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Abstract Given an arbitrary 1-Lipschitz function f on the torus Tn, we find a k-
dimensional subtorus M � T

n, parallel to the axes, such that the restriction of f

to the subtorus M is nearly a constant function. The k-dimensional subtorus M

is selected randomly and uniformly. We show that when k � c log n=.log log n C
log 1="/, the maximum and the minimum of f on this random subtorus M differ by
at most ", with high probability.

1 Introduction

A uniformly continuous function f on an n-dimensional space X of finite volume
tends to concentrate near a single value as n approaches infinity, in the sense that
the "-extension of some level set has nearly full measure. This phenomenon, which
is called the concentration of measure in high dimension, is frequently related to a
transitive group of symmetries acting on X . The prototypical example is the case of
a 1-Lipschitz function on the unit sphere Sn, see [3, 4, 8].

One of the most important consequences of the concentration of measure is the
emergence of spectrum, as was discovered in the 1970s by the third named author,
see [5–7]. The idea is that not only does the distinguished level set have a large
"-extension in a sense of measure, but one may actually find structured subsets on
which the function is nearly constant. When we have a group G acting transitively
on X , this structured subset belongs to the orbit fgM0 I g 2 Gg where M0 � X is a
fixed subspace. The third named author also noted some connections with Ramsey
theory, which were developed in two different directions: by Gromov [2] in the
direction of metric geometry, and by Pestov [9, 10] in the unexpected direction of
dynamical systems.

The phenomenon of spectrum thus follows from concentration, and it comes
as no surprise that most of the results in Analysis which establish spectrum, have
appeared as a consequence of concentration. In this note we demonstrate an instance
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where no concentration of measure is available, but nevertheless a geometrically
structured level set arises.

To state our result, consider the standard flat torus T
n D R

n=Zn D .R=Z/n,
which inherits its Riemannian structure from R

n. We say that M � T
n is a

coordinate subtorus of dimension k if it is the collection of all n-tuples .�j /n
j D1 2 T

n

with fixed n � k coordinates. Given a manifold X and f W X ! R we denote the
oscillation of f along X by

Osc.f I X/ D sup
X

f � inf
X

f:

Theorem 1. There is a universal constant c > 0, such that for any n � 1; 0 <

" � 1 and a function f W T
n ! R which is 1-Lipschitz, there exists a

k-dimensional coordinate subtorus M � T
n with k D

j
c

log n

log log.5n/ C log j"j
k

, such

that Osc.f I M / � ".

Note that the collection of all coordinate subtori equals the orbit fgM0 I g 2 Gg
where M0 � T

n is any fixed k-dimensional coordinate subtorus, and the group
G D R

n Ì Sn acts on T
n by translations and permutations of the coordinates.

Theorem 1 is a manifestation of spectrum, yet its proof below is inspired by proofs
of the Morrey embedding theorem, and the argument does not follow the usual
concentration paradigm. We think that the spectrum phenomenon should be much
more widespread, perhaps even more than the concentration phenomenon, and we
hope that this note will be a small step towards its recognition.

2 Proof of the Theorem

We write j � j for the standard Euclidean norm in R
n and we write log for the natural

logarithm. The standard vector fields @=@x1; : : : ; @=@xn on R
n are well-defined also

on the quotient Tn D R
n=Zn. These n vector fields are the coordinate directions

on the unit torus T
n. Thus, the partial derivatives @1f; : : : ; @nf are well-defined

for any smooth function f W T
n ! R, and we have jrf j2 D Pn

iD1.@i f /2. A
k-dimensional subspace E � TxT

n is a coordinate subspace if it is spanned by k

coordinate directions. For f W Tn ! R and M � T
n a submanifold, we write rM f

for the gradient of the restriction f jM W M ! R.
Throughout the proof, c; C will always denote universal constants, not necessar-

ily having the same value at each appearance. Since the Riemannian volume of Tn

equals one, Theorem 1 follows from the case ˛ D 1 of the following:

Theorem 2. There is a universal constant c > 0 with the following property: Let
n � 1; 0 < " � 1; 0 < ˛ � 1 and 1 � k � c

log n

log log.5n/Cj log "jCj log ˛j . Let f W Tn ! R

be a locally-Lipschitz function such that, for p D k.1 C ˛/,
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ˆ
Tn

jrf jp � 1: (1)

Then there exists a k-dimensional coordinate subtorus M � T
n with Osc

.f I M / � ".

The essence of the proof is as follows. First, for some large k we find a
k-dimensional coordinate subtorus M where the derivative is small on average,

in the sense that
� ´

M
jrM f jp

�1=p

is small. The existence of such a subtorus is

a consequence of the observation that at every point, most of the partial derivatives
in the coordinate directions are small. We then restrict our attention to this subtorus
and take any two points Qx; Qy 2 M . Our goal is to show that f . Qx/ � f . Qy/ < ".

To this end we construct a polygonal line from Qx to Qy which consists of intervals
of length 1=2. For every such interval Œx; y� we randomly select a point Z in a
.k � 1/-dimensional ball which is orthogonal to the interval Œx; y� and is centered
at its midpoint. We then show that jf .x/ � f .Z/j and jf .y/ � f .Z/j are typically
small, since jrM f j is small on average along the intervals Œx; Z� and Œy; Z�.

We proceed with a formal proof of Theorem 2, beginning with the following
computation:

Lemma 3. For any n � 1; 0 < " � 1; 0 < ˛ � 1 and 1 � k �
c

log n

log log.5n/Cj log "jCj log ˛j , we have that k � n=2 and

 
2k

ı2n

!1=p

�
p

k � ı (2)

where p D .1 C ˛/k and

ı D ˛

16.1 C ˛/
� "

k3=2
: (3)

Proof. Take c D 1=200. The desired conclusion (2) is equivalent to 4k2�p �
ı2pC4n2, which in turn is equivalent to

28pC18 �
�

˛ C 1

˛

�2pC4

� k2pC8 � "2pC4n2: (4)

Since c � 1=12 and ˛ � 1 we have that 6p � 12k � log n=j log "j and hence
"2pC4n2 � "6pn2 � n. Since ˛ C 1 � 2 then in order to obtain (4) it suffices to
prove

�
32

˛
� k

�2pC8

� n: (5)
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Since c � 1=200 and k � c log n=.log log.5n// then 24k log k � log n. Since
k � c

log n

j log ˛jClog.log 5/
then 24k log

�
32
˛

� � log n. We conclude that 12k log
�

32
˛

� k
� �

log n, and hence

�
32

˛
� k

�12k

� n: (6)

However, p D .1 C ˛/k and hence 2p C 8 � 12k. Therefore the desired bound (5)
follows from (6). Since k � 1

2
log n � n=2, the lemma is proven. ut

Our standing assumptions for the remainder of the proof of Theorem 2 are that
n � 1; 0 < " � 1; 0 < ˛ � 1 and that

1 � k � c
log n

log log.5n/ C j log "j C j log ˛j (7)

where c > 0 is the constant from Lemma 3. We also denote

p D .1 C ˛/k (8)

and we write e1; : : : ; en for the standard n unit vectors in R
n.

Lemma 4. Let v 2 R
n and let J � f1; : : : ; ng be a random subset of size k, selected

uniformly from the collection of all

�
n

k

�
subsets. Consider the k-dimensional

subspace E � R
n spanned by fej I j 2 J g and let PE be the orthogonal projection

operator onto E in R
n. Then,

�
EjPEvjp�1=p � ˛

8.1 C ˛/
� "

k
� jvj:

Proof. We may assume that v D .v1; : : : ; vn/ 2 R
n satisfies jvj D 1. Let ı > 0 be

defined as in (3). Denote I D fi I jvi j � ıg. Since jvj D 1, we must have jI j � 1=ı2.
We claim that

P.I \ J D ;/ � 1 � 2k

ı2n
: (9)

Indeed, if 2k
ı2n

� 1 then (9) is obvious. Otherwise, jI j � ı�2 � n=2 � n � k and

P.I\J D ;/ D
k�1Y
j D0

n � jI j � j

n � j
�
�

1 � jI j
n � k C 1

�k

�
�

1 � 2

ı2n

�k

� 1� 2k

ı2n
:
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Thus (9) is proven. Consequently,

EjPEvjp D E

0
@X

j 2J

v2
j

1
A

p=2

� 2k

ı2n
CE

2
641fI\J D;g �

0
@X

j 2J

v2
j

1
A

p=2
3
75 � 2k

ı2n
C
 

k �ı2

!p=2

;

where 1A equals one if the event A holds true and it vanishes otherwise. By using
the inequality .a C b/1=p � a1=p C b1=p we obtain

�
EjPEvjp�1=p �

 
2k

ı2n

!1=p

C
p

k � ı � 2
p

k � ı D ˛

8.1 C ˛/
� "

k
;

where we utilized (3) and Lemma 3. ut
Corollary 5. Let f W Tn ! R be a locally-Lipschitz function with

´
Tn jrf jp � 1.

Then there exists a k-dimensional coordinate subtorus M � T
n such that

�ˆ
M

jrM f jp
�1=p

� ˛

8.1 C ˛/
� "

k
: (10)

Proof. The set of all coordinate k-dimensional subtori admits a unique probability
measure, invariant under translations and coordinate permutations. Let M be a
random coordinate k-subtorus, chosen with respect to the uniform distribution. All
the tangent spaces TxT

n are canonically identified with R
n, and we let E � R

n

denote a random, uniformly chosen k-dimensional coordinate subspace. Then we
may write

EM

ˆ
M

jrM f jp D
ˆ
Tn

EE jPErf jp � Ap

ˆ
Tn

jrf jp � Ap;

where A D ˛
8.1C˛/

� "
k

and we used Lemma 4. It follows that there exists a subtorus
M which satisfies (10). ut

The following lemma is essentially Morrey’s inequality (see [1, Sect. 4.5]).

Lemma 6. Consider the k-dimensional Euclidean ball B.0; R/ D fx 2 R
k I jxj �

Rg. Let f W B.0; R/ ! R be a locally-Lipschitz function, and let x; y 2 B.0; R/

satisfy jx � yj D 2R. Recall that p D .1 C ˛/k. Then,

jf .x/ � f .y/j � 4
1 C ˛

˛
� k

1
2.1C˛/ � R

1� k
p

�ˆ
B.0;R/

jrf .x/jpdx

�1=p

: (11)

Proof. We may reduce matters to the case R D 1 by replacing f .x/ by f .Rx/;
note that the right-hand side of (11) is invariant under such replacement. Thus x is
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a unit vector, and y D �x. Let Z be a random point, distributed uniformly in the
.k � 1/-dimensional unit ball

B.0; 1/ \ x? D fv 2 R
k I jvj � 1; v � x D 0g;

where v � x is the standard scalar product of x; v 2 R
k . Let us write

Ejf .x/ � f .Z/j � Ejx � Zj
ˆ 1

0

jrf ..1 � t/x C tZ/j dt (12)

� 2Ejrf ..1 � T /x C TZ/j D 2

ˆ
B.0;1/

jrf .z/j�.z/dz;

where T is a random variable uniformly distributed in Œ0; 1�, independent of Z, and
where � is the probability density of the random variable .1 � T /x C TZ. Then,

�..1 � r/x C rz/ D ck

rk�1

when z 2 B.0; 1/ \ x?; 0 < r < 1. We may compute ck as follows:

1 D ck

ˆ 1

0

1

rk�1
Vk�1.r/dr D ckVk�1.1/ D ck

�k�1

�
�

kC1
2

� ;

where Vk�1.r/ is the .k�1/-dimensional volume of a .k�1/-dimensional Euclidean
ball of radius r . Denote q D p=.p � 1/. Then,

ˆ
B.0;1/

�q D
ˆ 1

0

� ck

rk�1

�q

Vk�1.r/dr D c
q

k Vk�1.1/

.k � 1/.1 � q/ C 1
D p � 1

p � k

0
@�

�
kC1

2

�

�k�1

1
A

q�1

;

and hence

�ˆ
B.0;1/

�q

�1=q

D
�

p � 1

p � k

�1=q
 

�
�

kC1
2

�

�k�1

!1=p

(13)

�
�

1 C ˛

˛

�1=q �
kk=2

�k�1

�1=p

� 1 C ˛

˛
� k

1
2.1C˛/ :

Denote C˛;k D 1C˛
˛

� k
1

2.1C˛/ . From (12), (13) and the Hölder inequality,

Ejf .x/ � f .Z/j � 2

�ˆ
B.0;1/

jrf jp
� 1

p
�ˆ

B.0;1/

�q

� 1
q

� 2C˛;k

�ˆ
B.0;1/

jrf jp
� 1

p

:

(14)
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A bound similar to (14) also holds for Ejf .y/ � f .Z/j, since y D �x. By the
triangle inequality,

jf .x/�f .y/j � Ejf .y/�f .Z/jCEjf .Z/�f .x/j � 4C˛;k

�ˆ
B.0;1/

jrf jp
�1=p

:

ut
Proof of Theorem 2. According to Corollary 5 we may select a coordinate subtorus
M D T

k so that

�ˆ
M

jrM f jp
�1=p

� ˛

8.1 C ˛/
� "

k
: (15)

Given any two points x; y 2 M , let us show that

jf .x/ � f .y/j � ": (16)

The distance between x and y is at most
p

k=2. Let us construct a curve, in fact
a polygonal line, starting at x and ending at y which consists of at most

p
k C 1

intervals of length 1=2. For instance, we may take all but the last two intervals to be
intervals of length 1=2 lying on a minimizing geodesic between x to y. The last two
intervals need to connect two points whose distance is at most 1=2, and this is easy
to do by drawing an isosceles triangle whose base is the segment between these two
points.

Let Œxj ; xj C1� be any of the intervals appearing in the polygonal line constructed
above. Let B � T

k D M be a geodesic ball of radius R D 1=4 centered at the
midpoint of Œxj ; xj C1�. This geodesic ball on the torus is isometric to a Euclidean
ball of radius R D 1=4 in R

k. Lemma 6 applies, and implies that

jf .xj / � f .xj C1/j � 4
1 C ˛

˛
� k

1
2.1C˛/

�
1

4

�1� k
p
�ˆ

B

jrM f jp
� 1

p

� 4
1 C ˛

˛
�
p

k

�ˆ
M

jrM f jp
� 1

p

:

Since the number of intervals in the polygonal line is at most
p

k C 1 � 2
p

k, then

jf .x/ � f .y/j �
X

j

jf .xj / � f .xj C1/j � 8
1 C ˛

˛
� k

�ˆ
M

jrM f jp
�1=p

� ";

where we used (15) in the last passage. The points x; y 2 M were arbitrary, and
hence Osc.f I M / � ". ut
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Remarks. 1. It is evident from the proof of Theorem 2 that the subtorus M is
selected randomly and uniformly over the collection of all k-dimensional
coordinate subtori. It is easy to obtain that with probability at least 9=10, we
have that Osc.M I f / � ".

2. The assumption that f is locally-Lipschitz in Theorem 2 is only used to
justify the use of the fundamental theorem of calculus in (12). It is possible to
significantly weaken this assumption; it suffices to know that f admits weak
derivatives @1f; : : : ; @nf and that (1) holds true, see [1, Chap. 4] for more
information.

It is quite surprising that the conclusion of the theorem also holds for non-
continuous, unbounded functions, with many singular points, as long as (1) is
satisfied in the sense of weak derivatives. The singularities are necessarily of a
rather mild type, and a variant of our proof yields a subtorus M on which the
function f is necessarily continuous with Osc.f I M / � ".

3. Another possible approach to the problem would be along the lines of the proof
of the classical concentration theorems—namely, finding an "-net of points in
a subtorus, where all the coordinate partial derivatives of the function are small.
However, this approach requires some additional a-priori data about the function,
such as a uniform bound on the Hessian.

4. We do not know whether the dependence on the dimension in Theorem 1 is
optimal. Better estimates may be obtained if the subtorus M � T

n is permitted
to be an arbitrary k-dimensional rational subtorus, which is not necessarily a
coordinate subtorus. Recall that a rational torus is a quotient of Rn by a lattice
which is spanned by n vectors with rational coordinates.
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