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Preface

First application ideas and concepts for cable-driven parallel robots were presented
in the late 1980s. Due to the unique properties of these robots, like huge size of the
workspace, high payload, and outstanding dynamic capacities, the potential
advantages became obvious and successful application projects seemed to be within
grasp.

During the following years it became clear that the mechanical simplicity is
accompanied by practical issues and theoretical challenges. Accordingly, the real-
ization of applications on a reliable and industrial level did not broadly succeed.

Thanks to extensive research—also massively driven by many of the contribu-
tors to this book—in the recent years numerous questions were answered and
several prototypes were realized. Even more, projects in close cooperation with
industry or directly funded by industrial companies are currently testing cable-
driven parallel robots in productive environments and first products are expected
soon.

In 2012, leading experts from three continents gathered during the “First
International Conference on Cable-Driven Parallel Robots” in Stuttgart, Germany.
This conference initiated a forum for the cable robot community that is continued
by the “Second International Conference on Cable-Driven Parallel Robots” at the
University Duisburg-Essen in 2014. This book summarizes the contributions of the
participants of this event.

During the lectures it became obvious that practical investigations as well as the
stable and reliable control of cable-driven parallel robots are attracting the focus of
research teams around the world. We are sure that this pioneers future applications
where cable-driven parallel robots enable outstanding solutions in the domains of
logistics, handling, production, maintenance, and physical therapy.

We are most grateful to the authors for their significant contributions, to the
reviewers for their careful feedback, and for the support of the scientific committee
that enabled this. We also thank the people at Springer for their efficient support and
help.

The conference was organized by the University of Duisburg-Essen and the
Fraunhofer Institute for Manufacturing Engineering and Automation IPA under the
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patronage of International Federation for the Promotion of Mechanism and Machine
Science (IFToMM). It is supported by the Förderverein Ingenieurwissenschaften
Universität Duisburg-Essen e.V. and the Duisburger Universitätsgesellschaft e.V.
as well as by the Rectorate and the Faculty for Engineering of the University
Duisburg-Essen. We would like to express our gratefulness to these institutions for
their valuable sponsorship.

June 2014 Andreas Pott
Tobias Bruckmann
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Part I
Modeling



The Forward Kinematics of Cable-Driven
Parallel Robots with Sagging Cables

Jean-Pierre Merlet and Julien Alexandre-dit-Sandretto

Abstract Solving the forward kinematics (FK) of parallel robots is known to be a
difficult task and the problem is even more complex for cable driven parallel robot
(CDPR): the system of equations that has to be solved is larger than with rigid legs
as first the static equations have to be taken into account and, second because the
deformation of the cables because of their elasticity and their mass may play a role,
while being described by a relatively non algebraic complex model. We consider in
this paper any arbitrary CDPR whose cables may present a significant deformation
due to their elasticity and own mass and we present for the first time an interval
analysis based generic algorithm that allows to calculate in a guaranteed manner all
the FK solutions and illustrate its use for a CDPR with 8 cables.

1 Introduction

Cable-driven parallel robot (CDPR) have themechanical structure of the Gough plat-
form with rigid legs except that the legs are cables whose length may be controlled.
We will assume that the output of the coiling system for cable i is a single point Ai ,
while the cable is connected at point Bi on the platform (Fig. 1). Classical kinematics
problem are the inverse kinematics (find the lengths of the cables for a given pose of
the platform) and the forward kinematics (FK) (find the pose(s) of the platform for
given cable lengths). Solving the FK of parallel robots is one of the most challenging
problem in modern kinematics. Two categories of FK may be distinguished:

J.-P. Merlet (B) · J. Alexandre-dit-Sandretto
INRIA, 2004, Route des Lucioles, Sophia-Antipolis, 06902 Cedex, France
e-mail: Jean-Pierre.Merlet@inria.fr
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e-mail: julien.alexandre-dit-sandretto@ensta-paristech.fr

© Springer International Publishing Switzerland 2015
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Fig. 1 Cable driven parallel
robots with sagging cables
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• real-time FK: used for control purposes with the objective of determining the
current pose of the robot. It need to be fast (running within a sampling time of the
robot controller) and uses the knowledge that the solution is “close” to a known
pose. It may also be used for simulation purposes

• full FK: the purpose is to determine all solutions of the FK. It is used off-line for
determining the possible initial states of the robot when running a simulation

We will see later on that the real time FK is not a problem and we will address only
the full FK. This problem has been addressed for CDPRDs in a very preliminary
stage only very recently and under restrictive assumptions on the behavior of the
cables. Indeed we may consider:

• non-deformable cables: they are aligned along the direction Ai Bi

• elastic cables: they are also aligned along Ai Bi but their lengths depend upon the
tension to which they are submitted

• catenary cables: they exhibit elasticity and their own mass leads to a deformed
shape

Most of the kinematicworks have assumed non-deformable cables. For robots having
at least 6 cables the FK is equivalent to the one of classical parallel robots (for more
than 6 cables at most 6 will be under tension simultaneously [1]). With less than 6
cables the problem is still open as the geometrical constraints relating the length of
the cables to the pose leads to less equations than unknowns, which imposes to add
the 6 additional statics equations and the cable tensions as additional unknowns. For
a CDPR with m cables the minimal system has 6+ m equations in 6+ m unknowns,
to be compared with the system of 6 equations for the Gough platform. Although
there has been progress recently to solve these problems [2–4] there are still a lot of
progress to bemade in order to determine themaximal number of solutions according
to m, solutions that should have only positive tensions and are stable.
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If we assume elasticity in the cables there has been some works for the IK [5, 6]
but to the best of our knowledge the FK has never been addressed in the general case.

This paper addresses the most general case of FK for CDPR having catenary type
cables. Very few works have addressed the IK and FK of such a robot [7–9] and none
have considered the general case.

2 Problem Statement

2.1 Cable Model

We will assume cables with linear density μ, cross-section A0 and E will denote
the Young modulus of the cable material. A reference frame O, x, y, z will be used
and the coordinates of the Ai points are known in this frame. In the vertical plane of
the cable we may assume that the cable is attached at point A with coordinates (0,0)
while the other extremity is attached at point B with coordinates (xb, yb) (Fig. 2).
The vertical and horizontal forces Fz, Fx are exerted on the cable at point B and the
cable length at rest is L0. With this notation the coordinates of B are related to the
forces Fx , Fz [10] by:

xb = Fx (
L0

E A0
+ sinh−1(Fz) − sinh−1(Fz − μgL0

Fx
)

μg
) (1)

zb =
√

F2
x + F2

z − √
F2

x + (Fz − μgL0)2

μg

+ Fz L0

E A0
− μgL2

0

2E A0
(2)

2.2 The FK Problem

We consider a spatial robot withm cables whose lengths will be denoted L1
0, . . . , Lm

0 .
Without loss of generality wewill assume that the Youngmodulus, linear density and
cross-section of the cables are identical. The problemwe have to solve is to determine
all the possible poses of the platform being given the L j

0 and the location of the Ai ,
together with the external forces/torques F that act on the platform. In terms of
unknowns we will assume a minimal representation of the pose with 6 parameters
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A(0,0)

B(xb,yb)

Fx

Fz

Fig. 2 A deformed cable

and we have also the 2m unknown forces Fi
x , Fi

z , for a total of 6 + 2m unknowns.
Note that to express these forces in the reference framewe need to establish a rotation
matrix Rot that rotates the planar frame around the z axis by an angle ui so that in the
reference framewe get the force acting on the platformF asF = Rot(−Fx , 0,−Fz)

T

and hence for cable j Fj = (−F j
x cos u j , F j

x sin u j , F j
z ). If we assume that the

external force acting on the platform is the gravity and that the platform mass is M
the mechanical equilibrium imposes that:

j=m∑

j=1

F j
x cos u j = 0

j=m∑

j=1

F j
x sin u j = 0

j=m∑

j=1

F j
z = Mg (3)

If C is the center of mass of the platform we get also

j=m∑

j=1

CBj × Fj = 0 (4)

In terms of equations we have the 2m Eqs. (1), (2) and the 6 static equations that
express the mechanical equilibrium of the platform. Hence we end up with 6 + 2m
equations so that solving the FK requires to solve a square system, which will usually
have afinite number of solutions. Itmay also been seen that the FK in that case ismuch
more complex than the FK of the Gough platform (it has 2m additional equations)
and that the classical methods used to determine an upper bound of the maximum
number of solutions (Bezout number, elimination, Gröbner basis) cannot be applied
here as Eqs. (1), (2) are not algebraic.
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3 Solving the FK

As a theoretical solving appears to be difficult to be used we will have to resort
to a numerical solving method, that has to provide all the solutions. We will use an
interval analysis (IA) approach,which guarantees to find all the solutions lyingwithin
some given ranges. The basis of IA is the interval evaluation: being given a function
f (x1, . . . , xn) in n variables and assuming that each variable xi lies in the range
[xi , xi ] the interval evaluation of f is a range [A, B] such that ∀xi ∈ [xi , xi ], i ∈
[1, n]we have A ≤ f (x1, . . . , xn) ≤ B. There aremultiple ways to define an interval
evaluation but the most simple is the natural evaluation: each mathematical operator
has an interval equivalent (for example the addition interval operator + is defined
as [a, b] + [c, d] = [a + c, b + d]) and transforming any function by using the
interval operators allows to calculate the interval evaluation. One of the property
of the interval evaluation [A, B] is that if A > 0 of B < 0, then f cannot cancel
whatever is the value of the variables in their ranges. Note that an interval evaluation
may be overestimated: there may not be value of the variables in their respective
range such that f (x1, . . . , xn) = A or f (x1, . . . , xn) = B. Indeed overestimation
may occur because of multiple occurrences of a given variable that are considered
as independent: for example the evaluation of x − x when x ∈ [−1, 1] is [−2, 2].
But the size of the overestimation decreases with the width of the variable ranges.

The second key ingredient of IA is the branch and bound algorithm. A box B is
defined as a set of ranges for the variables. If for a given box we have f (B = [A, B]
with A < 0, B > 0, then we select one of the variable, xi bisect its range in two
and create two new boxesB1,B2 that are identical toB except for the range for xi

which result from the bisection. These boxes are stored in a list and will be processed
later on.We will see in the next section that if a box is tiny enough wemay determine
if it includes a single solution and compute this solution with an arbitrary accuracy.

However we will not use the minimal set of equations for the FK. Indeed the
pose of the platform will not be represented by the coordinates of C and three
orientation angles. The motivation is that coordinates xb, zb in (1, 2) will be obtained
after using the rotation matrix and will include several occurrences of the rotation
angles, possibly leading to large overestimation. We prefer to represent the pose
of the platform by the 12 coordinates in the reference frame of 4 of the points
Bi , which are not coplanar (we assume here that B1, B2, B3, B4 are chosen). With
this choice the coordinates of any point M on the platform may be obtained as
OM = α1OB1 + α2OB2 + α3OB3 + α4OB4 where the α are known constants.
Such a representation allows one to obtain the coordinates of the B j , j > 4 and
of the center of mass C . As we have now 12 unknowns for representing the pose
of the platform instead of 6 with the minimal representation we need 6 additional
equations that are obtained by stating that the distance between a pair of points in
the set B1, . . . B4 is a known constant. Note that these equations are not sufficient
to fully describe the geometry of the platform (e.g. the equations does not allow to
differentiate if a B j point is over or under the plane that includes the three other
points). Another test is needed and we will use the fact that for any point M of the
platform there exist constants β j such that
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BjM = β1BjBk + β2BjBl + β3BjBk × BjBl, j, k, l ∈ [1, 4] (5)

It remains to manage the angles ui : formally they can be obtained using the equation

x j
b sin(u j ) + y j

b cos(u j ) = 0 (6)

where x j
b , y j

b are the coordinates of B j in the reference frame. But by so doing

their interval evaluation will be relatively large even for small width for the x j
b , y j

b
intervals, especially if j > 4. Hence we prefer to add them as additional unknowns
and to use (6) as additional equations. Hence we end up with 12 + 3m unknowns
for 12 + 3m equations. Note that we have checked that solving this system in the
context of a real-time FK is not difficult as soon as a certified strategy is used [11]:
this strategy allows one to determine the current pose of the robot or eventually that
the pose is too close to a singularity (in which case the FK has an infinite number of
solutions).

An IA approach impose to determine a domain in which are located all the solu-
tions. This can be easily done for the x j

b , y j
b variable that are restricted to lie within

the convex hull of the Ai points. This can also be done for z j
b , the z coordinate of

B j that cannot be greater than the highest z coordinate of the Ai points and cannot
be lower than the length obtained if we assume that the cable is vertical and bears
the platform. As for the ui as the cable have to lie within the convex hull of the Ai

we can also get bounds for these variables. It remains the variables Fx , Fz which
have no natural bounds except that Fx cannot be negative. We will first define m new
variables λ j such that F j

z = λ j Fx (which allows one to have simpler expressions
for (1, 2). We take then as upper bound for Fx 10 times the value of mg and for the λ

a range of [−10, 10] (at the extremities of this range the cables are almost vertical).

3.1 Determining Exact Solutions

The classical IA branch and bound algorithm assume that if the width of a box is
smaller than a small value and the interval evaluations of all equations include 0, then
we have found an approximate solution of the system. Here we proceed in another
way: for each box of the algorithm we run a few iterations of the Newton-Raphson
scheme with as estimate of the solution the center of the box H . Note that even if
the NR algorithm converges there is no guarantee (1) that the result is indeed an
approximate solution of the system, (2) that the solution lie within the box or even
within the search space, (3) that the result satisfies the constraint (5). In order to check
if the result is really a solution of the system we use Kantorovitch theorem [11] that
allows one to verify that there is indeed a single solution of the system in a ball
centered at H with a known radius. If this test succeed we have furthermore the
property that the NR scheme, initialized with H as guess point, converges toward
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the solution. We will see in the implementation section that this property will allow
us to compute an approximation of the solution with an arbitrary accuracy.

As soon as a solution H0 is found it is stored and in a first step we will assume
that there is no other solution in a ball centered at H0 with a given radius, this being
applied only on the 12 coordinates of the point B1, . . . , B4. Any box that is fully
included in this ball will be eliminated and if a box has an intersection with the ball,
then the intersection part will be removed from the box. Our purpose in this first
step is to determine balls that include a solution and possibly others. In a second
step we will run the algorithm on this ball and this check will be faster because the
search domain will be drastically reduced. With this approach the IA algorithm is
guaranteed to complete.

3.2 Heuristics

A drawback of the usual IA branch and bound algorithm that eliminates boxes only
according to the interval evaluation of the equations is that is not efficient as soon as
we have complex equations with multiple occurrences of the variables. But several
heuristics allows one to drastically improve the efficiency of the algorithm. A first
set of heuristics is called the consistency approach, which is based on a rewriting
of the equations. Consider for example the equation that described that the distance
between the points of a pair of Bi point is constant. This equation is written as

(xi
b − x j

b )2 + (yi
b − y j

b )2 + (zi
b − z j

b)2 = d2
i j (7)

which may be rewritten as

(xi
b − x j

b )2 = d2
i j − (yi

b − y j
b )2 − (zi

b − z j
b)2

Let [A, B] denote the interval evaluation of the right hand-side of this equation. We
deduce that

• if B < 0 the equation has no solution
• if A ≤ 0, B ≥ 0 then −√

B + x j
b ≤ xi

b ≤ −x j
b + √

B

• if A ≥ 0 then xi
b belongs to [−√

B + x j
b ,−√

A + x j
b ] ∪ [√A + x j

b ,
√

B + x j
b ]

With this approach wemay improve the range for any variable in the equation or even
eliminate a boxwithout having to use the bisection process. It is important to note that
if the set of variable is denoted x and we are able to write an equation under the form
g(xi ) = G(x) the consistency requires an inverse operator of g in order to be able to
update xi . This also motivate our choice not to use the minimal representation of the
pose but a more algebraic formulation whose inverse is trivial. In our implementation
the consistency is applied on all equations of the system and for all variables. It is



10 J.-P. Merlet and J. Alexandre-dit-Sandretto

also used on Eq. (5) and on the equations BiBj.BiBk = di j dik cos(θ) where θ is the
known angle between the lines going through (Bi , B j ) and (Bi , Bk).

Another efficient heuristic is the 3B method. Assume that we have a box and select
one of the variable xi whose range is [xi , xi ]. We change this range to [xi , [xi + ε],
where ε has a small value. Interval evaluation of the equations and the consistency
are used to determine if this new boxmay include a solution. If the answer is negative
we can safely modify the initial box by setting the range for xi to [xi + ε, xi ]. This
process is applied for all variables but also on the right side of the interval for xi .

Another approach is used for the equations that have multiple occurrences of the
same variable. We calculate the gradient of these equations and it interval evaluation
for the current box. If this evaluation has a constant sign we set the variable to the
appropriate lower or upper bound of the range to improve the interval evaluation.
This process has to be recursive: as soon as a variable is set to an extremity of its
range, then the interval evaluation of the gradient for another variable may become
of constant sign.

Another important issue is the choice of the variable that will be selected for
the bisection process. Our strategy is to bisect in priority the 12 coordinates of the
B1, . . . B4 until the width of their interval is lower than a given threshold. Indeed
these variables play an important role in the equations: if they are fixed the Eqs. (1),
(2) admit a single solution that correspond to the minimal potential energy of the
cables.

3.3 Implementation

The algorithm is implemented using the interval arithmetics of BIAS/PROFIL1 while
the higher level uses the functions of our ALIAS library2 that mixes a C++ library
and a Maple interface. The Maple interface has allowed to generate most of the C++
code for the algorithm and includes an arbitrary accuracy Newton scheme which
allow us to calculate an approximation of the solution with n digits, the n-th digit
being guaranteed to be exact, n being a number given by the end-user.

Another property of the Maple interface is that it allows one to implement the
algorithm in a distributed manner, i.e. running the algorithm on several computers.
Indeed it must be noticed that in the solving scheme the treatment of a given box
is independent from the treatment of the other boxes to be processed. This allow to
have a master program that manages the list of boxes to be processed and the list
o solutions and an arbitrary number m of slave computers. The master computer
process the initial box until it has a fixed number of boxes in its list. Then it sends
the top boxes to the slave computer that a few iterations of the solving algorithm
and send back to the master the eventual solution and the boxes that remain to be

1 http://www.ti3.tuhh.de/keil/profil/index_e.html.
2 http://www-sop.inria.fr/coprin/developpements/main.html.

http://www.ti3.tuhh.de/keil/profil/index_e.html
http://www-sop.inria.fr/coprin/developpements/main.html
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Fig. 3 The robot developed for the ANR Cogiro project. Although the robot is real we present a
CAD drawing that allows one to better figure out the CDPR

Table 1 Coordinates of the attachment points on the base (in meters)

x y z x y z

−7.175 −5.244 5.462 −7.316 −5.1 5.47

−7.3 5.2 5.476 −7.161 5.3 5.485

7.182 5.3 5.488 7.323 5.2 5.499

7.3 −5.1 5.489 7.161 −5.27 5.497

treated. As the communication overhead is small compared to the computing time
of the algorithm the distributed version allows to divide the processing time by m.

4 Example

We consider the large scale robot developed by LIRMM and Tecnalia as part of
the ANR project Cogiro [7] (Fig. 3). This robot is a suspended CDPR (i.e. there is
no cable pulling the platform downward) with 8 cables, whose Ai coordinates are
given in Table1. The cables characteristics are E = 1009 N/m2, μ = 0.346kg/m
and their diameter is 10mm. The mass of the platform of 10kg. The value of the L0s
(Table2) are the non-deformed cable lengths for the pose (1, 0, 2) in meters and for
an orientation such that the reference frame and the mobile frame are aligned.

Table 2 Lengths of the cable
at rest (in meters)

1 2 3 4

10.48215 9.838952 10.16035 8.96827

5 6 7 8

10.310003 8.421629 8.663245 8.655556
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Table 3 The coordinates of B1, B2, B3 for the 19 solutions (meter)

Sol x1 y1 z1 x2 y2 z2 x3 y3 z3

1 1.55 0.43 4.26 0.04 0.21 4.89 1.05 −0.35 4.71

2 0.57 −0.08 3.53 1.47 −0.80 4.71 0.44 −0.89 4.15

3 1.45 −0.47 2.37 0.42 0.34 3.39 0.43 −0.27 2.38

4 1.27 0.65 4.41 −0.04 −0.31 4.11 1.10 −0.37 4.39

5 0.37 0.47 3.96 1.27 −0.33 5.10 1.34 0.11 4.01

6 0.91 0.98 3.45 0.94 0.04 4.81 1.64 0.64 4.09

7 1.53 −0.74 3.40 0.47 0.53 3.49 1.13 −0.18 4.16

8 1.46 −0.42 4.29 0.52 0.33 3.16 0.94 0.46 4.25

9 1.06 0.64 4.06 1.00 −0.60 2.97 0.93 −0.38 4.12

10 1.66 −0.07 3.45 0.46 0.77 4.20 0.94 −0.30 4.16

11 0.71 0.64 4.10 1.08 −0.64 3.11 0.58 −0.39 4.14

12 1.65 −0.32 4.99 0.73 −0.07 3.64 0.83 −0.78 4.57

13 0.29 0.69 3.64 1.11 −0.67 3.17 0.12 −0.32 3.71

14 1.39 0.45 3.81 0.55 −0.23 2.55 0.88 0.81 2.99

15 1.28 0.53 3.78 0.11 0.01 4.82 1.22 −0.20 4.50

16 1.04 0.90 3.63 0.54 −0.12 4.82 1.52 0.33 4.34

17 1.37 0.52 3.59 0.19 −0.64 3.63 0.44 0.40 3.15

18 0.71 0.92 3.69 0.53 −0.69 4.01 −0.08 0.31 3.94

19 1.86 −0.15 4.12 0.27 −0.60 4.19 1.18 −0.31 4.88

With 8 cables we have to solve a system of 36 equations and this is probably
the most challenging FK task that has even been considered. The solving algorithm
has been implemented using 10 computers and nineteen solutions were found in
the search domain in a computation of about 24h. They are presented in Table3,
while the cable tensions are given in Table4. The solutions are depicted in Fig. 4.
It is interesting to note that the solution poses are distributed all over the possible
workspace: for example the x, y, z coordinates of B1 are in the ranges [0.29, 1.86],
[−0.74, 0.98], [2.37, 4.99]. The Fx forces exhibit also a very large range. For example
for cable 1 this force ranges from 20.08 to 417N. We observe the same variation for
the Fz force: for the same cable its ranges from −30.25 to 15.91N. In 15 cases on
19 the FZ tension in cable 1 is positive, meaning that the cable exert a downward
force on the platform. The number of cables that exert an upward force to support
the load is either 2, 3 or 4, meaning that only a small subset of cables contributes to
this support: this may be an useful information for dimensioning the cable.
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Table 4 Cable tensions for the 19 solutions (Newton)

1 Fx 417.00 22.12 78.64 421.40 14.78 17.25 48.67 98.43

1 Fz −30.25 15.05 11.19 −43.41 14.86 12.21 4.61 12.48

2 Fx 20.08 138.03 48.65 160.06 292.98 26.46 361.66 11.28

2 Fz 12.79 5.90 10.45 3.60 −16.58 7.61 −38.66 11.63

3 Fx 53.41 51.34 48.02 57.21 55.95 56.22 53.79 61.07

3 Fz 0.49 5.01 1.03 −6.48 5.28 −0.82 −6.66 −1.12

4 Fx 63.89 17.85 429.43 41.10 14.32 73.80 129.88 305.89

4 Fz 11.08 13.29 −29.11 6.18 14.03 5.90 −13.06 −11.58

5 Fx 21.49 242.38 298.60 26.28 19.78 251.91 315.03 21.29

5 Fz 13.77 7.43 −26.40 10.61 16.49 −1.49 −36.82 13.14

6 Fx 76.90 68.82 245.02 15.36 17.30 197.57 129.34 101.20

6 Fz 2.37 11.95 −16.54 11.72 14.32 −16.60 −17.55 7.06

7 Fx 30.99 134.64 90.89 119.67 31.69 63.39 20.24 114.91

7 Fz 10.63 −11.15 5.19 −4.05 7.42 −7.84 8.26 −11.74

8 Fx 29.99 112.30 27.31 37.41 93.70 117.12 19.86 119.86

8 Fz 13.87 −10.68 13.34 9.01 −4.54 −17.91 10.88 −17.24

9 Fx 43.32 78.79 68.24 21.31 66.92 108.11 19.48 125.50

9 Fz 11.47 −4.42 7.80 10.23 −1.06 −18.03 9.69 −18.95

10 Fx 103.16 170.17 57.39 269.24 21.03 13.32 42.69 51.20

10 Fz −2.67 −5.56 9.40 −36.83 11.86 10.12 1.69 8.73

11 Fx 28.80 99.44 33.76 24.86 90.54 109.52 22.93 114.64

11 Fz 13.35 −8.23 12.24 10.64 −4.98 −18.65 10.11 −17.74

12 Fx 37.36 48.75 270.98 94.64 107.81 16.26 11.05 384.16

12 Fz 15.91 6.93 −7.06 −2.23 −0.10 11.65 12.15 −40.52

13 Fx 23.40 95.81 23.16 54.19 112.26 76.11 74.82 75.04

13 Fz 12.62 −6.67 12.17 6.41 −8.11 −11.21 1.71 −10.19

14 Fx 85.67 52.69 26.80 44.85 89.57 98.61 91.56 42.53

14 Fz 3.87 −0.39 9.28 2.15 −1.29 −12.44 −2.41 −2.02

15 Fx 70.67 21.20 442.79 124.43 14.12 26.91 145.75 307.32

15 Fz 5.97 14.92 −25.45 −2.25 14.31 9.76 −19.27 −1.26

16 Fx 96.61 27.71 316.92 20.56 15.64 175.25 131.51 167.57

16 Fz 0.35 14.57 −18.38 11.45 14.25 −12.87 −17.14 4.51

17 Fx 227.68 18.81 22.23 124.03 52.72 123.33 67.08 30.85

17 Fz −23.60 11.93 10.69 −9.49 10.80 −12.77 4.35 4.83

18 Fx 38.88 22.14 16.06 59.80 304.33 39.15 209.62 104.55

18 Fz 10.48 12.55 13.66 9.15 −28.04 3.34 −12.75 −11.67

19 Fx 142.07 19.07 208.49 104.84 101.23 68.68 11.11 333.35

19 Fz −0.72 13.37 4.85 6.58 −3.75 −2.84 11.52 −32.30



14 J.-P. Merlet and J. Alexandre-dit-Sandretto

Fig. 4 Solutions 1–19

5 Conclusions

Wehave presented for thefirst time a generic algorithm to solve theFK forCDPRwith
sagging cables. This a computer intensive algorithm (because of the complexity of the
problem), that is however guaranteed to provide all solutions. A test case of a robot
with 8 cables (probably one of the most complex that has been studied) has shown
that we may obtain surprising poses. As prospective our objective is to determine a
better balance between the various heuristics that are used in the solving. We will
also study the stability of the solutions, possibly introducing stability condition as
an additional solving heuristic in order to speed up the computation.
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An Elastic Cable Model for Cable-Driven
Parallel Robots Including Hysteresis Effects

Philipp Miermeister, Werner Kraus, Tian Lan and Andreas Pott

Abstract Experimental results indicate that time invariant linear elastic models for
cable-driven parallel robots show a significant error in the force prediction during
operation. This paper proposes the use of an extended model for polymer cables
which allows to regard the hysteresis effects depending on the excitation amplitude,
frequency, and initial tension level. The experimental design as well as the parameter
identification are regarded.

1 Introduction

A cable-driven parallel robot, in the following simply called cable robot, is a parallel
kinematic machine mainly consisting of a platform, cables, and winches as shown
in Fig. 1. The cables connect the platform to the winches which in turn control the
platform pose by changing the cable length. The control inputs for the winches
usually are computed using a simplified kinematic robot model which regards the
platform and frame geometry under the assumption that the attachment points at the
platform and the contact points at the winch are time invariant. Methods for design
and workspace computation of such systems can be found in [3, 4, 10, 12]. Extended
kinematicmodels also include the pulley geometry at thewinches and result in higher
positioning accuracy [9]. The cable robot IPAnema at Fraunhofer IPA uses Dyneema
cables instead of conventional steel cables which brings the advantage of the lower
weight but at the same time introduces a more complex elastic behavior in the most
relevant force transition element of the cable robot. It showed that the Dyneema
polyethylene cables have a changing elastic behavior over time, are subject to settling
effects, are sensitive to overload, and show hysteresis effects. Since it is very difficult
to build themodels and identifying the related parameters usingmodels fromdifferent
fields such as tribology, viscoelasticity, and multibody systems, here we propose a
black box approach to model the drive chain. While white box modeling demands a
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Fig. 1 Overconstrained cable-driven parallel robot

very good knowledge of the inner relations of a system, black box modeling tries to
identify the system behavior by observing the input output behavior of a system.

In the fist part of the paper the modeling of the cables is shown. The second part
deals with the parameter identification, while the third part shows the evaluation of
the model for different input signals.

2 Robot and Cable Elasticity Model

The minimal robot model usually running in a numerical control to operate a robot
is based on a solely geometrical model as shown in Fig. 2 including the m platform
and winch attachment points bi and ai with i = 1 . . . m, respectively. The cables can
be modeled in different ways depending on the demanded degree of accuracy. The
most simple model is just the geometrical model without elastic behavior, meaning
that the inverse kinematic equation
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Fig. 2 Kinematic loop for one cable

li = ai − (r + Rbi ) (1)

can be used to compute the cable length li = ‖li‖2 from a given platform posi-
tion r and rotation R. More complex models deal with pulleys by introducing time
variant anchorage points and handle non negligible cable mass by utilizing catenary
equations to model the cable sagging [5, 11].

Since the mass of the cables of the IPAnema robot is small in comparison to the
applied tension level it is not necessary to regard the cable sagging in the model. For
cable force control, admittance control, and parameter identification it is necessary
to predict the cable force very accurately. The force and torque equilibrium of a cable
robot is described by the structure equation

[
u1 · · · um

b1 × u1 · · · bm × um

]

︸ ︷︷ ︸
AT

⎡
⎢⎣

f1
...

fm

⎤
⎥⎦

︸ ︷︷ ︸
f

+
[

fp
τp

]

︸ ︷︷ ︸
w

= 0 (2)

where AT is the well known structure matrix [12], ui = li ‖li‖−1
2 is a unit vector in

direction of the cables, f is the vector of cable forces and w is the external wrench.
Going from the kinematic model to a linear elastic model of type
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fi =
{

fi = ciΔli forΔli > 0
0 forΔli < 0

(3)

with Δli = lSP,i − li where ci is the cable stiffness and lSP,i is the set point for
the cable length while li is the actual cable length in the workspace one can achieve
a more accurate prediction. Modeling the cable forces in this way gives acceptable
results for positive cable tensions, but leads to numerical problems in case ofΔli < 0
due to the discontinuity and the zero area.

Comparing the linear elasticmodelwith experimental data showed that cables also
come along with a hysteresis behavior which depends on the actuation frequency,
amplitude, tension level and amplitude as well as the current angle of the cables with
regards to the redirection pulleys of the robot. Different models such as the Bouc–
Wen-Model, Bilinear Model, Bingham Model, or Polynomial model can be used to
describe the hysteresis behavior [1, 2, 6]. A single tensioned cable of the robot can
be seen as single degree of freedom system with an elastic–plastic behavior whose
hysteresis by means of the cable elongation x can be described by two polynomial
functions, one for the upper part and one for the lower part

FU(x) =
nP∑

i=0

ai xi , ẋ > 0 (4)

and

FL(x) =
nP∑

i=0

(−1)i+1ai xi , ẋ < 0, (5)

respectively. Under the assumption of displacement anti-symmetry one can compute
the hysteresis function by combining Eqs. (4) and (5) to

F(x, ẋ) = g(x) + h(x)sgn(ẋ) (6)

with the polynomials

g(x) = a1 + a3x3 + · · · + am xng

h(x) = a0 + a2x2 + · · · + an xnh (7)

where ng is an odd number and nh = ng − 1. The degree of the polynomials can
be chosen according to the expected accuracy. The sum of the polynomials g(x)

and h(x) can be interpreted as the superposition of an anhysteretic nonlinear elastic
part and hysteretic nonlinear damping part as shown in Fig. 3. The expression in
Eq. (6) allows to describe the hysteresis for a certain amplitude A independent of
the current velocity state. Experiments showed that the hysteretic behavior of the
cable is different comparing very small an very large amplitudes. Extending the
model in order to deal with variable amplitudes and replacing the solely polynomial
description by a velocity depended damping expression one can write
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Fig. 3 Decomposition of a hysteresis curve into its anhysteretic nonlinear elastic part and its
nonlinear damping part

F = K0 + K1(A)x + K2(A)x2 + K3(A)x3 + Sa|v|α(A)sgn(v)

A(Aω)α(A)lπ
(8)

where the first amplitude dependent polynomial part, now describes the nonlinear
non hysteretic spring behavior and the second part of the equation deals with the
velocity depended hysteretic damping forces. The hysteretic part is parameterized
by the area of the hysteresis Sa and the viscoelastic damping factor α. In case of
α = 0 the second part of Eq. (8) gets independent of the velocity representing dry
friction behavior. The energy dissipation in one cycle for a given friction behavior is

l =
∫ T/2
0 sin (ωt)α(A)+1 dωt
∫ T/2
0 sin (ωt)2 dωt

= 2π

T/2∫

0

sin (ωt)α(A)+1 dωt (9)

where T is the time of oscillation and ω is the angular frequency (Fig. 3).

3 Design of Experiments and Parameter Identification

Considering Eq. (8) for a given amplitude level, one has a five dimensional parameter
space where the first parameter K0 determines the pretensioned cable state with
A = 0 and v = 0 reducing the identification problem to four dimensions

pM = [
K1 K2 K3 Sa

]T
. (10)
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Table 1 Parameter
sensitivity

K1 K2 K3 Sa

Sensitivity 1.1 0.1 0.03 0.3

The amplitude model is considered separately. While the parameter identification
problem for pM has to deal with the problem of finding the inverse mapping function
from four to one dimensions pM = f −1

M (rM), the identification of pM,i = fA,i(A)

is just a one dimensional problem. For an efficient measurement and identification
process it is important to have a good selection of model parameters and measure-
ment samples. A good selection of model parameters means a high sensitivity with
regards to the objective function and a good selection of samples means maximized
information gain with a minimal number of samples. To obtain the optimal number
of parameters necessary for the model identification, the sensitivity of the parameters
is computed by

S = O2 − O1

Ō12

(
I2 − I1

Ī12

)−1

. (11)

This sensitivity metric gives the relative normalized change of the output O with
regards to the input I using the averages Ō and Ī . Parameters with a low sensitivity
do not have to be regarded in the model. As can be seen in Table1, elements with an
order higher than three can be neglected in themodel. The influence of the parameters
K1 and Sa are visualized in Figs. 4 and 5.

The selection of measurement samples was done according to a D-optimal design
of experiments giving a set of tuples (pM,i , rM,i ), i = 1 . . . nD where nD is the num-
ber of measurements and rM,i is the ith error function for the parameter identification
problem given by

ri (p) = F(p, xi ) − FM,i (12)

Fig. 4 Parameter sensitivity of K1
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Fig. 5 Parameter sensitivity of Sa

Assuming only small deviations Δp it is possible to use linearization around p0
which gives the Jacobian Jrp. From that the optimum parameter set can be found by
minimizing the least squared error using the objective function

popt = min

(
1

2

nD∑

i=0

(
F(p, xi ) − FM,i

)2
)

. (13)

Using the linearization one can compute the minimal solution for Eq. (13) by solving
the well known normal equation

JTrpJrpΔp = JTrpΔr. (14)

In case that the error of the model is small, a local optimization scheme such as
the Levenberg Marquardt algorithm can be used to find the optimal parameter set.
Having a good initial guess p0 is essential for a successful parameter identification. It
showed that local optimization is a good choice for long term parameter tracking or
repeated adjustment after certain time periods, but did not work well for the very first
identification process. Nonlinearities and the huge initial errors demanded for more
global optimization techniques such as simulated annealing or genetic optimization
procedures which can be used to identify the global optimum.

4 Experimental Results

For measurement, the platform is fixed at the origin such that no interaction between
the cables can occur. The excitation function for the cable elongation and it’s asso-
ciated velocity is chosen as
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Table 2 Parameter
sensitivity

K1 K2 K3 Sa

Sensitivity −16.8863 2.411 1.0472 1.1698

Δl = −A cos(ωt) (15)

Δl̇ = v = Aω sin(ωt)

For this excitation function the damping force can be calculated as

Fh = c|Aω sin(ωt)|αsgn(sin(ωt)) (16)

where c is damping function

c = Sa

⎛
⎝2A(Aω)α

T/2∫

0

sin (ωt)α+1 dωt

⎞
⎠ . (17)

with Sa describing the area of the hysteresis function. The cables were actuated
with an amplitude ranging from 0.1mm up to 1.5mm. The pretension level was
chosen at 60N. Running the test was done by generating the cable length set points
according to the experimental design using Matlab. The length for each cable in
the joint space was commanded by a TwinCat3 controller connected to industrial
synchronous servo motors. Force sensors between the cables and the platform were
used tomeasure the cable forces. The force data together with the actual cable lengths
were stored in a csv file by TwinCAT and used for model identification in Matlab.
Using the actual cable lengths instead of the commanded cable lengths is important
to reduce errors introduced by system dead time and controller delay. The results
of the parameter identification process can be found in Table2. The comparison of
measurements and simulation results after the identification process gave an average
model error of 0.4N for a static pose. Checking the model prediction after a few
days of operation, the model and the real system already started to diverge as can be
seen in Fig. 6 where the cable force already shows an offset of 0.4N to the previously
created model. This may be caused by temperature changes, cable settlement and
high tension states resulting in lasting changes in the cable’s elastic behavior. Using
the model for a sinusoidal excitation, a randomly shaped signal can be approximated
by a Fourier decomposition. A trapezoidal and a triangular signal where used as test
signals to verify the model for different shaped inputs. The Fourier decomposition
of the triangular function for example is given by

f (t) = 8A

π2 (sin(ωt) − 1

32
sin(3ωt) + 1

52
(sin(5ωt)) − · · · ). (18)

The comparison of the curve progression of the Fourier based force model and the
actual measurements are shown in Fig. 7 for an approximation with the first three
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Fig. 6 Comparison of hysteresismodel andmeasurements after approximately for days of operation

Fig. 7 Triangular test signal with Fourier approximation

Fourier coefficients. The related error shown in Fig. 8 has a maximum magnitude
of ±1.5N at the peak points. The model prediction is based on the whole set of
measurement samples which provides knowledge about the past and future of the
signal at a certain time stamp. Using the model in a real scenario one has to use
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Fig. 8 Hysteresis function and error for a triangular test signal

Fig. 9 Pulley assembly of the cable-robot demonstrator. a Pulley for cable redirection. b Cable
and bearing forces

a continuous-time Foruier transformation to deal with the unknown future of the
signal, or the numerical control has to feed forward the positioning set points of the
cables. While the prediction for a small area around the initial pose was accurate,
experimental results showed that themodel error increased depending on the platform
pose in the workspace. This is is caused by the elasticity of the pulley mounting and
the damping behavior of the pulley bearings. To get better model prediction for the
whole workspace, these influences have to be regarded in the elasticity model of
the power trains. Introducing the angle α to measure the wrapping length of the
cable as shown in Fig. 9b, its influence on the stiffness of a single powertrain is
experimentally determined as can be seen in Fig. 10. The influence of angle α on the
hysteresis behavior is shown in Fig. 11.
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Fig. 10 Hysteresis and stiffness behavior in relation to the pulley angle α

Fig. 11 Damping behavior in relation to the pulley α

The effect may be caused by the increased wrapping angle and the direction of
the changing force vector as shown in Fig. 9b, increasing the reaction and friction
force at the pulley bearing according to

Fi = f
√
2 cos(αi + 1). (19)

The angle of attack also influences the torque applied to the bearing on the frame
and therefore influences the observed elasticity in the cables.
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5 Conclusion and Outlook

In this paper an improved cable model was presented which allows to regard the
hysteresis effect during force computation. The approach can be used to improve
force algorithms and the identification of geometrical robot parameters in an auto
calibration procedure which relies on the force sensors for data acquisition. The sim-
plicity of the model allows to compute the force values in a deterministic time slot,
meeting the demand of real-time algorithms. While the model gives significantly
better results than the linear elastic model it showed that the cable behavior not only
depends on local parameters such as the amplitude, but also on more global and
time variant parameters such as the platform pose. Beside that, the actual robot and
the model tend to diverge over time depending on the operating load and environ-
mental conditions. Further experiments will be executed to evaluate the long term
parameter stability of the robot parameters depending on operational time. It also
would be interesting to investigate the influence of overload on the cables alone and
in interaction with the surrounding support structure.
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On the Improvement of Cable Collision
Detection Algorithms

Dinh Quan Nguyen and Marc Gouttefarde

Abstract This paper presents several algorithms to detect the cable interferences for
a general spatial Cable-Driven Parallel Robot (CDPR). Two types of cable interfer-
ences are considered. The first type is the collisions between cables and cables. The
second type is the interferences between cables and the CDPR mobile platform. In
each case, an algorithm is proposed to efficiently verify the cable interferences. The
useof the proposed algorithms is then illustratedby averificationprocedure of the col-
lision free condition over a given Cartesian workspace and orientation workspace of
a CDPR. These tools can be used in the design or planning phase of a general CDPR.

1 Introduction

For cable-driven parallel robots, collision detections happen in several cases:

• Interferences between cables and cables
• Interferences between cables and mobile platform
• Interferences between mobile platform and surrounding environment
• Interferences between cables and surrounding environment.

Efficientmethods to detect such collisions becomenecessary, especially for spatial
CDPR having a large number of cables (e.g. m ≥ 6) such as the NIST robot crane
[1], the Marionet CDPR [2, 3] and the CoGiRo prototype [4]. These methods could
be used in two main situations:

• Design/planning: required to check the capability of CDPR (e.g. compute the
bounds on the orientation and Cartesian spaces within which there is no cable
interference).

• Control: required to guarantee safety issues in operating CDPR in real-time.
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In most situations, the latter case can be avoided if all the safety constraints are dealt
with from checking the capability of CDPR over a desired workspace. In this paper,
we mainly discuss the verification of collision free conditions for a CDPR in the
design or offline planning phases.

In fact, CDPR cable interference problem has not extensively been addressed.
Studies on this aspect can be listed as [5–10].

In term of the collisions between cables or CDPRmobile platform with surround-
ing environment, one can use AABB or OOBB tree methods [11]. These methods are
fast and effective for large and complex shape objects (triangulations of the mobile
platform and obstacles may consist of a lot of vertices).

For CDPR with light-weight cables, the cables can be considered as straight
lines. For CDPR using hefty cables, the mobile platform weight is expectedly large,
the cable sagging effects may not really affect the algorithms, thus it may also be
sufficient enough to consider the cables as straight lines. In either cases, the inter-
ferences between cables and cables can be treated as interferences between straight
line segments. The interferences between cables and CDPR mobile platform can
be considered as collisions between straight line segments and triangles (the latter
triangulating the surface of the CDPR mobile platform). Usual methods [11] can
be applied to detect cable interferences. However, these methods are only suited
for real-time situations and are not satisfactory enough to our application of interest
which is verifying the cable interference free conditions for a given desired Cartesian
workspace and set of orientation ranges. In [5], Merlet discussed algorithms to detect
interferences between cables and cables as well as between cables and mobile plat-
form. However, the proposed methods were only applied to fixed orientation cases
and did not applied for a range of orientations. In [9], Perreault presented an analysis
of the cable interference-free workspace of CDPR. The analysis was also mainly
applied to the cases of CDPR with constant orientation.

In this paper, we aim to develop algorithms that could improve the efficiency of
the verification of collision free operation with respect to given CDPR Cartesian
workspace and orientation workspace. These algorithms concern only the interfer-
ences between cables and cables, and cables and CDPR mobile platform.

The paper is organized as follows. Section 2 presents the algorithm to detect
interferences between cables and cables. The collision detection algorithm for the
interferences between cables and CDPR mobile platform is discussed in Sect. 3. An
illustrating example of using the proposed algorithms to verify the collision free
operation of a CDPR over a given Cartesian workspace and orientation workspace
is given in Sect. 4. Finally, Sect. 5 gives an illustration of the performance of the
presented methods.

2 Interferences Between Cables and Cables

Let us consider am-cable CDPR as shown in Fig. 1.Wewill consider the interference
between two cables AiBi and AjBj (i �= j).
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Fig. 1 A general m-cable CDPR
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Fig. 2 Usual method of checking interference between two cables. a Not colliding, b (Going to)
collide, c Colliding

Figure2 illustrates a general method to detect the collision between two cables.
In the first case (Fig. 2a), the two cables i and j are not colliding since the distance
between the two cables dij is greater than a given small value ε (this value can be
chosen as the cable diameter). In the second case (Fig. 2b) when the cable i moves
toward the cable j, according to the collision condition dij < ε, the two cables
collide. Note that, in this state, the cable j is “behind” the plane (AiBiBj). In this
case, one can say that the two cables are going to collide but a real collision has
not yet happened. In the third case (Fig. 2c), the same collision condition is valid.
However, the cable j is “in front of” the plane (AiBiBj). In this case, a real collision
between the two cables i and j has occurred. This algorithm can be formalized as
follows [6, 7, 9]:
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A real collision between the two cables i and j will occur if the two following condi-
tions are met

(i) the distance between the two cables is very small: dij < ε

(ii) the position of the cable j (or the cable exit point Aj) with respect to the plane
(AiBiBj) changes sign (e.g. switch from “behind” position to “in front of” posi-
tion)

It is enough to use this algorithm for real-time collision detection where the positions
of cable exit point Ai and cable anchor point Bi are updated online in each sample
time (while the mobile platform is following a trajectory). The computation of dij

can be found in [11].
However, in the design phase, where the collision free conditions need to be

verified with respect to a range of orientations and a volume of Cartesian space, this
usual method may not be really effective.

In fact, to check the cable interferences, it could be enough to consider the
second condition (ii) (in the usual algorithm) while neglecting the first condition
(i) (dij < ε). The two cables i and j can be far away (the distance dij can be large)
but their relative positions will tell us whether or not there was a collision when the
mobile platform “moved” from an arbitrary pose Xp to another pose Xq in the CDPR
workspace.

Figure3 illustrates the method proposed in this paper to detect the interference
between the two cables i and j. Suppose that the CDPR mobile platform moves from
an initial pose Xp to an arbitrary pose Xq where a rotation and/or a translation occur.
In the first case (Fig. 3a), when the mobile platform “moves” from pose Xp to pose
Xq, the cable j is always “behind” the plane (AiBiBj). There should be no collision
between the two cables i and j. In the second case (Fig. 3b), the position of cable j
with respect to the plane (AiBiBj) changed sign so that a collision probably occurred
between the two cables.
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Fig. 3 Checking interference between two cables. a Not colliding, b Colliding
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The collision detection algorithm between the two cables used in this paper
consists of the following steps:

• Step 1. At pose Xp, compute the position of AjBj with respect to plane (AiBiBj)

and store it in the variable sij(Xp):

⎧
⎪⎨
⎪⎩

sij(Xp) = 1, if AjBj is “in front of” the plane (AiBiBj)

sij(Xp) = 0, if AjBj lies on the plane (AiBiBj)

sij(Xp) = −1, if AjBj is “behind” the plane (AiBiBj)

(1)

with

sij = sign

((−−→
AiBi × −−→

AiBj

)T · −−→
AiAj

)
(2)

Here, the two cable exit points Ai and Aj must not be coincident: Ai �= Aj.
• Step 2. At pose Xq, compute the projection image A

′
jBj of cable AjBj onto the

plane (AiBiBj):

A
′
j = Aj − t ∗ n (3)

with

n = −−→
AiBi × −−→

AiBj

t = nT · −−→
AiAj

nT n

• Step 3. At pose Xq, compute the position of AjBj with respect to plane (AiBiBj)

and store it in the variable sij(Xq) by using (2).

If sij(Xq) == sij(Xp), then no collision should have occurred.
If sij(Xq) �= sij(Xp) and A

′
jBj is not intersecting AiBi, then no collision should

have occurred.
If sij(Xq) �= sij(Xp) and A

′
jBj is intersecting AiBi, then we consider that a colli-

sion between the two cables i and j occurred.

In this algorithm, for a m-cable CDPR, step 1 requires to compute sij in (2) Ncc

times:

Ncc = m · (m − 1)

2
(4)

The algorithm stops if there exists any i, j for which a collision occurs (thus, the
times of performing steps 2 and 3 is N2,3 ≤ Ncc).

The presented algorithm considers that given the two arbitrary poses Xp and Xq,
if a collision is detected, then there exists no collision free trajectory that allows the
CDPRmobile platform tomove from poseXp to poseXq (regardless of any trajectory
planning method).
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3 Interferences Between Cables and CDPR Mobile
Platform

3.1 Method 1

Suppose that the CDPR mobile platform is triangulated into N� triangles. The first
approach to detect the interferences between cables and CDPR mobile platform is
quite straightforward using the method to detect collision between line segments and
triangles [11].

At pose Xp, for each cable i, we check for the interferences between cable i and
all the triangles that do not belong to the planes which contain the cable end point
Bi. If there is a collision then we stop the checking process and give out a warning.

Figure4 shows an example of the collision between cables i and the mobile plat-
form.

The computational time in this case depends on the number of vertices of the
mobile platform as well as the number of cables. This method is quite “heavy” and
not really effective if the mobile platform has a complex shape (triangulated with
a large number of triangles N� 	 1). To avoid excessive computational time, we
can approximate the mobile platform shape by a more simple convex shape whose
number of triangles is reduced considerably, e.g. in Fig. 5 (the simplified shape should
enclose the CDPR mobile platform).

Fig. 4 Interferences between
cables and CDPR mobile
platform. a Not colliding, b
Colliding

iB

i
A

iB

i
A(a) (b)

Fig. 5 Simplification of the
mobile platform shape. a Real
shape, b Simplified shape

(a) (b)
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Fig. 6 Detecting collision
between cable i and themobile
platform. a Not colliding,
b Colliding
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3.2 Method 2

Although the first method (Sect. 3.1) to detect the interferences between cables and
mobile platform is simple, the issue of heavy computational time may remain if
the mobile platform has a complex shape and the simplification procedure cannot
significantly reduce the number of its vertices.

We propose a second heuristic method which consists in checking whether or not
the cable AiBi belongs to the subspace (convex cone) spanned by its nearest edges.
Fig. 6 shows an illustrating example of this approach.

The algorithm is given in the following steps:

• Step 1. Perform a simplification of the mobile platform to transform it into a
simpler convex shape while keeping important vertices. This simplified convex
shape should enclose the CDPR mobile platform.

• Step 2. Determine the nearest neighbor vertices Dik (k = 1, NBi) of anchor points
Bi in such a way that the convex cone spanned by the vectors (

−−→
BiDi1,

−−→
BiDi2, ...,−−→

BiDiNBi) includes the CDPRmobile platform. NBi should be the minimum number
of such nearest neighbor vertices of Bi.

• Step 3. Compute the positions (or the signs) of an arbitrary point M lying within
the mobile platform shape with respect to the planes (BiDikDi(k+1)) and store them
into vector SBi of size [NBi × 1]:

SBi(k) = sign

((−−→
BiDik × −−−−−→

BiDi(k+1)

)T · −−−→
DikM

)
(5)

For instance, the point M can be chosen as the origin of the local frame attached
to the mobile platform or as its center of mass. Note that all the cases where
SBi(k) = 0 in (5) are considered invalid (the point M must lie strictly inside the
mobile platform shape).

• Step 4. At an arbitrary pose Xp, compute the signs SAi of the cable exit point Ai

with respect to the NBi planes (BiDikDi(k+1)) (vector SAi is of size [NBi × 1]):

SAi(k) = sign

((−−→
BiDik × −−−−−→

BiDi(k+1)

)T · −−→
DikAi

)
(6)
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If ∃ i and ∃ k (i = 1, m, k = 1, NBi) such that SAi(k) = 0, then the cable AiBi is
considered to be colliding with the mobile platform.
If SAi ≡ SBi then the cableAiBi is considered to be collidingwith themobile platform.
If SAi �= SBi and SAi(k) �= 0 (∀ k) then there is no collision.

Note that the steps 1–3 should only be done at the initial step of an optimization
or operation process. Then, step 4 will be used to check the interferences between
the cables and the mobile platform for each considered robot configuration.

This approach utilizes the fact that the positions of a point lying within the mobile
platform with respect to the planes (BiDikDi(k+1)) never change. One only need to
evaluate (6) Ncp times to check the collision, where:

Ncp =
m∑

i=1

NBi (7)

This method is fast and reliable. However, there are still a few limitations to this
approach. The algorithm only works under the condition that the mobile platform
has a convex shape. In case the mobile platform shape is concave, a pre-process
(Step 1) is needed to convert it into a convex object (with a number of vertices as
small as possible) in order to apply the algorithm. Currently, we are not aware of an
efficient (fast) method of selecting the right number of the nearest neighbor vertices
Dik of anchor point Bi. One still has to manually select the vertices Dik. The process
of simplifying the mobile platform shape to reduce its complexity can be done with
available CAD softwares e.g. [12].

4 Verification of Collision Free Condition for a Given
Workspace

Let us consider an application where one want to verify the cable interferences of a
CDPRwith respect to a given Cartesian workspace and orientation range. The CDPR
workspace is given as follows:

xmin ≤ x ≤ xmax

ymin ≤ y ≤ ymax

zmin ≤ z ≤ zmax

θx min ≤ θx ≤ θx max

θymin ≤ θy ≤ θymax

θzmin ≤ θz ≤ θz max

where X = (x y z, θx θy θz) denotes the mobile platform pose. Assume that the
Cartesian workspace is discretized into a finite set of Np points and the orientation
workspace is discretized into a finite set of Nq points (these points can be chosen as
extreme points which lie on the workspace boundaries). Let us take an arbitrary pose
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Xc of the given workspace where we assume that there is no cable interference:

Xc = (xc yc zc, θxc θyc θzc) (8)

The verification of collision free condition of the CDPR with respect to the as-
signed workspace is illustrated in the following pseudocode:

Compute sij(Xc) in (2);
Simplify the CDPR mobile platform shape (if it is necessary);

Determine theNBi nearest neighbor verticesDik ofBi;
Compute SBi (Xc)in(5);
OK = 1; (there is no collision)
for k = 1 : Np

for l = 1 : Nq

X = (xk yk zk, θxl θyl θzl);
OK = Check the interferences between cables and cables;
if (OK == 0) break;
OK = Check the interferences between cables and mobile platform;
if (OK == 0) break;

end;
end;

In short, we perform the verification process at each discrete points in Cartesian
space and orientation space. The reference (initial) state of the mobile platform is
computed at the pose Xc. In the step checking the interferences between cables and
cables, the initial pose is always Xc, and the destination pose is X. This means that
when the mobile platform “moves” from pose Xc to pose X, the checking process
stops if there is any interference detected. In the step checking the interferences
between the cables and the mobile platform, the second approach is used. There is
no collision if the returned value of the checking variable is OK = 1.

In this way, the collision free condition of the CDPR with respect to a given
workspace is ensured in the sense that, whenOK = 1 is returned, there should always
exist one collision free path starting from the home pose Xc to any pose (among the
considered discrete set of poses) in the workspace. When OK = 0 is returned, there
very probably exists no collision free trajectory that allows the mobile platform to
move freely within the given workspace (regardless of any path planning method).

Currently, this approach has only been validated on examples. One can select just
one home pose Xc to check the collision free conditions with respect to the given
workspace (Xc can be chosen as the center pose of the given workspace). To increase
the reliability, we can apply the algorithm to a set of Nc home poses Xc and with
large numbers of discrete poses (Np and Nq are large). The computational time is
proportional to Nc × Np × Nq.
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5 Simulation

Let us consider the 8-cable CDPR shown in Fig. 7. The mobile platform is a cube
with 8 vertices. In this test, we show the computation time for each function call to
check the collisions between cables and cables, and between cables and the CDPR
mobile platform (using method 1 and method 2) while assuming that the mobile
platform moves from the home pose Xc to the destination pose Xd . The home pose is
Xc = (0 0 0, 0 0 0) (m, rad). The destination pose is varied. The results are given in
Table1. We use MATLAB to run the simulation on a PC with CPU core i7-2620M
2.7GHz.

In the case of checking the collision between cables and cables, we have the
number of cables is m = 8. The computation time is quite expensive. The maximum
computation time for checking the collision is around tcc ≈ 4.65 ms.

In the case of checking the collision between the cables andCDPRmobile platform
using the first method, the mobile platform surface is triangulated into 12 triangles.
For each cable, one need to verify potential collision with a maximum of 6 triangles.
The maximum number of calls of the primitive test used to detect the collision

Fig. 7 Example of 8-cable CDPR

Table 1 Collision detection computation time

Destination pose Cables-cables (ms) Cables-platform Cables-platform

Xd (m, rad) (method 1) (ms) (method 2) (ms)

(0 0 0, 0 0 − π/4) 4.63 (no collision) 4.61 (collision) 0.74 (collision)

(2 0 1, π/3 − π/3 0) 4.57 (collision) 4.79 (collision) 0.92 (collision)

(0 0 0, 0 − π/3 − π/4) 4.54 (collision) 4.50 (collision) 0.39 (collision)

(0 0 1, 0 0 π/4) 4.65 (no collision) 5.28 (no collision) 1.47 (no collision)

(0 2 0, 0 0 0) 4.61 (no collision) 5.30 (no collision) 1.46 (no collision)

(0 0 2, π/4 0 0) 4.63 (no collision) 5.27 (no collision) 1.44 (no collision)



On the Improvement of Cable Collision Detection Algorithms 39

between a line segment and a triangle is 6 × m = 48. The maximum computation
time is around tcp1 ≈ 5.3 ms.

On the other hand, in the second method, the mobile platform has a convex shape.
For each vertex Bi, there are a minimum of 3 neighboring vertices. The computation
time in this case is significantly reduced compared to the first method. The maximum
computation time is around tcp2 ≈ 1.47 ms

Assume that one want to verify the CDPR capability over a given workspace
where the Cartesian workspace is discretized into Np = 20 points and the orientation
workspace is discretized into the minimum number Nq = 8 points (taking only the
extreme values of each angle into account). The number of considered home poses
is Nc = 10 points. If we choose to use the second method to check the collision
between the cables and the CDPR mobile platform then the maximum computation
time to verify the collision free collision condition for the given workspace is around:

tmax = Nc × Np × Nq × (tcc + tcp2) = 10 × 20 × 8 × (4.65 + 1.47) ms = 9.792 s

Currently, it is up to the user to choose appropriate values of Nc, Np and Nq, consid-
ering the trade off between reliability of the result and computation time. It is worth
noting that, by using parallel computing (taking the advantages of both powerful
CPU and GPU), one can also greatly reduce the computation times of the presented
methods.

6 Conclusion

Several algorithms to detect the cable interferences of a CDPR have been discussed
in this paper. The presented heuristic approaches improve the usual methods of
detecting cable collisions in term of efficiency. Two types of cable interferences have
been considered: collisions between cables and cables as well as collisions between
cables and the CDPR mobile platform. The application of these tools was illustrated
by an example of checking the collision free condition of a CDPR with respect to
given Cartesian workspace and orientationworkspace. The proposed approach offers
the user a fast and reliablemethod to quantify the CDPR capability in term of position
and orientation in the design or path planning phases.

In our future work, we will aim to explicitly “prove” the presented algorithms
(to verify the collision free conditions of a CDPR with respect to a given range
of orientations and given Cartesian workspace) as well as improve the method of
simplifying the CDPR platform shape.
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(CABLEBOT).
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Workspace Analysis of Redundant
Cable-Suspended Parallel Robots

Alessandro Berti, Jean-Pierre Merlet and Marco Carricato

Abstract This paper focuses on cable-suspendedparallel robots (CSPRs), a subclass
of cable-driven parallel robots, and particularly on the analysis of their workspace.
CSPRs present, among other interesting characteristics, large workspaces and high
reconfigurability, which make them attractive for a large variety of applications,
especially for pick and place operations over wide spaces. This paper is based on
the assumption that the safest (and cheapest) control scheme for a redundant CSPR
consists, at the current state of development, in actuating only 6 cables at a time.
This paper shows how, under this assumption, it is still possible to take advantage
of redundancy to enhance the workspace and eventually reduce the maximal ten-
sion among cables. A simple interval-analysis routine is presented as a tool for the
workspace and trajectory analysis of a redundant CSPR, and the results of a case
study on an existing prototype are discussed.

1 Introduction

Cable-driven parallel robots (CDPRs) employ cables in place of rigid-body extensible
legs in order to control the end-effector pose. CDPRs strengthen classic advantages
characterizing closed-chain architectures versus serial ones, like reduced mass and
inertia, a larger payload to robot weight ratio, high dynamic performances, etc., while
providing peculiar advantages, such as a larger workspace, reduced manufacturing
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and maintenance costs, ease of assembly and disassembly, high transportability, and
superior modularity and reconfigurability.

A CDPR is fully-constrained if the pose of the end-effector is completely deter-
mined when actuators are locked and, thus, all cable lengths are assigned. A CDPR
is, instead, under-constrained if the end-effector preserves some degrees of freedom
(dofs) once actuators are locked [5, 14]. Accordingly, to completely restrain the n
dofs of the moving platform, the number of cables employed by a fully-constrained
CDPR is usually greater or equal to n +1, but it can be lowered to n when the robot is
in crane configuration and gravity acts like an additional pulling wire. In this case, no
cable can exert a downward tension on the platform. This latter kind of manipulators
are also called cable-suspended parallel robots (CSPRs), and this paper is focused
on them.

Fully-constrained CDPRs and CSPRs may operate in non negligible parts of their
workspace as under-constrained ones, as mechanical equilibrium may require some
cables to be slack. Accordingly, a rigorous investigation from a kinematic point of
view must involve all the configurations in which one or more cables may get slack.
Even though significant progresses have beenmade on the study of under-constrained
CDPRs [1, 3–6, 13, 15], their control and kinematics still present difficult open issues
that are not discussed in this paper.

In this contribution, cables are assumed to be perfectly stiff and massless. Under
these assumptions, the maximum number of cables that can be under tension at the
same time on a generic n–n CDPR with n ≥ 6 is 6. This assumption is motivated
by the results reported in [11] for the N − 1 robots (N cables attached at the same
point on the platform), in which it is also shown that, if elasticity in cables is taken
into account, trying to obtain optimal distribution among the cable tensions through
redundancy may lead to moderate positioning errors but, most important, to large
error on cable tension. Although not yet formally proved, the authors believe that
this result could be extended to any CSPR.

Let an m-cable configuration be the set of the m cables (each one identified by
a digit h, h = 1 . . . m) which are under tension at a given pose. This paper shows
that, for a given pose, there may be several 6-cable configurations, which are not
equivalent as far as the cable tensions and other kineto-static performance idexes are
concerned. As the current cable configuration cannot be estimated using only the
cable length measurements, a control scheme based on the simultaneous control of
all cables may lead the robot to be, in a given pose, in a 6-cable configuration that is
not the one exhibiting the better performance among all possible ones.

Hence, a safer strategy for the control of a redundant n–n CSPR may consist in
using only 6 cables to govern the pose of the platform, and forcing the remaining
n − 6 to be slack. This seemingly counterintuitive approach seems not only the
safest way to control a redundant CSPR, but also the only choice if the robot is not
equipped with additional sensors. Moreover, as shown in [12], even if force sensors
are available, they seem to be helpful to correctly distribute tension amongmore than
6 cables only if cable mechanical properties are perfectly known. However, this is a
strong assumption, considering that, for example, characteristics like cable stiffness
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and density are extremely variable with humidity, temperature or even with time,
when creeping occurs [10].

For a robot with n ≥ 6 cables, assuming that only 6 cables are taut at the same
time leads to Cn

6 possible cable configurations in which the platform pose is fully
controllable. As previously mentioned, in some regions of the workspace one or
more cables may get slack and this fact leads to a risky and uncontrolled behavior.
This implies that, in order to achieve a desired task, a preliminary analysis should be
made to establish if the whole trajectory may be executed with a single set of 6 taut
cables or if it is necessary to switch to a better cable configuration in some parts of
the movement.

In this paper, an interval-analysis tool is presented to perform this kind of analysis
on a generic CSPR with n ≥ 6 cables. The following section provides some basic
notion on interval analysis and describes the algorithm for the workspace analysis.
In Sect. 3 the results obtained by applying the developed method on the geometry
of an existing prototype are reported, and their consequences on trajectory planning
are discussed. In Sect. 4, some conclusions are drawn.

2 The Interval-Analysis Procedure

This section describes the interval-analysis method used to determine the different
wrench-feasible workspaces (WFWs [2]) for all sets of 6 cables in tension. In the
current version, the algorithm does not take into account operating configurations
with less than 6 taut cables. Accordingly, the core of the algorithm consists in solving
the static equilibrium for a 6-cable suspended robot.

2.1 Introduction to Interval Analysis

A short introduction to interval analysis is presented in the following. More infor-
mations may be found in [7].

The real interval X = [
x, x

]
is defined as the set of real numbers y such that

x ≤ y ≤ x . The width of the interval is w(X) = x − x and its mid-point is
mid(X) = (

x + x
)
/2. An interval vector X, also called a box, is a list of intervals.

The mid-point of a box is the vector whose components are the mid-points of its
interval components and the width of a box is the width of its largest element.

If f (x) is a function in n unknowns, with x = [x1, x2, . . . , xn], and B =
[X1, X2, . . . , Xn] is a box comprising an interval for each unknown, an interval
evaluation F (B) of f over B is an interval

[
F, F

]
such that, for any x ∈ B,

F ≤ f (x) ≤ F . There are many ways to implement an interval evaluation of
a function but the simplest one is the natural evaluation, in which each arith-
metic operation and elementary mathematical function is substituted by an interval
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equivalent. For example, if f (x) = x2−2x+1 and X = [4, 5], the natural evaluation
of f over X is:

f ([4, 5]) = [4, 5]2 − 2 [4, 5] + 1 = [16, 25] − [8, 10] + [1, 1] = [7, 18] (1)

It is worth emphasizing that the bounds provided by the natural evaluation of f
are not exact: the upper (lower) bound may be larger (lower) than the actual max-
imum (minimum) of the function image, namely f (B) = { f (x)|x ∈ B} ⊆ F (B).
Ordinarily, the overestimation decreases with the width of the box over which f is
evaluated, and there are cases and methods that allow one to get bounds as tight as
possible.

2.2 Geometrico-Static Model for a CSPR with 6 Cables

A mobile platform is connected to a fixed base by 6 cables. The i th cable
(i = 1, . . . , 6) exits from the base at point Ai and it is connected to the platform
at point Bi . Oxyz is a Cartesian coordinate frame attached to the base in O , whereas
Gx ′y′z′ is a Cartesian frame appended to the moving platform in G. In the following,
x = G − O , ai = Ai − O , ri = Bi − G, si = Bi − Ai = x + ri − ai , and ρi is the
cable length, with i = 1, . . . , n. Furthermore, if bi = Bi − G in Gx ′y′z′, Φ denotes
the vector containing the variables parameterizing the orientation of the moving
platform with respect to Oxyz and R(Φ) is the corresponding rotation matrix, then
ri = R(Φ)bi . The platform pose may be described by the array X = [x, Φ], with
x , y and z be the components of x in Oxyz and α, β and γ be the rotation angles
around the fixed axes x , y and z, respectively.

The normalized Plücker vector of the line associated with the i th cable isLi/ρi ,
where, in axis coordinates, Li = [

si ; ai × si
]
. Accordingly, the wrench exerted by

the i th cable on the platform is τi (Li/ρi ), with τi being a positive scalar representing
the intensity of the cable tensile force. The platform is acted upon also by a force of
constant magnitude Q applied at point G, e.g. the platform weight acting through
its center of mass. This force is described as a 0-pitch wrench QLe , where Le is
the normalized Plücker vector of its line of action. Static equilibrium may then be
expressed as:

6∑

i=1

τi

ρi
Li = [

L1/ρ1 . . . L6/ρ6
]

︸ ︷︷ ︸
M

⎡
⎢⎣

τ1
...

τ6

⎤
⎥⎦ = −QLe , (2)

with τi ≥ 0, i = 1, . . . , 6.
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2.3 Description of the Algorithm

The aim of the procedure described hereafter is to determine the different WFWs for
all the 6-cable configurations of a CSPR with n ≥ 6 cables.

First, the program reads the geometry of the n–n redundant CSPR at hand from
a convenient input file and generates the corresponding Cn

6 configurations of anchor
points on the base and the platform. For each configuration, a basic interval-analysis-
based algorithm is executed. B1 is the box whose elements are the starting intervals
for the components of x and Φ, and L is a list of boxes, initially set as L = {B1}. An
index i , initialized to 1, indicates which box Bi in L is currently being processed,
while N denotes the number of boxes in L. Sr and Sn are other two lists, initially
empty, storing, respectively, the boxes thar are deemed to be in the WFW and the
boxes for which the algorithm is not capable to assess if they belong or not to the
WFW. The key component of the algorithm is the inclusion module I(Bi ), which
takes a box Bi as input, solves the interval linear system (2) and returns the following
output:

• 1: if all cable tensions are certainly positive;
• −1: if at least one cable tension is certainly negative;
• 0: otherwise;

The overall algorithm proceeds along the following steps:

1: i = 1, L = {B1} , Sr = {} , Sn = {} , N = 1;
2: if i > N , then return Sr and Sn ;
3: if w(Bi ) < ε, then add Bi to Sn , i = i + 1, go to 2;
4: compute I (Bi )

(a) if I (Bi ) = −1, then i = i + 1, go to 2;
(b) if I (Bi ) = 1, then add Bi to Sr , i = i + 1, go to 2;
(c) if I (Bi ) = 0, select a variable xk and bisect Xk in the middle point, create

twonewboxesB′
i andB′′

i fromBi , replaceBi with
{
B′

i , B′′
i

}
inL, N = N+1,

i = i + 1, go to 2.

Provided that ε is an user-input value which prevents the current box to be bisected
if its width is below this threshold, the above algorithm always terminates, since the
size of a box always decreases after a bisection.

2.3.1 The Inclusion Module I

Hereafter, the function governing the inclusion module is described. This function
first computes the interval evaluation of the matrix M in (2) with the elements of the
input box Bi . Then, it executes the interval version of the Gauss elimination scheme
provided by the C++ library ALIAS [9] to solve the interval linear system, which
leads to three possible outputs:
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• if the Gauss elimination succeeds and the lower bounds of the components of
resulting interval vector are strictly positive, it returns 1.

• if the Gauss elimination succeeds and at least one upper bound of the elements of
the resulting interval vector is negative, it returns −1.

• otherwise, it returns 0;

However, this implementation often gives unsatisfying results, mainly because M
is often ill conditioned and the Gauss-elimination leads to an overestimation of the
solution, except for extremely small boxes. This obviously means a large number
of bisections and long computation times. In the following, some procedures to
improve the performances of the Gauss-elimination algorithm are proposed. One
method relies on pre-conditioning the initial system as:

HMt = HQ (3)

where H is an arbitrary 6×6 matrix, t is the interval vector of the cable tensions and
Q = −QLe. A usually good candidate for matrix H is the inverse of the mid-point
evaluation of M. This choice implies that, as the box size decreases, the product
between H and M tends to be the identity matrix which is the best input for Gauss-
elimination scheme. It must be remarked that the elements of M are functions of
the pose variable X. Thus, in order to reduce the overestimation introduced by the
matrix product, each element of the preconditionedmatrixC = HM can be rewritten
trying to obtain the lowest number of multiple occurrences of the pose parameters. A
further refinement comes from considering that each element of the interval matrix
C has the following form

Ci j =
6∑

k=1

Hik Mkj (4)

and that each column of matrix M is a Plücker vector and consequently the following
relations must hold:

M2
1 j + M2

2 j + M2
3 j − 1 = 0 (5)

M1 j M4 j + M2 j M5 j + M3 j M6 j = 0 (6)

for j = 1, . . . , 6. Thus, the bounds for each element of C may be improved by
searching the minimum and the maximum of the function

C ′
i j (q) =

6∑

k=1

Hikqk (7)

where q must satisfy the following constraints:

q2
1 + q2

2 + q2
3 − 1 = 0
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Table 1 Position of the anchor points on the base and the platform for the CoGiRo

Coordinates of the base exit points Ai , 1 = 1 . . . 8, in Oxyz [m]

−7.175 −7.316 −7.303 −7.161 7.182 7.323 7.302 7.161

−5.244 −5.103 5.236 5.373 5.348 5.206 −5.133 −5.270

5.462 5.472 5.476 5.485 5.488 5.499 5.489 5.497

Coordinates of the platform anchor points Bi , 1 = 1 . . . 8, in Gx ′y′z′ [m]

0.503 −0.510 −0.503 0.496 −0.503 0.500 0.502 −0.505

−0.493 0.351 −0.270 0.356 0.493 −0.340 0.275 −0.346

0.000 0.998 0.000 1.000 0.000 0.999 0.000 0.998

q1q4 + q2q5 + q3q6 = 0

Mkj ≤ qk ≤ Mkj k = 1, . . . , 6 (8)

The optimization problem emerging from relations (7) and (8) can be analytically
solved with the generalized Lagrange multiplier method and thus implemented with-
out using numeric optimization algorithms.

3 Examples and Discussion of Results

This section presents the workspace analysis of all 6-cable configurations for the 8-8
cable robot CoGiRo [8] (whose geometry data are reported in Table1), in relation to
different trajectories. The algorithm described in Sect. 2 may be employed both to
determine the WFW for each 6-cable configuration and to assess which configura-
tions are active along a desired trajectory. Moreover, if multiple configurations are
possible for a certain part of the trajectory, it is possible to rank them by computing
for each one of them:

• the maximal tension Tmax reached by the cables during the movement on the
examined section of the trajectory;

• the maximal positioning error EGmax = 1/2
√
w(	x)2 + w(	y)2 + w(	z)2 and

the maximal orientation error EΦmax = Max[w(	α),w(	β),w(	γ )] when
errors on the cable-length measures are considered.

EGmax and EΦmax are computed by solving (with the interval Gauss elimination
algorithm) the interval linear system

J−1	X = 	ρ (9)

where the interval matrix J−1 is the inverse kinematic Jacobian of the examined 6-
cable configuration,	X = [	xT ,	ΦT ]T is the interval vector containing the errors



48 A. Berti et al.

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6
123478 (37.7 %) 345678 (37.5 %)

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6
123456 (38.7 %) 125678 (38.9 %)

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6 123458 (17.2 %) 123678 (17.3 %) 134568 (17.9 %) 145678 (17.3 %)

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6 123467 (17.8 %) 124578 (18.1 %) 234567 (16.9 %) 235678 (17.4 %)

Fig. 1 TheWFWs for the 6-cable configurations at z = 3 andΦ = [0 0 0], obtained with ε = 0.05
(Sect. 2). In the legends, the percentage of the total volume that each configuration occupies with
respect to the initial search domain (i.e. with z ∈ [0.0, 4.0]) is shown between parenthesis

on the platform pose parameters, and 	ρ is a user-input interval vector containing
the bounds on the error in cable lengths.

All the above indexes are determined using the interval optimization procedure
contained in ALIAS [9].

The algorithm was executed for z ∈ [0.0, 4.0], Φ = [0 0 0] and Q = 1000N.
Figure1 represents sections, for z = 3m, of theWFWs for all 6-cable configurations.
Some configurations are not represented in the figure because the algorithm, with
a precision ε = 0.05, was not able to find any feasible box. It emerges from from
Fig. 1 that different configurations must be used to fully explore the area bounded
by the hull of the base exit points. In addition to that there is a small area in the
middle of the figure where the algorithm did not succeed in finding a feasible 6-cable
configuration. It is likely that, due to symmetries in the structure of the robot, this
small area contains some points in witch only configurations with less than 6 cables
in tension are feasible (from 1 to 5). These cases are out of the scope of this paper and
will be addressed in future works. In the following, a 6-cable configuration is denoted
by the symbol Ci jklmn where i jklmn are the digits denoting the active cables (e.g.
C123456 is the configurations with the first 6 cables under tension). Unless otherwise
specified, the measures of lengths and distances are always expressed in meters and
the angles in radians.
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Fig. 2 The different cable configurations available along the trajectory P0a P1a

3.1 Straight-Line Trajectories

Figure1 shows a small area around x = 0 and y = 0 in which the algorithm can
not assess (for ε = 0.03) if some 6-cable configuration is feasible. Thus a straight-
line trajectory crossing this area is examined, from point P0a = [−6.0 0.0 3.0]
to point P1a = [6.0 0.0 3.0]. The platform has a constant orientation Φ =
[0 0 0] and the trajectory is described by the parameter t ∈ [0, 1]. The results
reported in Fig. 2 show that the minimum number of configurations necessary to
perform the whole trajectory is 2, namely C123478 and C125678. The intersection
between these configurations is extremely small (t ∈ [0.4968, 0.5045]) and the
other sets of active cables covering the same section have similar ranges (C123678,
C124578). Considering that the computed intersection interval corresponds to roughly
9.2cm on the trajectory line, a configuration switch seems practically unmanageable,
even in quasi-static conditions. It is worth observing that, if the switch between two
configurations is done outside this range, the platformmay go to a configuration with
less than 6 cables in tension and thus out of control.

Now, a linear trajectory from point P0b = [−6.0, 4.5, 4.0] to P1b = [6.0,−4.0,
0.0] is examined.The results inFig. 3 show that thewholemovementmaybemanaged
by the configuration C345678. However, it may be interesting to investigate if there
are some parts of the trajectory in which another configuration is more convenient.
Then, the indexes Tmax, EGmax and EΦmax are computed (with an error on all cable
lengths equal to	ρi = [−0.05, 0.05] ) for all feasible configurations in the trajectory
sections t1 ∈ [0.0, 0.4] and t2 ∈ [0.6, 1.0]. The results are reported in Table2.
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Fig. 3 The different cable configurations available along the trajectory P0b P1b

Table 2 Comparison between different configurations for two sections of the trajectory P0b P1b

t1 ∈ [0.0, 0.4] t2 ∈ [0.6, 1.0]
C123456 C134568 C234567 C345678 C125678 C235678 C345678

Tmax[N] 874 1,069 1,033 1,034 664 724 726

EGmax[m] 0.244 0.237 0.254 0.247 0.196 0.204 0.196

EΦmax[rad] 0.381 0.519 0.496 0.644 0.284 0.431 0.542

While EGmax is similar for all configurations in each section, Tmax and EΦmax are
appreciably different. This shows that, evenwith a perfect robotmodel, tension is very
sensitive to the configuration, whereas positioning accuracy remains almost constant.
Accordingly, the first part of the trajectory could be more efficiently managed by
C123456, and the second one by C125678.

3.2 Circular Trajectory

Here, a plane circular trajectory with constant orientation Φ = [0 0 0], centered
in Pc = [0.0 0.0 3.0] and with radius rc = 4.0, is tested. Figure4 shows that
this trajectory requires at least 4 configurations, namely C345678, C123456, C123478
and C125678. Table3 compares the available 6-cable configurations for the trajectory
sections t3 ∈ [0.15, 0.35] and t4 ∈ [0.65, 0.85]. The results suggest that for these
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Fig. 4 The different cable configurations available along the circumference centered in Pc =
[0, 0, 4] and having radius r = 4.0

Table 3 Comparison between different configurations for two sections of the plane circular trajec-
tory with center in Pc = [0.0 0.0 3.0] and radius rc = 4.0

t3 ∈ [0.15, 0.35] t4 ∈ [0.65, 0.85]
C123456 C134568 C234567 C345678 C123478 C123678 C124578 C125678

Tmax[N ] 1,002 1,065 940 1,007 1,012 932 1,062 999

EGmax[m] 0.258 0.256 0.248 0.244 0.244 0.248 0.256 0.258

EΦmax[rad] 0.424 0.422 0.402 0.445 0.446 0.406 0.427 0.429

two parts of the path, a reduction of the maximal tension among cables is achievable
with the configurations C234567 and C123678, respectively.

3.3 Algorithm Performances

The computation time of theWFWs for all the 28 6-cable configurationwith ε = 0.05
is roughly 245 min on a Intel® M620, 2.67 GHz CPU. This algorithm is indeed
conceived to run off-line and eventually implement the obtained results in the control
routine.On the other hand, the time required to analyze a single trajectory and ranking
the configurations that are common for certain parts of the path usually varies from
3 to 10 s. For both cases, computation time can be significantly reduced with a
distributed version of the proposed interval algorithm in order to take advantage of
computer clusters and modern multi-core CPUs.
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4 Conclusions

This paper studied the WFW of redundant cable-suspended parallel robots. The
adopted approach is based on the assumption that the safest control strategy, at the
current state of development of the control schemes for these family of manipulators,
consists in using only 6 active cable at a time. However, the advantages of redun-
dancy, such as increased workspace dimensions and reduction of maximal tension
in cables, may be preserved by conveniently switching among the possible 6-cable
configurations.

In order to explore this strategy, an interval-analysis-based method was developed
in order to analyze, for all possible configurations with 6 cables in tension, both the
WFW and a user-defined trajectory. Since some parts of a given trajectory may often
be managed by different configurations, the possibility to individuate the best set of
cables according to different performance indexes was examined and implemented
in the algorithm. The results obtained from the conducted tests showed that switching
between different configurations may be helpful to reduce the maximal tension in
cables and the errors on the positioning of the platform, especially as far as the
orientation is concerned. A similar analysis may be useful also at the design stage of
a robot, in order to evaluate how many degrees of redundancy are required to cover
a certain workspace or to accomplish a given set of tasks.

The approach presented in this paper rises some questions about manage the
transition between twoworking configurations. The paper is based on the assumption
that cables are massless and perfectly stiff so it is possible to show that the robot
cannot have more than 6 cables under tension. So, at the transition point, coming
say from cable configuration 123456, at least one of the tensions must be equal to
0. If the next cable configuration is 123457, while the robot is moving toward the
transition point (with cable 7 slack) the controller starts coiling cable 7 so that at
the transition point it has the exact length needed to be taut. Then cable 6 is quickly
uncoiled and the control continues the movement using the 123457 configuration.

The presented interval-analysis procedure has wide margins of improvement. It
would be interesting to develop it and see if it may be compatible with on-line
applications. Moreover, future works will consider the extension of the analysis to
include configurations with less than 6 cables in tension, as well as uncertainties in
the location of the anchor points Ai and Bi .
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On the Static Stiffness of Incompletely
Restrained Cable-Driven Robot

Hui Li

Abstract The static stiffness of incompletely restrained cable-driven robot (IRCR)
is studied and its theoretical formulation of the calculation model is derived. The
analysis shows that the static stiffness matrix is a sum of two components. The first
part K1 results from the change of position and orientation of end-effector which
is proportional to cable tensions, while the second K2 is caused by the deformation
and deflection of cables. The study shows that K2 is not only affected by material
performances of all cables but by cable tensions. For the IRCR, however, the static
stiffness correlates both parts because of the existence of cable catenaries. Two
examples concerning the static stiffness are given for verification. Finally a few
improvements are proposed for robot design based on stiffness analysis.

1 Introduction

Static stiffness of cable-driven parallel robots has been a topic of interest in that it
reflects the control performance of cable robots. The purposes of stiffness study are
clear: ©1 to prepare for the first design of the control and mechanical architecture; ©2
to know the tendency of stiffness variation in the whole workspace and then the
possible payload applied on end-effector. Although finite element analysis makes
the study feasible, the repeated mesh generations and calculations according to each
possible pose of workspace may make the work tedious. A simple analytical model
is then necessary to the conceptual design of cable robots. Cables are tension-only
materials which is the first attention to be paid in the controllability design. That is
why the stiffness of cable robot is generally lower than that of similar rod-driven robot.
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There are some studies on stiffness analysis of cable robot. Verhoeven et al. [1, 2]
deduce the stiffness matrix of cable robot. Lafoucade et al. [3, 4] and Zheng [5] put
up with some theoretical tools in studying the static stiffness distribution cable robot.
However the current researches are nearly focusing on completely or redundantly
restrained cable robots in which cable tensions are much larger than cable weights
and cable curves are therefore simplified as straight lines. The simplification makes
study easy but can sometimes hardly be applied in IRCRs, especially when the huge
cable robot of 500m aperture spherical radio telescope (FAST) is considered. Kozak
et al. [6] began to study the effects of sagging on under-restrained cable robot and
the related inverse and forward kinematics on cable robot. Later Riehl et al. [7] also
used a model of cable sagging to study numerical computations of the inverse and
forward kinematics.

This paper addresses first the general stiffness formulation of cable robot,
analyzing the respective physical meaning of its two components. Second a cable
curve model is given for a further formulation. Two examples are then given for
verifications. Finally the author further gives a few comments on how static stiffness
contributes to robot design.

2 Formulation of Static Stiffness

2.1 Configuration

Figure1 shows a general spatial cable robotwith six degree-of-freedoms (Dofs). Let’s
assume that the end-effector itself is simplified as a 6-Dof rigid body. A frame PXYZ
parallel is built with the center of gravity (COG)P of the end-effector set as the origin.

The pose wrench of an arbitrary point on the end-effector is set as S = { xT,ψT
}T
,

where is the coordinate vector in the frame PXYZ and ψ = {
ψx , ψy, ψz

}T the
orientation vector of the end-effector making up of three Euler angles.

Let the matrix K represent the stiffness of cable robot on a set end-effector pose,
provided that a static equilibrium is held under all cable tensions and the gravity
(taken as a special cable without change in both direction and amplitude) acting on
the end-effector. The force set is T = { t1,t2,. . . ,tn

}T where the superscript T means
transpose, so the induced force wrench should be zero as follows

F = J · T =
[

u1, u2, . . . , un
r1 × u1, r2 × u2, . . . , rn × un

] {
t1, t2, . . . , tn

}T = 0. (1)

Here F = {
Fx,Fy,F,Mx,My,Mz

}T is the force wrench induced by cable tensions
with all moments corresponding to the origin P; J represents the Jacobi matrix
relating with the pose of end-effector and tension directions; ui is unit vector with
ui = {

ux, uy, uz
}T
i (i = 1, . . . , n) and represents the tangential direction at the ith
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Fig. 1 Configuration of end-effector of cable robot under static equilibrium

cable joint; ri is the position vector of the ith cable joint. The static stiffness of cable
robot can then come out via differentiation of Eq. (1) as follows

K = −dF
dS

= −dJ
dS

· T − J · dT
dS

= K1 + K2. (2)

Here the minus means the restoring forces are always contrary in direction to the
incremental displacements of the end-effector. Equation (2) shows that the static stiff-
ness matrix is a sum of two components. The first part K1 results from the change
of position and orientation of end-effector which correlates with cable tensions
(so called configuration stiffness), while the second K2 is caused by the deformation
and deflection of cables (so called eslatic or deformation stiffness).

2.2 Configuration Stiffness

By further expansion of Eq. (2), the configuration stiffness can be written in matrix
form as:

K1 = −dJ
dS

· T = − d

dS

[
u1, u2, . . . , un

r1 × u1, r2 × u2, . . . , rn × un

]

·T =
n∑

i=1

(
− d

dS

[
u

r × u

]

i
· ti
)

, (3)

where − d
dS

[
u

r × u

]

i
is a 6×6 matrix and can be further expressed as follows:
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− d

dS

[
u

r × u

]

i
=
[

− du
dS

−r × du
dS − dr

dS × u

]
=
[ − du

dx , − du
dψ

−r × du
dx − dr

dx × u, −r × du
dψ − dr

dψ × u

]

i

.

(4)

The child matrices in the right part of Eq. (4) can be further deduced and expanded.
Provided that a translational increment happens on a cable joint, the tension vector t
changes as t′ while the unit vector u changes as ū. The increment du can bewritten as:

du = ū − u = t′

|t′| − t
|t′| = 1

LC

⎡
⎣
u2x − 1, uxuy, uxuz

u2y − 1, uyuz
u2z − 1

⎤
⎦ dx. (4a)

Here LC can be approximated as the cord length of the related cable curve if the
cable sag is relatively much smaller than its span. As the end-effector rotate an
angular increment dψ around the origin P, the related displacement increment is
dr = dx = dψ × r. After a few vector and matrix calculations, a further deduction
can be gain from equation Eq. (4a) as follows

− du
dψ = − du

dψ×r · dψ×r
dψ = − du

dx · (I × r) = −
(

rT × du
dx

)
· I = −

(
r × du

dx

)T

= 1
LC

⎡
⎢⎢⎢⎣

rzuxuy − ryuxuz, rz
(
1 − u2x

)
+ rxuxuz, −ry

(
1 − u2x

)
− rxuxuy

−rz
(
1 − u2y

)
− ryuyuz, rxuyuz − rzuxuy, rx

(
1 − u2y

)
+ ryuxuy

ry
(
1 − u2z

)
+ rzuyuz, −rx

(
1 − u2z

)
− rzuxuz, ryuxuz − rxuyuz

⎤
⎥⎥⎥⎦

.

(4b)

Here I is the unit matrix. Furthermore the other parts of the matrix in Eq. (4) can be
expanded as follows:

− dr
dx

× u = −I × u =
⎡
⎣

0 −uz uy
uz 0 −ux

−uy ux 0

⎤
⎦ ; (4c)

− dr
dψ

× u = −dψ × r
dψ

× u = − (I × r) × u = − [(ru) − I (r · u)]

=
⎡
⎣
ryuy + rzuz −rxuy −rxuz
−ryux rxux + rzuz −ryuz
−rzux −rzuy rxux + ryuy

⎤
⎦ ; (4d)

−r × du
dψ

= 1

LC

⎡
⎢⎣
r2y + r2z − (ryuz − rzuy

)2
, −rxry − (ryuz − rzuy

)
(rzux − rxuz) ,

r2z + r2x − (rzux − rxuz)2 ,

−rzrx − (rxuy − ryux
) (
ryuz − rzuy

)
−rzry − (rxuy − ryux

)
(rzux − rxuz)

r2x + r2y − (rxuy − ryux
)2

⎤
⎦ .

(4e)
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Here in Eq. (4d) the expressions (ru) and (r · u) represent the dyad and dot prod-
uct between r and u respectively. Based on Eq. (1) we get

∑n
i=1 uiti = 0 and∑n

i=1 (ri × ui) ti = 0, so the following two equations are further derived:

n∑

i=1

[
−dr
dx

× u
]

i
ti =

n∑

i=1

⎡
⎣
0 −uz uy
uz 0 −ux
−uy ux 0

⎤
⎦
i

ti = 0 (5a)

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

(
rxuy

)
iti =

n∑
i=1

(
ryux

)
iti

n∑
i=1

(
ryuz

)
iti =

n∑
i=1

(
rzuy

)
iti

n∑
i=1

(rxuz)iti =
n∑

i=1
(rzux)iti

(5b)

Since the Eqs. (4d), (5a) and (5b) all give symmetric matrices, the configuration
stiffness K1 is in total symmetric as well. Considering the Eqs. (5a) and (5b), it can
be further written as follows:

K1 = −
n∑

i=1

d

dS

[
u

r × u

]

i
· ti =

n∑

i=1

[
− du

dx , − du
dψ

−r × du
dx , −r × du

dψ − dr
dψ × u

]

i

ti. (6)

Here its four child matrices are expanded in the Eqs. (4b), (4d) and (4e) respectively.

2.3 Deformation stiffness

By further expansion of Eq. (2), the deformation stiffness can be written in matrix
form as:

K2 = −J · dT
dS

= −J ·

⎡
⎢⎢⎣

dT1

dx
,
dT2

dx
, . . . ,

dTn

dx
dT1

dψ
,
dT2

dψ
, . . . ,

dTn

dψ

⎤
⎥⎥⎦

T

= −J ·
[ ∇T1, ∇T2, . . . , ∇Tn

r1 × ∇T1, r2 × ∇T2, . . . , rn × ∇Tn

]T
, (7)

where the symbol ∇ means the gradient calculator.
In the case of completely or redundantly restrained cable robot that tensile cables

are simplified as straight lines, the gradients of cable tensions is in accord with their
related cable lines and their values are determined by the cable materials, i.e., the
modulus, sectional area, length, and so on. Therefore the gradient matrix in Eq. (7)
is further expanded as follows:
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[ ∇T1, ∇T2, . . . , ∇Tn
r1 × ∇T1, r2 × ∇T2, . . . , rn × ∇Tn

]T

=
[ −E1A1

L1
u1, −E2A2

L2
u2, . . . , −EnAn

Ln
un

−E1A1
L1

r1 × u1, −E2A2
L2

r2 × u2, . . . , −EnAn
Ln

rn × un

]T

= −diag
(
E1A1
L1

, E2A2
L2

, . . . , EnAn
Ln

)
·
[{

u1
r1 × u1

}
,

{
u2
r2 × u2

}
, . . . ,

{
un

rn × un

}]T

= −diag
(
E1A1
L1

, E2A2
L2

, . . . , EnAn
Ln

)
· JT (8)

Here similar to Eq. (2), theminusmeans the gradient is always contrary in direction to
the incremental cable force. So the deformation stiffness of completely or redundantly
restrained cable robot can be written as:

K2 = −J · dT
dx

= J · diag
(

E1A1
L1

, E2A2
L2

, . . . , EnAn
Ln

)
· JT (9)

In the case of IRCR that on many occasions tensile cable has to be processed by
cable catenary, however, the tension gradient is relatively much difficult to expect. It
is determined by the shape change of cable catenary which is in turn caused via the
position increment of cable joint. Before the derivation of the deformation stiffness,
it is necessary to analyze at first the model of suspended cable as shown in Fig. 2.

Let’s set q as the lineal weight of suspended cable, l as the span, h as the height, f
as the cable sag in the middle span, H and V as the respective horizontal and vertical
components of the cable tension. Here H is a constant along the whole cable. Then
the curve function of cable catenary can be written as follows:

y (x) = H

q
cosh

(qx
H

+ C
)

+ D, (10)

Fig. 2 Analytical model of
cable catenary

q

y

xo

h

iβ

l

H
V

T

f
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where C and D are constants and can be expressed by aforementioned parameters as:

⎧
⎪⎪⎨
⎪⎪⎩
C = log

⎛
⎝ qh/H+

√
(qh/H)2+4 sinh2

(
ql
2H

)

exp(qh/H)−1

⎞
⎠

D = −H
q cosh (C)

(10a)

Considering the change of cable length before and after gravity bearing, we get:

l∫

0

√
1 +

(
dy

dx

)2

dx − L0 = H

EA

l∫

0

(
1 +

(
dy

dx

)2
)
dx. (11)

Here L0 is the original length of cable before deformation; the left and right of
Eq. (11) represent the total length change and elastic extension of cable respectively.
Substituting Eq. (10) into Eq. (11) produces the following equation:

L − L0 = H

2EA

(
l + q

2H

(
L2 + h2

) exp (ql/H) + 1

exp (ql/H) − 1

)
, (12)

where L the cable length after deformation. As the function of l and h, it satisfies:

L = H

q

√(
qh

H

)2

+ 4 sinh2
(

ql

2H

)
. (13)

Generally cable tension of IRCR is not suggested too small or the controllability
becomes worse. if ql/H≤ 0.5 can be satisfied, Eq. (13) can be further simplified with
neglecting higher order terms, and its partial derivatives according to l and h have
more simple forms:

L ≈
√
l2 + h2

(
1 + l2

24
(
l2 + h2

)
(
ql

H

)2
)

⇒

⎧
⎪⎨
⎪⎩

∂L
∂l ≈ l√

l2+h2
− q2l4

12H3
√

l2+h2
∂H
∂l

∂L
∂h ≈ h√

l2+h2
− q2l4

12H3
√

l2+h2
∂H
∂h .

(14)
Equation (12) shows the relation among the variables like H, l and h. Taking l and
h as the independent variables of function H, differentiating Eq. (12) according to l
and h respectively, using the relation in Eq. (14) and neglecting higher order terms,
we get the derivatives ∂H/∂l and ∂H/∂h as follows:

⎧
⎪⎪⎨
⎪⎪⎩

∂H
∂l = 2EA√

l2+h2
/

(
1 + q2

(
L2+h2

)

H2 · exp(ql/H)

(exp(ql/H)−1)2
+ q2l3EA

6H3
√

l2+h2

)

∂H
∂h = 2EAh

l
√

l2+h2
/

(
1 + q2

(
L2+h2

)

H2 · exp(ql/H)

(exp(ql/H)−1)2
+ q2l3EA

6H3
√

l2+h2

) (15)
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At cable jointwe get the relation between cable tension t and its horizontal component
H as follows:

T = H
√
1 + (y′ (0))2 = 1

2

(
q (L+h)

exp (ql/H) − 1
+ H2

q
· exp (ql/H) − 1

L + h

)
. (16)

DifferentiatingEq. (16) according to l andh respectively, using the relation inEq. (15)
and neglecting higher order terms, we get the derivatives ∂t/∂l and ∂t/∂h as follows:

⎧
⎪⎨
⎪⎩

∂T
∂l = ∂H

∂l ·
(

q2l(L+h) exp(ql/H)

2H2(exp(ql/H)−1)2
+ H(exp(ql/H)−1)

q(L+h) − exp(ql/H)·l
2(L+h)

)
≈ ∂H

∂l ·
√

l2+h2

l

∂T
∂h = ∂H

∂h ·
(

q2l(L+h) exp(ql/H)

2H2(exp(ql/H)−1)2
+ H(exp(ql/H)−1)

q(L+h) − exp(ql/H)·l
2(L+h)

)
≈ ∂H

∂h ·
√

l2+h2

l

.

(17)

It indicates from Eqs. (15) and (17) that |∇T| =
√

(∂H/∂l)2 + (∂H/∂h)2→EAl/
(
l2 + h2

)
is sure if ql/H → 0, therefore we get the relation:|∇T| →EA/

√
l2 + h2 =

EA/L that is just the tension gradient of completely or redundantly restrained cable
robot.

Equation (17) further shows that the tangent of tension gradient is equal to
∂T
∂h /∂T

∂l = ∂H
∂h /∂H

∂l = h
l , so its direction is parallel to the cord line of cable curve

(defined as vector ū). Similarly, the direction of the gradient is opposite to ū, namely

∇Ti = −
(√

(∂T/∂l)2 + (∂T/∂h)2
)

i
ūi. Substituting it into Eq. (7) produces the

following:

K2 = J · diag
(

. . . ,

(√(
∂T
∂l

)2 + ( ∂T
∂h

)2)

i
, · · ·

)
·
[

ū1, ū2, · · · , ūn
r1 × ū1, r2 × ū2, · · · , rn × ūn

]T
.

(18)

Equation (18) indicates that in the case of cable catenary usually we get ū 
= u, so
K2 is asymmetric matrix. The phenomenon comes mainly from the geometrically
nonlinear performance of suspended cable. Only if ql/H is quite small, i.e., less than
0.2, is ū ≈ u reasonable.

In summary there are two components that make up of the static stiffness of
cable robot. The first is defined configuration stiffness which can be calculated by
Eqs. (3)–(6). The second is defineddeformation stiffness and its estimation is different
according to different type of cable robots. In the case of completely or redundantly
restrained cable robot, it can be calculated by Eq. (9) while in the case of IRCR it
should be calculated based on Eq. (18).



On the Static Stiffness of Incompletely Restrained . . . 63

Fig. 3 A planar 3-DoF cable robot with 4 parallel cables

3 Numerical Examples

3.1 Redundantly Restrained Cable Robot

Figure3 shows a planar 3-DoF cable robot which has 4 cables with each end of a
cable connected to a fixed motor on the base frame or a joint on the end-effector. The
square end-effector has in plane two independent translational DoFs, x and y, and a
rotational DoF around z axis. Since the number of cables is larger than that of DOFs,
the robot is redundantly restrained. However, the design requires that the rotation
of the end-effector should be forbidden to keep it always horizontal. Some basic
parameters are given, such as the dimension of the base frame: LB = WB = 1.4m;
the dimension of the end-effector: a=0.2m; the cable: � 8mm steel rope with
modulus equal to 1.5×105MPa and sectional area equal to 30mm2.

Let’s take the COG of the end-effector (origin of the local frame OpXpYp) as
the moment center. The robot,s static stiffness at any point of its workspace is then
calculated based on Eqs. (4) and (9). When the end-effector moves to the center of
base frame where the global coordinate is equal to (0,0), let’s assume that the tension
of each cable share the same value: 4,500N; the length is 1m; their direction vectors
are in sequence: u1 = (−0.6, 0.8); u2 = (−0.6,−0.8); u3 = (0.6,−0.8); u4 =
(0.6, 0.8). The estimation based on aforementioned equations gives:

K1 + K2 =
⎡
⎣
1.1520 0 0

0 0.6480 0
0 0 −0.0353

⎤
⎦× 104 +

⎡
⎣
0.6480 0 0

0 1.1520 0
0 0 0.0353

⎤
⎦× 107

=
⎡
⎣
0.6492 0 0

0 1.1526 0
0 0 0.0353

⎤
⎦× 107. (19)
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The above calculation can be verified via finite element analysis according to the
definition of static stiffnesswhich gives nearly the same result as diag(0.6491, 1.1526,
0.3525) ×107.

When the end-effector moves to the point with the global coordinate equal to
(0.5,0.5), let’s assume that the cable tensions are in sequence: t1 = 1,898N, t2 =
620N, t3 = 5,560N and t4 = 5,397N; the length in sequence: L1 = 1.14m,L2 =
1.703m,L3 = 0.316m andL4 = 1.304m; their direction vectors are in sequence:
u1 = (−0.965, 0.263); u2 = (−0.646,−0.763); u3 = (0.077,−0.997); u4 =
(0.316, 0.949). The estimation based on aforementioned equations gives:

K1 + K2 =
⎡
⎣
1.6982 −0.2666 0.0016

0.9552 −0.0057
−0.0520

⎤
⎦× 104 +

⎡
⎣
0.6219 0.4306 0.0768

1.8051 0.1665
0.0379

⎤
⎦× 107

=
⎡
⎣
0.6239 0.4302 0.0768

1.8055 0.1665
0.0379

⎤
⎦× 107. (20)

Similarly the finite element analysis gives nearly the same result. The above two
equations indicates that K1 contributes little to the total stiffness compared with K2.
It is because K1 is determined by cable tension while K2 by the material stiffness
of cable which is nearly three order higher than the former. Considering only the
torsional component (the last diagonal element) of the stiffness matrix, according to
Eqs. (4) and (6) it can be written as follows:

KT = KT1 + KT2 =
4∑

i=1

⎧
⎪⎨
⎪⎩

(rxux + ryuy)i +
[
r2x + r2y − (rxuy − ryux

)2]
i

Li

⎫
⎪⎬
⎪⎭
ti

+
4∑

i=1

[
(rxuy − ryux)2

]
i

Li
EiAi. (21)

The equation indicates that it is true: KT1 � KT2 if r and L has the similar order.
But if r � L, the situation may change. Let’s take the case of above planar 3-DoF
cable robot for example. when the end-effector is at the center of base frame, keeping
all parameters unchanged except that the dimension of the base frame increases as:
LB = 800m , WB = 600m and cable length increasing correspondingly, we get the
torsional stiffness as KT1+KT2 = −360.69+705.52 = 344.83N ·m/rad. The finite
element analysis gives similar value: 344.95N ·m/rad. Obviously the contribution of
KT1 is quite a lot.
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Fig. 4 Sketch of FAST cable robot
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Fig. 5 Design concept of cabin-cable connection

3.2 Incompletely Restrained Cable Robot

A typical example is the cable robot of the FAST telescope whose static equilibrium
must depend on the gravity. Figure 4 shows one of its conceptual designs. Its end-
effector, the airborne 30-ton focus cabin with the diameter of 10m, is driven by six
parallel steel cables. Each cable has a sectional area of about 531mm2 and a lineal
weight of about 71N/m. Its trajectory curve, the focal surface, is a part of spherical
surface with the curvature diameter equal to about 160m, the aperture equal to about
203m, and it shares the same curvature center with themain reflector of the telescope.

The connection between the cabin and cables is an interesting research topic.
There are a few design concepts as shown in Fig. 5. Here both in the concept 1 and
concept 3 there are six cable joints and each neighbor joints have an equal angle of
60◦ in the horizontal plane while only three cable joints exist with angle of 120◦ in
concept 2. On the other side, in both concept 1 and concept 2 all the cable joints
share the same circle plane with a diameter of 10 m. In concept 3, however, the six
cable joints are distributed on two planes: three inner top joints on a circle of 1m in
diameter and three outer bottom joints on a circle of 10m in diameter.
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For comparison and searching for an optimal design, an effective way is to study
the torsion stiffness of the cable robot as the cabin stays at the center of the focal
surface. At that time both the torsion stiffness and the damping of the cable system are
very low. The fact in turn greatly reduces the robot’s controllability. In such case the
calculation of cable tension is relatively simple because of the symmetry. According
the reference [8, 9], the results are given as 1.220×105 N for the cable tension t and
1.090×105 N for its horizontal component H.

For each cable the condition ql/H ≤ 0.2 is satisfied, so it is reasonable to get
u ≈ ū. Using Eqs. (4), (6) and (18), the torsion stiffness is obtained as follows:

KT = KT1 + KT2 =
6∑

i=1

⎧
⎪⎨
⎪⎩

(rxux + ryuy)i +
[
r2x + r2y − (rxuy − ryux

)2]
i

Li

⎫
⎪⎬
⎪⎭
Ti

+
6∑

i=1

⎡
⎣(rxuy − ryux)

2

√(
∂T

∂l

)2

+
(

∂T

∂h

)2
⎤
⎦
i

(22)

According to Fig. 5, the ith tension vector at its cable joint can be written as
ui = {

cosβi cos θi, cosβi sin θi, sin βi
}T and the corresponding position vector is

given as ri = {
ri cosαi, ri sin αi, 0

}T, where βi represents the angle between the
ith tension vector and the horizontal plane. Substituting these expressions of vectors
into Eq. (22) produces the following:

KT =
6∑

i=1

[
Hiri cos (αi − θi) + Tir2i

(
1 − cos2 βi sin2 (αi − θi)

)

Li

]

+
6∑

i=1

⎡
⎣
⎛
⎝
√(

∂T

∂l

)2

+
(

∂T

∂h

)2
⎞
⎠

i

r2i cos
2 βi sin

2 (αi − θi)

⎤
⎦. (23)

In the case of concept 1, we get |αi − θi| = 30◦, the gradient of cable tension as
9.870 × 104 N/m and cosβ = 0.8944. So the torsion stiffness is calculated as:

KT = 3
√
3Hr + 6Tr2

(
1 − 0.25 cos2 β

)

L
+ 6 ∗ 9.8704e4 · r2 cos2 β ∗ 0.25

= 6.189 × 106 N · m/rad.

In the case of concept 2, we get |αi − θi| = 0◦, so KT2 is zero. So the torsion stiffness
is calculated as:

KT = KT1 = 6Hr + 6Tr2

L
= 3.330 × 106 N · m/rad.
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The case of concept 3 is somehow similar to that of concept 2 as |αi − θi| = 0◦
is obtained, so KT2 is also zero. Since it has 2 joint circles at different height, the
torsion stiffness is calculated as:

KT = KT1 = 3HrL + 3HrH + T · 3r
2
L + 3r2H
L

= 1.828 × 106N · m/rad.

In summary concept 1 gives the highest torsion stiffness, nearly twice as the value
of concept 2 and four times as that of concept 3, so it is singled out as the optimal
design. Both in concept 2 and 3 the tension vectors intersect with z axis, so the defor-
mation stiffness has no contribution. Furthermore it is worse that the configuration
of concept 3 makes the moment arm of three top tensions smaller, in turn reduces its
configuration stiffness.

4 Static Stiffness and First Design

Generally the first design of cable robot prefers to higher stiffness for good stability
and controllability of its end-effector. The above-mentioned stiffness formulation
helps to quantify the necessary stiffness estimation and therefore to draw a prelimi-
nary conclusion whether a design is good or not. The formulation as well as above
numerical examples further indicate three effective ways for the improvement of
such stiffness. These key factors may be related to cable tension vectors, namely
their magnitudes and moments, and cable length as well.

The first is obviously observed in the formulation to increase the total level of
cable tensions. In the case of completely or redundantly restrained cable robot, the
cable force system is self-equilibrating. A given combination of position and pose
of the end-effector may give rise to infinite tension solutions of a cable system. That
means cable tension can theoretically go up without bound. It is not easy in the case
of IRCR, however, for its tension level is limited by external force or even unique
according to a given position and pose as analyzed in reference [9]. That is why
IRCR usually seems much more flexible.

The second is focused on cable length as well as the ratio of such tension arm
to it. It is easily concluded from both Eqs. (9) and (15) that the shorter the cable
length, the higher the deformation stiffness. If cable length has to be designed very
long in the case of giant FAST cable robot, another feasible way may be proposed
to increase tension arm and improve its configuration stiffness as possible. Usually
configuration stiffness plays a more important role in large IRCRs.

The third paysmore attention to the details of cable robot like the relation between
cable-platform joint and tension direction, as shown in the configuration of both
numerical examples. The main goal is to keep the original moment of each tension
as large as possible wherever end-effector stays within its work space. These detailed
designs aim not to lift the global level of robot stiffness, but they surely give rise to



68 H. Li

local improvements in rotation which is ultimate to vibration control of end-effector,
as proved in the second numerical example.

5 Conclusions

The static stiffness of cable robot can be decomposed as two parts. One is configu-
ration stiffness proportional to cable tensions and can be calculated with Eq. (6); the
other is deformation stiffness. For completely or redundantly restrained cable robot,
it is only related to cable material and can be calculated with Eq. (9). For IRCR,
however, it is related to both cable material and cable tension and can be calculated
with Eq. (18).

In the case of completely or redundantly restrained cable robot, the deformation
stiffness generally contributes almost the total. In the case of IRCR, however, on
many occasions both parts are important.

Static stiffness is an important factor to be considered in the first design. Stiffness
formulation indicates three effective ways to improve such stiffness. In the case of
usually more flexible IRCR, keeping end-effector balanced via non-zero moments
may obtain promising stiffness improvement.
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Simulation and Control with XDE
and Matlab/Simulink of a Cable-Driven
Parallel Robot (CoGiRo)

Micaël Michelin, Cédric Baradat, Dinh Quan Nguyen and Marc Gouttefarde

Abstract We present in this paper the process allowing to create a cable-driven
parallel robot (CDPR) simulation within the XDE software environment in C++
language. The elementary classes constituting a CDPR are shown with their con-
structor specificities. The winches, the pulleys, the cable fastenings and the platform
are presented. The parameterization of elements such as the cable material charac-
teristics, structure and size are detailed. An interface between the XDE cable-driven
parallel robot simulator and a Matlab/Simulink controller have been developed. In-
puts and outputs are exchanged between the controller and the simulated cable-driven
robot, exactly as it is done with a physical robot.

1 Introduction

The simulation of systems allows engineers to test concepts, improve and optimize
the design allowing substantial economy in the development process by avoiding
the manufacturing of expensive real prototypes and reducing the time of develop-
ment. This is particularly true for cable-driven parallel robot (CDPR) design where
the size of robot and then the cost can grow very fast. Classical rigid robots are
well simulated in environments such as Simulia [1], Microsoft Robotics Studio [2],
Marilou [3], SpaceClaim [4] or Solidworks [5]. In the case of cable-driven parallel
robot simulation, the highly flexible nature of the cables is extremely challenging to
simulate.

A CDPR consists of several key elements such as the cables, the winches, the
pulleys and the mobile platform. It can be seen that, to be able to successfully simulate
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a CDPR, a simulation tool should be capable of at least: “correctly” simulating the
nonlinear behavior of the cables, the process of winding or un-winding cables on
drums and effectively managing different collision types (e.g. between cables-cables,
cables-mobile platform, cable-self-collision) as well as important effects such as
friction contacts (e.g. between cables-pulleys, cables-drums).

Few simulation tools have been developed with specific components to achieve
such goals. Some of these tools can be listed. Algoryx [6] or Vortex [7] are used
to create training simulators for crane or construction equipment and have to be
real time capable. Others focus on the precise and quantitative simulation of cables
for design process such as Dymola [8] or Adams [9]. The multi-physics software
Sofa [10] has been developed to provide deformable objects simulation for medical
applications, and can be used for cable modelling. However, from our experience,
obtaining stable simulations in this open-source framework is a critical issue for
a complicated CDPR scene including a lot of finite elements and friction contacts.

In the present work, we focus on the XDE [11] multi-physics software which
is more intended to research developments. We aim to develop a cable-driven
robot simulation framework based on XDE which offers the user two main features:
simulation and control of CDPR with XDE and MATLAB/Simulink.

The paper is organized as follows. Section 2 introduces the concepts of simulating
a CDPR in XDE, including the key features of XDE and the method to construct
different parts of a CDPR (e.g. winch system, cables, pulleys, mobile platform).
An illustration is made by creating the CoGiRo prototype [12] in XDE. The inter-
facing between XDE and MATLAB/Simulink is presented in Sect. 3. Finally, Sect. 4
gives some discussions on the simulation features, current issues and future work.

2 Principle of Modeling in XDE Simulation Environment

The use of XDE for CDPR simulation consists in a first step to create classes of the
different sub structures needed to model the whole robot. Indeed a eight cables robot
uses eight winches, eight cable fastenings on the platform, etc. Classes have been
developed to create the cables, winches, cable fastenings, pulleys and the mobile
platform. These classes integrate the conceptual elements needed to simulate the
sub systems. Each sub system is constituted by the assembly of the following main
elements:

• the rigid body in which we define the inertial parameters (mass, inertia matrix)
• the 3D mesh used for the collision model
• the 3D mesh used for the visual model
• the material parameters involved in the contact model
• the material parameters involved in the deformable model
• the joints between the rigid bodies to create mechanical assembly with some

degrees of freedom (DOF) taking into account dry and viscous frictions.
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Fig. 1 Original 3D mesh of the drumfrom CAD software (left) and simplified 3D mesh used in
simulation (right)

2.1 Winch Modeling

The class “Winch” is composed of two rigid bodies, the motor and the drum, linked
together by a pivot joint on which we can apply a torque via a “setWrench” method.
The 3D mesh for the motor and the drumare imported from a CAD software. These 3D
meshes have to be drastically simplified to reduce the loading time of the scene and
the computation time during the simulation (Fig. 1). For example, from the original
CAD file with 150,000 faces drum’s mesh, we have reduced by 10 the number of
faces to be able to run the simulation in good conditions. This simplified mesh is
used to compute the collision interactions with the cable via a Signorini contact law.
The position and the orientation of a winch are arguments of the constructor of the
“Winch” class which allow to get a complete winch (Fig. 2).

The moment of inertia of the drum has been computed from the CoGiRo robot
data. A gear reduction equal to three is used in the CoGiRo robot winches. Is has
not been simulated but the inertia effects have been included in the drum one as
described in the following:

• Drum inertia vs rotation axis: 0.0285 Kg m2

• Motor rotor inertia vs rotation axis: 0.015 Kg m2

• Simulated drum inertia vs rotation axis: 0.0285 + 9 × 0.015 = 0.1635 Kg m2

2.2 Pulley Modeling

The pulleys are modeled with three rigid bodies: a base to be fixed to the robot frame,
a bracket linked to the base with a pivot joint and the wheel of the pulley linked to
the bracket with another pivot joint (Fig. 3).

The 3d mesh of the wheel is used for the collision interaction with the cable. The
collision interaction for the base and the bracket are deactivated.
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Fig. 2 Complete winch assembly in XDE

Fig. 3 Pulley modelling
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Dry and viscous friction parameters of the pivot joints can be tuned. The position
and the orientation of a pulley are arguments of the constructor of the “Pulley” class.

The mass parameters are:

• Bracket mass: 3.456 Kg
• Wheel mass: 1 Kg

2.3 Cable Fastening Modeling

The cable interfaces with the platform are implemented in the “Cable_Ball_Joint”
class. They are made of two rigid bodies, the base and the fastening part, linked
together by two pivot joints forming a U-joint (Fig. 4).

The base has to be welded tothe object we want to manipulate with cable and
the fastening part has to be weldedto a cable. In addition, the base integrates three
prismatic joints which are “weld”, this means that these joints are blocked but are
necessary to allow the measure of the cable tensions at the fastening location, without
producing any motion. Indeed these joints have an orthogonal disposition and give an
access to the force applied on it via “getWeldReactionForce” method. The position
of a cable interface is given versus the object linked with and which has to be given as

Fig. 4 Cable interface with platform
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Fig. 5 CoGiRo platform in
XDE simulator

argument of the “Cable_Ball_Joint” constructor. The orientation of a cable interface
is an argument of the constructor of the “Cable_Ball_Joint” class.

The mass parameters are the following:

• Base mass: 0.23 Kg
• Fastening mass: 0.122 Kg

The inertia matrices have been computed considering these two parts as homogenous
cuboid.

2.4 Platform Modeling

The CoGiRo platform is made of two major element, an aluminum alloy cubic
frame and a steel fork allowing to lift up loads (Fig. 5). Two rigid bodies have been
implemented and connected together with their own 3D mesh. The number of element
faces in the fork mesh has been reduced from 13,000 faces in the original to 400 faces
in the simplified one (Fig. 6).
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Fig. 6 Fork original 3D mesh (left) and simplified 3D mesh used in simulation (right)

Fig. 7 CoGiRo cable struc-
ture

2.5 Cable Modeling

The cable modeling in XDE consists in using Reissner beam made of multiple nodes.
The number of nodes and the position of each one at the initial state have to be defined.
A 0.02 m node resolution has been chosen.

The radius of the Reissner beam which compose the cable has to be defined.
As a cable is not really a beam, we have computed the equivalent metallic section

corresponding to the cable. The CoGiRo cable (Fig. 7) is 2 mm radius and has a filling
rate of 0.5911. So the equivalent metallic section has a radius of 1.537 mm.
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Fig. 8 Initial cable routing

The “Cable” class constructor needs as arguments: the winch, on which the cable
is attached, the pulley for guiding the cable and the cable interface on which the end
of cable is connected.

In a first step, the constructor computes the cable nodes position allowing the first
meters of cable to be winded on the winch (Fig. 8, left). Then the cable is routed via
two points around the pulley (Fig. 8, center). Finally, a third routing point is used
before cable connection to the cable attachment (Fig. 8, right) which is fixed to the
platform.

XDE gives the opportunity to define cables made of several coaxial materials but
in our case only one material was used. The material parameters such the Young mod-
ulus, the shear modulus, the linear mass, the damping coefficient, the torsional ratio
and the flexural ratio have to be defined in the simulation environment. The CoGiRo
cable Young modulus has been evaluated at 100e9 Pa. The shear modulus is difficult
to define and has been evaluate around 10e9 Pa. The linear mass is 0.064 Kg/m.

Except the linear mass, all the other parameters are difficult to tune within the
simulation. They may have a significant influence on the stability and the increasing
of cable tensions needs an increase of the damping coefficients to avoid instabilities.
But if we increase the damping, then the dynamic behavior is not realistic. We didn’t
reach a good tradeoff between stability and high cable tension. High loaded cable
stability by damping increase is contradictory with a realistic dynamic behavior.

To avoid cable instabilities when subjected to high tension, the XDE software
provider advices to use sampling frequencies ten times higher than the phenomenon
frequency we want to simulate.

Typically if we want to simulate a 100 Hz oscillating cable (a guitar cord for
example), we have to use a sampling frequency of 1,000 Hz, which leads to long
computation time as described in the following section.
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Fig. 9 Complete CoGiRo robot scene in XDE

In order to perform a preliminary simulation without stability problems, it has
been decided to use the following parameter values, despite the fact that they are not
realistic:

• Linear mass: 0.064 kg/m
• Young modulus: 10e9 Pa (ten times lower than the evaluated one)
• Shear modulus: 10e8 Pa
• Damping coefficient: 0.1
• Torsional ratio: 0.5
• Flexural ratio: 0.5

2.6 Complete CoGiRo Robot Scene

All the classes described before allow the user to create as much objects as needed
to create the cable-driven robot. The constructors arguments allow specifying the
position and orientation of each object easily. In Fig. 9, winches, pulleys, cables and
fastenings have been added in the scene in order to model the CoGiRo robot with
eight cables. The objective of this simulation is to pick and place a pallet. The pulleys
orientation is computed from the cable fastening position versus the winch position.

The loading and execution times of the scene depend on the number of cable nodes,
and thus on the cable length. Thus, in order to reduce the loading and execution time,
the footprint of the CoGiRo robot has been reduced. Only the relative positions of
the winches and pulleys have been modified, not the size of the different modules of
the robot. The real size of the CoGiRo robot is 16 m × 12 m × 6 m, whereas in the
simulation it is 6 m × 6 m × 3 m. With these dimensions and the node resolution,
each cable has between 400 and 600 nodes.
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Fig. 10 Simulink cable-driven robot controller

3 Interface with Matlab/Simulink Controller

With the aim of controlling the simulated CoGiRo robot, an interface with
Matlab/Simulink has been developed, which uses Matlab Engine C++ library
within the simulator project. Matlab is configured to be used as a server and the
simulat orcan use the functions available in the Matlab Engine to interact with the
Matlab Workspace and the Simulink model. With this interface, we can control the
execution of a Simulink model via the XDE simulator.

A Simulink robot controller including the motion generation, the inverse kine-
matics and a PID controller for motors position has been developed (Fig. 10). For
each step time, XDE simulator sends data to the Simulink controller:

• Time (simulated real time)
• Winches joint position
• Winches joint speed
• Platform position and orientation
• Cables tension at fastening locations
• Cables length

Then XDE simulator reads the data coming from the Simulinkcontroller, in our case
the desired torques for the motors. Thenthe XDE simulator executes one step time
of the Simulink controller.

Thus, the XDE simulator execution is synchronized with the Simulink controller
execution, under the condition that sampling time are set the same in XDE and
Simulink environments.

The control scheme used here is the same we use for a real prototype, only the
input/output exchanges mechanisms are adapted to suit the XDE simulator.
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Fig. 11 Motion sequence of a pallet displacement with the CoGiRo simulated robot controlled by
the Matlab/Simulink controller

With this Simulink controller allowing to control the platform position, we have
implemented a motion sequence to show the validity of this dual system XDE
simulator/Simulink controller.

Figure 11 shows the displacement of a pallet from a central position to a new
decentralized position.

4 Simulation Discussion

The simulators developed in this work presents interesting features but also draw-
backs which have to be improve in future milestones.

4.1 Simulation Interesting Features

The simulation allows validation of the application process: simulation of the motions
of the robot and execution of the tasks, validating workspace, detecting collisions,
accessibility, maneuverability etc.

As explained in the dedicated section, the fastening of the cable are made of two
parts that are fixed together. It is possible within XDE environment to provoque the
separation of these two parts, such that we simulate a cable rupture.
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Fig. 12 Simulation of cable failure on the CoGiRo robot

In a first scenario, the rupture of four cables at the same time was simulated. The
platform falls on to the ground and cable winding is totally disordered (Fig. 12).

4.2 Simulation Issues and Alternatives

The sampling frequency was set to 200 Hz, and in order to simulate 10 s, the com-
puting time is about 10 h.

One of the major issue comes from the collision computation between the cable
and the winch. Indeed the winding of the cable generates a great number of collisions
which have to be computed and these collisions could be unnecessary in some use
cases.

4.3 Future Work

XDE developers are working on new cable modelling and dynamic node resolution al-
lowing one to decrease complexity and improve the computation time, unfortunately
this feature is not ready to use yet.

Developers are working on a winding cable disappearing after one or two turn
around the winch to avoid too much collisions computation, it’s also an unavailable
work in progress. When those new features will be implemented, XDE will offer a
very promising tool to simulate cable robots.
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5 Conclusions

We have developped a XDE framework with C++ classes allowing to create
a simulation of a cable robot composed of elementary components such as winches,
pulleys, cable attachments and a mobile platform. We can create as much cables as
needed and attach these cables to any object, this object can be a mobile platform or
any object in the scene such as a piece to assemble with another one. The winches
are implemented in a such way that it’s possible to apply a torque on the rotating
drum. The cable fastenings allow the feedback of the cable tensions. The platform
position, winches rotating position and speed are also available.

We have developped an interface between Matlab/Simulink and the XDE
simulator which allows a Simulink control model to interact with the simulated
robot. Sequence of motion, motion generation, inverse kinematics and PID control
have been implemented to control the cartesian platform position. This combinaison
of XDE simulation and Matlab/Simulink controller is able to simulate the CoGiRo
robot displacing a pallet.

The cable attachment can be unwelded from the platform, this allowing one to
show the behaviour of the system in case of a cable breakdown.
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Presentation of Experimental Results
on Stability of a 3 DOF 4-Cable-Driven
Parallel Robot Without Constraints

Valentin Schmidt, Werner Kraus and Andreas Pott

Abstract This paper presents the findings of several experiments done on the
stability of a planar three degree-of-freedom (DOF) cable-driven parallel manip-
ulator. The major interest is the deflection caused by a wrench or force applied
normal to the plane. Here the planar cable robot has no direct constraint. A sim-
ple mathematical model based on stiffness is presented to predict the outcomes. It
was found that a planar cable robot of dimensions four by 10 m deflects between 20
and 400 mm under forces up to 50 N applied through the normal. Deflections under
movement were found to be small in comparison. Oscillations frequencies are in
the range of 0.5–1 Hz. The results are also compared to a big mock up robot with
dimensions eight by twenty meters. The deflections on this mock-up were found to
be very similar to those found on the robot after considering scale.

Keywords Stiffness · Parallel cable-driven robot · Wire robot · Parallel kinematic

1 Introduction

The first cable robots appeared around thirty years ago, an aerial camera device built
around 1985 [6]. Many prototypes have been implemented since then, which make
use of the cable-driven principle [7, 8, 11].

There are a unique set of challenges for this technology. Cables are non-rigid
links which need to be kept under tension at all times. This has significant impact on
workspace and stiffness [12].
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It is well known that to achieve n DOF, a cable robot needs n + 1 cables. Then a
robot can be considered fully constrained. A construction which does not fulfill this
criterion is said to be underconstrained, which has important implications for the
stability of such a system.

3-DOF cable robot is a particular subcategory of general cable robots, and will
have four or more cables. The robot discussed in this paper has all the actuating
winches, and the moving platform placed in a single plane. This means that by
design the robot is only capable of moving in 3-DOF. Two linear x and y and one
rotary θ . The additional three degrees of freedom that exist for a rigid body in three
dimensional space still need to be constrained, thus it is technically underconstrained.
Hence, stability is very important. Especially in the normal to the plane, where the
cables will provide no restraint. An example is shown in Fig. 1.

2 Related Work

There are many analytical tools which have been developed for parallel robots, and
indeed for cable robots.

Especially workspace [5, 13], kinematics and control [9] have been consistent
topics of research also for planar robots [3]. Stability and accuracy of planar parallel
robot as investigated by [2] mainly focuses on the degrees of freedom on the plane
itself. While some analyses go even further to investigate changes in cable forces
and the effects on vibrations in the plane [4].

Such investigations are valid in cases where the additional DOFs of a rigid body
are somehow constrained. Many constructs of planar robots constrain movement via
a horizontal arrangement where the platform or end-effector are resting on a planar
surface. In effect using gravity to constrain the platform degrees of freedom. Another

Fig. 1 Concept cable robot for inspecting high bay storage racks



Presentation of Experimental Results . . . 89

approach could be structural constraints as seen in the form of acrylic glass in [10],
effectively building a fully constrained robot.

Instead of providing a physical constraint for the robot, this paper focuses on
inherent stability of the system with regards to forces applied along the normal
vector of the plane formed by the robot geometry.

Bosscher investigated stability for under-constrained cable robots, but under the
influence of a constant external wrench, namely gravity [1]. He even provides a
stability criterion which can be applied to different positions. Hence, effects of finite
displacement caused by a non-zero wrench are investigated. Changes in cable forces
also play a critical role in this investigation.

3 Model of the Cable Robot

Many factors combine to result in the robot stability in regards to displacement and
oscillations acting on the normal to the plane.

Figure 2 shows the geometry data used for the model, and the parameters which
were investigated. The geometry of each pose is defined as follows. Platform P
moves on the x, y plane with origin O . Each position is described through a position
vector r and an orientation R which mainly consist of a rotation θz . The position of
anchor points is described by vector ai and bi which give the rope vector li . Along
each wire there acts a force fi from the winch on the platform. These forces combined
represent the force vector f . A unique set of cable forces will be referred to as tension
niveau for the rest of this paper.

The scalar d is the resulting displacement of force wz , the component force act-
ing in the z-direction of the wrench w. This displacement is of primary interest in
the investigations and experiments. During the execution frequencies of oscillations
along the z-axis were also investigated.

We differentiate between two factors which effect stability. The first is the geomet-
ric factor. This is effective damping which occurs through the resulting deformation
as the platform moves along the z-axis. This will cause the z-components of f to act

Fig. 2 Diagramatic representation of parameters
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in the opposite direction of wz and thus limit d. Secondly the length of li will also
increase for each of the cables. This increases the magnitude of each fi slightly, due
to the spring characteristic of each cable. An infinite number of force distributions
per pose thus allows increasing the stiffness by increasing the cable forces.

3.1 Stiffness

The concept of stiffness as discussed by [12] is used in order to model the robot’s
behavior. For the kinematic considerations the robot is modeled with three DOF.
This view is reasonable, as due to the planar configuration only these DOFs are
controllable. Effects like vibration or stiffness are not limited to the plane but rather
are spatial. Therefore, the model of the robot must be extended to be considered
as a three dimensional rigid body and all six degrees of freedom. For the further
investigation, the platform is described as rigid body with six DOF by its position
r6DO F and orientation R6DO F . The pose is summarized in the generalized coordinate
x = [rx , ry, rz, θx , θy, θz]T . With the cable vector li

li = ai − r6DO F − R6DO F bi . (1)

the well known structure matrix yields

AT (r6DO F , R6DO F ) =
[

u1 · · · um

b1 × u1 · · · bm × um

]
where ui = li‖li‖−1. (2)

The Cartesian stiffness matrix Kx describes the linear relation

δw = Kxδx (3)

between an infinitesimal wrench δw and deflection δx. For the analytic expression
for Kx the structure equation

w = AT f, (4)

which describes the static equilibrium for the endeffector between the external
wrench w and cable forces f , is necessary. Differentiating the structure equation
yields to

δw = δAT f + AT δf (5)

where δAT is the derivation of the structure matrix by x and δf is a differential change
in the cable forces.
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The relation between the incremental cable forces and an incremental change in
cable length can be expressed by

δf = Klδl (6)

where Kl is the joint space stiffness matrix, where the stiffness of each cable is on
the diagonal. Incremental changes in the platform pose δx are transformed to the
endeffector space with

δl = Aδx. (7)

With Eqs. 3, 6 and 7 one receives from Eq. 5

Kx dx = ∂AT

∂x
fdx + AT Kl .Adx (8)

It is worth mentioning that the first term does not depend on the parameters of the
cables, but is mainly proportional to the height of the tension niveau. The stiffness of
the cables only has an influence on the second term Kc. For illustration, Eq. 8 is now
applied on the robot geometry defined in Table 2b for a deflection in the z-direction.
This is performed for two different tension niveaus with a mean cable force of 200
and 400 N respectively. The resulting stiffness for a deflection in z are shown in
Fig. 3. The stiffness in the undeflected state is only provided by the first term, whereas
the term Kc is zero. Only under deflection the second term becomes important and
rises overproportionally. This means, the cable stiffness has no influence on the total
stiffness of the endeffector in undeflected state. As the diagram reveals, the stiffness
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Fig. 3 Composition of the Cartesian stiffness in z-direction for two force niveaus over the deflection
of the endeffector
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Table 1 Model results

fmid

k′ 200 N 300 N 400 N 500 N

(a) Deflection [mm] at different tension niveaus and specific spring constants k′

80000 N/m 0.275 0.242 0.213 0.188

120000 N/m 0.251 0.225 0.201 0.180

160000 N/m 0.234 0.212 0.19 0.174

(b) Calculated natural frequencies

Natural frequency (Hz) 0.65 0.78 0.89 0.99

in undeflected state depends mainly on the tension niveau. Although a linear spring
model is applied, the resulting spring characteristic is strongly progressive.

3.2 Deflection Under Transverse Force

With knowledge of the stiffness of the endeffector, now the deflection for a given
wrench can be calculated. Integrating numerically to determine the deflection takes
the progressive stiffness characteristic into account. Relevant influence parameters
are the initial force distribution and the specific stiffness of the cables. In Table 1 the
resulting deflection for a traverse force of 50 N is shown for the combinations of the
relevant parameters.

3.3 Natural Frequency

One characteristic value for evaluating the vibrations of the endeffector is the natural
frequency f0. It can be directly estimated with the results from the stiffness analysis.
The natural frequency of a pendulum can be computed with

f0 = 2π

√
c

m
(9)

with the stiffness c and the mass m. As the planar cable robot is mainly susceptible
for vibration in the z-direction, Eq. 9 can be used to calculate the natural frequecy.
As stiffness c the z-component of the Cartesian stiffness matrix Kx is used and for
the mass m the mass of the endeffector.
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Table 2 Robot geometrical parameters: base vector ai and platform vector bi

Cable i Base vector ai in [m] Platform vector bi in [m]

(a) Robot geometrical parameters

x y z x y z

1 [ 5.319 −0.050 −0.017 ]T [ 0.459 −0.450 0.0 ]T

2 [ 5.320 3.615 0.028 ]T [ 0.452 0.442 0.0 ]T

3 [ −4.838 3.676 0.042 ]T [ −0.446 0.437 0.0 ]T

4 [ −4.829 −0.049 −0.018 ]T [ −0.446 −0.450 0.0 ]T

(b) Mock-up parameters

x y za x y z

1 [ 10.85 −2.771 0.0 ]T [ 0.459 −0.450 0.0 ]T

2 [ 10.85 5.3595 0.0 ]T [ 0.452 0.442 0.0 ]T

3 [ −10.05 −2.773 0.0 ]T [ −0.446 0.437 0.0 ]T

4 [ −10.05 5.397 0.0 ]T [ −0.446 −0.450 0.0 ]T

a Due to the mock-up size, imperfections in z of the winches were not measurable

4 Experimental Results

4.1 Experiment Setup

The experimental set up was simple. A weight attached to a pulley was used to exert a
defined force wz upon the platform. This was done on several poses in the workspace
of the planar cable robot with the dimensions shown in Table 2b. For measuring
the geometric parameters of the kinematic chain, deflection, and oscillations a Leica
LaserTracker was used. With this optical device the absolute position of a reflector
can be determined with an accuracy of ±15µm + 6µm/m.

The cable material used in this experiment was LIROS D-Pro 01505-0250 based
on Dyneema SK 75 fibre (Polyethylene). This has a diameter of 2.5 mm and a specific
weight w of 0.0035 kg/m.

In addition to different poses, different force distributions were also considered
and matched. Vibrations after the force wz was reduced to zero were also recorded.
Finally deflection induced by the robot’s linear movement when actuated by the
joints for different trajectories were also compared.

The experiments for deflection and frequency were also repeated on a much larger
scale mock-up of the planar cable robot. This was done to test the scalability of the
results gained in the previous experiments. Here the same cable was used, but at much
larger dimensions shown in Table 2 these were found with a laser range finder as the
winches of the mock-up span distances beyond the range of the Leica LaserTracker.
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Fig. 4 Deflection d for different applied forces wz at different poses

4.2 Results

A few selected results are given here to show the characteristics of the phenomena,
and give a comparison to the modeled results. Poses for the robot will be expressed
in the following form: [x in (mm), y in (mm)]

Figure 4 shows the deflection experienced at different poses in the workspace.
Pose [0, 1125] which is very close to the center of the base frame shows the most
deflection and thus has the least stiffness. Pose [2000, 100] towards the edge of the
workspace shows much more stiffness.

Table 3 shows results varying the tension niveau at different poses. Cable Force
indicates a the maximum force in a particular tension niveau. Figure 5 shows the
frequency spectrum of oscillations in d these oscillations under different tension
niveaus.

Figure 6 shows the deflection that occurs when the robot moves along a trajectory.
A given path results in a displacement in all axes of the coordinate system. This is
due to geometrical deficiencies and the fact that the measurements were produced
in a different coordinate system than the one programmed by the kinematics. Hence
a corrected d is also displayed which gives the displacement from the trajectory
between the two measured point on the z-axis. In fact, all stationary measurements
are normalized in the same way.

Table 4a and Fig. 4b show the results for different tension niveaus for the big
mock-up, similar to the information contained in Table 3.

4.3 Discussion

It can be seen that the impact on stability is primarily result of the geometric
configuration. The stability is mainly governed by Kg rather than Kl which coin-
cides with the first quarter of the graph at Fig. 3. From Table 3b stiffness at a tension
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Table 3 Results for different cable forces at different positions

(a) Pose: [0, 1125] (b) Pose: [0, 100] (c) Pose: [0, 750]

wz Cable Deflection wz Cable Deflection wz Cable Deflection

in (kg) Force (N) d in (mm) in (kg) Force (N) d in (mm) in (kg) Force (N) d in (mm)

0.5 200 53.9109 0.5 200 40.7645 0.5 200 38.7358

300 34.0864 300 30.9638 300 27.6953

400 26.6526 400 24.7105 400 23.0817

500 22.8604 500 21.7184 500 20.6585

1 200 98.4713 1 200 77.5834 1 200 67.5565

300 59.5159 300 59.2566 300 48.3678

400 43.7081 400 47.7208 400 40.0389

500 35.5547 500 42.3703 500 34.7599

2 200 185.946 2 200 165.431 2 200 127.972

300 105.98 300 116.353 300 92.376

400 74.0245 400 93.3925 400 74.4883

500 62.1933 500 80.8146 500 62.6368

5 200 416.169 5 200 386.278 5 200 297.214

300 242.596 300 292.786 300 217.305

400 181.99 400 235.568 400 177.82

500 139.261 500 192.454 500 145.233

(d) Pose: [1500, 1125] (e) Pose: [1500, 100] (f) Pose: [1500, 750]

wz Cable Deflection wz Cable Deflection wz Cable Deflection

in (kg) Force (N) d in (mm) in (kg) Force (N) d in (mm) in (kg) Force (N) d in (mm)

0.5 200 49.5651 0.5 200 41.2883 0.5 200 39.1305

300 33.9899 300 31.8738 300 29.6688

400 27.9604 400 24.8672 400 24.9784

500 24.8945 500 21.1144 500 22.055

1 200 88.3799 1 200 83.0119 1 200 67.9625

300 59.6591 300 59.0051 300 50.1867

400 43.8635 400 47.2317 400 42.0422

500 36.5778 500 39.259 500 34.9966

2 200 173.225 2 200 161.976 2 200 135.944

300 99.7939 300 119.072 300 89.6771

400 72.0893 400 90.9264 400 72.2515

500 59.0626 500 76.2177 500 61.638

5 200 375.615 5 200 368.67 5 200 312.465

300 176.364 300 278.397 300 207.995

400 166.744 400 221.483 400 165.031

500 134.912 500 180.714 500 137.186
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niveau of 200 N can be estimated and gives an average stiffness of ≈ 125 N/m for
deflections < 0.1 m which coincides with the model.

It can also be seen from the data that different positions contribute to differences in
deflection of 50–100 mm. Poses at the center of the workspace having more deflection
that poses closer to the winches.

As expected the stability can be increased drastically by increasing the tension
niveau, which can be seen in Table 3. Increasing the tension niveau by slightly more
than a factor of two reduced the deflection by about the same amount. The Results
of this vary between different poses, which is predicted by modeling the stiffness.

The model also predicted the expected result on the frequency of the oscillations.
These coincide for lower tension niveaus, but become increasingly innaccurate as the
tension niveau is increased. It was also found that positions with different absolute
cable lengths have a broader frequency spectrum. This is to be expected, as each joint
will contribute its own oscillating frequency, which is directly correlated to the cable
length. The model for frequency is also very simple in comparison to the geometric
model, only acting in one dimension.

The deflection when the robot follows a trajectory is fairly small. An ideal robot
would have no deflection, but uncontrollable external forces, and geometrical imper-
fections cause deflections to occur. It can be seen that the geometric imperfections
have a big impact. Oscillations in d are also caused and in the order of magnitude of
1 mm while the maximum absolute corrected deflection was 14 mm. This is highly
variable for different trajectories. For the current application concept the scale of
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Table 4 Mock-Up Deflection for Tension Niveaus at Pose [0, 0]
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w
z
 [kg]

d 
in

 [
m

m
]

Cable Force 80 − 100N
Cable Force 200−235N
Cable Force 250−280N

Pose [0,0]

wz Cable Deflection
in [kg] Force [N] d in [mm]

0.5 80-100 157.949
200-230 75.7707
250-280 51.2554

1 80-100 258.299
200-230 143.589
250-280 105.709

2 80-100 387.406
200-230 247.662
250-280 198.006

5 80-100 629.655
200-230 461.833
250-280 408.997

(a) (b)

the results is highly promising. A deflection of 20 mm is two thousandths of the
length of the robot, and is much less than when a force wz is applied. This makes
many applications for planar cable robots feasible, without the need of additional
constraints. In the case of high bay inspection, the expected wz is much lower than
the values which were tested for in this set of experiments, and all the results were
within acceptable limits, even when scaled to larger dimensions.

At a larger scale, the results are very similar. The big mock up was about double in
size, with a length of ≈20 m and a height of ≈8 m compared to ≈10, 4 m. Deflection
increased by a very similar factor (keeping in mind position [0, 1125] on the robot
is more similar to position [0, 0] on the mock-up than [0, 100]). Unfortunately the
importance of geometric factors in the stability make comparing the results from the
actual robot and the big mock-up difficult. It is important to note that even the results
for the mock-up were at acceptable levels.

5 Conclusion

This paper presents experimental results regarding the stability of a 3-DOF planar
cable robot. In light of certain applications, this stability concern may render appli-
cations of such a robot design useless. So far very few such robots have been built
and investigated.

Results show that while a deflection from the plane is inevitable, the magnitude
is manageable. Through increasing tension niveau, one can control the magnitude
of d in a very predictable manner. This can be estimated through a simple stiffness
model. Such model can also predict frequencies of oscillation. Unfortunately, due



98 V. Schmidt et al.

to many factors contributing to imprecision, the model is too simplified to give very
exact estimates for all tension niveaus, and poses.

One very important factor which is not modeled so far, is the deflection caused by
the robot moving along a trajectory. While this is highly unpredictable and variable
between different trajectories, the deflection was found to be small and therefore
manageable. This makes the application of such a robot plausible, from a stability
point of view. Especially considering that very little wz is actually expected in this
application of non-contact inspection. The robot is expected to move undisturbed
along its path.

A robot using this concept is possible, but knowledge of the horizontal stiffness is
very important. The results presented here have shown that a simple stiffness model
can approximate a general estimate, for different geometries and positions but is not
very precise due to numerous factors.

This information can be used when considering building a robot which relies only
on the tension niveau in the cable for stability but is technically underconstrained.
An overview of the magnitudes in deflection was given, and a method for predicting
these magnitudes through the stiffness model. Further work would include making
this model more precise, and more detailed investigations of the deflections caused
through moving along a trajectory. The latter being very unpredictable and essential
for the operation of such a planar cable robot.
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Experimental Determination of the Accuracy
of a Three-Dof Cable-Suspended Parallel
Robot Performing Dynamic Trajectories

Clément Gosselin and Simon Foucault

Abstract The experimental determination of the accuracy of a three-degree-of-
freedom (three-dof) spatial cable-suspended parallel robot is addressed in this paper.
The concept of the dynamic trajectory planning of a three-dof spatial cable-suspended
parallel robot is first briefly recalled. Then, periodic trajectories are planned and an
external three-dimensional measurement system is used to determine the actual tra-
jectory of the end-effector. Linear regression is used to fit the measured trajectory with
the planned trajectory and eliminate the bias error. The accuracy of the trajectories
is then assessed.

1 Introduction

Cable-suspended parallel robots are cable-driven mechanisms in which gravity is
used to maintain the cables in tension. They include as many actuators (or some-
times fewer actuators) as degrees of freedom. Cable-suspended parallel robots have
the potential to provide very large workspaces with very effective payload to mass
ratios. Examples of cable-suspended robots can be found in [1, 5, 9] and in sev-
eral other works. In the latter references, cable-suspended parallel mechanisms are
treated as quasi-static devices which move slowly and which are assumed to always
remain within the bounds of their static workspace. Techniques to determine the sta-
tic workspace of cable-suspended robots were proposed in the literature, for instance
in [10]. Also, their dynamics were studied in [8, 12] for control purposes.

On the other hand, if the dynamics of cable-suspended robots is considered at the
trajectory planning stage, it is possible to extend their workspace beyond the static
workspace and exploit their so-called dynamic workspace [2]. Indeed, by including
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cable tension constraints in the trajectory planning algorithms, it is possible to design
trajectories that satisfy these constraints by construction.

Dynamically controlled (pendulum-like) cable-suspended robots were proposed
in [3, 7, 11] and [13]. The robots proposed in the latter references are underactuated
and techniques are developed to control the actuator inputs in order to produce
point-to-point motion between prescribed poses. Such techniques require the on-line
numerical integration of the differential equations.

In [6], a fully actuated planar 2-dof robot suspended on two cables was considered.
By expressing the tensions in terms of the kinematic variables, it is possible to
design trajectories and to obtain conditions on the trajectory parameters that can
guarantee that the tensions remain positive. This approach greatly simplifies the
trajectory planning and opens the avenue for the global planning of families of
feasible trajectories. The approach was extended to spatial three-dof parallel cable-
suspended robots with a point-mass end-effector in [4].

In this paper, the accuracy of the three-dof parallel cable-suspended robot
described in [4] is investigated. First, the mechanism architecture and the dynamic
trajectory planning technique are recalled. Examples of parametric trajectories that
ensure that the cables are maintained under tension are given. Then, an external mea-
surement system is used to determine the position of the end-effector. Based on the
experimental results, the assumed fixed reference coordinate system is adjusted and
the positioning error of the mechanism is determined.

2 Kinematic and Dynamic Modelling

The spatial three-dof cable-suspended parallel robot studied in [4] is represented
schematically in Fig. 1. Three cables are attached to a common end-effector which is
considered as a point mass. At their other end, the cables are wound on fixed actuated
spools which are used to control the extension of the cables. By controlling the cable
extensions, the position of the point mass in the three-dimensional space can be
prescribed. The robot includes three actuators and three degrees of freedom. It was
shown in [4] that it is possible to perform Cartesian trajectories that extend beyond
the static workspace of the robot by imposing that all cable tensions remain positive
and by using the mathematical conditions obtained to set the trajectory parameters.

The dynamic model of the cable-driven robot with a point-mass end-effector
developed in [4] is now briefly recalled.

Referring to Fig. 1, a fixed reference frame is first defined on the base of the
robot with its Z axis pointing downwards, i.e., in the direction of gravity. The points
corresponding to the cable outputs of the spools are assumed to be fixed—in practice
an eyelet or a pulley can be used—and are noted Ai , with i = 1, 2, 3. The vector
connecting the origin of the fixed reference frame to point Ai is noted ai and the
position of the end-effector of mass m with respect to the origin of the fixed reference
frame is noted p = [x, y, z]T . The cable lengths, which are used as joint coordinates,
are respectively noted ρi , i = 1, 2, 3. The inverse kinematic equations can therefore
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Fig. 1 Spatial three-dof cable-suspended robot with a point-mass end-effector and three cables

be simply written as

ρi =
√

(p − ai )T (p − ai ), i = 1, 2, 3. (1)

Since the mass of the cables is neglected, the dynamic model of the robot can be
obtained by writing the force balance on the end-effector, which is considered as a
point mass. One obtains

3∑

i=1

(−Fi

ρi
(p − ai )

)
+ m g = m p̈ (2)

where Fi is the tension in cable i and g is the vector of gravitational acceleration,
namely g = [0, 0, g]T , in which g is the magnitude of the gravitational acceleration.

Equation (2) constitutes a system of three linear equations in three unknowns (ten-
sions F1, F2 and F3) which can be assembled in a vector defined as
f = [F1 F2 F3]T . Hence, (2) can be explicitly solved for the cable tensions as

τ = M−1(g − p̈), with M = [e1 e2 e3] (3)

where τ = 1
m f is the vector of cable forces per unit mass of the end-effector and

vector ei is defined as a unit vector in the direction of the i-th cable and oriented
from the spool to the end-effector, namely
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ei = 1

ρi
(p − ai ), i = 1, 2, 3. (4)

In order to obtain dynamically feasible trajectories, it must be ensured that the above
solution yields tensions in the cables, i.e, it must be guaranteed that the components
of τ are positive throughout the trajectory. Referring to (3), the inverse of matrix M
can be written as

M−1 = Adj(M)

det(M)
(5)

where Adj(M) is the adjoint matrix of M and det(M) is its determinant. It can readily
be observed that the determinant of M can be written as

det(M) = (e1 × e2)
T e3 (6)

and that this quantity is always strictly negative as long as the end-effector remains
below the plane defined by the three attachment points A1, A2 and A3. This assump-
tion is used and it suffices to consider only the adjoint matrix in order to determine
whether the tensions in the cables are positive. The condition corresponding to pos-
itive tensions is written as

τ � 0 (7)

where � stands for the componentwise inequality. Based on (3) and the expression
of the adjoint matrix and noting that the determinant of M is always negative, the
constraints then become

[
p × (a2 − a3) + (a2 × a3)

]T
(p̈ − g) > 0 (8)

[
p × (a3 − a1) + (a3 × a1)

]T
(p̈ − g) > 0 (9)

[
p × (a1 − a2) + (a1 × a2)

]T
(p̈ − g) > 0. (10)

The above inequalities represent the constraints to be satisfied in order to ensure that
the cables are kept under tension. If these conditions are satisfied at all points of a
given trajectory, then it can be guaranteed that the cables will remain under tension
throughout the trajectory. These conditions are necessary and sufficient.

3 Trajectory Planning

In [4], it was shown that the above inequality constraints can be used to plan periodic
feasible trajectories such as oscillations along a straight line, circles in horizontal or
vertical planes or spatial trajectories inscribed on the surface of a sphere or a cylinder.
Feasible trajectories are obtained by manipulating the inequality constraints to obtain
conditions on the global trajectory parameters that ensure positive cable tensions.



Experimental Determination of the Accuracy of a Three-Dof Cable-Suspended . . . 105

A symmetric architecture in which the three spools are located on the vertices of
a horizontal equilateral triangle whose centroid is at the origin of the fixed reference
frame is used here. The distance between the fixed attachment points—the length
of one side of the equilateral triangle—is noted a. The simple case of a periodic
oscillation along a horizontal straight line is now recalled for quick reference.

The trajectory corresponding to a periodic horizontal motion along a straight
line intersecting the vertical line passing through the centroid of the base triangle is
designed as follows:

x = r cos α sin(ωt), y = r sin α sin(ωt), z = z0, z0 > 0 (11)

where z0 is the elevation of the horizontal trajectory, r is one half of the total hor-
izontal range of motion, ω is the frequency of the periodic motion, α is the angle
corresponding to the direction of the straight line in the horizontal plane and t is
the time. Substituting the above parametric equations and their time derivatives into
inequalities (8–10) leads to three inequalities that can be written as

Ai sin(ωt) + Bi > 0, i = 1, 2, 3 (12)

where

A1 = r(z0ω
2 − g) cos α (13)

A2 = −r(z0ω
2 − g)(cos α + √

3 sin α) (14)

A3 = −r(z0ω
2 − g)(cos α − √

3 sin α) (15)

2B1 = B2 = B3 = √
3ag/3. (16)

Given the bounds on the sine function, the conditions given in (12) are satisfied
throughout the trajectory if the following conditions are satisfied:

|Ai | < Bi , i = 1, 2, 3. (17)

When inequalities (17) are satisfied, the horizontal trajectory can be performed while
maintaining all cables in tension. Since conditions (17) involve only the geometric
parameters of the robot and the global parameters of the trajectory—elevation z0,
amplitude r , horizontal direction α and frequency ω—the parameters can be adjusted
to produce feasible trajectories.

It can also be observed, from (13) to (16) that when a frequency of

ωn =
√

g

z0
(18)

is selected, inequalities (17) are always satisfied and arbitrary amplitudes of motion
r can theoretically be produced, irrespectively from the direction of the horizontal
line. This frequency, ωn , can be thought of as a kind of natural frequency for the robot
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performing horizontal oscillations. It is remarkable that this frequency corresponds
to the natural frequency of a single cable pendulum of length z0 and that it does
not depend on the direction of the line in the horizontal plane. Similar relationships
between the trajectory parameters can be obtained for other periodic trajectories such
as circles, hypocycloidal trajectories and others using a similar approach.

4 Experimental Determination of the Accuracy

A prototype of a three-dof spatial cable-suspended robot was built in order to val-
idate the approach and the dynamic trajectories extending beyond the workspace
of the mechanism. The successful performance of these trajectories was reported
in [4]. However, in the latter reference, no external measurement was provided to
assess the actual positioning accuracy of the mechanism. This issue is addressed
here using a three-dimensional positioning system (VICON). To this end, a marker
is mounted on the end-effector and eight cameras are placed around the workspace
of the mechanism. The tracking of the end-effector is performed at 500 Hz using tri-
angulation since the marker is always visible from a sufficient subset of the cameras.
The experimental set-up is shown in Figs. 2 and 3. The distance between the cable
attachment points on the frame is approximately 9 m and the mass of the end-effector
is m = 0.071 kg. Three servo-controlled winches are used to control the length of
the cables. Vertical, horizontal, circular, hypocycloidal and other trajectories were
successfully demonstrated with the prototype. Three trajectories for which external
measurements were made with the VICON system are now described. It is pointed
out that the objective of this work is to determine the accuracy of the robot and not
the precision.

4.1 Horizontal Straight-Line Trajectory

A periodic oscillation along the direction of the X axis of the fixed reference frame
is performed. The trajectory is described mathematically in Eq. (11), where the fol-
lowing parameters are used:

α = 0, r = 2.5 m, z0 = 4 m, ω =
√

g

z0
� 1.566 s−1. (19)

The above trajectory leads to maximum velocities of approximately 6 m/s. The tra-
jectory is performed and the motion of the end-effector is measured using the VICON
system for several back and forth oscillations. A linear regression is then applied to
the measured coordinates in order to fit a straight line to the measured trajectory.The
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Fig. 2 Prototype of a three-dof spatial cable-suspended robot, cameras and marker used in the
experiments

Fig. 3 End-effector of the prototype with the marker

results are shown in Fig. 4a. First, it can be observed that the measured trajectory is not
exactly along the X direction. This bias corresponds to the alignment error between
the mechanism’s reference frame and the measurement system’s reference frame.
Using the best linear fit, this alignment error is easily determined and compensated
for. Then, the accuracy of the trajectory can be determined using the error between
the best linear fit and the actual trajectory. The results are shown in Fig. 4b. It can
be observed that, after calibration to account for the reference frame alignment, the
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Fig. 4 Measured position for an oscillation along the X axis, best linear fit and error (a and b)

positioning error for this dynamic trajectory is less than ±4 mm which is relatively
small, considering that the cables are several metres long.

4.2 Circular Trajectory in a Vertical Plane

The circular trajectory in the vertical X Z plane can be described mathematically as

x = r sin(ωt), y = 0, z = z0 + r cos(ωt), z0 > r (20)

with
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Fig. 5 Measured position for the circular trajectory in a vertical plane, best circular fit and error (a
and b)

r = 1 m, z0 = 4.5 m, ω =
√

g

z0
� 1.476 s−1. (21)

The above trajectory produces a velocity of the end-effector of approximately 1.5
m/s along the circular path. The trajectory is performed with the prototype and the
motion of the end-effector is measured. A linear regression is then applied in order
to fit a circular path to the measured trajectory and the results are shown in Fig. 5a.
Similarly to what was observed with the first trajectory, a bias is noted, which is easily
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compensated for. Hence, the accuracy of the mechanism is obtained by considering
the error between the best circle fit and the measured position. The results are shown
in Fig. 5b. It can be observed that the accuracy is similar to that obtained with the
straight line motion and that the error can go up to almost 1 cm. It can also be observed
that the largest errors are obtained when the end-effector is the furthest away from
the centre of the static workspace.

4.3 Circular Trajectory in a Horizontal Plane

Finally, a circular trajectory in the horizontal XY plane is performed. The trajectory
is described mathematically as

x = r sin(ωt), y = r cos(ωt), z = z0 > 0 (22)

with

r = 1.5 m, z0 = 3 m, ω =
√

g

z0
� 1.808 s−1. (23)

The above trajectory produces a velocity of the end-effector of approximately 2.7 m/s
along the circular path. Similarly to the previous cases, a linear regression is applied
to the experimental data in order to fit a circular path to the measured trajectory and
the results are shown in Fig. 6a. The bias observed mainly consists of an offset of
the centre of the circle. This offset is compensated for in the controller. Hence, the
accuracy of the mechanism is obtained by considering the error between the best
circle fit and the measured position. As mentioned above, the main interest is the
determination of the accuracy and not the precision. The results are shown in Fig. 6b.
It can be observed that the accuracy is not as good as in the previous cases and that
the error can go up to almost 4 cm. It can also be observed that the largest errors
are obtained when the end-effector is the furthest away from the centre of the static
workspace. Since the circle has a radius of 1.5 m, the end-effector is located further
from the workspace centre, which may explain the larger error. Also, since the end-
effector is moving in a plane that is located only 3 m below the attachment points
of the cables to the fixed frame, the tension in the cables is larger which may also
increase the error.

5 Conclusion

This paper provided an experimental determination of the accuracy of a three-dof
cable-suspended parallel mechanism with a point mass end-effector. The kinematic
and dynamic models of the robot were first recalled and an example of a dynamically
feasible periodic trajectory was given. Then, three trajectories were presented for
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Fig. 6 Measured position for the circular trajectory in a horizontal plane, best circular fit and error
(a and b)

which experimental data was obtained. A VICON system was used to determine the
coordinates of the end-effector and compare them with the prescribed trajectory. For
two of the trajectories, the positioning error along the path was found to be of the
order of one centimetre, which is acceptable considering the length of the cables
(several metres) and the dynamic character of the trajectory. It was also observed
that points located far away from the central vertical axis tend to produce larger
errors. Future work includes the development of compensation schemes to improve
the positioning accuracy of the mechanism and the implementation of a prototype
of a three-dof translational cable-suspended parallel mechanism with a rigid-body
platform.
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Efficient Calibration of Cable-Driven Parallel
Robots with Variable Structure

Dragoljub Surdilovic, Jelena Radojicic and Nick Bremer

Abstract This paper presents an efficient practical approach for the combined
explicit and implicit approximated calibration of cable-driven parallel robots (wire
robots, CDPR) mainly developed to tackle the problems with variable system
structures, i.e. often reconfigurable common robot platform. Indeed, the developed
calibration procedure can also be applied to the systemswith stationary (end-effector-
i.e. gripper-like) platforms, however the benefits of the new methods are mainly
expressed in the variable structure systems. The variable structure CDPR systems
cover classes of robots in which the common robot platform represents a working
object to be manipulated, itself. Such systems are typical in novel CDPRs referred as
extended-cranes wire robots or rehabilitation wire robots (e.g. STRINGMAN [1]).
An additional specific system case belonging to the considered class is large mobile
CDPR developed for applications in agriculture, which with changes of the appli-
cation fields should be often periodically reconfigured and commissioned (cali-
brated). The paper provides detailed mathematical modelling of the novel calibration
approach based on the parameter sensitivity analysis of the robot kinematic models
including wire pulley systems. The implementation of the calibration procedures
including required sensory systems and control supports has also been considered.
Finally, practical examples illustrate the performance of the developed calibration
method.
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1 Introduction

The cable-driven parallel robots (CDPR)orwire-robotshavebeen recently addressed
in numerous researches focusing on their advantages for implementing large spans,
fastmoving, lightweight and heavy-duty active spatialmechanisms. In comparison to
a more general class of cable robots (e.g. spatial advanced robotized crane systems),
the wire robots, especially the so called over-constrained structures, offer benefits
such as ease of reconfiguration and adaptation to specific applications. Thereby
the robot structures may be often changed, commonly by exchanging the working
platform or varying locations of the robot wires attachments (pulleys, winches) in
the space. Moreover, in specific CDPR systems, the change of common working
platform or wire locations is closely related to the robot function.

A typical example represents the gait rehabilitation robot STRINGMAN [1]. This
wire robot is unique, since its common platform interconnecting all cables represents
the upper body of a patient (Fig. 1). The wires are connected to a harness carried by
a patient performing gait training. The role of STRINGMAN is to provide weight
suspension and gait balancing support (see [1] for more details). The procedures
of patient attachments (Fig. 1) and detachments, facilitated by specific wire-tension
control algorithms (based on force and impedance control) and patient lift-systems,
represent a part of typical robot operations. The dimensions of the established “plat-
form” practically vary for each patient, and efficient robot calibration and commis-
sioningbecomecrucial functions of the control system.Typical for theSTRINGMAN
are considerable inaccuracies, due to elasticity of the harness (human body attach-
ment), which are tackled by the control system, relying on the interaction (force and
impedance) control, rather than on the position control, supported by human tracking
sensors (IMU, local wire-position sensors, vision etc.).

Another typical variable CDPR system requiring continuous calibration repre-
sents the so called extended-crane systems (Fig. 2). An extended-crane represents a
combination of a wire robot and a conventional crane. The robot configuration is
created to support task decomposition between the overhead crane (mainly performs

Fig. 1 STRINGMAN—patient attachments supported by lifting-system and wire-attach function
(position based force/damping control)
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Fig. 2 Extended-crane system

the weight balancing and gross motion) and the side wire system (mainly responsi-
ble for fine lateral positioning and orientation). The extended crane can considerably
improve flexibility and efficiency of assembly of heavy parts with complex irregular
geometry. The sidewires have been still applied for such operations in industrial prac-
tice but in pure manual manipulation form, to support fine-positioning of heavy parts
carried by cranes. However, such repetitive operations are due to higher inertia of
handling parts (ergonomic safe limit is ca. 20kg) quite dangerous for human health
and may cause serious back-pain problems. In extended crane systems the work-
piece itself represents a common platform providing several attachment points. The
side-wires (winches) carriers are commonly realized by mobile units with uncertain
locations (Fig. 2). Fast calibration after commissioning, as well as following each
new part attachment, should improve wire-robot models and model-based control.

A further example of variable structure and reconfigurable wire robot systems
represent large CDPRs for agricultural applications (Fig. 3). To meet higher system
flexibility and application requirements in various agricultural plants, it is convenient
to implement these systems by means of mobile pillars that transport winches and
platform, and can be fixed on stand-on legs at some locations to provide stable wire-
robot structure [2]. The exact locations of winches thereby should be identified by
calibration after system configuration/reconfiguration and commissioning.

Calibration, i.e. estimation of geometric and kinematic parameters of CDPRs,
or in more general case of parallel robots, has been recently addressed in several
researches [2–8].Both systemclasseswith characteristic structures, including closed-
loops between attached legs/wires and platform, offer a specific possibility for the
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Fig. 3 Large wire-robots with mobile pillars for agricultural applications

calibration based only on internal (proprioceptive) sensing, referred to as “implicit
loop method” [3]. As remarked by Wampler et all. [2], closed-loop relations provide
additional information for calibrations that are equivalent to the end-point pose mea-
surements in convenient industrial-robots with open kinematic chains. Additionally,
redundancy of over-constrained wire-robots provides supplementary information for
calibration [4]. The procedures for wire-robot calibration based on “implicit loop
method” and proprioceptive sensors applications (e.g. local motor rotation/sliding
sensors used for control purposes) are often referred to as “self-calibration” [4, 5].
Various specific self-calibration procedures (referred to as tension- and jitter-based
self-calibration) have been developed in [6] for a planar wire-robot structures, in
which some wires keep the length constant while remaining wires vary length or
tension.

As is well known, the self-calibration in complex (e.g. non-negligible pulleys)
and largewire-robots structures described by non-linearmodels, includingwire cable
elasticity [9, 10] with considerable parameter uncertainties may become also com-
plex and converge to local minima that provide wrong information for identification.
Linearized iterative methods that include direct-kinematics in the loop [6], also in
general doesn’t ensure convergence (contraction processes), producing the steps that
deteriorate calibration procedure. Therefore complete identification schemes that
tackle both parameter and pose uncertainties have been recently proposed [6].

In large scale robots (Figs. 2 and 3), however, the self-calibration procedure may
become time-consumable and information from the external sensors can considerably
improve the calibration, especially in non-linear systems with expressed cable sag
and elasticity effects [8]. Thereby beside costly laser trackers [8] also relatively
cheap sensors, such as cameras [3] or IMU’s [1] (with additional external sensors,
i.e. closed-loop based data fusion and drift compensation) may be applied.

This paper provides novel calibration methods that combine force/impedance
control with external/internal CDPR calibration, which is based on affordable sen-
sors and quite efficient for calibration of frequently reconfigurable wire-robots. This
approach is based on an explicit linearizedmathematical parameter sensitivity model
of complex wires structures including pulleys. To cope with large dimension and
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non-linearity, an approximation method based on sequential linear programming
(SLP) and linear recursive approximations based on smaller calibration sub-problems
[11] has been developed. Several simulation examples demonstrate the feasibility and
robustness of the calibration performance against higher parametric deviations and
measurement disturbances.

2 Kinematic Analysis

Kinematic models of wire-robots provides background for detailed parameter
sensitivity analysis In Fig. 4, a general model of wire-robot with n-wires (i=1,…,n)
is given. In a over-constrainedwire-robot structure ensuring 6DOFmotion plus wires
tension is n ≥ 7. Using the notion from (Fig. 4), the position of the i th wire platform
attachment point Bi is defined by

pi = ai + Li = p + bi (1)

where ai and bi are position vectors of pulley and platform attachment points Ai and
Bi wrt. base and local platform frames respectively, p is the position vector of the
platform reference frame and

Li = −−→
Ai Ci + −−→

Ci Ti + li (2)

where li is the wire-length vector, while Ci and Ti denote centre of the pulley and
wire tangent points (Fig. 4).

During an arbitrary platform displacement, the wire performs a complex
composite motion consisting of: transferred motion, representing the entire wire

Fig. 4 Wire-robot structure
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plane {Ai Bi Ci Ti } rotation (rolling motion of the pulley) around the fixed pulley axis
ei , and relative motion in the wire plane. The relative motion consists of relative
translation i.e. change of the relative length in the actual cable direction (due to cable
control, i.e. via a winch or linear slider mechanism (not presented in the Fig. 4), and a
relative rotation of the wire around the pulley (i.e. point Ti that represents actual pole
of the velocity). Based on this analysis, the expressions for absolute wire end-point
velocities and accelerations are obtained

vi = ṗi = ωei × Li + ωr i × li + ∗
l i = vp + ωp × bi (3)

ai = p̈i = εei × Li + εr i × li + ωei × (ωei × Li ) + ωei × (ωr i × li ) + ωr i

× (ωr i × li ) + 2(ωei + ωr i ) × ∗
l i + ∗∗

l i = ap + ε p × bi + ωp × (ωp × bi )

(4)

whereωei and εei denote pulley rotation velocity and acceleration around ei (Fig. 5),
ωr i and εr i relative wire rotation velocity and acceleration around wire-plane

normal ni ,
∗
li and

∗∗
l i are linear wire relative velocity and acceleration due to cable

length changes, vp and ωp, ap and ε p are platform linear and angular velocities
and acceleration vectors respectively. Relative velocity components and their direc-
tions are shown in (Fig. 5). The projections of the velocity and acceleration vectors
(3, 4) into wire-length vector direction, defined by unit vector li0 = li/li , i.e. scalar
multiplication of these equations by li0 yields the magnitudes of wire linear relative
velocity

∗
l i = [l T

i0 − l T
i0 bi ]tp (5)

where tp = [vT
p ωT

p ]T is the platform twist vector, while bi denotes skew-symmetric

3×3matrix formed from the elements of the vector bi in order to represent the vector
product in the matrix form. Scalar multiplication of (4) by li0 yields the magnitude

Fig. 5 Velocity vectors components
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of wire relative acceleration

∗∗
l i = ω2

ei
[(�ei ×�Li )·�ni ][(�ei ×�ni )·�li0]+ω2

ri
li +[l T

i0 −l T
i0 bi ]ṫp−l T

i0 ωpbiωp (6)

where the first two components represent the projections of centrifugal accelera-
tions components (corresponding to the pulley and relative wire rotations), while the
remaining parts define projections of platform tangential and centrifugal accelera-
tions into the wire directions.

The expressions for vectors of angular pulley and wire relative rotations are
obtained by scalar multiplication of (3) by vectors nli = ni × li0 and ni respec-
tively in terms of platform twist vector

ωei = 1

(�ei × �Li ) · �ni
[nT

i − nT
i bi ]tp (7)

ωri = 1

li
[−l T

i0 ni l T
i0 ni bi ]tp (8)

3 Wire-Robot Jacobian and Its Time-derivative

The relationship between relative wire velocity, defining the cable length variations,
and platform twist vector is defined by the wire-robot Jacobian

∗
l = Jt p (9)

where
∗
l = [∗l1 . . .

∗
l i . . .

∗
l n]T and Jacobian matrix J ∈ �n×6 is

JT =
[

l10 · · · li0 · · · ln0
b1l10 · · · bi li0 · · · bn ln0

]
(10)

The time derivative of wire Jacobian is obtained by differentiating (9) (the same
result is obtained by substituting (7) and (8) in (6))

∗∗
l = Jṫp + J̇tp (11)

where based on (10) is

J̇T =
[

l̇10 · · · l̇i0 · · · l̇n0
ḃ1l10 + b1 l̇10 · · · ḃi li0 + bi l̇i0 · · · ḃn ln0 + bn l̇n0

]
(12)
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Taking into account that the time derivatives of the constant intensity vectors li0
and bi (considering an ideal rigid platform) are

l̇i0 = ωei × li0 + ωri × li0
ḃi = ωi × bi

(13)

and substituting (7) and (8) yields

J̇ = tT
p ⊗ J = tT

p ⊗ [JT
1 . . . JT

i . . . JT
n ]T (14)

where J is a n(6) × 1(6) block matrix (numbers outside parenthesis define block
matrix dimension, while within parenthesis the dimension of each block-matrix ele-
ment has been given), ⊗ is the Kronecker’s product (each block-element of J is by
tT

p multiplied) and the block element Ji ∈ �6×6 has the form

Ji =
⎡
⎣

− 1
li

ni li0l T
i0 ni − 1

(�ei ×�Li )·�ni
ni l T

i0 ei
1
li

ni li0l T
i0 ni bi + 1

(�ei ×�Li )·�ni
ni l T

i0 ei bi

− 1
li

bi ni li0l T
i0 ni − 1

(�ei ×�Li )·�ni
bi ni l T

i0 ei
1
li

bi ni li0l T
i0 ni bi + 1

(�ei ×�Li )·�ni
bi ni l T

i0 ei bi + bi li0

⎤
⎦

(15)

4 Parameter Sensitivity Model

The kinematic model sensitivity analysis provides a framework for the development
of the calibration procedure. The above presented CDPR kinematic model includes
several parameters definitions: robot structure (vectors �ei and �ai , pulley radius ri ),

platform dimension, i.e. wire attachment points (vectors �̃bi , where ·̃ -denotes vectors
in local-platform coordinate systems), and variable platform position and rotation
vectors xp = [pT

p oT
p ]T . The rotation vector op takes different forms dependent

on selected rotation presentation (e.g. axis-angle, Cardan-, Euler- etc. angles). The
measurable wire length si , on a sliding- or a winch drive, consists of the active
wire-length li and the pulley arc of the contact length (Fig. 6). The basic kinematic
relationships for the calibration thus include

si = riδi + li
pi = ai + Li = p + bi = p + Rb̃i

Li = −−→
Ai Ci + −−→

Ci Ti = ri

[
�ei × �ni − 1

li
li × �ni

] (16)

where δi =≺ Ai Ti is the circular segment angle between points Ai and Ti

(see Fig. 6). The kinematic loop closure between two wire chains i and j over the
platform requires additionally

ai − a j + Li − L j = R(b̃i − b̃ j ) (17)
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Fig. 6 Wire transmission chains with linear sliders (left) and winches (right)

Fig. 7 Right-triangles relationships

The kinematic model parameters (16–17) uniquely define the position and ori-
entation of platform, i.e. wire attachment points Bi , in the space. By means of
these parameters two basic kinematic tasks inverse (IK) and direct-forward kine-
matics (DK) can be solved. The IK is trivial in CDPRs, mainly based on simple
geometric considerations: starting from given xp, i.e. known Bi , determining the
tangent on pulley (Thales’ circle), following by computation of δi and finally si (16).
Further transformation to corresponding motor angle or linear drive position is also
easy and depends on specific transmission train (Fig. 7). As well known, DK that
determines platform pose starting from measured si appears to be more complex in
parallel manipulators, and has been usually solved by iterative numeric procedures
[9] optimized for real-time applications (control).

In the reconfigurable systems, however, the fixedwire-robot parameters (�ei , �ai , �̃bi )

are unknown or uncertain and should be estimated before operation. The linearization

of (16) around an initial nominal parameter-model configuration (�ei0, �ai0, �̃bi0) and
an initial model pose (p0, R0) yields

�ai + �Li = �p + R0 �b̃i + �o R0b̃i0

�si = ri�δi + �li (18)

where�o represents skew-symmetric matrix of infinitesimal platform rotations. The
above equations provide a framework for a complete identification concerning both
parameter and pose uncertainties.
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The efficiency of the calibration can be improved by considering explicit

dependency between wire-robot parameters (�ei , �ai , �̃bi ) and cable length �li (�si )

deviations
li = li

(
ai , b̃i , ei , p, o

)
= li

(
ai , b̃i , ei , x

)
(19)

and

dli = ∂li
∂xT

dx + ∂li

∂b̃T
i

db̃i + ∂li
∂aT

i

dai + ∂li
∂eT

i

dei

�li = ∂li
∂xT

�x + ∂li

∂b̃T
i

�b̃i + ∂li
∂aT

i

�ai + ∂li
∂eT

i

�ei (20)

The relationshipbetween�li and theplatformposedeviations�x = [
�pT �oT

]T

is governed by the wire-robot Jacobian (9–10).

∂li
∂xT

=
[

l T
i0 −l T

i0 b
i

]
(21)

The Jacobian (10) and the equivalence between linear displacement �p, i.e. �pi ,
and platform parameters deviations �b̃i , given by �pi = R�b̃i , yields

∂li

∂b̃T
i

= l T
i0 (22)

The partial derivatives of li with respect to remaining parameter vectors may be
computed based on the geometrical relations in right triangles (Fig. 7)

l2i = Ci Bi
2 − r2i

Ci Bi
2 = (Li · ei )

2 + ((Li × ei ) · ni − ri )
2

L2
i = (Li · ei )

2 + ((Li × ei ) · ni )
2 (23)

yielding

l2i = L2
i − 2 ((Li × ei ) · ni )

2 (24)

From (23–24), considering generalized partial derivative transformation

∂li
∂uT

i

= ∂
(
l2i
)1/2

∂uT
i

= 1

2li

∂
(
l2i
)

∂uT
i

= 1

2li

∂
(
L2

i − 2ri (Li × ei ) · ni
)

∂uT
i

(25)
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and taking into account the relationships

∂L2
i

∂aT
i

= −2LT
i and

∂ ((Li × ei ) · ni )

∂aT
i

= − (ei × ni )
T (26)

yields the desired partial derivatives with respect to ai

∂li
∂aT

i

= 1

li

(
−LT

i + ri (ei × ni )
T
)

= − 1

li

−−→
Ci Bi

T
(27)

In other words, an infinitesimal variation δ ai that is orthogonal to
−−→
Ci Bi doesn’t cause

the variation of the cable length δli = 0 (Fig. 8).
Finally the variations δei which are compatible with other constraints (small

rotations of ei around Ai ), cause

∂li
∂eT

i

= ri

li

LT
i ei

(Li × ei ) · ni
LT

i (28)

Due to constrained space the proof of (28), which is also based on relationship
(23–25), as well as on the statement thatLi is not changed during ei variations (points
Ai and Bi remain fixed) (Fig. 5), is omitted. The deviations δei of pulley axes are
related to small angular rotations (errors) around two orthogonal axes defined by the
rotation vector δ oi with respect to a local coordinate frame attached to the ei . This
relationship is defined by

δei = δoi × ei = δoi ei = −ei δoi = −Ri ẽi RT
i δoi = −Ri ẽi δõi (29)

where “∼” denotes vectors defined by projections into local frames, Ri is rotation
matrix of this frame with respect to the base coordinate system. Substituting (29)
into (28) defines parameter sensitivity of the li variations to small axis ei deviations
δõi = [ δõi x δõiy 0 ].

The parameter sensitivity model (17–29) provides a framework for the develop-
ment of novel calibration procedures that is described in the following.

Fig. 8 Geometric proof of
(26)—virtual displacement in
direction orthogonal to �Ci Bi
doesn’t produce wire-length
changes (δli=0)
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5 Calibration Procedure

Let us consider the extended-crane system in (Fig. 9) and the large over-constrained
agricultural robots (Fig. 10). In principle, the calibration starts from a newwire-robot
(on the example of an extended-crane) to be configured by attaching the wires to
the common-workpiece (platform). At the beginning the winches have been fixed at
knownbut uncertain locations definedby ai w.r.t. a base frameof reference. The crane
transports the workpiece to the assembly locations and the operator can manually
attach the wires using local winch force/impedance (precisely damping) control.
Thereby the wire-tension, i.e. force sensors, built in all winches (see [13] for more
details), including also the main crane wire, have been utilized. After attachment,
the tension wire control ensures the tension of all wires that are required to fix the
workpiece in a desired, but also uncertain pose x j (j= 1…Nx ), where Nx denotes
number of poses used in calibration. The local wires have been calibrated to provide
an effective wire length measurements si (i= 1,…n) of the winches, for each pose.
For the measurements of x j after initial point calibration (details have been also
omitted), various sensors such as IMU’s with additional drift compensation sensors
(including also internal implicit wire-robot sensors and constraints equations) and
Kalman-filtering techniques may be used (it is not the focus of this paper).

Fig. 9 Configuration of an extended crane system: transportation, wires attachment and tension
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Fig. 10 Deviation model of a large span wire-robot

During calibration the platform moves to the poses x j,for example by combining
the Cartesian space jogging and wire-tension control ensuring a steady-state stable
pose.A previous selection of the points (calibration experiment design ensuring some
optimality criterion, see [14]),may considerably improve the quality of identification,
however, it is also out of the scope of this paper.

Calibration can be described briefly as the following problem. For the given set
of measurements M = {x j , si (x j )}, and initial (model) parameters values P̂ =
{âi ,

ˆ̃bi , êi }, identify the system parameters P = {ai , b̃i , ei } that in an optimal way
fit the set of measurements and kinematic model constraints (17–21).

The calibration procedure involves the following linear approximation steps
(Algorithm 1):

• Estimation of initial wire lengths based on the IK model

l̂i j = l−1
i

(
âi ,

ˆ̃bi , êi , x j

)

• Estimation of wire active lengths based on total cable length measurements taking
nominal values for the non-measurable wire contact arc δi j ≈ δ̂i j based on

l̄i j = si j − riδi j

• Optimal fitting of parameters by minimizing cable length errors (squares) �li j =
l̄i j − l̂i j . Using derived explicit sensitivity model (26) this leads to solving a linear
regression problem, in the considered case

�a = inv
(

RT R
)

RT �lN j

where the regression matrix R ∈ �N j ·n×n·3 includes parameter Jacobians (10).
In the illustrative example, 20 platformmeasuring points have been selected nearly

to the middle of the working space (which may be realized by practical tensions)
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(Fig. 10). Instead of an extended crane, an over-constrained robot with n=8 wires has
been considered. This robot represents an example of large agricultural wire-robot
(Fig. 10) with the nominal span of 100m and relatively large parameter perturbations.
For the sake of simplicity only estimation of a will be considered. For this purpose a
set of the following attachment points for simulatingmeasurements has been selected

a0 = [50 −50 −50 50 50 −50 −50 50
50 50 −50 −50 50 50 −50 −50
25 25 25 25 0 0 0 0]

As initialmodel parameters the following vector has been selectedwith a relatively
large initial deviation 2-norm of �a(0) ≈ 4 (m)

â = [46.9980 −52.3952 −51.0638 51.9303 48.0770 −51.5475 −50.4222
48.1406 52.0706 47.5845 −53.0748 −50.4700 52.5282 53.4440

−50.2576 −48.4173 22.3897 28.2407 26.6444 22.3588 −2.8097
−3.4949 1.3985 2.3109]

If we neglect the positionmeasurements errors (ideal sensors case), the Algorithm
1 converges very fast, reducing the initial errors after only few steps to 2-norm
�a ≈ 10−10(m). The cable length (and contact arc angles δi j ) residuum become
also almost nullified.

However, this is a very simplified case that doesn’t meet the practice, since the
platform position measurements are also erroneous. Therefore the position errors
have been randomly added to anymeasurements with again relative large errors, with
uniformdistribution errors and 2-norm�x(0) ≈ 0.04 (m).When the errors have been
included, the linear regression fitting converges to an optimum with relatively large
deviations and 2-norm �a(4) ≈ 0.1987 (m). Thereby relatively large residuum’s of
cable lengths 2-norm �l(4) ≈ 0.0415(m) (often of the same order as initial �x) has
been achieved, where the index in parenthesis denotes number of iterations.

These residua cannot be reduced by further iterations since a local optimum has
been reached. In order to advance the calibration, a logical improvement may be the
estimation of both �a and position errors measurements �x. However, this leads
to a large linear optimization problem with commonly very bad conditioning and
scaling of the regressor. The linear constrained fitting algorithms may limit para-
meters exploding, however, bad convergence and numerical errors remains typical
problems. In order to tackle these limitations, a next sequential optimization step has
been proposed.

The aim of the next sequential sub-estimation step (Algorithm 2) is to

• identify position errors by means of the wire robot Jacobian and thus to reduce
(commonly after next few steps 2-norm �l < 0.0001(m);

• reduce further the residuum �a by performing sequential optimization with more
stable fitting of smaller problems. Thereby both �x and �a gradients have to be
computed iteratively.
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As a result the cable length error can be considerably improved, while �a reduc-
tion remains usually not significant (0.10 m) (dependent on selected start points).

To remove further �a errors, finally the following sub-problem has to be solved
(Algorithm 3)

• self-calibration by checking all possible closed loops with the wires based on
(17–19) (there are totally 28 loop closure equations for each point in the considered
case).

After this step finally the typical results have been achieved: 2-norm �a < 0.01
(m), while 2-norm �l < 10−4(m) has been kept small by iterative position errors
estimations.

Commonly all the above Algorithms steps require a few iterations (4–6) repre-
senting smaller sub-problems and are quite suitable for real-time applications.

a = [50.0032 −49.9968 −49.9968 50.0032 50.0032 −49.9968 −49.9968
50.0032 49.9905 49.9905 −50.0095 −50.0095 49.9905 49.9905

−50.0095 −50.0095 25.0025 25.0025 25.0025 25.0025 0.0025
0.0025 0.0025 0.0025]

It isworthmentioning that the calibration of pulley axes orientation errors δõi appears
to be sensitive to the wire contact arc δi j ≈ δ̂i j errors which are not measurable.
Therefore the calibration of these angles based on both parameter sensitivity model
and internal loop closure must be performed synchronously.

6 Conclusion

This paper has presented the detailed modeling of wire-robot kinematic models
parameter sensitivity and application for calibration in general wire-robot systems
with pulley elements. The novel algorithms include exact mathematical models to
avoid complex numerical procedures and apply sequential gradient methodology to
cope with large parameters fitting and bad conditioning problems.

The developed calibration procedures appear to be especially effective for vari-
able structure CDPR systems, which cover classes of robots in which the common
robot platform represents a working object to be manipulated, itself. Such systems
are typical in novel CDPRs referred as extended-cranes wire robots under devel-
opment at IPK. An illustrative example presents the performance of the developed
calibration algorithms for large-scale cable robots with relatively higher parameter
uncertainities.

The future work will focus on implementation in the mock-up extended crane
system of which a presentation has been planned in September 2014.
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Robust Internal Force-Based Impedance
Control for Cable-Driven Parallel Robots

Christopher Reichert, Katharina Müller and Tobias Bruckmann

Abstract In this paper a robust internal force-based impedance controller for
redundantly actuated cable-driven parallel robots (CDPRs) is proposed. The con-
troller is governed by a computed-torque-control structure with a shaping of the
internal forces resulting from the chosen mass matrix. These gains are intended to
equip each manipulator with the feature of an impedance to enforce a dynamical rela-
tionship between the end-effector (EE) velocity and the internal forces. Non-linear
effects like model uncertainties take a negative influence on the controller. A distur-
bance observer based on the generalized momentum approach is incooperted into
the control scheme to impart the impedance controller the necessary robustness. To
validate the described robust impedance control scheme, experiments with a 6-DOF
CDPR with industrial BLDC-Motors are presented.

1 Introduction

It is known that cable-driven parallel robots (CDPR) have some advantages in
comparison to serial kinematic manipulators in terms of high end-effector (EE)
accelerations over a wide workspace. Since the platform is guided by lightweight
cables which are conventionally wound up by winch drives attached to the base. Due
to the unilateral properties of the cables, usually actuation redundancy is required
to completely restrain the platform. Actuation redundancy can be achieved by addi-
tional winch drives without changing the degree-of-freedom (DOF) of theunderlying
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mechanism. That means the degree-of-actuation (DOA) exceeds the DOF of the plat-
form. Hence, this redundancy is used to enforce a desired tension level in the cable
system and has a direct influence onto the stiffness of the mechanism. Moreover,
it affects the force capabilities of a redundantly actuated CDPR in terms of accel-
eration and payload. These properties must be supported by the controller to take
full advantage from the capabilities of a CDPR. In order to achieve accurate trajec-
tory tracking, model-based controllers are required like the computed torque control
(CTC) or augmented PD (APD). However, these approaches are only well suited
for non-redundant CDPRs. There is a need to develop an efficient control scheme
considering the regulation of the desired tension level in the cable system for redun-
dantly actuated CDPRs. For this reason, force control strategies have to be integrated,
taking a significant influence on the dynamical behavior of the CDPR. The authors
in [1] provide an analytical overview of the involved dynamics and clarify possible
influences which can lead to bandwidth limitations in robot force control. To over-
come these limitations, the well-known impedance control approach introduced in
[2] represents an elegant solution. In the past decade, the impedance control (IC)
of cooperating manipulators became increasingly more popular for dynamic posi-
tioning. A common approach for fast trajectory tracking is the internal-force based
impedance control approach [3] for instance.

The paper is organized as follows: First the dynamics of a CDPR are formulated
in EE coordinates shown in Sect. 2. In Sect. 3 a disturbance observer for redundantly
actuated CDPRs is described and its passive properties are shown. In the follow-
ing Sect. 4 the derivation of the impedance control law is introduced. In Sect. 5
experiments on a 6-DOF CDPR with industrial BLDC-Motors are presented and
summarized in Sect. 6.

2 Manipulator Dynamics

2.1 Formulation in EE Coordinates

A CDPR can be modeled as a multi-body system (MBS) consisting of a working
platform (end-effector) with δ-DOFs and is constrained by m flexible cables in a
parallel configuration. The EE is considered as a rigid body driven by constraint
forces and process forces from the environment. As shown in [4], the equations of
motion for CDPRs can be formulated by Lagrange’s equation of the first kind, with
n generalized (passive and active) joint coordinates q ∈ V

n describing the motion of
the mechanism and δ ∈ N EE coordinates x = [

r ψ
]T (task-space) according to the

EE position r and orientation ψ . These equations can be obtained by cutting each
kinematic chain of the mechanism at the EE and introducing redundant geometric
and kinematic closure conditions



Robust Internal Force-Based Impedance Control ... 133

Fig. 1 Tree structure of a cable-driven parallel robot after opening the kinematic chains at the EE

0 = h (q, r, ψ) , h (q, r, ψ) ∈ R
n , (1)

0 = J (q) q̇ + JX (r, ψ) ẋ, J (q) = ∂h
∂q

∈ R
n×n, JX (r, ψ) = ∂h

∂x
∈ R

n×δ, (2)

where h (q, r, ψ) defines the forward kinematics of each kinematic chain between
the cable exit point and the EE’s center of mass. Figure 1 demonstrates the cuts to
be made for the visualization of the tree structure for the given mechanism and m
fundamental loops can be constituted in the topological graph.

The m external control forces u generated by the winch drives directly controlling
the mechanism along a predefined trajectory and the equations of motion become

[
Dq̈ + Q

MXẍ + KXẋ + QX

]
=

[
u
0δ

]
+

[
JT

JT
X

]
λ , (3)

where D is the inertia matrix related to each winch drive and Q includes all remaining
potential forces, especially friction forces. The subscript X denotes elements for the
particular linear EE equations of motion. Accordingly, the generalized mass matrix
is MX and the generalized Coriolis and centrifugal matrix are summarized in KX. In
Qx all generalized EE disturbances and the gravity forces are included.

Here, the Lagrange multipliers λ characterize the constraint forces. The set
of all valid configurations of a CDPR, according to the constraints, defines the
so-called configuration space (c-space) V := {q ∈ V

n|h (q, r, ψ) = 0} of the
CDPR [4]. Based on the constraint Jacobian J which has locally full rank and its
inverse is denoted as J−1, the generalized velocities can be expressed as

[
q̇
ẋ

]
= Fẋ, F =

[−J−1JX
Iδ

]
(4)

to parametrize all admissible configurations q ∈ V
n . In the next step, the so-called

orthogonal complement F of
[
J JX

]
is defined, fulfilling

[
J JX

]
F ≡ 0. The defined

orthogonal complement is used to elimante the unknown constraint forces λ by the
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projection of the equations of motion (3) onto the c-space V . Since the vector of
external control forces u only comprises non-zero entries for the m actuated joints
with generalized coordinates, a submatrix A of the orthogonal complement F can be
identified, so that

FT
[

u
0δ

]
= ATc ,

where c ≡ (c1, . . . , cm) is a vector of generalized control forces corresponding to
the actuator coordinates. In the same way the joint accelerations can be yielded by
the time derivative of Eq. (4): q̈ = Aẍ + Ȧẋ.

With the help of the parametrization in Eq. (4) and using its time derivative, the
equations of motion in EE coordinates can be described by:

M(q) ẍ + K (q, q̇) ẋ + Q (q, q̇, t) = AT (q) c , (5)

where

M := FT [
diag {D, MX}]F ,

K := FT [
diag {0m, KX} F + diag {D, MX} Ḟ

]
,

Q := FT[QT QT
X

]T
.

In Eq. (5), the matrix AT is the so-called structure matrix which allows to classify
the DOA α = rank (A) . The degree of redundancy is defined as ρ := m − α.
Hence, the DOA determines how many generalized accelerations are affected by the
controller [4]. To fulfill the requirements of a fully constrained CDPR, guaranteeing
that the cables can be tensed within the wrench-feasible workspace, the DOA needs
to lead to ρ ≥ 1.

To investigate the passivity of the underlying mechanism, the equations of motion
(5) are transformed into the joint space

M(q) q̈a + K (q, q̇) q̇a + Q(q, q̇, t) = c , (6)

with ẋ = (
FT

)+ q̇a. F is partitioned regarding to the actuated joints qa. For that
purpose, it has to be proven that

Proposition 1 q̇T
a

(
Ṁ − 2K

)
q̇a = 0 holds.

Proof Given the skew symmetry of Ṁ − 2K [5] the following result holds:

q̇T
a

(
Ṁ − 2K

)
q̇a = q̇T

a

(
FT

)+ (
Ṁ − 2K

)
q̇aF+

+ q̇T
a Ḟ+ṀF+q̇a − q̇T

a F+ṀḞ+q̇a = 0 . (7)
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Since the last two terms are scalars, it results q̇T
a Ḟ+ṀF+q̇a = q̇T

a F+ṀḞ+q̇a which
completes the proof. This property is shown in [6].

2.2 Inverse Dynamics in EE Coordinates

The inverse dynamics problem consists in determining the required cable forces for
a given trajectory. The number of cables of a redundantly actuated CDPR exceeds
its DOF by ρ. The structure matrix is supposed to have full rank δ. In case of
redundantly actuated CDPRs (ρ > 0), AT is not square and its kernel (null-space) is
of dimension ρ. Therefore Eq. (5) cannot be solved unambiguously for the control
forces c. Hence, it is possible to generate control forces lying in the kernel of AT,
which have no effect on the motion but can be used to generate a certain tension
level. Let c0 ∈ R

m be a vector representing a desired tension level, a solution for c

such that
[
c − c0

]TW
[
c − c0

] → min is

(
AT

)+
W

(
M(q) ẍ + K (q, q̇) ẋ + Q(q, q̇, t)

)
+ NAT,Wc0 . (8)

Therewith
(
AT

)+
W := W−1A

(
ATW−1A

)−1
is a weighted pseudo inverse, where W

is a positive definite weighting matrix, with respect to the drive capabilities. The
null-space projector NAT,W generates the tension level in the cable system close to
the desired value of c0 [7]. In the field of redundantly actuated CDPRs, the desired
tension level must be chosen in a way that the unilateral properties of cables are
met. Based on this requirement, the authors in [8] delivers real-time capable force
distribution algorithms based on geometrical approaches.

3 Disturbance Observer

3.1 Motivation

Within the design of model-based control schemes for CDPRs, it is desired to
effectively compensate all generalized EE disturbances. Especially disturbances take
a negative effect on the trajectory tracking behavior of the control scheme. There-
fore, this step plays a central role in enhancing the performance of the control scheme
regarding stability, robustness and control quality. For these reasons, the compensa-
tion of disturbances in the application of CDPRs represents an important subject.
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3.2 Derivation of the Disturbance Observer

The proposed disturbance observer is inspired by the momentum-based collision
detection algorithm described in [9]. The idea behind the disturbance observer is to
consider the generalized EE disturbances as an error within the actuated winch drive
system.

Including all disturbances, the equations of motion (5) can be described by

M(q) ẍ + K (q, q̇) ẋ + Q(q, q̇, t) = AT(q) f − η(t) . (9)

Besides generalized EE disturbances, the disturbance observer is also able to recon-
struct any uncertainties in the equations of motion of the underlying mechanism.

As proposed in [9] for the design of a disturbance observer, the generalized
momentum p(t) is used:

p(t) = M(q) ẋ . (10)

The time derivative of the momentum equation is

ṗ(t) = M(q) ẍ + Ṁ(q) ẋ . (11)

Furthermore, the accelerations in Eq. (11) can be replaced by the equations of motion
(5) to get an expression for ṗ(t). In combination with the measured momentum p(t),
the following description of the disturbance observer can be yielded:

ṗ(t) = AT (q) f − ζ (q, q̇, t) + KR

(
p(t) − p̂(t)

)
, (12)

η̂(t) = KR

(
p̂(t) − p(t)

)
, (13)

with

ζ (q, q̇, t) = −Ṁ(q) ẋ + K (q, q̇) ẋ + Q(q, q̇, t) . (14)

By the positive definite gain matrix KR the observer error r(t) = p(t) − p̂(t) is
feed-back and an asymptotic convergence of the observer error can be ensured.

By using Eq. (12), the following residual vector can be given to estimate general-
ized EE disturbances η(t):

η̂(t) = KR

⎡
⎣

t∫

0

(
AT(q) f − ζ (q, q̇, t) − η̂(t)

)
dt − p(t)

⎤
⎦ . (15)
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For the implementation of Eq. (15), the measured EE velocities ẋ and forces f are
required but neither EE accelerations ẍ nor inversion of the mass matrix M(q) are
required.

The residual dynamics satisfy the following form

˙̂
η(t) = −KRη̂ + KRη , (16)

which can be identified as a linear exponentially stable system driven by the fault
η(t) [9]. Furthermore, the disturbance observer delivers decoupled generalized EE
disturbances for each direction of movement. This fact can be shown by following
transfer function

η̂i

ηi
= KRi

s + KRi

, i = 1, . . . , n (17)

having unitary gain. From this it is obvious that for

KR → ∞ ⇒ η̂ ≈ η (18)

the disturbance observer yields the generalized EE disturbances η on its output.

3.3 Passivity

One advantage of the proposed disturbance observer is that it can be seamlessly
integrated into the control scheme. This statement can be emphasized by following
passivity analysis. A CDPR is passive with the following storage function

SEE = 1

2
ẋTMẋ . (19)

Here the storage function SEE represents the kinetic energy of the CDPR expressed
in the Cartesian space. The time derivative of the storage function is given by:

ṠEE = ẋTMẍ + 1

2
ẋTṀẋ ,

= ẋT
(

ATc − Kẋ − η
)

+ 1

2
ẋTṀẋ ,

= ẋTATc + 1

2
ẋT

(
Ṁ − 2K

)
ẋ − ẋTη . (20)

In the following Eq. (20) is mapped into the joint space. By the help of
Proposition 1 and using the matrix operation ẋTAT = Aẋ the following simplifi-
cation can be written

Ṡq = cTq̇a − ηTqa . (21)
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The first term in Eq. (21) represents the generated energy of the m winch drives.
With the second term the dissipated energy due to the joint disturbances is described
which is always negative semi-definite.

The next step is to demonstrate its ability to guarantee the stability of the CDPR
under the compensation of disturbances. After this, the derivative of the storage
function Ṡq from Eq. (21) takes up following form:

Sq = q̇T
a c + q̇T

a

(
η̂ − η

)
(22)

In case the term q̇T
a

(
η̂ − η

)
is negative semi-definite, no additional energy is

introduced into the system and, moreover, a steady-state error caused by disturbances
can be prevented.

The differences in the absolute values of η̂−η are always less than or equal to zero,
due to the low-pass behavior of the disturbance observer [10]. Thus, the requirement
from Eq. (22) is met and the disturbance observer behaves dissipative at any time.

4 Internal Force-Based Impedance Control

4.1 Motivation

Consider the CDPR in Fig. 1 as a multi-manipulator system handling an object.
Therefore, a control algorithm for CDPRs must feature the characteristic of giving
each manipulator knowledge of the others to form a cooperating interaction of the
manipulators. Otherwise, without this knowledge contradicting (antagonistic) control
forces appear and cause an undesired tension level in the cable system. Summarized
following desirable properties should be provided within the design of the controller:

• Each manipulator features a compliance to eliminate contraditing control forces.
• Platform dynamics take no influence on tracking or steady state position errors.

All these properties can be considered in the design of a robust internal force-based
impedance controller. This control approach represents a class of control algorithms
where the controller directly gives each manipulator the necessarly compliance and
as proposed in [3]. This remarkable feature imparts each manipulator the necessary
robustness to cope with harsh interacting forces. Thus, impedance control becomes
an attractive strategy for controlling CDPRs.

4.2 Derivation of the Control Law

The equation of motion for each winch drive is described by

ui = Mi (q) q̈i + Qi (qi , q̇i) + fi , (23)
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where M := D + (
AT

)+ MX (A)+ represents the joint space mass matrix. The
compensation of disturbances Q ensures that the external control forces u are exactly
generated by the winch drives. To maintain the desired tension level in the cable
system the forces f have to be replaced by the inverse dynamics solution c (8).

When multiple manipulators are connected to a platform, the forces f̃ generated by
each manipulator expressed in the Cartesian space can be decomposed into motion-
inducing forces f̃M and internal forces f̃I, with [3]

f̃ = f̃M + f̃I . (24)

Each manipulator only makes a point contact with the EE and, therefore, can only
exert a force onto the EE. The net forces at the EE frame are related to the forces
applied by the manipulators by

f̃EE = [
JX1 · · · JXm

]
f̃ = JX f̃ , (25)

where JX defines the EE-to-manipulator Jacobian.
Internal forces f̃I produce no net forces on the EE, however, a tension in the cable

system and, thus, they must be chosen to lie in the range of the null-space of JX.
That means internal forces f̃I are not affected by motion-inducing forces f̃M and can
be regulated simultaneously. Using this fact, following decomposition method to
compute the internal forces for each manipulator can be used [11]:

f̃Ii =
(

Iδ − J#
XiJXi

)
f̃i , (26)

where J#
X is a generalized inverse of JX. A valid solution is J#

X = JT
X

(
JXJT

X

)-1
which

is the Moore-Penrose pseudoinverse. The decompostion method defined in Eq. (26)
results in zero interaction forces when f̃Ii = 0δ holds.

As described in [3] impedance control in the application of cooperating manipu-
lators must enforce a relationship between the EE velocity and the internal forces on
the manipulated EE comparable to the interaction forces between the manipulators.
Otherwise, if the total forces imposed by the environment on the manipulator will
be incorporated in the impedance relationship, platform dynamics will contribute to
tracking and steady-state position errors.

Each manipulator is equipped with the following impedance describing a linear
second-order function expressed in the Cartesian space

Gδẍ + Bδẋ + Cδx = δf̃Ii , (27)

where δx = xd − x = pose errors of the platform,
δf̃Ii = f̃Ii − f̃Iid = internal force errors,
G, B, C = desired mass-, damping- und stiffness matrices.

Here, index d represents a desired quantity.
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One property of the choosen impedance is that separate force and position control
loops are not required. Therefore, the impedance parameters can be chosen almost
freely in contrast to the mentioned bandwidth limitations shown in [1]. Additionally,
internal forces produce no net forces on the EE and therefore, the platform dynamics
have no influence on tracking or steady state position errors.

To met the stability constraints shown in [3] the impedance mass G should be
chosen equal to the projected mass matrix M := MX+ATDA. It should be mentioned
that the selected mass matrix affects all EE coordinates simultaneously.

Each joint acceleration is related to the EE acceleration by its structure matrix

q̈i = Aiẍi + Ȧiẋi . (28)

Solving Eq. (27) for ẍ, substituting into Eq. (28), and incorporating into each winch
drive dynamic equation (23), yields the following control law for each manipulator:

ui = Mi

{
Ai

(
ẍd + G

−1
[
Bδẋ + Cδx − δf̃Ii

])
+ Ȧiẋi

}
+ Qi + ci (29)

In general, the internal force-based impedance controller is governed by a CTC
structure with a shaping of the internal forces resulting from the chosen mass matrix.
Additionally, the compensation of generalized EE disturbances including effects as
a variable mass matrix M are handled by the proposed disturbance observer. The
compensation is executed considering the inverse dynamics solution described in
Eq. (8). Therefore, an energy optimal distribution of the generalized EE disturbance
to the m winch drives can be performed.

The computational effort of the internal force-based impedance controller is quite
low. Based on a desired trajectory xd and f̃Id as well as measuring the pose x and
solving the inverse dynamics (8) to get an expression for c, the required external
control forces u can be computed. The internal forces f̃I are computed by using
Eq. (26) from the forces f sensed at all winch drives.

5 Experimental Results

The presented robust internal force-based impedance controller was implemented on
the 6-DOF SEGESTA prototype shown in Fig. 1. The CDPR is controlled by means
of eight BLDC-Motors (Maxon RE 60) driving the winches with a nominal torque
generation of cnom = 0.85 Nm. Thus m = 8, i.e. the CDPR is redundantly actuated.
The winches are placed at the vertices of a nearly symmetric cuboid with an overall
dimension of 1.2 m x 1.4 m x 1 m (L x W x H). The mass of the EE is approximately
0.3 kg. Strain-gauge beam arrangements (Megatron KM302) are integrated into the
winch drives and used to measure the cable forces. The applied angular encoders
have a resolution of 2,000 increments per turn.
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Fig. 2 SEGESTA prototype

Table 1 Coordinates of the choosen trajectory

Path 1 2 3 4 5

xz-pose in m (0/0.5) (−0.25/0.4) (−0.25/0.65) (0.25/0.4) (0.25/0.65)

To measure the EE pose, the forward kinematics as proposed in [12] is used.
Additionally, the cable stiffness to alter the cable length is in-cooperated in the
forward kinematics. A high-gain observer as proposed in [13] is used to get all
state variables to fulfill the requirements of the impedance controller. The BLDC-
Motors have high stiction of about 0.05 Nm which makes it necessary to use an
additional friction observer as proposed in [14] to support the internal force-based
impedance controller. In addition, further unmodeled effects are included as a variable
mass matrix M and handled by the proposed disturbance observer. The disturbance
observer is parametrized with KR = 125. To compute a desired tension level in
the cable system, the so-called Puncture Method presented in [8] is used due to its
property to deliver nearly minimum cable forces. Here, the lower force limit fmin is
set to 5 N.

For the experiment, each manipulator impedance was chosen using the guidelines
introduced in [3] examining the projected mass matrix M. The stiffness matrix C was
chosen such that an impedance bandwidth of approximately 3 Hz is achieved and B
was chosen to achieve critical damping: C = 1000M and B = 63M. By lowering
the desired mass matrix G, the internal forces errors can be minimized. However, as
described in [3] there is a lower limit where the controller loses stability.

The EE was controlled along the path shown in Table 1 with a maximum acceler-
ation of 3 g and the maximum velocity was 3.25 m/s.

The evolution of the EE errors, the generalized EE disturbances, the internal force
errors expressed in the joint space and the forces of cable 1 and 8, respectively, during
the run are shown in Figs. 3 and 4.

The results show that the controller has a good accuracy and the EE errors in Fig. 3
(left) are below 100µm at the rest positions. During the run, error peaks of about
0.75 mm due to the high stiction can be observed. The results shown in Fig. 3 (right)
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EE path
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Fig. 4 Internal force errors (left), measured and desired forces (right) of cable 1 and 8 when the
CDPR is controlled along the EE path

further demonstrate the importance of the disturbance observer, due to the elimination
of steady state EE errors at the rest positions. Beyond that, the disturbance observer
delivers the decoupled generalized EE disturbances for each direction of movement
and, thereby, sets an improved tracking countering within the path segments in the
y-direction. In addition, the internal force errors shown in Fig. 4 (left) are going to
zero at steady state, due to the compensation of joint disturbances like friction forces.
This is shown in the forces in Fig. 4 (right) which can be tracked very well.

6 Summary

In this paper the equations of motion for CDPRs in terms of EE coordinates are
presented using a projection method. On this base, a disturbance observer estimating
all generalized EE forces was developed and its passivity was proven. Consider-
ing CDPRs as a multi-manipulator system, a robust internal force-based impedance
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controller considering generalized EE disturbances has been derived. One advantage
is that no explicit position and force control loops are necessary and the impedance
parameters can be freely chosen. Its implementation is discussed and the feasibility
is shown. Experimental results are reported for a 6-DOF CDPR, showing that an
accurate trajectory tracking behavior and a desired tension level in the cable system
can be guaranteed during the EE movement.
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Adaptive Control of KNTU Planar Cable-Driven
Parallel Robot with Uncertainties in Dynamic
and Kinematic Parameters

Reza Babaghasabha, Mohammad A. Khosravi and Hamid D. Taghirad

Abstract This paper addresses the design and implementation of adaptive control
on a planar cable-driven parallel robot with uncertainties in dynamic and kinematic
parameters. To develop the idea, firstly, adaptation is performed on dynamic parame-
ters and it is shown that the controller is stable despite the kinematic uncertainties.
Then, internal force term is linearly separated into a regressor matrix in addition
to a kinematic parameter vector that contains estimation error. In the next step to
improve the controller performance, adaptation is performed on both the dynamic
and kinematic parameters. It is shown that the performance of the proposed controller
is improved by correction in the internal forces. The proposed controller not only
keeps all cables in tension for the whole workspace of the robot, it is computationally
simple and it does not require measurement of the end-effector acceleration as well.
Finally, the effectiveness of the proposed control algorithm is examined through
some experiments on KNTU planar cable-driven parallel robot and it is shown that
the proposed control algorithm is able to provide suitable performance in practice.

1 Introduction

Cable-driven parallel robots have some positive features such as large workspace
[1, 2], high speed manipulation [3], high payload to robot weight ratio [4], trans-
portability and ease of assembly/disassembly. Despite all advantages listed for this
class of robots, using cables in the robot structure introduces new challenges in the
study of cable-driven parallel robots. Cables are able to apply only tensile forces, and
in order to avoid structural failures, design of control algorithms should be performed
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such that the cables remain in tension for the whole workspace of the robot. These
features make feedback control of the cable-driven parallel robots more challenging
than that of the conventional parallel robots.

Motion control topologies of the cable-driven parallel robots may be classified
into two categories, the ones that are formed in the cable length coordinates and
the others that are designed in the task space coordinates. In [3, 5] decentralized
controllers have been proposed in the cable length coordinates and their performance
has been evaluated through some experiments. In this framework the length of the
cables can be simply measured by the encoders. Therefore, the controllers can be
implemented economically in practice. However, in applications with high accuracy
and high bandwidth, using the cable lengths measurement in the control algorithms
is not reliable due to the inherent flexibility of the cables. Moreover, the main control
aim is to realize the trajectory tracking in the task space. Therefore, suitable control
accuracy can be achieved only when the task space tracking error is used as the
feedback to the controller without any kinematic transformation.

In task space control topologies, the pose of the end-effector shall be measured
directly. This measurement requires high-tech and expensive instrumentation system
such as laser ranging equipment or inertial measurement unit. For this reason, only
few researches focus on implementationof the task space controllers in practice. In [6]
laser ranging equipment has been used tomeasure the end-effector pose of the 6-DOF
cable-driven parallel robot in the task space coordinates. In [7] the PID controller is
designed and implemented in the task space coordinates. However, in order to avoid
direct pose measurement, length of the cables is measured by the encoders and the
pose of the end-effector is estimated by forward kinematic analysis. As mentioned
earlier, using cable length information is not reliable due to the inherent flexibility of
the cables. In addition, solving the forward kinematics equations of the robot in the
feedback loop reduces themeasurement accuracy and limits the controller bandwidth
due to the complexity and multiplicity of the solutions. Computer vision is another
way for direct measurement of the end-effector pose and it can be used as a suitable
and economical alternative. In [8] Vision-based pose measurement is performed on
a planar cable-driven parallel robot. But only the translational motion is measured
and the end-effector rotation is not considered.

Classic controllers such as PID [7] have simple structures and do not require
complete dynamic model of the cable-driven parallel robot. However, due to the lack
of consideration of dynamic effects in the structure of the controller, it may only
operate suitably in regulation problems, while have limited performance in tracking
objectives. On the other hand, internal forces which are used in the controller to
ensure that all cables remain in tension, shall span the null space of the Jacobian
matrix appropriately. However, uncertainties in kinematic parameters affect on the
internal forces anddegradeperformanceof the controller even in regulationproblems.

Inclusion of the dynamic behavior of the robot in design of nonlinear controllers
[9–12] can improve the performance of the controller in tracking purposes. However,
detailed information of the dynamic and kinematic models of the robot is required
to implement this controllers. Furthermore, it shall be noted that precise knowledge
on kinematics and dynamics of the robot is unavailable in practice, and this may
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significantly limit the tracking performance. To partially remedy this shortcoming,
calibration methods may be applied to identify near true parameters. However, robot
calibration process is time consuming and requires expensive and precise measure-
ment units. These all shortcomings may be remedied by using an adaptive controller
in task space coordinates in which the kinematic and dynamic parameters are simul-
taneously adapted.

As a representative of such method, in [8] robust PD controller with an adaptive
compensation term has been used. It has been shown that measuring both the cables
length and the pose of the end-effector in real-time enables the designer to linearly
separate the internal force term into a regressor matrix and a kinematic parameter
vector. In this paper the performance of the controller has been evaluated only in
regulation problem through some experiments on a translational system using the
minimum number of cables under zero-gravity condition. In addition, the dynamic
model of the robot has not been used in the controller structure and consequently,
the adaptation has not been performed on dynamic parameters. Furthermore, a large
number of kinematic parameters have been adapted and therefore, updating the kine-
matic parameters becomes difficult.

In this paper, an adaptive controller is designed in task space coordinates for
a planar cable-driven parallel robot with uncertainties in dynamic and kinematic
parameters. In the first section of controller design, adaptation is performed only on
dynamic parameters and it is shown that the controller is stable despite kinematic
uncertainties. Next, real-time measurement of the cable length through encoders
and that of the pose of the end-effector through a CCD camera is used to linearly
separate the internal force term into a regressor matrix and a kinematic parameter
vector that contains estimation error. In this paper, vision-based pose measurement
is chosen as a suitable and economical solution. Then, adaptation is performed on
both the dynamic and kinematic parameters and it is shown that the performance
of the proposed controller is significantly improved by the correction of the internal
forces. In addition, the proposed controller is able to keep all the cables in tension
for the whole workspace of the robot. Finally, to show the effectiveness of proposed
control algorithm some experiments are performed on KNTU planar cable-driven
parallel robot and it is shown that the proposed control algorithm is able to provide
suitable performance in practice.

2 Robot Dynamics and Kinematics

The dynamic model of a planar cable-driven parallel robot without considering the
flexibility of the cables can be written as [13]

M(x)ẍ + C(x,ẋ)ẋ + G(x) = f = −JT τ (1)

in which, x denotes the generalized coordinates vector for pose of the end-effector,
τ denotes the vector of cable forces and f is the vector of Cartesian wrench. M(x)

denotes mass matrix of the robot, C(x,ẋ) denotes Coriolis and centrifugal terms,
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G(x) denotes the vector of gravity terms and J denotes the Jacobian matrix of the
robot. Some important properties of the dynamic equation described by (1) are listed
as follows [13].
Property 1: The mass matrix M(x) is symmetric and uniformly positive definite for
all x.
Property 2: The matrix Ṁ(x) − 2C(x,ẋ) is skew-symmetric, and therefore the
expression ZT (Ṁ(x) − 2C(x,ẋ))Z is equal to zero, for all Z.
Property 3: The dynamic model described by (1) may be represented by a linear
regressor with respect to a set of dynamic parameters as

M(x)ẍ + C(x,ẋ)ẋ + G(x) =YD(x,ẋ, ẍ)a (2)

where YD(x,ẋ, ẍ) denotes the regressor matrix and a denotes dynamic parameters
vector. In [13] kinematic and dynamic analysis for a planar cable-driven parallel robot
have been reported in detail and it is shown that the dynamic model as described by
(1) can be written into the linear regression form. KNTU planar cable-driven parallel
robot consists of an end-effector that is connected by four cables to the base platform
as shown in Fig. 1. Using massless rigid string model for the cable, the equations of
motion for this robot may be written as follows:

M(x)ẍ + G(x) = f =−JT τ (3)

in which,

Fig. 1 a The schematics of KNTU cable-driven robot. b Kinematic configuration of mechanism
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M =
⎡
⎣

m 0 0
0 m 0
0 0 Iz

⎤
⎦ G =

⎡
⎣

0
mg
0

⎤
⎦

where m is the mass and Iz is the moment of inertia of the end-effector about its
center of mass and g is the gravity acceleration. The Jacobian matrix of the robot
can be expressed by

JT =
⎡
⎣

S1x S2x S3x S4x

S1y S2y S3y S4y

S1z S2z S3z S4z

⎤
⎦ (4)

in which,

Six = xG − 0.5xA + RB cos (φi )

li

Siy = yG − 0.5yA + RB sin (φi )

li
Siz = RB cos (φi )Siy − RB sin (φi )Six

and x = [xG, yG , φG ] denotes the generalized coordinate vector for the pose of the
end-effector, xA and yA are the length and width of the rectangle that actuators have
been attached on its vertices, li is the cables length, Bi is the attachment point of
the cables on the end-effector which lies at the radial distance of RB from center of
the end-effector, φi = φG + θBi is instantaneous orientation angle of the moving
attachment point and θBi is its absolute angular position, respectively.

3 Controller Design

3.1 Adaptation of Dynamic Parameters

In this section, an adaptive controller is proposed for the planar cable-driven parallel
robots with uncertainties in dynamic and kinematic parameters. To derive the control
and adaptation laws, consider the following Lyapunov function candidate as [14]

V (t) = 1

2
(ST MS + ãT ΓD ã) (5)

in which,

S = ˙̃x + Λx̃
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where S denotes a sliding surface,ΓD andΛ are symmetric diagonal positive definite
matrices, x̃= x−xd is the tracking error vector and ã = â − a denotes the dynamic
parameter estimation error vector. Differentiate V (t) with respect to time:

V̇ (t) = ST MṠ + 1

2
ST ṀS + ãT ΓD ˙̃a (6)

V̇ (t) = ST M( ¨̃x + Λ ˙̃x) + ST [1
2
(Ṁ−2C) + C]S + ãT ΓD ˙̃a (7)

Using skew-symmetricity of Ṁ − 2C and substitution from (1) yields

V̇ (t) = ST (−JT τ − Cẋ−G − Mẍd + MΛ ˙̃x + CS) + ãT ΓD ˙̃a (8)

Define the virtual reference trajectory as

xr = xd − Λ

∫ t

0
x̃dt (9)

Differentiate xr twice with respect to time, and substitute into Eq. (8):

V̇ (t) = ST (−JT τ − Mẍr − Cẋr − G) + ãT ΓD ˙̃a (10)

For the purpose of stability of the closed loop system, let us define the control law as

f = −ĴT τ = M̂ẍr + Ĉẋr + Ĝ − KDS (11)

whereKD denotes symmetric diagonal positive definitematrix and ĴT denotes uncer-
tain Jacobian matrix of the robot. In practice the attachment points are not precisely
implemented in practice. Therefore, it is assumed to have an uncertain Jacobian
matrix obtained from uncertain kinematic parameters. The general solution of (11)
for τ is

τ = τ + Q (12)

where τ is the minimum solution of (11) and derived by using the pseudo-inverse of
ĴT and is given by

τ = −Ĵ(ĴT Ĵ)−1 = −Ĵ†f (13)

and Q may be physically interpreted as the internal forces that spans the null space
of ĴT . Therefore,

ĴT Q = 0 (14)
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Internal forces are used to ensure that all cables remain in tension within the whole
workspace. Moreover, term can be used to increase the robot stiffness [15]. Now,
substitute the control law (11) into Eq. (10). This yields to:

V̇ (t) = ST [(JT Ĵ†)f − JT Q − Mẍr − Cẋr − G)] + ãT ΓD ˙̃a
= ST [(JT Ĵ†)f + f − f − JT Q + ĴT Q − Mẍr − Cẋr − G)] + ãT ΓD ˙̃a
= ST [M̃ẍr + C̃ẋr + G̃ − KDS + (ĴT − JT )Q − (I − JT Ĵ†)f] + ãT ΓD ˙̃a

(15)

in which

M̃ = M̂ − M, C̃ = Ĉ−C, G̃ = Ĝ−G

Since the matrices M,C and G are linear in terms of the manipulator parameters, we
may separate the dynamic model of a planar cable-driven parallel robot into a linear
regressor matrix and a vector of parameters as

M̃ẍr + C̃ẋr + G̃ = YD(x, ẋ, ẋr , ẍr )ã (16)

Substitution above equation into Eq. (15) yields to

V̇ (t) = ST [YD(x, ẋ, ẋr , ẍr )ã−KDS+(ĴT −JT )Q−(I−JT Ĵ†)f]+ ãT ΓD ˙̃a. (17)

Let us define the dynamic adaptation law as

˙̂a = −Γ −1
D YT

D(x, ẋ, ẋr , ẍr )S (18)

By using the above adaptation law the resulting expression of V̇ (t) is reduced to

V̇ (t) = ST [−KDS + (ĴT − JT )Q − (I − JT Ĵ†)f] (19)

The uncertain jacobian matrix ĴT , and the internal forces may be assumed to be
bounded by the following relations:

‖ĴT − JT ‖ ≤ δ1, ‖I − JT Ĵ†‖ ≤ δ2, ‖Q‖ ≤ δ3 (20)

Therefore, the proposed adaptive controller can certainly stabilize the closed loop
system by appropriate choice of large enough KD . However, uncertainties in the
kinematic parameters affect on the internal forces and degrade the performance of
the proposed controller.
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3.2 Adaptation of Kinematic Parameters

In the previous section, the stability of the proposed adaptive controller was proved
despite uncertainties in kinematic parameters. However, uncertainties in kinematic
parameters may change the direction of the resultant internal force and may con-
sequently degrade the performance of the controller. Furthermore, increasing the
control gains may not effective to improve the performance of the controller and
it causes greater impact of the internal forces which do not appropriately span the
null space of the Jacobian matrix. In order to overcome this shortcoming, the impor-
tant internal force term may be also separated into a linear regressor matrix and a
kinematic parameter vector expressed by

(ĴT − JT )Q = J̃T Q = YK (x, L, Q)b̃ (21)

where YK (x, L, Q) denotes the regressor matrix, and for a planar cable-driven paral-
lel robot with four actuated cable driven limbs, L = [l1, l2, l3, l4] denotes the cables
length, Q = [q1, q2, q3, q4] denotes the internal force vector and b̃ = b̂ − b denotes
the kinematic parameters estimation error vector. According to kinematic equation
of KNTU planar cable-driven parallel robot and by some manipulations, Eq. (21)
may be derived in an explicit form as

YK (x, L, Q)b̃ =
⎡
⎣

Y11 0 Y13 0 0
0 Y22 Y23 0 0
0 0 Y33 Y34 Y35

⎤
⎦

⎡
⎢⎢⎢⎢⎣

xA

yA

RB

xA RB

yA RB

⎤
⎥⎥⎥⎥⎦

(22)

in which,

Y11 = 1

2
(
q1
l1

− q2
l2

+ q3
l3

− q4
l4

), Y13 =
4∑

i=1

qi cos (φi )

li
,

Y22 = 1

2
(−q1

l1
− q2

l2
+ q3

l3
+ q4

l4
), Y23 =

4∑

i=1

qi sin (φi )

li
,

Y33 =
4∑

i=1

qi

li
(yG cos (φi ) − xG sin (φi )), Y34 = 1

2

4∑

i=1

(−1)i [qi sin (φi )

li
],

Y35 = 1

2
(−q1 cos (φ1)

l1
− q2 cos (φ2)

l2
+ q3 cos (φ3)

l3
+ q4 cos (φ4)

l4
).

Now, one can propose a new Lyapunov function candidate as following:

V (t) = 1

2
(ST MS + ãT ΓD ã + b̃T ΓK b̃) (23)
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in which, ΓK is a symmetric positive definite matrix. Differentiate V (t) with respect
to time, and according to the formulations given in previous section, substitute the
control law and the dynamic adaptation law into Eq. (23). By some manipulation
and using Eq. (21), one may obtain the following relation.

V̇ (t) = ST [−KDS + YK (x, L, Q)b̃ − (I − JT Ĵ†)f] + b̃T ΓK
˙̃b (24)

By considering the kinematic adaptation law as

˙̂b = −Γ −1
K YT

K (x, L, Q)S (25)

the resulting expression of V̇ (t) yields to

V̇ (t) = ST [−KDS − (I − JT Ĵ†)f] (26)

Expression (26) is negative semi-definite by choosing KD large enough and it shows
that the proposed adaptive controller can stabilize the system. Moreover, adaptation
of kinematic parameters with adaptation law in Eq. (25) will significantly improve
the performance of the proposed controller by adjusting the direction of the resul-
tant internal forces. If the estimation error of the kinematic parameters is zero, the
resulting expression of V̇ (t) yields to

V̇ (t) = −ST KDS ≤ 0 (27)

Therefore, the trajectories of the closed loop system will eventually converges to the
sliding surface,

S = ˙̃x + Λx̃ = 0 (28)

and therefore, the proposed adaptive controller guarantees zero steady-state tracking
error for the pose of the end-effector. But it is notable that the dynamic and kinematic
parameters can not necessarily converge to their exact values. This means that the
tracking error will remain uniformly ultimately bounded (UUB) by choosing KD

large enough.

4 Experimental Results

In order to verify the effectiveness of the proposed adaptive controller, it is applied to
KNTU planar cable-driven parallel robot. This manipulator is under investigation for
high speed and wide workspace applications in Advanced Robotics and Automated
Systems (ARAS) group of K. N. Toosi University of Technology (KNTU).
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Fig. 2 KNTU planar cable-driven parallel robot

4.1 KNTU Planar Cable-Driven Parallel Robot

KNTU planar cable-driven parallel robot consists of four actuated cable driven limbs
with three degrees of freedom planar motion which is shown in Fig. 2. Actuators
are located on the vertices of a rectangle with dimension of 2.24 × 2.1m and the
radial distance of attachment points of the cables from center of the end-effector is
considered as RB = 15cm.Moreover,mass andmoment of inertia of the end-effector
is considered as m = 5kg and Iz = 0.1kgm2, respectively. All of the dynamic and
kinematic parameters mentioned above, considered to be uncertain. In addition, a
CCD camera with resolution of 320 × 240 pixels and frame rate of 100 fps at the
distance of 1.12m from the plane of motion of the end effector is used to directly
measure the pose of the end-effector. In order to determine the pose of the end
effector, at least four coplanar non-aligned features on the object are required [16].
For this reason, a square marker is used for fast and accurate tracking and the pose
of the end-effector is measured by extracting corners using Harris corner detector
[17] in real-time. The resolution of the measurement of the position and orientation
of the end-effector are 0.1mm and 0.2◦, respectively. Furthermore, The sampling
time of the control loop is one millisecond which provides real time execution of the
proposed controller.

4.2 Control Scheme

To have a desirable performance in position and orientation tracking, it is necessary
to have ideal torque sources as the actuators. In practice, however, the actuator drivers
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Fig. 3 Block diagram of proposed adaptive controller
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Fig. 4 Actual and desired position and orientation of the end-effector in the first experiment

suffer from a number of limitations, and cannot perform as ideal torque sources. In
order to overcome this shortcoming, cascade control scheme is implemented in the
experiments. The cascade control strategy uses two control loops, called outer and
inner loops as shown in Fig. 3. In the proposed control algorithm, while adaptive
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Fig. 5 Cables tension in the first experiment

controller controls the pose of the end-effector in the outer loop, a lag controller is
designed in the inner loop to regulate the cables tension, and prevents them from
tearing. Inputs of adaptive controller are position and orientation errors and dynamic
parameter estimation vector, while its outputs are the required Cartesian wrench.
The calculated output wrench is transformed into positive actuator forces through the
internal force control block. This block uses kinematic parameter estimation vector to
find the internal forces that span appropriately the null space of the Jacobian matrix.
Next, the resulting desired positive tensions are compared to the actual tensions
measured by the load cells located near the end-effector attachment points. TLL500
from Transducer Techniques is used to measure the cable tensions in the setup. The
proposed controller is implemented using RT-LAB software [18] and the equations
of internal forces are solved by CFSQP implemented as an s-function in Simulink.

4.3 Results

In order to verify the effectiveness of the proposed adaptive controller, two disjointed
motions in translation and rotation are considered. In the first experiment, the fol-
lowing exponential trajectory is considered in x direction, while the end-effector
attempts to maintain y = 0 and φ = 0 during the motion.

xd =
{
0.2(1 − e−0.25t ) t < 30
0.2e−0.25(t−30) t ≥ 30
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Fig. 6 Actual and desired position and orientation of the end-effector in the second experiment

The results of implementation using the proposed controller in tracking desired
trajectories are given in Figs. 4, 5. Figure 4 illustrates the tracking errors in three
directions, while Fig. 5 provides the cable forces measured by the load cells located
near the end-effector attachment points. The controller gain is selected such that
the stability of the controller is guaranteed, as K D = 1200. As it is seen in
Fig. 4 the pose of the end-effector can suitably track the desired trajectories and
the errors are very small and in order of 10−3. Moreover, as it is shown in Fig. 5 all
cables remain in tension during the robot maneuvers. In the second experiment, the
following sinusoidal trajectory is considered in φ direction, and it is considered that
the end-effector has no motion in the other directions.

φd =
{

π
9 sin ( π

20 t) t < 40
0 t ≥ 40

The tracking errors in three directions is shown in Fig. 6, while Fig. 7 provides the
cables tension. As it is seen in Fig. 6 the proposed controller provide the suitable per-
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Fig. 7 Cables tension in the second experiment

formance in tracking and the errors are very small and in order of 10−3. Furthermore,
Fig. 7 shows that all cables remain in tension during the robot movements.

Small errors in tracking the desired trajectories are observed in this experiment.
These errors may arise from the elasticity of the cables that are neglected in this
analysis. The cable elasticity may lead to positioning errors, especially at high speed
maneuvers. Future research is currently proceed to reduce these errors by considering
elasticity of the cables in modeling and control of the robot.

5 Conclusion

In this paper, an adaptive controller is designed and implemented on a planar cable-
driven parallel robot. Since some of the kinematic and dynamic parameters of the
robot are uncertain, adaptation is performed on both the kinematic and dynamic
parameters. It is shown that adaptation of the kinematic parameters improves the
performance of the proposed controller by adjusting the direction of the resultant
internal force. In addition, the controller keeps all cables in tension for the whole
workspace of the robot. In order to show the effectiveness of the proposed controller,
several experiments on a three degrees of freedom planar cable-driven parallel robot
are performed with different desired trajectories and suitable tracking performances
of some of the experiments are reported.
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Dynamic Analysis and Control
of Fully-Constrained Cable Robots
with Elastic Cables: Variable Stiffness
Formulation

Mohammad A. Khosravi and Hamid D. Taghirad

Abstract In this paper dynamic analysis and control of fully-constrained parallel
cable robots are studied in detail. In dynamic analysis, it is assumed that the dom-
inant dynamics of cable can be approximated by linear axial spring. Furthermore,
variable stiffness formulation for the cables is employed in modeling process. To
overcome vibrations caused by inevitable elasticity of cables, a composite control
law is proposed based on singular perturbation theory. Using the proposed control
algorithm the dynamics of the cable robot is divided into two subsystems namely
slow and fast. Then, based on the results of singular perturbation theory, stability
analysis of the total system is performed. Finally, the effectiveness of the proposed
composite control law is investigated through several simulations on a planar parallel
cable robot.

1 Introduction

Although the robots are extensively used in industries, their application in long-
reach robotics such as inspection and repair in shipyards, is limited and still is in
infancy. Cable robots are a special class of parallel robots in which the rigid links
are replaced by cables. Cable robots possess some useful properties such as large
workspace capability, transportability and ease of assembly/disassembly, reconfig-
urability and economical structure and maintenance [1]. Consequently, cable robots
are exeptionally suitable for many applications such as, handling of heavy mate-
rials [2], high speed manipulation [3, 4], cleanup of disaster areas [5], very large
workspace applications [6, 7], and interaction with hazardeous environment [8].

However, replacing the rigid links by cables, introduces many new challenges in
the study of cable robots compared to that of conventional robots, amongst them
control is the most critical one. Unlike the rigid links, cables can only apply tensile
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forces and not compressive forces. Due to this physical limitation, well-known con-
trol theories can not be used directly for the cable robots and theymust bemodified so
that thay can provide positive tension for the cables. Dynamic behavior of the cables
is another major challenge in mechanical design and control of this class of robots.
Cables are usually elastic elements and may encounter some unavoidable situations
such as elongation and vibration. In applications which require high bandwidth or
high stiffness of the system, vibration may be a serious concern [9]. In terms of
control, proposed control algorithms for this class of robot shall be designed to damp
such vibrations.

Control of cable robots has received limited attention compared to that of conven-
tional robots. With assumption of massless rigid string model for the cable, several
efforts have been devoted to finding an efficient control strategy with positive cable
tensions. Lyapunov based control [4], PID control [10], computed torque method
[11], sliding mode [12] and adaptive PD control [13] are some control schemes
being used in the control of cable robots. Kawamura et al. have proposed a PD con-
troller accompaniedwith gravity compensation and internal forces in the cable-length
coordinates [4]. They have analyzed the stability of motion based on Lyapunov the-
orem and vector closure conditions. Alp and Agrawal used PD control with gravity
compensation in task space coordinates and analyzed asymptotic stability of the sys-
tem [14]. Inverse Dynamics Control (IDC) or computed torque technique is another
control scheme which is used in [11]. Fang et al. used nonlinear feed forward control
laws in the cable length coordinates [15]. They proposed optimal tension distribution
algorithm to compensate dynamic errors.

In these studies cables are treated as ideal massless rigid strings and cables elastic-
ity is not considered. However, in practice especially in high-speed applications, this
assumption may affect overal performance of the robot. In these cases, it is impor-
tant to model both the static and dynamic effects of flexible cables. But, modeling
the dynamic effects of elastic cables is an extremely comprehensive task. It is also
important to note that the obtained models must not only be sufficiently accurate,
they have to be suitable for controller synthesis, as well. Therefore, in practice it
is recommended to include only dominant dynamic effects in the dynamic analy-
sis. Ottaviano and Castelli have analyzed the effects of cables’ mass and elasticity
and their effects on pose capability of the cable robots [16]. They have shown that
cables masses can be neglected if the ratio of the end-effector to cables masses is
large or generally, the ratio of the end-effector wrenches to the cables tensions is
small. Using natural frequencies of the system, Diao and Ma in [9] have shown that
in fully–constrained cable robots transversal vibrations of cables have very limited
effects on the total vibration of the end-effector and can be ignored compared to that
of axial flexibility. Therefore, dominant dynamic characteristics of the cable can be
modeled by an axial spring in dynamic modeling of fully-constrained cable robots.
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According to these results, in this paper linear axial spring is used to model dominant
dynamics of cable and by this means a more precise model of fully-constrained cable
robots is derived for the controller design and stability analysis of such robots.

Cables elasticity may affect the precision of the cable robot, requiring appropriate
control strategies. Efficient control design for the cable robots is very complicated
when cable dynamic characteristics is considered and research on this topic is in
infancy. Meunier et al. used multi loop control scheme for a large cable mechanism,
inwhich the inner loop dealswith cablemodel. This loop uses H∞ controller and gain
scheduling technique for adaptation of H∞ with cable lengths, and in the outer loop
an inverse dynamics control in addition to a PID controller is used [17]. However,
in this research stability analysis of the closed–loop system has not been performed.
Using elastic massless model for cable in [1], a new model for the cable robots is
derived and a new control algorithm is proposed. This control algorithm is formed
in cable length space and uses internal force concept. Stability of the closed-loop
system is analyzed through Lyapunov theory and vector closure conditions. Using
singular perturbation theory a new control algorithm has been developed in [18]. In
this research cables are modeled by linear axial spring but with constant stiffness
and stability analysis is performed based on the singular perturbation theory [19].

The structure of this paper is as follows. First, dynamics of cable robot with ideal
rigid cables is elaborated and a new control algorithm is proposed for it. In the follow-
ing sections, dynamics of cable robots with elastic cables is derived using variable
stiffness formaulation for the cables. A composite control structure is proposed for
this model, which consists of a rigid control term according to corresponding slow or
rigid model of the system and a corrective term for vibrational damping. Then, using
singular perturbation theory and Tikhonov’s theorem total stability of the system is
analyzed and sufficient conditions for the asymptotic stability of the closed-loop sys-
tem are derived. Finally, to demonstrate the effectiveness of the proposed controller,
simulation results on a planar cable robot are examined in details.

2 Control of Rigid Cable Driven Parallel Robots

In this section we assume that the elasticity of cables can be ignored and cables
behave as massless rigid strings. Based on this assumption the standard model for
the dynamics of n-cable parallel robot with actuators is [1, 10]

Meq(x)ẍ + Ceq(x, ẋ)ẋ + Geq(x) = JT u (1)

In which,

⎧
⎪⎨
⎪⎩

Meq(x) = rM(x) + r−1JT ImJ
Ceq(x, ẋ) = rC(x, ẋ) + r−1JT Im J̇
Geq(x) = rG(x)

(2)
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where x ∈ R6 is the vector of generalized coordinates, M(x) is the inertia matrix, Im

is diagonal matrix of actuator inertias reflected to the cable side of the gears, C(x, ẋ)

represents the Coriolis and centrifugal terms, G(x) is the gravitational terms, r is
radius of cable drums and u represents the input torque. J represents the Jacobian
matrix of the system and relates ẋ to derivative of the cable length vector L̇ = Jẋ.
Although these equations are nonlinear and complex, they have some properties
which are beneficial in the controller design [1].

Property 1 Inertia matrix Meq(x) is symmetric and positive definite.
Property 2 Matrix Ṁeq(x) − 2Ceq(x, ẋ) is skew symmetric.

2.1 Control Algorithm

Given a two times continuously differentiable reference trajectory xd for (1), consider
the following control law for JT u

JT u = Meq(x)ẍd + Ceq(x, ẋ)ẋd + Geq(x) + Kp(xd − x) + Kv(ẋd − ẋ) (3)

where Meq , Ceq and Geq are defined as (2) and Kp, Kv are diagonal matrices of
positive gains for the PD control part of the proposed control scheme. Since in the
fully-constrained cable robots the Jacobian matrix of the manipulator is non-square
and the system is redundantly actuated, (3) is an underdetermined systemof equations
and has many solutions if JT J is invertible. In this case, the general solution of (3)
is,

u = u + Q (4)

Here, u is the minimum solution of (3) derived by using the pseudo-inverse of JT

and is given by

u = J(JT J)−1(Meq (x)ẍd + Ceq (x, ẋ)ẋd + Geq (x) + Kp(xd − x) + Kv(ẋd − ẋ)) (5)

and, Q spans the null space of JT and must satisfy

JT Q = 0 (6)

Q can be physically interpreted as internal forces. It means that this term does
not contribute into motion of the end-effector and only provides positive tension
in the cables. With this notation, the proposed control scheme can be implemented
according to Fig. (1). In this paper we assume that the system always satisfies the
vector closure conditions [4] and at all times, positive internal forces can be produced
such that the cables are in tension.
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Fig. 1 Internal force control structure

2.2 Stability Analysis

Substituting (4) in (1) and using (6), we can write the closed loop system as

Meq(x)ë + Ceq(x, ẋ)ė + Kpe + Kvė = 0 (7)

where

e = xd − x

Consider the following Lyapunov function for the closed loop system (7)

VR = 1

2
ėT Meq(x)ė + 1

2
eT Kpe (8)

VR is positive for all e �= 0 because based on property 1, Meq is positive definite.
The time derivative of Lyapunov function V is given by [18]

V̇R = −ėT Kvė ≤ 0 (9)

As it has been fully elaborated in [18] this controller can suitably stabilize the rigid
system asymptotically.

3 Robot with Elastic Cables

As mentioned earlier, in practice the overal performance of the cable robot may be
affected byvibrations caused by inevitable elasticity of the cables [4, 9]. Thus, elastic-
ity of cables must be considered in the modeling process and control schemes should
be designed so that they stabilize the system and damp the vibrations efficiently. New
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research results show that in fully-constrained cable robots, dominant dynamics of
cables are longitudinal vibration [9]. Therefore, axial spring model may suitably
used to describe the effects of dominant dynamics of cable.

In order to model a general cable driven robot with n elastic cables assume
that: L1i : i = 1, 2, ..., n denotes the length of i-th cable with tension which can
be measured by pot-string. L2i : i = 1, 2, ..., n denotes the cable length of the
i-th actuator which may be measured by shaft encoder. If the system is rigid, then
L1i = L2i ,∀i . Let us denote:

L = (L11, L12, · · · , L1n, L21, L22, · · · , L2n) = (LT
1 , LT

2 ) (10)

In a cable driven robot, the stiffness of cables is a function of cable lengths which
are changing during the motion of the robot. Using linear axial spring model with
Young’s modulus E and cross-sectional area A for the cables, the instantaneous
potential energy of i-th cable is

pi = E A(L1i − L2i )
2

2L2i

With this notation the total potential energy of the system can be expressed by: P =
P0 + P1, in which, P0 denotes the potential energy of the rigid robot and P1 denotes
the potential energy of the cables and can be formulated by:

P1 = 1

2
(L1 − L2)

T K(L2)(L1 − L2) (11)

where, K is the stiffness matrix of the cables during the motion which is a function
of L2. Assume that all cables have the same Young’s modulus E and cross-sectional
area A,1 then

K(L2) = E A · diag−1(L2) (12)

Furthermore, kinetic energy of the system is

T = 1

2
ẋT M(x)ẋ + 1

2
q̇T Im q̇ (13)

In which, x denotes the generalized coordinates in Cartesian space, q is the motor
shaft position vector, M(x) is the mass matrix and Im is the actuator moments of
inertia. Using Euler-Lagrange formulation and some manipulations, final equations
of motion can be written in the following form:

1 This assumption does not reduce the generality of problem, since for the general case it can be
easily reached by variable scaling.
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M(x)ẍ + N(x, ẋ) = E AJT diag−1(L2) · (L2 − L1) (14)

Im q̈ + r E A · diag−1(L2) · (L2 − L1) + H(L2, L1) = u (15)

in which,

N(x, ẋ) = C(x, ẋ)ẋ + G(x) , L2 − L0 = rq

H(L2, L1) = − r

2
E A · diag−2(L2) · diag(L2 − L1) · (L2 − L1)

In these equations L0 is the vector of cables length at x = 0 and J is the Jacobian
matrix of the system and relates ẋ to derivative of the cable length vector L̇1 = Jẋ,
and other parameters are defined as before. For notational simplicity we assumed
that all Young’s modulus E and cross-sectional A of cables are the same and E A is
large with respect to other system parameters. To idealize the assumption of large
cable stiffness and small cable damping, we assume that E A is of order O(1/ε2)
(ε is a small scalar parameter), and furthermore, the damping terms in the cables are
neglected.

Equations (14) and (15) represent cable robot as a nonlinear and coupled system.
This representation includes both rigid and flexible subsystems and their interactions.
The model of cable robot with elastic cables will be reduced to (1) as E A tends to
infinity. Furthermore, the new formulation preserves the properties of rigidmodel (1),
such as positive definiteness of inertia matrix and skew symmetry property.

3.1 Control

In this section we show that the control law (3) which is proposed under assumption
of perfect rigidity, can be extended for cable robot with elastic cables. First, consider
a composite control law by adding a damping term to the control law (3) in the form
of

u = ur + Kd(L̇1 − L̇2) (16)

in which, ur is given by (3) in terms of x. Furthermore, Kd is a constant positive
diagonal matrix whose diagonal elements are designed to remain in order of O(1/ε).
Note that

L2 = rq + L0 =⇒ L̇2 = r q̇ , L̈2 = r q̈ (17)

Apply control law (16) in (15) and define variable z as

z = E A(L2 − L1) (18)

The closed loop dynamic equation reduces to
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r−1Im z̈ + Kd ż + rdiag−1(L2) ·
[

E AI − 1

2
diag−1(L2) diag(z)

]
z (19)

= E A(ur − r−1ImL̈1)

By the assumption on E A and the choice for Kd we may write

E A = K1

ε2
; Kd = K2

ε
(20)

where, K1 , K2 are O(1). Therefore, (19) can be written as

ε2r−1Im z̈ + εK2ż + rdiag−1(L2) ·
[

K1I − ε2

2
diag−1(L2)diag(z)

]
z (21)

= K1(ur − r−1ImL̈1)

Now Eqs. (14) and (21) can be rewritten together:

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT diag−1(L2)z (22)

ε2r−1Im z̈ + εK2ż + rdiag−1(L2).

[
K1I − ε2

2
diag−1(L2)diag(z)

]
z (23)

= K1(ur − r−1ImL̈1)

System (22) and (23) is written in a singularly perturbed form. The variables z and
ż have the interpretation of ‘fast’ variables while the end-effector position variables
x and ẋ (or L1 , L̇1) are representing ‘slow’ variables. Using the results of singular
perturbation theory, elastic system (22) and (23) can be approximated by two sub-
systems, namely the quasi-steady state or slow subsystem and boundary layer or fast
subsystem. With ε = 0, Eq. (23) yields

z̄ = r−1diag(L̄1)(ūr − r−1Im
¨̄L1) , L̄1 = L̄2 (24)

in which, the overbar variables represent the variables when ε = 0. Substitute (24)
into (22).

M(x̄) ¨̄x + C(x̄, ˙̄x) ˙̄x + G(x̄) = r−1JT (ūr − r−1Im
¨̄L1)

Substitute ¨̄L1 = J ¨̄x + J̇ ˙̄x in above equation:

(rM(x̄) + r−1JT ImJ) ¨̄x + (rC(x̄, ˙̄x) ˙̄x + r−1JT Im J̇ ˙̄x) + rG(x̄) = JT ūr

or
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Meq(x̄) ¨̄x + Ceq(x̄, ˙̄x) ˙̄x + Geq(x̄) = JT ūr (25)

Equation (25) is called the quasi-steady state or slow subsystem. Note that (25) is the
rigid model (1) in terms of x̄. Using Tikhonov’s theorem [19], for t > 0 the elastic
force z(t) and the end-effector position x(t) satisfy

z(t) = z̄(t) + ηηη(τ) + O(ε) (26)

x(t) = x̄(t) + O(ε) (27)

where, τ = t/ε is the fast time scale and ηηη is the fast state variable and satisfies
boundary layer equation

r−1Im
d2ηηη

dτ 2
+ K2

dηηη

dτ
+ r K1diag

−1(L1)ηηη = 0 (28)

Considering these results, elastic system (22) and (23) can be approximated up to
O(ε) as

M(x)ẍ + C(x, ẋ)ẋ + G(x) = JT diag−1(L1)(z̄ + ηηη(τ))

r−1Im
d2ηηη

dτ 2
+ K2

dηηη

dτ
+ r K1diag

−1(L1)ηηη = 0

According to (24)

Meq(x)ẍ + Ceq(x, ẋ)ẋ + Geq(x) = JT (ur + rdiag−1(L1)ηηη(τ)) (29)

r−1Im
d2ηηη

dτ 2
+ K2

dηηη
dτ

+ r K1diag−1(L1)ηηη = 0 (30)

Since the gain K2 can be chosen suitably such that the boundary layer (28) becomes
asymptotically stable, it follows that, with sufficiently small values of ε, the response
of the elastic system (14) and (15) with the composite control (16), will be nearly the
same as the response of rigid system (1) with the rigid control ur alone, after some
initially damped transient of fast variables ηηη(t/ε).

3.2 Stability Analysis

Control of rigid model and its stability analysis were discussed in previous section.
It was demonstrated that the boundary layer or fast subsystem (28) is asymptotically
stable, due to damping term. Separate stability of boundary layer and quasi-steady
state subsystems does not generally guarantee that the total system is stable [19]. In
this section the stability of the total system is analyzed, based on stability analysis
of the subsystems.
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Consider dynamic equations of elastic system (29) and (30), and control law (4)
from previous section. Then

Meq(x)ë + (Ceq(x, ẋ) + Kv)ė + Kpe = −rJT diag−1(L1)ηηη(t/ε) (31)

r−1Im
d2ηηη

dt2
+ Kd

dηηη
dt + r E Adiag−1(L1)ηηη = 0 (32)

Let us denote y = [
eT , ėT

]T
and h = [

ηηηT , η̇ηηT
]T
, in which e = xd − x, then one

may write

ẏ = Ay + B [I 0]h (33)

ḣ = Ãh (34)

where

A =
[

0 I
−M−1

eq Kp −M−1
eq (Kv + Ceq)

]

B =
[

0
−rM−1

eq JT diag−1(L1)

]

Ã =
[

0 I
−r2E AI−1

m diag−1(L1) −rI−1
m Kd

]

Lemma 1 There is a positive definite matrix Kd such that the closed-loop system
described with (34) is asymptotically stable.

Proof Consider the following Lyapunov function

VF = hT Wh , W = 1

2

[
r2Kd rIm

rIm Im

]
(35)

In order to have positive definiteW, according to the Shur complement, it is sufficient
that Kd > Im . Differentiate VF along trajectories of (34)

V̇F = −hT Sh (36)

in which,

S =
[

r3E A diag−1(L1) 0.5r2E A diag−1(L1)

0.5r2E A diag−1(L1) r(Kd − Im)

]

According to Shur complement, S is positive definite, if and only if,

Kd > Im

Kd − (Im + .25E A diag−1(L1)) > 0 (37)
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in which, Kd and Im are diagonal positive definite matrices. Regarding to workspace
constraints

0 < γ ≤ L1i ≤ β (i = 1, 2, · · · , n) (38)

where γ and β are positive constants. Thus, if

Kdi > Imi + .25E Aγ −1 (i = 1, 2, · · · , n) (39)

then, V̇F becomes negative definite and closed-loop system described by (34) is
asymptotically stable.

Theorem 1 There exist positive definite controller gains Kv, and Kd , to stabilize
the closed-loop system (33) and (34) asymptotically.

Proof Consider the following composite Lyapunov function

V (y, h) = VR + VF (40)

where, VR is the Lyapunov function for the rigid subsystem, and VF is the Lyapunov
function for the fast subsystem (28). Differentiate V (y, h) along trajectories of (33)
and (34):

V̇ (y, h) = V̇R + V̇F = −ėT Kvė − r ėT JT diag−1(L1)ηηη − hT Sh (41)

According to Rayleigh-Ritz inequality,

− hT Sh ≤ −λmin(S)‖h‖2 (42)

Furthermore,

− ėT Kvė ≤ −λmin(Kv)‖ė‖2
−r ėT JT diag−1(L1)ηηη ≤ r |ėT JT diag−1(L1)ηηη| ≤ rγ −1σmax (JT )‖ė‖‖h‖ (43)

in which, λmin and σmax denote the smallest eigenvalue and the largest singular value
of the corresponding matrices, respectively. Using above inequalities, one may write

V̇ (y, h) ≤ −λmin(Kv)‖ė‖2 + rγ −1σmax (JT )‖ė‖‖h‖ − λmin(S)‖h‖2

Or

V̇ (y, h) ≤ [ ‖ė‖ ‖h‖ ] ·
[ −λmin(Kv) 0.5rγ −1σmax (JT )

0.5rγ −1σmax (JT ) −λmin(S)

] [ ‖ė‖
‖h‖

]
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in order to guarantee V̇ (y, h) ≤ 0, it is necessary to have

λmin(Kv)λmin(S) > 0.25r2γ −2σ 2
max (J

T ) (44)

Condition (44) may be simply satisfied by choosing appropriate values for Kv in
(3) and Kd for the fast subsystem. Negative semi-definiteness of V̇ (y, h) implies
that y and h are bounded. This indicates that V̈ (y, h) is bounded. Hence, V̇ (y, h) is
uniformly continuous. Using Barbalat’s lemma one may conclude that ė → 0 and
h → 0 as t → ∞. Now, according to uniform continuity of ë, it can be concluded
that ë → 0 as t → ∞. As a result the total closed-loop system (33) and (34) becomes
asymptotically stable.

4 Case Study

To show the effectiveness of the proposed control algorithm a simulation study has
been performed. In the following simulation study, the results of the closed–loop
performance of a planar cable driven manipulator are investigated. Our model of a
planar cable robot consists of an end-effector that is connected by four cables to the
base platform shown in Fig. (2a). As it is shown in Fig. (2), Ai denote the fixed base
points of the cables, Bi denote points of connection of the cables on the end-effector,
Li denote the cable lengths, and αi denote the cable angles. The position of the center
of mass of the end-effector P, is denoted by P = [x p, yp], and the orientation of the
manipulator end-effector is denoted by φ with respect to the fixed coordinate frame.
Hence, themanipulator possesses three degrees of freedom x = [x p, yp, φ], with one
degree of actuator redundancy. Furthermore, the Jacobian matrix of the manipulator,

Bi

Ai

A3A4

A1

α1

L i

B2

B3 B4

B1

y

x

A2

ˆ
iS

iE
P

(a) (b)

Fig. 2 a The schematics of planar cable mechanism. b Vector definitions for Jacobian derivation
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Table 1 Inertial parameter of
the planar cable robot

Parameter Symbol Nominal value

End-effector mass m 2.5Kg

End-effector inertia Iz 0.03Kg.m2

Actuator inertia Imi 0.6Kg.m2

Gear ratio N 50

Gravity acceleration g 9.8m/s2

Drum radius r 3.5cm

Fig. 3 The closed-loop system experiences instability, if only rigid controller ur is applied
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Fig. 4 Suitable tracking performance of the closed-loop system to smooth reference trajectories;
Proposed control algorithm

which relates the length variable velocities L̇1 to the end-effector velocities ẋ , is
given by

L̇1 = Jẋ (45)

Note that the Jacobian matrix J is a non-square 4 × 3 matrix, since the manipulator
is redundantly actuated.

The equations of motion for the end-effector can be written in the following form

Mẍ + G = F

in which, x = [x p, yp, φ], and by considering flexibility in the cables, according to
(14) and (15)
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Fig. 5 Simulation results showing the cables tension for smooth reference trajectories

F = JT E A · diag−1(L2)(L2 − L1) , L2 = rq + L0

Im q̈ + r E A · diag−1(L2)(L2 − L1) − r

2
E A · diag−2(L2)diag(L2 − L1)(L2 − L1) = u

and,

M =
⎡
⎣

m 0 0
0 m 0
0 0 Iz

⎤
⎦ and G =

⎡
⎣

0
mg
0

⎤
⎦

All mechanical parameters of the cable robot are given in Table (1). In order to
demonstrate a highflexible system E A is intentionally chosen very low (EA=1,000).
To show the effectiveness of the proposed composite control algorithm suppose that
the system is at the origin and has to track the following smooth reference trajectories
in x , y, and φ coordinates,

xd = 0.4 + 2e−t − 2.4e−t/1.2

yd = 0.4 + 2e−t − 2.4e−t/1.2

φd = 0.1π sin(0.1π t)
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in which, the task space variables x p, yp and φ reach a final value of 0.4, 0.4 and
0.1π from the zero states, respectively. The controller is based on (16) and consists
of rigid control ur given by (3) and the corrective term. Controller gain matrices are
chosen as Kp = 200 I3×3, Kv = 25 I3×3, and Kd = 250 I4×4 to satisfy the stability
conditions. In the first step, rigid control ur alone is applied to the manipulator. As is
illustrated in Fig. (3), the manipulator experiences instability if only the rigid control
ur is applied to the system. The main reason for instability is the divergence of its
fast variables. Figure (4) illustrates dynamic behavior of the closed-loop system with
the proposed control algorithm. Internal force Q is used whenever at least one cable
becomes slack (or L1i < L2i , i = 1, . . . , 4) to ensure that the cables remain in
tension. Although, the system is very flexible the proposed control algorithm can
suitably stabilize the system. As it is seen in this figure, position and orientation
outputs track the desired values very well and the steady state errors are very small,
while as it is shown in Fig. (5), all cables are in tension for the whole maneuver. The
simulation results clearly show the effectiveness of the proposed control algorithm
to stabilize the system, while achieving positive tension in the cables.

5 Conclusions

In this paper modeling and control of parallel cable robots with elastic cables are
examined in detail. In the modeling process of this class of manipulators cables are
modeled by linear axial springs, and themodel of fully constrained cable driven robot
is derived using Euler-Lagrange approach. Since in this type of robots cables must
remain in tension in the whole workspace, the notion of internal force is introduced
and it is used in the proposed control algorithm. The proposed composite control
algorithm consists of three components. Rigid control according to the rigid model
of the system, the internal force to ensures that all cables are in tension, and a damping
term in cable length space to stabilize fast subsystem. Then, the model of the system
is formulated in the standard form of singular perturbation theory and fast and slow
variables are separated and incorporated in the stability analysis. The stability of the
closed-loop system is analyzed through Lyapunov second method, and it is shown
that the proposed composite controller is capable to stabilize the system in presence
of flexible cables. Finally, the performance of the proposed composite controller is
examined by simulation results performed on a planar cable robot.
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Adaptive Terminal Sliding Mode Control
of a Redundantly-Actuated Cable-Driven
Parallel Manipulator: CoGiRo

Gamal El-Ghazaly, Marc Gouttefarde and Vincent Creuze

Abstract This paper presents an extended adaptive control scheme via terminal
sliding mode (TSM) for cable-driven parallel manipulators (CDPM). Compared
with linear hyperplane-based sliding mode control, TSM is able to guarantee high-
precision and robust tracking performances which arise from its main feature of
finite-time convergence. This motivates applying TSM to robotic manipulators in
general and, as presented in this paper, to CDPM in particular. The scheme pre-
sented in this paper extends early developed TSM control schemes which are based
on partial knowledge of system dynamics. Instead, making use of the property that
the dynamic models of mechanical manipulators are linear in inertial parameters,
an adaptive control law is synthesised based on an appropriate choice of Lyapunov
function which guarantees finite-time convergence to neighborhood of sliding mode.
A key challenge of the control of CDPM is that cable tensions must be admissible,
i.e. lying in a non-negative range of admissible values. As long as cable tensions
are admissible, the overall dynamics of CDPM can be easily written in either actu-
ator space or operational space which in turn facilitates control system design. The
extended adaptive control scheme has been applied to a large redundantly actuated
CDPR prototype, CoGiRo. Simulation results show the effectiveness of the proposed
control method.

1 Introduction

A cable-driven parallel manipulator (CDPM) is a particular type of robot in which
the motion of the platform (end-effector) is provided by varying the lengths of the
cables. Compared with classical parallel manipulators which are characterised by
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their limited workspace, CDPMs can have a very large workspace and are capable of
manipulating heavy loads at high operating speed [1] which are useful characteristics
formany potential industrial applications. For crane-like applications [2] such as pick
and place tasks [3], suspendedCDPMare usually used as they reduce the risk of cable
collisions in the workspace area. Cable-suspended CDPM are not fully-constrained
and cannot have wrench closure over the entire workspace. However, a suspended
CDPM uses the mobile platform and payload weights to keep the cables in tension.
Furthermore, using more cables than DOFs in cable-suspended CDPM can allow the
robot to have a significantlywiderworkspace [3–5]. In this paper, a 6-DOF suspended
CDPM prototype with two degrees of actuation redundancy is used to evaluate the
performance of the proposed TSM control scheme.

Many challenges arise in CDPMs among which control design is a difficult one.
These challenges stem from the fact that cables can only apply tension forces impos-
ing a strict constraint on control inputs. For redundantly actuated CDPM, an infinite
number of cable tension distributions exist for a given external wrench applied to
the platform. The corresponding redundancy resolution has attracted the attention of
many researchers. The proposed algorithms to resolve redundancy can be categorised
into two main classes namely, iterative algorithms and non-iterative algorithms. Iter-
ative algorithms are usually based on optimization and are not always suitable for
real time implementations [6–8]. On the other hand, non-iterative algorithms give
a solution in a reasonable amount of time and can be more easily implemented in
real-time [5, 9, 10].

Compared to the great deal of attention that has been paid to motion control of
rigid-link manipulators, only relatively few results on the control of CDPM exist in
the literature. Gholami et al. [11] proposed an operational-space PD controller for
trajectory tracking. Kawamura et al. proposed a PD controller with gravity compen-
sation in [1]. The PD controller is designed in the actuator-space with Lyapunov
stability. A robust Lyapunov-based design of PID tracking controller has been intro-
duced for a fully-constrained planar CDPM in [12]. A PD controller with adaptive
compensation has been applied to fully-constrainedCDPMin [13]. Computed-torque
control methods appeared in [14]. Tomake use of the advantages of both the actuator-
space and operational-space formulations, a dual space adaptive controller has been
proposed in [15].

Sliding mode control (SMC) has been found effective to deal with dynamic sys-
temswith uncertainties, time-varying parameters, and bounded external disturbances
[16]. The main idea of SMC is to force the states of the system to stay in a chosen
switchingmanifold satisfying a desired dynamic behavior. The choice of linear hyper-
planes as switching manifolds guarantee asymptotic stability, i.e., the closed-loop
error converges to the neighborhood of the origin as the time approaches infinity.
Although classical SMC gave reasonable performance for robotic manipulators,only
few results for CDPMs exist in the literature [17]. The performance of classical SMC
could be enhanced if the closed-loop errors are forced to reach the origin in finite
time. SMCwithfinite-time stabilization are called terminal slidingmode (TSM). Sev-
eral ideas of designing TSM based control schemes have been developed to achieve
finite-time stabilization in [18–21]. The control schemes based on those ideas are
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able to guarantee high-precision and robust tracking performances due to finite-time
convergence even with high uncertainty. This property justifies adopting TSM based
control schemes for robotic manipulators and motivates us to use it for CDPMs.
TSM control schemes developed for rigid-link manipulators may not exploit their
properties very well. Even adaptive TSM control schemes developed for rigid-link
manipulators do not rely on the linearity of inertial parameters [22]. In [18], a robust
TSM control has been developed for robotics manipulators. However, the main prob-
lem of this scheme is that controller singularity may be reached in sliding mode. A
non-singular TSM has been proposed for robotic manipulators in [19] where a new
terminal sliding manifold has been proposed to avoid controller singularity. How-
ever, this control scheme did not eliminate chattering in control inputs. A continuous
and non-singular TSM control scheme has been proposed also for robotic manipula-
tors in [20] to avoid both chattering and singularity. However, the proposed schemes
in [18–20] did not consider the aforementioned property of the dynamic model of
robotic manipulators and therefore cannot be directly applied to control CDPM for
which high uncertainty may appear specially when manipulating payloads of vary-
ing sizes and weights. Instead, adaptive TSM control scheme has been proposed also
for robotic manipulators in [23] where the Coriolis, centrifugal and gravity terms
are approximated by polynomials of first order. The role of the adaptive mechanism
is to estimate the coefficients of these polynomials which approximate the manip-
ulator dynamics. However, [23] did not estimate the true inertial parameters of the
manipulator which may give relatively large control inputs specially when loads are
introduced.

This paper extends an early developed non-singular continuous TSM control
scheme for roboticmanipulators proposed in [20] by incorporating an adaptivemech-
anism to estimate dynamic parameters and by applying it to CDPM. The scheme in
[20] is based on the assumption that the nominal values of inertial matrix components
as well as of Coriolis, centrifugal and gravity forces are known and their correspond-
ing uncertainties have known bounds. It is worth noting that the CDPMs considered
in this paper are designed to carry heavy payloads having different weights so that the
mobile platform inertial parameters are subjected to large variations. Therefore, if the
scheme in [20] is directly applied, very high control input torques may be required
especially during loading situations. The most appropriate solution to this problem
is to estimate online the dynamic parameters of the CDPM via an adaptive mecha-
nism. In this paper, the overall dynamics of CDPMs (both winches and platform) is
formulated to be linear in all inertial and friction parameters. Thereby, it facilitates
the design of the adaptive control scheme. The whole control scheme is synthesised
and analysed based on Lyapunov stability theory. Moreover, it guarantees the finite-
time convergence of the closed-loop system. To show its effectiveness, the proposed
control scheme is applied to a large redundantly actuated CDPM, CoGiRo [3].

The paper is organised as follows. In Sect. 2, kinematic and dynamic modeling
of CDPMs are presented and some properties of the dynamic model are recalled.
Section 3 focuses on the proposed adaptive terminal sliding mode control scheme
where finite-time convergence stability of the overall closed-loop system is analysed
viaLyapunovdirectmethod. Finally, to show the effectiveness of the proposed control
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Fig. 1 Schematic diagram of a general CDPM

scheme, a simulation study of a pick-and-place task is performed on the CoGiRo
CDPM in Sect. 4. Section 5 concludes this paper.

2 Kinematic and Dynamic Modeling of CDPM

In this section, kinematic and dynamic modeling of CDPM are presented.
We assume that the elasticity of cables is negligible and cables almost behave as
massless rigid strings.Modeling of CDPMhas been presented inmany researchwork
before e.g. [3, 24–26]. However, in this section, our main objective is to present the
overall dynamics of CDPM (both winches and platform) in compact form and linear
in all dynamic parameters. This compact form facilitates the design of adaptive con-
trol schemes in general [22, 27] and is particularly suitable for the adaptive control
scheme introduced in this paper. The notations of a general CDPM for kinematic
modeling is shown in Fig. 1.
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2.1 Kinematic Model

As shown in Fig. 1, a CDPM is composed of a moving platform linked to a fixed base
through cables with varying lengths via winches which are generally attached to the
base structure. Let Rb and Rp denote two frames assigned to the base and moving
platform, respectively. In the case of CDPM with m cables, let cable i connects the
point Ai at which it extends from the base frame to point Bi at which it is attached to
the moving platform. The position and orientationRp with respect toRb is defined
by the configuration vector x = [ pT ϕT ]T where p = [ x y z]T is the position vector
and ϕ = [φ θ ψ]T is a vector representing the orientation ofRp with respect toRb

using Euler angles. The rotation matrix fromRb toRp denoted by Rp
b is represented

by three successive rotations as

Rp
b (φ, θ, ψ) = Rot(x, φ)Rot(y, θ)Rot(z, ψ). (1)

Using the definition of elementary rotations around coordinate axes, Rp
b can be

written as

Rp
b (φ, θ, ψ) =

⎡
⎣

CθCψ −Cθ Sψ Sθ

CφSψ + SφSθCψ CφCψ − SφSθ Sψ −SφCθ

SφSψ − CφSθCψ SφCψ + CφSθ Sψ CφCθ

⎤
⎦ , (2)

where C(·) = cos(·) and S(·) = sin(·). If qi denotes motor i angular position and ri

represents motor i angular position to cable length transmission ratio, then the cable
length li can be expressed as

li = ri qi . (3)

Let q = [
q1 q2 . . . qm

]T ∈ R
m , and L = [

l1 l2 . . . lm
]T ∈ R

m be two vectors
gathering angular position variables and cable lengths, respectively. Then, one can
write (3) in a vector matrix form as

L = Rq, (4)

where R is a diagonal matrix containing the transmission ratios ri , i.e.,

R = diag{r1, r2, . . . , rm}. (5)

Let ai denotes the position vector corresponding to point Ai expressed inRb, bi

denotes the position vector corresponding to point Bi expressed in Rp, and ui is a
vector along the direction of cable i and has the same magnitude of the cable length.
Given the position and orientation of themoving platform x, the loop closure of cable
i expressed inRb can be written as follows
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ui = p − ai + Rp
b bi . (6)

The length of cable i is then computed as

l2i = uT
i ui = [p + R p

b bi − ai ]T [p + Rp
b bi − ai ]. (7)

Differentiating (7) with respect to time together with (4) gives

L̇ = Rq̇ = J(x)ẋ, (8)

whereJ(x)defines a 6×m Jacobianmatrix of theCDPM.The second-order derivative
of (7) with respect to time is then written as

L̈ = Rq̈ = J(x)ẍ + J̇(x, ẋ)ẋ. (9)

2.2 Platform Dynamics

Let S = [
Sx Sy Sz

]T be a position vector of the platform COM G in Rp. Let

Ip = Io −MŜŜ be the inertia tensor of the platform with respect to the origin ofRp

and expressed in the same frame, where Io is the inertia tensor with respect to COM
of the platform,M is the total platformmass, and Ŝ denotes the 3×3 skew-symmetric
matrix associated to S. Let us denote the matrix Ip as

Ip =
⎡
⎣
XX XY XZ
XY YY YZ
XZ YZ ZZ

⎤
⎦ . (10)

Let MS be a vector representing the first moment of the moving platform which
can be expressed as

MS = M
[
Sx Sy Sz

]T = [
MX MY MX

]T
. (11)

The dynamics of the platform can be written in the following form

A(x)ẍ + C(x, ẋ)ẋ + Q(x) = −JTt, (12)

where A(x) denotes the generalized inertia matrix, C(x, ẋ) is the Coriolis and cen-
trifugal matrix, Q(x) is a vector of gravity forces, and t is a vector of cable tensions.
It is worth noting that the dynamics of the platform is linear in the inertial parameters
i.e. in Ip,MS, andM [22]. Let χp ∈ R

10 be a vector collecting the inertial parameters
of the platform as



Adaptive Terminal Sliding Mode Control . . . 185

χp = [
XX XY XZ YY YZ ZZ MX MY MZ M

]T
. (13)

Consequently, one can easily express the dynamics of the platform in the following
regression form

�p(x, ẋ, ẍ)χp = −JT t. (14)

The details of the regressor �p(x, ẋ, ẍ) is given in [15].

2.3 Winches Dynamics

The dynamics of the winches can be written as follows [15]

�a = Ia q̈ + Fvq̇ + Fcsign(q̈) + Rt (15)

where Ia ∈ R
m×m , Fv ∈ R

m×m , and Fc ∈ R
m×m are diagonal matrices denoting,

respectively, the inertia, the viscous friction coefficients, and the dry friction coeffi-
cients of the motors, drums and other other rotating parts. Let Ia,Fv, and Fc ∈ R

m

be vectors corresponding to the diagonal elements of Ia , Fv, and Fc, respectively.
Then, one can gather all dynamic parameters of the winches in one vector χa ∈ R

3m

defined as follows
χa = [

ITa FT
v FT

c

]T
(16)

Now, the winch dynamics can be written in a regression form as follows

�a = �a(q, q̇, q̈)χa + Rt (17)

where �a(q, q̇, q̈) is given by

�a(q, q̇, q̈) = [
diag(q̈) | diag(q̇) | diag(sign(q̇))

]
(18)

As cable tensions must be within admissible non-negative ranges i.e. 0 ≤ tmin ≤
t ≤ tmax , the limits of the actuator torques should be within a lower and upper limits
defined respectively as follows

�min
a = �a(q, q̇, q̈)χa + Rtmin (19)

and

�max
a = �a(q, q̇, q̈)χa + Rtmax (20)



186 G. El-Ghazaly et al.

In this paper, the dynamics of winches will be projected onto the operational
space and then cable tensions will not be directly accessible. Instead, the tension
distribution algorithm will be applied on the bounds defined by Eqs. (19) and (20).

2.4 CDPM Dynamics in Operational Space

Using the first-order and second-order differentialmodels defined byEqs. (8) and (9),
one can compute the winch regression matrix in terms of either the platform or the
winch acceleration, velocity, and position vectors e.g. �a(q, q̇, q̈) ⇔ �a(x, ẋ, ẍ).
Using Eq. (17), the cable tension can be expressed as

t = R−1(�a − �a(x, ẋ, ẍ)χa) (21)

Substituting cable tensions in Eq. (21) into platform dynamics given by Eq. (14)
yields

�p(x, ẋ, ẍ)χp − JT R−1�a(x, ẋ, ẍ)χa = −JT R−1�a (22)

Equation (22) can be written in a more compact form as

�(x, ẋ, ẍ)χ = −JT R−1�a (23)

where

�(x, ẋ, ẍ) = [
�p(x, ẋ, ẍ) − JT R−1�a(x, ẋ, ẍ)

]
andχ = [

χT
p χT

a

]T
(24)

Solving Eq. (23) for the actuator torques �a taking into account the torque limits
defined by Eqs. (19) and (20), gives the following general solution

�a = RW+�(x, ẋ, ẍ)χ + RNλ, (25)

where W+ ∈ R
m×6 and N ∈ R

m×m−6 are the Moore-Penrose pseudo-inverse and
the null-space basis matrix of −JT , respectively. λ ∈ R

m−6 is an arbitrary vector to
be obtained such that cable tensions (and actuator torques) are admissible. For the
sake of controller synthesis and analysis, the dynamic model of the CDPM expressed
in terms of an inertia matrix, Coriolis, centrifugal, gravity forces, and friction forces
is needed. Straightforward manipulations after substituting Eq. (15) into Eq. (12),
and considering an external disturbances Fd , allow us to write the dynamics of the
CDPM in the following form

Aeq(x)ẍ + Ceq(x, ẋ)ẋ + Qeq(x) + Feq(x, ẋ, ẍ) = Fext + Fd (26)
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where Aeq(x) = A(x) − JT R−1IaR−1J, Ceq(x, ẋ) = C(x, ẋ) − JT R−1IaR−1J̇,
Qeq(x) = Q(x), Feq(x, ẋ, ẍ) = −JT R−1FvR−1Jẋ − JT R−1Fcsign(R−1Jẋ), and
Fext = −JT R−1�a .

2.5 Properties of the Dynamic Model

Some properties of the dynamic model (26) are recalled [12]. These properties are
necessary for the controller synthesis and stability analysis.

Property 1 The inertia matrix Aeq(x) is a positive-definite symmetric matrix and
bounded away from singularity whatever the uncertainties in inertial parameters. The
boundedness of Aeq(x) implies

λmI6 ≤ Aeq(x) ≤ λM I6 (27)

or
λm ≤ ‖Aeq(x)‖ ≤ λM (28)

where I6 is the 6 × 6 identity matrix and λm and λM are positive scalars.

Property 2 The external disturbance force vector Fd is assumed to be bounded i.e.

‖Fd‖ ≤ ζ (29)

where ζ is a positive constant.

3 Adaptive TSM Control of CDPM

In this section, an adaptive TSMcontrol is synthesized for the CDPMdynamicmodel
given in (26). The main idea of TSM is first presented assuming that the dynamic
parameters of the CDPM are known. Then, the idea is extended to the adaptive case
where the dynamic parameters are assumed to be unknown and must be estimated.

3.1 TSM Control

For CDPM dynamics given by (26), let xd , ẋd , and ẍd be a desired trajectory and
define e = x − xd as the tracking error. The control objective is to design a feedback
control law Fext such that the platform posture x tracks the desired trajectory xd in
finite time.
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In order to have a terminal convergence of tracking errors, a sliding surface is
defined as follows [18]

s = ė + βep/q (30)

where β > 0 is a design constant parameter, p and q are positive odd integers satis-
fying p > q. In order to ensure that the terminal sliding mode exists on the switching
surface and equilibrium is reached in finite time, the following η-reachability condi-
tion must be satisfied [28]

1

2

d

dt
sTs < −η

∣∣s∣∣ (31)

where η > 0 is a constant. If the dynamic parameters χ of the CDPM are known
and the bounds on disturbance ζ are also known, then, one can choose the following
control law to satisfy the η-reachability condition [19].

Fext = �(x, ẋ, v)χ (32)

where v is an auxiliary control input defined by

v = ẍd + β
q

p
ep/q−1ė + (ρ + η)sign(s) (33)

where ρ = λmζ . If s(0) �= 0, then the sliding mode s = 0 will be reached in finite
time tr which satisfies tr ≤ ∣∣s∣∣ /η. When the sliding mode is reached, the system
dynamics is described by the following nonlinear differential equation

ė + βep/q = 0 (34)

Equation (34) has an equilibrium at e = 0 which is a globally finite-time stable
attractor. And the convergence time for any initial condition x = x(tr ) is finite and
given by

ts ≤ p

β(p − q)

∣∣x(tr )
∣∣1−q/p (35)

However, the choice of such terminal sliding surface may cause singularity at
convergence due to fractional power p/q. In addition, the control laws (32) and (33)
is discontinuous and may cause chattering [19].

3.2 Non-Singular TSM Control

In order to avoid the singularity problem of (30), another choice of terminal sliding
mode is defined as follows [20]
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s = e + β
∣∣ė∣∣γ sign(ė) (36)

where β > 0 and 1 < γ < 2.

Remark 1 The terminal sliding mode defined by (36) has a global finite-time equi-
librium, i.e., for any given initial condition e(0) �= 0, the variable e reaches zero in
a finite time tr given by [20]

tr ≤ γβ1/γ

(γ − 1)

∣∣e(0)∣∣(γ−1)/γ (37)

Remark 2 The terminal sliding mode defined by (36) is continuous and time differ-
entiable. Its first time derivative is written as [20]

ṡ = ė + βγ
∣∣ė∣∣γ−1 ë (38)

Remark 3 Finite time stability is guaranteed for a givenLyapunov function candidate
V(s) if it satisfies [20]

V̇(s) + aV(s) + bVc(s) ≤ 0; a > 0, b > 0, and 0 < c < 1 (39)

Moreover, the finite reaching time is given by

tr ≤ 1

a(1 − c)
ln

aVc(s(0)) + b

b
(40)

Now, if we assume that the dynamic parameters of CDPM, i.e., χ are known and
the disturbance Fd = 0, then to design a non-singular TSM controller, let us choose
the following Lyapunov function candidate

V = 1

2
sTs (41)

The time derivative of the non-singular TSM (38) can be rewritten as follows

ṡ = βγ
∣∣ė∣∣γ−1

(β−1γ −1
∣∣ė∣∣2−γ sign(ė) + ë) (42)

Let us choose a control law which is defined by

Fext = �(x, ẋ, v)χ − K1s − K2
∣∣s∣∣ρ sign(s) (43)

where K1 = diag(k11, k12, . . . k16), K2 = diag(k21, k22, . . . k26), with ki j > 0,
i ∈ {1, 2}, j ∈ {1, 2, . . . , 6}, and ρ < 1, and
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v = ẍd − 1

βγ

∣∣ė∣∣2−γ sign(ė) (44)

The control laws (43) and (44) reduces the time-derivative of V to

V̇ = −sT H1s − sT H2
∣∣s∣∣ρ sign(s) (45)

where

H1 = diag(h11, h12, . . . h16) = βγλm
∣∣ė∣∣γ−1 K1 (46)

and

H2 = diag(h21, h22, . . . h26) = βγλm
∣∣ė∣∣γ−1 K2 (47)

are positive diagonalmatrices anywhere except at slidingmode.After straightforward
manipulations of (45), one can get

V̇ ≤ −2h1V − 2(ρ+1)/2 − h2V
(ρ+1)/2 (48)

According to the finite-time stability (39), it is clear that (48) ensures that the
tracking error e converges to zero along TSM in finite time. However, in practice, the
vector of dynamic parameters χ is not exactly known since it changes with payloads.
Also, external disturbances exist and must be taken into account in controller design.
Therefore, an adaptive control scheme is recommended to cope with load changes
and at the same time to guarantee robustness of performances. The main contribution
of this paper is to extend the non-singular TSM control scheme explained above
such that the dynamic parameters of CDPM are updated online via an adaptation
mechanism to ensure convergence.

3.3 Adaptive TSM Control Scheme

In this section, a non-singular adaptive TSM is developed for CDPM based on the
classical formulations presented in Sects. 3.1 and 3.2. The dynamic parameters are
assumed to be unknown and have to be estimated. The main results of the proposed
non-singular adaptive TSM control scheme are summarised through the following
theorem.

Theorem 1 Consider a CDPM described by (23) and (26) and satisfying (27), (28),
and (29) and assume that the vector of dynamic parameters χ is unknown. If the non-
singular TSM (36) is chosen and the following control scheme is applied:

Fext = �(x, ẋ, v)χ̂ + us (49)
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where χ̂ is an estimate of χ , and

v = ẍd − 1

βγ

∣∣ė∣∣2−γ sign(ė), (50)

us = −K1s − K2
∣∣s∣∣ρ sign(s), (51)

and

˙̂χ = βγ��T (x, ẋ, v)
∣∣ė∣∣1−γ s (52)

where � is a positive-definite diagonal matrix with appropriate dimensions, then the
closed-loop system reaches a neighborhood of TSM in finite time and the tracking
error reaches the neighborhood of the origin also in finite time.

Proof Let χ̃ = χ − χ̂ be dynamic parameters estimation error. Let us choose a
Lyapunov function candidate as follows

V = 1

2
sTs + 1

2
χ̃T �−1χ̃ (53)

The time derivative of V is given by

V̇ = sT ṡ − χ̃T �−1 ˙̂χ (54)

The time derivative of the terminal sliding s can be rewritten in the following form

ṡ = βγ
∣∣ė∣∣γ−1 A−1

eq (Aeq(β−1γ −1
∣∣ė∣∣2−γ sign(ė)) + Aeq ë) (55)

where Aeq , Ceq , Qeq , and Feq are the inertia matrix, Coriolis and centrifugal matrix,
gravity forces, and friction forces, respectively, where the arguments are suppressed
for simplicity. The second-order time derivative of tracking error ë can be written as

Aeq ë = −Aeq ẍd − Ceq ẍ − Qeq − Feq + Fext + Fd (56)

Substituting (56) into (55) gives

ṡ = βγ
∣∣ė∣∣γ−1 A−1

eq (Aeq(β−1γ −1
∣∣ė∣∣2−γ sign(ė)−ẍd)−Ceq ẍ−Qeq−Feq+Fext+Fd)

(57)
By definition of v in (50), Eq. (57) can rewritten as

ṡ = βγ
∣∣ė∣∣γ−1 A−1

eq (−�(x, ẋ, v)χ + Fext + Fd) (58)

Substituting the control law (51) and (49), then (58) can be simplified to
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Fig. 2 CoGiRo CDPM prototype developed by CNRS-LIRMM and Tecnalia

ṡ = βγ
∣∣ė∣∣γ−1 A−1

eq (�(x, ẋ, v)χ̃ − K1s − K2
∣∣s∣∣ρ sign(s) + Fd) (59)

Substituting (59) into V̇ in (60) and substituting with the adaptive law (52), one
can easily get

V̇ ≤ βγ sT
∣∣ė∣∣γ−1 A−1

eq (−K1s − K2
∣∣s∣∣ρ sign(s) + Fd) (60)

Using the properties (28) and (29), then one can simplify (60) as

V̇ ≤ βγ sT
∣∣ė∣∣γ−1

λm(−K1s − K2
∣∣s∣∣ρ sign(s) + ζ ) (61)

Following the same line of proof as in [20], we can see that the system can reach
neighborhood sliding-mode in finite-time which is defined by

‖s‖ ≤ δ = min(δ1, δ2) (62)

where δ1 = λmζ/h1, δ2 = (λmζ/h2)
(1/ρ). In addition, once the sliding variable is

within the region δ, the tracking error can reach the neighborhood of the origin in
finite time as well. This completes the proof.

4 Simulation Study: Control of CoGiRo

4.1 CoGiRo Prototype

The CoGiRo prototype shown in Fig. 2 is a redundantly-actuated cable-suspended
CDPM developed by CNRS-LIRMM and Tecnalia. CoGiRo occupies a space char-
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Table 1 Cable attachment points

Base points Platform points

xb yb zb x p yp z p

a1 −7.5 −5.5 6 b1 0.5 −0.5 0

a2 −7.5 −5.5 6 b2 −0.5 0.5 1

a3 −7.5 5.5 6 b3 −0.5 −0.5 0

a4 −7.5 5.5 6 b4 0.5 0.5 1

a5 7.5 5.5 6 b5 −0.5 0.5 0

a6 7.5 5.5 6 b6 0.5 −0.5 1

a7 7.5 −5.5 6 b7 0.5 0.5 0

a8 7.5 −5.5 6 b8 −0.5 −0.5 1

units are in m

Table 2 Platform inertial parameters

Parameter XX YY ZZ XY XZ YZ MX MY MZ M

χPNL 62.00 60.00 22.00 −0.32 −0.02 4.50 0.00 −7.50 0.00 79.00

χPL 132.00 135.00 45.00 0.00 −3.00 −2.00 −28.00 −7.50 0.00 200.00
aχPNL and χPL denote the platform inertial parameters without and with load, respectively. Units
are in kg. m2, kg. m, and kg

Table 3 Winch dynamic parameters

Parameter Ia Fv Fc r

Value 0.0311 0.0200 3.0000 0.0225

units are in kg. m2, N. m. rad−1.sec, N. m, m

acterised by a 15 m in length, 11 m in width, and 6 m in height giving a potential
workspace of 677 m3. The mobile platform is a cube with 1 m side length with a total
mass of 79 kg. CoGiRo has 8-actuators with a 6-DOF moving platform i.e. it has an
actuation redundancy of 2. CoGiRo is capable of manipulating payloads of 300 kg
over the entire workspace and up to 500 kg if the task to be performed is not too
close to the boundaries of the workspace. The lower limit of cable tension is tmin = 0
N and the upper limit is tmax = 5000 N. The base and platform cable attachment
points of CoGiRo are given in Table 1 in units of m. The inertial parameters χPNL
of the moving platform from the CAD model of CoGiRO are given in Table 2. The
inertial parameters χPL of the platform with a typical payload previously used in an
experimental study are used to assess the robustness of the proposed control scheme
in this simulation study. The dynamic parameters of CoGiRo winches are shown in
Table 3.
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Table 4 Interpolated trajectory point sequence

Point x y z φ θ ψ

x0 0.000 0.000 1.296 0.000 0.000 0.000

x1 0.000 0.000 2.296 0.000 0.000 0.000

x2 −3.850 1.200 2.296 0.000 0.000 −45.840

x3 −3.850 1.200 1.307 0.000 0.000 −45.840

x4 −3.000 2.000 1.307 0.000 0.000 −45.840

x5 −3.000 2.000 1.796 0.000 0.000 −45.840

x6 4.000 −1.000 1.796 0.000 0.000 11.460

x7 4.000 −1.000 1.307 0.000 0.000 11.460

x8 4.300 −2.000 1.307 0.000 0.000 11.460

x9 4.300 −2.000 2.296 0.000 0.000 11.460

x10 0.000 0.000 2.296 0.000 0.000 0.000

x11 0.000 0.000 1.296 0.000 0.000 0.000

Table 5 Maximum velocity and acceleration along the trajectory

DOF x y z φ θ ψ

Maximum velocity Kv [m, rad/sec] 1.0000 1.0000 1.0000 1.5708 1.5708 1.5708

Maximum acceleration Ka [m, rad/sec2] 0.1000 0.1000 0.1000 0.1571 0.1571 0.1571

Table 6 Adaptive TSM controller parameters

Parameter Value

β 1.00

γ 1.50

ρ 0.33

K1 diag{70.00, 70.00, 105.00, 105.00, 105.00, 70.00}
K2 diag{25.00, 25.00, 37.50, 25.00, 25.00, 30.00}
�Ip diag{1000.00, 1000.00, 1000.00, 1000.00, 1000.00, 1000.00}
�MS diag{200.00, 200.00, 200.00}
�Ia diag{0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10}
�Fv diag{0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01}
�Fc diag{0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10, 0.10}

4.2 Simulation Results

CoGiRo is supposed to perform pick-and-place tasks. In this simulation study, a
trajectory of 11 mobile platform poses corresponding to a pick-and-place task is
given in Table 4. It has been generated by a 5th-order polynomial interpolation
subjected to the velocity and acceleration constraints given in Table 5. In order to
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Fig. 4 Control input torques: Case (A)

assess the performance of the proposed adaptive TSM control scheme, we consider
two simulation cases. InCase A, the adaptiveTSMcontroller is simulated considering
only 20 % of parametric uncertainty where in Case B, we consider loading the
platform at configuration x3 and releasing the load at configuration x6 and, at the
same time, the adaptive TSM control algorithm is initialised with 20% of parametric
uncertainty for the no-load platform inertial parametersχP N L . The parameters shown
in Table 6 have been used in simulation of both cases where�i is the adaptation gains
corresponding to the parameters of i . Figures 3, 4, 5, and 6 show the simulation results
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Fig. 6 Orientation error: Case (A)

of Case A. It can be seen that the proposed adaptive TSM control scheme is able to
achieve good tracking performances evenwith parametric uncertainty. Figures 7, 8, 9,
and 10 show the simulation results ofCase B. It can be seen that at the loading instant,
both cable tensions and control input torques increase instantaneously. However, the
adaptive TSM is able to restore the tracking error in a short period of time and
achieves a good tracking performance over the whole trajectory.
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Fig. 8 Control input torques: Case (B)

5 Conclusion

The main contribution of this paper is to extend an early developed non-singular
TSM control by synthesizing an adaptive law for CDPM dynamic parameters. The
main motivation of using TSM for CDPMs is its finite-time stability which gener-
ally results in high tracking performances. Stability of conventional TSM for robotic
manipulators are based on the assumption that the dynamics are partially known
while the uncertain part is bounded. This assumption is true, however, it may results
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in large control input torques especially when heavy payloads are to be manipulated.
To tackle this problem, an adaptive mechanism is introduced to estimate online the
dynamic parameters. The overall dynamics of CDPM has been reformulated in this
paper in a regression form to facilitate the design of the adaptive control. Redundancy
resolution is then solved based on the limits on control input torques corresponding to
the tension limits. The adaptive TSM control scheme has been applied in simulation
to a large cable-suspended CDPM-CoGiRo. CoGiRo is supposed to perform pick-
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and-place of heavy payloads. The simulations show the effectiveness of the proposed
scheme for large values of parametric uncertainties and loading conditions. However,
the real benefit of the proposed adaptive TSM control will appear through experi-
mental studies on CoGiRo. Our future work will be dedicated to these experimental
validations.
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Haptic Interaction with a Cable-Driven
Parallel Robot Using Admittance Control

Wei Yang Ho, Werner Kraus, Alexander Mangold and Andreas Pott

Abstract Haptic interfaces are a possible solution for the intuitive operation of
machines. In this paper, we present the implementation of an admittance control
for a cable-driven parallel robot. The user can grasp the platform and push/pull
it through the workspace. The dynamic behaviour (of the virtual system) can be
parameterized regarding mass, stiffness and damping. With a system identification
of the real robot we determine the maximum dynamic performance. It shows, that
the robot can simulate (virtual) systems with a bandwidth up to 13.3 Hz.

Keywords Cable robot · Parallel robot · Haptic display · User interface

1 Introduction

In cable-driven parallel robots lightweight cables are used to move a platform within
a huge workspace. The low moved mass enables for high dynamic with small drives.
This makes cable robots also interesting as large workspace haptic device [1].

Already in 1993, Kawamura proposed a cable-driven system with impedance
control as master device for teleoperation [2]. Under the name SPIDAR several string-
based force displays were developed as haptic devices for virtual reality applications
[3]. In [4] a cable-driven haptic interface with an impact generating winch for the
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Fig. 1 Cable-driven parallel robot Mini-IPAnema 3

simulation of rigid impacts is proposed. A planar haptic device with four cables
with a focus on the manipulability is investigated in [5, 6]. The concept of a spatial
cable-driven haptic interface is proposed in [7]. Exhaustive work in the simulation of
a virtual reality with a cable-driven locomotion interface including a hybrid control
scheme is presented in [8]. The use of cable-driven system for gait rehabilitation was
investigated with the STRINGMAN system in [9]. In [10] an impedance control of
a serial multi body cable-driven mechanism is proposed.

The control of a haptic system can be realized either by impedance or admittance
control. Both of them allow to control the movement of an actuator according to the
interaction between the user and the actuator. On the basis of a spring mass damper
system the applied force corresponds with an acceleration, a velocity and a position.
In case of the impedance control, the input is the actual position and the output is an
corresponding force. This force is then the input for a force controlled actuator. The
admittance control on the other hand uses the actual applied force as an input and
outputs a position setpoint. We implement an admittance control as it builds up on
the established position control loop of the servo drive (Fig. 1).

In this paper, we present the development of control algorithms for an interactive
haptic feedback. An admittance control to achieve a given system dynamic, repre-
sented by a spring mass damper system, is implemented. To guide the user within
the workspace, a switchable stiffness is introduced. The maximum feasible dynamic
of the simulated system is evaluated according to the transfer function of the robot.
The haptic interface can be used to teach positions or as haptic device for the simu-
lation of virtual systems. Other applications are force assistant in lifting or mounting
processes.



Haptic Interaction with a Cable-Driven Parallel Robot Using . . . 203

Fig. 2 Robot kinematic

The paper is organized as follows: The kinematic model of the cable robot is
summarized in Sect. 2. The design of the admittance control and virtual workspace
are described in Sect. 3. The integration in the control framework and the test setup
is pictured in Sect. 4. Experimental results are presented and discussed in Sect. 5.
Finally, conclusions and an outlook on future work is given in Sect. 6.

2 Robot Model

For completeness, we briefly review the robot model. The geometry of the robot is
described by the proximal anchor points on the robot base Ai and the distal anchor
points on the end-effector Bi. The index i denotes the cable number and m is the
absolute number of cables. By applying a vector loop as shown in Fig. 2 the cable
vector li follows as

li = ai − r − R bi, (1)

while r is the platform position vector and rotation matrix R describes the orientation.
The structure equation with the structure matrix AT describes the force and torque

equilibrium at the end-effector for a given cable

[
u1 · · · um

b1 × u1 · · · bm × um

]

︸ ︷︷ ︸
AT(r,R)

⎡
⎢⎣

f1
...

fm

⎤
⎥⎦

︸ ︷︷ ︸
f

= −
[

fp

τ p

]

︸ ︷︷ ︸
w

, (2)
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Fig. 3 Model of a 1D spring mass damper system with external force F(t)

with ui = li‖li‖ . The wrench w consists of external forces fp and torques τ p and also
includes the gravity g.

3 Admittance Control

3.1 Model of the Virtual System Behavior

The admittance control allows for the simulation of a virtual system behavior. The
characteristic can be chosen nearly arbitrary, e.g. without gravity, viscous friction or
very high stiffness. The task of the admittance control algorithm and its functions
is to calculate a pose out of an applied wrench. The dynamic behavior of a simple
mechanical system can be described with a model of a spring mass damper system.
An one dimensional system, as shown in Fig. 3, consists of a stiffness c1, a mass m1
and a damping coefficient d1 and is described by the following differential equation

m1s̈ + d1ṡ + c1s = F(t), (3)

with the position s of the body and its time derivatives ṡ and s̈. For a given external
force the position, velocity and acceleration of a body can be calculated by time-
integration according to Eq. 3. To describe a system with 6 degrees of freedom (DOF)
Eq. 3 is extended to

I r̈set︸︷︷︸
inertia force vector

+ Dṙset︸ ︷︷ ︸
damping force vector

+ Crset︸ ︷︷ ︸
spring force vector

= w(t)︸︷︷︸
wrench

, (4)

with the commanded pose rset ∈ R6×1 and its time derivatives ṙset and r̈set. The pose
r consists of the position in x, y and z-direction and the Euler angles α, β and γ .



Haptic Interaction with a Cable-Driven Parallel Robot Using . . . 205

The external forces and torques are the elements of the wrench w(t) ∈ R6×1. The
matrices are

I = diag(
[
mx my mz Iα Iβ Iγ

]
), (5)

D = diag(
[
dx dy dz dα dβ dγ

]
) and (6)

C = diag(
[
cx cy cz cα cβ cγ

]
). (7)

The model allows for an implementation of the admittance control in both transla-
tional and rotational space. In the following, we focus on the translational workspace
and with a fixed orientation.

3.2 Model of the Virtual Workspace

If the Eq. 4 would be used in the algorithm without any modification, it would be
possible for the user to bring the platform to a certain pose by applying a wrench.
But the platform will move to its origin as soon as the wrench is removed because
of the spring force-term of the Eq. 4. To allow for positioning the platform we have
to toggle the spring force on and off on demand. For this, we introduce a virtual
workspace, in which the elements of the stiffness matrix C are a function C = f (rset)

of the pose. Additionally, this function limits the reachable workspace by applying a
virtual spring force at the border. This allows the user to feel the end of the workspace
area and additionally guides him back into the allowed workspace. For this purpose,
the virtual workspace is divided into three zones, which are visualized in Fig. 4:

Fig. 4 Zones of the virtual workspace
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Zone 1 (spherical rest pose) This zone is a sphere with the radius R1 an its mid-
point corresponds to the home position of the robot. As long as the midpoint of
the platform is inside zone 1, a spring force-vector is pointing to the origin of
the sphere. Therefore, a spring force-vector pulls the platform to the origin. This
works as a rest pose for the platform. Basically, every point within the workspace
can be chosen as midpoint of the sphere. One variant is to adopt the actual pose
as center of the sphere after defined time of standstill to fix the platform in this
position.

Zone 2 (no spring force) In zone 2 the spring is disabled and only the damping
and inertia of the virtual system are activated. If the external force is removed,
the platform is slowed down by the damping and remains in the desired position.

Zone 3 (Spring force-vector normal to the borders of the workspace) If the plat-
form is Zone 3, the spring force-vector which is normal to the borders of the
workspace is toggled on. This force limits the workspace.

The Eq. 4 and the virtual workspace are implemented in Matlab/Simulink. In the
implementation, the spring force FF is calculated according to the above description
and applied on Eq. 4.

3.3 Simulation of the Virtual System

To show the behavior of the virtual system, an external force in x-direction is gener-
ated and applied to the system. The force is designed to lead the platform in all three
zones to show the different modes of the system.The applied force and the resulting
position of the platform is visualized in Fig. 5 and described below:
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Fig. 5 Simulation of the virtual workspace with force pulses 1 to 5 and resulting position rset,x
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Force pulse 1 In the time range 0 s < t < 1 s a force with the magnitude of 2.6 N
is applied to the platform. When the platform reaches a distance of
0.0026 m to the origin, a force equilibrium with the spring force is
satisfied. So the applied force is not strong enough to guide the plat-
form out of the Zone 1. As soon as the force is removed, the platform
is moving back to the origin.

Force pulse 2 The second force pulse is applied to the platform in a time range of
2.25 s < t < 2.52 s with a magnitude of 10.2 N. This time, the force
is strong enough to overcome the counter-wise spring force of the
Zone 1. As soon as the platform crosses the border to Zone 2, the spring
force is set to zero. After removing the external force, the platform
slows according to the system damping and holds the position.

Force pulse 3 At the time 2.85 s < t < 3.2 s the platform is in the Zone 2. in this area
of the virtual workspace is no spring force active. As it is shown in the
figure, the platform moves according to the applied external force. As
soon as the external force becomes zero, the platform is decelerated
by the damping.

Force pulse 4 In this section the platform is moving trough the Zone 2 with constant
velocity. At a time of 4.9 s the platform reaches the border of the
working area (0.03 m). It is visible that the platform is slowed down
by the counter force of the Zone 3. After the external force is removed,
the platform is guided back into the allowed workspace described by
Zone 2 and remains at the borderline.

Force pulse 5 The last force pulse is guiding the platform towards the origin. It is
visible that the spring force of Zone 1 is catching the platform as soon
as it reaches the area of the sphere, describing the border of the Zone 1.

4 Controller Implementation

4.1 Controller Design

In the following, the control structure is described, which is visualized in Fig. 6. The
admittance control is based on an indirect force measurement over the cable force
sensors. For the transformation from joint to Cartesian space, the structure matrix
AT describing the actual cable directions is used. The wrench w is derived by

w = −ATfis, (8)

where fis corresponds to the measured cable forces.
The wrench includes the gravitational force of the platform and also measure-

ment errors. At startup of the admittance control, the actual wrench winit is stored.
Acceleration of the platform leads also to inertia forces of the real platform which are
measured by the force sensor. Therefore, the inertia forces Fi = mpr̈set derived from
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Fig. 6 Structure of the implementation with admittance and cable force controller

the platform mass mp and the commanded acceleration r̈set have to be excluded. The
mass mp corresponds to the real mass of the platform and is derived with mp = winit

g .
The input signal of the admittance controls wadm yields

wadm = wis − winit − mpr̈set, (9)

which is smoothed with a PT1-Filter with a time constant of T1 = 3 ms.
The position setpoint of the admittance control rset is transformed from Cartesian

to joint space with the inverse kinematics (IK) according to Eq. 1 and delivers ladm.
For the operation of the admittance control the stability of the platform is impor-

tant. Therefore, a cable force control is applied to keep the cables under tension. For
the determination of the setpoint cable forces lset, the closed-form solution presen-
tend in [11] is applied. The setpoint cable forces are derived for the gravitational
forces of the platform. Forces due to acceleration of the platform or the interaction
with the user are not taken into account. The output of the cable force controller is a
change in cable length dlcable. The output of the admittance and cable force controller
are summed up by

lset = ladm + dlcable, (10)

to the cable length setpoint lset which is commanded to the servo drives.

4.2 Implementation

The control algorithms are implemented on the cable robot Mini-IPAnema 3 using
eight cables and an aluminium platform as shown in Fig. 1. The space of the robot’s
frame is 1.1 x 0.8 x 1.0 m. The actuators are 200 W servo drives of type Beckhoff
AM3121. Without an additional gear box, the drum with a diameter of 20 mm is
connected. The theoretical rated cable force neglecting friction amounts to 65 N.
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The robot control is realized on a Windows PC with Beckhoff TwinCAT 3.1
CNC at a cycle time of 1 ms. The field bus protocol is EtherCAT. For the force
measurement each cable is equipped with a cable force sensor at the platform of
type Futek LRM200 with a measurement range of 111 N. The analog output signal
of the force sensors is digitized in A/D-converters and sent via the field bus to the
control. The cable type is LIROS D-Pro 01505-0150 based on Dyneema SK 75 fibre
(Polyethylene) with a diameter of 1.5 mm.

5 Experimental Investigation

5.1 Feasible Bandwidth

The maximum dynamic which can be simulated is limited by the system dynamic
of the robot. The robot’s dynamic is characterized by the bandwidth of the actuator
unit. To get insight into the feasible bandwidth, we establish the transfer function
Gp(s) describing the relation between setpoint position value lset and the encoder
feedback value lfb.

The servo motor with the winch is a typical spring mass damper system. Therefore,
we assume a second order system

Gp(s) = Kp
1

1 + 2ζTws + (Tws)2 , (11)

for the transmission behavior. For the parameter identification based on a noise
response we use the Matlab System Identification Toolbox. The resulting parameters
are Tw = 0.0139 and ζ = 0.587. The measurement is reflected with a goodness fit of
98.5 % by the identified transfer function. The deviation of 1.5 % arises from sensor
noise which is not modeled.

The bode diagram for Gp(s) representing the real robot dynamic properties is
shown in Fig. 7. The transfer function Gp(s) reaches the −3 dB margin at a frequency
of 13.3 Hz, which corresponds to the bandwidth of the haptic interface.

5.2 Eigenfrequency

In the following we investigate the natural oscillations for given spring mass damper
systems. For this, we set the parameters cx, dx and mx to certain values. The theoretical
eigenfrequency fd,theo of a damped system is determined by

fd,theo = 1

2π

√
cx

mx
−

(
dx

2mx

)2

. (12)
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Table 1 Verification of the dynamic parameters of the simulated system

Measurement cx [N/m] dx [Ns/m] mx [kg] fd,theo [Hz] fd,exp [Hz]

1 31.9 5 20 0.2 0.2025

2 197.5 5 20 0.5 0.504

3 395.4 5 10 1 0.997

4 9870.2 5 10 5 5.124

For the experiment, the user moves the platform by hand out of the home position
and releases it. Then, the resulting platform oscillations were measured. The para-
meters of cx, dx and mx and the theoretical eigenfrequency fd,theo according to Eq. 12
and measured eigenfrequency fd,exp are listed in Table 1.

For the parametrization of the admittance control one has to ensure that the virtual
system dynamic lies under the robot dynamic. The eigenfrequency fd,theo according
to Eq. 12 has to be smaller than the robot’s bandwidth of 13.3 Hz. Simulating systems
with a higher dynamic will lead to instabilities.

5.3 Operation

For the experimental evaluation of the system, the applied wrench in x-direction wx
and the resulting movement in x-direction rset,x is plotted in Fig. 8. In this experiment,
an user grasps the platform and shifts it to several positions.
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The first three force pulses are not strong enough to bring the platform out of
zone 1 and the platform is dragged back to the origin by the spring force. The third
force pulse is strong enough to bring the platform to the zone 2, where the spring
is turned off. The sudden missing of the stiffness increases the slope of the position
and leads to a drop of the applied force wx. The user’s impression at this point is
comparable to the feeling of dragging two magnets apart. Then, the applied force
stays in a constant range while the slope of the position can be also described as
constant in this area. This shows the active damping in zone 2. After the platform
reaches the border of the workspace, the wx value rises with a small delay. This
delay is caused by the virtual inertia of the system. Due to that, the platform enters
the zone 3 without additional force from the user. After the virtual kinetic energy is
transformed into spring energy and energy dissipated by the virtual damper, the user
has to increase the force to move the platform further into the zone 3. As it is visible,
the user presses the platform into the zone 3 by a constant force. The position of the
platform is not changing because the spring force of the zone 3 and the applied force
by the user are equal. After the user releases the force, the platform is moving back to
zone 2. The user feels a guiding force in normal direction to the border plane between
zone 3 and zone 2. Back in zone 2 the platform is moved towards the origin. Finally,
the spring force of the zone 1 catches the platform and drags it to the origin. As it
can be seen from Fig. 8, the system behaves identical to the idealized one in Fig. 5.
The rset,x is very responsive to the user input and system behavior can be controlled
very precisely.

6 Conclusion and Outlook

We demonstrated the realization of an admittance control for a parallel cable robot.
A switchable stiffness was introduced to guide the user with force feedback within
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the workspace. To estimate the maximum dynamic, the bandwidth of the investigated
cable robot was determined to 13.3 Hz, which enables a very responsive system which
can simulate in a very high range.

For the industrial application, the user inevitably is in contact with the robot. For
the industrial deployment, a risk assessment and measures for a safe operation have to
be performed. The algorithm can be developed further to a force assist in a lifting aid.
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A Kinematic Vision-Based Position Control
of a 6-DoF Cable-Driven Parallel Robot

Ryad Chellal, Loïc Cuvillon and Edouard Laroche

Abstract This paper introduced an original setup for the validation of vision-based
position control methodologies dedicated to 6-DoF Cable-Driven Parallel Robots.
The cable robot is an INCA 6D with eight cables initially developed by Haption as a
haptic interface, equipped with a motion-capture system Bonita developed by Vicon
to measure the end-effector pose. In addition to the description of this setup, this
paper reports simulation and experiment results obtained with an original control
scheme based on a cascaded control architecture in two parts. First is the position
control to ensure an accurate end-effector positioning, which includes two nested
closed-loops: an external vision-loop based on the pose measurement that drives the
motors, equipped of inner speed-loop previously designed in order to control each
speed in a decoupled fashion when rejecting the inherent non-linear behaviour of
the cables. Second is the tension distribution to maintain the cables under feasible
tensions, the paper makes an extensive review of the available methods and presents
an algorithm inspired from one of them extended to the dynamic control.

1 Introduction

Comparing with rigid link-actuated manipulators, Cable-Driven Parallel Robot
(CDPR) manipulators benefit from large workspaces, high speed motions and mod-
ular geometries. However, it appears that their control is a more complex issue as
the cables must remain under tensions at any time [1]. To solve this issue, the pro-
posed approaches in the literature can be classified in two main categories. In the
off-line solutions, a path planning step is used prior to any motion in order to design
a reference trajectory which guarantees that the cables will remain under tension
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during the predefined motion [2, 3], but assumes that a perfect control of the robot is
available. In the on-line solutions, an algorithm of tension distribution (also known
as redundancy resolution or force calculation) is used to maintain the cable tensions
inside a predefined feasible workspace during the motion [4, 5]. This is a typical
solution for redundant manipulators, where there are more cables than Degrees of
Freedom (DoF) of the end-effector, and it is the solution considered in this work.

Concerning the position control of CDPR manipulators, most of the proposed
methods rely on the joint position measurements. According to the coordinate space
chosen to solve this control problem, there are two alternatives. In the first one, the
controllers are designed in the joint space coordinates. Using the Inverse Position
Kinematic Model (IPKM), the reference end-effector pose is converted in reference
joint positions which are then controlled by a feedback loop. Some related works are
the joint space PD controller proposed by Kawamura et al. applied to the SEGESTA
robot [6] and later to the KNTU robot by Gholami et al. [7], and the joint space PID
controller for the redundant suspended ReelAx8 prototype presented by Lamaury et
al. [8]. In the second one, the controllers are designed in the task space coordinates.
Assuming that the Direct Position Kinematic Model (DPKM) is available, the end-
effector pose is calculated from the joint position measurements and a feedback
control allows to track a reference pose. Gholami et al. evaluated such a task space
PD controller and compared it to the previous approach [7]. However, for parallel
manipulators, the direct kinematics is difficult to obtain (see for instance Carricato
and Merlet for an intensive study on the matter [9]).

In the previously mentioned control schemes, the modelling errors and the defor-
mations of the cables directly result in errors on the end-effector pose. One solution
for improving the accuracy is then to use some exteroceptive sensors in order to
obtain a direct measurement of the end-effector pose. Some preliminary works using
cameras have been proposed by Dallej et al. for controlling the redundant suspended
ReelAx8 robot [10] or the large-dimension CoGiRo robot [11].

The purpose of this paper is twofold. First, an original evaluation setup is intro-
duced, based on an INCA6D robot with eight cables developed byHaption, equipped
with a motion-capture system Bonita developed by Vicon used for the measurement
of the end-effector pose. Second, results fromsimulation and experiment are reported,
based on an original control scheme relying on a cascaded control architecture in
two parts. First is the position control to ensure an accurate end-effector position-
ing, which includes two nested closed-loops: an external vision-loop based on the
pose measurement that drives the motors, equipped of inner speed-loop previously
designed in order to control each speed in a decoupled fashion when rejecting the
inherent non-linear behaviour of the cables. Second is the tension distribution to
maintain the cables under feasible tensions, the paper makes an extensive review of
the available methods and presents an algorithm inspired from one of them extended
to the dynamic control.

The paper is organised as follows: Sect. 2 describes the setup (the INCA robot and
the Bonita motion-capture system). In Sect. 3 the model of the robot is developed.
In Sect. 4 the control strategies that are considered for evaluation are presented. The
simulation and experiment results are presented in Sect. 5.
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2 System Description

2.1 INCA Robot

The INCA robot [12] developed by Haption has a cubic configuration of 3m by side,
and uses eight driving cables to move the end-effector and eight balancing cables to
ensure pretension in the driving cables when the motors are non-powered (Fig. 1b).
Each actuator is placed on one of the eight vertices of the workspace (Fig. 1a) and
is composed of a DC motor with a current-loop controller, which drives both the
driving and balancing winches (Fig. 1b) to store, wind and unwind the cables.

A measurement of the motor positions and currents are respectively achieved by
incremental optical encoders and current proprioceptive sensors.

2.2 Bonita Motion-Capture System

The Bonita motion-capture system used to measure the pose of the INCA end-
effector is composed of six IR cameras (Fig. 1a) and a tracker software running
on a Windows PC, all from the Vicon company. Each camera has its own emitting
source and delivers a grayscale imagewithVGA resolution.Assuming that this stereo
system has been previously calibrated, the pose of the INCA end-effector fitted with
five retro-reflective fixed markers can be tracked by the software.

The temporal and spatial performances of the pose reconstruction are critical for
the robot control and are evaluated:

• the global latency of the system (delay between the start of the image acquisition
and the availability of the pose measurement) is 10.7± 0.7ms at a 200Hz camera
frame-rate. This latency of roughly twice the acquisition period is the sum of one
period of image acquisition and one period for the pose reconstruction.



216 R. Chellal et al.

• the accuracy of the pose is 1.7 ± 0.4mm and evaluated by the RMS error in the
IR images between the maker positions and their expected positions given by
back-projection of the end-effector geometry with the reconstructed pose.

3 Modelling of the 6-DoF CDPRs

The model is derived from a generic model of the m-DoF CDPR manipulators with
n cables, which is augmented with the pretension system (balancing cables, winches
and springs) specific to the INCA prototype.

Given the size of the INCA robot and its cables of 1mm diameter, the considered
model assumes that the cables are of negligiblemass (straight) and of infinite stiffness
(inextensible). The model is briefly presented in this section, details can be found
in [12].

3.1 Kinematics Modelling

To design the vision-loop control law, the Inverse Velocity KinematicModel (IVKM)
can be calculated by differentiating the Inverse Position Kinematic Model (IPKM)
with respect to the time, and is given by the Jacobian matrix Jθ that relates the end-

effector velocity Ve = [vT
e wT

e ]T
(including the linear ve and angular we velocities)

to the motor velocities vector θ̇ = [θ̇1 · · · θ̇n]T
such as:

θ̇ = Jθ (Xe) Ve (1)

where Jθ can be easily calculated for parallelmanipulators from the end-effector pose

Xe = [PT
e ΦT

e ]T
(including the position Pe and orientation Φe) as given in [12].

Considering the chosen representation of the orientation based on a systemof three
pure rotations Roll-Pitch-Yaw of angles Φe = [φr , φp, φy]T respectively around the
principal axes (Xo, Yo, Zo), the IVKM can be rewritten in terms of the time variation
of the end-effector pose Ẋe such as:

θ̇ = Jθ (Xe) JΦ(Φe) Ẋe (2)

where JΦ(Φe) = blocdiag (I3, Jr py(Φe)), in which the Jacobian Jr py relates the
angular velocity we to the speed of the chosen orientation Φ̇e as in [12]:

we = Jr py(Φe) Φ̇e (3)
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3.2 Dynamics Modelling

To determine the joint speed-loop control law, and for the purpose of simulations, a
Direct Dynamic Model (DDM) has been developed. The DDM of the whole system
projected in the task space coordinates can be written in the following form:

M(Xe) Ẍe + C(Xe, Ẋe) Ẋe + K (Xe) + G(Xe) = Fev (4)

under the followingn constraints bounding the cable tensions vectorT = [T1 · · · Tn]T :

Tmin ≤ T (Im, θ, θ̇ , θ̈ ) ≤ Tmax (5)

where the details of the inertia matrix M , the vector of forces and moments of
Coriolis and centrifugal forces C , the vector of stiffness K and the vector of forces
and moments of gravity G are given in [12]. The input vector of virtual wrenches

Fev = [ fe
T
v me

T
v ]T

meaning the external forces fev and moments mev acting on the
end-effector resulting from the applied motor currents vector Im = [Im1 . . . Im n]T

is:
Fev = WI (Xe) Im (6)

with the wrench matrix WI (Xe) = −J T
θ (Xe) Kem , and the diagonal matrix of the

motor torque constants Kem = diag(kem1, . . . , kemn).
The cable tensions vector T can be estimated using the actuators dynamics by:

T (Im, θ, θ̇ , θ̈ ) = To + R−1
pm [Kem Im − Jeq θ̈ − Fveq θ̇ − Fs eq sign(θ̇)− Keq θ ] (7)

where the details of the diagonal matrices of driving winches radius Rpm , equivalent
inertia moment Jeq , equivalent viscous Fveq and Coulomb Fs eq friction coefficients,
balancing springs equivalent rotational stiffness Keq , and the vector of initial cables
pretension To are given in [12].

4 Kinematic Vision-Based Position Control

4.1 Overview

The cascaded control architecture considered here in Fig. 2 is implemented in two
parts detailed later in this section:

1. The position control in itself, a kinematic position-based vision control (also
known as Position-Based Visual Servoing (PBVS) or 3D Visual Servoing) which
includes two nested closed-loops:
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Fig. 2 Kinematic vision-based position control scheme with the tension distribution part

• the external vision-loop in the task space coordinates aims to ensure an accu-
rate end-effector positioning from the end-effector pose error.

• the internal speed-loop in the joint speed coordinates aims to ensure a decou-
pled control of the motor speeds requested by the external loop while rejecting
the inherent non-linear behaviour of the cables.

2. The tension distribution, that aims to maintain the cables under a tension that
respects interval constraints.

4.2 Position Control

4.2.1 Vision-Loop

For the system with measured pose Xe and controlled velocity ve = Ẋe, an expo-
nential convergence of the actual pose Xe towards the reference X∗

e is ensured by
the proportional control law:

v∗
e = K (X∗

e − Xe) (8)

where the proportional gain matrix chosen under the shape K = blocdiag(kP I3,
kΦ I3) to tune the position and orientation, should be positive to adjust the response
time of a stable control, and also diagonal to realise a decoupling between the position
Pe and orientation Φe components of end-effector pose Xe.

The vision-loop control signal ν∗
e being expressed in the task speed coordinates,

is then converted into the joint speed coordinates θ̇∗ using the IVKM (2).

4.2.2 Speed-Loop

The original proposed methodology relies on joint speed control. For the controller
tuning, only one actuator control is considered, the others being considered as tension
disturbances. The corresponding model is presented in Fig. 3, it includes a first-order
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Fig. 3 Speed-loop control schemeof oneDCmotor subject to the effects of its driving and balancing
cables

model of the current-loop dynamics with the time constant τ , the motor torque
constant kem and a second-order model of the actuator dynamics represented by
the inertia jeq , the viscous friction fveq and the rotational stiffness keq due to the
balancing spring. These parameters have been estimated experimentally in a previous
work [12]. The cable tension T can be considered as a disturbance acting on themotor
current control signal I ∗

m , and then should be rejected or compensated by the joint
speed controller Cw.

A PI controller Cw(s) is generally sufficient for controlling the speed of a DC
motor, the integral term being necessary in order to reject the disturbances:

Cw(s) = K p

(
1 + 1

Ti s

)
(9)

It was tuned in order to reach a high bandwidth. Therefore, a design model was
established by considering a high frequency approximation of the transfer from the
motor torque τm to the motor velocity θ̇ , resulting in the control model Gc(s) which
suits to the controller design using the symmetrical optimum method (detailed in
Sect. 5.2) for an efficient disturbances rejection [13]:

Gc(s) = kem

jeq s (1 + τ s)
(10)

4.3 Tension Distribution

4.3.1 State of the Art

In order to ensure that the vector of cable tensions T remains inside the feasible
tensions workspace [Tmin Tmax], the speed-loop control signal of motor currents vec-
tor I ∗

m p leading to the virtual wrench Fev according to (6), is modified to solve the
system of algebraic equations (6) under the inequality constraints (5). Due the robot
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redundancy, the system of equations (6) is under-determined and then has an infinity
of solutions (assuming that WI has full rank r = n − m) that can be determined by
resolving the quadratic optimisation problem of the objective function E given by:

E = 1

2

(
I ∗
m − Iobj

)T (
I ∗
m − Iobj

) +
(

WI

(
I ∗
m − I ∗

mp

))T
λ (11)

where the variable objective currents vector Iobj corresponding to an objective ten-
sions vector Tobj, and the vector λ ∈ R

m is the Lagrange multiplier associated to the
equality constraints WI (I ∗

m − I ∗
mp) = 0.

The set of solutions of (6) evolves in an r -dimensional subspace that can bewritten
as following:

I ∗
m = I ∗

m p + I ∗
m n (12)

where:

• the particular solution I ∗
m p of minimum-norm aims to control the end-effector

pose, and it is the previous PI speed-loop control signal.
• the homogeneous solution I ∗

m n of WI null-space aims to satisfy the tension con-
straints, while maintaining the end-effector on its actual pose:

I ∗
mn = [In − W +

I WI ] Iobj (13)

Let us review the literature dedicated to the determination of the objective ten-
sions vector Tobj that maintains the cable tensions vector T within a feasible tensions
workspace, ensuring the constraints (5). The available works can be classified in two
categories. The first approach opted for iterative algorithms, so that efficient con-
strained optimisation methods can be used such as Linear Programming Methods
(LPM) [1, 14], but the cable tensions continuity is not guaranteed. Other optimisation
methods are also used such as Non-Linear Programming Methods (NLPM) in the
particular case of Quadratic Programming Methods (QPM) [1, 15], and the general
NLPMwith the gradient descent method to resolve the problem in a quadratic formu-
lation [7]. These quadratic methods guarantee the tensions continuity but have a non-
predictable runtime. However, these algorithms are not suitable for the constraints
of real-time control. Hence, the second approach relies on non-iterative algorithms
to handle the real-time control constraints. For instance, Mikelsons et al. proved that
the Center of Gravity (CoG) of the feasible tensions distribution workspace (the set
of solutions of equations (6) satisfying the tension constraints (5)) is a solution that
ensures the tensions continuity [16]. Recently, some other works have been pro-
posed by Borgstrom [17], and by Lamaury and Gouttefarde which optimised the
CoG method to the case of two degrees of redundancy [18].
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4.3.2 Considered Algorithm

Unlike this previous second category of non-iterative algorithmswith an evolutionary
criterion, this work is inspired from an non-evolutionary algorithm proposed by
Lafourcade [5] more appropriate to satisfy our real-time constraints (less than 1ms),
it is adapted to our case also considering a constant vector Tobj but variable Iobj due
to the actuators dynamics of (7).

The proposed algorithm consists in: (1) selecting Tobj inside the feasible tensions
workspace and calculating Iobj by inverting (7), (2) resolving the optimisation prob-
lem (11)without the tension inequalities constraints (5), (3) if some tension inequality
constraints are violated then the q concerned inequalities selected among them are
transformed into current equality constraints (not more than r tension inequality con-
straints can be saturated simultaneously) and included into the optimisation problem.
All combinations of 1 to r violated tension inequality constrained are considered until
one solution is met satisfying all the non-saturated tension inequalities constraints.
If no solution is found, the vector Iobj can be scaled by a scalar factor to not modify
the trajectory and the process could be repeated. If the problem has no solution, the
reference trajectory should be modified (not detailed herein).

When saturating a combination of q violated tension constraints, the control sig-
nal of motor currents vector I ∗

m can be obtained by resolving the new quadratic
optimisation problem of the objective function Esat given by:

Esat = E + (ST I ∗
m − Isat)

T μ (14)

where the selection matrix S = [s1 . . . sq ] ∈ R
n×q concatenates the vectors sk of the

canonical basis of Rn to select the combinations of the violated tension constraints
to be saturated, and the vector μ ∈ R

q is the Lagrange multiplier associated to the
current equality constraints ST I ∗

m − Isat = 0, such as the vector Isat ∈ R
q is the

currents vector that corresponds to the saturated tensions vector by inverting (7).
The set of solutions of the optimisation problem (14) can be written as:

I ∗
m = I ∗

m p + I ∗
mt (15)

where:
I ∗
m t = I ∗

mn + [
W +

I W sat
I − S

] [ST W +
I W sat

I − Iq ]−1 �sat

in which the resulting saturated wrench matrix is W sat
I = WI S, and the vector of the

excessive motor currents �sat = Isat − ST (I ∗
mp + I ∗

mn) is the image of the excess in
cable tensions evaluated by (7).
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5 Results

5.1 Evaluation Task

In order to validate the vision-based position control scheme of Sect. 4, a set of end-
effector trajectories are tested in simulation and experimentally. The end-effector
being located on the measured initial pose Xeo, it is moved as follows:

• Step trajectories: the end-effector reference trajectories are three pure translations
of magnitudes +0.3m, and rotations of angles +15◦ along/around respectively
Xo, Yo and Zo axes.

• Tracking trajectories: the end-effector reference trajectory is a circle belonging to
the plane z = 0m, located at the center of the workspace and of radius 0.3m.

5.2 Controllers Design

This part details the design of the controllers used:

• for the visual controller, the proportional gain matrix K is chosen as kP = kΦ =
6 rad−1 to get a time response of 500ms on each component of the pose Xe.

• for the joint speed controller, the gains K p and Ti are tuned using the symmetrical
optimum method as follows:

– first, the integration time constant Ti is chosen as Ti = a τ , where the coefficient
a allows as to tune the phase margin �φ so that a = tan2(�φ

2 + π
4 ).

– then, the proportional gain K p is calculated as K p = jeq/(τ
√

a), so that the
phase margin corresponds to the maximal phase of the corrected system φmax =
�φ − π , which occurs at the pulsation wmax = 1/(τ

√
a).

In our case, by selecting a = 20 (leading to �φ � 65◦), we obtain: K p =
0.1107A·s/rad and Ti = 26ms. The achieved bandwidth for the joint speed control
is 172 rad/s.

5.3 Obtained Performances

For the step trajectories, the time responses of each controlled component of the
end-effector pose are given in Fig. 4 for the simulated and experimental cases. The
response time is of 500ms and the precision is less than 1mm for the translations
and less than 1◦ for the rotations.

The circular tracking trajectories of the end-effector are shown in Fig. 5 for the
simulation and experimental cases. The corresponding time responses of the speed
and current of the motor 1 are respectively given in the Figs. 6a and b.
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(a) (b)

Fig. 4 End-effector pose for the step trajectories. a Position along Xo. b Orientation around Xo

(a)

(b)

Fig. 5 End-effector pose for the circular tracking trajectory. a Spacial trajectory. b Temporal
trajectory

The results provided from the test trajectories clearly show that the reference
signals are nicely tracked, with the previous response time and a very little error,
showing a very close matching between the simulations and the experiments.

The feasible tensions workspace is defined by the boundaries Tmin = 1.48 N
and Tmax = 18.52 N, which have been calculated based on the static model of the
actuators, considering the current limits of the motors [0 3]A, and the unwinding
cable length limits [0 4.82]m. The objective tension Tobj has been dimensioned as
Tobj = 10 I8×1 N. The objective current Iobj is updated at each sample time using
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(a) (b)

Fig. 6 Motor 1 responses for the circular tracking trajectory. a Motor 1 speed. b Motor 1 current

Fig. 7 Cable tensions for the
circular tracking trajectory
estimated using the actuators
dynamics

the dynamic model of the actuators from the objective tension Tobj. It can be seen on
Fig. 7 that the eight cables are maintained under feasible tensions that are continuous
during the circular motion of the end-effector.

6 Conclusion

This paper reports simulation and experiment results of the vision-based position
control of a 6-DoF redundant CDPR INCA developed by Haption, equipped with
the Bonita motion-capture system developed by Vicon to measure the end-effector
pose. The control laws allow to track the pose reference trajectories with a response
time of 500ms and a precision less than 1mm in translation and less than 1◦ in
rotation, while maintaining the cables under feasible tensions. The corresponding
bandwidth of approximatively 6Hz would allow to achieve pick-and-place tasks at
a quite high pace. Deeper investigations will be necessary in order to evaluate the
limitations of the control laws in terms of reachable bandwidth and robustness.
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Analysis of a Real-Time Capable Cable Force
Computation Method

Katharina Müller, Christopher Reichert and Tobias Bruckmann

Abstract This paper deals with the problem of computing minimum feasible cable
force distributions for redundantly actuated cable-driven parallel robots. In this
context, the known Closed Form Method as well as its limitations are presented
and potential improvements are identified. This finally leads to an approach called
Improved Puncture Method. Then the methods are analyzed regarding their covered
workspace, the resulting cable force distributions and the needed computation time.
Finally the Improved Puncture Method was implemented into the augmented PD
controller and run on the SEGESTA prototype.

Keywords Cable-driven parallel robot ·Force distribution ·Threefold redundancy ·
Geometrical approach · Improved puncture method

1 Introduction

Cable-driven parallel robots (CDPRs) belong to the class of parallel robots. In contrast
to serial robots where joints and links (e.g. struts) are arranged in series, for parallel
robots the actuators are directly connected to the end-effector. That leads to better load
spreading, higher stiffness and higher precision. On the other hand, classical parallel
robots usually have a relatively small workspace compared to serial manipulators.

This can be counteracted by using cables instead of stiff struts. The cables are
connected to the end-effector in a parallel topology and wound up by a motor-driven

K. Müller (B) · C. Reichert · T. Bruckmann
Chair of Mechatronics, University Duisburg-Essen, Essen, Germany
e-mail: mueller@imech.de

C. Reichert
e-mail: reichert@imech.de

T. Bruckmann
e-mail: tobias.bruckmann@uni-due.de

© Springer International Publishing Switzerland 2015
A. Pott and T. Bruckmann (eds.), Cable-Driven Parallel Robots,
Mechanisms and Machine Science 32, DOI 10.1007/978-3-319-09489-2_16

227



228 K. Müller et al.

winch. Winding up cables can be done very fast. Thus, the end effector can reach
high velocities and accelerations [1, 5, 8].

CDPRs can be classified by their degree of redundancy r [9, 12]. This can be
determined by r = m − n where m is the number of cables and n is the degree of
freedom. Because cables can only transmit tensile forces, to fully restrain a CDPR
the number of cables must exceed the degree of freedom at least by one. In the case
of minimum redundancy (r = 1) the CDPR is called Completely Restrained Par-
allel Manipulator (CRPM). The class Incompletely Restrained Parallel Manipulator
(IRPM) denotes the case of r < 1 and the class Redundantly Restrained Parallel
Manipulator (RRPM) describes the case of r > 1 [2].

2 Problem Definition

2.1 Mathematical Definition

Figure 1 shows the forces (cable forces and external forces) and torques which effect
the end effector.

For the static equilibrium, both the sum of the forces and the sum of the torques
have to be zero:

m∑

i=1

fi + fp = 0 and
m∑

i=1

pi × fi + τ p = 0. (1)

In short form this can be written as:

Fig. 1 Wrench applied onto the platform. Source [3]



Analysis of a Real-Time Capable Cable Force Computation Method 229

ATf + w = 0 (2)

⇔ f = −A+Tw︸ ︷︷ ︸
f0

+Hλ. (3)

Here AT ∈ R
n×m is the structure matrix, f ∈ R

m is the cable force vector, w ∈ R
n

is the vector of the external forces and torques (e.g. caused by inertia of process
loads), A+T ∈ R

m×n is the Moore–Penrose pseudoinverse of the structure matrix
and H ∈ R

n×r is the kernel (or null space) of the structure matrix.
For a CDPR, Eq. (3) is additionally bounded by a maximum and a minimum

permissible cable force. To avoid slackness the minimum forces have to be greater
than zero, because of the fact that cables can only transmit tensile forces. For tech-
nical reasons, the cable forces are also bounded above. This yields in the following
inequality:

0 < fmin ≤ f ≤ fmax. (4)

Cable forces which fulfill Eq. (3) as well as Eq. (4) are called feasible cable forces.
f0 is a minimum solution, solving the system of equations described in Eq. (2) with

the smallest Euclidean norm. Because the minimum solution usually lies outside the
admissible solution space defined by the force limits defined in Eq. (4), it needs to
be moved by choosing an appropriate value for Hλ.

For CRPMs and RRPMs this system of equations is under-determined. Accord-
ingly, there usually exists more than one solution.

An additional demand on the computed force distributions is that they have to
be continuous while the end effector moves along a continuous trajectory. This is
crucial for control purposes.

2.2 Solution Approaches

To solve the presented problem, different approaches have been developed. In [10]
Pott provides a list of most of the known approaches.

Generally, there are two different ways to calculate the feasible cable forces: Either
this problem can be formulated as an optimization problem or it can be interpreted
and solved geometrically. Normally, optimization problems are solved iteratively.
For this reason, the needed computation time usually cannot be exactly predicted
and therefore real-time capability cannot be guaranteed which again is crucial for
control purposes.

Because of their non-iterative character, geometrical approaches are a promising
alternative for real-time applications. In [7] basic geometrical approaches are briefly
presented. Two of them, the Closed Form Method and the Puncture Method, will be
analyzed in the next sections.
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3 Improved Puncture Method

The Improved Puncture Method (IPM) is a further development of the Puncture
Method (PM), which to the authors’ best knowledge was first presented in [7]. It
may be used in combination with the improved Closed Form Algorithm presented
by Pott in [10]. It belongs to the geometrical approaches to solve the presented
problem, meaning that the given equations are interpreted geometrically.

As shown in Fig. 2 for m = 3 cables and n = 1 degree of freedom, Eq. (4) can be
interpreted as an m-dimensional hypercube C , whereas solutions of Eq. (3) lie in the
r -dimensional solution space S . Feasible cable forces, which fulfill both equalities
(Eqs. 3 and 4) lie inside of the intersection F .

Using the Closed Form Method (CFM) to find one feasible cable force distrib-
ution, two steps have to be performed:

• First the center point of the hypercube C is projected onto the solution space S .
• Then it has to be checked whether the projected center point lies within the inter-

section F [11].

This method has two main advantages, both regarding the computation time: As
experiments showed, it needs very low average computation time. Additionally, the
worst-case computation time can be strictly bounded.

Not all computation methods cover the same workspace (the space that can be
reached by the end effector). Some may fail to find a solution where others identify
a feasible force distribution. For the CFM the covered workspace is relatively small
compared to those of other methods. Besides, the level of the computed cable force
distributions is quite high.1

For practical applications it is often desirable to have rather low cable force ten-
sions. One method to achieve this is the Puncture Method (PM). Here two points
on the solution space S are needed:

Fig. 2 Schematic representation of the CFM and the IPM for m = 3 cables and n = 1 degree of
freedom. a Closed form method. b Improved puncture method. Source [3]

1 Research results regarding this topic can be found in [6, 7].



Analysis of a Real-Time Capable Cable Force Computation Method 231

• One point must lie inside of the hypercube (e.g. the solution of the Closed Form
Method).

• One point must lie outside of the hypercube, preferably near the origin. Therefore,
the projection of the origin onto the solution space lends itself to being used.

• When these two points are connected by a line, the desired cable force distribution
lies at the intersection of this line with one of the minimum cable force boundaries.

Research results show that this method (based on the Closed Form Method) still
is very fast, while the computed cable force distributions lie on a much lower ten-
sion level, which in fact is very similar to the solutions of Quadratic Programming.
Nevertheless, the covered workspace is still as small as the one of the Closed Form
Method.2

Addressing this problem, in [10] Pott presents an extension to the CFM to enlarge
the covered workspace. In this paper it is referred to as Improved Closed Form
Method (ICFM).

The added algorithm sets in when the solution of the CFM lies outside of the cable
force boundaries:

• The cable force which is farthest away of the upper or lower cable force boundary
is picked and fixed to its maximum fmax or minimum fmin respectively. For the
remaining cable forces, the CFM is executed again.

• If the new solution now lies inside of the cable force boundaries, it is the sought
solution and the algorithm is stopped.

• Otherwise, the next cable force with the largest distance to the cable force bound-
aries gets fixed to a constant value as long as the remaining number of unfixed
cable forces is larger then the degree of freedom n of the robot.

Consequently, the added algorithm can be performed r times at most. This means
that the worst-case computation time of the improved Closed Form Method can still
be strictly bounded.

Now these two approaches, the ICFM and the PM, get combined into the
Improved Puncture Method (IPM). Thus, the objective is to obtain a method which,
on the one hand, is very fast with a strictly bounded worst-case computation time
and which is therefore real-time capable. On the other hand, the resulting cable force
distributions shall lie on a preferably low tension level.

4 Analysis for a CDPR with a Threefold Redundancy

To check, whether the IPM meets the declared objectives, it was exemplarily analyzed
for a spatial parallel robot with six degrees of freedom and nine cables (as illustrated
in Fig. 3).

2 See [6, 7] for more information.
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Fig. 3 Schematic
representations of a RRPM
with m = 9 and n = 6.
Source [2]

4.1 Workspace

To measure the covered workspace, the available space inside of the robot frame (size
1.48 m×1.36 m×1.00 m) was discretized and the distance between the grid points
was set to 0.02 m. Then it was checked for which grid points a feasible cable force
distributions could be found. The cable force boundaries were defined as fmin = 10 N
and fmax = 100 N.

In Fig. 4a the workspace covered by the CFM is represented. For 36,648 points a
feasible force distribution could be found.

When the PM is based on the basic CFM, its workspace is the same.
By using the ICFM (getting the IPM), the covered workspace could be consider-

ably enlarged. It contains 64,362 points and is pictured in Fig. 6b.

4.2 Resulting Cable Force Distributions

Next the resulting cable forces are analyzed. Figure 5a shows the trajectory for which
the resulting force distributions where computed with the different methods. It was
supposed that the end effector (EE) moves along the spiral path from the lowest to
the highest end. Again the cable force boundaries were defined as fmin = 10 N and
fmax = 100 N.

Figure 5b shows the cable force distributions that result from Quadratic Program-
ming. In this context it shall only be used as a reference for comparison.

The cable forces resulting from the CFM (Fig. 5c) are on a comparatively high
level. Here no kind of minimization takes place. Besides, in the area between about
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Fig. 4 Covered workspace. a Closed Form Method. b Improved Puncture Method

90 and 96 % of the trajectory and at its end no feasible cable force distributions can
be found by this method. For this reason, the graph shows gaps in these ranges.

The resulting cable forces of the PM based on the CFM are on a much lower
level, which is quite similar to the one of Quadratic Programming, but not identical.
However, the graph still has gaps in the critical areas. Although, they are slightly
smaller.

The graph of Fig. 5e which belongs to the ICFM shows no gaps anymore. Instead,
the critical cable forces were fixed to the upper or lower limit. Anyhow, the values
of the cable forces lie on a comparatively high level.

For this reason, the PM can be applied again. The results are represented in Fig. 5f.
As expected the cable forces could be reduced again in the uncritical area where the
end effector moves inside of the CFM’s workspace. But when the end effector leaves
it and the extended algorithm of the ICFM sets in the IPM does not show the desired
minimizing effect. The resulting cable forces do not differ distinctly from the ones
of the ICFM in the range of trajectory process between around 90 and 96 %.

4.3 Computation Time

The computation time that needed by the different methods was exemplarily tested
by running each method on a real time system using TwinCAT3� by BECKHOFF
on an Intel® Core2™ Duo CPU T9400 processor.

The results for the CFM as well as for the IPM are shown in Fig. 6.
Both methods need very little computation time. The average computation time

of the CFM is 22.25µs. The computation time is quite constant and the marginal
oscillation to a maximum of around 3µs can be led back to system latency.
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Fig. 5 Resulting cable force distributions. a Spiral trajectory. b Quadratic Programming. c Closed
Form Method. d Puncture Method. e Improved Closed Form Method. f Improved Puncture Method

The IPM needs more than twice that much computation time, but that is still very
fast. However, it is striking, that the computation time increases up to 104.8µs in
the critical area at a trajectory process of around 90 till 95 % where the CFM does
not find feasible solutions and where for the IPM the extended algorithm sets in.
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Fig. 7 SEGESTA-prototype of the chair of mechatronics at the University of Duisburg-Essen

4.4 Real-Time Control Application

The presented Improved Puncture Method was implemented on the 6-DOF SEGESTA
prototype shown in Fig. 7. The CDPR is controlled by means of eight BLDC-
Motors (Maxon RE 60) linked to the winches with a nominal torque generation
of cnom = 0.85 N m. Thus m = 8, i.e. the CDPR has a twofold redundancy. The
mass of the EE is approximately 0.3 kg. To measure the forces strain-gauge beam
arrangements (Megatron KM302) are integrated into the winches.

The applied augmented PD (APD) control scheme [4] is based on a joint space
PD controller to regulate the cable length regarding of the desired EE pose. A non-
linear feed forward control law using the inverse dynamics solution is integrated to
compensate the platform dynamics by means of an operational space force vector
described by vff. To compensate the winch dynamics like inertia and friction forces a
joint space force vector fff is in-cooperated into the control scheme. The augmented
PD control law is given by
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Table 1 Coordinates of the chosen trajectory

Path 0 1 2 3 4 5 6 7 8

x 0 0.2 0.2 −0.2 −0.2 −0.2 −0.2 0.2 0.2

y 0 −0.2 0.2 0.2 −0.2 −0.2 0.2 0.2 −0.2

z 0.5 0.4 0.4 0.4 0.4 0.6 0.6 0.6 0.6

fm = Dq̈d + fcsign(q̇) + fvq̇ + fTD (5)

where fm is the commanded actuator input force, fTD are the desired cable forces
based on a force distribution algorithm as presented in the previous sections and fc

and fv are the diagonal matrices of Coulomb and viscous coefficients, respectively.
Within this control approach the input vector for the force distribution algorithm is

vc = vPD + vff (6)

where vPD = AT
(
K pe + K Dė

)
defines the controller output. K p and K D are positive

definite diagonal matrices, e is the cable length error vector and ė is the cable velocity
error vector. Based on the inverse kinematics solution the desired cable length qd will
be computed based on a given EE pose. Here the EE pose refers to the position of the
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EE and the orientation of the EE with respect to the given base frame. The desired
cable velocity q̇d = Aẋd will be computed by the help of the structure matrix.

The augmented PD controller was implemented on the SEGESTA prototype
shown in Fig. 7. The EE was controlled along the path shown in Table 1 and the
cable force boundaries were set to fmin = 5 N and fmax = 50 N.

Figure 8a shows the measured cable forces while in Fig. 8b the controller’s com-
putation time is illustrated. When k is 1 the extended algorithm of the IPM sets in.
It can be seen that the computation time of the controller increases by about 25µs
then. The remaining jumps are caused by other parts of the controller.

Figure 8c and d show the desired and the measured forces of cable 3 and cable 6
which were exemplarily selected.

5 Conclusion

This paper dealt with the problem of computing minimal cable force distributions
for RRPMs for real-time applications. In this context, the CFM and its limits were
presented as well as potential improvements which finally led to an algorithm called
Improved Puncture Method. The methods were analyzed regarding their covered
workspace, the resulting cable force distributions and the needed computation time.

In conclusion, it can be stated that the Improved Puncture Method still is very fast
and that it covers a much larger workspace. A non-negligible drawback, however, is
that the minimization only works properly as long as the end-effector moves within
the workspace that is covered by the basic Closed Form Method. In the outer areas
which are only covered because of the extended algorithm, the Puncture Method
does not have the desired minimizing effect.
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First Experimental Testing of a Dynamic
Minimum Tension Control (DMTC)
for Cable Driven Parallel Robots

Saeed Abdolshah and Giulio Rosati

Abstract Cable tension distribution is an important issue in parallel cable-driven
robots to obtain high efficiency and accuracy of motion. In this paper, a novel
approach is introduced to optimize cable tension distribution of cable-driven parallel
robots, which consists in modifying the minimum tension of the cables according
to the dynamics of the system. This method has been compared to the traditional,
fixed-minimum tension approach on a 2-cable, 1 DOF test bed with different settings
of the controller. First experimental results showed that Dynamic Minimum Tension
Control (DMTC) can be better than traditional approaches in terms of accuracy and
energy consumption.

1 Introduction

Cable-Driven Parallel Robots have a short but growing history. They can be defined as
closed loop mechanisms consisting of multiple actuated cables and an end-effector.
There are some advantages such as very large workspace and high acceleration due to
less mass and inertia, however inaccuracy and necessity of cables to be in tension can
be regarded as disadvantages.Cable driven systemshavebeenusedwidely in different
applications. SkyCam [1], rehabilitation [2], and high speed manipulation [3] are the
most important applications of such systems.

Recently, there have been major advances in different fields of cable driven robots
related to statics, dynamics, control and design [4]. Performance study and cable
tension distribution are some of the most significant subjects which were discussed
by different researchers. In these studies, a maximum limitation of cable tension has
been considered based on cable and actuators properties, and aminimum boundary is
usually set to keep cables in tension to reduce control issues and vibrations. Several
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algorithms were proposed to find the most efficient cable tension in this range, to
apply the smallest torque values without changing the working condition.

Different solutions have been derived accroding to the level of redundancy of
the system being controlled, but all of them employ a fixed value for the minimum
allowable tension in the cables. Themost common algorithmofCRPMs cable tension
distribution consists in finding the set of cable tensions, among those ensuring the
desired end-effector wrench, which has at least one cable at minimum tension [5].

In the case of overconstrained cable robots, many researchers investigated on
estimation of optimal tension distribution using linear, and quadratic programming.
Shiang et al. [6] proposed a standard linear programming to minimize sum of all
tensions while maximizing tension on two longest cables in order to refuse any
kind of slack on a four-cable array robotic crane. In [7] an analytical solution was
suggested based on sum of tensions along cables as small as possible at every pose
of platform without violating the controllable workspace condition. The minimum
Tension was chosen referring to some experiments for an accurate path tracking in a
completely constrained 6-DOF robot.

Pham et al. [8] proposed a recursive algorithm to check the existence of positive
torques, and then optimized torque objective function with linear programming. In
another study, tension distribution has been implemented by feedback linearization,
however some modifications were suggested in case of mathematical constraints or
negative force [9]. Necessity of finding a proper starting point and possibility of
jump from one extreme point to another between successive computations are prob-
lems of LP, however with introducing an optimally safe tension distribution with a
slack variable, fast generation of proper starting and optimal point were gained [10].
Moreover, quadratic programming methods for estimation of two-norm optimal ten-
sion distributions were applied [11, 12], and Lim et al. [13] proposed a gradient
programming method and compared it to linear and quadratic programming.

Furthermore some other methods based on convex optimization for minimization
of actuator forces were applied [14]. Minimization of p-norm [15], and L1-norm
optimization [16] have been applied for tension distribution, however Mikelsons
et al. [17] investigated on safe tension distribution using noniterative method to
gain higher robot stifness. Also since the fingers of a grasp are unidirectional, some
relationships between planar cable-driven robots and spatial antipodal grasp theorem
were studied to achieve proper cable tension distribution [18].

Pott et al. [19] had proposed a closed form solution which has been modified in
his recent study [20]. In addition, properties of different cable tension distribution
methods were explained and compared regarding to some factors such as compu-
tational speed, workspace coverage, capability of real time responses, applicability
for different redundancies and force margin. This comparision shows that each of
common methods have some kinds of problems and are not capable of controlling
all kind of cable driven robots efficiently.

In this paper, we propose a novel approach for cable tension calculation, based
on the estimated dynamics of the end-effector, which sets a dynamically variable
value for the minimum tension of cables according to the desired wrench. The algo-
rithm has been tested on a 2-cable, 1 DOF prototype, and results were compared
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Fig. 1 Sample mapping function used for changing the minimum cable tension fmin according to
the absolute desired wrench W

with traditional, fixed minimum tension methods. In Sect. 2, the new algorithm is
described. Section3 presents the experimental setup and the analysis of results.

2 Dynamic Minimum Tension Control

The main idea behind the DMTC control consists in dynamically calculating a suit-
able minimum value of the lower boundary fmin of cable tension, before applying
a standard tension distribution algorithm. The main difference with already existing
approaches lies in that the value of fmin is not fixed. On the contrary, it is changed
on-the-fly according to the dynamics of the end-effector. More precisely, fmin is
increased when the desired end-effector wrench W is small, and it is decreased when
its absolute value gets greater.1

The main reason for adjusting fmin is that, on the one hand, higher values of fmin
are preferrable, as they allow to avoid cable slacking and they usually yield higher
positioning accuracy [7]; on the other hand, increasing fmin can lead to saturation of
actuators, especially when the total wrench W is large. Based on such considerations,
we propose to reduce fmin as long as the absolute value of W increases, and to restore
higher minimum tensions when it gets close to zero, as qualitatively shown in Fig. 1.
Such an approach can be applied to any cable-driven parallel robot, regardless the
number of cables and the number of degrees of freedom, as the mapping function
converts one scalar quantity (the absolute desiredwrench) into another scalar quantity
(the minimum tension of the cables). In the implementation presented in this paper,
this is obtained using a look-up table (LUT).

It is well known that the static equilibrium of an n-DOF cable driven robot,
controlled by m cables, can be expressed by the following linear equation system:

1 For such systems with rotational and translational degrees of freedom, the units in the wrench
vector W must be normalized before calculating its absolute value, e.g., by dividing the torques by
the pulley radius.
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Fig. 2 Schematic of a position control using the Dynamic Minimum Tension Control (DMTC)

AT = W (1)

where A ∈ Rn×m is the structure matrix of the robot, W is the wrench applied to the
end-effector, and T is the vector of cable tensions, which can be written as:

W =
[

F
M

]
∈ Rn T =

⎡
⎢⎢⎢⎢⎣

T1
.

.

.

Tm

⎤
⎥⎥⎥⎥⎦

∈ Rm (2)

It has been demonstrated in [21] that, as long as the end-effector lies in the force-
closure workspace, vector T can be calculated by taking the sum of one particular
solution Tp of system (1) and one vector belonging to the kernel of the matrix A with
all positive components, which we call Tk , whose norm increases with fmin:

T = Tp + Tk = Tp + Nλ( fmin) (3)

where N ∈ Rm×(m−n) is a basis of the kernel of A; λ ∈ Rm−n contains the weights
of the linear combination of the columns of N yielding Tk . By properly chosing the
vector λ, the vector T will hold at least one cable at tension fmin and all others cables
at fmin or greater. Clearly, by reducing fmin we will get a vector T satisfying system
(1) with reduced norm. This is particularily clear, for example, in the case of planar
point-mass CRPMs, where for a given direction of the desired force W , there will be
at least one cable whose direction is opposite to that of W (in the sense that the dot
product between the desired force W and the direction of the cable will be negative),
so the reduction of its tension ( fmin) will help reducing the tension in all other cables.

Figure2 presents a schematic of a position control using theDMTC approach. The
output W of the controller, given by the sum of feedforward and feedback actions,
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Fig. 3 Experimental setup for testing optimal force distribution

enters the DMTC block which calculates fmin. Both W and fmin enter the Cable
Tension Computation (CTC) block, which outputs reference to drivers. Position
feedback by encoders closes the feedback loop. A similar approach, except from the
DMTC, is that presented by Lamaury et al. in [22], where they proposed the PID
position control in the Cartesian space of a 6-DOF cable-suspended parallel robot,
based on forward kinematics and on a particular PID tuning procedure. Clearly, the
DMTC approach can be applied also in the case of joint space position control,
provided that also in this case the output of the controller is the end-effector wrench,
which is obtained from the motor torques vector by using the pseudo-inverse of the
Jacobian matrix.

3 Experimental Setup and Results

To test the newmethod, a 1 DOF cable-driven robot with two DCmotors and a slider
(end-effector) was built (Fig. 3). One linear and two rotational encoders were used
to measure the position of the slider and of the motors. This plant was connected to a
PC via a PCI Multifunction I/O Sensoray626 board to control the system by Matlab
and Simulink RTWT.

In the feedforward loop, slider friction was modeled as a function of velocity,
based on sum of Stribeck, Coulomb, and viscous components, which were esti-
mated through experiments. In the feedback loop, the position of the end-effetor was
estimated using rotational encoder readings, with additional compensation of cable
elongation. The linear encoder was used only to measure the actual position of the
end-effector for final assesment of controller performance.

The CTC block distributed the force in the two cables by simply imposing their
tensions to fmin and W + fmin, according to the direction of W . Then, it calculated
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Fig. 4 Comparision of motion reference and position estimation of encoders

the current reference for the drivers in two ways: either proportionally to the desired
cable tension (CTC1), or by calculating a position reference for each motor and
yielding to the driver a PID control action to track this reference (CTC2). The CTC1
implements a very easy but not accurate controller, which totally neglects actuator
dynamics. Such solution can be used only with very slow motion, when actuator
dynamics is negligible. The CTC2 implements a more accurate controller, which in
turn requires a model of cable elasticity to compute motor position reference and the
tuning of a PID controller for each motor.

We used a periodic, third degree polinomial reference (see Fig. 4), with various
frequencies (0.5, 1 and 2Hz) and fixed amplitude (35mm). Each reference was tested
with both CTC algorithms and with four different minimum tensions: LUT, 1, 4 and
7N. An upper bound of 30Nwas used for cable tension. In LUTmode, the minimum
tension varied between 1 and 7N according to the absolute value of W .

To compare the different working conditions, the variance of position error and
a power-related index were used. The former was calculated as the variance of the
difference between reference and actual (linear encoder) positions. The latter was
calculated as the average sum of the squared current references provided to the
drivers. Measures were repeated during ten periods (i.e., twenty travels of the slider).

A Comparative Index iC was also calculated, given by the following expression:

iC = varx

varLUT
∗ iP,x

iP,LUT
(4)

where varx is the variance of error with fmin = x[N ], iP,x is the power index in the
same condition, whereas LUT values refer to LUT fmin. We will consider a value of
iC greater than one as an indicator that the LUT method outperforms the fixed fmin
method. In fact, if iC > 1, the ratio between the performance parameters must be
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Table 1 Comparison of LUT and fixed minimum tension with different references and CTC1

Frequency (Hz) Minimum cable tension Error variance Power consumption Comparative index

0.5 Look-Up Table 0.00376 2.77 —

1 N 0.00498 1.58 0.756

4 N 0.00399 3.21 1.230

7 N 0.00358 5.34 1.836

1 Look-Up Table 0.00709 2.87 —

1 N 0.00839 1.27 0.524

4 N 0.00759 2.69 1.003

7 N 0.00677 5.18 1.723

2 Look-Up Table 0.0537 3.67 —

1 N 0.131 1.58 1.050

4 N 0.0701 3.64 1.295

7 N — — —

more than one in at least one case, indicating superiority of LUT for such parameter;
on the other hand, the other parameter may yield a ratio lower than one, but with a
smaller difference.

Results are summarized in Tables 1 and 2. The LUTmethod tends to provide better
results, as measured by the comparative index, considering a mix of accuracy and
power consumption. This result holds especially when the LUTmethod is compared
to a fixedmaximum tensionmodewhere fmin equals themaximumvalue provided by
the LUT. In this case, the LUT method yields comparable accuracy with less power
consumption with respect to the fixed mode. The greatest difference is obtained with
CTC1 (simplest control).

When compared to fixed modes with reduced constant tension, the LUT mode
performs better in terms of accuracy, but yields greater power consumption. In such
cases, the comparative index may be close to one or even smaller than one. The latter
case indicates that the relative (percentage) benefit in terms of accuracy is smaller
than the increase in power consumption.

Figure 5 shows the plots of power consumption versus variance of position error
for all testing conditions. Each plot refers to a specific CTC and frequency condition,
and renders in blue the three fixed modes, in red the LUT mode. Blue points are
connected with lines to highlight the trend. The plots in Fig. 5 indicate that an
increase in accuracy is usually obtained through greater power consumption. They
also show that the LUT method tends to stay below the trend of the fixed modes,
although further testing is needed to verify if this holds also for different settings of
the LUT.
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Table 2 Comparison of LUT and fixed minimum tension with different references and CTC2

Frequency (Hz) Minimum cable tension Error variance Power consumption Comparative index

0.5 Look-Up Table 0.00173 1.09 —

1 N 0.00196 1.02 1.060

4 N 0.00142 1.38 1.039

7 N 0.00125 2.12 1.406

1 Look-Up Table 0.00591 1.03 —

1 N 0.00646 0.958 1.017

4 N 0.00595 1.15 1.124

7 N 0.00432 1.78 1.263

2 Look-Up Table 0.0674 1.69 —

1 N 0.0789 1.45 1.004

4 N 0.0737 1.61 1.042

7 N 0.00624 2.26 1.238

Fig. 5 Prediction of cable tension estimation for constant minimum value and look up table

4 Conclusion

In this paper, a dynamic minimum tension control for cable-driven robots was pro-
posed and tested on a simplified scenario. This method is based on changing the
minimum tension of cables according to the dynamics of the system. In particular,
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minimum cable tension is reduced when the end-effector wrench is large, with the
aim of avoiding saturation of actuators and limiting power consumtion.

First experimental results show that this approach yields large benefits in terms
of power consumption, although a reduction in accuracy is observed, especially
with slow reference. When compared to fixed minimum tension modes with smaller
minimumtension, theDMTCcontrol performs comparably to thefixedmodes, except
when the fixed value becomes extremely small.

One limitation of this study is that the experimental setup included a single-dof
system, so further testing is needed to verify if the DMTC concept can be applied
succesfully inmore complex contexts.Moreover, our systemhad a quite high friction,
due to the coupling of the slider, which may have influenced results, and which is not
usually present in cable-driven parallel robots. On the other hand, this setting allowed
for precise measurement of end-effector motion. Finally, further investigation is
needed to tune LUT parameters with the aim of obtaining the best trade-off between
acuracy and power consumption.
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Modeling and Control of a Large-Span
Redundant Surface Constrained Cable Robot
with a Vision Sensor on the Platform

Amber R. Emmens, Stefan A.J. Spanjer and Just L. Herder

Abstract A type of cable driven redundant parallel manipulator is considered that is
spanned across a surface, instead of suspended in space.A control strategy needs to be
implemented that guarantees positive cable tensions and provides good performance
in trajectory tracking. Therefore a workspace control method is designed based on a
model of the robot, which includes a solution for the cable tension distribution.As it is
hard tomeasure the absolute position of the end-effector, a new approach is presented
where feature detection is used to update an approximated position. Experiments are
carried out to compare performances with andwithout the addition of a vision system
for a simple line motion. The error between the platform and the reference position
is measured for both cases as well as the cable tensions. Mean absolute errors of 8.8
and 13mm are obtained for the case with and without vision system respectively and
positive cable tensions are measured for the complete motion. This indicates that
the principle of including feature detection in the position measurement is a suitable
control strategy.

1 Introduction

In parallel manipulators rigid links can be replaced by cables. The advantage is that
light weight constructions are obtained that can span large workspaces for high-
speed motions. A possible application for this type of robot could be as a window
cleaning device, because the cleaning of large buildings with free-form architecture
can be challenging with conventional equipment [15, 16]. A disadvantage of using
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cables is that cables can only pull and not push, so for proper control cables must be
kept in tension at all times. To obtain a fully constrained system and to enhance the
workspace, these robots typically have more cables than degrees of freedom. This
redundancy and the non-linear coupled behaviour of the cables makes the control
design of a cable robot challenging compared to parallel manipulators with rigid
links.

In general, control methods are designed in joint space or workspace. In joint
space cable lengths are measured and controlled to a desired cable length, which
follows from the inverse kinematics of a desired trajectory. The tracking performance
reduces, because elongation and coupled behaviour of the cables are neglected. Still
this is a popular control strategy. The choice for a joint space controller is a matter
of convenience, due to its relative easy implementation [9, 14, 18]. The change
in cable length is often derived with an encoder on the servomotor [5, 8, 11, 17],
the end-effector coordinates however, are not measured. Therefore in this paper a
workspace controller is implemented. When the workspace is used the position and
orientation of the platform have to be measured during the control process, which
can be difficult and expensive. Ways to measure the position and orientation of the
end-effector are with lasers [6, 17] or vision sensors [4, 10]. Both have disadvantages
as lasers may induce problems with alignment and eye-safety, whilst vision sensors
limit the workspace of the robot. In the field of mobile robots sometimes optical
sensors are used as a replacement for rotary encoders to detect motion relative to the
ground [1, 3]. The applied control strategy in this research is inspired by the latter
and uses feature detection with a camera on the platform to obtain the position of the
end-effector.

In this paper a type of non-suspended cable robot is considered, referred to as
surface constrained cable robot, which is different from the cable robots mainly
discussed in literature as it is spanned across a surface [15]. Therefore it suffers
from friction and its degrees of freedom are limited. Furthermore the actuators are
placed on the platform instead of at a fixed base. The objective of the paper is to
present a suitable control strategy for a large-span surface constrained cable robot.
For that purpose a workspace control strategy is designed using vision feedback
and a solution for cable the tension distribution. During line motion experiments the
absolute position of the end-effector is measured to obtain the error on the reference
trajectory. Performances of the vision and non-vision based control strategies are
compared. Furthermore a model is made for simulations, which can be compared
with the real motion and cable tensions of the prototype.

Thepaper is structured as follows: first themodelingmethod is explained including
the kinematics and dynamics of the platform as well as the control of the platform
position and the cable tensions. The experimental setup and the implementation
of the control strategies are presented. Results of experiments and simulations are
discussed.
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2 Method

A model of the cable robot is made that will be used for simulations. Based on this
model a controller is designed for implementation. An experimental setup is used to
compare different control strategies and to validate the model.

2.1 Model

2.1.1 Kinematics

Figure1 shows the model of the robot. It has three degrees of freedom: two transla-
tions x ans y along the surface and a rotation θ parallel to the surface. Four cables
are used to move the platform, so it has one redundant cable. The motors and drums
to wind the cables are attached to the platform. It has two reference frames: frame A
attached to the base and frame B attached to the platform. The attachment points of
the cables at the base and frame are denoted Ai and Bi respectively, where i is the
cable index. The cable vector li and the cable length Li are

li A = Ai
A − Bi

A (1)

Li =
∥∥∥(Ai

A − Bi
A)

∥∥∥ (2)

Fig. 1 Model of the cable robot on a flat surface
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The transformation from a point Q in frame A to frame B is

QB = RB
A (QA − pA

B) (3)

where RB
A is the 2 × 2 rotation matrix defined by θ and pA

B the translation vector
defined by the platform positions x A

p and y A
p .

2.1.2 Dynamics

The equations of motion of the actuators are

Ja θ̈i = Ti − Rbωi − rpti (4)

where Ja is the moment of inertia of the actuator, θi the rotation of the motor, Ti the
torsion delivered by the actuator, Rb a coefficient to compensate for internal viscous
friction,ω the angular speed of themotor, rp the radius of the pulley and ti the tension
of cable i . The cables are modeled as preloaded springs with stiffness ki dependent
on the non-stretched cable length L0i and damping c due to some internal viscous
friction.

ti = ki�Li + c ˙�Li (5)

ki = AE

L0i
(6)

where A and E are the cross sectional area and elastic modulus of the cable respec-
tively. �Li is the cable elongation dependent on the amount of winded cable and the
position of the platform. The total cable length Li is

Li = L0i + �Li (7)

Forces acting on the platform in the directions of the degrees of freedom are the
cable induced forces Fk and the friction Fw, which is dependent on the normal force,
the movement direction and a friction coefficient. The equations of motion of the
platform are

⎧
⎨
⎩

Mẍ
M ÿ
J θ̈

⎫
⎬
⎭ =

{
Fk
Mk

}
−

{
Fw
Mw

}
(8)

For the cable induced forces the wrench matrix W is used.

{
Fk
Mk

}
= W t =

[
dA

1 ... di
A

b1
A × d1

A ... bi
A × di

A

]
⎧
⎪⎪⎨
⎪⎪⎩

t1
t2
t3
t4

⎫
⎪⎪⎬
⎪⎪⎭

(9)
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With d A
i the direction of cable i and bA

i the vector from B B
i to the origin of frame B

rotated into frame A.

di = li A

Li
(10)

bi
A = R A

B Bi
B (11)

2.2 Control

Most cable robots are controlled in joint-space. This means that from the desired
trajectory of the platform, the desired cable lengths are calculated and each cable
is controlled individually. A problem with this way of controlling is that the motor
torque is allowed to grow excessively when motors are pulling against each other.
Therefore the choice is made for a workspace controller. A PID controller is used
to control the error between the position of the platform and the reference position.
From the desired position the desired cable tensions must be deduced. Therefore a
solution for the redundancy must be obtained. Recap Eq.9:

Fp = W t (12)

where Fp is the desired resultant force on the platform induced by the cables. In case
of redundancy W is not square. Therefore the inverse of W does not exist. When the
desired platform forces are known a primary solution for the cable tensions tp can
be found by applying the Moore-Penrose pseudoinverse.

tp = W †Fp (13)

To this solution, solutions in the null-space of W can be added, which is the space
of cable tensions that do not add to the resultant force on the platform.

t = tp + tℵ (14)

W tℵ = 0 (15)

tℵ = (I − W +W )ν (16)

where tℵ is the vector with tensions from the null-space, I the identity matrix and ν

is an arbitrary vector that can be chosen to satisfy positive cable tensions [7]. Tension
distribution solutions are discussed in more detail in [2, 12, 13]. An overview of the
control method is shown in Fig. 2.
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Fig. 2 Control scheme

Fig. 3 Prototype of the cable robot

2.3 Experimental Setup

The prototype of the robot is shown in Fig. 3. It consist of four Maxon motors
DCX35L GB KL 24V with encoders ENC30 HEDL 500IMP and planetary gear-
head GPX42 156:1. Furthermore a Microsonic mic+ ultrasonic sensor is used to
measure the absolute position and Vishay Celtron S-Type load cells to measure the
cable tension. The cables are made of Liros D-Pro Dyneema rope with diameter
2.5mm and winded on drums with a radius of 0.0557m. The usb-camera used is
a Microsoft Lifecam VX-800 with resolution 160 × 120 and frame rate 1/30. The
system is controlled using xPC and Simulink. In the test a line motion is made of two
meters from left to right and back with a maximum velocity of 0.2m/s using only
two of the four motors. The choice is made to execute a one dimensional so that an
ultrasonic sensor can be used to obtain the real trajectory of the robot and to simplify
the initial vision control. The robot is subjected to a skew sine reference profile. Per-
formances of two different measurement methods are compared: using the encoders
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Table 1 Parameter values
used for simulation and
control

Parameter Value

Suspension locations AA
i

[
0 4.54

]

Suspension locations B B
i

[
−0.34 0.34

]

Platform size 0.48 × 0.48m

Platform mass M 14kg

Cable elasticity E 69 · 109 Pa
Cable diameter 2.5mm

Drum radius rp 0.0557m

Gear reduction 156:1

on the servomotor and an optimization with the vision systems. Indicators of good
performance are positivity of cable tensions and accurate trajectory tracking. The
load cells are used to check whether the cable tensions remain positive and the mean
distance between the reference and the real position of the platform is a measure for
the trajectory tracking. A list with parameter values is shown in Table1.

2.3.1 Control

The previously described control method is implemented on the prototype. A dis-

cretized PID controller of the form C = K p
sτz + 1

sτp + 1
(1 + 1

τi s
) is used with

K p = 7.97 × 103, τz = 0.105, τp = 0.0105 and τi = 0.211. The input of the
PID controller is the tracking error on the position. Because the absolute position is
not measured the motor encoders are used to approximate the position of the plat-
form. The output of the controller is the desired resultant force on the platform. The
desired cable tensions are found by using the pseudo-inverse of the wrench matrix
and adding null-space solutions such that the minimum cable tension is 20N. In the
one dimensional case finding the null-space solution is quite straightforward, because
increment of the tension in one cable leads to similar increment in the second cable.
A velocity feed-forward is added to compensate for the large amount of friction in
the system.

A second test is carried out with the addition of a vision system. A camera is
plugged in the target pc and detects black lines on a white surface at known positions.
First edges are detected in the input image using the Sobel method. Then local
maxima are selected in the hough transform of the obtained black and white image
that correspond to lines in the image. Because the locations of the lines are known
as well as the location of the camera with respect to the platform, the position of the
platform can be deduced. The difference between the approximated position based
on the encoders and the position measured by the camera is added to the encoder
based position with a rate limitation. Every time a new line is detected the difference
is updated, else the last available difference is used. This way the tracking error
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Fig. 4 Implemented control scheme

changes and the control action adapts to the new situation. The implemented control
scheme is shown in Fig. 4.

3 Results

3.1 Experimental Results

Thefirst tests are executedwithout vision feedback, soonly the approximatedposition
based on the encoder output is used. Figure5 shows the tracking error between this
position and the reference.

With the used control method the reference can be tracked with an accuracy of
2.5mm. However, the position deduced from the encoders is not the real position
of the platform. The real trajectory is measured with the ultrasonic sensor. The data
obtained is smoothed with a moving average filter. Figure7 shows that the real error
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between the position of the platform and the reference rises up to 28mm and has a
mean of 13mm during motion, much larger than the accuracy obtained previously.

The cable tensions during motion are shown in Fig. 6. They remain positive at all
times and between the start up and stopping phase the tension in the redundant cable
are near the desired minimum tension.

In the subsequent test a vision system is introduced to update the encoder mea-
surements. Figure7 also shows the difference between the reference position and the
real position measured with the ultrasonic sensor during this test. The mean distance
between both is 8.8mm during motion.
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experiment

3.2 Simulation Results

A line motion is simulated similar as in the experiment. The same control strategy
is implemented and the plant is modeled according to the kinematics and dynamics
described previously. A list of used values for several variables can be found in
Table1. Figure8 shows the simulated cable tensions during motion compared to the
experimental ones. The simulation results do not show the vibrations in the tension
that occurred in the tests. A similar observation can be made for the tracking error
in Fig. 9.
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4 Discussion

Figures8 and 9 show differences between the tests and the simulated model. For the
cable tensions these may occur due to static friction, creating an overshoot when the
robot starts moving.

The drum radius is assumed to be constant, whilst in reality it increases when
cables are winded on top of each other resulting in a large error in the trajectory
(Fig. 7). When the winding is controlled in such a way that drum radius is indeed
constant this can be improved, though an error will still remain due to varying cable
tensions and winding angles.

Figure7 shows that the error between the reference and the real position of the
platform reduces and the manipulator stops closer to the desired set-point when a
vision system is added. This proves that using line detection to update the approx-
imated position is a good solution to improve the performance. The vision system
however is not working flawless yet. Inaccuracies were introduced by inconsisten-
cies in the edge detection and low camera quality. It is expected that already a better
performance can be obtained by improving the vision system and image processing.
Furthermore other sensors could be used. In this case a camera was chosen as addi-
tional sensor to provide more accurate position measurements, but it might as well
could have been a different sensor to detect features, such as a depth or heat sensor. It
is shown the principle of feature detection to update an approximated position can be
a good solution when the real position is hard to measure. In the ideal case features
are extracted from the surroundings instead of detecting placed markers. Theretofore
other feature detection systems may be more suitable for application and improve
the performance.

5 Conclusion

A workspace control strategy is designed that provides positive cable tensions dur-
ing a motion. When the plant is controlled using only the encoder based position
measurement the mean absolute error between the reference and the real position
of the end-effector is 13mm measured with the ultrasonic sensor. When a vision
system is added to update the approximated position this error is 8.8mm, so a bet-
ter performance is obtained with the latter control method. Simulation results show
similarities with the experimental results, though differences occur due to uncertain
parameters in the model such as friction and drum radius. The improvement of the
performance shows that using a feature detection system fits in a suitable control
strategy for cable robots that are spanned across a surface.
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Cable Function Analysis for the Musculoskeletal
Static Workspace of a Human Shoulder

Darwin Lau, Jonathan Eden, Saman K. Halgamuge and Denny Oetomo

Abstract The study of cable function allows the contribution of particular cables
towards the generation ofmotion to be determined for cable-driven parallelmanipula-
tors (CDPMs). This study is fundamental in the understanding of the arrangement of
cables for CDPMs and can be used within the design of optimal cable arrangements.
In this paper, the analysis of cable function for the musculoskeletal static workspace
of a human shoulder is performed. Considering the muscles within the shoulder as
state dependent force generators, the set of muscles required in sustaining the gravity
force is determined for each workspace pose. As a result, the set of poses that each
muscle is responsible for (muscle function) can be computationally determined. By
comparing the results to the muscle function from biomechanics studies, it is shown
that the results from the proposed cable function analysis are consistent with that
reported in the literature of human studies.

1 Introduction

Cable-driven parallel manipulators (CDPMs) have been widely studied in recent
years due to their distinctive advantages: reduced end-effector weight and inertia
compared to serial and traditional parallel rigid linkmechanisms [1], potentially large
reachableworkspace [2] and high reconfigurability [3].Moreover, CDPMs have been
studied as bio-inspired systems [4–6] due to their anthropomorphic nature. Cables
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and rigid links of multilink cable-driven manipulators (MCDMs) can be regarded as
structurally analogous to the muscles and bones of musculoskeletal systems, respec-
tively. Furthermore, both cables and muscles can only provide unilateral actuation
(positive cable force).

Workspace analysis has beenwidely studied onCDPMs to provide the operational
region for a particular arrangement of cables [7–10]. This can also be applied to mus-
culoskeletal systems, however, the difference in the actuation dynamics between the
cables and muscles must be considered. In [11], the impact of considering the state-
dependent force generator property in physiological muscles on the static workspace
of the human shoulder was studied. By comparing the static workspace with that
generated using the ideal force generator cable model, it was observed that the state
dependent active and passive muscle characteristics of a physiological muscle sig-
nificantly impacted the static workspace. The musculoskeletal static workspace was
compared to the range of motion reported by human benchmarks, and it was shown
that the inclusion of the physiological muscle model resulted in a workspace more
realistic to that of a human shoulder.

Workspace analysis is one approach that allows the impact of different arrange-
ments in cable attachment locations to beobserved [3, 12].However, these approaches
require that theworkspace has to be regenerated each time in order to study the impact
of different cable arrangements. As a result, the determination of the contribution of
individual cables to the workspace is computationally expensive and has not been
investigated in previous CDPM studies. The role of individual cables in generating
motion or workspace (cable function) is beneficial in understanding the design of
cable arrangement for a CDPM. This could be used in the optimisation of the attach-
ment locations of the cables in a CDPM. For musculoskeletal systems, the study
of muscle function can be used in a range of applications in rehabilitation robotics
and biomechanics. For example, in the treatment of upper limb poststroke rehabili-
tation, the knowledge of muscle function would allow diagnosis of impairment and
eventually lead to a more targeted rehabilitation treatment.

In biomechanics, muscle function has been studied for a range of human move-
ments, such as the walking and running patterns of the gait [13], or in the motion
of the shoulder [14–18]. In these studies, muscle function was determined by per-
forming inverse dynamics on different trajectory motions. The limitations of this
approach include: the determined muscle function results are limited to the selected
trajectory, and the accuracy of the results is dependent on the choice of objective
function used to resolve the muscle actuation redundancy.

In this paper, the analysis of muscle function to the musculoskeletal static
workspace of the human shoulder is performed. The set of muscles that contribute to
a particular static workspace pose can be generated by computing themaximummass
that the shoulder can withstand in that pose. This can be determined by computing
the intersection of the ray of the gravity wrench vector and the surface of the wrench
zonotype. The proposed approach allows the cable function for any state dependent
force generator of CDPMs to be determined. By studying the muscle function of the
human shoulder, it is shown that the results obtained are consistent with that reported
in the literature of human studies. Compared with studying the muscle function for
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a specific trajectory, the proposed method allows the muscle function for the entire
workspace to be determined without the need to solve for the inverse dynamics.

The remainder of the paper is organised as follows: Sect. 2 describes the analysis of
the workspace of the human shoulder. Section 3 proposes the method to determine
the cable function for any particular pose within the static workspace. Section 4
presents the studyofmuscle functionover the staticworkspace of the human shoulder.
Section5 concludes the paper and presents areas of future work.

2 Musculoskeletal Static Workspace of the Human Shoulder

In this section, the physiological muscle model used in the cable function analysis
and the generation of the musculoskeletal static workspace for the human shoulder
are presented.

2.1 Hill-type Muscle Model

One widely accepted model of the physiological muscle is the modified Hill-type
model [19] consisting of tendon and muscle elements connected in series. The com-
bined muscle-tendon length lmt can be expressed with respect to the tendon length
lt and the muscle length lm . The relationship between the force that can be produced
and the muscle-tendon length can be described by a set of generic force relationships
andmuscle specific properties [20]: peak isometric muscle force Fm

0 , optimal muscle
fibre length lm

0 , optimal muscle fibre pennation angle α0 and tendon slack length lt
s .

The tendon behaves as a passive non-linear elastic element. One model for the
generic tendon force-strain relationship [20] can be analytically expressed as

F̂ t (ε) =
⎧
⎨
⎩
0 ε < 0
0.10377

(
e91ε − 1

)
0 ≤ ε < 0.01516

37.526ε − 0.26029 0.01516 ≤ ε < 0.1
, (1)

where F̂ t and ε are the normalised tendon force and tendon strain, respectively.
Tendon strain is defined by ε = (lt − lt

s)/ lt
s and normalised tendon force is F̂ t =

Ft/Fm
0 . The normalised muscle force F̂m = Fm/Fm

0 can be expressed as

F̂m(η) = F̂m
a (η)a(t) + F̂m

p (η), (2)

where η = lm/ lm
0 is the normalised muscle length and 0 ≤ a(t) ≤ 1 is the activation

level of the muscle at time t . The active muscle force F̂m
a (η) relationship [20] and

passive muscle force F̂m
p (η) relationship [21] can be expressed as



266 D. Lau et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

500

1000

1500

2000

2500

3000

3500 Active PassivePassive

Fig. 1 Muscle-tendon forces for a range of lmt , showing the scenarios in which the muscle is active
and passive

F̂m
a (η) =

{
1 −

(
η−1
0.5

)2
0.5 < η < 1.5

0 otherwise
(3)

F̂m
p (η) = η3e8η−12.9 . (4)

In [11], it was shown that in static equilibrium the forces that can be produced
by the muscle-tendon complex can be determined at any pose. Figure 1 shows the
solution muscle-tendon forces for various muscle-tendon lengths lmt . Curves Ft

1 and
Ft
5 represent scenarios when the muscle is passive, with muscle-tendon forces of

Fmt
1 = 0 and Fmt

5 , respectively. For curve Ft
3, the muscle-tendon complex is active

and can have a range of muscle force Fmt ∈ [Fmt
min, Fmt

max ]. The bold lines Ft
2 and Ft

4
represent the minimum and maximum muscle-tendon lengths for which the muscle
is active, respectively.

2.2 Shoulder Workspace

Using the Hill-type muscle model presented in Sect. 2.1 as a state dependent force
generator, the static workspace for the human shoulder was studied [11]. As shown
in Fig. 2a, the human shoulder consists of the humerus bone (end-effector) that
is connected to the scapular-clavicle bone (base) through the glenohumeral joint.
Accurate kinematics of the human shoulder were obtained from the well accepted
OpenSim shoulder model developed by Holzbaur et al. [22], as shown in Fig. 2b.
OpenSim is a widely accepted simulation platform in the biomechanics community
used in performing analysis on musculoskeletal systems [23], for example, to study
the muscle lengths and forces for a particular trajectory of motion.

The glenohumeral joint possesses three degrees-of-freedom and the pose of the
system can be represented by q = [

α β γ
]T , where α, β, and γ are the xyz-Euler
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(a) (b)

Fig. 2 Shoulder model consisting of the humerus bone and the glenohumeral joint. The rotations α,
β and γ in (a) represent pure rotations about the x , y and z axes, respectively. The muscle geometry
shown in (b) were obtained from the OpenSim shoulder model [22]

angles of the glenohumeral joint. Figure 2a shows the physiological interpretations
for rotations in α, β and γ .

The mass, inertia and location of the centre of gravity for the average human
humerus were obtained from [24]. The muscles for the shoulder model consists
of m = 15 muscle sections that are identified as the main contributors to shoul-
der motion [22]: deltoid (anterior, middle, posterior), supraspinatus, infraspinatus,
subscapularis, teres minor, teres major, pectoralis major (clavicular, sternal, ribs),
latissimus dorsi (thoracic, lumbar, iliac) and coracobrachialis. The muscle proper-
ties Fm

0 , lm
0 , lt

s and α0 for each muscle sub-region were obtained from [22]. For the
shoulder system, the transpose of the Jacobian matrix can be expressed as

LT = [
rB1 × l̂1 rB2 × l̂2 · · · rB15 × l̂15

]
. (5)

As shown in Fig. 2a, the vectors rBi and l̂i represent the insertion location to the
humerus and the direction vector of the insertion, respectively, for muscle i . The
equations of motion for the system can be represented as

M(q)q̈ + C(q̇, q) + G(q) = −L(q)T f, (6)

where M , C, G correspond to the mass inertia matrix, centrifugal and Coriolis force
vector, and gravitational vector, respectively. The musculoskeletal static workspace
can be defined as

SW ∗ =
{

q : G(q) + LT
p fp = −LT

a fa, ∃fa ∈ [ fa, fa]
}

. (7)
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Fig. 3 The α-β cross section of the musculoskeletal static workspace for the human shoulder for
zero rotation (γ = 0◦)

The vector fp and matrix LT
p represent passive muscle forces and the transpose of

the passive muscle Jacobian matrix, respectively. Similarly, the vector fa and matrix
LT

a represent the active muscle forces and transpose of the active muscle Jacobian
matrix, respectively. The passive muscle forces fp and active muscle force ranges
fa ∈ [fa, fa] can be solved using the approach presented in [11]. Figure 3 shows the
musculoskeletal static workspace defined by (7) for the human shoulder [11].

3 Gravity Force Cable Function at a Pose

One approach to study the cable function of a musculoskeletal system is to consider
the set of cables required in generating the maximum weight that the system can
sustain. First, consider the set of wrenchesWavail(q) that can be produced by a state
dependent force generator at a given pose as

Wavail(q) =
{

w : w = −LT (q)f, ∀f ∈ [f, f]
}

, (8)

where f and f represent the minimum and maximum forces that the system can
generate at pose q, respectively.

At each pose, the available wrench setWavail(q) in (8) can be generated through
the convex hull method presented in [7]. In this method, the zonotope wrench set
Wavail(q) is constructed using the convex hull of a set defined as

H =
{

w ∈ R
n|w =

m∑

i=1

fi li , fi ∈
{

fi , fi

}}
, (9)

where n is the number of degrees-of-freedom and m is the number of cables. The
maximum and minimum mass for cable i is represented by fi and fi , respectively.
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The vector li corresponds to the i th column of the matrix −LT (q). The convex
hull is constructed from the set of 2m vertices representing the combinations of the
minimum and maximum cable forces of the system. For highly redundant systems, a
large number of these vertices may be located inside the generated convex hull. Each
vertex represents a combination of a set of minimum and maximum cable forces (9).

If a pose is within the static workspace, then the gravity wrench G(q) is within
the available wrench set Wavail(q). If the mass of the system is denoted as ms , then
the normalised gravity wrench can be defined as Ĝ(q) = G(q)/ms . Allowing the
mass of the system to vary, the vector �(q) = mĜ(q) is geometrically equivalent to
a ray in R

n . For each pose that is within the static workspace, there exists a section
of the ray that lies within the available wrench set �(q) ⊂ Wavail(q) defined by

�(q) = {mĜ(q), m ∈ [mmin, mmax ]}. (10)

The minimum mass mmin ≥ 0 and maximum mass mmax > 0 can be determined by
solving for the intersections between the ray �(q) and the surfaces of Wavail(q).

The surfaces of Wavail(q) represent the minimum and maximum wrenches that
could be produced by the vertices from (9). Each of the surfaces Vk can be defined
by the parametric relationship

Vk = v0 + s(v1 − v0) + t (v2 − v0), (11)

where v0, v1 and v2 represent the vertices within Wavail(q) that define the surface
Vk . Each of the vertices v0, v1 and v2 from (11) corresponds to a set of active muscles
at maximum activation to form the vertex and can be defined as Mv0(q), Mv1(q)

and Mv2(q), respectively.
An intersection between the ray (10) and surface Vk from (11) exists if a solution

to �(q) = Vk can be found under the constraints

m ≥ 0, s ≥ 0, t ≥ 0, s + t ≤ 1. (12)

As a result, the set of muscles M(q) contribute to producing the maximum gravity
wrench can be determined by

M(q) = Mv0(q) ∪ Mv1(q) ∪ Mv2(q). (13)

To illustrate thewrench set and the determination of the set of contributingmuscles
(muscle function), consider the example of the human shoulder system presented in
Sect. 2.2 at the pose qabduction = [α β γ ]T = [0◦ 60◦ 0◦]T . Figure 4(a) shows the
forces that each muscle is capable of producing at pose qabduction .

Figure 4b shows the resulting wrench set Wavail(qabduction) for the shoulder
system at pose qabduction . The intersection between the ray �(qabduction) and the
wrench set is also shown in the figure. In this example, the ray and wrench set
intersected at m = mmax = 39.11 kg and the set of muscles that contribute to
the intersecting surface is M(qabduction) = {3, 4, 5, 6, 7, 12, 13, 14}. Furthermore,
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Fig. 4 The muscle wrench set Wavail(qabduction) for the human shoulder at pose qabduction =
[0◦60◦0◦]T showing the solution to the muscle function for the gravity wrench. The solid bars in
(a) represent the range of force that can be produced by the muscles in pose Wavail(qabduction). a
Muscle force ranges. b Resultant wrench set

from Fig. 4a it can be observed that within M(qabduction) muscles number 3, 5
and 12 have the largest capability in producing the gravity wrench. In addition to
producing themaximumgravitywrench, themuscleswere also required to counteract
the passive muscle force of muscle number 2. From the example, by observing set of
muscles required in generating the maximum force in a particular direction of force
(the gravity wrench Ĝ in this study), the function of muscles can be determined.

4 Muscle Function over the Workspace

In Sect. 3, the method to determine the set of muscles required to sustain the grav-
ity wrench was shown. By analysing the contribution of muscles for every pose,
the muscle function for the static workspace can be studied. In this section, the
function for different muscles on the workspace is analysed and compared to that
from biomechanics studies. Figure 5 shows the poses that each muscle contributes
to the maximum gravity wrench. From the muscle function cross-sections, it can be
observed that different muscles contribute to gravity wrench in different poses within
the static workspace.

It can be observed that the set of deltoid muscles (Fig. 5a, b, c) is a contributor to
shoulder flexion (positiveα direction and zeroβ), extension (negativeα direction and
zero β) and abduction (positive β direction and zero α) [14–16]. Furthermore, this
is consistent with the literature that the deltoid anterior, deltoid middle and deltoid
posterior muscle sections are primarily responsible for shoulder flexion, abduction
and extension, respectively.

Furthermore, it can be observed that the set of pectorialis muscles (Fig. 5d, e, f) is
predominantly responsible for flexion motion [17]. Additionally, it can be observed
that the three subregions of the pectorialis muscle perform a very similar muscle
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Fig. 5 Muscle function for the set of muscles in the human shoulder on the α-β cross section for
zero rotation (γ = 0◦). The shaded region corresponds to the poses in which the particular muscle
is required to sustain the maximum gravity force. a Deltoid (anterior). b Deltoid (middle). c Deltoid
(posterior). d Pectorialis (sternal). e Pectorialis (clavicular). f Pectorialis (Ribs). g Latissimi dorsi
(thoracic). h Latissimi dorsi (lumbar). i Latissimi dorsi (iliac). j Coracobrachialis. k Infraspinatus.
l Subscapularis. m Supraspinatus. n Teres major. o Teres minor

function. This is consistent with the fact that the threemuscle subregions are arranged
at similar locations on the shoulder [22].

Similarly, Fig. 5g, h and i show that the three subregions of the latissimi dorsi have
a similar muscle function, and is known to be largely responsible for the extension
motion of the shoulder [18]. Additionally, it can be observed that the latissimi dorsi
muscles only contribute to small degrees of abduction. This result is also consis-
tent with the literature where it has been observed that the strength of the muscles
diminishes as the amount of abduction is increased. This indicates that the muscle
force range and corresponding affect on the wrench polygon also diminishes with
increasing abduction. The functions of muscles in Fig. 5j–o can be interpreted in the
same manner.
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Fig. 6 The maximum mass that the shoulder muscles can sustain on the α-β cross section for zero
rotation (γ = 0◦)

Compared with previous biomechanics studies, the proposed approach provides a
more complete description of muscle function over the entire workspace, not requir-
ing any trajectory or inverse dynamics objective function to be specified. The muscle
functions obtained represent themuscles that are responsible for producing the largest
force in a particular direction, for example, the gravity wrench. In addition the func-
tion of each muscle, Fig. 6 shows the maximum mass that can be sustained for the
gravity force over the α-β workspace cross-section for zero rotation γ = 0◦.

It can be observed from Fig. 6 that the shoulder is capable of sustaining gravity
forces from masses of few kilograms to above 150kg. The capability of the shoulder
to sustain mass is dependent on the shoulder pose as the moment arms vary for
both the gravity force and the set of muscles. This approach in studying muscle
function allows the capabilities of the shoulder to be studied for varying properties
and attachment locations of the muscles.

In addition to the distribution of mass that can be obtained from the approach,
the number of muscles required in producing the maximum mass is also beneficial
in the study of a CDPM. Figure 7 shows the dimension of M(q), or the number of
muscles required to generate the maximum mass, for the different poses within the
workspace. It can be observed that for a majority of the α-β workspace cross-section,
an average of 6–9 cables were required to produce the maximum gravity wrench.
This describes the level of redundancy in generating the gravity wrench ray �(q).
Hence, for massesm < mmax , a subset of themuscles could be selected to counteract
the gravity force.

It should be noted that in the proposed approach, the resulting muscle function
shown is limited to one particular direction of force, the gravity force in this study.
However, the selection of the gravity wrench is a natural choice in studying the
function of the human shoulder. For example, many common actions performed by
the upper arm is in the direction opposite to gravity, such as the swinging of the arm,
to lift heavy objects or in exercises for the upper limb.
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Fig. 7 The number of muscles required in sustaining the maximum mass on the α-β cross section
for zero rotation (γ = 0◦)

5 Conclusion

The analysis of cable function on the musculoskeletal static workspace of the human
shoulder was performed. It was shown that the cable function for state dependent
force generators could be determined by computing the set of cables required in
balancing the maximum gravity force. The function of muscles for the human shoul-
der was performed to demonstrate the proposed method. The results were compared
to the muscle function obtained from motion analysis performed in biomechanics
studies, showing that the obtained results matched that from human studies. The pro-
posed method provides a more complete description of muscle function than that of
trajectory based approaches. Future work will focus on studying the muscle function
for changes in actuator properties and different pathological conditions.
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A Reconfigurable Cable-Driven Parallel Robot
for Sandblasting and Painting of Large
Structures

Lorenzo Gagliardini, Stéphane Caro, Marc Gouttefarde, Philippe Wenger
and Alexis Girin

Abstract The research work presented in this paper introduces a Reconfigurable
Cable Driven Parallel Robot (RCDPR) to be employed in industrial operations on
large structures. Compared to classic Cable-Driven Parallel Robots (CDPR), which
have a fixed architecture, RCDPR can modify their geometric parameters to adapt
their own characteristics. In this paper, a RCDPR is intended to paint and sandblast
a large tubular structure. To reconfigure the CDPR from one side of the structure to
another one, one or several cables are disconnected from their current anchor points
and moved to new ones. This procedure is repeated until all the sides of the structure
are sandblasted and painted. The analysed design procedure aims at defining the
positions of the minimum number of anchor points required to complete the task at
hand. The robot size is minimized as well.

1 Introduction

Over the last decades, several companies faced the necessity to manufacture novel
large industrial structures. Surface finishing, e.g. painting and sandblasting, can be
part of the manufacturing process of those structures. According to the different
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structures, painting and sandblasting are usually performed by human operators,
with the support of non-automatic machines. Alternative methods can improve the
efficiency of these operations and release human operators from their unpleasant
tasks. Cable Driven Parallel Robots (CDPR) are one of the possible solutions. By
definition, CDPRs are parallel robots composed of a platform connected to a fixed
base by cables (in this paper, the connection points between the cables and the base
will be referred as anchor points). Sandblasting and painting tools can be embarked
on the CDPR platform, which will follow the profile of the structure to be painted
according to an off-line planned strategy.

Advantages of CDPRs are their wide workspace, the possibility to carry heavy
loads and the simplicity of their mechanical components [1]. However, a limitation
of CDPRs is the possible interferences between cables as well as between cables
and the surrounding environment. Furthermore, the non-rigid nature of CDPR links
requires a rigorous study of the force transmission characteristics.

The potentialities of CDPRs have already been proved in different industrial con-
texts [2, 3]. Other research studies are being performed in the framework of the
European project CableBot [4]. Most of the previous works have been dedicated to
CDPRs with a fixed architecture and a fixed geometry (cable layout). This type of
robots cannot always guarantee good performances when installed in cluttered envi-
ronments. In this context, Reconfigurable Cable-Driven Parallel Robots (RCDPR)
should represent a better solution. Indeed, they can modify their geometric parame-
ters in order to adapt their characteristics or to avoid cable collisions.

One of the first works related to CDPR reconfigurability was part of the NIST
RoboCrane project [5]. Further studies on reconfigurability have been performed by
Zhuo et al. [6], as well as by Izard et al. [7] and Rosati et al. [8]. Rosati suggested
to add additional DoF to a classical CDPR (e.g., moving the cable anchor points on
a rail) and optimize analytically the robot properties, such as the payload capability.
This method has been proved to be efficient for planar robots. However, it cannot be
easily applied to three-dimensional case studies, where the analytic solution of the
problem is very difficult to define.

The research work presented in this paper focuses on the design of a RCDPR
for sandblasting and painting of a three-dimensional tubular structure represented in
Fig. 1. These operations are performed by appropriate tools embarked on the robot
platform. The robot platform approaches each external side of the structure and
the tools perform their work. Due to the structure complexity, reconfigurability is
required in order to avoid cable collisions. Each external side of the structure is
sandblasted and painted through a different configuration of the cable anchor points.
To reconfigure the CDPR from one side of the structure to another one, one or several
cables are disconnected from their current anchor points and moved to new ones.
This procedure is repeated until all the sides of the structure are sandblasted and
painted. The variables of the corresponding design problem are thus the Cartesian
coordinates of the anchor points of the three required configurations associated to
the paths P1,P2 and P3 illustrated in Fig. 2.
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Fig. 1 Case study model. The structure is 20m long, with a cross section of 10m × 10m

Fig. 2 Definition of the desired paths, P1, P2 and P3 of the platform CoM

In the present work, we aim at minimizing the total number of anchor points
on the base, selecting the anchor point locations that can be shared between two or
more configurations. Thereby, during a configuration change, not all the cable anchor
points need to be modified. Furthermore, we also aim at minimizing the robot overall
size. The feasibility of each configuration has to be guaranteed: cable interferences
as well as cable collisions with the structure are not permitted. Moreover, a minimum
platform pose precision is required.

This paper is organized as follows. Section2 briefly introduces the industrial
context and the problem at hand. Section3 presents the RCDPR geometric, static
and elastostatic models used in this paper. Section4 provides a description of the
selected design strategy. Section5 presents the achieved results. Section6 concludes
this article.
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2 Context and Problem Description

The structure selected for the given case study is 20m long, with a cross section of
10m×10m. The number of tubes to be painted is equal to twenty. Their diameter,φs,
is equal to 0.8m. The sandblasting and painting operations are realised indoor. The
structure lies horizontally in order to reduce the dimensions of the paintingworkshop.
The whole system can be described with respect to a fixed reference frame, Fb, of
origin Ob and axes xb, yb, zb, as illustrated in Fig. 2.

Sandblasting and painting tools are embarked on the RCDPR mobile platform.
The CoM of the platform follows the profile of the structure tubes and the tools
perform the required operations. The paths to be followed, P1, P2 and P3, are
represented in Fig. 2. They are located at a distance of 2m from the structure tubes.
No path has been assigned to the lower external side of the structure, since it is
sandblasted and painted from the ground.

In order to avoid collisions between the cables and the structure, the reconfigurabil-
ity of the robot anchor point positions is necessary. Each external side of the structure
should be painted by one and only one robot configuration. Three configurations are
necessary to work at the exterior of the structure: configuration Ci being associated
to path Pi, i = 1, 2 and 3, in order not to interrupt the painting and sandblasting
operations during their execution. Passing from a configuration to another, one or
more cables are disconnected from their anchor points and connected to other anchor
points located elsewhere. For each configuration, the locations of the cable exit points
are defined as variables of the design problem. In the present work, the dimensions
of the platform as well as the position of the cable connection points on the platform
are fixed. They will be both detailed in Sect. 4.

A suspended and a fully constrained 8-cable CDPR architectures are considered.
The suspended architecture is inspired by the CoGiRo CDPR prototype [9]. For
the fully constrained configuration, note that 8 cables is the smallest possible even
number of cables that can be used for the platform to be fully constrained by the
cables. In the suspended architecture, the static equilibrium of the mobile platform is
obtained thanks to the gravity force that plays the role of an additional cable pulling
the mobile platform downward.

The RCDPR should be as cheap and simple as possible. For this reason, the
minimization of the total number of cable anchor points is required. Consequently,
the number of anchor point locations, shared by two or more configurations, should
be maximized. The size of the robot is minimized as well, in order to reduce the
dimensions of the sandblasting and painting workshop.

Since the sandblasting and painting operations are performed at low speed, the
motion of the CDPR platform can be considered to be quasi-static. Hence, only the
static equilibriumof the robotmobile platformwill be considered.Collisions between
the cables as well as collisions between the cables and the structure tubes should be
avoided. Besides, the platform positioning precision is constrained as detailed in
Sect. 4. Here, the cable mass is not considered.
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Fig. 3 Geometric model of a generic RCDPR. In this example, the anchor points are connected to
a four-beam structure. Two configurations are illustrated. The anchor point A1,1, belonging to the
first configuration, is exchanged for the position A1,2, belonging to the second configuration

3 RCDPR Kinetostatic Modeling

A RCDPR is mainly composed of a mobile platform connected to the base through
a set of cables, as illustrated in Fig. 3. The connection points of the i-th cable on
the platform are denoted as Bi,c, where c represents the configuration number. The
position of each point Bi,c is expressed by the vector bp

i,c with respect to a local
reference frame Fp, attached to the platform and of origin Op and axes xp, yp and
zp. Op is the platform Center of Mass (CoM). For the cth configuration, the anchor
point of the ith cable is denoted by Ai,c, i = 1, . . . , 8. The Cartesian coordinates of
each point Ai,c, with respect toFb, are given by the vector ab

i,c.

The pose of the platform, with respect toFb, is defined by the vector p = [t,�]T.
The vector t represents the Cartesian coordinates of the platform CoM. The platform
orientation is defined by the vector �, through the Euler angles φ, θ and ψ corre-
sponding to rotations around zb, xb and yb, respectively.

For a given configuration c, the vector directed along the cable from Bi,c to Ai,c,
expressed inFb, is defined as follows:

lbi,c = ab
i,c − t − Rbp

i,c i = 1, . . . , 8 (1)

where R is the rotation matrix defining the platform orientation:

R = Rz(φ)Rx(θ)Ry(ψ) =
⎡
⎣

cφcψ − sφsθsψ −sφcθ cφsψ + sφsθcψ
sφcψ + cφsθsψ cφcθ sφsψ − cφsθcψ

−cθsψ sθ cθcψ

⎤
⎦ (2)
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The unit vector di,c associated to each vector li,c is given by:

di,c = li,c
‖li,cb‖2 , i = 1, . . . , 8 (3)

The ith cable exerts on the platform a wrench wi. This wrench is produced by
a positive cable tension τi. All the cable tensions are collected in the vector τ =
[τ1, . . . , τ8]T. The static equilibrium of the platform is described by the following
equation:

Wτ + we = 0 (4)

where W is the wrench matrix, defined as follows:

W =
[

db
1,c db

2,c . . . db
8,c

Rbp
1,c × db

1,c Rbp
2,c × db

2,c . . . Rbp
m,c × db

8,c

]
(5)

The vector we is the external wrench. It describes the wrench transmitted by the
sandblasting or painting tools to the RCDPR platform and the weight of the platform
and of the embarked tools. The weight of the platform and the embarked tools is
considered to be equal to 60Kg.

we = [
f, m

]T = [
fx, fy, fz, mx, my, mz

]T (6)

The forces transmitted along the axes xb, yb and zb are represented by the com-
ponents fx, fy and fz, respectively. The maximum intensity of these components is
considered to be equal to 50 N. The maximum values of the transmitted torques mx,
my and mz, are equal to 7.5 Nm.

−50N =fmin ≤ fx, fy, fz ≤ fmax = 50N (7)

−7.5Nm =mmin ≤ mx, my, mz ≤ mmax = 7.5Nm (8)

Cable tensions can be computed from Eq. (4):

τ = τ n + τ 0 = W†we + λN, τ ≥ 0 (9)

W† is the Moore-Penrose generalized inverse of W, λ ∈ R
2 and N is the null space

of W [10].
The elastostatic model defines the relationship between the infinitesimal change

δp in the platform pose and the corresponding infinitesimal change of the external
wrench δwe:

δwe = Kδp (10)

The expression of the stiffness matrix K is [11]
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K =
m∑

i=1
ki

[
di,cdT

i,c di,cdT
i,c b̂b

i,c
T

b̂b
i,c di,cdT

i,c b̂b
i,c di,cdT

i,c b̂b
i,c

T

]
+

−
m∑

i=1

τi

‖li‖

⎡
⎣ −I3,3 + di,cdT

i,c

(
−I3,3 + di,cdT

i,c

)
b̂b

i,c
T

b̂b
i,c

(
−I3,3 + di,cdT

i,c

) (
b̂b

i,c

(−I3,3 + di,cdT
i

) + b̂b
i,c

T
)

b̂b
i,c

⎤
⎦

(11)
where ki denotes the ith cable longitudinal stiffness, I3×3 denotes the 3 × 3 identity
matrix, b̂b

i,c and d̂i,c represent the cross product matrices of vectors bb
i,c and di,c,

respectively. For a generalized 3-dimensional vector r = [
rx, ry, rz

]T, the cross
product matrix is defined as follows:

r̂ =
⎡
⎣

0 −rz ry

rz 0 −rx

−ry rx 0

⎤
⎦ (12)

4 Design Procedure

The design problem aims at identifying the locations of points Ai,c for the configu-
rations C1, C2 and C3. The number of cables, m = 8, the cable properties and the
dimensions of the platform are given in Sect. 4.1. Those parameters are the same for
the three robot configurations.

At first, in order to identify the set of feasible locations for the anchor points
Ai,c, the three robot configurations are parameterized and analysed separately in
Sects. 4.2–4.4. A set of anchor points will be considered feasible if the design con-
straints are satisfied along the whole path to be followed by the CoM of the platform.
The design constraints are listed in Sect. 4.5. Note that each path Pi, i = 1, . . . , 3
is discretized into 38 points Pj,i, j = 1, . . . , 38 i = 1, . . . , 3

Once the set of feasible solutions has been obtained for each configuration, i.e., for
each path, a list of robots with a minimum number of anchor points, nc, is extracted
from the list of feasible robots. Finally, the most compact robots from the list of
robots with a minimum number of anchor points are optimal solutions.

4.1 Design Parameters

TheRCDPRdeveloped in this paper is composedof steel cables. TheYoungModulus,
E, is equal to 100GPa. Their diameter, φc is equal to 4mm, the stiffness coefficient,
ki, is equal to 252KN/m. The maximum allowed tension in the cables, τmax , is equal
to 34950N:

0 < τi ≤ τmax, ∀i = 1, . . . , 8 (13)
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lp, wp and hp denote the length, width and height of the platform, respectively:
lp = 30cm, wp = 30cm and hp = 60cm. The design (constant) parameter vector q
is expressed as:

q = [
m, φc, ki, τmax, lp, wp, hp

]T (14)

4.2 Configuration C1

A fully constrained architecture has been assigned to the configurationC1. As shown
in [12], this type of robot architecture can assure the robot static equilibrium while
minimizing its size. The anchor points Ai,1 have been arranged in a parallelepiped
layout. The edges of the parallelepiped are aligned with the axes of frame Fb. This
layout can be fully described by means of five variables: u1, u2 and u3 define the
Cartesian coordinates of the parallelepiped centre; u4 and u5 represent the half-
lengths of the parallelepiped along the axes xb and yb, respectively. Therefore, the
Cartesian coordinates of the anchor points Ai,1 are expressed as follows:

ab
1,1 = [u1 + u4, u2 + u5, −u3]

T ab
2,1 = [u1 + u4, u2 + u5, u3]

T (15)

ab
3,1 = [u1 − u4, u2 + u5, −u3]

T ab
4,1 = [u1 − u4, u2 + u5, u3]

T (16)

ab
5,1 = [u1 − u4, u2 − u5, −u3]

T ab
6,1 = [u1 − u4, u2 − u5, u3]

T (17)

ab
7,1 = [u1 + u4, u2 − u5, −u3]

T ab
8,1 = [u1 + u4, u2 − u5, u3]

T (18)

The layout of the first robot configuration is described in Fig. 4. The design vari-
ables of the design problem at hand are collected into the vector x1:

x1 = [u1, u2, u3, u4, u5]
T (19)

Fig. 4 Design variables parametrizing the configuration C1
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Table 1 Design variables associated with configurations C1, C2 and C3

Variables Lower bounds Upper bounds Number of values

C1 u1 5.5 7.5 9

u2 8.0 12.0 9

u3 6 10 5

u4 0.5 2.5 9

u5 10 14 5

C2 v1 −1 1 9

v2 8.0 12.0 5

v3 7 11 9

v4 5 7.5 11

v5 10 14 5

C3 u1 −7.5 −5.5 9

u2 8.0 12.0 9

u3 6 10 5

u4 0.5 2.5 9

u5 10 14 5

The Cartesian coordinates of the connection points of the cables to the platform,
Bi,1, are expressed as:

bb
1,1 =1

2

[
lp, wp, hp

]T
, bb

2,1 =1

2

[
lp, wp,−hp

]T (20)

bb
3,1 =1

2

[−lp, wp, hp
]T

, bb
4,1 =1

2

[−lp, wp,−hp
]T (21)

bb
5,1 =1

2

[−lp,−wp, hp
]T

, bb
6,1 =1

2

[−lp,−wp,−hp
]T (22)

bb
7,1 =1

2

[
lp,−wp, hp

]T
, bb

8,1 =1

2

[
lp,−wp,−hp

]T (23)

A discretized set of design variables has been considered. The lower and upper
bounds as well as the number of values for each variable are given in Table1.
18,225 robot configurations have been generated with those values. It turns out that
4,576 configurations satisfy the design constraints expressed in Sect. 4.5 along the
38 discretized points of path P1.

4.3 Configuration C2

A suspended architecture has been attributed to the configurationC2 in order to avoid
any possible collision with the tubular structure. The selected architecture is based
on CoGiRo, a suspended CDPR designed and built in the framework of the ANR
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Fig. 5 Design variables parametrizing the configuration C2

CoGiRo project [9, 13]. An advantage of this architecture is the possibility to balance
efficiently the external wrench throughout a very large part of the robot footprint.
The anchor points Ai,2 have been arranged in a parallelepiped layout. The Cartesian
coordinates ai,c are defined as follows:

ab
1,2 = ab

2,2 = [v1 − v4, v2 − v5, v3]
T (24)

ab
3,2 = ab

4,2 = [v1 − v4, v2 + v5, v3]
T (25)

ab
5,2 = ab

6,2 = [v1 + v4, v2 + v5, v3]
T (26)

ab
7,2 = ab

7,2 = [v1 + v4, v2 − v5, v3]
T (27)

Variables v1 = 1, . . . , 5 assume the same geometric roles assigned to variables
u1 = 1, . . . , 5. The layout of this configuration is illustrated in Fig. 5. The design
variables of configuration C2 are collected into the vector x2:

x2 = [v1, v2, v3, v4, v5]
T (28)

Note that this architecture is composed of couples of anchor points theoreti-
cally connected to the same locations: {A1,2, A2,2}, {A3,2, A4,2}, {A5,2, A6,2} and
{A7,2, A8,2}. From a technical point of view, in order to avoid any cable interference,
the coupled anchor points should be separated by a distance at least greater than the
cable diameter. For the design problem at hand, this distance has been fixed to 5mm.

The Cartesian coordinates of points Bi,2 are defined as:

bb
1,2 = 1

2

[
lp,−wp, hp

]T
, bb

2,2 = 1

2

[−lp, wp,−hp
]T (29)
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bb
3,2 = 1

2

[−lp,−wp, hp
]T

, bb
4,2 = 1

2

[
lp, wp,−hp

]T (30)

bb
5,2 = 1

2

[−lp, wp, hp
]T

, bb
6,2 = 1

2

[
lp,−wp,−hp

]T (31)

bb
7,2 = 1

2

[
lp, wp, hp

]T
, bb

8,2 = 1

2

[−lp,−wp,−hp
]T (32)

Table1 describes the lower and upper bounds as well as the number of values
considered for the configuration C2. Combining these values, 22,275 configurations
have been generated. Amongst these configurations, only 5,579 configurations are
valid.

4.4 Configuration C3

The configuration C3 follows the path P3. This path is symmetric to the path P1
with respect to the plane ybOzb, O, yb and zb being the origin, the y-axis and the
z-axis of the base frame. Considering the symmetry of the tubular structure, the robot
architecture used for the configuration C1 has been assigned to the configuration C3.
The discretized set of design variables chosen for the configurationC3 is described in
Table1. The design variables for the configurationC3 are collected into the vector x3:

x3 = [w1, w2, w3, w4, w5]
T (33)

where the variables wi amount to variables ui described in Sect. 4.2. Therefore, the
Cartesian coordinates of the anchor points Ai,3 are expressed as follows:

ab
1,3 = [w1 + w4, w2 + w5, −w3]

T ab
2,3 = [w1 + w4, w2 + w5, w3]

T (34)

ab
3,3 = [w1 − w4, w2 + w5, −w3]

T ab
4,3 = [w1 − w4, w2 + w5, w3]

T (35)

ab
5,3 = [w1 − w4, w2 − w5, −w3]

T ab
6,3 = [w1 − w4, w2 − w5, w3]

T (36)

ab
7,3 = [w1 + w4, w2 − w5, −w3]

T ab
8,3 = [w1 + w4, w2 − w5, w3]

T (37)

4.5 Constraints

The static equilibrium of the robot should be assured during the entire task execu-
tion, balancing any possible external wrench we, according to the limits specified in
Eqs. (7) and (8). This condition is verified for all the pointsPi, i = 1, . . . , 3. The set
of required external wrenches consists of a hyperrectangle, defined as [w]r . In order
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the robot to be in a static equilibrium in a given posture, the hyperrectangle of the
required external wrench should be included inside the zonotope of the admissible
wrench, [w]a, as follows:

∀we ∈ [w]r, ∃τ ∈ [τ ] such that

{
[w]r ⊂ [w]a

Wτ + we = 0
(38)

[w]a represents the possible external wrenches that the platform can balance. [w]a

depends on the robot geometry and the cable tension limits, defined by Eq. (13). Any
mobile platform pose respecting the previous condition is said to be wrench feasible.
The set of wrench feasible poses represents the Wrench Feasible Workspace (WFW)
of the given robot.

In [14], Gouttefarde et al. improved the wrench feasibility verification procedure
defined by Bouchard et al. in [15]. Both the procedures lead to a set of inequalities:

Cw ≤ d, ∀w ∈ [w]r (39)

Cable interferences have to be avoided. The interference between the ith cable
and the jth cable is verified analysing the distance dcc

i,j between them. The cables
have been modelled as linear segments, neglecting the mass and elastic effects on
the sagging phenomenon. A fast computation of dcc

i,j is realised through Lumelsy’s
approach [16]. For the constraint to be satisfied, distance dcc

i,j should be greater than
the diameter of the cables, φc, i.e.,

dcc
i,j ≥ φc ∀i, j = 1, . . . , m, i 	= j (40)

The same approach is used to detect collisions between the cables and the tubular
structure. The collision between the ith cable and the kth structure tube does not
occur when their distance dcc

i,k is greater than the sum of the cable and tube radii:

dcs
i,k ≥ (φc + φs)

2
∀i = 1, . . . , m, ∀k = 1, . . . , 12 (41)

The RCDPR should respect a prescribed pose accuracy along all the paths. Inside
the limits defined by the required wrench set, the maximum mobile platform linear
displacements δtx, δty and δtz along xb, yb and zb axes should be lower than 5cm:

− 5 cm ≤ δtx, δty, δtz ≤ 5 cm (42)

The rotation displacements of the platform δrx , δry and δrz about axes xb, yb and zb
should not be higher than 0.1rad:
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− 0.1 rad ≤ δrx, δry, δrz ≤ 0.1 rad (43)

The linear and rotational displacements of the mobile platform are computed from
Eq. (10).

4.6 Objective Functions

In Sects. 4.2–4.4, the feasible robot configurations associated to paths P1, P2 and
P3 have been identified. For each path, a configuration is selected, aiming at min-
imizing the total number of anchor points required by the RCDPR to complete the
task. These optimal solutions have been computed in two phases. At first, the 4,576
feasible robot configurations for pathP1 are compared with the 5,579 feasible robot
configurations for pathP2. The sets of robot configurations that minimize the num-
ber, nc, of required anchor points along the three paths are selected.

Then, the problem aims at minimizing the size of the robot, defined as the con-
vex hull of the robot anchor points. The Cartesian coordinates of anchor point Ai,c

are defined as ai,c = [ax
i,c, ay

i,c, az
i,c]T. The variables sx , sy and sz denote the small-

est Cartesian coordinates of the robot anchor points along the axes xb, yb and zb,
respectively:

sx =min ax
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (44)

sy =min ay
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (45)

sz =min az
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (46)

The upper bounds on the Cartesian coordinates of the RCDPR anchor points, along
the axes xb, yb, zb, are denoted by s̄x , s̄y and s̄z, respectively.

s̄x =max ax
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (47)

s̄y =max ay
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (48)

s̄z =max az
i,c, ∀i = 1, . . . , 8, c = 1, . . . , 3 (49)

Hence, the objective function related to the size of the robot is expressed as follows:

V2 = (s̄x − sx)(s̄y − sy)(s̄z − sz) (50)

4.7 Design Problem Formulation

The design problem of the CDPR is formulated as follows:
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minimize

{
V1 = nc

V2 = (s̄x − sx)(s̄y − sy)(s̄z − sz)

over x1, x2, x3
subject to:

∀Pm,n, m = 1, . . . , 38
n = 1, . . . , 3

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Cw ≤ d, ∀w ∈ [w]r

dcc
i,j ≥ φc ∀i, j = 1, . . . , 8, i 	= j

dcs
i,k ≥ (φc + φs)

2
∀i = 1, . . . , 8, ∀k = 1, . . . , 12

−5 cm ≤ δtx, δty, δtz ≤ 5 cm

−0.1 rad ≤ δrx, δry, δrz ≤ 0.1 rad

(51)

5 Results

Following the procedure described in Sect. 4, a set of feasible configurations has been
identified for Cl, l = 1, . . . , 3. 16,516 triplets of configurations minimize the total
number of anchor points.

A generic CDPR composed of 8 cables requires 8 anchor points Ai = 1, . . . , 8 on
the base. It is the case for the fully-constrained configurationC1 described in Sect. 4.2.
The suspended CDPR proposed in Sect. 4.3 presents 4 coincident couples of anchor
points. Hence, the maximum total number of anchor points of the RCDPR is equal to
20. The best results provide a reduction of 4 points. Regarding the configurations C1
andC2, pointsA5,2 andA7,2 can be coincident with pointsA3,1 andA5,1, respectively.
Alternatively, points A5,2 and A7,2 can be coincident with points A1,1 and A7,1. As far
as configurationsC2 andC3 are concerned, pointsA1,2 andA3,2 canbe coincidentwith
points A8,3 and A2,3, respectively. Likewise, points A1,2 and A3,2 can be coincident
with points A4,3 and A6,3, respectively.

The total volume of the robot has been computed for the 16,516 configurations
minimizing the total number of anchor points. 96 RCDPRs amongst the 16,516 robot
configurations have the smallest size, this minimum size being equal to 5,104m3. An
optimal solution is illustrated in Fig. 6. The corresponding optimal design parameters
are given in Table2.

Figure7 illustrates the minimum degree of constraint satisfaction introduced
in [17] and defined thereafter along the pathsP1,P2 andP3, which is discretized
into 388 points.

s = min
i=1,...,n

(
min

j=1,...,p
sj,i

)
(52)

It turns out that mobile platform is in a static equilibrium along all the paths because
the minimum degree of constraint satisfaction remains negative. The degree of con-
straint satisfaction sj,i is the signed distance from the jth vertex we,j of [w]r to the
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Fig. 6 Optimal reconfigurable cable-driven parallel robot

Table 2 Design parameters
of the selected optimum
RCDPR

Conf. var.1 var.2 var.3 var.4 var.5

x1 6.25 10.0 8.0 1.0 11.0

x3 0 10.0 8.0 5.25 11.0

x3 -6.25 10.0 8.0 1.0 11.0

ith face of [w]a. sj,i is negative when a pose is wrench feasible. Configurations C1
and C3 maintain their degree of satisfaction lower than the 400 N. On the contrary,
configuration C2 is often close to 0. The poses where s vanishes require that two
cables of the suspended CDPR are slack.
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Fig. 7 Minimum degree of constraint satisfaction. The analysis has been performed by discretizing
the paths P1, P2 and P3 into 388 points

6 Conclusions

This paper dealt with the design of a Reconfigurable Cable Driven Parallel Robot
(RCDPR) for sandblasting and painting of large structures. A tubular structure of
20 m long and 10 m wide was considered. The design problem aimed at determining
the optimal locations of the cable anchor points such that the number of anchor points
is minimized and the RCDPR is as small as possible. The problem solving led to
96 optimal solutions.

A RCDPR was required in order to complete a given task in a complex environ-
ment. Unfortunately, the design strategy introduced in this paper is very time con-
suming. Thewhole procedure, performed on a Intel� CoreTM i7-3630QM2.40GHz,
required 19h of computation, on Matlab� 2013a. Therefore, the development of
more efficient strategies for the design of RCDPRs will be part of our future work.
Moreover, the mass of the cables will be taken into account.
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ARACHNIS: Analysis of Robots Actuated
by Cables with Handy and Neat Interface
Software

Ana Lucia Cruz Ruiz, Stéphane Caro, Philippe Cardou and François Guay

Abstract This paper presents ARACHNIS, a graphical user interface for the
analysis and parametric design of Cable Driven Parallel Robots (CDPRs). ARACH-
NIS takes as inputs the design parameters of the robot, the task specifications,
and returns a visualisation of the CDPR Wrench Feasible Workspace (WFW) and
Interference-Free Constant Orientation Workspace (IFCOW). The WFW is traced
from the capacity margin, a measure of the robustness of the equilibrium of the
robot. Interferences between the moving parts of a CDPR are also determined by
an existing technique for tracing the interference-free workspace of such robots.
Finally, the WFW and the IFCOW of a planar cable-driven parallel robot and of a
spatial cable-driven parallel robot are plotted in order to demonstrate the potential
of ARACHNIS.
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1 Introduction

Cable-Driven Parallel Robots (CDPRs) may be seen as Gough-Stewart platforms in
which the prismatic actuators are replaced with cables. Hence, the cables are con-
nected between the moving platform and fixed eyelets. The platform moves around
by increasing or decreasing the lengths of the different cables in concert while pre-
venting any cable from becoming slack [1]. This architecture allows for marked
advantages over conventional robots, such as the possibility of a larger workspace
and higher accelerations, thanks to lighter mechanical components. CPDRs also suf-
fer from important drawbacks, however. First, there is the possibility of interferences
among the cables or between a cable and the moving platform. Furthermore, the non-
rigid nature of the CPDR links further restrict its workspace, and requires a rigorous
study of its force transmission characteristics.

Nevertheless, CDPRs have been used, often with success, in many areas such
as robotic cranes, cable-driven cameras, medicine, automatic painting and rescue
operations, to name but a few. The reader is referred to a recent literature survey on
the topic [2] for a more thorough account of these applications. These CDPRs and
others were developed independently, in most cases, meaning that their designers
usually started the analysis and design process development “from scratch”. As
CDPRs become more popular, there is an obvious need to automate their design and
analysis, to accelerate their development and to provide a common working ground
to the engineers involved.

To partly answer this need, we propose the graphical user interface ARACHNIS,
or Analysis of Robots Actuated by Cables with Handy and Neat Interface Software.
In short, ARACHNIS is dedicated to the parameter-based analysis and design of
CDPRs. It allows the designer to enter the design parameters of the robot, to spec-
ify the task that the robot should perform in terms of force and moment ranges,
and to assess the performance of the robot through the visualization of its Wrench-
Feasible Workspace (WFW) [3, 4] and its Interference-Free Constant Orientation
Workspace (IFCOW) [5]. ARACHNIS seems to be similar in its functions to a pre-
viously developed interface named WireCenter [6]. From the little information we
could gather on WireCenter, it seems that the two interfaces differ mainly in that
WireCenter allows to trace the wrench-closure workspace (WCW), while ARACH-
NIS allows to trace the WFW.

This workspace was chosen to analyze the static-equilibrium of the robot because
it applies to a wider range of tasks than the WCW [7] or the Static Workspace (SW)
[8]. In fact, the WCW and the SW can be shown to be special cases of the WFW.
To the knowledge of the author, two methods have been reported to trace the WFW
of a spatial parallel robot driven by m cables. Both of these methods are purely
numerical, since, as was pointed out in [9], computing symbolic expressions of the
WFW-boundaries is too complex to be practical in the general case. This spurred
other researchers to simply use a brute-force method [10] to trace the WFW as a
cloud of points. Others resorted to interval arithmetics to trace the WFW as a set of
boxes that are either completely inside the workspace or not completely outside of
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it [4]. Both of these methods are relatively slow and generally yield poor renderings
of the workspace boundary. In ARACHNIS, we resort to an alternative method that
was recently proposed by the authors [11], and which, if far from perfect, appears be
somewhat faster and to yield smoother estimates of the WFW than the two existing
ones. The IFCOW, on the other hand, is determined according to themethod proposed
in [12].

The paper is organized as follows: Sect. 2 describes the kinetostatic model of
a cable-driven parallel mechanism. Section 3 introduces the capacity margin as a
measure of the robustness of CDPR equilibrium. Section 4 explains how the capacity
margin is used to trace the WFW. Section 5 presents the polygons of the IFCOW
where interferences occur between the cables and the moving platform. Section 6
describes the ARACHNIS interface. A planar cable-driven parallel mechanism and
a spatial cable-driven parallel mechanism are studied in Sects. 7 and 8, respectively.
Finally, we present our conclusions and future work in Sect. 9.

2 Kinetostatic Model of a Cable-Driven Parallel Robot

Formally, a cable-driven parallel robot consists of a moving platform connected to
a fixed base by a set of m cables acting in parallel. The winding and unwinding of
these cables on fixed spools controls the platform motion in space.

To mathematically model this mechanism, let us attach frame P to the moving
platform, and frame F to the fixed frame, as shown in Fig. 1. The origins of these
frames are P and O , respectively. The platform pose may thus be represented by the
vector p pointing from O to P , and by the rotation matrix Q rotating F onto P .

The ith cable is modeled as a straight-line segment from the attachment point
onto the moving platform, Ri , to the attachment point onto the fixed frame, Ai . The

Fig. 1 The kinetostatic model
of a cable-driven parallel
mechanism

ci
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positions of these attachment points are respectively given by ri , expressed in frame
P , and ai , expressed in frame F . The i th cable may thus be represented by the
vector

ci ≡ ai − p − Qri , (1)

and the corresponding cable length is

ci ≡ ‖ci‖2, i = 1, . . . , m. (2)

Let us now assume that external forces are applied on the moving platform. These
forces are equivalent to the resultant force-moment system we ≡ [fT

e (1/r)nT
e ]T ,

the force fe ∈ R
3 being applied at P , the moment being ne ∈ R

3, and r being
a positive length used to render we dimensionally homogeneous. Here, we define
this length quite arbitrarily as r2 = (1/m)

∑m
i=1 ‖ri‖22. For the moving platform to

remain in equilibrium, theremust be a combination of cable tensions t ≡ [t1 · · · tm]T

that balances the system of external forces. By the application of the Newton-Euler
equations to the moving platform, we obtain

Wt + we = 06, (3)

where 06 is the six-dimensional null vector and W is the Jacobian matrix of the
mechanism at this particular pose. This matrix may be computed as

W =
[

c1/c1 · · · cm/cm

(Qr1) × c1/(r c1) · · · (Qrm) × cm/(r cm)

]
. (4)

To this standard kinetostatic model of a cable-driven parallel robot, let us add
limits to the involved forces and moments. Indeed, for a given application, we may
safely assume that the designer of a cable-driven parallel mechanism can define a
set of external force-moment systems we that can be applied on the mobile platform.
We further assume that this set is a boxWe in R6. For reasons that will later become
apparent, let us give the vertex representation of this box, namely,

We = {we ∈ R
6 : we =

n∑

j=1

α j we, j ,

n∑

j=1

α j = 1, α j ≥ 0, j = 1, . . . , n}, (5)

where we, j , j = 1, . . . , 64 are the vertices of We.
The cable tensions ti , i = 1, . . . , m, are also limited by the load capacities of the

motors and by the strengths of the cables and spool transmission elements. From the
components he/she selected, the designer should thus be able to assess the lower and
upper tension bounds, respectively t and t. Formally, these define the m-dimensional
box of feasible tensions

T = {t ∈ R
m : t ≤ t ≤ t}. (6)
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3 The Capacity Margin as a Measure of the Robustness
of Equilibrium

According to the model of a cable-driven parallel robot presented above, the moving
platform is in equilibrium for every possible external force-moment system we if and
only if, in every case, the Newton-Euler equilibrium, Eq. (3), can be satisfied by a
set of feasible cable tensions t. Such a pose of “complete” equilibrium of the moving
platform is often called a “feasible pose” in the scientific literature. The set of all
feasible poses is called the “wrench-feasible workspace” (WFW), and is formally
expressed in Definition 1.

Definition 1 The wrench-feasible wokspace F is defined as

F = {(p, Q) ∈ R
3 × SO(3) : ∀we ∈ We, ∃t ∈ T , Wt + we = 06}, (7)

where SO(3) is the group of proper rotation matrices,We is defined in Eq. (5), T is
defined in Eq. (6), and W is defined in Eq. (4).

The capacitymarginwas recently introduced by the same authors in [11] under the
name minimum degree of constraint satisfaction. We believe that the name capacity
margin describes better this index, if only for the sake of brevity, but for other reasons
that will be made apparent from its definition.

This definition stems from the geometric interpretation of the wrench-feasible
workspace, which is represented in Fig. 2. The two sets involved in the definition of
F , We and T , live in different spaces and have different numbers of dimensions.
In this paper, we assume the number of dimensions of We to be six, although the
proposed method applies equally well to lower dimensional cases. The number of
cables m corresponds to the number of dimensions ofT . For the sake of illustration,
the dimensions ofWe andT in Fig. 2 were chosen to be two and three, respectively.
The two sets are connected by Eq. (3), by which the tensions, t, are linearly mapped
onto the wrench space via the transformation −W. Hence, the box T of feasible
tensions becomes the zonotope Wt in the wrench space.

Fig. 2 An analog geometric representation of the capacity margin γ



298 A.L.C. Ruiz et al.

From the definition of the wrench-feasible workspace, this zonotope should
include the set We of external wrenches. Indeed, for an external wrench we to be
sustained by the moving platform, there must exist a set of tensions in T such that
we = −Wt. Geometrically, this means that the point we should be contained in Wt .
Therefore, for any external wrench to be sustained, we should have

We ⊆ Wt , (8)

which gives us a necessary and sufficient condition for a pose (p, Q) to be wrench-
feasible.

This binary condition does not tell us how far is a feasible pose from being unfea-
sible. Such a question is important to the designer, as an answer would indicate the
robustness of the equilibrium. This is precisely what the capacity margin represents.

In Fig. 2, the capacity margin is geometrically represented by γ , the signed width
of the margin between the boundary ofWt andWe. This width is taken positive when
the margin is inside Wt , and negative when it is outside. It may thus be seen as the
degree of inclusion of We within Wt .

Mathematically, we compute γ as follows:

1. Compute the facet representation ofWt using the hyperplane shifting method [3].
We thus obtain al and bl , l = 1, . . . , p in the equation Wt = {w ∈ R

6 : aT
l w ≤

bl , l = 1, . . . , p}.
2. Compute the coordinate γ j,l of each vertex we, j ofWe with each facet (al , bl) of

Wt . This coordinate is taken from the facet in its normal direction al , which gives
γi, j = (bl − wT

e, j al)/‖al‖2, j = 1, . . . , n, l = 1, . . . , p.
3. Keep the minimum of all coordinates as a worst case scenario:

γ = min j=1,...,n minl=1,...,p γ j,l .

4 Tracing the Wrench-Feasible Workspace
Using the Capacity Margin

The capacity margin γ indicates the degree of inclusion of the set We of external
wrenches into the setWt of feasible wrenches. γ is a greater positive scalar asWe is
further inside Wt opposed to being a greater negative scalar as at least a part of We

is further outside Wt . Consequently, γ is zero when We ⊆ Wt and a point of We is
on the boundary ofWt . From Definition 1, this latter case corresponds to a pose that
is on the limit of feasibility. Hence, the boundary of the wrench-feasible workspace
may simply be expressed as

γ (p, Q) = 0. (9)

In this paper, we use this fact to trace the boundary of the wrench-feasible
workspace as the zero isosurface or isocontour of the capacity margin. To compute
the zero isocontour of a function, one first needs to evaluate it at a grid of points cov-



ARACHNIS: Analysis of Robots Actuated by Cables ... 299

ering its domain. The next step consists in interpolating the between adjacent points
of the grid in search of roots of the function. This process is readily implemented in
virtually all scientific computation packages. In Matlab, for instance, the functions
isosurface and contour can be used to trace the isosurface and isocontour of a
function, respectively. In Maple, the analogous functions are implicitplot3d
and implicitplot.

5 Tracing the Interference Polygons

The wrench-feasible workspace alone is not sufficient to design a cable-driven par-
allel robot. Interferences between the moving parts must also be considered, either
by shear intuition or by systematic analysis. A technique for such analysis of the
interference-freeworkspacewas proposed in [12], andwas implemented inARACH-
NIS. Let us note, however, that the technique only applies to a constant orientation of
the moving platform.Moreover, it is developed under the assumptions that the cables
are line segments and that the moving platform is a convex polyhedron represented
by its edges.

In [12], it was shown that the region of the Cartesian space where a pair of cables
collide is composed of two disjoint polygons in space. Mathematically, the two
polygons corresponding to an interference between the i th and j th cables may be
expressed as

Ci, j = {p ∈ R
3 : p = a j − Qri + α(a j − ai ) + βQ(r j − ri ), α, β ≥ 0}, (10a)

C j,i = {p ∈ R
3 : p = ai − Qr j + α(ai − a j ) + βQ(ri − r j ), α, β ≥ 0}. (10b)

Interferences can also occur between a cable and the moving platform. The asso-
ciated interference regions are computed in [12]. This is done by tracing the interfer-
ence region between the i th cable and the edge connecting the j th and kth vertices
of the polyhedron-shaped moving-platform. Let the positions of these vertices be
represented by v j and vk , respectively, in the mobile frame P . In this case, the
interference region Ei, j,k takes the form of a polygon in space, that is,

Ei, j,k ={p ∈ R
3 : p = ai − Qri + ν j Q(v j − bi ) + νkQ(vk − bi ),

ν j , νk ≤ 0, ν j + νk ≤ − 1}. (11)

Notice that the regions Ci, j and Ei, j,k are unbounded in some directions. In
ARACHNIS, we assume that the portion of interest of the Cartesian workspace
is a box containing all the fixed points Ai , i = 1, . . . , m. In the proposed inter-
face, we thus trace the intersections of this box with the interference regions Ci, j ,
i, j = 1, . . . , m, and Ei, j,k , i = 1, . . . , m, j, k = 1, . . . , q, where q is the number
of vertices of the moving platform.
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Fig. 3 ARACHNIS and its main features

6 The ARACHNIS Interface

ARACHNIS, or “Analysis of Robots Actuated by Cables with Handy and Neat
Interface Software”, is a graphical user interface developed inMATLAB to automate
the design and the analysis of CDPRs. At the conceptual design stage, this tool aids
the designer in choosing the design that best meets two requirements: equilibrium
throughout the workspace and interference avoidance.

The interface provides the degree to which these requirements are satisfied for a
particular design through the generation of the WFW and the IFCOW. As shown in
Fig. 3, it is divided into four main areas: Robot Parameters, Robot Posture, Robot
Task and Robot Visualization.

The section Robot Parameters is dedicated to the specification of the geometry of
the platform and base, cable tension limits and cable arrangement. The geometry of
the platform is described through the Cartesian coordinates of the cable anchor points
on the platform (r x , r y and r z) expressed in the platform frame and the geometry of
the base is described through the Cartesian coordinates of the cable anchor points on
the base (ax , ay and az) expressed in the base frame. The tension limits are specified
via the minimum and maximum tensions allowed in each cable.

In the sectionRobot Posture, the poses required from the platformduring a specific
task are specified through positions and orientations with respect to the X , Y and
Z axes (px, py, pz, phi, theta, psi). The angles phi, theta and psi are the Euler
angles specifying the attitude of the platform frame with respect to the fixed frame
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according to the XYZ convention. Fixed positions and orientations are specified by
single numbers, while parameters that vary are specified by intervals and resolutions.
Each varying parameter is then assigned to a workspace axis through the pop-up
menus.

By allowing any combination and assignationof parameters to theworkspace axes,
ARACHNIS is able to generate any WFW from two to six dimensions. The WFW
above three dimensions cannot be traced in three-dimensional space, of course. In
such cases, three of the axes are selected to trace the workspace. The poses contained
in the WFW are then the poses for which the full range of poses in the remaining
axes are wrench-feasible poses.

The section Robot Task consists in describing the prescribed robot task by spec-
ifying intervals of forces and moments along each dimension (Fx, Fy, Fz, Mx, My,
Mz). The forces are assumed to be applied at the origin of themoving-platform frame,
but the components of the forces and moments are parallel to the axes of the fixed
frame.

The sectionRobot Visualization consists of a graphical area to visualize the CDPR
geometry, its WFW and its IFCOW. This information can be hidden or shown by
first clicking the corresponding checkboxes and then clicking the plot button. This
section also contains a data button, which generates an Excel spreadsheet containing
the information on the interface and the simulation data, a cancel button to stop
the workspace computation, and a progress bar to indicate the simulation progress.
ARACHNIS also contains Help buttons and error messages customized for each
section to guide the user as he or she inputs the parameters.

7 Case Study 1: A Planar Cable-Driven Parallel Mechanism

This case study demonstrates the capacity of ARACHNIS to generate the wrench
feasible workspace (WFW) of planar cable-driven mechanisms. The mechanism
under study is the eight-cable robot shown in Fig. 4, which has previously been
analyzed in [13]. As in [13], the tension limits were set to 10 and 1,000 N and no
externalwrenchwas applied. The total orientation workspace in Fig. 4was computed
by displacing the robot in a 1.2 m×1.2 m×120◦ grid using a resolution of 80 points
per axis.

The green iso-surface corresponding to γ = 0 represents the frontier of the
WFW. Inside this boundary the robot can safely perform the task. We can acquire
a more quantitative view of the stability of the robot by slicing the total orientation
workspace and generating the constant orientation workspace shown in Fig. 4. Each
contour in the figure represents a value of γ . Again, the contour where γ = 0
defines the stability frontier. The higher this value, the greater the robustness of
the moving-platform equilibrium. Notice that these results match those obtained
in [13]. Other examples of the workspaces generated by ARACHNIS were done by
the same authors in [11], which match the workspaces in Ref. [4]. The computation
time reported in [4] was 51 s, while that obtained with ARACHNIS was 6 s. This
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(a) (b)

Fig. 4 Wrench feasible workspace (WFW) of a planar robot. a Total orientation WFW. b Constant
orientation WFW: 60◦

time difference is significant, and cannot be attributed only to the different personal
computers that were used in the two studies. Notice that all the simulations were run
on a Dell Inspiron 15 r laptop (Intel Core i7-3537U 2.50GHz).

8 Case Study 2: A Spatial Cable-Driven Parallel Mechanism

This case study demonstrates the capacity of ARACHNIS to generate workspaces
of spatial cable-driven mechanisms. The mechanism under study is the spatial robot
with eight cables displayed in Fig. 5, which has also been previously analyzed in [4].
The tension limits for all cables were set to 1 and 540 N. The externally applied
forces along each dimension varied from −10 to 10 N, while the moments varied
from −0.5 to 0.5Nm.

The 5D WFW workspace of this robot was generated by translating it along a
1 m×1 m×1 m grid. At each point on this grid, the robot was rotated around the
X and Y axes through orientations ranging from −15 to 15◦, while retaining a fixed
orientationwith respect to the Z -axis. The capacitymarginwas then evaluated at each
of these poses. A set of values γ was thus obtained for every position on a 3D grid.
The minimum value from each set was selected and assigned to its corresponding
position on the grid. Finally, the values were interpolated, creating the boundary
shown Fig. 5. As in the previous section, we computed the 2D slices of this higher
dimensional workspace to assess quantitatively the performance of the robot. A slice
along the XZ plane is also shown in Fig. 5.

These results alsomatch those obtained in [4] bymeans of interval arithmetics. An
argument oftenmade in favor of interval arithmetics is the guarantee of exactness that
comes with its results. In the example shown in [4], however, the volume occupied
by the uncertainty boxes—boxes that have not been determined to be fully inside
or outside the WFW—amounts to 60% of the total workspace volume. In these
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(a) (b)

Fig. 5 Wrench feasible workspace (WFW) of a spatial robot. a 5D WFW. b Slice: Plane XZ

(a) (b)

Fig. 6 Interference-free constant orientation workspace (IFCOW) of a spatial robot. a Isometric
view. b Top view

conditions, there is no guarantee on the boxes of interest, i.e., those that are close to the
boundary of the WFW. Hence, for this example, interval arithmetics offers no more
guarantee than any other method. This case study also highlights the computational
efficiency of ARACHNIS. The workspace was computed in 225s, outperforming
the algorithm presented in [4] that provided a computation time equal to 1,567s.
The interference-free constant orientation workspace was also computed through the
method described in Sect. 5 and is displayed in Fig. 6. The green polygons symbolize
the interference regions between cables,while the blue ones represent the interference
regions between a cable and amoving-platform edge. The results show that this robot
has an interference free workspace within a box of 1 m × 1 m × 1 m.
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9 Conclusions

In this paper, we presented a graphical user interface namedARACHNIS, orAnalysis
of Robots Actuated by Cables with Handy and Neat Interface Software. ARACHNIS
allows the design and analysis of Cable Driven Parallel Robots (CDPRs). It requires
the designer to enter the parameters of the robot, to specify the loads involved in the
robot task, and to assess the performance of the robot through the visualization of its
Wrench Feasible Workspace (WFW) and its Interference-Free Constant Orientation
Workspace (IFCOW). The capacity margin was first defined as a measure of the
robustness of the moving-platform equilibrium and was used to trace the wrench-
feasible workspace of the CDPRs. Interferences between the moving parts have also
been considered. An existing technique for tracing the interference-free workspace
of CDPRs was summarized and implemented in ARACHNIS. The WFW and the
IFCOW of a planar cable-driven parallel mechanism and of a spatial cable-driven
parallelmechanismhave been plottedwithARACHNIS. It turns out thatARACHNIS
is very competitive in terms of computation time for tracing theWFWand the IFCOW
of CDPRs. The use of the proposed capacity margin to compute the wrench-closure
workspace, the static workspace and the dynamic workspace of CDPRs and the
conversion of ARACHNIS into a stand-alone interface are the subjects of future
work.
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Cable-Driven Parallel Robot with Various
Rehabilitation Strategies
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Sukho Park, Jong-Oh Park and Seong Young Ko

Abstract Robotic technology became an important tool for rehabilitation especially
for stroke patients. This paper presents development of three degrees-of-freedom
cable-driven parallel robot (CDPR) for upper limb rehabilitation. Main features of
the proposed rehabilitation robot are to provide relatively large workspace and to be
less dangerous especially in the situation of robot’s malfunction owing to its reduced
inertia of a moving part. In addition, the cable-driven rehabilitation robot has many
advantages such as transportability, low cost, low actuation power, safeness, large
workspace and so on. In this paper, we analyzed the patient’s joint movement during
the passive rehabilitation using the developed CDPR. In addition, the paper presents
the several types of rehabilitation therapy strategies and their implementation using
the proposed CDPR system.
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1 Introduction

Stroke is one of the most frequent causes of death worldwide and it is ranked top two
in Korea. In addition, many stroke survivors are permanently disabled. According
to the national health insurance claim data from 2000 to 2010, the number of stroke
hospitalizations grew by a compound annual growth at a rate of 6.4 %, and health
care expenditures showed continuing growth at a rapid rate of 13.2 % [1].

Rehabilitation of post-stroke hemiplegic subjects aims to reduce motor impair-
ment, to improve functional use of their limbs, and thus to help them early rein-
tegration into social and domestic life. The rehabilitation is performed by moving
their upper and/or lower limbs during some amount of time. The rehabilitation using
robots can be more efficient than that helped by therapists since the robots can spend
more time in the therapy than the human therapists. There has been a substantial
evolution in robotic technology for the upper limb rehabilitation over the last several
decades, which has created a variety of opportunities and challenges.

Robot-aided rehabilitation therapy has two main advantages comparing to a tra-
ditional one. First, the therapy is carried on autonomously by the robot although it
is programmed by a therapist. Thus, the therapy can last longer than a traditional
therapy done by the human therapist. Secondly, the patient’s strength exerting on
the end-effector of the robot and its end-effector’s motion can be measured. Thus,
performance of the therapy, i.e. patients’ motion improvement, can be recorded and
qualified.

According to a common classification suggested by [2], there are two kinds of
upper limb rehabilitation robotic devices: the exoskeleton type devices and the end-
effector type ones as shown in Fig. 1.

The most successful example of an end-effector type is the MIT-Manus [3],
developed by Massachusetts Institute of Technology (MIT), USA. The MIT-Manus
robot consists of two degrees-of-freedom (DOFs) serial robot for elbow and forearm

End-effector

Exoskeleton

Unilateral

Bilateral

Multi-robot

Partial or Full
ExoskeletonWire-based

Fig. 1 Main configuration categories of upper limb rehabilitation robot [2]
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motion. A 6-DOF force sensor is attached to the robot to control the motion by a
personal computer. The robot spans the workspace of 381 mm × 457.2 mm, and
produces the impedance up to 4.2 N/mm, which can displaya virtual wall effec-
tively. Some disadvantages of this robot are (a) that this robot’s workspace cannot
be changed and (b) the robot’s speed needs to be restricted low due to possibility of
the robot’s hitting the patient.

Many research groups have developed exoskeleton-type robots, such as ARM in
III [4] which is one of the most advanced robotic arms available today. Its active
6-DOF motion allows the practice of a wide range of realistic arm movements in
even severely impaired subjects. The ARMin has undergone pilot clinical testing in
brain injured subjects, and generates several modes of passive and active-assisted
movement. It also provides a virtual environment to motivate the exercises in the
form of simple games or activities and daily living (ADL) tasks. The structure of
exoskeleton robots resembles the human arm anatomy, where the mechanical rotation
axes correspond with the human rotation axes. Consequently, the patient’s arm is
fixed to the exoskeleton at several points. This type of robotic devices can provide
the rehabilitation of individual joints. However, its number of DOFs is in general
higher than the end-effector type systems and each link of the robot system should
be adjusted to the corresponding patient arm segment. At last, in the case of the
robot’s malfunction, it may be severely harmful to the patient’s limbs.

Compared with other rehabilitation robots, a cable-driven parallel robot (CDPR)
offers the advantages of a low-cost mechanical structure, also low actuation power,
intrinsically safe treatment due to the low inertia, high acceptability by the patients,
who are not comfortable to an “industrial-like” robot. We are currently developing
a planar CDPR for the upper limb rehabilitation. The CDPRs are a type of parallel
manipulators wherein its end-effector is supported in parallel by multiple cables that
are controlled by multiple tensioning actuators, so-called winches. Several examples
of the CDPRs can be found in the rehabilitation field, e.g. MACARM [5], NeReBot
[6] and STRING-MAN [7]. The cable rehabilitation robot in this paper is a planar
and fully constrained cable robot.

In addition, the developed rehabilitation robot is integrated with virtual reality
(VR) to provide the virtual games that are designed to motivate the patients and
to engage them in a period of intensive training. VR-based rehabilitation can also
improve the efficiency of a physical therapist by providing tools for better assessment
and remote monitoring of multiple patients [8].

The paper is organized as following. At first, we briefly introduce the rehabilitation
robots and advantages of the cable-driven parallel robot in this chapter. Chapter 2
provides the overview of a prototype of our robotic system. In Chap. 3, the workspace
analysis using an optical tracking system and analysis of patient’s joint movement
are given. In Chap. 4, four different rehabilitation modes are defined and explained
briefly. Finally, the conclusion and future work are described in Chap. 5.

http://dx.doi.org/10.1007/978-3-319-09489-2_2
http://dx.doi.org/10.1007/978-3-319-09489-2_3
http://dx.doi.org/10.1007/978-3-319-09489-2_4
http://dx.doi.org/10.1007/978-3-319-09489-2_5
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Shoulder flexion & extension

Shoulder abduction & adduction

Shoulder internal & external rotation

Forearm pronation & supination

Elbow flexion & extension

Ulnar & Radius Deviation

Wrist flexion & extension

Fig. 2 Upper limb motion

2 Mechanical Design

2.1 Design Scheme

The robot design affects the efficiency of the rehabilitation. According to the clinical
trials data, the planar robot inspired by 2D gravity-compensated therapy is more
effective than 3-D spatial therapy [9]. As a first prototype, we developed a desk-
shaped planar CDPR. That means that the robot is integrated to the desk where
patients sit closely in front of it. Patients are supposed to leans forward to the desk
during the therapy.

2.2 Upper Limb Motion

As shown in Fig. 2, a human upper limb consists of seven DOFs; 3 DOFs in the
shoulder joint, 2 DOFs in the elbow joint and 2 DOFs in the wrist joint. The basic
motions of the upper limb can be categorized into eight individual motions [10];
shoulder vertical flexion/extension, shoulder horizontal flexion/extension, shoulder
adduction/abduction, shoulder internal/external rotation, elbow flexion/extension,
forearm supination/ pronation, wrist flexion/extension, and wrist ulnar/ radial devi-
ation. The activities of daily living (ADL) for the upper limb are the combination of
these basic motions. Although fingers also have lots of DOFs, their motions are not
considered in this study.
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Table 1 Dimensions of
rehabilitation system

Dimensions (mm)

Width 1,200

Length 600

Height 700

Fig. 3 A planar cable-driven parallel robot. a Concept of planar cable-driven parallel robot. b Winch
used in this system. c Prototype of planar cable-driven parallel robot

2.3 Prototype and Its Size

In order to provide sufficient workspace for Korean patients, the dimensions of our
planar CDPR are selected as in Table 1 based on database of the average size of
Koreans [11]. The width of the frame was chosen to be 2 or 3 times larger than the
average shoulder width. The length was chosen to be a bit longer than the length of
the upper limb. The height was chosen similarly to normal desk.

Figure 3a, c show a conceptual design and a prototype of the developed rehabilita-
tion robot. Similarly to a normal planar CDPR, the developed system is composed of
a rigid frame, four winches, an end-effector (handle), cables, a PC as a controller, and
the monitor. The winches for controlling of cable lengths are mounted beneath the
desk for the better look. The patient sits near the desk and grabs the end-effector with
his/her either hand. Figure 3b shows assembly of the winch, whose basic concept is
same as the winch explained in [12].

2.4 System Communication Structure and Winches

The planar CDPR is composed of a rigid frame, four winches that control the cable
lengths, a low-level position controller, a PC for a high-level control, an end-effector,
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Rigid frameWinch 3

Winch 2

Winch 4

Winch 1

PA Controller

A3 A4

A1A2

B4B3

B2 B1

Cable

Computer

Fig. 4 System communication structure of the planar cable-driven robot

as shown in Fig. 4. For the low level control, a PA controller from Precise Automation
Ltd., USA is used to control the motors and set-point values of motors are transferred
to PC with a sampling time of 5 ms for monitoring the status of the controller.

3 Motion Analysis

3.1 Experimental Setup

In this section, we discuss the upper limb motion during the rehabilitation therapy
using the developed robotic system. For this purpose, we attached ball markers at
the four different positions on the upper limbs to measure three-dimensional (3-D)
positions of shoulder/elbow/wrist joints as shown in Figs. 5 and 6.
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NDI ball mark

P1

P2

P3 P4

l1

l3
l2

Fig. 5 Markers’ positions for motion analysis of upper limb

{OTS}

x y

z

{SH}

{TA}

Fig. 6 Experimental setup and the coordinate systems
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As depicted in Fig. 6, the patient sits down in front of the system and grabs the
end-effector gently. The end-effector of robot moves to follow a circle at the constant
speed. At the upper limb, four infra-red (IR) reflective ball markers of optical tracking
system (OTS) from NDI Ltd. are attached at the joints i.e. shoulder (P1), elbow (P2),
wrist (P3) joints and at the hand (P4) to measure their 3D position according to time.

3.2 Experiment Result and Discussion

After measuring the 3D positions, first we transform the positions relative to the
optical tracking system coordinate frame {OTS} into the positions relative to the
shoulder coordinate frame {SH} as in (1). The rotational matrix of the shoulder
coordinate frame {SH} is calibrated before the measuring process, and the origin
position of {SH} is set as the 3D position of shoulder joints. The vector of each link
of the upper limbs has been defined in (2).

SH Pi = (OT STSH )−1 OT S Pi (1)
SH Vi = SH Pi+1 − SH Pi (2)

where SH V1, SH V2 and SH V3 indicate the positions of the upper arm, forearm, and
hand distally, respectively.

The angle of elbow, the shoulder flexion and the shoulder adduction are defined
and calculated as following:

θelbow = cos−1

(
SH V1 · SH V2∣∣SH V1

∣∣ ∣∣SH V2
∣∣

)
(3)

θ f lexion = atan2
(
−SH V1y,

SH V1x

)
(4)

θadduction = cos−1

(
SH V1 · −ẑ∣∣SH V1

∣∣ ∣∣−ẑ
∣∣

)
(5)

where −ẑ indicates the negative z-axis.
Figure 7a shows traces of four ball markers. From this figure, we can see the data

has been measured reasonably.
Figure 7b and Table 2 show calculated joint angle ranges of upper limb joints when

the subjects hold end-effector that is following a circle trajectory (R = 150 mm). The
experiment results show that using the developed system we can produces the elbow
motion of 53.2 ± 5.7, the shoulder flexion of 91.6 ± 5.2, and the shoulder adduction
of 32.8 ± 5.5◦. Measurement and analysis of the joint motions are performed here
to see the generated joint motion is acceptable for the upper limb rehabilitation. The
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Fig. 7 a Plot of ball mark trajectory. b Plot of upper limb joint angle

Table 2 Measured range of joint motions

Subject Links Lengths (mm) Joint Angles (min/max/range) (degree)

Upper arm Forearm Hand Elbow Shoulder Shoulder

(L1) (L2) (L3) angle flexion adduction

S1 231 244 82 38/85/47 20/108/88 25/50/25

S2 252 272 74 35/90/55 10/110/100 23/53/30

S3 266 241 83 33/95/62 15/105/90 28/58/30

S4 245 255 68 28/80/52 22/115/93 22/60/38

S5 277 246 82 39/89/50 24/111/87 16/57/41

Min 231 241 68 28 10 16

Max 277 272 83 95 115 60

Range – – – 53.2 ± 5.7 91.6 ± 5.2 32.8 ± 5.5

motion range of the shoulder flexion is sufficient since it produces almost similar
to the joint range; however the others are required to further improvement. The
measurement and analysis capability may be helpful to the surgeon if it is integrated
to the rehabilitation system to provide the surgeon with the patient joint motion in
real time.

4 Rehabilitation Therapy Strategies Using the Planar CDPR

We consider four basic therapy strategies for the rehabilitation using the developed
planar CDPR: preprogrammed mode which the robotic device moves the patient’s
arm, active assistant mode which the patient executes the end-effector moving along
the guidance line and the robot just help the patient move along guidance line, active
range of motion which the patient attempts to move and the robot provides no help but
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A4A3

A2 A1

B4B3

B2 B1

Cable
Desired trajectory

End-effector

x

y

(a) (b)

Fig. 8 Rehabilitation strategy in preprogrammed mode. a The system configuration. b The graphic
user interface

there have virtual wall protect patient safety, and progressive resistance the patient is
required to perform an exercise against an resistive force provided by the robot [13].

4.1 Preprogrammed Mode (Passive Assistant Mode)

As a first step of rehabilitation, our system provides the preprogrammed motion. Since
at the beginning of the rehabilitation patients do not have enough muscle power to
move even their own limbs and they have pains in their joints during motion, the
robot needs to help their motion forcedly with moderate speed. In this way, they can
regain functionalities of their joints in the upper limb.

We developed the trajectory of various shapes in planar motion. Figure 8a shows
one example trajectory, the circle, and Fig. 8b shows the graphic user interface to
guide the patient to follow the path.

4.2 Position-Based Admittance Control

To implement the passive rehabilitation, a 6-DOF force/torques sensor (Mini40 from
ATI industrial automation co.) is attached to the end-effector. Admittance control
modulates the position trajectory as a function of the force measured [14]. The
admittance is in general defined as:

ṗ(s)

f (s)
= 1

Mas + ca + ka
s

(6)
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Fig. 9 Active assistant mode A4A3

A2 A1

Cable

Desired path

Force vector

Guidance path

where p is the Cartesian position of the end-effector and f represents force and torque
of the force sensor, Ma , ca and ka are virtual inertia, virtual damping and virtual
stiffness components of admittance control. The desired position that corresponds to
the input force can be expressed as:

pd(s) = fd(s)

Mas2 + cas + ka
(7)

4.3 Active Assistant Mode

In the active assistant mode, one desired path line and two guide-path lines that
are offset from the original desired path are constructed. When the patient moves
the end-effector along/near the desired path, he/she can move the robot freely in the
admittance mode control, in which the force exerted by the patient is used to generate
the robot’s desired velocity. In this way, the patient moves his/her upper limb as a
therapist designed. The conceptual diagram of the active assistant mode is shown in
Fig. 9.

As depicted in Fig. 9, the active assistant mode can be considered as the combina-
tion of two virtual walls that are placed closely. To implement the admittance control
and at the same time to provide the virtual wall perception, we need to modify the
input command, i.e. f in (6). Consider the situation where the end-effect are located
near the virtual wall as in Fig. 10, where the origin point is drawn in cyan dashed
line and the virtual wall is drawn in red dotted line. Then, Fp is the force applied by
the patient to move the end-effector, and Fvw is the reaction force from the virtual
wall. The magnitude and the direction of the force is directly relate to the position
and speed of the end-effector, and the spring constant (k) and damper-constant (c),
as in (8).

Fp = ma p̈ + ca ṗ + ka p (8)
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End-effector

k

x

y

Virtual wall

c
wall
p

p pF
vwF

Fig. 10 Virtual wall spring-mass-damper model

where ma , ca and ka are the virtual mass, the virtual damping and the virtual spring
of the admittance control. The position p is the displacement from the closest points
on the virtual wall to the position of the end-effector.

When the end-effector gets contacted to the virtual wall, the virtual contact force
will be considered. If the virtual reactive force is defined as in (9), the total force is
also calculated as in (10).

Fvw = c ṗwall + k pwall (9)

Ftotal = Fp + λFvw (10)

where

λ =
{

1;
0;

p(x, y) ≥ pwall(x, y)

p(x, y) < pwall(x, y)

4.4 Active Range of Motion

In this mode, we utilized only one virtual wall instead of two. The virtual wall can
be constructed in any shapes. However, the basic geometry—e.g. line, rectangular,
circle is considered because the function can be obtained straight forwardly. The
algorithm related to this mode is mostly same as the control strategy described in
Sects. 4.2 and 4.3.

These walls bound the desired working area and allow the end-effector works
inside (Fig. 11). Moreover the virtual wall can protect patient from injury.

http://dx.doi.org/10.1007/978-3-319-09489-2_4
http://dx.doi.org/10.1007/978-3-319-09489-2_4
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A4A3

A2 A1

Cable
Desired boundary (Virtual wall)

End-effector

(a) (b)

Fig. 11 Active range of motion. a The concept. b The graphic user interface

Fig. 12 Progressive resistance mode

4.5 Progressive Resistance Mode

As a last step, if patients get recovered well, they need to increase their muscle
power. For this purpose, the progressive resistance mode is also provided, where the
robotic system resists from moving thus the patient needs to execute larger force
than the others. As shown in Fig. 12 when the patient appliesthe force to move the
end-effector, the resistive reaction force is applied as in (11). This is considered as
the situation where the virtual wall is as small as the point. The calculated resistive
force can replace the virtual wall force Fvw in (10).

Fre = k(�p) (11)

4.6 The Virtual Rehabilitation Therapy Game

Three games were developed to improve the effectiveness of the developed rehabili-
tation robot [15]. The graphic user interface (GUI) is developed so as to be intuitive
and easy to understand as shown in Fig. 13. The game is designed to provide the
force feedback to the player as well.
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Fig. 13 Virtual rehabilitation therapy games, a painting game, b pong game, c ball game

While the patient plays the game, the simulation transparently measures and stores
several parameters in the database: recording time until completing the exercise,
errors between the ideal path and the path taken by the patient. Through several
modes of feedback, the patient’s will be encouraged and put some effort to improve
the result data through several modes of feedback. A congratulatory word is displayed
when the patient completes an exercise.

5 Conclusion and Future Research

This paper presents the design of a planar cable-driven parallel robot for the upper
limb rehabilitation. This robot’s specific design is decided using the limb information
from Korean size database. To analyze the real motion of joints, we measured the
3-dimensional positions of the joints using an optical tracking system and analyze
their angle variations. Our robot is developed to deliver four different rehabilitation
modes using a cable-driven parallel robot.

In the future, a larger number of experiments will be done to quantify the role
of the upper limb joint angle more systematically. The clinical application is finally
envisaged for an extensive use of the machine to neurological patients (such as
chronic post-stroke, inpatients, and brain injured people).
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