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Abstract We generalize the classical Hardy and Faber-Krahn inequalities to
arbitrary functions on a convex body ˝ � R

n, not necessarily vanishing on the
boundary @˝ . This reduces the study of the Neumann Poincaré constant on ˝ to
that of the cone and Lebesgue measures on @˝; these may be bounded via the
curvature of @˝ . A second reduction is obtained to the class of harmonic functions
on ˝ . We also study the relation between the Poincaré constant of a log-concave
measure � and its associated K. Ball body K�. In particular, we obtain a simple
proof of a conjecture of Kannan–Lovász–Simonovits for unit-balls of `n

p , originally
due to Sodin and Latała–Wojtaszczyk.

1 Introduction

Given a compact connected set ˝ with non-empty interior in Euclidean space
.Rn; j�j/ (n � 2) and a smooth function f on ˝ vanishing on @˝ , a version of
the classical Hardy inequality (e.g. [15]) states that:

ˆ
˝

f 2dx � 4

n2
inf

x02Rn

ˆ
˝

jx � x0j2jrf j2dx: (1)

The classical Faber–Krahn inequality (e.g. [4]) states that under the same conditions:
ˆ

˝

f 2dx � P D
˝�

ˆ
˝

jrf j2dx; (2)

where P D
˝� is the best constant in the above inequality under the same conditions

with ˝ D ˝�, the Euclidean Ball having the same volume as ˝ . P D is called the
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Poincaré constant with zero Dirichlet boundary conditions; it is elementary to verify
that P D

˝� ' 1
n

j˝�j2=n (see Remark 3 for more precise information).
In this note we explore what may be said when f does not necessarily vanish on

the boundary, and develop applications for estimating the Poincaré constant with
Neumann boundary conditions. Here and elsewhere, we use jM j to denote the
k-dimensional Hausdorff measure H k of the k-dimensional manifold M , and
A ' B to denote that c � A=B � C , for some universal numeric constants
c; C > 0. All constants c; c0; C; C 0; C1; C2, etc. appearing in this work are positive
and universal, i.e. do not depend on ˝ , n or any other parameter, and their value
may change from one occurrence to the next.

Let �˝ denote the uniform (Lebesgue) probability measure on ˝ , and let P N
˝

denote the Poincaré constant of ˝ , i.e. the best constant satisfying:

Var�˝ f � P N
˝

ˆ
˝

jrf j2d�˝ 8 smooth f W ˝ ! R ; (3)

without assuming any boundary conditions on f . Here and throughoutVar�.f / WD´
f 2d� � .

´
fd�/2 for any probability measure �. It is well-known that when @˝

is smooth, 1=P N
˝ coincides with the first non-zero eigenvalue (“spectral-gap”) of the

Laplacian on ˝ with zero Neumann boundary conditions, explaining the superscript
N in our notation for P N

˝ . The classical Szegö–Weinberger inequality (e.g. [4])
states that P N

˝ � P N
˝� ' Vol.˝�/2=n. By inspecting domains with very narrow

bottlenecks, or even convex domains which are very narrow and elongated in a
certain direction, it is clear that without some additional information on ˝ , P N

˝

is not bounded from above. However, a conjecture of Kannan–Lovász–Simonovits
[17] asserts that on a convex domain ˝ , the Poincaré inequality (3) will be saturated
by linear functions f , up to a universal constant C > 0 independent of n and ˝ ,
i.e.:

P N
˝ � CP Lin

˝ ; P Lin
˝ WD sup

�2Sn�1

Var�˝ h�; �i

It is easy to reduce the KLS conjecture to the case that ˝ is isotropic, meaning that
its barycenter is at the origin and the variance of all unit linear functionals is 1, i.e.:

ˆ
xi d�˝ D 0 ;

ˆ
xi xj d�˝ D ıij 8i; j D 1; : : : ; n:

The conjecture then asserts that P N
˝ � C for any convex isotropic domain ˝ in R

n.
Given a Borel probability measure � on R

n (not necessarily absolutely contin-
uous), we denote by P 1

� the best constant in the following weak L2-L1 Poincaré
inequality:

Var�f � P 1
� kjrf .x/jk2

L1.�/ 8 smooth f W Rn ! R : (4)

Set P 1̋ WD P 1
�˝

; clearly P 1̋ � P N
˝ . In [26], the second-named author showed that

when ˝ is convex, the latter inequality may be reversed:
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P N
˝ � CP 1̋ ; (5)

where C > 1 is a universal numeric constant. This reduces the KLS conjecture to the
class of 1-Lipschitz functions f (satisfying kjrf jkL1 � 1). Another remarkable
reduction was obtained by R. Eldan, who showed [11] that it is essentially enough
(up to logarithmic factors in n) to establish the conjecture for the Euclidean norm
function f .x/ D jxj, but simultaneously for all isotropic convex domains in R

n.
Employing an estimate on the variance of jxj due to O. Guédon and the second-
named author [16], it follows from Eldan’s reduction that for a general convex body
in R

n, P N
˝ � C n2=3 log.1 C n/P Lin

˝ .
In this work, we obtain several additional reductions of the KLS conjecture. First,

we obtain a sufficient condition by reducing to the study of P 1
�@˝

and P 1
�@˝

, the
cone and Lebesgue measures on @˝ , respectively. In particular, it suffices to bound
the variance of homogeneous functions which are 1-Lipschitz on the boundary.
This is achieved by obtaining Neumann versions of the Hardy and Faber-Krahn
inequalities (1) and (2) for general functions (not necessarily vanishing on the
boundary). The parameters P 1

�@˝
or P 1

�@˝
may then be bounded using a result from

our previous work [21], by averaging certain curvatures on @˝ (see Theorem 11).
Second, we reduce the KLS conjecture to the class of harmonic functions.

Thirdly, we consider the Poincaré constant of an unconditional convex body
bounded by the principle hyperplanes, when a certain mixed Dirichlet–Neumann
boundary condition is imposed. It is interesting to check which of the boundary
conditions will dominate this Poincaré constant, and we determine that it is the
Dirichlet ones, resulting in a Faber–Krahn / Hardy-type upper bound.

Lastly, we reveal a general relation between the Poincaré constant of a log-
concave measure � and its associated K. Ball body K�, assuming that the latter has
finite-volume-ratio. In particular, we obtain a quick proof of the KLS conjecture for
unit-balls of `n

p , p 2 Œ1; 2� (first established by S. Sodin [32]), which avoids using
the concentration estimates of Schechtman and Zinn [31]. This is also extended to
arbitrary p � 2 bounded away from 1.

Our proofs follow classical arguments for establishing the Hardy inequality,
which can be viewed as a Lyapunov function or vector-field method, in which one is
searching for a vector-field whose magnitude is bounded from above on one hand,
and whose divergence is bounded from below on the other. For more applications of
Lyapunov functions to the study of Sobolev-type inequalities, see [9].

2 Hardy-Type Inequalities

Let ˝ denote a compact connected set in R
n with smooth boundary and having the

origin in its interior. We denote by � the unit exterior normal-field to @˝ . We denote
by �@˝ the uniform probability measure on @˝ induced by the Lebesgue measure,
i.e. H n�1j@˝= j@˝j.
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Our basic starting point is the following integration-by-parts formula. Let g

denote a smooth function and � a smooth vector field on ˝ . Then:

ˆ
˝

div.�/gdx D �
ˆ

˝

h�; rgi dx C
ˆ

@˝

h�; �i g dH n�1 : (6)

Applying this to g D f 2 and using the Cauchy-Schwartz inequality (in additive
form), we obtain for any positive function � on ˝:

ˆ
˝

div.�/f 2dx �
ˆ

˝

�f 2dx C
ˆ

˝

1

�
jh�; rf ij2 dx C

ˆ
@˝

h�; �i f 2 dH n�1;

or equivalently:

ˆ
˝

.div.�/ � �/ f 2dx �
ˆ

˝

1

�
jh�; rf ij2 dx C

ˆ
@˝

h�; �i f 2 dH n�1: (7)

Let us apply this to several different vector fields �.

2.1 Radial Vector Field

In this subsection, assume in addition that ˝ is star-shaped, meaning that ˝ D
fx I kxk � 1g, where kxk WD inf f� > 0I x 2 �˝g denotes its associated gauge
function. We denote by �@˝ the induced cone probability measure on @˝ , i.e. the
push-forward of �˝ via the map x 7! x

kxk . It is well-known and immediate to check
that:

�@˝ D 1

j˝j
hx; �i

n
� H n�1j@˝:

Theorem 1 (Hardy with Boundary). Let f denote a smooth function on ˝ . Then:

Var�˝ f � 4

n2

ˆ
˝

hx; rf i2d�˝ C 2Var�@˝
f: (8)

Proof. Apply (7) with �.x/ D x, so that div.�/ D n, and � � n=2. We obtain:

ˆ
˝

f 2dx � 4

n2

ˆ
˝

hx; rf i2dx C 2

n

ˆ
@˝

hx; �if 2dH n�1.x/: (9)

In particular, we see that (8) immediately follows when f vanishes on @˝ . For
general functions, we divide (9) by Vol.˝/ and apply the resulting inequality to
f � a with a WD ´

@˝
fd�@˝ :
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Var�˝ f �
ˆ

.f � a/2d�˝ � 4

n2

ˆ
˝

hx; rf i2d�˝ C 2Var�@˝
f j@˝:

This is the desired assertion. ut

2.2 Optimal Transport to Euclidean Ball

A remarkable theorem of Y. Brenier [5] asserts that between any two absolutely con-
tinuous probability measures �; 	 on R

n (say having second moments), there exists
a unique (� a.e.) map T which minimizes the transport-cost

´ jT .x/ � xj2 d�.x/,
among all maps pushing forward � onto 	; moreover, this optimal transport map
T is characterized as being the gradient of a convex function '. See also [25] for
refinements and extensions. The regularity properties of T have been studied by
Caffarelli [6–8], who discovered that a necessary condition for T to be smooth is that
	 have convex support; in particular, Caffarelli’s results imply that when � D �˝ ,
	 D �Bn

2
and @˝ is smooth, then so is the Brenier map T0 WD r'0 pushing forward

� onto �, on the entire closed ˝ (i.e. all the way up to the boundary). By the change-
of-variables formula, we obviously have:

Jac T0 D det dT0 D
ˇ
ˇBn

2

ˇ
ˇ

j˝j :

Theorem 2 (Faber–Krahn with Boundary). Let f denote a smooth function on
˝ . Then:

Var�˝ f � 4 j˝j2=n

n2
ˇ
ˇBn

2

ˇ
ˇ
2=n

ˆ
˝

jrf j2 d�˝ C 2 j@˝j
n
ˇ
ˇBn

2

ˇ
ˇ
1=n j˝j.n�1/=n

Var�@˝
f j@˝:

(10)

Proof. Identifying R
n with its tangent spaces, we set � D r'0 (where '0 was

defined above). Note that since '0 is convex, hence Hess '0 is positive-definite,
we may apply the arithmetic-geometric means inequality:

div.�/ D 
'0 D tr.Hess'0/ � n.det Hess'0/1=n D n.det dT0/1=n D n

ˇ
ˇBn

2

ˇ
ˇ
1=n

j˝j1=n
DW ˛:

Applying (7) with � � ˛=2, and using that � D r'0 2 Bn
2 , we obtain:

ˆ
˝

f 2dx � 4 j˝j2=n

n2
ˇ
ˇBn

2

ˇ
ˇ
2=n

ˆ
˝

jrf j2 dx C 2 j˝j1=n

n
ˇ
ˇBn

2

ˇ
ˇ
1=n

ˆ
@˝

f 2dH n�1:
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In particular, when f vanishes on @˝ , we deduce (2) with a slightly inferior
constant; however, this constant is asymptotically (as n ! 1) best possible, see
Remark 3 below. Dividing by j˝j and applying the resulting inequality to f � a

with a WD ´
@˝

fd�@˝ , the assertion follows. ut
Remark 3. It is known (e.g. [13, p. 139]) that 1=P D

Bn
2

is equal to the square of the
first positive zero of the Bessel function of order .n � 2/=2. According to [33,
p. 516], the first zero of the Bessel function of order ˇ is ˇ C c0ˇ1=3 C O.1/, for a
constant c0 ' 1:855, and so consequently P D

Bn
2

D 4
n2 .1 C o.1//. By homogeneity, it

follows that P D
˝� D 4 j˝�j2=n =.n2

ˇ
ˇBn

2

ˇ
ˇ
2=n

/.1Co.1//, confirming that the constant
in Theorem 2 is asymptotically best possible.

Remark 4. Note that if we start from (6) and avoid employing the Cauchy-Schwartz
inequality used to derive (7), the above proof (using � D r'0 and g � 1) yields the
isoperimetric inequality with sharp constant for smooth bounded domains:

j@˝j � n jBn
2 j1=n j˝j.n�1/=n : (11)

This proof was first noted by McCann [24], extending an analogous proof by
Knothe and subsequently Gromov of the Brunn-Minkowski inequality [28] using
the Knothe map [20]. See [12] for rigorous extensions of such an approach to non-
smooth domains.

2.3 Normal Vector Field

In this subsection, we assume in addition that ˝ is strictly convex. We employ the
vector field:

�.x/ D �.x= kxk/ ;

the exterior unit normal-field to the convex set ˝x WD kxk ˝ . Note that this field is
not well defined (and in particular not continuous) at the origin, so strictly speaking
we cannot appeal to (7). However, this is not an issue, since div.�/ is homogeneous
of degree �1, and so the Jacobian term in polar coordinates rn�1 will absorb the
blow-up of the divergence near the origin (recall n � 2). To make this rigorous, we
simply repeat the derivation of (7) by integrating by parts on ˝ n �Bn

2 , and note that
we may take the limit as � ! 0, since the contribution of the additional boundary
@�Bn

2 goes to zero as � and f are bounded.
Now, observe that:

div.�/.x/ D H@˝x .x/ D 1

kxkH@˝.x= kxk/;
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where HS .y/ denotes the mean-curvature (trace of the second fundamental form
IIS ) of a smooth oriented hypersurface S at x. Indeed, by definition r�j�? D II@˝x ,
and 2r�� D r h�; �i D 0, and so div.�/ D tr.r�/ D H@˝x .

Theorem 5 (Mean-Curvature Weighted Hardy). For any strictly convex ˝ and
smooth function f defined on it:

ˆ
˝

H@˝.x= kxk/

kxk f 2.x/dx � 4

ˆ
˝

kxk
H@˝.x= kxk/

hrf .x/; �.x= kxk/i2 dx

C2

ˆ
@˝

f 2dH n�1:

Proof. Immediate after appealing to (7) with �.x/ D 1
2

H@˝.x=kxk/

kxk . ut
Remark 6. We note for future reference that by (6) with g � 1 we have:

ˆ
˝

H@˝.x= kxk/

kxk d�˝ D j@˝j
j˝j :

Also, integration in polar coordinates immediately verifies:

ˆ
˝

H@˝.x= kxk/

kxk d�˝.x/ D n

n � 1

ˆ
@˝

H@˝d�@˝ ;

ˆ
˝

kxk
H@˝.x= kxk/

d�˝.x/ D n

n C 1

ˆ
@˝

d�@˝

H@˝

:

2.4 Unconditional Sets

Finally, we consider one additional vector-field for the Lyapunov method, which
is useful when ˝ is the intersection of an unconditional convex set with the
first orthant Q WD Œ0; 1/n under a certain mixed Dirichlet–Neumann boundary
condition. Let int.Q/ denote the interior of Q.

Theorem 7. Let ˝ � Q denote a set having smooth boundary, such that every
outer normal � to @˝ \ int.Q/ has only non-negative coordinates. Let f denote a
smooth function vanishing on @Q. Then:

ˆ
˝

f 2

jxj2 dx � 4

n2

ˆ
˝

jrf j2dx:

Proof. Consider the vector field:

� D �
�

1

x1

; � � � ;
1

xn

�

:
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Since h�; �i � 0 in int.Q/ \ @˝ and f j@Q\@˝ D 0, we have:

ˆ
˝

nX

iD1

1

x2
i

f 2dx D
ˆ

˝

div.�/f 2dx D �2

ˆ
˝

f hrf; �i dxC
ˆ

@˝

h�; �if 2dH n�1

� �2

ˆ
˝

f hrf; �i dx � 2

v
u
u
t

ˆ
˝

nX

iD1

1

x2
i

f 2dx

sˆ
˝

jrf j2dx:

Finally, by the arithmetic-harmonic means inequality, we obtain:

n2

ˆ
˝

f 2

jxj2 dx �
ˆ

˝

nX

iD1

1

x2
i

f 2dx � 4

ˆ
˝

jrf j2dx:

ut
We stress that this result is very similar to the following variant of the Hardy

inequality:

ˆ
˝

f 2

jxj2 dx �
� 2

n � 2

�2
ˆ

˝

jrf j2dx;

which holds for any smooth f vanishing on @˝ (see [15]).

3 Reduction of KLS Conjecture to Subclasses of Functions

3.1 Reduction to the Boundary

Let us now see how the Hardy-type inequalities of the previous section may be
used to reduce the KLS conjecture to the behaviour of 1-Lipschitz functions on the
boundary @˝ . We remark that we use here the term “reduction” in a rather loose
sense—we obtain a sufficient condition for the KLS conjecture to hold, but we were
unable to show that this is also a necessary one.

Together with (5), Theorem 1 immediately yields:

Corollary 8. For any smooth convex domain ˝ with barycenter at the origin:

P N
˝ � CP 1̋ � C

�
4

n
P Lin

˝ C 2P 1
�@˝

�

: (12)

where C > 0 is a universal constant.

Proof. Apply Theorem 1 to an arbitrary 1-Lipschitz function f , and note that´ jxj2 d�˝ D Pn
iD1 Var�˝ .xi / � nP Lin

˝ . ut
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Consequently, a sufficient criterion for verifying the KLS conjecture is to establish
that P 1

�@˝
� C 0 for any isotropic convex ˝—a “weak KLS conjecture for cone

measures”. This suggests that the most difficult part of the conjecture concerns the
behavior of 1-Lipschitz functions on the boundary.

It may be more desirable to work with the Lebesgue measure �@˝ instead of the
cone measure �@˝ . Since:

P Lin
˝ � P Lin

˝� ' j˝�j2=n
; jBn

2 j1=n ' 1p
n

; (13)

(see e.g. [27]), Theorem 2 together with (5) immediately yields:

Corollary 9. For any smooth convex domain ˝ with barycenter at the origin:

P N
˝ � C1P

1̋ � C2

�
4

n
P Lin

˝ C 2IP 1
�@˝

�

; I WD j@˝j
n
ˇ
ˇBn

2

ˇ
ˇ
1=n j˝j.n�1/=n

: (14)

Note that for an isotropic convex body, the isoperimetric ratio term I satisfies:

1 � I � C 0pn j˝j1=n : (15)

The left-hand side in fact holds for any arbitrary set ˝ by the sharp isoperimetric
inequality (11). The right-hand side follows since when ˝ is convex and isotropic,
it is known that ˝ � 1

C
Bn

2 (e.g. [27]). Consequently (see e.g. [2]):

j@˝j D lim
�!0

ˇ
ˇ˝ C �Bn

2

ˇ
ˇ � j˝j

�
� lim

�!0

j˝ C �C˝j � j˝j
�

D nC j˝j ;

and so (15) immediately follows. Up to the value of C 0, the right-hand side is also
sharp, as witnessed by the n-dimensional cube. Note that by (13), j˝j1=n ' P Lin

˝� �
P Lin

˝ D 1 for any isotropic convex body ˝ , and so in fact I � C 00pn.
To avoid the isoperimetric ratio term I which may be too large, we can instead

invoke Theorem 5:

Corollary 10. For any strictly convex smooth domain ˝:

P N
˝ � C2

�

A2 C A
j@˝j
j˝j P 1

�@˝

�

; A WD
ˆ

@˝

d�@K

H@˝

: (16)

Note that by Jensen’s inequality and Remark 6:

A
j@˝j
j˝j � 1´

@˝
H@˝d�@K

j@˝j
j˝j D n

n � 1
;

but perhaps the term A j@˝j
j˝j is nevertheless still more favorable than I .
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For the proof, we require the following variant of the notion of P 1̋:

P
1;1
˝ WD sup

(�ˆ
jf � med�˝ f j d�˝

�2

I kjrf jkL1.�˝/ � 1

)

:

It follows from the results of [26] that for any convex ˝:

P N
˝ � C1P

1;1
˝ � C2P

1̋ � C2P
N
˝ : (17)

Proof of Corollary 10. By Cauchy-Schwartz:

�ˆ
˝

jf j d�˝

�2

�
ˆ

˝

kxk
H@˝.x= kxk/

d�˝.x/

ˆ
˝

H@˝.x= kxk/

kxk f 2.x/d�˝.x/

Assuming that f is 1-Lipschitz and invoking Theorem 5, it follows that:

�ˆ
˝

jf j d�˝

�2

� B

�

4B C 2
j@˝j
j˝j

ˆ
@˝

f 2d�@˝

�

; B WD
ˆ

˝

kxk
H@˝.x= kxk/

d�˝.x/:

Applying this to f � a where a WD ´
@˝

fd�@˝ , we obtain:

P 1;1
˝ � B

�

4B C 2
j@˝j
j˝j P 1

�@˝

�

:

But B D n
nC1

A by Remark 6, and so the assertion follows from (17). ut

3.2 A Concrete Bound

To control the variance of 1-Lipschitz functions on the boundary @˝ , we recall
an argument from our previous work [21], where a generalization of the following
inequality of A. Colesanti [10] was obtained:

ˆ
@˝

Hf 2dH n�1 � n � 1

n

�´
@˝

fdH n�1
�2

Vol.˝/
�

ˆ
@˝

˝

II�1
@˝ r@˝f; r@˝f

˛

dH n�1 ;

(18)

for any strictly convex ˝ with smooth boundary and smooth function f on @˝ .
Applying the Cauchy-Schwartz inequality, we obtain for any 1-Lipschitz function
f with

´
@˝

fd�@˝ D 0:

�ˆ
@˝

jf � med�@˝
f j d�@˝

�2

�
�ˆ

@˝

jf j d�@˝

�2

�
ˆ

@˝

d�@˝

H@˝

ˆ
@˝

d�@˝

�@˝

;
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where �@˝.x/ denotes the (positive) minimal principle curvature of @˝ at x, so that
II@˝ � �Id . Consequently, the right-hand-side is an upper bound on P 1;1

�@˝
. Using

the equivalence (17) in a more general Riemannian setting, we were able to deduce
in [21] that:

.P 1
�@˝

� / P N
�@˝

� CP 1;1
�@˝

� C

ˆ
@˝

d�@˝

H@˝

ˆ
@˝

d�@˝

�@˝

: (19)

Plugging this estimate into the estimates of the previous subsection, we obtain:

Theorem 11. For n larger than a universal constant and any isotropic strictly
convex body ˝ with smooth boundary in R

n:

P N
˝ � C2

j@˝j
p

n j˝j n�1
n

ˆ
@˝

d�@˝

H@˝

ˆ
@˝

d�@˝

�@˝

:

Proof. The easiest option is to invoke Corollary 9, but note that Corollary 8 or 10
would also work after an appropriate application of Cauchy-Schwartz. Coupled
with (19), it follows that:

P N
˝ � C1

 

4

n
P Lin

˝ C j@˝j
p

n j˝j n�1
n

ˆ
@˝

d�@˝

H@˝

ˆ
@˝

d�@˝

�@˝

!

:

But since P Lin
˝ � P N

˝ , the assertion follows for e.g. n � 8C1. ut
Note that this estimate yields the correct result, up to constants, for the Euclidean

ball. A concrete class of isotropic convex bodies for which the first term above j@˝jp
n

is upper bounded by a constant, is the class of quadratically uniform convex bodies
˝ , since in isotropic position ˝ � c

p
nBn

2 and j˝j1=n ' 1 (see e.g. [19]). It
is not hard to show that when in addition ˝ � C1

p
nBn

2 —i.e. ˝ is an isotropic
quadratically uniform convex body which is isomorphic to a Euclidean ball—then
P N

˝ � C2. It would be very interesting to see if the additional assumption ˝ �
C1

p
nBn

2 could be removed by employing the estimate given by Theorem 11.

3.3 Reduction to Harmonic Functions

We conclude this section by providing another different reduction of the KLS
conjecture:

Theorem 12 (Reduction to Harmonic Functions). There exists a universal con-
stant C > 1 so that:

P N
˝ � CP H

˝ ; P H
˝ WD sup

h2H

Var�˝ h´ jrhj2 d�˝

;
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where H denotes the class of harmonic functions h on ˝ . In fact, for large enough
n, one can use C D 2.

Proof. Fix an arbitrary smooth function f on ˝ , and solve the Poisson equation

h D 0, hj@˝ D f j@˝ . One has:

Var�˝ f � 2.Var�˝ .f � h/ C Var�˝ h/:

Since f � h vanishes on @˝ , the Faber-Krahn inequalities (2) or (10) imply:

Var�˝ .f � h/ � 4 j˝j2=n

n2
ˇ
ˇBn

2

ˇ
ˇ
2=n

ˆ
jrf � rhj2 d�˝:

It follows that:

Var�˝ f � max

�
C1

n
j˝j2=n ; 2P H

˝

��ˆ
jrf � rhj2 d�˝ C

ˆ
jrhj2 d�˝

�

:

But since h is harmonic and .f � h/j@˝ D 0 we have
´ hrf � rh; rhid�˝ D 0,

and consequently:

ˆ
�jrf � rhj2 C jrhj2�d�˝ D

ˆ
jrf j2d�˝:

It remains to note that since linear functions are harmonic, P H
˝ � P Lin

˝ � P Lin
˝� '

j˝�j2=n, concluding the proof. ut
Remark 13. It is not clear to us if it enough to only control the variance of harmonic
functions h, so that the restriction hj@˝ is 1-Lipschitz. The reason is that we do not
know whether h has bounded Lipschitz constant on the entire ˝ , and so we cannot
apply (5). We believe that the latter would be an interesting property of convex
domains which is worth investigating. A small observation in this direction is that
jrhj2 is subharmonic and hence satisfies the maximum principle, but we do not
know how to control the derivative in the normal direction to @˝ .

4 Transferring Poincaré Inequalities from � to K�

Given an absolutely continuous probability measure � on R
n having upper-semi-

continuous density f , the following set was considered by K. Ball [1]:

K� WD
n

x 2 R
n I kxkK�

� 1
o

; where
1

kxkK�

D
�

n

ˆ 1

0

rn�1f .rx/dr

�1=n

:
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Integration in polar coordinates immediately verifies that
ˇ
ˇK�

ˇ
ˇ D k�k D 1. A

remarkable observation of Ball is that when f is log-concave (i.e. log f W Rn !
R [ f�1g is concave), then K� is a compact convex set (see [18] for the case that
f is non-even). If in addition the origin is in the interior of the support of �, then it
will also be in the interior of K�—we will say in that case that K� is a convex body.

Given a convex body K , consider the map T .x/ D x
kxkK

where k�kK denotes the
gauge function of K (when K is origin-symmetric, this function defines a norm). It
is an elementary exercise to show that T�� D �@K if and only if K D cK� for some
c > 0 (see [29, Proposition 3.1]).

Proposition 14. Let � D f .x/dx denote a probability measure with log-concave
density on R

n (n � 3) and barycenter at the origin, and set T .x/ D x
kxkK�

. Assume

that K� � RBn
2 . Then:

ˆ
Rn

kdT �.x/k2
op d�.x/ � C

f .0/2=n

R2

ˆ
K�

jxj2 dx;

where k�kop denotes the operator norm, and dT �.x/ is the dual operator to the
differential dT .x/ W TxR

n ! TT .x/@K�.

For the proof, we first require:

Lemma 15. If T .x/ D x
kxkK

and @K is smooth then:

�
�dT �.x/

�
�

op
D jxj jr kxkK j

kxk2
K

D 1

kxkK hx= jxj ; �@K.T .x//i D jxj
kxk2

K hK .�@K.T .x///
;

where hK.�/ D sup fhx; �i I x 2 Kg denotes the support function of K .

Proof. Since r kxkK is parallel to � D �@K.T .x//, taking the partial derivative in
the direction of x verifies that:

r kxkK D kxkK

hx; �i�:

Consequently dT .x/ D 1
kxk .Id � x˝�

hx;�i /. Now observe that:

kdT .x/�k2
op D sup

n

hdT .x/dT .x/�v; vi I v 2 T �
T .x/@K ; jvj � 1

o

:

But dT .x/dT .x/� D 1

kxk2 .Id C u ˝ u/, where u D � � x
hx;�i . Consequently, its top

eigenvalue is:

1

kxk2
.1 C juj2/ D 1

kxk2
K

jxj2
hx; �i2

:
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It remains to note that when x 2 @K then hx; �@K.x/i is precisely the support
function of K in the direction of the latter normal. Consequently, hx; �i D
kxkK hK.�/, and the assertion follows. ut
Proof of Proposition 14. It is easy to see that if the density f of � is smooth, then
so is @K�, and so by approximation we may assume that this is indeed the case.
Consequently, if K� � RBn

2 , we have by Lemma 15:

ˆ
Rn

�
�dT �.x/

�
�2

op
d�.x/ D

ˆ
Rn

jxj2
kxk4

K�
h2

K�
.�@K�

.T .x///
d�.x/ � 1

R2

ˆ
Rn

jxj2
kxk4

K�

d�.x/:

(20)

Integrating in polar coordinates, we have:

ˆ
Rn

jxj2
kxk4

K�

d�.x/ D
ˆ

Sn�1

1

k�k4
K�

ˆ 1

0

rn�3f .r�/drd�: (21)

Denoting kp.�/ WD .p
´ 1

0
rp�1f .r�/dr/1=p , we use that for any non-negative

function f on Œ0; 1/:

0 < p1 � p2 ) kp1 .�/

M
1=p1

�

� kp2.�/

M
1=p2

�

;

where M� D supr2Œ0;1/ f .r�/. See [1, 3, 27] for case that f is even and [18,
Lemmas 2.5 and 2.6] or [30, Lemma 3.2 and (3.12)] for the general case. Applying
this to (21) with p1 D n � 2 and p2 D n, denoting M D maxx2Rn f .x/, and using
polar integration again, it follows that:

ˆ
Rn

jxj2
kxk4

K�

d�.x/ � M 2=n 1

n � 2

ˆ
Sn�1

1

k�knC2
K�

d� D M 2=n n C 2

n � 2

ˆ
K�

jxj2 dx:

It remains to apply a result of M. Fradelizi [14] stating that for a log-concave
measure � D f .x/dx with barycenter at the origin:

M � enf .0/:

Plugging all of these estimates into (20), the assertion is proved. ut
We can now obtain:

Theorem 16. Let � D f .x/dx denote a log-concave probability measure on R
n

having barycenter at the origin. Assume that K� � RBn
2 . Then for large-enough n:

P N
K�

� C

´ jxj2 d�K�.x/

R2
f .0/2=nP N

� :
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In particular, if � satisfies the KLS conjecture then so does �K� , as soon as
´ jxj2d�K�

R2

is bounded above by a constant.

Remark 17. This result was already noticed by Bo’az Klartag and the second-
named author using a more elaborate computation which was never published. The
idea is to control the average Lipschitz constant of the radial map from [29] pushing
forward � onto �K� instead of �@K� .

Proof. We employ Corollary 8 and Proposition 14. When n is large-enough,
C 4

n
P Lin

K�
� 1

2
P Lin

K�
� 1

2
P N

K�
, and hence by Corollary 8:

P N
K�

� C 0P 1
�@K�

:

Denoting T .x/ D x
kxkK�

, we see by Proposition 14 that for any 1-Lipschitz function

f on @K�:

Var�@K�
.f / D Var�.f ı T / � P N

�

ˆ
jr.f ı T /j2 d�

� P N
�

ˆ
ˇ
ˇr@K�f

ˇ
ˇ
2

.T .x// kdT �.x/k2
op d�.x/

� P N
�

ˆ
kdT �.x/k2

op d�.x/ � C
f .0/2=n

R2

ˆ
K�

jxj2 dx P N
� :

This implies the first part of the assertion.
The second part follows since, as shown by Ball [1] (see [18] for the non-even

case):

P Lin
K�

' f .0/2=nP Lin
� : (22)

Consequently:

P N
� � APLin

� ) P N
K�

� C

´ jxj2 d�K�

R2
A P Lin

K�
:

ut
We thus obtain a simple recipe for obtaining good spectral-gap estimates on

certain convex bodies K having in-radius R so that
´ jxj2 d�K.x/=R2 is bounded

above by a constant: if we can find a log-concave measure � having good spectral-
gap so that K� D K , Theorem 16 will imply that K also has good spectral-gap.

Remark 18. An inspection of the proofs of Proposition 14 and Theorem 16 shows
that we may replaces 1

R2 in all of the occurrences above, with the more refined

expression
´

@K�

d�@K�

h2
K�

.�@K� /
. However, we do not know how to effectively control the

latter quantity.
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4.1 An Example: Unit-Balls of `n
p, p 2 Œ1; 2�

We illustrate this for unit-balls Bn
p of `n

p, p 2 Œ1; 2�. It was first shown by S. Sodin
[32] that these convex bodies satisfy the KLS conjecture. An alternative derivation
was obtain in [26] by using the weaker P 1 parameter and the equivalence (5). Both
approaches relied on the Schechtman–Zinn concentration estimates for these bodies
[31].

Using Theorem 16, we avoid passing through the Schechtman–Zinn concen-
tration results. Indeed, let �p denote the one-dimensional probability measure

1
2 .1=pC1/

exp.� jt jp/dt. The n-fold product measure �n
p WD �˝n

p has density f n
p .x/

where:

f n
p .x/ D 1

2n .1=p C 1/n
exp.�

nX

iD1

jxi jp/:

By the tensorization property of the Poincaré inequality [23], P N
�n

p
D P N

�p
, and

since any one-dimensional log-concave measure satisfies the KLS conjecture, then
so does any log-concave product measure. Now, since all level sets of f n

p are
homothetic copies of Bn

p , it is immediate to see that K�n
p

must be (the necessarily

volume one) homothetic copy QBn
p of Bn

p . In the range p 2 Œ1; 2�, it is known

(e.g. [28]) and easy to check that QBn
p are finite volume-ratio bodies, meaning that

QBn
p � c

p
nBn

2 . On the other hand, by (22):

ˆ
jxj2 � QBn

p
' f n

p .0/2=n

ˆ
jxj2 d�n

p.x/ D 1

22 .1=p C 1/2
n

ˆ 1

�1
jt j2d�p.t/ � C n;

uniformly in p 2 Œ1; 2�. Consequently, Theorem 16 implies that QBn
p (and hence Bn

p)
satisfy the KLS conjecture, uniformly in n and p 2 Œ1; 2�. Similar versions may
easily be obtained for convex functions more general than jt jp ; we leave this to the
interested reader.

4.2 Another Example: Unit-Balls of `n
p, p 2 .2 ;1/

To conclude, we use the unit-balls of `n
p for p 2 .2; 1/ to further illustrate the

advantage and disadvantage of the method we propose in this section. Note that
QBn
p are not finite volume-ratio bodies when p 2 .2; 1�, and so Theorem 16 does

not directly apply. However, by inspecting its proof and avoiding using the wasteful
bound (20), we can still deduce the KLS conjecture for these bodies when p is
bounded away from 1. It was first shown by R. Latala and J.O. Wojtaszczyk [22]
that in the entire range p 2 Œ2; 1�, there exists a globally Lipschitz map pushing
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forward �n
p onto � QBn

p
, different from the radial map we have considered in this

section. It is interesting to note that the radial-map is nevertheless Lipschitz on-
average, at least when p < 1.

Indeed, by inspecting the proof of Theorem 16 and employing Lemma 15, we
see that we just need to control:

ˆ
Rn

kdT �.x/k2
op d�n

p.x/ D
ˆ
Rn

jxj2 jr kxk QBn
p

j2
kxk4

QBn
p

d�n
p.x/

D c2
p;n

ˆ
Rn

jxj2 jr kxkp j2
kxk4

p

d�n
p.x/;

where QBn
p D cp;nBn

p . It is well-known and easy to calculate that cp;n ' n1=p . Using

that jxj2 � n1�2=p kxk2
p (since p � 2), that:

jr kxkp j2 D
Pn

iD1 jxi j2p�2

kxk2p�2
p

;

and the invariance under permutation of coordinates, we conclude that:

ˆ
Rn

kdT �.x/k2
op d�n

p.x/ ' n2

ˆ jx1j2p�2

kxk2p
p

d�n
p.x/:

Integrating by parts, we have:

ˆ
Rn

exp.� kxkp
p/

kxk2p
p

jx1j2p�2 dx D
ˆ
Rn

ˆ 1

kxkp
p

exp.�t/

�
1

t2
C 2

t3

�

dt jx1j2p�2 dx

D
ˆ 1

0
exp.�t/

�
1

t2
C 2

t3

�ˆ
t 1=pBn

p

jx1j2p�2 dx dt

D
ˆ 1

0
exp.�t/

�
1

t2
C 2

t3

�

t
nC2p�2

p dt
ˆ

Bn
p

jx1j2p�2 dx;

and so by a similar computation we conclude:

ˆ jx1j2p�2

kxk2p
p

d�n
p.x/ D AB ;

A WD
´ 1

0
exp.�t/

�
1
t2 C 2

t3

�

t
nC2p�2

p dt
´ 1

0
exp.�t/t

nC2p�2
p dt

; B WD
ˆ

jx1j2p�2 d�n
p.x/:
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Now:

B D
ˆ 1

�1
jt j2p�2 d�p.t/ D  .�1=p/

p .1 C 1=p/
� C1

p
;

uniformly in p 2 Œ2; 1�, whereas it is elementary to verify that in that range:

A � C2 min

�
p2

n2
;

p

n

�

:

Putting everything together, we see that:

ˆ
Rn

kdT �.x/k2
op d�n

p.x/ � C min.p; n/: (23)

Consequently, the same argument as in the previous subsection shows that QBn
p verify

the KLS conjecture uniformly in n, as long as p is bounded above.
It is natural to wonder whether the only inequality we have used to derive the

above estimate, namely jxj2 � n1�2=p kxk2
p, was perhaps too crude. However, this

is not the case, and unfortunately it is the method of working with the map T .x/ D
x= kxkK�

which is too crude. Indeed, when p D 1, so that �n1 is the uniform
measure on Œ�1; 1�n and K D K�n

1
D Œ�1=2; 1=2�n, we see by Lemma 15 that:

kdT �.x/kop D jxj jr kxkK j
kxk2

K

D jxj
4 kxk2

1
;

and consequently:

ˆ
Rn

kdT �.x/k2
op d�n

p.x/ ' n;

confirming that our estimate (23) is tight. This example suggests that perhaps it is
better to work with the radial map from [29] pushing forward � onto �K� instead of
our map T which pushes � onto �@K� .
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