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Abstract An important theme in recent work in asymptotic geometric analysis is
that many classical implications between different types of geometric or functional
inequalities can be reversed in the presence of convexity assumptions. In this note,
we explore the extent to which different notions of distance between probability
measures are comparable for log-concave distributions. Our results imply that weak
convergence of isotropic log-concave distributions is equivalent to convergence in
total variation, and is further equivalent to convergence in relative entropy when the
limit measure is Gaussian.

1 Introduction and Statements of Results

An important theme in recent work in asymptotic geometric analysis is that many
classical implications between different types of geometric or functional inequalities
can be reversed in the presence of convexity. A particularly striking recent example
is the work of E. Milman [11–13], showing for example that, on a Riemannian
manifold equipped with a probability measure satisfying a convexity assumption,
the existence of a Cheeger inequality, a Poincaré inequality, and exponential
concentration of Lipschitz functions are all equivalent. Important earlier examples
of this theme are C. Borell’s 1974 proof of reverse Hölder inequalities for log-
concave measures [4], and K. Ball’s 1991 proof of a reverse isoperimetric inequality
for convex bodies [1].

In this note, we explore the extent to which different notions of distance between
probability measures are comparable in the presence of a convexity assumption.
Specifically, we consider log-concave probability measures; that is, Borel probabil-
ity measures � on R

n such that for all nonempty compact sets A; B � R
n and every

� 2 .0; 1/,

�.�A C .1 � �/B/ � �.A/��.B/1��:
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We moreover consider only those log-concave probability measures � on R
n which

are isotropic, meaning that if X � � then

EX D 0 and EXXT D In:

The following distances between probability measures � and � on R
n appear

below.

1. The total variation distance is defined by

dTV .�; �/ WD 2 sup
A�Rn

j�.A/ � �.A/j ;

where the supremum is over Borel measurable sets.
2. The bounded Lipschitz distance is defined by

dBL.�; �/ WD sup
kgkBL�1

ˇ
ˇ
ˇ
ˇ

ˆ
g d� �

ˆ
g d�

ˇ
ˇ
ˇ
ˇ
;

where the bounded-Lipschitz norm kgkBL of g W Rn ! R is defined by

kgkBL WD max

(

kgk1 ; sup
x¤y

jg.x/ � g.y/j
kx � yk

)

and k�k denotes the standard Euclidean norm on R
n. The bounded-Lipschitz

distance is a metric for the weak topology on probability measures (see, e.g.,
[6, Theorem 11.3.3]).

3. The Lp Wasserstein distance for p � 1 is defined by

Wp.�; �/ WD inf
�

�ˆ
kx � ykp d�.x; y/

� 1
p

;

where the infimum is over couplings � of � and �; that is, probability measures �

on R
2n such that �.A�R

n/ D �.A/ and �.Rn�B/ D �.B/. The Lp Wasserstein
distance is a metric for the topology of weak convergence plus convergence of
moments of order p or less. (See [15, Sect. 6] for a proof of this fact, and a
lengthy discussion of the many fine mathematicians after whom this distance
could reasonably be named.)

4. If � is absolutely continuous with respect to �, the relative entropy, or
Kullback–Leibler divergence is defined by

H.� j �/ WD
ˆ �

d�

d�

�

log

�
d�

d�

�

d� D
ˆ

log

�
d�

d�

�

d�:
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It is a classical fact that for any probability measures � and � on R
n,

dBL.�; �/ � dTV.�; �/: (1)

This follows from a dual formulation of total variation distance: the Riesz represen-
tation theorem implies that

dTV.�; �/ D sup

�ˇ
ˇ
ˇ
ˇ

ˆ
g d� �

ˆ
g d�

ˇ
ˇ
ˇ
ˇ
W g 2 C.Rn/; kgk1 � 1

�

: (2)

In the case that � and � are log-concave, there is the following complementary
inequality.

Proposition 1. Let � and � be log-concave isotropic probability measures on R
n.

Then

dTV.�; �/ � C
p

ndBL.�; �/:

In this result and below, C; c, etc. denote positive constants which are indepen-
dent of n, �, and �, and whose values may change from one appearance to the next.

In the special case in which n D 1 and � D �1, Brehm, Hinow, Vogt and
Voigt proved a similar comparison between total variation distance and Kolmogorov
distance dK .

Proposition 2 ([5, Theorem 3.3]). Let � be a log-concave measure on R. Then

dTV .�; �1/ � C
p

max f1; log.1=dK.�; �1//g dK.�; �1/:

Together with (1), Proposition 1 implies the following.

Corollary 3. On the family of isotropic log-concave probability measures on R
n,

the topologies of weak convergence and of total variation coincide.

Corollary 3 will probably be unsurprising to experts, but we have not seen it
stated in the literature.

Proposition 1 and Corollary 3 are false without the assumption of isotropicity.
For example, a sequence of nondegenerate Gaussian measures f�kgk2N on R

n may
weakly approach a Gaussian measure � supported on a lower-dimensional subspace,
but dTV.�k; �/ D 2 for every k. It may be possible to extend Corollary 3 to a class
of log-concave probability measures with, say, a nontrivial uniform lower bound on
the smallest eigenvalue of the covariance matrix, but we will not pursue this here.

The Kantorovitch duality theorem (see [15, Theorem 5.10]) gives a dual formu-
lation of the L1 Wasserstein distance similar to the formulation of total variation
distance in (2):

W1.�; �/ D sup
g

ˇ
ˇ
ˇ
ˇ

ˆ
g d� �

ˆ
g d�

ˇ
ˇ
ˇ
ˇ
;



388 E.S. Meckes and M.W. Meckes

where the supremum is over 1-Lipschitz functions g W R
n ! R. An immediate

consequence is that for any probability measures � and �,

dBL.�; �/ � W1.�; �/:

The following complementary inequality holds in the log-concave case.

Proposition 4. Let � and � be log-concave isotropic probability measures on R
n.

Then

W1.�; �/ � C max

�p
n; log

� p
n

dBL.�; �/

��

dBL.�; �/: (3)

The following graph of f .x/ D max
˚

1; log
�

1
x

	


x may be helpful in visualizing
the bounds in Proposition 4 and the results below.

In particular, when dBL is moderate, we simply have W1 � C
p

ndBL. When dBL

is small, the right hand side of (3) is not quite linear in dBL, but is o
�

n"=2d 1�"
BL

	

for
each " > 0.

From Hölder’s inequality, it is immediate that if p � q, then Wp.�; �/ �
Wq.�; �/. In the log-concave case, we have the following.

Proposition 5. Let � and � be isotropic log-concave probability measures on R
n

and let 1 � p < q. Then

Wq.�; �/q � C

 

max

(

p
n; log

 �

c maxfq;
p

ng	q
Wp.�; �/p

!)!q�p

Wp.�; �/p:

Because the bounded-Lipschitz distance metrizes the weak topology, and conver-
gence in Lp Wasserstein distance implies convergence of moments of order smaller
than p, Propositions 4 and 5 imply the following.
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Corollary 6. Let �, f�kgk2N be isotropic log-concave probability measures on
R

n such that �k ! � weakly. Then all moments of the �k converge to the
corresponding moments of �.

The following, known as the Csiszár–Kullback–Pinsker inequality, holds for any
probability measures � and �:

dTV.�; �/ �
p

2H.� j �/: (4)

(See [3] for a proof, generalizations, and original references.) Unlike the other
notions of distance considered above, H.� j �/ is not a metric, and H.� j �/ can only
be finite if � is absolutely continuous with respect to �. Nevertheless, it is frequently
used to quantify convergence; (4) shows that convergence in relative entropy is
stronger than convergence in total variation. Convergence in relative entropy is
particularly useful in quantifying convergence to the Gaussian distribution, and it
is in that setting that (4) can be essentially reversed under an assumption of log-
concavity.

Proposition 7. Let � be an isotropic log-concave probability measure on R
n, and

let �n denote the standard Gaussian distribution on R
n. Then

H.� j �n/ � C max

�

log2

�
n

dTV.�; �n/

�

; n log.n C 1/

�

dTV.�; �n/:

The proof of Proposition 7 uses a rough bound on the isotropic constant Lf D
kf k1=n

1 of the density f of �. Better estimates are available but only result in a
change in the absolute constants in our bound. In the case that the isotropic constant
is bounded independent of n (e.g. if � is the uniform measure on an unconditional
convex body, or if the hyperplane conjecture is proved), then the bound above can
be improved slightly to

H.� j �n/ � C max

�

log2

�
n

dTV.�; �n/

�

; n

�

dTV.�; �n/:

Corollary 8. Let f�kgk2N be isotropic log-concave probability measures on R
n.

The following are equivalent:

1. �k ! �n weakly.
2. �k ! �n in total variation.
3. H.�k j �n/ ! 0.

It is worth noting that Proposition 7 implies that B. Klartag’s central limit
theorem for convex bodies (proved in [8, 9] in total variation) also holds in the a
priori stronger sense of entropy, with a polynomial rate of convergence.
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2 Proofs of the Results

The proof of Proposition 1 uses the following deconvolution result of R. Eldan and
B. Klartag.

Lemma 9 ([7, Proposition 10]). Suppose that f is the density of an isotropic log-
concave probability measure on R

n, and for t > 0 define

't.x/ D 1

.2�t2/n=2
e�kxk2=2t2

:

Then

kf � f 	 't k1 � cnt:

Proof (Proof of Proposition 1). Let g 2 C.Rn/ with kgk1 � 1. For t > 0, let
gt D g 	 't , where 't is as in Lemma 9. It follows from Young’s inequality that
kgt k1 � 1 and that gt is 1=t-Lipschitz. We have

ˇ
ˇ
ˇ
ˇ

ˆ
g d� �

ˆ
g d�

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ

ˆ
gt d� �

ˆ
gt d�

ˇ
ˇ
ˇ
ˇ
C
ˇ
ˇ
ˇ
ˇ

ˆ
.gt � g/ d�

ˇ
ˇ
ˇ
ˇ
:

It is a classical fact due to C. Borell [4] that a log-concave probability measures
which is not supported on a proper affine subspace of Rn has a density. If f is the
density of �, then by Lemma 9,

ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

ˆ
g.f � f 	 't /

ˇ
ˇ
ˇ
ˇ

� kf � f 	 'tk1 � cnt;

and
ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇ

� cnt

similarly. Furthermore,

ˇ
ˇ
ˇ
ˇ

ˆ
gt d� �

ˆ
gt d�

ˇ
ˇ
ˇ
ˇ

� dBL.�; �/ kgt kBL � dBL.�; �/ maxf1; 1=tg:

Combining the above estimates and taking the supremum over g yields

dTV.�; �/ � dBL.�; �/ maxf1; 1=tg C cnt

for every t > 0. The proposition follows by picking t D p

dBL.�; �/=2n � 1.
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The remaining propositions all depend in part on the following deep concentra-
tion result due to G. Paouris.

Proposition 10 ([14]). Let X be an isotropic log-concave random vector in R
n.

Then

P ŒkXk � R� � e�cR

for every R � C
p

n, and

�

E kXkp
	1=p � C maxfpn; pg

for every p � 1.

The following simple optimization lemma will also be used in the remaining
proofs.

Lemma 11. Given A; B; M; k > 0,

inf
t�M

�

Atk C Be�t
	 � A

�

1 C .max fM; log.B=A/g/k
�

:

Proof. Set t D maxfM; log.B=A/g.

Proof (Proof of Proposition 4). Let g W Rn ! R be 1-Lipschitz and without loss of
generality assume that g.0/ D 0, so that jg.x/j � kxk. For R > 0 define

gR.x/ D

8

ˆ̂
<

ˆ̂
:

�R if g.x/ < �R;

g.x/ if � R � g.x/ � R;

R if g.x/ > R;

and observe that kgRkBL � maxf1; Rg. Let X � � and Y � �. Then

jEg.X/ � Eg.Y /j � E jgR.X/ � gR.Y /j C E jg.X/ � gR.X/j C E jg.Y / � gR.Y /j
� maxf1; RgdBL.�; �/ C E kXk�kXk�R C E kY k�kY k�R:

By the Cauchy–Schwarz inequality and Proposition 10,

E kXk�kXk�R �
p

nP ŒkXk � R� � p
ne�cR

for R � C
p

n, and the last term is bounded similarly. Combining the above
estimates and taking the supremum over g yields

W1.�; �/ � maxf1; RgdBL.�; �/ C 2
p

ne�cR

for every R � C
p

n. The proposition follows using Lemma 11.



392 E.S. Meckes and M.W. Meckes

Proof (Proof of Proposition 5). Let .X; Y / be a coupling of � and � on R
n � R

n.
Then for each R > 0,

E kX � Y kq� Rq � p
E
kX � Y kp

�kX � Y k�R

� C
q

P ŒkX�Y k � R�E kX�Y k2q:

By Proposition 10,

P ŒkX � Y k � R� � P ŒkXk � R=2� C P ŒkY k � R=2� � e�cR

when R � C
p

n, and

�

E kX � Y k2q
�1=2q �

�

E kXk2q
�1=2q C

�

E kY k2q
�1=2q � C maxfq;

p
ng;

so that

E kX � Y kq � Rq�p
E kX � Y kp C �

C maxfq;
p

ng	q e�cR

for every R � C
p

n. Taking the infimum over couplings and then applying
Lemma 11 completes the proof.

The proof of Proposition 7 uses the following variance bound which follows from
a more general concentration inequality due to Bobkov and Madiman.

Lemma 12 (See [2, Theorem 1.1]). Suppose that � is an isotropic log-concave
probability measure on R

n with density f , and let Y � �. Then

Var
�

log f .Y /
	 � Cn:

Proof (Proof of Proposition 7). Let f be the density of �, and let '.x/ D
.2�/�n=2e�kxk2=2 be the density of �n. Let Z � �n, Y � �, X D f .Z/

'.Z/
, and

W D f .Y /

'.Y /
. Then

H.� j �n/ D EX log X:

In general, if � and � have densities f� and f� , it is an easy exercise to show that
dTV.�; �/ D ´ ˇ

ˇf� � f�

ˇ
ˇ; from this, it follows that

dTV .�; �n/ D E jX � 1j D 1

2
E.X � 1/�X�1:

Let h.x/ D x log x. Since h is convex and h.1/ D 0, we have that h.x/ �
a.x � 1/ for 1 � x � R as long as a is such that h.R/ � a.R � 1/. Let R � 2, so
that R

R�1
� 2. Then

h.R/ D R log R � 2.R � 1/ log R D a.R � 1/
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for a D 2 log R. Thus

EX log X � E.X log X/�X�1

� aE.X � 1/�X�1 C E.X log X/�X�R

D .log R/dTV.�; �n/ C E.X log X/�X�R:

The Cauchy–Schwarz inequality implies that

E.X log X/�X�R D E.log W /�W �R �
p

E.log W /2
p

P ŒW � R�:

By the L2 triangle inequality, we have

p

E.log W /2 D
q

E jlog f .Y / � log '.Y /j2

�
q

E jlog f .Y /j2 C
q

E jlog '.Y /j2;
and by Proposition 10,

E jlog '.Y /j2 D E

 

n

2
log 2� C kY k2

2

!2

� Cn2:

By Lemma 12,

E jlog f .Y /j2 � .E log f .Y //2 C Cn:

Recall that the entropy of � is

�
ˆ

f .y/ log f .y/ dy D �E log f .Y / � 0;

and that �n is the maximum-entropy distribution with identity covariance, so that

.E log f .Y //2 � .E log '.Z//2 D
�

n log
p

2�e
�2

:

Thus
p

E.log W /2 � Cn:

By [10, Theorem 5.14(e)], kf k1 � 28nnn=2, and so

P ŒW � R� D P

�
f .Y /

'.Y /
� R

�

� P

h

ekY k2=2 � .217�n/�n=2R
i

D P

�

kY k �
q

2 log
�

.217�n/�n=2R
	
�
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for each R � .217�n/n=2. Proposition 10 now implies that

P ŒW � R� � e�c
p

log R� n
2 log.217�n/ � e�c0

p
log R

for log R � Cn log.n C 1/.
Substituting S D c

p
log R, all together this shows that

H.� j �n/ � C
�

S2dTV.�; �n/ C ne�S
	

for every S � c
p

n log.n C 1/. The result follows using Lemma 11.
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