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Abstract A
p

n estimate in the hyperplane problem with arbitrary measures has
recently been proved in [12]. In this note we present analogs of this result for
sections of lower dimensions and in the complex case. We deduce these inequalities
from stability in comparison problems for different generalizations of intersection
bodies.

1 Introduction

The following inequality has recently been proved in [12]. Let K be an origin
symmetric convex body in R

n; and let � be a measure on K with even continuous
non-negative density f so that �.B/ D ´

B
f for every Borel subset of K: Then

�.K/ � p
n

n

n � 1
cn max

�2Sn�1
�.K \ �?/ jKj1=n ; (1)

where cn D ˇ
ˇBn

2

ˇ
ˇ

n�1
n =

ˇ
ˇBn�1

2

ˇ
ˇ < 1; Bn

2 is the unit Euclidean ball in R
n; and jKj

stands for volume of proper dimension. Note that cn < 1 for every n:

In the case of volume, when f D 1 everywhere on K; inequality (1) was proved
in [17, p. 96]. Another argument follows from [6, Theorem 8.2.13]; in [6] this
argument is attributed to Rolf Schneider. Also, in the case of volume the constantp

n can be improved to Cn1=4; where C is an absolute constant, as shown by Klartag
[9] who improved an earlier estimate of Bourgain [4]. These results are much more
involved. The question of whether n1=4 can also be removed in the case of volume
is the matter of the hyperplane conjecture [1–3, 17]; see the book [5] for the current
state of the problem.

In this note we prove analogs of inequality (1) for sections of lower dimensions
and in the complex case; see Theorems 2 and 4, respectively. As in [12], the proofs
are based on certain stability results for generalizations of intersection bodies.
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2 Lower Dimensional Sections

We need several definitions and facts. A closed bounded set K in R
n is called a star

body if every straight line passing through the origin crosses the boundary of K at
exactly two points different from the origin, the origin is an interior point of K; and
the Minkowski functional of K defined by

kxkK D minfa � 0 W x 2 aKg

is a continuous function on R
n:

The radial function of a star body K is defined by

�K.x/ D kxk�1
K ; x 2 R

n:

If x 2 Sn�1 then �K.x/ is the radius of K in the direction of x:

If � is a measure on K with even continuous density f , then

�.K/ D
ˆ

K

f .x/ dx D
ˆ

Sn�1

0

B
@

k�k�1
Kˆ

0

rn�1f .r�/ dr

1

C
A d�: (2)

Putting f D 1, one gets

jKj D 1

n

ˆ

Sn�1

�n
K.�/d� D 1

n

ˆ

Sn�1

k�k�n
K d�: (3)

For 1 � k � n � 1; denote by Grn�k the Grassmanian of .n � k/-dimensional
subspaces of R

n: The .n � k/-dimensional spherical Radon transform Rn�k W
C.Sn�1/ 7! C.Grn�k/ is a linear operator defined by

Rn�kg.H/ D
ˆ

Sn�1\H

g.x/ dx; 8H 2 Grn�k

for every function g 2 C.Sn�1/:

The polar formulas (2) and (3), applied to sections of K , express volume in terms
of the spherical Radon transform:

�.K \ H/ D
ˆ

K\H

f D
ˆ

Sn�1\H

 ˆ k�k�1
K

0

rn�k�1f .r�/ dr

!

d�

D Rn�k

 ˆ k�k�1
K

0

rn�k�1f .r �/ dr

!

.H/: (4)
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and

jK \ H j D 1

n � k

ˆ

Sn�1\�?

k�k�nCk
K d� D 1

n � k
Rn�k.k � k�nCk

K /.H/: (5)

The class of intersection bodies was introduced by Lutwak [15] and played a
crucial role in the solution of the Busemann-Petty problem; see [6,10] for definition
and properties. A more general class of bodies was introduced by Zhang [18] in
connection with the lower dimensional Busemann-Petty problem. Denote

Rn�k

�

C.Sn�1/
� D X � C.Grn�k/:

Let M C.X/ be the space of linear positive continuous functionals on X , i.e. for
every � 2 M C.X/ and non-negative function f 2 X , we have �.f / � 0.

An origin symmetric star body K in R
n is called a generalized k-intersection

body if there exists a functional � 2 M C.X/ so that for every g 2 C.Sn�1/,

ˆ

Sn�1

kxk�k
K g.x/ dx D �.Rn�kg/: (6)

When k D 1 we get the class of intersection bodies. It was proved by Grinberg
and Zhang [7, Lemma 6.1] that every intersection body in R

n is a generalized k-
intersection body for every k < n: More generally, as proved later by Milman
[16], if m divides k, then every generalized m-intersection body is a generalized
k-intersection body.

We need the following stability result for generalized k-intersection bodies.

Theorem 1. Suppose that 1 � k � n � 1; K is a generalized k-intersection body
in R

n; f is an even continuous function on K; f � 1 everywhere on K; and " > 0:

If

ˆ

K\H

f � jK \ H j C "; 8H 2 Grn�k; (7)

then
ˆ

K

f � jKj C n

n � k
cn;k jKjk=n"; (8)

where cn;k D jBn
2 j n�k

n =jBn�k
2 j < 1:

Proof. Use polar formulas (4) and (5) to write the condition (7) in terms of the
.n � k/-dimensional spherical Radon transform: for all H 2 Grn�k

Rn�k

 ˆ k�k�1
K

0

rn�k�1f .r �/ dr

!

.H/ � 1

n � k
Rn�k

�

k � k�nCk
K

�

.H/ C ":
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Let � be the functional corresponding to K by (6), apply � to both sides of the
latter inequality (the direction of the inequality is preserved because � is a positive
functional) and use (6). We get

ˆ

Sn�1

k�k�k
K

 ˆ k�k�1
K

0

rn�k�1f .r�/ dr

!

d�

� 1

n � k

ˆ

Sn�1

k�k�n
K d� C "�.1/: (9)

Split the integral in the left-hand side into two integrals and then use f � 1 as
follows:

ˆ

Sn�1

 ˆ k�k�1
K

0

rn�1f .r�/ dr

!

d�

C
ˆ

Sn�1

 ˆ k�k�1
K

0

.k�k�k
K � rk/rn�k�1f .r�/ dr

!

d�

�
ˆ

K

f C
ˆ

Sn�1

 ˆ k�k�1
K

0

.k�k�k
K � rk/rn�k�1 dr

!

d�

D
ˆ

K

f C k

n � k
jKj: (10)

Now estimate �.1/ by first writing 1 D Rn�k1=jSn�k�1j and then using
definition (6), Hölder’s inequality and jSn�1j D njBn

2 j:

�.1/ D 1
ˇ
ˇSn�k�1

ˇ
ˇ
�.Rn�k1/ D 1

ˇ
ˇSn�k�1

ˇ
ˇ

ˆ

Sn�1

k�k�k
K d�

� 1
ˇ
ˇSn�k�1

ˇ
ˇ

ˇ
ˇSn�1

ˇ
ˇ

n�k
n

�ˆ

Sn�1

k�k�n
K d�

� k
n

D 1
ˇ
ˇSn�k�1

ˇ
ˇ

ˇ
ˇSn�1

ˇ
ˇ

n�k
n nk=njKjk=n D n

n � k
cn;kjKjk=n: (11)

Combining (9)–(11) we get

ˆ

K

f C k

n � k
jKj � n

n � k
jKj C n

n � k
cn;kjKjk=n":

ut
It was proved in [13] (generalizing the result for k D 1 from [11]) that if L is a

generalized k-intersection body and � is a measure with even continuous density,
then
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�.L/ � n

n � k
cn;k max

H2Grn�k

�.L \ H/ jLjk=n:

We show now that it is possible to extend this inequality to arbitrary origin
symmetric convex bodies in R

n at the expense of an extra constant nk=2:

Theorem 2. Suppose that L is an origin symmetric convex body in R
n; and � is a

measure with even continuous non-negative density g on L: Then

�.L/ � nk=2 n

n � k
cn;k max

H2Grn�k

�.L \ H/ jLjk=n: (12)

Proof. By John’s theorem [8], there exists an origin symmetric ellipsoid K such
that

1p
n

K � L � K:

The ellipsoid K is an intersection body [6, Corollary 8.1.7], and every intersection
body is a generalized k-intersection body for every k [7, Lemma 6.1]. Let f D
�K C g�L; where �K; �L are the indicator functions of K and L; then f � 1

everywhere on K: Put

" D max
H2Grn�k

�ˆ

K\H

f � jK \ H j
�

D max
H2Grn�k

ˆ

L\H

g:

Now we can apply Theorem 1 to f; K; " (the function f is not necessarily
continuous on K; but the result holds by a simple approximation argument). We
get

�.L/ D
ˆ

L

g D
ˆ

K

f � jKj

� n

n � k
cn;k jKjk=n max

H2Grn�k

ˆ

L\H

g

� nk=2 n

n � k
cn;kjLjk=n max

H2Grn�k

�.L \ H/;

because K � p
nL; so jKj � nn=2jLj: ut

3 The Complex Case

Origin symmetric convex bodies in C
n are the unit balls of norms on C

n: We denote
by k � kK the norm corresponding to the body K:

K D fz 2 C
n W kzkK � 1g:
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In order to define volume, we identify C
n with R

2n using the standard mapping

� D .�1; : : : ; �n/ D .�11 C i�12; : : : ; �n1 C i�n2/ 7! .�11; �12; : : : ; �n1; �n2/:

Since norms on C
n satisfy the equality

k�zk D j�jkzk; 8z 2 C
n; 8� 2 C;

origin symmetric complex convex bodies correspond to those origin symmet-
ric convex bodies K in R

2n that are invariant with respect to any coordinate-
wise two-dimensional rotation, namely for each � 2 Œ0; 2	
 and each � D
.�11; �12; : : : ; �n1; �n2/ 2 R

2n

k�kK D kR� .�11; �12/; : : : ; R� .�n1; �n2/kK; (13)

where R� stands for the counterclockwise rotation of R2 by the angle � with respect
to the origin. We shall say that K is a complex convex body in R

2n if K is a convex
body and satisfies Eq. (13). Similarly, complex star bodies are R� -invariant star
bodies in R

2n:

For � 2 C
n; j�j D 1; denote by

H� D fz 2 C
n W .z; �/ D

nX

kD1

zk�k D 0g

the complex hyperplane through the origin, perpendicular to �: Under the standard
mapping from C

n to R
2n the hyperplane H� turns into a .2n � 2/-dimensional

subspace of R2n:

Denote by Cc.S
2n�1/ the space of R� -invariant continuous functions, i.e.

continuous real-valued functions f on the unit sphere S2n�1 in R
2n satisfying

f .�/ D f .R� .�// for all � 2 S2n�1 and all � 2 Œ0; 2	
: The complex spherical
Radon transform is an operator Rc W Cc.S

2n�1/ ! Cc.S
2n�1/ defined by

Rcf .�/ D
ˆ

S2n�1\H�

f .x/dx:

We say that a finite Borel measure � on S2n�1 is R� -invariant if for any
continuous function f on S2n�1 and any � 2 Œ0; 2	
,

ˆ

S2n�1

f .x/d�.x/ D
ˆ

S2n�1

f .R� x/d�.x/:

The complex spherical Radon transform of an R� -invariant measure � is defined as
a functional Rc� on the space Cc.S

2n�1/ acting by
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.Rc�; f / D
ˆ

S2n�1

Rcf .x/d�.x/:

Complex intersection bodies were introduced and studied in [14]. An origin
symmetric complex star body K in R

2n is called a complex intersection body if
there exists a finite Borel R� -invariant measure � on S2n�1 so that k � k�2

K and Rc�

are equal as functionals on Cc.S
2n�1/; i.e. for any f 2 Cc.S

2n�1/

ˆ

S2n�1

kxk�2
K f .x/ dx D

ˆ

S2n�1

Rcf .�/d�.�/: (14)

Theorem 3. Suppose that K is a complex intersection body in R
2n; f is an even

continuous R� -invariant function on K; f � 1 everywhere on K; and " > 0: If

ˆ

K\H�

f � jK \ H� j C "; 8� 2 S2n�1; (15)

then
ˆ

K

f � jKj C n

n � 1
dn jKj1=n"; (16)

where dn D jB2n
2 j n�1

n =jB2n�2
2 j < 1:

Proof. Use the polar formulas (4) and (5) to write the condition (15) in terms of the
complex spherical Radon transform: for all � 2 S2n�1

Rc

 ˆ k�k�1
K

0

r2n�3f .r �/ dr

!

.�/ � 1

2n � 2
Rc

�k � k�2nC2
K

�

.�/ C ":

Let � be the measure on S2n�1 corresponding to K by (14). Integrate the latter
inequality over S2n�1 with the measure � and use (14):

ˆ

S2n�1

k�k�2
K

 ˆ k�k�1
K

0

r2n�3f .r�/ dr

!

d�

� 1

2n � 2

ˆ

S2n�1

k�k�2n
K d� C "

ˆ

S2n�1

d�.�/

D n

n � 1
jKj C "

ˆ

S2n�1

d�.�/: (17)
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Recall (2), (3) and the assumption that f � 1: We estimate the integral in the left-
hand side of (17) as follows:

ˆ

S2n�1

k�k�2
K

 ˆ k�k�1
K

0

r2n�3f .r�/ dr

!

d�

D
ˆ

S2n�1

 ˆ k�k�1
K

0

r2n�1f .r�/ dr

!

d�

C
ˆ

S2n�1

 ˆ k�k�1
K

0

.k�k�2
K � r2/r2n�3f .r�/ dr

!

d�

�
ˆ

K

f C
ˆ

S2n�1

 ˆ k�k�1
K

0

.k�k�2
K � r2/r2n�3 dr

!

d�

D
ˆ

K

f C 1

2.n � 1/n

ˆ

S2n�1

k�k�2n
K d� D

ˆ

K

f C 1

n � 1
jKj: (18)

Let us estimate the second term in the right-hand side of (17) by adding the
complex spherical Radon transform of the unit constant function under the integral
(Rc1.�/ D ˇ

ˇS2n�3
ˇ
ˇ for every � 2 S2n�1), using again (14) and then applying

Hölder’s inequality:

"

ˆ

S2n�1

d�.�/ D "

jS2n�3j
ˆ

S2n�1

Rc1.�/ d�.�/

D "

jS2n�3j
ˆ

S2n�1

k�k�2
K d�

� "

jS2n�3j
ˇ
ˇS2n�1

ˇ
ˇ

n�1
n

�ˆ

S2n�1

k�k�2n
K d�

� 1
n

D "

jS2n�3j
ˇ
ˇS2n�1

ˇ
ˇ

n�1
n .2n/1=njKj1=n D n

n � 1
dnjKj1=n": (19)

In the last step we used jS2n�1j D 2njB2n
2 j: Combining (17)–(19) we get

ˆ

K

f C 1

n � 1
jKj � n

n � 1
jKj C n

n � 1
dnjKj1=n":

ut
It was proved in [14] that if K is a complex intersection body in R

2n and � is an
arbitrary measure on R

2n with even continuous density, then

�.K/ � n

n � 1
dn max

�2S2n�1
�.K \ H�/ jKj 1

n :
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In Theorem 4 below, we remove the condition that K is a complex intersection body
at the expense of an extra constant. We use a result from [14, Theorem 4.1] that a
complex star body is a complex intersection body if and only if k � k�2

K is a positive
definite distribution, i.e. its Fourier transform in the sense of distributions assumes
non-negative values on non-negative test functions. We refer the reader to [10, 14]
for details.

Theorem 4. Suppose that L is an origin symmetric complex convex body in R
2n

and � is an arbitrary measure on R
2n with even continuous density g, then

�.L/ � 2n
n

n � 1
dn max

�2S2n�1
�.L \ H�/ jLj 1

n :

Proof. By John’s theorem [8], there exists an origin symmetric ellipsoid K such
that

1p
2n

K � L � K:

Construct a new body Kc by

kxk�2
Kc

D 1

2	

ˆ 2	

0

kR� xk�2
K d�:

Clearly, Kc is R� -invariant, so it is a complex star body. For every � 2 Œ0; 2	


the distribution kR� xk�2
K is positive definite, because this is a linear transformation

of the Euclidean norm. So kxk�2
Kc

is also a positive definite distribution, and, by
Koldobsky et al. [14, Theorem 4.1], Kc is a complex intersection body. Since

1p
2n

K � L � K and L is R� -invariant as a complex convex body, we have

1p
2n

R� K � L � R� K; 8� 2 Œ0; 2	
;

so

1p
2n

Kc � L � Kc:

Let f D �Kc C g�L; where �Kc ; �L are the indicator functions of Kc and L:

Clearly, f is R� -invariant and f � 1 everywhere on K: Put

" D max
�2S2n�1

 ˆ

Kc\H�

f � jKc \ H� j
!

D max
�2S2n�1

ˆ

L\H�

g
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and apply Theorem 3 to f; Kc; " (the function f is not necessarily continuous on
Kc; but the result holds by a simple approximation argument). We get

�.L/ D
ˆ

L

g D
ˆ

Kc

f � jKcj

� n

n � 1
dnjKcj1=n max

�2S2n�1

ˆ

L\H�

g

� 2n
n

n � 1
dnjLj1=n max

�2S2n�1
�.L \ H�/;

because jKcj1=n � 2n jLj1=n: ut
Theorem 4 shows that if bodies have additional symmetries then maximum in

the slicing inequality can be taken over a rather small set of subspaces.

Acknowledgements I wish to thank the US National Science Foundation for support through
grant DMS-1265155.
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