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Jean Bourgain

Abstract We study eigenvalue spacings and local eigenvalue statistics for 1D
lattice Schrödinger operators with Hölder regular potential, obtaining a version of
Minami’s inequality and Poisson statistics for the local eigenvalue spacings. The
main additional new input are regularity properties of the Furstenberg measures and
the density of states obtained in some of the author’s earlier work.

1 Introduction

This Note results from a few discussions with A. Klein (UCI, summer 011) on
Minami’s inequality and the results from [7] on Poisson local spacing behavior for
the eigenvalues of certain Anderson type models. Recall that the Hamiltonian H on
the lattice Z

d has the form

H D �V C � (1)

with � the nearest neighbor Laplacian on Z
d and V D .vn/n2Zd IID variables with

a certain distribution. Given a box � � Z
d , H� denotes the restriction of H to �

with Dirichlet boundary conditions. Minami’s inequality, which is a refinement of
Wegner’s estimate, is a bound on the expectation that H� has two eigenvalues in a
given interval I � R. This quantity can be expressed as

E
�
TrXI .H�/

�
TrXI .H�/ � 1

��
(2)

where the expectation is taken over the randomness V . An elegant treatment may
be found in [6].

Assuming the site distribution has a bounded density, (2) satisfies the expected
bound

C j�j2jI j2: (3)
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More generally, considering a site distribution probability measure � which is
Hölder with exponent 0 < ˇ � 1, i.e.

�.I / � C jI jˇ for all intervals I � R (4)

it is shown in [6] that

(2) � C j�j2jI j2ˇ: (5)

For the sake of the exposition, we briefly recall the argument. Rewrite (2) as

EV

h X

j 2�

hıj ;XI .H
.V /
� /ıj i�TrXI .H

.V /
� / � 1

�i
(6)

where .ıj / denote the unit vectors of Z
d . Introduce a second independent copy

W D .wn/ of the potential V . Fixing j 2 �, denote by .V ?
j ; �j / the potential with

assignments vn for n 6D j and �j for n D j . Assuming �j � vj , it follows from the
interlacing property for rank-one perturbations that

TrXI .H
.V /
� / � TrXI

�
H

.V ?
j ;�j /

�

� C 1 (7)

and hence

(6) � EV EW

h X

j 2�

hıj ;XI .H
.V /
� /ıj i TrXI .H

.V ?
j ;kvj k1Cwj /

� /
i
: (8)

Next, invoking the fundamental spectral averaging estimate (see [6, Appendix
A]), we have

Evj Œhıj ;XI .H
.V ?

j ;vj /

� /ıj � � C jI jˇ (9)

so that

(8) � C jI jˇ
X

j 2�

EV ?
j
Ewj

�
TrXI

�
H

.V ?
j ;kvj k1Cwj /

�

��
: (10)

The terms in (10) may be bounded using a Wegner estimate. Applying again (9),
the j -term in (10) is majorized by C j�j jI jˇ, leading to the estimate C jI j2ˇj�j2
for (2). It turns out that at least in 1D, one can do better than reapplying the spectral
averaging estimate. Indeed, it was shown in [2] that in 1D, SO’s with Hölder regular
site distribution have a smooth density of states. This suggests in (5) a better jI j-
dependence, of the form jI j1Cˇ. Some additional work will be needed in order to
turn the result from [2] into the required finite scale estimate. We prove the following
(set � D 1 in (1)).
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Proposition 1. Let H be a 1D lattice random SO with Hölder site distribution
satisfying (4) for some ˇ > 0. Denote HN D HŒ1;N �. Then

EŒI \ Spec HN 6D �� � Ce�cN C CNjI j: (11)

It follows that EŒTrXi .HN /� � Ce�cN C CN2jI j.
The above discussion then implies the following Minami-type estimate.

Corollary 2. Under the assumption from Proposition 1, we have

EŒTrXI .H�/.TrXI .H�/ � 1/� � C j�j3jI j1Cˇ (12)

provided � � Z is an interval of size j�j > C1 log.2 C 1
jI j /, where C; C1 depend

on V .

Denote N the integrated density of states (IDS) of H and k.E/ D dN
dE

. Recall
that k is smooth for Hölder regular site distribution (cf. [2]).

Combined with Anderson localization, Proposition 1 and Corollary 2 permit to
derive for H as above.

Proposition 3. Assuming log 1
ı

< cN, we have for I D ŒE0 � ı; E0 C ı� that

EŒTrXI .HN /� D Nk.E0/jI j C O
�
Nı2 C ı log

�
N C 1

ı

��
(13)

and

Proposition 4.

EŒH� has at least two eigenvalues in I � � C j�j2jI j2 CC j�j log2
�
j�jC 1

jI j
�
:jI j1Cˇ:

(14)

Following a well-known strategy, Anderson localization permits a decoupling for
the contribution of pairs of eigenvectors with center of localization that are at least
C log 1

jI j -apart. Invoking (11), this yields the first term in the r.h.s of (14). For the
remaining contribution, use Corollary 2.

With Propositions 3, 4 at hand and again exploiting Anderson localization,
the analysis from [7] becomes available and we obtain the following universality
statement for 1D random SO’s with Hölder regular site distribution.

Proposition 5. Let E0 2 R and I D ŒE0; E0 C L
N

� where we let first N ! 1 and
then L ! 1. The rescaled eigenvalues

fN.E � E0/XI .E/gE2 Spec HN

converge to a Poisson point process in the limit N ! 1.
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At the end of the paper, we will make some comments on eigenvalue spacings for
the Anderson-Bernoulli (A-B) model, where in (1) the vn are f0; 1g-valued. Further
results in line of the above for A-B models with certain special couplings � will
appear in [4].

2 Proof of Proposition 1

Set � D 1 in (1). We denote

Mn D Mn.E/ D
1Y

j Dn

�
E � vj �1

1 0

	
(15)

the usual transfer operators. Thus the equation H	 D E	 is equivalent to

Mn

�
	1

	0

	
D

�
	nC1

	n

	
: (16)

Considering a finite scale Œ1; N �, let HŒ1;N � be the restriction of H with Dirichlet
boundary conditions. Fix I D ŒE0 � ı; E0 Cı� and assume HŒ1;N � has an eigenvalue
E 2 I with eigenvector 	 D .	j /1�j �N . Then

MN .E/

�
	1

0

	
D

�
0

	N

	
: (17)

Assume j	1j � j	N j (otherwise replace MN by M �1
N which can be treated similarly).

It follows from (17) that

kMN .E/e1k � 1 (18)

with .e1; e2/ the R
2-unit vectors. On the other hand, from the large deviation

estimates for random matrix products (cf. [1]), we have that

log kMN .E0/e1k > cN (19)

with probability at least 1 � e�cN (in the sequel, c; C will denote various constants
that may depend on the potential).

Write

ˇ
ˇ log kMN .E/e1k� log kMN .E0/e1k

ˇ
ˇ �

ˆ ı

�ı

ˇ̌
ˇ
d

dt
Œlog kMN .E0 C t/e1k�

ˇ̌
ˇdt: (20)



On Eigenvalue Spacings for the 1-D Anderson Model with Singular Site Distribution 75

The integrand in (20) is clearly bounded by

X

j D1;2

NX

nD1

jhM .vN ;:::;vnC1/

N �n .E0 C t/e1; ej ij:jhM .vn�1;:::;v1/
n�1 .E0 C t/e1; e1ij

kM
.vN ;:::;v1/
N .E0 C t/e1k

(21)

� 2jE � E0j
NX

nD1

kM
.vN ;:::;vnC1/

N �n .E0 C t/k
kM

.vN ;:::;vnC1/

N �n .E0 C t/
nk
(22)

where


n D M
.vn�1;:::;v1/
n�1 .E0 C t/e1

kM
.vn�1;:::;v1/
n�1 .E0 C t/e1k

(23)

depends only on the variables v1; : : : ; vn�1.
At this point, we invoke some results from [2]. It follows from the discussion in

[2, Sect. 5] on SO’s with Hölder potential that for ` > C D C.V /, the inequality

Ev1;:::;v`
ŒkM`.
/k < "kM`k� . " (24)

holds for any " > 0 and unit vector 
 2 R
2, M` D M

.v1;:::;v`/

` .
A word of explanation. It is proved in [2] that if we take n large enough, the map

.v1; : : : ; vn/ 7! M
.vn;:::;vn/
n defines a bounded density on SL2.R/. Fix then some

n D O.1/ with the above property and write for ` > n,

kM`.
/k � jhMn.
/; M �̀�nej ij .j D 1; 2/

noting that here Mn and M`�n are independent as functions of the potential. Choose
j such that kM �̀�nej k � kM �̀�nk D kM`�nk � kM`k and fix the vector M �̀�nej .
Since then .v1; : : : ; vn/ 7! Mn.
/ defines a bounded density, inequality (24) holds.

Since always kM`k < C ` and kM`.
/k > C �`, it clearly follows from (24) that

EV

h kM
.V /

` k
kM

.V /

` .
/k
i

� C `: (25)

Therefore

EV Œ(22)� < CN2ı: (26)

Hence, we showed that, assuming (19), Spec H
.V /
N \ I 6D � with probability at

most CNı. Therefore Spec H
.V /
N \ I 6D � with probability at most CNı C Ce�cN ,

proving (11).
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3 Proof of Propositions 3 and 4

Assume log 1
jI j < cN and set M D C log

�
N C 1

jI j
�

for appropriate constants c; C .
From the theory of Anderson localization in 1D, the eigenvectors 	˛ of HN , j	˛j D 1

satisfy

j	˛.j /j < e�cjj �j˛ j for jj � j˛j >
M

10
(27)

with probability at least 1 � e�cM , with j˛ the center of localization of 	˛ .
The above statement is well-known and relies on the large deviation estimates for

the transfer matrix. Let us also point out however that the above (optimal) choice of
M is not really important in what follows and taking for M some power of the log
would do as well.

We may therefore introduce a collection of intervals .ƒs/1�s. N
M

of size M

covering Œ1; N �, such that for each ˛, there is some 1 � s . N
M

satisfying

j˛ 2 ƒs and k	˛ jŒ1;N �nƒs
k < e�cM (28)

k.Hƒs � E˛/	˛;sk < e�cM (29)

with 	˛;s D 	˛jƒs . Therefore dist .E˛ , Spec Hƒs / < e�cM < ı.
Let us establish Proposition 3. Denoting ƒ1 and ƒs�

the intervals appearing at
the boundary of Œ1; N �, one obtains by a well-known argument based on exponential
localization

EŒTrXI .HN /� D N:N .I / C O
�
e�cM CEŒTrX QI .Hƒ1/� CEŒTrX QI .Hƒs�

/�
�

(30)

with QI D ŒE0 �2ı; E0 C2ı�. Invoking then Proposition 1 and Corollary 2, we obtain

EŒTrXI .Hƒs /� < ce�cM C CMı C CM3ı1Cˇ < CMı (31)

by the choice of M and assuming .log N /2ıˇ < 1, as we may.
Substituting (31) in (30) gives then

N

ˆ
I

k.E/dE C O.M ı/

D N k.E0/jI j C O
�
Nı2 C ı log

�
N C 1

ı

��

since k is Lipschitz. This proves (13).
Next, we prove Proposition 4.
Assume E˛; E˛0 2 I; ˛ 6D ˛0. We distinguish two cases.
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Case 1. jj˛ � j˛0 j > CM.
Here C is taken large enough as to ensure that the corresponding boxes ƒs; ƒs0

introduced above are disjoint. Thus

Spec Hƒs \ I 6D � (32)

Spec Hƒs0 \ I 6D �: (33)

Since the events (32), (33) are independent, it follows from Proposition 1 that the
probability for the joint event is at most

Ce�cM C CM2ı2 < CM2ı2 (34)

by our choice of M . Summing over the pairs s; s0 . N
M

gives therefore the bound
CN2ı2 for the probability of a Case 1 event.

Case 2. jj˛ � j˛0 j � CM.
We obtain an interval ƒ as union of at most C consecutive ƒs-intervals such

that (28), (29) hold with ƒs replaced by ƒ for both .	˛; E˛/, .	˛0 ; E˛0/. This implies
that Spec Hƒ \ QI contains at least two elements. By Corollary 2, the probability for
this is at most CM3ı1Cˇ. Hence, we obtain the bound CM2Nı1Cˇ for the Case 2
event.

The final estimate is therefore

e�cM C CN2ı2 C CM2Nı1Cˇ

and (14) follows from our choice of M .

4 Sketch of the Proof of Proposition 5

Next we briefly discuss local eigenvalue statistics, following [7].
The Wegner and Minami type estimates obtained in Propositions 3 and 4 above

permit to reproduce essentially the analysis from [G-K] proving local Poisson
statistics for the eigenvalues of H !

N . We sketch the details (recall that we consider a
1D model with Hölder site distribution).

Let M D K log N; M1 D K1 log N with K � K1 � 1 (! 1 with N ) and
partition

ƒ D Œ1; N � D ƒ1 [ ƒ1;1 [ ƒ2 [ ƒ2;1 [ : : : D
[

˛. N
MCM1

.ƒ˛ [ ƒ˛;1/

where ƒ˛ (resp. ƒ˛;1) are M (resp. M1) intervals
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Denote

E˛ D eigenvalue of Hƒ with center of localization in ƒ˛

E˛;1 D ƒ˛;1

Let ƒ0̨ (resp. ƒ0̨
;1) be a neighborhood of ƒ˛ (resp. ƒ˛;1) of size � log N taken

such as to ensure that

dist .E; Spec Hƒ0
˛
/ <

1

N A
for E 2 E˛

(A a sufficiently large constant), and

dist .E; Spec Hƒ0

˛;1
/ <

1

N A
for E 2 E˛;1: (35)

Choosing K1 large enough, we ensure that the ƒ0̨ are disjoint and hence fSpec H !
ƒ0

˛
g

are independent.
Consider an energy interval

I D
h
E0; E0 C L

N

i

Denote

P�.I / D XI .H�/

with L a large parameter, eventually ! 1.
We obtain from (11) and our choice of M1 that

PŒE˛;1 \ I 6D �� . M1jI j

and hence

PŒ
[

˛

E˛;1 \ I 6D �� . N

M
M1jI j . LK1

K
D o.1/ (36)

provided

K1L D o.K/: (37)

Also, by (12)
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PŒjE˛ \ I j � 2� �

PŒHƒ0
˛

has at least two eigenvalues in QI � . M 3jI j1Cˇ < M 3 L1Cˇ

N 1Cˇ
(38)

so that

PŒmax
˛

jE˛ \ I j � 2� . N

M
(38) . M 2L1Cˇ

N ˇ
< N �ˇ=2: (39)

Next, we introduce the (partially defined) random variables

E˛.V / D
X

E2 Spec H
ƒ0

˛
\I

E provided jSpec Hƒ0
˛

\ I j � 1: (40)

Thus the E˛; ˛ D 1; : : : ; N
MCM1

take values in I , are independent since fSpec Hƒ0
˛
g

are independent and have the same distribution.
Let J � I be an interval, jJ j of the order of 1

N
. Then by (38) and Proposition 3.

EŒ1J .E˛/� D EŒTr Pƒ0
˛
.J /�CO

� 1

N 1Cˇ=2

�
D k.E0/

�
1CO

� 1

K

��
jJ jM 0 (41)

where M 0 D jƒ0̨ j.
Therefore fN.E˛ � E0/g˛� N

MCM1

converge in distribution to a Poisson process

(in a weak sense), proving Proposition 5.

5 Comments on the Bernoulli Case

Consider the model (1) with V D .vn/n2Z independent f0; 1g-valued. For large
j�j, H does not have a bounded density of states. It was shown in [3] that for
certain small algebraic values of the coupling constant �, k.E/ D dN

dE
can be made

arbitrarily smooth (see [3] for the precise statement). In particular k 2 L1 and
one could ask if Proposition 4 remains valid in this situation. One could actually
conjecture that the analogue of Proposition 4 holds for the A-B model in 1D, at
small disorder. This problem will be pursued further in [4]. What we prove here
is an eigenvalue separation property at finite scale for the A-B model at arbitrary
disorder � 6D 0. Denote again HN the restriction of H to Œ1; N � with Dirichlet
boundary conditions. We have

Proposition 6. With large probability, the eigenvalues of HN are at least N �C

separated, C D C.�/.

A statement of this kind is known for random SO’s with Hölder site distribution
of regularity ˇ > 1

2
, in arbitrary dimension [6]. But note that our proof of
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Proposition 6 is specifically 1D, as will be clear below. There are three ingredients,
each well-known.

1. Anderson localization

Anderson localization holds also for the 1D A-B model at any disorder. In
fact, there is the following quantitative form. Denote 	.1/; : : : ; 	.N / the normalized
eigenvectors of HN . Then, with large probability .> 1 � N �A/, each 	.j / is
essentially localized on some interval of size C.�/ log N , in the sense that there
is a center of localization �j 2 Œ1; N � such that

j	.j /
n j < e�c.�/jn��j j for jn � �j j > C.�/ log N: (42)

2. Hölder regularity of the IDS

The IDS N .E/ of H is Hölder of exponent � D �.�/ > 0. There are various
proofs of this fact (see in particular [5] and [8]). In fact, it was shown in [2] that
�.�/ ! 1 for � ! 0 but we will not need this here. What we use is the following
finite scale consequence.

Lemma 7. Let M 2 ZC, E 2 R, ı > 0. Then

EŒthere is a vector 	 D .	j /1�j �M ; k	k D 1, such that

k.HM � E/	k < ı; j	1j < ı; j	M j < ı� � CMı� : (43)

The derivation is standard and we do briefly recall the argument.
Take N ! 1 and split Œ1; N � in intervals of size M . Denoting � the l.h.s. of (43),

we see that

E
�
#.Spec HN \ ŒE � 5ı; E C 5ı�/

� � N

M
�:

Dividing both sides by N and letting N ! 1, one obtains that

�

M
� N .ŒE � 5ı; E C 5ı�/

where N is the IDS of H .

3. A repulsion phenomenon

The next statement shows that eigenvectors with eigenvalues that are close
together have their centers far away. The argument is based on the transfer matrix
and hence strictly 1D.

Lemma 8. Let 	; 	 0 be distinct normalized eigenvectors of HN with centers �; �0,

HN 	 D E	

HN 	 0 D E 0	: (44)
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Assuming jE � E 0j < N �C.�/, it follows that

j� � �0j & log
1

jE � E 0j : (45)

Proof. Let ı D jE � E 0j and assume 1 � � � �0 � N . Take M D C.�/ log N

satisfying (42) and ƒ an M -neighborhood of Œ�; �0� in Œ1; N �.
In particular, we ensure that

j	nj; j	 0
nj < N �10 for n 62 ƒ: (46)

We can assume that j	� j > 1

2
p

M
. Since k	 0

�	 � 	�	 0k � j	� j > 1

2
p

M
, it follows

from (46) that for some n0 2 ƒ

j	 0
�	n0 � 	�	 0

n0
j & 1p

M
pjƒj : (47)

Next, denote for n 2 Œ1; N �

Dn D 	 0
�	n � 	�	 0

n

and

Wn D 	 0
n	nC1 � 	n	 0

nC1:

Clearly, using Eq. (44)

k.HN � E/Dk � ı (48)

and

X

1�n<N

jWn � WnC1j < ı: (49)

Let � < N . Since D� D 0, it follows from (48) that

jDnj � .2 C j�j C jEj/jn��j.jD�C1j C 2ı/: (50)

(If � D N , replace � C 1 by � � 1). From (47), (50)

1p
M

pjƒj . .2 C j�j C jEj/jƒj.jD�C1 C 2ı/

and since D�C1 D W� , it follows that
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jW� j C 2ı > 10�jƒj: (51)

Invoking (49), we obtain for n 2 Œ1; N �

jWnj > 10�jƒj � .jn � �j C 1/ı: (52)

On the other hand, by (42)

jWnj � j	nj C j	nC1j < e�c�2jn��j for jn � �j > C.�/ log N:

Taking jn � �j � jƒj appropriately, it follows that

ı & 1

jƒj10�jƒj

and hence

j� � �0j C M & log
1

ı
:

Lemma 8 follows. ut
Proof of Proposition 6. Assume HN has two eigenvalues E; E 0 such that

jE � E 0j < ı < N �C1

where C1 is the constant from Lemma 8. It follows that the corresponding
eigenvectors 	; 	 0 have resp. centers �; �0 2 Œ1; N � satisfying

j� � �0j & log
1

ı
: (53)

Introduce ı0 > ı (to specify), M D C2.�/ log 1
ı0

and ƒ D Œ� �M; � CM �\ Œ1; N �,

ƒ0 D Œ�0 � M; �0 C M � \ Œ1; N �. Let Q	 D 	jƒ
k	jƒk ; Q	 0 D 	0jƒ0

k	0jƒ0 k . According to (42),
choose M such that

k.Hƒ � E/ Q	k < e�c�2M < ı0 and j	j@ƒj < ı0 (54)

and

kHƒ0 � E 0/ Q	 0k < ı0 and j	 0j@ƒ0 j < ı0: (55)

Requiring

log
1

ı
> C3M



On Eigenvalue Spacings for the 1-D Anderson Model with Singular Site Distribution 83

(53) will ensure disjointness of ƒ; ƒ0. Hence Hƒ; Hƒ0 are independent as functions
of V . It follows in particular from (54) that dist .E; Spec Hƒ/ < ı0, hence jE �
E0j < ı0 for some E0 2 Spec Hƒ. Having fixed E0, (55) implies that

k.Hƒ0 � E0/	
0k < jE � E 0j C 2ı0 < 3ı0: (56)

Apply Lemma 7 to Hƒ0 in order to deduce that the probability for (56) to hold with
E0 2 Spec Hƒ fixed, is at most CMı

�
0 . Summing over all E0 2 Spec Hƒ and then

over all pairs of boxes ƒ; ƒ0 gives the bound

O.N 2M 2ı
�
0 / D O

�
N 2

�
log

1

ı0

�2

ı
�
0

�
< N 2ı

�=2
0 : (57)

It remains to take ı0 D N
� 5

� , log 1
ı

> C log 1
ı0

. ut
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