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Abstract In this note, we study possible extensions of the Central Limit Theorem
for non-convex bodies. First, we prove a Berry-Esseen type theorem for a certain
class of unconditional bodies that are not necessarily convex. Then, we consider
a widely-known class of non-convex bodies, the so-called p-convex bodies, and
construct a counter-example for this class.

1 Introduction

Let X1; : : : ; Xn be random variables with EXi D 0 and EXiXj D ıi;j for i; j D
1; 2; : : : ; n. Let � 2 Sn�1, where Sn�1 � R

n is the unit sphere centered at 0,
and let G be a standard Gaussian random variable, that is G has density function
1=

p
2�e�x2=2. We denote X D .X1; : : : ; Xn/. In this paper we examine different

conditions onX under whichX �� is close toG in distribution. The classical central
limit theorem states that if X1; : : : ; Xn are independent then for most � 2 Sn�1 the
marginal X � � is close to G. It was conjectured by Anttila et al. [1] and by Brehm
and Voigt [6] that if X is distributed uniformly in a convex body K � R

n, then for
most � 2 Sn�1 the marginal X � � is close to G. This is known as the central limit
theorem for convex sets and was first proved by Klartag [12].

In this note we examine extensions of the above theorem to non-convex settings.
Our study was motivated by the following observation on the unit balls of lp spaces
for 0 < p < 1:

We denote byBn
p D fx 2 R

nI jx1jp C � � � C jxnjp � 1g the unit ball of the space
lnp . ForX D .X1; : : : ; Xn/ that is distributed uniformly on cp;nBn

p , p > 0, � 2 Sn�1,
and G a standard Gaussian, one can show that

jP.� �X � t/ � P.G � t/j � Cp

nX

kD1
j�kj3
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where cp;n is chosen such that EXi D 0 and EXiXj D ıi;j for i; j D 1; 2; : : : ; n,
and Cp > 0 does not depend on n.

In order to formulate our results we use the following definitions: Let X D
.X1; : : : ; Xn/ be a random vector in R

n. A random vector X is called isotropic if
EXi D 0 and EXiXj D ıi;j for i; j D 1; 2; : : : ; n. A random vector X is called
unconditional if the distribution of ."1X1; : : : ; "nXn/ is the same as the distribution
of X for any "i D ˙1; i D 1; : : : ; n.

The first class of densities we define is based on Klartag’s recent work [14] and
includes the uniform distribution over Bn

p for 0 < p < 1.

Theorem 1. Let X be an unconditional, isotropic random vector with density
e�u.x/, where the function u

�
x�1 ; : : : ; x

�
n

�
is convex in R

nC D ˚
x 2 R

nI xi � 0 8i 2
f1; 2; : : : ; ng� for � > 1. Let G be a standard Gaussian random variable and
� 2 Sn�1. Then

jP .� �X � t/ � P.G � t/j � C�

nX

kD1
j�kj3;

where C� > 0 depends on � only, and does not depend on n.

In order to see that Theorem 1 includes the uniform distribution over Bn
p for

0 < p < 1 take

u.x/ D
�
0; x

p
1 C � � � C x

p
n � 1

1; otherwise
;

and set � D 1=p.
The error rate in Theorem 1 is the same as in the classical Central Limit

Theorem. For example, by choosing � D �
1=

p
n; : : : ; 1=

p
n
�
, we get an error rate

of O
�
1=

p
n
�
.

The symmetry conditions in Theorem 1 are highly restrictive. Hence, we are led
to study p-convex bodies, which satisfy fewer symmetry conditions and are shown
to share some of the properties of convex bodies.

We say that K � R
n is p-convex with 0 < p < 1 if K D �K and for all

x; y 2 K and 0 < � < 1, we have

�1=px C .1 � �/1=py 2 K:

These bodies are related to unit balls of p-norms and were studied in relation to
local theory of Banach spaces by Gordon and Lewis [10], Gordon and Kalton [9],
Litvak et al. [16] and others (see [2, 7, 11, 15, 17]).

The following discussion explains why the class of p-convex bodies does not give
the desired result.

Theorem 2. Set N D nC n5=2 log2 n. There exists a random vector X distributed
uniformly in a 1=2-convex body K � R

N , and a subspace E with dim.E/ D n,
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such that for any � 2 SN�1 \ E , the random variable � � ProjEX is not close
to a Gaussian random variable in any reasonable sense (Kolmogorov distance,
Wasserstein distance and others).

A similar construction can be made for any fixed parameter 0 < p < 1. Since
dim.E/ tends to infinity with n, a similar theorem is not true in the convex case.
Hence, the central limit theorem for convex sets cannot be extended for the p-convex
case. Thus, we need to look for a new class of bodies (densities) that includes the lnp
unit balls, with a weaker condition than the unconditional one.

Remark 1. In [15] Litvak constructed an example of a p-convex body for which the
volume distribution is very different from the convex case. Litvak’s work studies the
large deviations regime for p-convex distributions, while our work is focused on the
central limit theorem.

Throughout the text the letters c; C; c0; C 0 will denote universal positive con-
stants that do not depend on the dimension n. The value of the constant may change
from one instance to another. We use C˛; C.˛/ for constants that depend on a
parameter ˛ and nothing else. �n�1 will denote the Haar probability measure on
Sn�1. f .n/ D O.g.n// is the big O notation, i.e. there exists a constant C > 0 such
that jf .n/j � Cg.n/; 8n 2 N.

2 A Class of Densities with Symmetries

In this section we use Klartag’s recent work [14] in order to exhibit a family of
functions, which includes the indicator functions of lnp unit balls, for 0 < p < 1,
having almost Gaussian marginals.

A special case of Theorem 1.1 in [14] gives us the following lemma.

Lemma 1. Let � > 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is a probability density function and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then

VarjX j2 � c�

nX

jD1
EjXj j4;

where c� depends only on �.

Lemma 2. Let � � 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is a probability density function and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then for any p � 1 and i D 1; : : : ; n,

EjXi jp � cp;�
�
EjXi j2

�p=2
:
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Proof. If p � 2 then, by Hölder’s inequality, we have cp;� D 1. Assume that
p � 2. Define � W RnC ! R

nC by �.x/ D .jx1j�; : : : ; jxnj�/. The Jacobian of �
is
Qn
jD1 �jxj j��1. Using the symmetry of � we obtain

ˆ
R
n

jxi jpe��.x/dx D 2n
ˆ
R
nC

jxi jpe��.x/dx

D 2n
ˆ
R
nC

jxi jp�
0

@
nY

jD1
�jxj j��1

1

A e��.�.x//dx

Now set u.x/ D �.�.x//� .� � 1/
nX

jD1
log jxj j. The function e�u.x/ is log-concave

on R
nC, with �n

ˆ
R
nC
e�u.x/ D 1=2n, and

ˆ
R
nC

jxi jpe��.x/dx D �n
ˆ
R
nC

jxi jp�e�u.x/dx:

By Borell’s Lemma (see [4, 5, 18]) we obtain

.2�/n
ˆ
R
nC

jxi jp�e�u.x/dx � C�;p

 
.2�/n

ˆ
R
nC

jxi j2�e�u.x/dx

!p=2

D C�;p

�ˆ
R
n

jxi j2e��.x/dx

�p=2

Lemma 3. Let � > 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is an isotropic probability density and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then, for any a 2 R

n

Var.a21X
2
1 C � � � C a2nX

2
n/ � C�

nX

jD1
jaj j4:

Proof. By applying a linear transformation, Lemma 1 gives

Var.a21X
2
1 C � � � C a2nX

2
n/ � C 0

�

nX

jD1
Ea4j jXj j4:

By Lemma 2, we obtain
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Var.a21X
2
1 C� � �Ca2nX2

n/�C 0
�

nX

jD1
Ea4j jXj j4 � C�

nX

jD1
a4j
�
EjXj j2�2 DC�

nX

jD1
jaj j4:

We are now ready to prove Theorem 1.

Proof. Since X is unconditional,

P .� �X � t/ D P

 
nX

kD1
�kXk"k � t

!
;

where "1; : : : ; "n are i.i.d. random variables distributed uniformly on f˙1g that are
independent of X . By the triangle inequality,

ˇ̌
ˇ̌
ˇP
 

nX

kD1

�kXk"k � t

!
� P.G � t /

ˇ̌
ˇ̌
ˇ � EX

ˇ̌
ˇ̌
ˇ̌
ˇ
P.G � t / � PG

0
B@G � t

qPn
kD1 �

2
kX

2
k

1
CA

ˇ̌
ˇ̌
ˇ̌
ˇ

CEX

ˇ̌
ˇ̌
ˇ̌
ˇ
P"

 
nX

kD1

"k�kXk � t

!
� PG

0

B@G � tqPn
kD1 �

2
kX

2
k

1

CA

ˇ̌
ˇ̌
ˇ̌
ˇ
:

We estimate each term separately. Denote Yn D Pn
kD1 �2kX2

k . By the Berry-Esseen
Theorem (see [8]),

EX

ˇ̌
ˇ̌
ˇP"

 
nX

kD1
"k�kXk � t

!
� PG

�
G � tp

Yn

�ˇ̌
ˇ̌
ˇ

� C

 
EX

nX

kD1

j�kj3jXkj3
.Yn/

3=2
1Œ1=2;1/ .Yn/C 2P

�
Yn <

1

2

�!

� C

 
10

nX

kD1
EX j�kj3jXkj3 C 2P

�
Yn <

1

2

�!
� C�

nX

kD1
j�kj3 C CP

�
Yn <

1

2

�

Here we used Lemma 2 to estimate EjXkj3. Note that

EXYn D EX

nX

jD1
�2j X

2
j D

nX

jD1
�2jEXX

2
j D

nX

jD1
�2j D 1;

so by Chebyshev’s inequality and Lemma 3

P

�
jYn � 1j � 1

2

�
� Var .Yn/

1=4
� 4C�

nX

jD1
j�j j4 (1)
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Hence, since j�i j � 1 for all i D 1; : : : ; n,

EX

ˇ̌
ˇ̌
ˇP"

 
nX

kD1
"k�kXk � t

!
� P

�
G � tp

Yn

�ˇ̌
ˇ̌
ˇ � C�

nX

kD1
j�kj3:

Now, in order to estimate EX

ˇ̌
ˇ̌P.G � t/ � P

�
G � tp

Yn

�ˇ̌
ˇ̌ we use (1) and

Klartag’s argument in [13] (Sect. 6, Lemma 7) and conclude that it is enough
to show that

E

�
.Yn � 1/2

ˇ̌
ˇ̌Yn � 1

2

�
� C

0

@
nX

jD1
j�j j3

1

A

By Lemma 3 we get

E .Yn � 1/2 D Var .Yn/ � C�

nX

jD1
j�j j4

Hence,

E

�
.Yn � 1/2

ˇ̌
ˇ̌Yn � 1

2

�
� E .Yn � 1/2 P

�
Yn � 1

2

��1

� C�

0

@
nX

jD1
j�j j4

1

AP

�
Yn � 1

2

��1

From inequality (1) it follows that

�
P

�
Yn � 1

2

���1
D P

0

@
nX

jD1
�2j X

2
j � 1

2

1

A
�1

� 1

1 � C�Pn
jD1 j�j j4 :

We may assume that
nX

jD1
j�j j4 is bounded by some small positive constant depend-

ing on �, since otherwise the result is trivial, and obtain

1

1 � C�
Pn

jD1 j�j j4 � 1C C�

nX

jD1
j�j j4

which completes our proof.
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3 The p-Convex Case

In this section we construct a random vector X , distributed uniformly in a
1=2�convex body K , such that for a large subspace E � R

n the random vector
ProjEX has no single approximately Gaussian marginal. We define a function
f W RC ! RC such that the radial density rn�1e�f .r/ is spread across an interval
of length proportional to

p
n; that is, we want rn�1e�f .r/ to be constant (or close

to constant) on such an interval. Such densities have marginals that are far from
Gaussian. We use the density function introduced above and an approximation
argument to construct the desired bodyK .

In order to construct a p-convex body from a function f , we restrict ourselves to
p-convex functions.

Definition 1. A function f W Rn ! R[f1g is called p-convex if for any x; y 2 R
n

and t 2 Œ0; 1�,

f
�
t1=px C .1 � t/1=py

� � tf .x/C .1 � t/f .y/: (2)

The following proposition allows us to construct a p-convex body with 0<p<1
from a p-convex function.

Proposition 1. For  W Rn ! RC p-convex function with 0 < p < 1 and fixed
N > 0, define fN .x/ D .1 �  .x/=N /NC. Then the set

KN. / D
n
.x; y/I x 2 R

n; y 2 R
N ; jyj < f 1=N

N .x/
o

is p-convex.

Proof. Let .x1; y1/; .x2; y2/2KN. /. Since .xi ; yi /2KN. /we have fN .xi / > 0.
Therefore,

f
1=N
N .xi / D 1 �  .xi /

N
:

Let 0 � t � 1 we get

f
1=N
N .t1=px1 C .1� t/1=px2/ � 1� 1

N
 .t1=px1 C .1 � t/1=px2/

� 1� 1

N
.t .x1/C .1� t/ .x2//

D tf 1=NN .x1/C .1� t/tf 1=NN .x2/ > t jy1j C .1 � t/jy2j
� jt 1=py1j C j.1� t/1=py2j � jt 1=py1 C .1� t/1=py2j:

Hence, t1=p.x1; y1/C .1 � t/1=p.x2; y2/ 2 KN. /, as needed.
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Proposition 2. There exists a universal constant C > 0 such that, for a � C the
function

f .x/ D
8
<

:

log a; if 0 � x � a

logx; if a � x � 2ap
x � p

2aC log 2a; if 2a � x

is 1=2-convex.

Proof. We begin by verifying that the function f is 1=2-convex for each interval
Œ0; a�; Œa; 2a�; Œ2a;1/. Then we need to check that condition (2) holds when x
and y are from different intervals. By symmetry, we may assume that x < y. The
cases x; y 2 Œ0; a� and x; y 2 Œ2a;1/ are straightforward. In order for condition
(2) to hold for the function logx on an interval Œa; b� we must show that for any
x; y 2 Œa; b�

log..1� t/2x C t2y/ � .1 � t/ log.x/C t log.y/ D log
�
x1�t yt

�
: (3)

This is equivalent to

.1 � t/2x C t2y � x1�t yt � 0:

Setting here y D cx, we obtain

.1 � t/2 C t2c � ct � 0:

This inequality holds for every 1 � c � 4 and 0 � t � 1. To see that note that
g.t; c/ D .1�t/2Ct2c�ct is a convex function in c (as a sum of convex functions).
Hence, it is enough to verify that g.t; 1/ � 0 and g.t; 4/ � 0 for any 0 � t � 1.
Indeed,

g.t; 1/ D .1 � t/2 C t2 � 1 D 2t.t � 1/ � 0

and

g.t; 4/ D .1 � t/2 C t24 � 4t ) @2g.t; 4/

@t2
D 2C 8 � .log 4/24t � 2:

Hence, g.t; 4/ is convex in t . Since g.0; 4/ D g.1; 4/ D 0, we obtain, g.t; 4/ � 0

for all 0 � t � 1.
Consequently (3) holds for any interval of the form Œa; b� � Œa; 4a�.
Next, we verify condition (2) for f when x 2 Œa; 2a�, y 2 Œ2a;1/, and t2x C

.1 � t/2y 2 Œa; 2a�. We consider two cases
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1. y 2 Œ2a; 4a�. By inequality (3),

f .t2x C .1 � t/2y/ D log.t2x C .1 � t/2y/ � t log.x/C .1 � t/ log.y/

� log.x/C .1 � t/.log.2a/C p
y � p

2a/

D tf .x/C .1 � t/f .y/:

The second inequality holds thanks to the elementary inequality log.y/ �
log.2a/ � p

y � p
2a. Since for y D 2a we have equality, and .

p
y/0 D

1=
p
4y � 1=y D .log.y//0 for y � 4, the inequality holds if 2a � 4.

2. y � 4a. Define

g.t/ D log.t2x C .1 � t/2y/ � t log.x/ � .1� t/.
p
y � p

2aC log.2a//:

We need to show that g.t/ � 0 for all t 2 Œ0; 1�. Since g.1/ D 0, it is enough to
show that g0.t/ � 0 for all 0 � t � 1. We have,

g0.t/ D 2tx � 2.1� t/y

t2x C .1 � t/2y � log.x/C p
y � p

2a C log.2a/

� 2tx � 2.1 � t/y
t2x C .1 � t/2y C

�
1 � 1p

2

�p
y

Hence, if 2tx�2.1�t/yC
�
1 � 1=

p
2
	p

y.t2xC.1�t/2y/ � 0, then g0.t/ � 0.

Recalling that t2x C .1 � t/2y � a, it suffices to prove that

2tx � 2.1� t/y C
�
1 � 1p

2

�p
ya � 0:

Using the fact that .1�t/2y � t2xC.1�t/2y � 2a, we obtain .1�t/py � p
2a.

Hence,

2tx � 2.1 � t/y C
�
1 � 1p

2

�
a
p
y � 2ta � 2p2ap

y C
�
1 � 1p

2

�
a
p
y

� p
y

��
1 � 1p

2

�
a � 2

p
2a

�
:

This gives the condition

�
1 � 1p

2

�
a � 2

p
2a � 0;

Which is satisfied for a � 100.
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When x 2 Œa; 2a� and y 2 Œ2a;1/ and t2x C .1 � t/2y � 2a, we have

f .t2x C .1 � t/2y/ D
p
t2x C .1 � t/2y � p

2a C log 2a

� t
p
x C .1 � t/py � p

2a C log 2a

and

tf .x/C .1 � t/f .y/ D t logx C .1 � t/.
p
y � p

2aC log 2a/:

Hence, (2) holds thanks to the elementary inequality log 2a�log xCp
x�p

2a � 0,
which holds for a � 4.

If x 2 Œ0; a�, then f .x/ D f .a/ and f .t2x C .1 � t/2y/ � f .t2a C .1 � t/2y/.
Hence, for x 2 Œ0; a� and y 2 Œa;1/ we have

f .t2xC.1�t/2y/ � f .t2aC.1�t/2y/ � tf .a/C.1�t/f .y/ D tf .x/C.1�t/f .y/:

Proposition 3. Let f W RC ! RC be a p-convex function with parameter 0 < p <
1. Then x 7! f .jxj/ is a p-convex function on R

n.

Proof. First, we prove that f is non-decreasing. Let 0 < x < y. There exists some
k � 1 such that 2�k.1=p�1/y � x. We proceed by induction on k. For k D 1, note
that h.t/ D t1=pyC.1� t/1=py is continuous, h.0/ D y, and h .1=2/ D 2�.1=p�1/y.
Hence, there exists some 0 � t0 � 1 for which h.t0/ D x, and so

f .x/ D f .t
1=p
0 y C .1 � t0/

1=py/ � t0f .y/C .1 � t0/f .y/ D f .y/

For k � 2, f .2�.k�1/.1=p�1/y/ � f .y/ by the induction hypothesis, and by the
same argument as above

f .x/ � f .2�.k�1/.1=p�1/y/ � f .y/:

We thus showed that f is monotone non-decreasing. Now, by the triangle inequality,
for any x; y 2 R

n and 0 < t < 1 we have

f .jt1=px C .1 � t/1=pyj/ � f .t1=pjxj C .1 � t/1=p jyj/ � tf .jxj/C .1 � t/f .jyj/

Using the function from Proposition 2, we are ready to construct the 1=2-convex
bodyK and prove Theorem 2.

Definition 2. A sequence of probability measures f	ng on R
n is called essentially

isotropic if
´
xd	n.x/ D 0 and

´
xixj d	n.x/ D .1C"n/ıij for all i; j D 1; : : : ; n,

when "n �!
n!1 0.

Proposition 4. The probability measure d	 D Cne
�.n�1/f .jxj/dx, where f is

defined as in Proposition 2, with a D p
3n=7, is essentially isotropic. That is,
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ˆ
xixj d	.x/ D .1C "n/ıij

for all i; j D 1; 2; : : : ; n, when j"nj � C=n.

Proof. The density 	 is spherically symmetric, hence

ˆ
R
n
xixj d	.x/ D 0;

for i ¤ j , and

ˆ
R
n
x2i d	.x/ D 1

n

ˆ
R
n

jxj2d	.x/;

for i D 1; 2; : : : ; n. Integration in spherical coordinates and using Laplace
asymptotic method yields

ˆ
jxj2d	.x/ D

2
66664

ˆ p
3n=7

0

rnC1
�p

3n=7
	n�1 dr C

ˆ 2
p
3n=7

p
3n=7

r2dr

C
�
e
p
2
p

3n=7

2
p
3n=7

�n�1 ˆ 1

2
p
3n=7

rnC1e�.n�1/prdr

3
77775

2

66664

ˆ p
3n=7

0

 
r

p
3n=7

!n�1
dr C

ˆ 2
p
3n=7

p
3n=7

dr

C
�
e
p
2
p

3n=7

2
p
3n=7

�n�1 ˆ 1

2
p
3n=7

rn�1e�.n�1/prdr

3

77775

D
p
3=7n3=2 CO

�p
n
�

q
3
7
nCO

�
1=

p
n
� D nCO.1/:

Proposition 5. Let X be a random vector in R
n distributed according to 	 from

Proposition 4. Then,

P

 r
3

7
n � jX j � 2

r
3

7
n

!
� 1 � C

n
:

Proof. By the same arguments as in Proposition 4

P

�p
3n=7 � jX j � 2

p
3n=7

	
D

ˆ 2
p
3n=7

p
3n=7

dr

p
3n=7CO

�
1=

p
n
� D 1CO .1=n/ :
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Proposition 6. Let X be a random vector in R
n distributed according to 	 from

Proposition 4, and let eX be a random variable distributed according to de	 D
fCn .1 � .n � 1/f .jxj/=N /NC. Then for N � n5=2 log2 n, eX is essentially isotropic,
namely

ˆ
xixj de	.x/ D .1C "0

n/ıij

for all i; j D 1; 2; : : : ; n, when j"0
nj � C=

p
n. Also

8t; ˇ̌
P.jX j � t/ � P.j QX j � t/

ˇ̌ � Cp
n
:

Proof. The random vector eX is spherically symmetric. Hence

ˆ
R
n
xixj de	.x/ D 0;

for i ¤ j , and

ˆ
R
n
x2i de	.x/ D 1

n

ˆ
R
n

jxj2de	.x/;

for i D 1; 2; : : : ; n. Since both densities are spherically symmetric, we need to
estimate the one-dimensional integrals

Ik D
ˆ 1

0

rk

 
e�.n�1/f .r/ �

�
1 � .n � 1/f .r/

N

�N

C

!
dr

for k D n � 1; nC 1. Define ˛ by the equation

0

@p
˛ �

s

2

r
3

7
nC log

 
2

r
3

7
n

!1

A .n � 1/ D N

2
:

That is, for any r � ˛ we have .n � 1/f .r/=N � 1=2. By Taylor’s Theorem, for
any r � ˛,

ˇ̌
ˇ̌
ˇlog

�
1 � .n � 1/f .r/

N

�N

C
� .�.n � 1/f .r//

ˇ̌
ˇ̌
ˇ � C

.n � 1/2
N

f 2.r/:

Hence, for any r � ˛
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ˇ̌
ˇ̌
ˇe

�.n�1/f .r/ �
�
1 � .n � 1/

N
f .r/

�N

C

ˇ̌
ˇ̌
ˇ

D e�.n�1/f .r/
ˇ̌
ˇ̌
ˇ1 � exp

 
.n � 1/f .r/ � log

�
1 � .n � 1/

N
f .r/

�N

C

!ˇ̌
ˇ̌
ˇ

� C
n2

N
e�.n�1/f .r/f 2.r/:

Note that
ˇ̌
ˇ̌
ˇ

ˆ 1

˛

 
e�.n�1/f .r/ �

�
1 � .n � 1/

N
f .r/

�N

C

!
dr

ˇ̌
ˇ̌
ˇ � C

ˆ 1

˛

e�.n�1/f .r/dr � Ce�n:

Combining the above inequalities, we obtain

jIkj � C1
n2

N

ˆ ˛

0

rke�.n�1/f .r/f 2.r/drCC2e�n � C
n2

N

ˆ 1

0

rke�.n�1/f .r/f 2.r/dr:

Hence,

jIn�1j � C
n2

N

 
p
n log2 nCO

 
log2 np
n

!!
� C1;

jInC1j � C
n2

N

�
n
3
2 log2 nCO

�
log2 n

p
n
�	 � C2n:

By the estimation on In�1, and the calculations in Proposition 4 we obtain

ˇ̌
ˇ̌
ˇ

ˆ 1

0

�
1 � .n � 1/

N
f .r/

�N

C
dr �

r
3

7
n

ˇ̌
ˇ̌
ˇ

�
ˇ̌
ˇ̌
ˇ

ˆ 1

0

�
1 � .n � 1/

N
f .r/

�N

C
dr �

ˆ 1

0

e�.n�1/f .r/dr

ˇ̌
ˇ̌
ˇCO

�
1p
n

�

D jIn�1j CO

�
1p
n

�
� C1:

Hence,

•

 ˆ 1

0

�
1 � .n � 1/

N
f .r/

�N

C
dr

!�1
D
q

1
3
7 n

�
1CO

�
1p
n

		
;

• 8t; ˇ̌
P.jX j � t/ � P.j QX j � t/

ˇ̌ � Cp
n

.
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By the estimation of InC1 we obtain,

ˇ̌
EX2

i � E QX2
i

ˇ̌ D 1

n

ˇ̌
EjX j2 � Ej QX j2ˇ̌ � C

1p
n

1

n
jInC1j � Cp

n
:

Remark 2. It is possible to take a � p
3n=7 in the definition of f , such that eX is

isotropic.

We use the following estimation in our proof of Theorem 2.

Proposition 7. LetZ1; ::; Zn be independent standard Gaussian random variables,
and let 0 < ı < 1=2. Then,

P

�ˇ̌
ˇ̌
q
Z2
1 C : : :CZ2

n � p
n

ˇ̌
ˇ̌ � nı

�
� 1 � Ce�cn2ı ;

where c; C > 0 are constants.

Proof. Note that

ˇ̌
Z2
1 C � � � CZ2

n � n
ˇ̌ D

ˇ̌
ˇ̌
q
Z2
1 C � � � CZ2

n � p
n

ˇ̌
ˇ̌
ˇ̌
ˇ̌
q
Z2
1 C � � � CZ2

n C p
n

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
q
Z2
1 C � � � CZ2

n � p
n

ˇ̌
ˇ̌pn:

Therefore it is enough to show that

P

�ˇ̌
Z2
1 C � � � CZ2

n � n
ˇ̌ � nıC

1
2

	
� 1 � Ce�cn2ı :

Note that for all m � 1 and for all i D 1; : : : ; n, we have

EjZ2
i � 1jm �

mX

kD1

 
m

k

!
EZ2k

i � 2m.2m/ŠŠ � 4mmŠ

where .2m/ŠŠ D 1 � 3 � 5 � � � .2m�1/. Hence, by Bernstein’s inequality [3] we obtain

P

�ˇ̌
.Z2

1 � 1/C � � � C .Z2
n � 1/

ˇ̌
> n

1
2Cı

	
� Ce�cn2ı :

We are now ready to prove Theorem 2.

Proof. By Proposition 2, the function .n � 1/f .jxj/ is 1=2-convex. Proposition 1
with N D n5=2 log2 n yields a 1=2-convex body K . Let X be a random vector
distributed uniformly inK . By the definition ofK the marginal ofX with respect to
the first n coordinates has density proportional to .1 � .n � 1/f .jxj/=N /NC. Denote
this subspace by E . By Proposition 6, ProjEX is essentially isotropic. Let G be
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a standard Gaussian random variable. In order to show that Y D ProjEX has no
approximately Gaussian marginals, we examine P.j�0 � Y j � t/, for any �0 2 Sn�1.
Using the symmetry of Y and the rotation invariance of �n�1, we obtain,

P.j�0 � Y j � t/ D E1Œ0;t �.j�0 � Y j/ D
ˆ
Sn�1

E1Œ0;t �.j� � Y j/d�n�1.�/

D E

ˆ
Sn�1

1Œ0;t �.�1jY j/d�n�1.�/;

where � D .�1; : : : ; �n/. LetZ D .Z1; : : : ; Zn/, whereZi are independent standard
Gaussian random variable. SinceZ is invariant under rotations,Z=jZj is distributed
uniformly on Sn�1. Hence,

P.j�0 � Y j � t/ D P

�
jZ1jjY j � t

q
Z2
1 C � � � CZ2

n

�
:

By Proposition 7, P.j
q
Z2
1 C � � � CZ2

n � p
nj � n1=100/ � 1 � Ce�cn1=50 . Hence,

P.j�0 � Y j � t/ D P
�jZ1jjY j � t

p
n
�
1CO

�
n�1=2C1=100���CO

�
e�cn1=50

	
:

(4)

By Propositions 6 and 5, there exists a random vector Y 0 such that

8t ˇ̌P �jY 0j � t
� � P .jY j � t/

ˇ̌ � Cp
n
; P

 r
3

7
n � jY 0j � 2

r
3

7
n

!
� 1 � C

n
;

and jY 0j has constant density function on
hp
3n=7; 2

p
3n=7

i
. By the triangle

inequality, for W distributed uniformly on
hp
3=7; 2

p
3=7

i
and any

p
3=7 � ˛ �

ˇ � 2
p
3=7 we have

jP.pn˛ � jY j � p
nˇ/ � P.˛ � W � ˇ/j � Cp

n
:

Combining with (4),

P.j�0 � Y j � t/ D P
�jGjW � t.1CO.n�1=2C1=100//

�CO

�
1p
n

�
:

We conclude that jY � �0j is very close to a distribution which is the product of
a Gaussian with a uniform random variable, and the latter distribution is far from
Gaussian.
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