8 cables, whose Ai coordinates are
given in Table 1. The cables characteristics are E = 1009 N/m2, μ = 0.346 kg/m
and their diameter is 10 mm. The mass of the platform of 10 kg. The value of the L0s
(Table 2) are the non-deformed cable lengths for the pose (1, 0, 2) in meters and for
an orientation such that the reference frame and the mobile frame are aligned.

Table 2 Lengths of the cable
at rest (in meters)

1 2 3 4

10.48215 9.838952 10.16035 8.96827

5 6 7 8

10.310003 8.421629 8.663245 8.655556
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Table 3 The coordinates of B1, B2, B3 for the 19 solutions (meter)

Sol x1 y1 z1 x2 y2 z2 x3 y3 z3

1 1.55 0.43 4.26 0.04 0.21 4.89 1.05 −0.35 4.71

2 0.57 −0.08 3.53 1.47 −0.80 4.71 0.44 −0.89 4.15

3 1.45 −0.47 2.37 0.42 0.34 3.39 0.43 −0.27 2.38

4 1.27 0.65 4.41 −0.04 −0.31 4.11 1.10 −0.37 4.39

5 0.37 0.47 3.96 1.27 −0.33 5.10 1.34 0.11 4.01

6 0.91 0.98 3.45 0.94 0.04 4.81 1.64 0.64 4.09

7 1.53 −0.74 3.40 0.47 0.53 3.49 1.13 −0.18 4.16

8 1.46 −0.42 4.29 0.52 0.33 3.16 0.94 0.46 4.25

9 1.06 0.64 4.06 1.00 −0.60 2.97 0.93 −0.38 4.12

10 1.66 −0.07 3.45 0.46 0.77 4.20 0.94 −0.30 4.16

11 0.71 0.64 4.10 1.08 −0.64 3.11 0.58 −0.39 4.14

12 1.65 −0.32 4.99 0.73 −0.07 3.64 0.83 −0.78 4.57

13 0.29 0.69 3.64 1.11 −0.67 3.17 0.12 −0.32 3.71

14 1.39 0.45 3.81 0.55 −0.23 2.55 0.88 0.81 2.99

15 1.28 0.53 3.78 0.11 0.01 4.82 1.22 −0.20 4.50

16 1.04 0.90 3.63 0.54 −0.12 4.82 1.52 0.33 4.34

17 1.37 0.52 3.59 0.19 −0.64 3.63 0.44 0.40 3.15

18 0.71 0.92 3.69 0.53 −0.69 4.01 −0.08 0.31 3.94

19 1.86 −0.15 4.12 0.27 −0.60 4.19 1.18 −0.31 4.88

With 8 cables we have to solve a system of 36 equations and this is probably
the most challenging FK task that has even been considered. The solving algorithm
has been implemented using 10 computers and nineteen solutions were found in
the search domain in a computation of about 24 h. They are presented in Table 3,
while the cable tensions are given in Table 4. The solutions are depicted in Fig. 4.
It is interesting to note that the solution poses are distributed all over the possible
workspace: for example the x, y, z coordinates of B1 are in the ranges [0.29, 1.86],
[−0.74, 0.98], [2.37, 4.99]. The Fx forces exhibit also a very large range. For example
for cable 1 this force ranges from 20.08 to 417 N. We observe the same variation for
the Fz force: for the same cable its ranges from −30.25 to 15.91 N. In 15 cases on
19 the FZ tension in cable 1 is positive, meaning that the cable exert a downward
force on the platform. The number of cables that exert an upward force to support
the load is either 2, 3 or 4, meaning that only a small subset of cables contributes to
this support: this may be an useful information for dimensioning the cable.
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Table 4 Cable tensions for the 19 solutions (Newton)

1 Fx 417.00 22.12 78.64 421.40 14.78 17.25 48.67 98.43

1 Fz −30.25 15.05 11.19 −43.41 14.86 12.21 4.61 12.48

2 Fx 20.08 138.03 48.65 160.06 292.98 26.46 361.66 11.28

2 Fz 12.79 5.90 10.45 3.60 −16.58 7.61 −38.66 11.63

3 Fx 53.41 51.34 48.02 57.21 55.95 56.22 53.79 61.07

3 Fz 0.49 5.01 1.03 −6.48 5.28 −0.82 −6.66 −1.12

4 Fx 63.89 17.85 429.43 41.10 14.32 73.80 129.88 305.89

4 Fz 11.08 13.29 −29.11 6.18 14.03 5.90 −13.06 −11.58

5 Fx 21.49 242.38 298.60 26.28 19.78 251.91 315.03 21.29

5 Fz 13.77 7.43 −26.40 10.61 16.49 −1.49 −36.82 13.14

6 Fx 76.90 68.82 245.02 15.36 17.30 197.57 129.34 101.20

6 Fz 2.37 11.95 −16.54 11.72 14.32 −16.60 −17.55 7.06

7 Fx 30.99 134.64 90.89 119.67 31.69 63.39 20.24 114.91

7 Fz 10.63 −11.15 5.19 −4.05 7.42 −7.84 8.26 −11.74

8 Fx 29.99 112.30 27.31 37.41 93.70 117.12 19.86 119.86

8 Fz 13.87 −10.68 13.34 9.01 −4.54 −17.91 10.88 −17.24

9 Fx 43.32 78.79 68.24 21.31 66.92 108.11 19.48 125.50

9 Fz 11.47 −4.42 7.80 10.23 −1.06 −18.03 9.69 −18.95

10 Fx 103.16 170.17 57.39 269.24 21.03 13.32 42.69 51.20

10 Fz −2.67 −5.56 9.40 −36.83 11.86 10.12 1.69 8.73

11 Fx 28.80 99.44 33.76 24.86 90.54 109.52 22.93 114.64

11 Fz 13.35 −8.23 12.24 10.64 −4.98 −18.65 10.11 −17.74

12 Fx 37.36 48.75 270.98 94.64 107.81 16.26 11.05 384.16

12 Fz 15.91 6.93 −7.06 −2.23 −0.10 11.65 12.15 −40.52

13 Fx 23.40 95.81 23.16 54.19 112.26 76.11 74.82 75.04

13 Fz 12.62 −6.67 12.17 6.41 −8.11 −11.21 1.71 −10.19

14 Fx 85.67 52.69 26.80 44.85 89.57 98.61 91.56 42.53

14 Fz 3.87 −0.39 9.28 2.15 −1.29 −12.44 −2.41 −2.02

15 Fx 70.67 21.20 442.79 124.43 14.12 26.91 145.75 307.32

15 Fz 5.97 14.92 −25.45 −2.25 14.31 9.76 −19.27 −1.26

16 Fx 96.61 27.71 316.92 20.56 15.64 175.25 131.51 167.57

16 Fz 0.35 14.57 −18.38 11.45 14.25 −12.87 −17.14 4.51

17 Fx 227.68 18.81 22.23 124.03 52.72 123.33 67.08 30.85

17 Fz −23.60 11.93 10.69 −9.49 10.80 −12.77 4.35 4.83

18 Fx 38.88 22.14 16.06 59.80 304.33 39.15 209.62 104.55

18 Fz 10.48 12.55 13.66 9.15 −28.04 3.34 −12.75 −11.67

19 Fx 142.07 19.07 208.49 104.84 101.23 68.68 11.11 333.35

19 Fz −0.72 13.37 4.85 6.58 −3.75 −2.84 11.52 −32.30
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Fig. 4 Solutions 1–19

5 Conclusions

We have presented for the first time a generic algorithm to solve the FK for CDPR with
sagging cables. This a computer intensive algorithm (because of the complexity of the
problem), that is however guaranteed to provide all solutions. A test case of a robot
with 8 cables (probably one of the most complex that has been studied) has shown
that we may obtain surprising poses. As prospective our objective is to determine a
better balance between the various heuristics that are used in the solving. We will
also study the stability of the solutions, possibly introducing stability condition as
an additional solving heuristic in order to speed up the computation.
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