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Preface

Since the mid-1980s, the following volumes containing collections of papers
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional
Analysis have appeared:

1983–1984 Published privately by Tel Aviv University
1985–1986 Springer Lecture Notes in Mathematics, vol. 1267
1986–1987 Springer Lecture Notes in Mathematics, vol. 1317
1987–1988 Springer Lecture Notes in Mathematics, vol. 1376
1989–1990 Springer Lecture Notes in Mathematics, vol. 1469
1992–1994 Operator Theory: Advances and Applications, vol. 77, Birkhäuser
1994–1996 MSRI Publications, vol. 34, Cambridge University Press
1996–2000 Springer Lecture Notes in Mathematics, vol. 1745
2001–2002 Springer Lecture Notes in Mathematics, vol. 1807
2002–2003 Springer Lecture Notes in Mathematics, vol. 1850
2004–2005 Springer Lecture Notes in Mathematics, vol. 1910
2006–2010 Springer Lecture Notes in Mathematics, vol. 2050

The first six were edited by Lindenstrauss and Milman, the seventh by Ball
and Milman, the subsequent four by Milman and Schechtman, and the last one by
Klartag, Mendelson and Milman.

As in the previous Seminar Notes, the current volume reflects general trends in
the study of Geometric Aspects of Functional Analysis. Most of the papers deal
with different aspects of Asymptotic Geometric Analysis, understood in a broad
sense; many continue the study of geometric and volumetric properties of convex
bodies and log-concave measures in high-dimensions, and in particular the mean-
norm, mean-width, metric entropy, spectral-gap, thin-shell and slicing parameters,
with applications to Dvoretzky and Central-Limit-type results. The study of spectral
properties of various systems, matrices, operators and potentials is another central
theme in this volume. As expected, probabilistic tools play a significant role, and
probabilistic questions regarding Gaussian noise stability, the Gaussian Free Field

v



vi Preface

and First Passage Percolation are also addressed. The connection to the field of
Classical Convexity is also well represented with new properties and applications
of mixed-volumes. The interplay between the real convex and complex pluri-
subharmonic settings continues to manifest itself in several additional articles. All
contributions are original research papers and were subject to the usual refereeing
standards.

We are grateful to Vitali Milman for his help and guidance in preparing and
editing this volume.

Tel Aviv, Israel Bo’az Klartag
Haifa, Israel Emanuel Milman
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Dyson Processes Associated with Associative
Algebras: The Clifford Case

Dominique Bakry and Marguerite Zani

Abstract We consider Brownian motions and other processes (Ornstein-Uhlenbeck
processes, spherical Brownian motions) on various sets of symmetric matrices
constructed from algebra structures, and look at their associated spectral measure
processes. This leads to the identification of the multiplicity of the eigenvalues,
together with the identification of the spectral measures. For Clifford algebras, we
thus recover Bott’s periodicity.

1 Introduction

Many works on random matrix theory deal with the law of the spectrum on some
specific sets: real symmetric, Hermitian, orthogonal or unitary, etc. There exists a
large literature on this topic. We shall mention the early works of Wigner [22],
Dyson [7], Mehta [20], Marčenko and Pastur [19], Soshnikov [21] and more recently
Anderson et al. [1], Erdös et al. [8–10], Forrester [11] and references therein. For
related topics, one can also refer to the work of Ledoux [15, 16] studying empirical
measures via Markov generators, and for a classification of random matrices based
on a quantum mechanical setting, see [23,24]. One may also consider stochastic pro-
cesses on these sets of matrices (Euclidean Brownian motions, Ornstein-Uhlenbeck
operators, spherical Brownian motions, Brownian motions on groups, see e.g.
Doumerc [6], or Chapon and Defosseux [5] on minors of Hermitian Brownian
Motion): they are diffusion processes which are reversible under their invariant
measures. One may then consider the stochastic processes which is the empirical
measure of the spectrum of the matrix. In many situations, it turns out that these
empirical measures are again stochastic diffusion processes, called Dyson processes
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2 D. Bakry and M. Zani

(introduced in [7]) and their reversible measures are the image of the invariant mea-
sure on the set of matrices. It may then be an easy way of computing those spectral
measures, but the study of the spectral processes is by itself a topic of interest.

For, say Gaussian, real symmetric, Hermitian or quaternionic symmetric matri-
ces, when one considers the law of their eigenvalues .�1; � � � ; �n/, ordered for
example as �1 < � � � < �n, it has a density with respect to the Lebesgue measure
d�1 � � �d�n which is C.

Q
i<j j�i � �j j/ˇe�1=2Pi �

2
i , where C is a normalizing

constant and ˇ D 1; 2; 4 according to the fact that we are in the real, complex
or quaternionic case. This factor .

Q
i<j j�i � �j j/ˇ also appears in many other

situations (SO.n/; SU.n/; Sp.n/matrices, for example). There are even some results
for octonionic 2 � 2 matrices where ˇ D 8. On the other hand, if one considers the
real symmetric, Hermitian and quaternionicn�nmatrices as real matrices (with size
n� n; .2n/� .2n/ and .4n/� .4n/ respectively), their eigenspaces have dimension
1; 2 and 4 respectively (and 8 in the special case of octonionic matrices). Therefore,
one may think that this factor ˇ is due to the multiplicity of the eigenvalues for the
real form of the matrices. We shall see that this is not the case.

One may construct symmetric matrices with the help of some other algebra
structures endowed with an Euclidean metric, and it turns out that in many cases one
may again construct the associated Dyson processes. There is then a rich interplay
between the algebra structure, the Euclidean structure, the Brownian motions and
the law of the associated Dyson processes. In this paper for example, we go beyond
the cases of real symmetric, Hermitian and quaternionic cases, and consider some
associative dimension 2p algebras of the Clifford type, which extend the cases of
real, complex and quaternions. One may then define real symmetric matrices with
size .n � 2p/ � .n � 2p/, which have eigenspaces with dimension 2k, where k is
related to p in some specific way described below, and may be chosen as large as
we wish. We then consider Brownian motion on these set of matrices, compute the
Dyson processes, which appear to be symmetric diffusion processes, or union of
pairs of independent processes. This depends indeed on the algebra structure and
leads to the computation of the law of the spectrum. It turns out that there is still
a factor .

Q
i<j j�i � �j j/ˇ with ˇ D 1; 2; 4, and we do not produce in this way

other values for ˇ: these values reflect in fact a phenomenon which is known as
Bott’s periodicity, and has nothing to do with the dimension of the eigenspaces (for
references on Bott’s Periodicity Theorem, see [2, 3, 14]).

In order to deal with spectral measures, we consider processes on the characteris-
tic polynomialsP.X/ D det.M �X Id/. Indeed, functions of the spectral measures
are nothing else than symmetric functions of the roots of P . Usually, in order to
characterize the laws of the spectral measure, one works with its moments, that is the
functions

Pn
i �

k
i , where .�1; � � � ; �n/ denote the eigenvalues of the matrix. We find

more convenient to deal with the elementary symmetric functions of the roots, that
is the coefficients of P . Curiously, this approach, very close to the study of Stieltjes
transform of the measure, is not that popular. Although many of these computations
are well known, and for the sake of completeness, we chose to present the basic
objects allowing to manipulate the various quantities appearing in the formulae.
For this, we first consider the diagonal cases (that is when we start directly on
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some processes on the roots of P.X/), that we analyze in the case of flat Brownian
motion, Ornstein-Uhlenbeck operators and spherical Brownian motions. Then, we
pass to the analysis of the laws of the characteristic polynomials in various sets of
symmetric matrices, starting with the classical settings (real symmetric, Hermitian
and quaternionic), before looking at the case of general Clifford algebras.

The paper is organized as follows. Section 2 is a short introduction to the
methods and language of symmetric diffusion processes. In Sects. 3, 4 and 5 we
consider the simpler cases of diagonal matrices in the flat Euclidean, Gaussian
and spherical cases respectively. We describe how to handle and identify various
quantities (discriminants, metric structures, etc) which appear in the computations
through the characteristic polynomials. Sections 6 and 7 are devoted to the analysis
of the real symmetric, Hermitian and quaternionic cases (although the quaternionic
case is just sketched since it is not simpler to handle than the general Clifford
case). The real symmetric case allows to develop the techniques used for dealing
with characteristic polynomials, while the Hermitian case shows how to deal with
multiple eigenvalues. In Sect. 8 we introduce the general Clifford algebras, through a
presentation which is quite handy for our purpose and does not seem to be classical.
Finally, in Sect. 9, we give the complete description of the laws of the spectra for the
standard Clifford algebras, where we recover Bott’s periodicity through the various
laws appearing in the spectra of the matrices, for different values of the dimension
of the algebra. For references on Clifford algebras see [18] and for some generalized
Clifford algebras see [13]. The general conclusion is that the study of the law of the
Dyson processes is helpful to decipher the algebra structure itself.

2 Symmetric Diffusion Generators and Their Images

The general setting for symmetric diffusion generators is inspired from [4] and is
the following. The ambient spaceE is some measure space, endowed with a �-finite
measure �. If � is finite, then it is always assumed to be a probability measure. In
what follows, E will be a compact connected smooth (that is C1), with or without
boundary, or some open connected set in R

n, or Rn itself. When a boundary appears,
it will be at least piecewise C 1. On E is given an algebra A0 of function E 7! R;
typically when E is an open set in R

n, A0 is the set of smooth (C1) compactly
supported functions, but it may be also the set of polynomial functions when E is
bounded and � is a probability measure, or more generally when polynomials are
dense in L 2.�/.

A fundamental assumption on A0 is that A0 � \1�p�1L p.�/, and that A0 is
dense in veryL p.�/, 1 � p < 1. Moreover,A0 is stable under any transformation
.f1; � � � ; fn/ 7! ˚.f1; � � � ; fn/, where ˚ is a smooth function R

n 7! R such that
˚.0/ D 0 (in the case of polynomials, one restricts to polynomial functions˚). For
any linear operator L W A0 7! A0, one defines its carré du champ operator

� .f; g/ D 1

2

�
L.fg/� f L.g/� gL.f /

�
:
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We have the following

Definition 1. A symmetric diffusion operator is a linear operator L: A0 ˚ 1 7! A0,
such that

1. L.1/ D 0,
2. 8f; g 2 A0 ˚ 1;

´
f L.g/ d� D ´

gL.f / d�,
3. 8f 2 A0; � .f; f / � 0,
4. 8f D .f1; � � � ; fn/, where fi 2 A0 , 8˚ W R

n 7! R,

L.˚.f // D
X

i

@i˚.f /L.fi /C
X

i;j

@2ij˚.f /� .fi ; fj /: (1)

Such an operator describes the law of a stochastic Markov process .�t / with values
in E , with generator L and reversible measure �. It is often important to be able
to extend L on a larger class of functions (typically C 1 functions, without any
restriction on the size of the function or condition on its support). There is in general
a unique way of doing this (in an obvious way, see Eq. (2) below). We shall use this
extension without further comments. For a consistent reference on these operators,
see [4].

In the case of open sets of Rn or manifolds, L is in general given locally on some
set ˝ � E in a local system of coordinates .xi /, as

L.f / D
X

ij

gij.x/@2ijf C bi .x/
X

i

@i f; (2)

where

gij.x/ D � .xi ; xj /; bi .x/ D L.xi /:

This is in particular the case for open subsets ˝ � R
n or in a local chart ˝ on

a manifold, and is a direct consequence of the change of variable formula 4 in
Definition 1.

The positivity condition (point 3 in Definition 1) imposes that for any x 2 ˝ ,
the symmetric matrix .gij.x// is non negative. Moreover, provided � has a smooth
positive density � with respect to the Lebesgue measure dx1 � � � dxn, the operator L
is entirely described, up to a normalizing factor, by

L.f / D 1

�

X

ij

@j .g
ij�@j f /: (3)

Observe that, in an open subset of Rn, this equation determines entirely the density �
up to some constant whenever it exists. Indeed, identifying Eqs. (2) and (3) leads to
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X

j

gij@j log � D bi �
X

j

@j g
ij; (4)

and, when gij is invertible, this leads to the identification of @i log.�/.
This description (2) is not restricted to local system of coordinates, that is in the

manifold case to local diffeomorphisms. Suppose indeed that one may find functions
.a1; � � � ; ak/ .ai 2 A ) such that for some smooth functionsBi and Gij

L.ai / D Bi.a1; � � � ; ak/; � .ai ; aj / D Gij.a1; � � � ; ak/;

then, writing a D .a1; � � � ; ak/, we get readily from Eq. (1)

L.f .a// D
X

ij

Gij.a/@2ijf .a/C
X

i

Bi .a/@if .a/;

and the operator

OL D
X

ij

Gij@2ij C
X

i

Bi@i

is nothing else than the operator L acting on functions depending only on a D
.a1; � � � ; ak/. We shall say that OL is the image of the operator L through a D
.a1; � � � ; ak/, seen as a function E 7! R

k . As a consequence, the operator OL is
symmetric with respect to the image measure of � through a D .a1; � � � ; ak/. With
the help of Eq. (4), it will be a good way to identify the image measure, provided it
has a density � with respect to the Lebesgue measure.

A special case concerns Laplace operators, where .gij/ is everywhere non
degenerate and � is by definition det.g/�1=2. When x 7! a D .a1; � � � ; an/ is a
local diffeomorphism (a simple change of coordinates), then the image of L is again
a Laplace operator, (the Laplace operator written in the new system of coordinates),
and the density measure is again det.G/�1=2 is the new system of coordinates. It is
however important to notice that we shall use this procedure even when x 7! a is
not a diffeomorphism, for example with the mapM 7! P.X/, whereM is a matrix
and P its characteristic polynomial.

Those operators L are related with the associated Markov diffusion processes
.�t / by the requirement that, for any function f 2 A ,

f .�t / �
ˆ t

0

L.f /.�s/ ds (5)

is a local martingale (a true martingale if for example f and L.f / are bounded).
In good situations (see below), this is enough to describe the law of .�t /, or the
joint laws of .�t1 ; � � � ; �tn / from the starting point �0 D x and the knowledge of the
operator L, see [4]. In this case, the law of �t when �0 D x is described through
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the formula E.f .�t /=�0 D x/ D Pt .f /.x/, where Pt D exp.tL/ is the semigroup
with generator L, which is uniquely determined by the knowledge of L acting on
A0. This linear operator Pt is a bounded operator on any L p.�/, for 1 � p � 1.
Good situation here refers to the fact that the operator L is essentially self-adjoint on
L 2.�/ with respect to A0. When we deal with E D R

n with some elliptic operator
with smooth coefficients, this is always the case when A0 is the set of compactly
supported smooth functions.

In presence of boundaries however, there may be several self-adjoint extensions
of this operator L defined on A0, and therefore may possible semigroups: for
example, one may deal with Dirichlet or Neuman boundary conditions. It shall
be the case for example when looking at the spectral measures, which live on the
Weyl chambers f�1 < � � � < �ng. Fortunately, in this case the operator OL is defined
as the image of L through the map a. Moreover, the (unique) semigroup Pt itself
preserves functions of a, which will be easily checked in all our situations. That is,
one may define a new semigroup OPt as . OPtf /.a/ D Pt.f .a//, and by construction,
this semigroup OPt has generator OL. We shall therefore use this semigroup OPt as the
semigroup generated by L. In the case of spectral measures, it corresponds indeed
to the Neuman boundary conditions for the operator OL defined in the interior of the
Weyl chamber.

Anyhow, we shall not really use this interpretation in terms of stochastic
processes in what follows, since we shall mainly concentrate on the properties of
the local operator L and of it’s various images OL, that we want to describe in some
local systems of coordinates. One may observe that thanks to formula (3), this is
enough to describe the image measure of the measure � through the map a. As
mentioned above, we shall deal with operators acting on the space of polynomials
i.e. on R

n, when identifying R
n with the set of the coefficients of the polynomial.

The polynomials shall be monic in general, i.e. P.X/ D Xn C Pn�1
0 aiX

i ,
where .a0.�t /; � � � ; an�1.�t // is the stochastic process, and X may be considered
as a parameter. The coefficients .ai / can be viewed as coordinates in this set of
polynomials, writing for example L

�
P.X/

� D P
i X

iL.ai /, and acting similarly
for the operator �

�
P.X/; P.Y /

�
. One may also consider a fixed X and see P.X/

as an application R
n 7! R, for which one can take log.P.X// or P.X/r . Last,

those function can be described as series in the variable X (even formal series,
regardless of their domain of convergence), with coefficients being some polynomial
functions of .a0; � � � ; an�1/, and all computations on these expressions boiling
down to algebraic computations involving L, � and polynomial expressions in the
coefficients ai (see for example Lemma 2 below).

3 The Image of the Euclidean Laplacian Under Elementary
Symmetric Functions

As a warm up, let us start with the case of diagonal matrices. The computations
that we shall perform in this section are well known, and we refer to [1] or [11] for
further details. See also Gamburd [12] on applications of symmetric functions to
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random matrices. Let x D .x1; � � � ; xn/ 2 R
n and

P.X/ D
nY

iD1
.X � xi / D

nX

iD0
aiX

i ;

such that .�1/iai .x1; � � � ; xn/ are the elementary symmetric functions. If we
want to describe the image of the Laplace operator 	E on R

n under symmetric
functions of .x1; � � � ; xn/, we may look at smooth functions F.a0; � � � ; an�1/. At
least in the Weyl chamber fx1 < x2 � � � < xng, the application .x1; � � � ; xn/ 7!
˚.x1; � � � ; xn/ D .a0; � � � ; an�1/ is a local diffeomorphism. We first have to look
at the image of the Lebesgue measure dx D dx1 � � � dxn under ˚ . For that purpose,
we recall the definition of the discriminant of a polynomial P , considering only
monic polynomials (when the coefficient of the leading term is 1). For two monic
polynomials P.X/ D Pn

iD0 aiXi and Q.X/ D Pp
iD0 biXi , the resultant R.P;Q/

is a polynomial in the coefficients .a0; � � � ; an�1; b0; � � � ; bp�1/ which vanishes
exactly when P and Q have a common root (in the complex plane). Indeed,
R.P;Q/ is the determinant of the .nC p/ � .nC p/ Sylvester matrix

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1 an�1 an�2 � � � a0 0 � � � 0
0 1 an�1 � � � a1 a0 � � � 0
0 0 1 � � � a2 a1 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � ap�2 � � � a1 a0
1 bp�1 bp�2 � � � b0 0 � � � 0
0 1 bp�1 � � � b1 b0 � � � 0
0 0 1 � � � b2 b1 � � � 0
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � b1 b0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

It can be viewed as the determinant of the following system of linear equations in
the unknown variables f1;X; � � � ; XnCp�1g:

fP.X/D 0;XP.X/D 0; � � � ; Xp�1P.X/D 0;Q.X/D 0;XQ.X/D 0; � � � ; Xn�1Q.X/D 0g:

It turns out that, when P.X/ D Q
i .X � xi / and Q.X/ D Q

j .X � yj /, then
R.P;Q/ D Q

i;j .xi � yi /.
The discriminant discr.P / D .�1/n.n�1/=2R.P; P 0/ and expresses a necessary

and sufficient condition for P to have a double root. Then, when P.X/ DQ
.X � xi /, one has discr.P / D Q

i<j .xi � xj /2.
The discriminant is not an easy expression of the coefficients .a0; � � � ; an�1/, and

the following computations are here to make them easier.
The first central result concerns the image of the Lebesgue measure.
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Proposition 1. The image measure of dx under ˚ is

d�0 D nŠjdiscr.P /j�1=2�D>0da0 � � � dan�1;

where D is the connected component of the set fdiscr.P / > 0g where all the roots
of the polynomial P are real.

Proof. This is a classical result known as Weyl integration formula (see [1,11,12]).
We give a proof here for the sake of completeness. Let us first observe that for
a polynomial P having only distinct real roots, discr.P / > 0. The condition
discr.P / > 0 is not sufficient to assert that P has only real roots: it is also positive
for example when P has an even number of pairs of complex conjugate roots. The
set where all the roots are real and distinct is obviously connected, and therefore
there is only one connected component of this set where all the roots are real. This
is our set D , the set which contains for example the point

Qn�1
0 .X � i/.

To compute the image measure of ˚ , it is enough to identify the image of ˚
when restricted to the Weyl chamber fx1 < � � � < xng, since the same computation
will hold true in any other Weyl chamber (that is the image of the first one under a
permutation of the coordinates), and there are nŠ of such chambers.

First, it is clear that the support of the image measure is included in the closure of
D � fdiscr.P / > 0g, and, from the explicit expression of the discriminant in terms
of the roots, is strictly positive in any Weyl chamber. The boundary of this set is a
subset of the algebraic surface (in the space of the .ai / coordinates) fdiscr.P / D 0g.

Indeed, it is quite easy to see the result of Proposition 1 by induction on the
degree n. It is clear that it is true for n D 1, since a1 D �x1

Let us assume that the result is true for n and set P.X/ D .X � xnC1/Q.x/ DPnC1
0 aiX

i , whereQ.X/ D Pn
0 biX

i D Qn
1.X � xi /. Then

an D bn�1�xnC1; an�1 D bn�2�xnC1bn�1; � � � ; a1 D b0�xnC1b1; a0 D �xnC1b0:

The Jacobian of the transformation .xnC1; b0; b1; � � � ; bn�1/ 7! .a0; � � � ; an/ is
easily seen to be

jxnnC1 C bnx
n�1
nC1 C � � � C b0j D jQ.xnC1/j D j

nY

1

.xnC1 � xi /j:

Therefore, if db0 � � � dbn�1 D jQ1�i<j�n.xi � xj /jdx1 � � � dxn, then

da0 � � � dan D
Y

1�i<j�nC1
jxi � xj jdx1 � � � dxnC1:

From what precedes, it is clear that the Jacobian of the transformation
.x1; � � � ; xn/ 7! .a0; � � � ; an�1/ is non zero on any Weyl chamber, and then the
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boundary of the image is included in the algebraic set fdiscr.P / D 0g. This is
enough to identify the support of the image measure as the closure of D .

Let us now compute the image of the Laplace operator 	E on R
n under ˚ . In

what follows, and throughout the paper, �E denotes the Euclidean carré du champ,
that is, in the standard system of coordinates,

�E.f; g/ D
X

i

@if @ig:

Fix X 2 R, and consider the function

R
n n f9i; xi D Xg 7! R

.x1; � � � ; xn/ 7! logP.X/ D
X

i

log.X � xi /

We get

Proposition 2.

1. For any X 2 R, 	E.P.X// D 0

2. For any .X; Y / 2 R
2,

�E.log.P.X/; logP.Y // D 1

Y �X
�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
: (6)

Proof. The first assertion is immediate, since every function ai is an harmonic
function on R

n (as a polynomial of degree 1 in any coordinate xi ).
For the second, one has

�E.logP.X/; logP.Y // D
X

i

@xi logP.X/@xi logP.Y / D
X

i

1

.X � xi /.Y � xi / :

But

1

.X � xi /.Y � xi / D 1

Y �X .
1

X � xi
� 1

Y � xi /

and

X

i

1

.X � xi /.Y � xi /
D 1

Y � X

�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
:

Corollary 1. Setting ˛i;j D .i C 1/aiC1aj , where ai D 0 if i > n and an D 1, one
has

X

i;j

�E.ai ; aj /X
iY j D

X

i¤j
˛i;j

XiY j �XjY i

Y � X
;
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from which

�E.ak; ap/ D
X

.p�k/
C

�l�p
˛p�l;kClC1 �

X

.k�p/
C

�l�k
˛pClC1;k�l : (7)

Moreover

@ak�E.ak; ap/ D �p�k.k � p � 2/apC2 C �pDk�1kapC2: (8)

and

X

k

@ak�E.ak; ap/ D �1
2
.p C 1/.p C 2/apC2: (9)

Proof. This is straightforward from Eq. (6), which gives

�E.P.X/; P.Y // D 1

Y �X .P
0.X/P.Y / � P 0.Y /P.X//:

On the other hand, by bilinearity, one has

�E.P.X/; P.Y // D
X

ij

�E.ai ; aj /X
iY j :

We then obtain

X

i;j

�E.ai ; aj /X
iY j D

X

i¤j
˛i;j

XiY j �XjY i

Y � X
;

from which formula (7) follows easily.
Formulae (8) and (9) are easy consequences of the first one.

The application .x1; � � � ; xn/ 7! .a0; � � � ; an�1/ is a local diffeomorphism.
Therefore, the image of the Laplace operator in coordinates .x1; � � � ; xn/ is the
Laplace operator in coordinates .a0; � � � ; an�1/. This leads to some formulae which
are less immediate.

Corollary 2. One has

1. discr.P / D det.�E.ai ; aj //.
2. For any i 2 f0; � � � ; n�1g; P j �E.ai ; aj /@aj log discr.P /D 2

P
j @aj �E.ai ; aj /.

3. For any i 2 f0; � � � ; n � 1g,
P

i;j X
i�E.ai ; aj /@aj log discr.P / D �P 00.X/.

Proof. One the one hand, we know that in the coordinates .a0; � � � ; an�1/, the
Laplace operator has carré du champ �E.ai ; aj / and reversible measure (here the
Riemann measure) density discr.P /�1=2da0 � � � dan�1.
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One the other hand, we know that this density measure is always, (for any
Laplace operator) det.�E.ai ; aj /

�1=2/. This is enough to get point 1.
Point 2 comes from the observation that in these coordinates .ai /, 	.ai / D 0.

Setting Gij D �E.ai ; aj /, and � D det.Gij/�1=2, the Laplace operator writes

	.f / D
X

ij

Gij@2ijf C
X

ij

@j .G
ij/@i f C

X

ij

Gij@if @j log �:

From this, we know that

	.ai / D
X

j

@jG
ij � 1

2

X

j

Gij@j log discr.P /:

Applying	.ai / D 0, point 2 is the direct translation of the previous.
For point 3, it suffices to combine point 2 together with formula (7) to obtain, for

i D 0; � � � ; n � 1
X

j

�E.ai ; aj /@aj log discr.P / D �.i C 2/.i C 1/aiC2:

As a consequence, we obtain the central point of many of the computations below.

Proposition 3. �E.P; log discr.P // D �P 00.

Proof. This is just a rephrasing of point 3 in Corollary 2.

4 The Image of the Ornstein-Uhlenbeck Operator Under
Elementary Symmetric Functions

In Euclidean spaces, the Ornstein-Uhlenbeck operator is defined as

LOU.f / D 	E.f /� 1

2
�E.kxk2; f / D 	E.f / �

nX

iD1
xi@if:

It shares the same carré du champ operator than the Laplace operator, but has
the standard Gaussian measure as reversible measure. It also admits a complete
orthonormal system of eigenvectors, namely the Hermite polynomials, which
polynomials in the variables .x1; � � � ; xn/ with total degree k, with associated
eigenvalue LOU.Hk/ D �kHk .

Proposition 4. For P.X/ D Qn
iD1.X � xi / D Pn

iD0 aiXi , one has

1. LOU.P / D �Pi xi @iP D P
i .n � i/aiX

i D �nP.X/C XP0.X/.
2. 1

2
�E.a

2
n�1 � 2an�2; P.X// D nP.X/ � XP0.X/.
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3. 8i D 0; � � � ; n � 1, an�1�E.ai ; an�1/� �E.ai ; an�2/ D .n � i/ai .
4. The image of the Gaussian measure is

d
s WD nŠ

.2�/n=2
exp.an�2 � a2n�1

2
/discr.P /�1=2�D

n�1Y

0

dai : (10)

Proof. The first item 1 comes from the fact that since 	.ai / D 0, one has

LOU.P / D
X

i

XiLOU.ai / D �
X

ij

Xixj @j .aj /:

But the functions aj are homogeneous polynomial of degree n � i in the variables
xi , and therefore

P
j xj @j .aj / D .n � i/ai .

If we observe that
P

ij xj @if D 1
2
� .kxk2; f /, and that kxk2 D a2n�1 � 2an�2,

one sees that

1

2
�E.ai ; a

2
n�1 � 2an�2/ D .n � i/ai ;

from which

1

2
�E.a

2
n�1 � 2an�2; P.X// D nP.X/� XP0.X/:

Points 3 and 4 are immediate consequences.

Remark 1. Observe also that if U D a2n�1 � 2an�2, then, for the Euclidean
quantities, �E.U; U / D 4U and 	E.U / D 2n, as expected.

It is worth to observe that, contrary to the Gaussian measure, the image measure
d
s given in Eq. (10) does not have in general exponential moments. Nevertheless,
polynomials are dense in L 2.d
s/. Indeed, any function f in L 2.d
s/ which is
orthogonal for d
s to any polynomialQ.a0; � � � ; an�1/may be lifted into a function
Of W R

n 7! R which is invariant under permutation of the variables .x1; � � � ; xn/
and orthogonal to any symmetric polynomial. But such a function would then
be orthogonal to any polynomial, (even non symmetric), and therefore zero since
polynomials are dense for the Gaussian measure.

Observe that �E.ai ; aj / are bilinear functions of the .ai /, and LOU.ai / are linear.
From the change of variable formula, if Q.ai / is a polynomial of total degree less
than k in the variables ai , then so is LOU.Q/. Since the set of polynomials in the
variables ai are dense in L 2.�/, the operator LOU may be then diagonalized in a
basis formed of orthogonal polynomials in the variables .a0; � � � ; an�1/.

Remark 2. It is worth to observe that if Q is the mean value of P , i.e. Q WD
hP i D ´

P.X/d�.P /, where � is the image of the Gaussian measure, then since´
LOU.P /d�.P / D 0



Dyson Processes Associated with Associative Algebras: The Clifford Case 13

XQ0 D nQ:

Then, Q.X/ D Xn, which was obvious from the explicit expression of the ai
in terms of xi , which are independent centered Gaussian. But we shall see later
(Remark 5) that the same computation performed on symmetric matrices leads to a
more interesting result.

5 The Image of the Spherical Laplacian Under Elementary
Symmetric Functions

In an Euclidean n-dimensional space, the spherical Laplace operator 	S may be
written as the restriction to the unit sphere kxk2 D 1 of some combinations of 	E

and the Euler operatorD.f / D P
i xi @if , namely

	S.f / D 	E.f /�D2.f / � .n � 2/Df :

Indeed, when considering the restriction to the sphere of coordinate xi as a function
S
n�1 7! R, one may describe the spherical Laplace operator	S from

�S.xi ; xj / D ıij � xixj ; 	S.xi / D �.n � 1/xi :

From this, when considering a smooth function F.x1; � � � ; xn/, the change of
variable formula gives immediately 	S.F / D 	E.f /�D2f � .n � 2/Df .

In the study of Ornstein-Uhlenbeck processes, we already computed the action
of D on P.X/. Then, we get

Proposition 5. For the Laplace-Beltrami operator 	S acting on the unit sphere
S
n�1 � R

n, and for the polynomial P.X/ D Q
.X � xi /, one has

1. �S.logP.X/; logP.Y // D 1

Y �X
�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
�
�
n � X

P 0.X/
P.X/

�

�
n � Y P

0.Y /
P.Y /

�

2. 	S.P.X// D �2n.n � 1/P.X/C 3.n � 1/XP0.X/ �X2P 00.X/:

Proof. From

�S.P.X/; P.Y // D �E.P.X/; P.Y // � DP.X/DP.Y /;

we get point 1. Moreover,

	S.P.X/ D �D.nP.X/� XP0.X// D �.n.nP.X/� XP0.X//CD.
X

i

iaiX
i /:
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And

D.
X

i

iaiX
i / D

X

i

i.n� i/aiX
i D nXP0.X/ �X2P 00.X/� XP0.X/ ;

which gives point 2.

The support of the image measure is included in the set fa2n�1 � 2an�2 D 1g. It
does not have a density with respect to the Lebesgue measure da0 � � � dan�1. To deal
with it, it is more convenient to look at a more general operator, defined on the unit
ball B � R

n, and defined, for any p > 1 from

�B.xi ; xj / D ıij � xixj ; 	.xi / D �pxi :

Indeed, for any integer p > n � 1, this operator is nothing else than the projection
on the unit disk of the previous spherical operator on the sphere Sp . If one observes
that

�B.1 � kxk2; xi / D �2.1� kxk2/xi ;

comparing with Eq. (3), which gives for the density � of the associated invariant
measure � .log �; xi / D .n C 1 � p/xi , one sees that this operator has invariant
measure

Cp;n.1 � kxk2/.p�n�1/=2dx1 � � � dxn

on the unit ball Bn.
Then, letting p converging to n � 1, the measure concentrates on the uniform

measure on the unit sphere Sn�1.
One may then consider the image measure through .a0; � � � ; an�1/ of this last

operator, which is written as

8
ˆ̂
<

ˆ̂
:

�B.logP.X/; logP.Y //D 1
Y�X

�
P 0.X/

P.X/
� P 0.Y /

P.Y /

�
�
�
n�X P 0.X/

P.X/

��
n�Y P 0.Y /

P.Y /

�
;

	S.P.X// D �n.p C n � 1/P.X/C .p C 2.n� 1//XP0.X/� X2P 00.X/:

Its reversible measure is then, up to some scaling factor

�DD.a0; � � � ; an�1/�1=2.1C 2an�2 � a2n�1/.n�p�1/=2da0 � � � dan�1;

which concentrates on the set 1C 2an�2 � a2n�1 D 0 when p ! n � 1.

Remark 3. In random matrix theory, there are indeed many situations where the
law of the spectrum does not have a density with respect to the Lebesgue measure.
This is in particular the case when dealing with square matrices with random
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real independent Gaussian entries (the Ginibre ensemble), where the (complex)
eigenvalues are conjugate to each other, and where the probability that there are
a finite number of real eigenvalue is positive (see [17]). There may be simpler
situations where the spectrum is carried by sub manifolds (in general algebraic
varieties) and where the law has a density with respect of the surface measure of
this manifold. This is for example the case for Wishart matrices, that is matrices of
the formM D mm� wherem is an n�p matrix with independent Gaussian entries.
Whenever n < p, the spectrum is carried by the space where the discriminant of
the characteristic polynomial is 0. When the associated Dyson process is a diffusion
process, this situation may be detected through formula (4). Indeed, whenever the
invariant measure of the starting matrix process is a probability measure, then the
image measure is a probability measure. Then, when solving Eq. (4) which provides
the density � of the measure, it may happen that the unique (up to a normalizing
constant) solution is not integrable on the image domain, as it is in the previous case
of the spherical Brownian motion process. In complicated situations, this may be a
way to detect the support of the image measure.

6 Symmetric Operators on the Spectrum of Real Symmetric
Matrices

The space of symmetric real matrices is an Euclidean space with the norm kM k2 D
trace.M2/. The spectrum of such matrices is real and we want to describe the
action of the Euclidean and spherical Laplacians and the Ornstein-Uhlenbeck on the
spectrum of the matrix. For the moment, we only deal with the Euclidean Laplacian.

For this, we first start with the description of the Euclidean Laplace operator on
the entriesMij of the matrix.

One has

�E;R.Mij;Mkl/ D 1

2
.ıikıjl C ıilıjk/; LE;R.Mij/ D 0:

This formula just captures the fact that the entries of the matrix are independent
Brownian motions, subject to the restriction that the matrix is symmetric. More
precisely, it encodes by itself the fact the associated process lives in the space of
symmetric matrices. Since we shall use this kind of argument in many places, it
is worth to explain why in this simple case. In terms of the stochastic process
.Xt/ associated with LE;R, which lives a priori in the space of matrices, and for
the functions hij.M/ D Mij � Mji, it is not hard to see that LE;R.hij/ D 0 and
� .hij; hij/ D 0. Therefore, for the associated Brownian motion .�t /, and any smooth
function f , LE;R.f .hij// D 0 and, provided f .hij/ and LE;R.f .hij// are bounded,
E.f .hij.�t /=�0 D x/ D f .hij/.x/. This shows that hij.�t / remains constant (almost
surely). Then, if the process starts from a symmetric matrix, it stays forever in the
space of symmetric matrices (we shall not need this fact for what follows).
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We start with the following elementary lemma, which will be in full use through
the rest of the paper

Lemma 1. Let M D .Mij/ be a matrix and M�1 be its inverse, defined on the set
fdetM g ¤ 0. Then

1. @Mij log detM D M�1
ji ,

2. @Mij@Mkl log detM D �M�1
jk M

�1
li .

Proof. We first start with

@MijM
�1
kl D �M�1

ik M
�1
lj : (11)

To see this, consider the formula
P

k M
�1
ik Mkj D ıip, that we derive with respect to

Mpq, leading to

X

k

.@MpqM
�1
ik /Mkj CM�1

ik ıkpıjq D 0:

Fixing p and q, if DM denotes the matrix @MpqM
�1, one gets for every p; q .DM �

M/ij CM�1
ip ıjq D 0, which we may now multiply from the right byM�1 to get (11).

Now, we observe that Pij D det.M/M�1 is the comatrix, and therefore the Mji

entry of this matrix is a polynomial in the entries of the matrix which does not
depend on Mij.

One gets

.@Mij detM/M�1
ji � det.M/M�1

ji M
�1
ji D 0;

which is an identity between rational functions in the entriesMij. Therefore, we may
as well divide both terms by M�1

ij to obtain item 1. Item 2 follows immediately.

We are now in position to consider the action of the Laplace operator on the spectral
measure of M , that is to characterize the Dyson real process.

If we consider the characteristic polynomial P.X/ D det.M � X Id/, one has

Proposition 6.

1. �E;R.logP.X/; logP.Y // D 1
Y�X

�
P 0.X/

P.X/
� P 0.Y /

P.Y /

�

2. LE;RP.X/ D � 1
2
P 00:

In other words, the diffusion associated to the spectrum ofM has the same operator
carré du champ, and the invariant measure has a constant density with respect to
the Lebesgue measure �Dda0 � � � dan�1.

Proof. We start with the first formula. Fix X and Y and write U D .M � X Id/�1,
V D .M � Y Id/�1. One has
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�E;R.logP.X/; logP.Y // D
X

ijkl

@Mij logP.X/@Mkl logP.Y /�E;R.Mij;Mkl/:

Since P.X/ D det.M �X Id/, and from the value of �E;R.Mij;Mkl/, this writes

1

2

X

ijkl

UjiVlk.ıikıjl C ıilıjk/ D 1

2

X

ijkl

.UjiVji C UjiVij/ D trace.UV/:

But, if xi are the eigenvalues ofM , thenP.X/ D Q
i .xi�X/,P.Y / D Q

i .xi�Y /,
and

trace.UV/ D
X

i

1

.xi � X/.xi � Y /
D 1

X � Y

X

i

1

xi �X � 1

xi � Y

D 1

Y � X

�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
:

It remains to compute

LE;R.logP.X// D
X

ij

@Mij logP.X/LE;R.Mij/C
X

ijkl

@Mij@Mkl�E;R.Mij;Mkl/;

which writes

�1
2

X

ijkl

UjkUli.ıikıjl C ıilıjk/ D �1
2

�
trace.U 2/C .traceU /2

�
:

Writing

LE;RP.X/

P.X/
D LE;R logP.X/C �E;R.logP.X/; logP.X//;

and noticing that

trace.U 2/ D P 0.X/2

P.X/2
�P

00.X/
P.X/

D �E;R.logP.X/; logP.X//; traceU D �P
0.X/
P.X/

one gets the formula for LE;RP.X/.
Comparing with Corollary 2, one sees that LE;R.P / D 1

2
�E;R.P; log discr.P //.

The last point then is just the observation that if � is the reversible measure for the
image of LE;R, then � has, up to a constant, density discr.P /1=2 with respect to the
Riemann measure, which is just Cdiscr.P /�1=2.
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Remark 4. Moving back the measure to the Weyl chamber f�1 < � � � < �ng,
one sees that the density of the spectral measure with respect to d�1 � � �d�n is
Cdiscr.P /1=2 D C

Q j�i � �j j.
If one wants to extend the previous computation to the Gaussian or spherical

case, one has to consider also the image of D D P
ij Mij@Mij D 1

2
�E;R.kM k2; �/ on

the spectral functionP.X/ D det.M�X Id/. One gets, withU.X/ D .M�X Id/�1,

D.logP.X// D
X

ij

Mij@MijP.X/ D
X

ij

MijU.X/ji D traceMU.X/

D trace.Id C XU.X// D n �X P
0

P
;

from which D.P/ D nP � XP0. Therefore, if P.X/ D P
i aiX

i , D.aiXi / D
.n� i/ai . If one wants to consider also the action of the spherical Laplace operator,
one needs also to considerD2.P /. But D2.aiX

i / D .n � i/2ai , from which

D2.P / D n2P � .2n � 1/XP0 CX2P 00;

that is with DP D .nId � X@X/P , D2.P / D .nId � X@X/
2P , although there

is no reason a priori for this last identity, since DP is no longer the characteristic
polynomial of the symmetric matrix. Observe that the action of D on P is similar
that the one in the diagonal case. This is not surprising since, setting U D a2n�1 �
2an�2 D kM k2, D.F / D 1

2
�E;R.U; F /, for any function F .

Then, one has for the spherical operator on symmetric matrices, LS;R D LE;R �
D2 � .N � 2/D, where N D n.nC 1/=2, from which

LS;R.P / D �.1
2

CX2/P 00 C .nC 6/.n� 1/

2
XP0 � n.nC 4/.n� 1/

2
P:

and

�S;R.P.X/; P.Y //

D 1

Y �X .P
0.X/P.Y /�P 0.Y /P.X//� .nP.X/� XP0.X//.nP.Y /� XP0.Y //:

Remark 5. If we perform the same computation from the Gaussian measure 

instead of the Lebesgue one (that is if we start from an Ornstein-Uhlenbeck process
instead of the Brownian motion on matrices), we end up for this Ornstein-Uhlenbeck
Dyson process with LOU;R.P / D � 1

2
P 00 C XP0 � nP.

Now, if we consider now the mean value polynomial, that isQ D hP i D ´
Qd
 ,

one gets Q00 � 2XQ0 D �2nQ. From which we see that, up to some constant,
Q.X=

p
2/ is an Hermite polynomial.
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On the other hand, the same computation for the spherical case leads to

.
1

2
CX2/Q00 � .nC 6/.n� 1/

2
XQ0 D �n.nC 4/.n� 1/

2
Q:

In the same way that Hermite polynomials are the orthogonal polynomial family
associated with Gaussian measure, one would expect some connection between
those polynomials Q and the one-dimensional projection of the uniform measure
on a sphere (in some dimension), i.e. Jacobi polynomials, but it does not seem to be
the case.

Remark 6. One may wonder about what is hidden behind the fact that the spectrum
of the random matrix is again a diffusion process. Indeed, it is certainly easier to
see this by considerations on the associated semigroup Pt . From the form of the
generator, it is clear that the law of the process .�t / on the symmetric matrices
in those three cases is invariant under �P W � 7! P�1�P , where P is any given
invertible matrix. Then, if a function M 7! f .M/ on the space of symmetric
matrices is invariant under those operations �P , such is Pt.f /. But those functions
are nothing else than functions of the spectral measure. The semigroup acting on
those functions describes a Markov process, which is the Dyson process, on the co-
set space, which is the spectral measure of the matrix. This is a particular case of a
general situation, when we have an action on some space E which commutes with
the action of the generator L, see [4].

In the more complicated situations of the Clifford algebras described below, it
would be more difficult to describe exactly for which such actions we do have an
invariance for the generator, but the computation of the operator on the spectrum
provides directly the image process.

7 Symmetric Operators on the Spectrum of Hermitian
and Quaternionic Matrices

7.1 Hermitian Matrices

In this section, we extend the previous computations to Hermitian matrices. We
mainly consider an Hermitian matrix on C

n as a real symmetric matrix on R
2n.

Indeed, considering a vector Z D S C iT in C
n, where S and T are the real and

imaginary part ofZ, an Hermitian matrixH may be seen asMCiA, whereM is an
n�n real symmetric andA is n�n real antisymmetric matrix. Then, writingH as a

bloc matrix, we haveH D
�
M A

�A M
�

, which is a real symmetric matrix with special

structure. Indeed, any real eigenspace for this matrix is at least two dimensional
(and is exactly two-dimensional in the generic case), since if Z D .S; T / is an
eigenvector, so is .�T; S/, which corresponds to the eigenvector iZ.
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Moreover, the determinant P.X/ of H � X Id may be written as Q.X/2,
where Q.X/ is a polynomial whose coefficients are polynomials in the entries
of M and A. Actually, Q.X/ is the Pfaffian of the anti-symmetric 2n � 2n

matrix

�
A M � X Id

�M CX Id A

�

. Therefore, if we consider the entries of M and

A uniformly distributed under the Lebesgue measure, as we did for real symmetric
ones, the spectrum of the matrix H is certainly not absolutely continuous with
respect to the Lebesgue measure, and we are indeed more interested in the law of
the roots of Q than in the law of the roots of P .

As before, we look at the Euclidean Laplace operator LE;C acting on H D M C
iA, withM D .Mij/ andA D .Aij/ and we encode the symmetries via the following
formulae

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

LE;C.Mij/ D LE;C.Aij/ D 0

�E;C.Mij;Mkl/ D 1
2
.ıijıkl C ıikıjl/

�E;C.Aij; Akl/ D 1
2
.ıijıkl � ıikıjl/

�E;C.Mij; Akl/ D 0

It is worth to observe that any power (and therefore the inverse when it exists) of
an Hermitian matrix is again an Hermitian matrix, and one may perform the same
computation as before on P.x/ D det.H � X Id/ (still considered as a 2n � 2n

matrix).
We obtain, with again U.X/ D .H �X Id/�1,

Proposition 7.

�E;C.logP.X/; logP.Y // D 2trace.U.X/U.Y // D 2

Y �X .
P 0.X/
P.X/

� P 0.Y /
P.Y /

/:

LE;C.P.X// D 3

2

P 0.X/2

P.X/
� 2P 00.X/:

We do not give the details of the proof here since we shall give a more general
result in the setting of Clifford algebras, of which this is just the simplest example.

But is worth to observe the following. Since P.X/ D P
i X

iai , then
LE;C.P.X// D P

i X
iLE;C.ai /. Therefore, LE;C.P.X// has to be a polynomial,

and then P 0.X/2

P.X/
is a polynomial in X . This implies in particular that all the roots

of P have multiplicities at least 2, since every root of P is also a root of P 0. In
particular, the image measure of the Lebesgue measure is not absolutely continuous
with respect to d�0.

Observe furthermore that if we set P D P2
1 , then one gets from the change of

variable formula
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�E;C.logP1.X/; logP1.Y // D 1

Y �X
�P 0

1.X/

P1.X/
� P 0

1.Y /

P1.Y /

�
; LE;C.P1/ D �P 00

1 :

(12)

In particular, moving back to the Weyl chamber f�1 < � � � < �ng, the invariant
measure is, up to a constant,

Q
i<j .�i � �j /

2d�1 � � �d�n.
Are we able to deduce directly from the form of the generator that indeed P.X/

has almost surely double roots? We shall see that it is indeed the case. It may be
seen at this level as a purely formal argument, since we know in advance that in
this Hermitian case the roots are double. But later we shall face similar situations,
where we do not know in advance the multiplicity of the roots, and we want to
be able to deduce them from the generator. More precisely, we shall see that if a
generator of the form given in Proposition 7 maps polynomials into polynomials,
then those polynomials must have roots with multiplicity 2. This relies on Lemma 2
and Proposition 8.

From the form of the operator, one already sees that there are some algebraic
relations between the coefficients ai of the polynomial P . The following Lemma 2
is quite formal, and allows to devise the multiplicities of the roots of P from the
generator. Then, Proposition 8 provides a proof that the multiplicities of the roots
are indeed what is expected.

Lemma 2. Suppose that a diffusion operator L on some set of analytic functions
P.X/ D P

i aiX
i in the variable X satisfies, for some constants ˛; ˇ; 
 ,

L.P / D ˛P 00 C ˇ
P 02

P
; � .logP.X/; logP.Y // D 


Y � X

�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
:

(13)

Let a 2 R, a ¤ 0, and set P D Pa
1 . Then

� .logP1.X/; logP1.Y // D 
=a

Y �X
�P 0

1.X/

P1.X/
� P 0

1.Y /

P1.Y /

�

and

LP1 D .˛ C 

a � 1

a
/P 00

1 C .a.˛ C ˇ/C 

1 � a
a

� ˛/P
02
1

P1
:

In particular, if a satisfies

a2.˛ C ˇ/ � a.˛ C 
/C 
 D 0; (14)

then,

L.P1/ D a.˛ C ˇ/P 00
1 :
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Therefore, one may expect that, whenever L maps polynomials into polynomials,
and precisely for those values of a solutions of Eq. (14), the roots of P have
multiplicity a.

Proof. The formula for � .logP1.X/; logP1.Y // is immediate. The formula for
L.P / follows easily from the remark that

LP

P
D ˛@2X logP C .˛ C ˇ/.@X logP/2; � .logP; logP/ D �
@2X logP:

Then,

a
LP1
P1

D LP

P
C 1 � a

a
� .logP; logP/;

and this gives

LP1
P1

D .˛ C 

a � 1

a
/
P 00
1

P1
C .a.˛ C ˇ/C 


1 � a
a

� ˛/P
02
1

P 2
1

:

In the next Proposition 8, we consider polynomialsP.X/ with coefficients ai which
are polynomials in some variables .xi / (in our case the entries of a matrix). Then,
when writing P.X/ D Q

.X � �i /
˛i , with �1 < �2 < � � � < �k , the multiplicities

˛i may only change on some algebraic surface in the set of coefficients .xi /. Those
algebraic surfaces having Lebesgue measure 0, and our operators L being local,
we may as well (up to some localization procedure and outside a set of Lebesgue
measure 0) consider them as constants.

Proposition 8. Let L be a diffusion operator acting on a set of degree d monic
polynomials, with values in the set of degree d polynomials, and satisfying Eq. (13).
Then, every root of P has multiplicity ˛1 or ˛2, where ˛i , i D 1; 2 are the roots of
Eq. (14).

In particular, Eq. (13) may only hold for polynomials whenever Eq. (14) has at
least one integer solution.

In practise, Eq. (14) will have only one integer positive root, which will allow us
to identify the multiplicity without any ambiguity. Moreover, in this situation, we
may set P D Pa

1 , where P1 is a polynomial, and Lemma 2 applies within the set of
polynomials.

Proof. Let us consider �1 < �1 � � � < �k the different roots of P.X/, and set

P.X/ D
kY

1

.X � �i/
˛i ;

where ˛i � 1. Then
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� .logP.X/; logP.Y // D
X

ij

˛i˛j

.X � �i /.Y � �j /
� .�i ; �j /:

On the other hand, we know from Lemma 2 that

� .logP.X/; logP.Y // D 


Y �X
�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
;

which translates into

� .logP.X/; logP.Y // D 


Y � X

X

i

˛i

X � �i
� ˛i

Y � �i
:

Identifying both expressions leads to

� .�i ; �j / D 

ıij

˛i
:

Also, on the one hand,

L.logP/ D
X

i

˛i

X � �i
L�i �

X

i

˛i

.X � �i /2 � .�i ; �i /;

and on the other, from (13)

L.logP/ D LP

P
� � .logP; logP/

D .˛ C 
/@2X logP C .˛ C ˇ/.@X logP/2

D �.˛ C 
/
X

i

˛i

.X � �i /2 C .ˇ C ˛/.
X

i

˛i

X � �i /
2:

Identifying the terms in .X � �i /�2 leads to

˛2i .ˇ C ˛/ � .˛ C 
/˛i C 
 D 0:

In particular, applying Lemma 2 in the case of Hermitian matrices leads, with
˛ D �2; ˇ D 3=2 and 
 D 2 to ˛i D 2, and then, setting P D P2

1 , to (12) for
LE;C.P1/ and �E;C.logP1.X/; logP1.Y //. This in turns shows that every root of P
has multiplicity 2, and therefore that, up to some sign, P may be written P2

1 , where
P1 is a polynomial for which (12) holds. As a consequence, the image measure for
the roots of P1 has density discr.P1/ with respect to d�0.

Remark 7. It is worth to observe that if P is a monic polynomial whose coefficients
are polynomials in some variables .x1; � � � ; xn/, and if P D Pa

1 , where P1 is a
polynomial, then P1 is monic and the coefficients of P1 are again polynomials in
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the variables .x1; � � � ; xn/. In the case of Hermitian matrices, this shows in particular

that the determinant of a matrix of the form

�
M A

�A M
�

, where M is symmetric and

A is antisymmetric may be written asQ2, whereQ is a polynomial in the entries of

M and A (indeed, it is nothing else up to a sign than the Pfaffian of

�
A M

�M A

�

, but

it is worth deriving it by pure probabilistic arguments).

7.2 Quaternionic Matrices

Here, we are givenM;A1;A2; A3 whereM is symmetric and Ai are antisymmetric.
The associated real symmetric matrix is then

M D

0

B
B
@

M A1 A2 A3

�A1 M A3 �A2
�A2 �A3 M A1

�A3 A2 �A1 M

1

C
C
A

The eigenspaces are four-dimensional and the determinant of such a matrix may be
written Q4, whereQ is a polynomial in the entries of the various matrices.

A real 4n � 4n matrix M having this structure will be called a H -symmetric
matrix. It is quite immediate that if M is H -symmetric, such is M k for any k 2 N,
and also such is M�1 on the set where M is invertible.

On the entries of Mij and Akij, we shall impose the metric coming from the
euclidean metric on M . This gives

8
ˆ̂
<

ˆ̂
:

�E;H.Mij;Mkl/ D 1
2
.ıijıkl C ıikıjl/

�E;H.A
p
ij ; A

q
kl/ D ıpq

2
..ıijıkl � ıikıjl/

�E;H.Mij; A
p
kl/ D 0

:

We also impose

LE;HMij D LE;HA
p
ij D 0:

Setting U.X/ D .M �X Id/�1, P.X/ D det.M �X Id/, one has

�E;H

�
P.X/; P.Y /

� D 4

Y �X
�
P 0.X/P.Y / � P 0.Y /P.X/

�
;

LE;H.P /

P
D �E;H.P; P /

P 2
C trace.U.X/2/ � 1

2
.traceU.X//2:
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And in the end

LE;HP D 9

2

P 02

P
� 5P 00:

Looking for which a, one has P D Pa
1 , Eq. (14) on a leads to a2 � 2a � 8 D 0,

for which the unique positive solution is a D 4, leading to

LE;HP1 D �2P 00
1 ; �E;H.logP1.X/; logP1.Y // D 1

Y �X
�P 0

1.X/

P1.X/
� P 0

1.Y /

P1.Y /

�
;

and Proposition 8 shows that all the roots of P have multiplicity 4, and that P1 is
indeed a polynomial.

In the end, one sees that the reversible measure for the image operator has density
is discr.P /2 with respect to the Riemann measure, or in other terms discr.P /3=2 with
respect to the measure da0 � � � dan�1. Back to the Weyl chamber f�1 < � � � < �ng, the
invariant measure has density

Q
i<j .�i ��i /4 with respect to the Lebesgue measure.

8 Symmetric Matrices on General Clifford Algebras

In this section, we extend the previous computations made for real complex and
quaternionic matrices to more general sets of symmetric matrices. Indeed, the
special structure of the real forms of the symmetric matrices described in the
complex and quaternionic cases do only depend on the algebra structure of the
complex and quaternionic fields, and not really on the field property. However, the
associativity of the algebra plays a fundamental role in the computations, and things
would be completely different for non associative algebras (such as the octonion
algebra).

There are many natural algebras with dimension 2p. Among them, let us mention
exterior algebras, Cayley-Dickson algebras and Clifford algebras. Both Cayley-
Dikson and Clifford are extensions of the real, complex and quaternionic cases,
but in different ways. Cayley-Dikson algebras are non associative when p � 3,
and do not seem to play a fundamental role beyond the important case of octonions
(p D 3), whereas Clifford algebras and exterior algebras are central in many places
in geometry and topology.

Since 2p is the cardinal of P.f1; � � � ; pg/, it is natural to look for a basis !A for
such algebras, where A � E , and jEj D p. If we denote by A	B the symmetric
difference A [ B n .A \ B/, in those three cases one has !A!B D .AjB/!A	B ,
where .AjB/ takes values in f�1; 0; 1g.

We define general Clifford algebras are the ones where the algebra is associative
and .AjB/ 2 f�1; 1g. We shall impose !; to be the unitary element of the algebra.



26 D. Bakry and M. Zani

The associativity imposes that, for any triple .A;B; C / of elements of P.E/, one
has

.Aj;/ D .;jA/ D 1; .AjB	C/.BjC/ D .AjB/.A	BjC/:

It is worth to reduce to the case E D f1; � � � ; pg (that is to decide that E is
an ordered set), such that up to a change of sign in !A, one may always suppose
that !A D !i1 � � �!ik when A D .i1; � � � ; ik/. Therefore, one sees that all the
multiplication rules are just given by ei ej D ˙ej ei and e2i D ˙ei . In which case,
we are reduced to .i jj / D 1 if i < j and .AjB/ D Q

i2A;j2B.i jj /, from which we
get

.A	BjC/ D .AjC/.BjC/; .AjB	C/ D .AjB/.AjC/:

The general Clifford algebra is then just determined by the choice of the various
signs in .i jj /.j ji/ for i < j and .i ji/. But many such different choices may give
rise to isomorphic algebra: for example, given any Clifford algebra and any choice
.A1; � � � ; Ap/ which generates P.E/ by symmetric difference would produce a
Clifford algebra isomorphic to the starting one with signs .Ai jAj / instead of .i jj /
(think for example of Ai D f1; � � � ; ig).

The Clifford algebra Cl.E/ is then fPA�E xA!A; xA 2 Rg that we endow with
the standard Euclidean metric in R

2p (that is .!A;A 2 P.E// form an orthonormal
basis).

We now consider on R
n ˝ Cl.E/ matrices

P
AM

A!A, where MA are n � n

matrices, acting on R
n ˝ Cl.E/ by

.
X

A

MA!A/.
X

B

XB!B/D
X

A;B

MAXB.AjB/!A	B D
X

A;B

.A	BjB/MA	BXB!A;

and we end up with bloc matrices .MA;B
ij /, where MA;B D .A	BjB/MA	B .

Indeed, what we did is to associate to a matrix M with coefficient in the algebra
Cl.E/ a matrix �.M/ with real coefficients, in a linear injective way. It turns
out that, thanks to the associativity of the algebra Cl.E/, this is an algebra
homomorphism, that is �.MN/ D �.M/�.N /.

Endowing R
n ˝ Cl.E/ with the associated Euclidean metric, we may therefore

look at those matrices �.M/ which are symmetric. One sees that the requirement
is that .MA/t D .AjA/MA, and then the associated bloc matrix is M D
..A	BjB/MA	B/. We shall call those symmetric matrices Cl.E/-symmetric
matrices.

We now chose the Euclidean metric on those Cl.E/-symmetric matrices, and
look at the associated Laplace operator. One then sets

�E;Cl.M
A
ij ;M

B
kl / D 1

2
ıA;B.ıikıjl C .AjA/ıilıjk/;L.MA

ij / D 0: (15)
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In terms of the associated stochastic processes, these formulae just say that the
various entries of the matrices are independent Brownian motions, subject to the
restrictions that the matrices must satisfy the symmetry relations which are imposed
by the algebra structure of Cl.E/.

The aim is now to compute when possible the image of this Laplace operator
on the spectrum of M . We shall see that it strongly depends on the sign structure
of the algebra Cl.E/. In the next section, we shall reduce our analysis to standard
Clifford algebras, that is when .i ji/ D .i jj /.j ji/ D �1, for any .i; j / 2 E2. But
is worth to describe first the computations in the general case. Indeed, as mentioned
before, since many different sign structures lead to isomorphic algebras, the various
quantities which will appear in the computations will to be invariant under those
isomorphisms, and it is worth to identify them.

The first task is to observe that, if M is Cl.E/-symmetric, so is M k for any k.
This is a direct consequence of the algebra homomorphism, since if M D �.M/,
then M k D �.Mk/. Therefore, on the set where det.M / ¤ 0, the inverse M�1 is
also Cl.E/-symmetric, and the same is true for U.X/ D .M � X Id/�1, when X
is not in the spectrum of M . Indeed, for kM k close to 0, .Id � M /�1 D P

k M
k ,

and consequently, forX ¤ 0 and M small enough, then U.X/ is Cl.E/-symmetric.
Since the property of being Cl.E/-symmetric is linear in the coefficients of M , and
since the coefficients of U.X/ are rational functions of the coefficients of M , the
Cl.E/-symmetry of U.X/ may be extended from small values of M to any M
which is Cl.E/-symmetric.

Once this is observed, and still denoting U.X/ D .M � X Id/�1, it may be
written as a block matrix ..A	BjB/U.X/A	Bij /, where U.X/A D U.X/A;; is such
that .U.X/A/t D .AjA/U.X/. Then, the method used for real symmetric matrices
may be extended to Cl.E/-symmetric matrices and we get

Proposition 9. Let P.X/ D det.M � X Id/ and U.X/ D .M � X Id/�1. Then

�E;Cl.P.X/; P.Y // D 2p

Y �X .P
0.X/P.Y /� P 0.Y /P.X//;

and

LE;Cl.P /

P
D �E;Cl.logP /

�1
2

� X

A�E

.AjA/
�

trace
�
U.X/2

� � 2p�1
X

C�E

.C jC/H.C/�traceU.X/C
�2
;

where

H.C/ D
X

A�E
.AjC/.C jA/:

Moreover,
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trace.U.X/2/ D P 02

P 2
� P 00

P
:

Proof. Let us start with the formula for � . If U.X/ D .U.X/A;B , where
U.X/A;B D .A	BjB/U.X/A	B , using the change of variable formula and Eq. (1),
one has

�E;Cl.logP.X/; logP.Y // D
X

A;B;C;D;i;j;k;l

U.X/B;Aji U.Y /D;Clk �E;Cl.M
A;B
ij ;M C;D

kl /:

Now, since M A;B D .A	BjB/MA	B and M C;D D .C	DjD/MC	D, and
from (15), one gets

�E;Cl.M
A;B
ij ;M C;D

kl / D I
fA	B	C	DD;g

.A	BjB	D/1
2
.ıikıjl C .A	BjA	B/ıilıjk/:

On the other hand

traceU.X/U.Y /D X

A;B;i;j

U.X/
A;B
i;j U.Y /

B;A
ji D X

A;B

.A	BjA	B/traceU.X/A	BU.Y /A	B:

From this, we get

�E.logP.X/; logP.Y // D
X

A	B	C	DD;
.A	BjA	B/trace

�
U.X/A	BU.Y /A	B

�

D 2p
X

A;B

.A	BjA	B/trace
�
U.X/A	BU.Y /A	B

�

D 2ptraceU.X/U.Y /:

If we denote by �i the eigenvalues of M , then

traceU.X/U.Y / D
X

i

1

.�i � X/.�i � Y /
D 1

Y � X

X

i

1

�i � Y � 1

�i �X

D 1

Y �X
�P 0.X/
P.X/

� P 0.Y /
P.Y /

�
:

For the formula for LE;Cl.P /, we start with

LE;Cl.logP / D X

A;B;i;j

U.X/
B;A
ji LMA;B

ij � X

A;B;C;D;i;j;k;l

U.X/
B;C
jk U.X/

D;A
l;i � .M

A;B
ij ;M C;D

kl /

D �1
2

X

A;B;C;D

E.A;B;C;D/U.X/B	Cjk U.X/A	Dli .ıikıjl C .A	BjA	B/ıilıjk/;

where
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E.A;B;C;D/ D �A	B	C	DD;.B	C jC/.A	DjA/.A	BjB/.C	DjD/
D �A	B	C	DD;.A	C jA	C/

We obtain in the end

LE;Cl.logP / D �1
2

"
X

A;B;C

.A	C jA	C/.B	C jB	C/trace
�
U.X/B	C

�2

C.B	C jA	C/.A	BjB	C/�traceU.X/B	C
�2
#

D �1
2

�X

A

.AjA/
�

trace
�
U.X/2

� � 2p�1
X

C

.C jC/H.C/�traceU.X/C
�2
:

If we are interested in images of the Gaussian measure, we consider the Ornstein-
Uhlenbeck operator

LOU;Cl.P / D LE;Cl.P / �D.P/

where

D D 1

2
�E;Cl.kM k2; �/

and

kM k2 D
X

i;j;A;B

.M
A;B
i;j /

2 :

If one is interested in images of the uniform measure on the unit sphere, we consider
instead the spherical operator

LS;ClS.P / D LE;Cl.P / �D2.P / � .N � 2/D.P /; (16)

where N is the dimension on the Euclidean space in which the sphere is embedded,
that is

N D n2p.n2p C 1/

2
:

Observing their action on the characteristic polynomial, we have

D.logP / D 1

2

X

i;j;k;l;A;B;C;D

2M
A;B
i;j @

M
C;D
k;l
.logP /�E.M

A;B
ij ;M C;D

kl /

D 1

2

X

i;j;A	B	C	DD;
M
A;B
i;j .A	BjB	D/.U.X/D;Cj;i C .A	BjA	B/U.X/D;Ci;j /
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D
X

A	B	C	DD;
.A	BjA	B/trace

�
MA	BU.X/A	B

� D 2p trace
�
MU.X/

�

D 2p
�
n2p �X P

0
P

�

Hence

D.P/ D 2p.n2pP � XP0/ (17)

The carré du champ operator is the same for the Ornstein-Uhlenbeck operator than
for the Laplace operator, whereas for the sphere, the carré du champ operator acting
on the characteristic polynomial P becomes

�S;Cl.P.X/; P.Y // D 2p

Y �X
�
P 0.X/P.Y /� P 0.Y /P.X/

�

�22p�n2pP.X/ � XP0.X/
��
n2pP.Y / � XP0.Y /

�

From Proposition 9, one sees that the final expression depends on some specific
factors for Cl.E/: the value of

P
A.AjA/, and, for various C � E , the value of

H.C/ D P
A.AjC/.C jA/. We shall therefore restrict our attention to standard

Clifford algebras, for which those computations may be explicitly done through
some basic combinatorial arguments.

9 Symmetric Matrices on Standard Clifford Algebras

Recall that for standard Clifford algebras, and with E D f1; � � � ; ng, one has, for
any pair .i; j / 2 E2, .i jj / D �i<j � �j�i .

From .AjB/ D Q
i2A;j2B.i jj /, this immediately leads to

.AjA/ D .�1/jAj.jAjC1/=2; .AjB/.BjA/ D .�1/jAjjBjCjA\Bj: (18)

Notice also that for any i 2 E D f1; � � � ; pg, .i jE/ D .�1/i .
Proposition 10. In a standard Clifford algebra with jEj D p, one has

X

A

.AjA/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

22m.�1/m if p D 4m

0 if p D 4mC 1

22mC1.�1/mC1 if p D 4mC 2

22mC2.�1/mC1 if p D 4mC 3
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Proof. From (18), one has

X

A

.AjA/ D
X

k

 
p

k

!

.�1/k.kC1/=2 D
X

k

 
p

2k

!

.�1/k �
X

k

 
p

2k C 1

!

.�1/k:

Comparing with

.1C i/p D
X

k

 
2k

p

!

.�1/k C i
X

k

 
2k C 1

p

!

.�1/k;

we see that
P

k

�
2k
p

�
.�1/k is the real part of .1 C i/p , while

P
k

�
2kC1
p

�
.�1/k is its

imaginary part. But 1 C i D p
2ei�=4, and therefore, for p D 4m, .1 C i/p D

22m.�1/m, for p D 4m C 1, .1 C i/p D .1 C i/22m.�1/m, for p D 4m C 2,
.1 C i/p D i22mC1.�1/m and for p D 4m C 3, .1 C i/p D .1 C i/22m.�1/m. It
remains to collect the various cases.

The following will also be useful

Proposition 11. For a standard Clifford algebra Cl.E/, and for B;C � E , let

(
Se.B; C / D P

A�C;jAjD2k.AjB/.BjA/; Se.B;;/ D 1

So.B; C / D P
A�C;jAjD2kC1.AjB/.BjA/; So.B;;/ D 0

Then,

(
Se.B; C / D Se.B \ C;C /;
So.B; C / D .�1/jB\Cc jSo.B \ C;C /:

and, for B � C

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

Se.B; C / D So.B;C / D 0; B ¤ ;; B ¤ C

Se.;; C / D So.;; C / D 2jC j�1; C ¤ ;
Se.;;;/ D 1; So.;;;/ D 0;

Se.B;B/ D �So.B;B/ D 2jBj�1 jBj D 2k;B ¤ ;
Se.B;B/ D So.B;B/ D 2jBj�1 jBj D 2k C 1

Proof. For the first point,we decompose B D .B \ C/ [ .B \ Cc/ D B1 [ B2.
Then, if B1 \ B2 D ;

.AjB1 [ B2/.B1 [ B2jA/ D .AjB1/.B1jA/:.AjB2/.B2jA/;

and, if A\ B2 D ;, then .AjB2/.B2jA/ D .�1/jAjjB2 j.
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It remains to study Se.B; C / and So.B;C / for B � C . Replacing E by C ,
we are therefore bound to study the same quantity for a standard Clifford algebra
L .C /.

Let us then fix C et B � C . For C ¤ ; Se.;; C / D So.;; C / D 2jC j�1.
When B ¤ ; chose some point i 2 B , and cut P.C / into fA � C; x 2 Ag and
fA � C n fxgg.

Summing on P.A/, we get

(
Se.B; C / D Se.B n x; C n x/C .�1/jBjSo.B n x; C n x/;
So.B/ D .�1/jBj�1Se.B n x; C n x/ � So.B n x; C n x/:

In another way, setting U.B;C / D
�
Se.B; C /

So.B; C /

�

, Uk if jBj D k, we get

U.B;C / D MkU
�
B n fxg; C n fxg�;

where k D .�1/jBj and

M1 D
�
1 1

�1 �1
�

M�1 D
�
1 �1
1 �1

�

: (19)

Setting S D
�
0 1

1 0

�

, which satisfies S2 D 1, one has

M1M�1 D 2.1� S/;M�1M1 D 2.1C S/;M1M�1M1 D 2M1;

M�1M1M�1 D 2M�1; .1C S/M�1 D 2M�1

from which

.M1M�1/k D 22k�1.1 � S/; .M�1M1/
k D 22k�1.1C S/;

and also

M2�1 D 0;M2
1 D 0;M1M�1M1 D 2M1;M�1M1M�1 D 2M�1:

In the end, we get

(
jBj D 2k; U.B;C / D 22k�1.1C S/U.;; C n B/
jBj D 2k C 1; U.B;C / D 22kC1.1 � S/M�1U.;; C n B/ :

Il remains to collect all the possible cases.
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From Proposition 11, in a standard Clifford algebra Cl.E/ with jEj D n, one
sees that for any B � E , with B ¤ ;; E, one has

X

A

.AjB/.BjA/ D Se.B;E/C So.B;E/ D 0:

Moreover, Se.E;E/ C So.E;E/ D 0 when jEj D 2k. Therefore, H.C/ D 0

unless C D ; or C D E , andH.E/ D 0 when jEj D 2k. This leads to

Proposition 12. When p D jEj is even, if M is Cl.E/-symmetric, with P.X/ D
det.M � XI/ and U.X/ D .M �X Id/�1,

�E;Cl
�
P.X/; P.Y /

� D 2p

Y �X
�
P 0.X/P.Y / � P 0.Y /P.X/

�
;

and
(

LE;Cl.P /

P
D �E;Cl.logP/� 22m.�1/mC1.traceU.X/2/� 1

2
.traceU.X//2 when jEj D 4mC 2

LE;Cl.P /

P
D �E;Cl.logP/� 22m�1.�1/m.traceU.X/2/� 1

2
.traceU.X//2 when jEj D 4m

In particular,

LE;Cl.P /

P
D
8
<

:

.2p C 22m.� 1/m/�P 02

P 2
� P 00

P

�
� 1

2
P 02

P 2
when pD jEj D 4mC 2

.2p C 22m�1.�1/mC1/
�
P 02

P 2
� P 00

P

�
� 1

2
P 02

P 2
when p D jEj D 4m

As a consequence, one has P.X/ D Q.X/a, where Q is a polynomial, where

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

a D 24q; when p D 8q

a D 24qC2; when p D 8q C 2

a D 24qC3; when p D 8q C 4

a D 24qC3; when p D 8q C 6

Moreover, in those case, for OL D a
2p

LE;Cl, Q satisfies

O� .Q.X/;Q.Y // D 1

Y �X
�
Q0.X/Q.Y / �Q0.Y /Q.X/

�

and

( OL.Q/ D � 1
2
Q00; p D 8q; p D 8q C 6 (real case)

OL.Q/ D �2Q00; p D 8q C 2; p D 8q C 4 (quaternionic case)
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Proof. Using Proposition 9, the only term in the formula for LE;Cl.P / which is
not immediate to identify is traceU.X/;. But traceU.X/ D 2ptraceU.X/;, since
only U.X/; appear in the diagonal blocs of U.X/. Then, everything boils down
to the computation of

P
A.AjA/ given in Proposition 10. Then, the identification

of a comes from Eq. (14) in Lemma 2. It is worth to observe that those equations
have indeed integer roots in every case. Moreover, Proposition 8 allows to assert
that effectively, P D Qa, and the rest is given again in Lemma 2.

It remains to deal with the case where p D jEj is odd. Then, the term
.traceU.X/E/2 appears in the formula for LE;Cl.P /. But, when .EjE/ D �1, then
U.X/E is antisymmetric and traceU.X/E D 0. Since .EjE/ D .�1/jEj.jEjC1/, this
happens as soon as jEj D 4mC 1.

This leads to

Proposition 13. Suppose that p D jEj D 4mC 1. Then,

�E;Cl.P.X/; P.Y // D 2p

Y � X

�
P 0.X/P.Y /� P 0.Y /P.X/

�
;

LE;Cl.P /

P
D 2p.

P 02

P 2
� P 00

P
/� 1

2

P 02

P 2
:

Setting a D 22mC1 and P D Qa, and for OL D a2�pL, one has OL.Q/ D �Q00.
Then,Q is a polynomial and the model corresponds to the complex case.

It remains to deal with the case p D 4mC3, which turns out to be more delicate.
Indeed, in those cases, Cl.E/ is no longer simple, and splits into the direct sum of
two ideals. From Propositions 9 and 11, we see that the set E plays a special role in
the analysis of LE;Cl.P.X//.

We already saw that in this situation, .EjE/ D 1, and for any A � E ,
.AjE/.EjA/ D .�1/jAj.jEjC1/ D 1, so that !E commutes to every element in the
algebra and satisfies !2E D 1. Then, one may decompose the algebra Cl.E/ into the
sum of the two ideals Cl.E/C D fx 2 Cl.E/; !Ex D xg and Cl.E/� D fx 2
Cl.E/; !Ex D �xg. Symmetric matrices will also split into the direct sum of two
symmetric matrices, and therefore the characteristic polynomial will be the product
of characteristic polynomials.

We are therefore bound to consider separately the action on Cl.E/C and Cl.E/�.
We concentrate on the first one. First observe that in this situation, for any A � E ,
.AjE/ D .EjA/ D .A	EjE/ D .EjA	E/. From this, it is easy to see that

Cl.E/C D fX D
X

A

�A.!A C .AjE/!A	E/g:

The action of the matrix
P

AM
A!A on Cl.E/C is the same as

P
A.AjE/MA	E

!A	E , and therefore one may concentrate on matrices
P

AM
A!A such that

MA	E D .AjE/MA. This condition is clearly compatible with .MA/t D
.AjA/MA. We therefore chose
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�E;ClM
A
ij ;M

B
kl / D 1

2
.�A	BD; C .AjE/�A	BDE/.ıikıjl C .AjA/ıilıjk/:

We may start the computation again, but it is simpler to observe that, setting
�A D 1

2

�
!AC.AjE/!A	E

�
, one gets �A�B D .AjB/�A	B , and therefore the family

.�A/ generates a standard Clifford algebra with size jEj � 1. Then, we boil down
to a standard Clifford algebra with size 4m C 2, and we see that we obtain the
quaternionic case when p D 8q C 3 and the real one when p D 8q C 7.

If one wants to describe the law of P.X/ in the case p D 4mC 3, then we write
P D P1P2, where P1 and P2 behave independently as the previous ones.

We have then described all the laws of the spectra for symmetric matrices on
standard Clifford algebras.

We thus recover Bott periodicity: in the following table, we give the algebra
structure of Cl.p/, together with the dimension d of the irreducible spaces in the
third column, the multiplicity ˛ of the roots of the characteristic polynomial in the
fourth, computed from the generator. In the last column, we indicate the parameter
ˇ for which the law of the simple roots .�1 < � � � < �d/ have density

Q j�i � �j jˇ
with respect to the Lebesgue measure d�1 � � �d�d

jEj Structure d ˛ ˇ

Cl(1) C 2 2 2

Cl(2) H 4 4 4

Cl(3) H ˚ H 4 4 4

Cl(4) HŒ2� 8 8 4

Cl(5) CŒ4� 8 8 2

Cl(6) RŒ8� 8 8 1

Cl(7) RŒ8�˚ RŒ8� 8 8 1

Cl(8) RŒ16� 16 16 1

then we tensorize by RŒ16� through Bott’s periodicity: Cl.pC 8/ D RŒ16�˝ Cl.p/.
(Here,KŒn� denotes the irreducible algebra of square n�nmatrices with coefficients
in the field K .) We may then observe that the multiplicity of the roots corresponds
as expected to the dimension of the irreducible spaces, and that the parameter ˇ
corresponds to the structure algebra: when the irreducible components are KŒn�,
then ˇ D 1; 2; 4 corresponding to the case where K D R;C or H.

Remark 8. Considering the O-U operator LOU;Cl described in the previous section,
one gets here

LOU.P / D �CP 00 C .C � 1

2
/
P 02

P
� n22pP C 2pXP0 (20)

and analogously to Lemma 2, we get
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a
LOU;Cl.P1/

P1
D LOU;Cl.P /

P
C 1 � a

a
�E;Cl.logP; logP/

which leads to

LOU;Cl.P1/ D �.C C2p .1 � a/
a

/P 00

1 C..C C2p .1 � a/

a
� 1

2
a/
P 02
1

P1
�n2

2p

a
P1C2pXP0

1

(21)

where P D Pa
1 and the constant C differs according to n (see Propositions 12, 13).

Then, choosing a as before, we can boil down to the following relation:

LOU;Cl.P1/ D �a
2
P 00
1 � n2

2p

a
P1 C 2pXP0

1 (22)
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Gaussian Free Field on Hyperbolic Lattices

Itai Benjamini

Abstract It is shown that the maximum of the height of the Gaussian free field in
a ball of a two dimensional hyperbolic lattice, grows linearly with the radius, while
only as a square root of the radius on higher dimensional hyperbolic lattices.

1 Introduction

Localization and delocalization of random interfaces is a well studied subject,
with very deep results and still many fundamental open problems. These are
usually modeled by random functions, via Gibbs measures with respect to a given
Hamiltonian, over Euclidean lattices (see e.g. [9]). The Gaussian free field (GFF)
over Euclidean lattices is a canonical random surface and is most amenable to
analysis. The typical height difference of the GFF on a nd lattice tori is order
log1=2 n, in two dimensions, and is tight in higher dimensions.

In the this note we consider the GFF on lattices in real hyperbolic spaces, a
transition for the order of the maximal height difference occurs between two and
higher dimensions, as in Euclidean lattices, but the magnitude is different due
both to hyperbolicity and to the exponential volume growth. For background, on
hyperbolic geometry see [3] and on the Gaussian free field see [6]. We will assume
knowledge of basic electric networks theory see [4, 7].

The Gaussian free field on a graph can be defined as follows.
Let G D .V;E/ be an oriented connected graph. For each directed edge e D

.u; v/ let �e D �uv be a standard normal random variable. We assume that �uv D ��vu

and otherwise �e are independent. Condition on the event

f
X

e2

�e D 0I for all closed paths 
g: (1)
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Pick a base vertex v0 and define the height function h W V ! R by the following
equation

h.v0/ D 0I for v 2 V h.v/ D
X


v

�e;

where 
v is any path from v0 to v in the graph. Note that the height is well defined.

Definition. Two metric spaces .X; dX/ and .Y; dY / are said to be quasi isometric
if there exists some constant K > 0 and a map � W X ! Y such that for any two
points x; x0 in X

K�1dX.x; x0/ �K � dY .�.x/; �.x
0// � KdX.x; x

0/CK

and

8y 2 Y; 9x 2 X; dY .y; �.x// � K:

We are interested in the behavior of the maximum of the height function on
graphs which are quasi isometric to real hyperbolic spaces, denoted H

d , e.g.
co-compact hyperbolic lattices. We may assume that there are no double edges in
all the graphs considered.

Theorem 1. Let G be a graph quasi isometric to H
d ; d > 1,

let Mn D max
d.x;v0/�n

fjh.x/jg then

(i) EM2
n D �.n2/ for d D 2.

(ii) EM2
n D �.n/ for d > 2.

The theorem is related to the free uniform spanning tree transition from a tree on
lattices in H

2 to a forest on lattices in H
d ; d > 2, see [2].

Following the same lines of proof the upper bound attained for dimension 3 and
above can also be proven for the following graphs. Lattices in H

2 � R and also any
uniformly transient exponential growing graph, admitting no non constant harmonic
Dirichlet functions.

It is of interest to understand random graph homomorphisms or random Lipschitz
functions (see [8]) on hyperbolic lattices. For lattices in dimensions at least three,
the GFF maxima is achieved due to a large difference along a single edge. Maybe
random graph homomorphisms has only polylogarithmic maximum, since the
nearest neighbourhood difference is 1?

2 Proof

First note the following two useful theorems.

Theorem 2 ([6], p. 137). For the GFF model described above, the height difference
h.u/�h.v/ D Q�uv between two vertices in G has a distributionN.0; �2uv/, where the
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variance �2uv equals the effective resistance between u and v if G is regarded as an
electrical network with unit resistance along the edges.

Moreover, Q�uv can be expressed as a linear combination �e�e , where �e is a
component along e of a unit electric current flowing from u to v through the network.

We also need the following theorem due to Fernique [5]

Theorem 3. LetX; Y be two n-dimensional Gaussian random vectors such that for
every i; j

EjYi � Yj j2 � EjXi �Xj j2;
then for every non-negative convex increasing function f on RC,

Ef .max
i;j

jYi � Yj j/ � Ef .max
i;j

jXi �Xj j/:

View the graph as an electrical network by letting each edge be a 1Ohm
conductors. Denote by R.u; v/ the electric resistance between v and u.

Lemma 1. Let G be a graph quasi isometric to hyperbolic space of dimension d .
Then there exist c;R > 0 such that for all u; v 2 V
(i) R.u; v/ � c d.u; v/ for d D 2.

(ii) R.u; v/ � R for d > 2.

Proof of Lemma. (i) Model the hyperbolic plane with a metric on the half plane,

ds2 D dx2 C dy2

y2
; y > 0 :

A quasi isometric approximation of this model is shown in Fig. 1. Consider the
graph which is dual to the combinatorial approximation and denote it by G. This

Fig. 1 Combinatorial approximation of the half-space model of the hyperbolic plane and its dual
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graph is quasi isometric to H
2. Any other graph quasi isometric to H

2 will be also
quasi isometric to G and so if resistance grows proportionally to distance in G then
it will be true for any other such graph. Here we use the Dirichlet principle (see e.g.
[4]) for the effective conductance

C.u; v/ D 1

R.u; v/ D min.
X

e2E
C.e/.dF.e//2/;

where the minimum is over functions, F , such that F.u/ D 0; F.v/ D 1. Note
that in our case C.e/ � 1 (no double edges) and for an edge e D fu; vg, dF.e/ D
F.u/� F.v/.

Choosing F , Dirichlet principle gives an upper bound for the effective conduc-
tance and, consequently, a lower bound for resistance

R.u; v/ � .
X

e2E
.dF.e//2/�1:

Since G is quasi isometric to the hyperbolic plane which is 2-transitive (for any
two pairs of point with same distance, there is an isometry mapping one pair onto
the other). Effective resistance is a function of the distance, up to a multiplicative
constant. Note that quasi isometry changes effective resistance by a multiplicative
constant, see e.g. [4]. Thus, it is enough to bound the resistance between the top
vertex in the graph in Fig. 2 (we omit horizontal edges from the schematic figure).
Denoted u and another vertex distance n away on the left boundary of the triangle,
denoted v. To do that, pick F as follows.

Set F.u/ D 0; F.v/ D 1, interpolate linearly along the left boundary; on the
right boundary of the triangle let F equal 0. Next, let us denote by G.k/ the
components shown in Fig. 2. Each of G.k/ is a binary tree with added edges. For
every k D 0; : : : ; n letF equals k=n on the right boundary ofG.k/. Now interpolate
linearly on each horizontal line.

Fig. 2 The function F
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Let us compute
P
.dF.e//2 for horizontal edges in G.k/, this quantity does not

depend on k because only the differences matter. On the line with the distance i
from the root of G.k/ we have 2i edges, including the edge connecting G.k/ and
G.k C 1/. The difference of F on the ends of this line is 1=n, therefore, for each
edge on the line the difference between adjacent vertices is 1=.n2i /. The summation
on all horizontal lines gives for any G.k/:

X

e2G.k/;e is a horizontal edge

.df .e//2 D
1X

iD1

2i

.n2i /2
D 1

n2
;

It is not hard to check that the sum restricted to the vertical edges is of the same
order (actually the half of the first sum).

Summing all the G.k/’s, the whole sum will be of order n�1.
Finally we get that C.u; v/ < c=n, hence R.u; v/ > n=c; c > 0. So (i) follows.

(ii) In [2] it is shown that for hyperbolic lattices of dimension 3 and higher,
wired limit current and free limit current (see [2] for definitions) coincide.
Wired resistance to infinity in transient transitive graphs is finite and uniformly
bounded (since every hyperbolic lattice is transient) and this implies that the
free or effective resistance is uniformly bounded. ut

Proof of Theorem 1. (i) Assume G is quasi isometric to H
2. G contains as a

subgraph a stretched binary tree. That is, a binary tree, denoted by T where each
edge is replaced by a path withK edges, for someK < 1. For some ˛ < 1 we
have,

dG.u; v/ � dT .u; v/ � ˛dG.u; v/ for all u; v 2 T; (2)

This can be shown using the combinatorial model above, but also follows from a
general result in [1].

By Theorem 2 we know that the variance of h.u/ � h.v/ equals the effective
resistance between these two points, (R.u; v/). On the other hand by Lemma 1, the
resistances on the graph G are proportional to the distance.

So from Eq. (2) we can conclude that

Ejh.u/� h.v/j2 � cdG.u; v/ � c˛dT .u; v/:

Obviously

E.max
u;v2G jh.u/� h.v/j/2 � E.max

u;v2T jh.u/� h.v/j/2:

Thus, it is enough to look at the field on the tree T . Place on the edges of a binary
tree T2 independent Gaussian random variables with zero expectation and with the
variance cK˛.
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Denote by h the height function on T as well. By Fernique (Theorem 3),

E.max
u;v2T jh.u/� h.v/j/2 � E.max

u;v2T2
jh.u/� h.v/j/2:

The following is well known. Recursively, it is easy to see that the maximum of
the Gaussian free field on the binary tree of depth n is of order n,

Let M 0
n D max

d.u;0/�nfh.u/I u 2 T2g.

ThenM 0
n � M 0

n�1Cmax.� 0; � 00/ where � 0; � 00 are the variables assigned to the edges
emanating from the vertex at which Mn�1 is attained. So
M 0
n � Pn

1 �i ; �i D max.� 0
i ; �

00
i /.

Recall that

max
x

jf .x/j � max
x;y

jf .x/ � f .y/j � max
x
2jf .x/j;

provided that there exists x0 such that f .x0/ D 0. The upper bound follows from
the fact that removing edges can only increase the effective resistance.

This ends the proof of the first part.

(ii) From the lemma, the resistance between any two points is uniformly bounded
in this case.

The upper bound follows by comparing to an exponential number of independent
standard normals, via Fernique’s theorem.

For the lower bound, define a set W � V such that for every w1;w2 2 W

we have R.w1;w2/ > 2c for some c > 0, in the case of a transitive graph we
take W D V . By Fernique, the distribution of the maximum of the height function
dominates the distribution of the maximum in the process f�w;w 2 W g, where
all random variables are independent Gaussians with all with variance c. Since the
graph is quasi isometric to a transitive graph, the number of vertices in W grows
exponentially; the estimate follows. ut

In relation to the fact that the electric resistance in planar hyperbolic lattices
is proportional to the distance, we ask: Assume G is a vertex transitive graph,
admitting non constant harmonic Dirichlet function. Is the resistance proportional
to distance along a sequence of pairs of vertices with distance growing to infinity?
See [7] for background.

Acknowledgements Thanks to Omer Angel, Alessandro Carderi and Yuval Peres. Sergey Khristo
helped with the writing and figures.
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Point-to-Point Distance in First Passage
Percolation on (Tree)�Z

Itai Benjamini and Pascal Maillard

Abstract We consider first passage percolation (FPP) on Td �G, where Td is the
d -regular tree (d � 3) and G is a graph containing an infinite ray 0; 1; 2; : : :. It
is shown that for a fixed vertex v in the tree, the fluctuation of the distance in the
FPP metric between the points .v; 0/ and .v; n/ is of the order of at most logn. We
conjecture that the real fluctuations are of order 1 and explain why.

Denote by Td the d -regular tree (d � 3/, rooted at a vertex �. We consider FPP
on Td � G, where G is a graph containing an infinite ray 0; 1; 2; : : : (for example,
G D N, Z or an infinite tree). That is, attach to each edge e a random variable Xe ,
all Xe being independent copies of a random variableX � 0 with EŒX� < 1. For a
path 
 , denote by j
 j the number of edges on the path and define j
 jX D P

e2
 Xe .
Then define the random (pseudo-)metric

dX.v;w/ D min
n
j
 jX

ˇ
ˇ
ˇ 
 is a path from v to w

o
:

Write D.n/ D dX..�; 0/; .�; n//, i.e. the minimal distance between two points
which are n steps apart in the direction of the infinite ray.

We say hypothesis (H) is verified if

1. EŒX1C"� < 1 for some " > 0; and
2. there exist constants C;K < 1, such that EŒj
mj� < CnK for all n, where 
m is

the path that minimizesD.n/ in Td �G.

Note that 2 is verified for example if X � c for some c > 0, with K D 1, because
then EŒj
mj� � c�1EŒj
mjX� � c�1EŒX�n.

Theorem. Suppose hypothesis (H) is verified. Then, .D.n/ � EŒD.n/�/= log n is
tight in n.
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We conjecture thatD.n/�EŒD.n/� is tight (without rescaling). The rationale for
this conjecture is that this is indeed the case for the graph Td�1;d �G, where Td�1;d
is the rooted d -ary tree, i.e. the tree where the root has degree d � 1 and every other
vertex has degree d . This is the statement of the following proposition, which even
does not need hypothesis (H):

Proposition. In Td�1;d �G, the sequenceD.n/ � EŒD.n/� is tight in n.

First passage percolation is a model of random perturbation of a given geometry.
It has mostly been studied in Euclidean space and lattices (see e.g. Howard [8]
for a review, although a bit outdated), and on trees, where it is also called the
branching random walk [5, 10, 11]. Other setups considered include the complete
graph [3, 9], the Erdös-Rényi graph [4] and a class of graphs admitting a certain
recursive structure [1] (see more on that below). However, to our knowledge, the
present note is the first example where the fluctuation of the point-to-point distance
in FPP on the Cayley graph of a finitely generated group (i.e. T4�Z) is shown to be
small.

The graph Td � G can also be seen as an example of a “large” graph. The
results of this note therefore add support to the common belief that the point-to-point
distance of FPP in high-dimensional Euclidean space has small fluctuations.

We remark that the method leading to the proof of the above theorem in general
is not applicable for the study of the distance in the FPP metric between the points
.�; 0/ and .vn; 0/, for vn a vertex at distance n from the root in Td . For example,
in the case G D Z, the minimizing path looks like a path in Z2 with additional
“handles”, and it is not clear for us whether the fluctuations are actually small (recall
that in FPP on Z2, the fluctuations are believed to be of order n1=3 (see e.g. [6]) and
up to now have only been proven to be of order at most

p
n= logn [2]). We therefore

ask the following question:

Question. In Td � Z or Td�1;d � Z, how big are the fluctuations of dX..�; 0/,
.vn; 0//, where vn is a vertex at distance n from the root in the tree?

We finally remark that even in Td � Td , the current proof does not extend to
the study to the FPP distance between two arbitrary vertices at distance n apart in
Td � Td , although here we also conjecture that the fluctuations are of order 1.

Proofs

The proof of the proposition uses a variant of an argument by Dekking and
Host [7] on point-to-sphere distance in FPP on a tree, which was generalized by
Benjamini and Zeitouni [1] to a large class of graphs, including Td�1;d �G. For the
point-to-sphere distance, the argument applies to every rooted graph G containing
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two vertex-disjoint rooted subgraphs G1 and G2 which are isomorphic to G.1 This
argument can be adapted for the point-to-point distance in Td�1;d � G in the
direction of the infinite ray in G. It fails for Td � G, but not completely: It can
be applied to an auxiliary graph, which “almost” looks like Td � G. This however
induces an error, which is the reason of the logn term appearing in the statement of
the theorem.

Before turning to the details, we introduce some more notation: Let T be a rooted
tree and v;w two vertices in T. We say that w is a descendant of v; if v is contained
in the direct path from the root to w. We then denote by Tjv the subtree of T rooted
at v, i.e. the subgraph of T spanned by the descendants of v, rooted at v.

Proof of the Proposition. Write for short T D Td�1;d . Let 1,2 denote two distinct
children of the root in T. For i D 1; 2, let Di.n/ be the distance between .i; 0/ and
.i; n/ in the FPP metric restricted to the subgraph Tji �G. ThenDi.n/ has the same
law as D.n/. Furthermore, D1.n/ and D2.n/ are independent. Now, for i D 1; 2

and j 2 N, let ei;j be the edge between .�; j / and .i; j /. Then

D.n/ � min.D1.n/;D2.n//CXe1;0 CXe1;n CXe2;0 CXe2;n :

Taking expectations and using the formula min.a; b/ D .a C b/=2� ja � bj=2, we
get

EŒD.n/� � 1
2
.EŒD1.n/�C EŒD2.n/�/C 4EŒX� � 1

2
EjD1.n/ �D2.n/j:

Since EŒD1.n/� D EŒD2.n/� D EŒD.n/�, this gives

EjD1.n/ �D2.n/j � 8EŒX�:

Tightness follows from the inequality EjZj � EjZ � Z0j, which holds for any
random variable Z with EZ D 0 and with Z0 being an independent copy of Z. ut
Proof of the Theorem. In the graph Td � G the situation is trickier: This graph
does not contain two vertex-disjoint copies of itself. We will resolve this issue by
considering an auxiliary graph first.

Write T D Td . Fix an integer k. Let 0, 1 and 2 be three distinct children of the
root in T. For i D 0; 1; 2, let vi be a vertex at distance k from the root, which is a
descendant of i . The auxiliary graph we consider is T0 � G, where T

0 D Tn.Tjv0 /,
and the graph is rooted at .�; 0/. In contrast to T � G, this graph does contain two
vertex disjoint copies of itself, namely the graphs Tj1 � G and Tj2 � G, rooted at
.v1; 0/ and .v2; 0/, respectively.

1This is Property (1) in [1]. Properties (2) and (3) are actually not needed, since on page 3 of
that article, one can bound the right-hand side of the last inequality by E min.Zn; Z0

n/CKC and
continue from that point on.
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Now let D0 D D0.n/ be the FPP distance between .�; 0/ and .�; n/ in T
0 � G

and D0
i D D0

i .n/ the FPP distance between .vi ; 0/ and .vi ; n/ in Tji � G, for i D
1; 2. Then note that D0, D0

1 and D0
2 have the same distribution and D0

1 and D0
2 are

independent. Let 
i;j for i D 1; 2 and j 2 N be the (unique) path from .�; j / to
.vi ; j / in T � fj g and let j
i;j jX be its length in the FPP metric. We then have

D0 � min.D0
1;D

0
2/C j
1;0jX C j
1;njX C j
2;0jX C j
2;njX;

and taking expectations we get as in the previous proof

8EŒX�k � EŒjD0
1 �D0

2j� � EŒjD0 � EŒD0�j�:

We now get back to the graph T � G. Let C denote some positive constant, whose
value may change from line to line. We claim that we can choose k D k.n/ D
O.logn/, such that

EŒjD � EŒD�j� � EŒjD0 � EŒD0�j�C C: (1)

Together with the previous inequality, this will imply the statement of the theorem.
To prove it, let 
 be the path from .�; 0/ to .�; n/ of minimal length in the FPP
metric on T�G and let V
 be the projection on T of the set of vertices traversed by

 . Define the event B D fv0 2 V
g. Conditioned on jV
 j, we have by symmetry,

P
�
B
ˇ
ˇ
ˇ jV
 j

�
� jV
 j
d � .d � 1/k�1 ;

since there are d � .d � 1/k�1 vertices at distance k from the root in Tr . Now, since
jV
 j � j
 j, we have by hypothesis (H), with k D d˛ logd�1 ne, ˛ > 0,

P.B/ � EjV
 j=.d � .d � 1/k�1/ � CnK=.d � 1/k � CnK�˛: (2)

Note that D � D0 by definition, with D D D0 on the complement of B . Together
with the triangle inequality, this gives

EjD�EŒD�j� � EŒjD0�EŒD0�j�CEŒj.D0�D/�EŒD0�D�j� � C lognC2EŒD01B�:

If 
0 is the direct path from .�; 0/ to .�; n/ along the ray 0; 1; 2; : : :, we have D0 �
j
0jX . Hypothesis (H) and Minkowski’s inequality then give EŒ.D0/1C"� � Cn1C".
Together with Hölder’s inequality and (2), this yields the existence of ˛ > 0, such
that EŒD01B� < C for all n. This proves (1) and therefore finishes the proof of the
theorem. ut

Acknowledgements We thank an anonymous referee who has spotted some typographical errors.
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A Lower Bound for the Bergman Kernel
and the Bourgain-Milman Inequality

Zbigniew Błocki

Abstract For pseudoconvex domains in C
n we prove a sharp lower bound for the

Bergman kernel in terms of volume of sublevel sets of the pluricomplex Green
function. For n D 1 it gives in particular another proof of the Suita conjecture.
If � is convex then by Lempert’s theory the estimate takes the form K�.z/ �
1=�2n.I�.z//, where I�.z/ is the Kobayashi indicatrix at z. One can use this to
simplify Nazarov’s proof of the Bourgain-Milman inequality from convex analysis.
Possible further applications of Lempert’s theory in this area are also discussed.

1 Introduction

For a domain� in C
n and w 2 � we are interested in the Bergman kernel

K�.w/ D supfjf .w/j2 W f 2 O.�/;
ˆ

�

jf j2d�2n � 1g

and in the pluricomplex Green function with pole at w

G�;w D supfu 2 PSH�.�/ W lim sup
z!w

.u.z/� log jz � wj/ < 1g

(Here PSH� denotes the class of negative plurisubharmonic functions.)
Our main result is the following bound:

Theorem 1. Assume that � is pseudoconvex. Then for w 2 � and a � 0 we have

K�.w/ � 1

e2na�2n.fG�;w < �ag/ : (1)

This estimate seems to be very accurate. It is certainly optimal in the sense that
if � is a ball centered at w then we get equality in (1) for all a. It is useful and

Z. Błocki (�)
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not trivial already for n D 1. Note that in this case if we let a tend to 1 then we
immediately obtain

K� � 1

�
c2�; (2)

where

c�.z/ D exp.lim
�!z

.G�;z.�/� log j� � zj//

is the logarithmic capacity of Cn� with respect to z. This is precisely the inequality
conjectured by Suita [19] and recently proved in [5].

A lower bound of the Bergman kernel in terms of the volume of the sublevel sets
of the Green function follows from an estimate of Herbort (Proposition 3.6 in [10]
with f � 1). The main point in (1) is that the constant is optimal. Our proof of (1)
uses the L2-estimate for the N@-equation of Donnelly-Fefferman [8] from which we
can first get a weaker version:

K�.w/ � c.n; a/

�2n.fG�;w < �ag/ ;

where

c.n; a/ D
�

Ei .na/

Ei .na/C 2

�2

and

Ei .b/ D
ˆ 1

b

ds

ses
(3)

(for b > 0). Then we employ the tensor power trick and use the fact that

lim
m!1 c.nm; a/1=m D e�2na:

This way we get an optimal constant in (1).
Our new proof of the one-dimensional estimate (2) makes crucial use of many

complex variables. The use of the tensor power trick here replaces a special ODE in
[5]. It should be noted though that this works only for the Suita conjecture, we do
not get the Ohsawa-Takegoshi extension theorem from Theorem 1.

It is probably interesting to investigate the limit of the right-hand side of (1) as
a tends to 1 also in higher dimensions. We suspect that it always exists, at least
for sufficiently regular domains. This way we would get a certain counterpart of
logarithmic capacity in higher dimensions. Using Lempert’s theory [15,16] one can
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check what happens with this limit for smooth and strongly convex domains, see
Proposition 3 below. This way we get the following bound:

Theorem 2. Let � be a convex domain in C
n. Then for w 2 �

K�.w/ � 1

�2n.I�.w//
;

where

I�.w/ D f' 0.0/ W ' 2 O.�;�/; '.0/ D wg

is the Kobayashi indicatrix (here � denotes the unit disc).

One can use Theorem 2 to simplify Nazarov’s approach [17] to the
Bourgain-Milman inequality [6]. For a convex symmetric body (i.e. open, bounded)
L in R

n its dual is given by

L0 WD fy 2 R
n W x � y � 1 for all x 2 Lg:

The product �n.L/�n.L0/ is called a Mahler volume ofL. It is independent of linear
transformations and on an inner product in R

n, and thus depends only on the finite
dimensional Banach space structure whose unit ball is L. The Blaschke-Santaló
inequality says that the Mahler volume is maximized by balls.

On the other hand, the still open Mahler conjecture states that it is minimized by
cubes. A partial result in this direction is the Bourgain-Milman inequality [6] which
says that there exists c > 0 such that

�n.L/�n.L
0/ � cn

4n

nŠ
: (4)

The Mahler conjecture is equivalent to saying that we can take c D 1 in (4).
Currently, the best known constant in (4) is �=4 and is due to Kuperberg [14].

Nazarov [17] recently proposed a complex-analytic approach to (4). He consid-
ered tube domain TL WD LC iRn and proved the following bounds for the Bergman
kernel at the origin:

KTL.0/ � nŠ

�n
�n.L

0/
�n.L/

(5)

KTL.0/ �
��

4

�2n 1

.�n.L//2
: (6)

This gave (4) with c D .�=4/3. The upper bound (5) was obtained relatively easily
from Rothaus’ formula for the Bergman kernel in tube domains (see [18] and [12]):
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KTL.0/ D 1

.2�/n

ˆ

Rn

d�n

JL
;

where

JL.y/ D
ˆ

L

e�2x�yd�n.x/:

For the lower bound (6) Nazarov used the Hörmander estimate [11] for N@.
We will show that (6) follows easily from Theorem 2. It should be noted however

that although we are using the Donnelly-Fefferman estimate here, it can be deduced
quite easily from the Hörmander estimate (see [1]), so the latter still plays a crucial
role.

We conjecture that in fact the following lower bound holds:

KTL.0/ �
��

4

�n 1

.�n.L//2
: (7)

Since we have equality for cubes, this would be optimal. In Sect. 4 we discuss
possible applications of Lempert’s theory to this problem.

The author learned about the Nazarov paper [17] from professor Vitali Milman
during his visit to Tel Aviv in December 2011. He is also grateful to Semyon Alesker
for his invitation and hospitality.

2 Proofs of Theorems 1 and 2

Proof of Theorem 1. By approximation we may assume that � is bounded and
hyperconvex, so that by [7] the Green functionG WD G�;w is continuous on N�nfwg.
We may also assume that a > 0, as for a D 0 it is enough to take f � 1 in the
definition of the Bergman kernel. Set

' WD 2nG;  WD � log.�G/
and

˛ WD N@.� ıG/ D .�0 ıG/ N@G;
where � will be determined later. We have

i N̨ ^ ˛ � .�0 ıG/2i@G ^ N@G � G2.�0 ıG/2i@N@ :

By the Donnelly-Fefferman estimate [8] (see also [1, 2], and [3] for a formulation
with non-smooth weights which is needed here) we can find u 2 L2loc.�/ solving
N@u D ˛ and such that
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ˆ

�

juj2d�2n �
ˆ

�

juj2e�'d�2n � C

ˆ

�

G2.�0 ıG/2e�2nGd�2n;

where C is an absolute constant (in fact, the optimal one is C D 4, see [2, 4]). We
now set

�.t/ WD
(
0 t � �a;
´ �t
a

e�ns

s
ds; t < �a;

so that
ˆ

�

juj2d�2n � C �2n.fG < �ag/:

The function f WD � ıG � u is holomorphic and since � ıG is continuous, we see
that u must be continuous. We also have u.w/ D 0 because e�' is not integrable near
w (by monotonicity of the Green function we haveG�.z;w/ � log jz � wj � log r if
B.z; r/ � �). Therefore

f .w/ D �.�1/ D Ei .na/

with Ei given by (3). We also have (with jj � jj denoting the L2-norm in �)

jjf jj � jj� ıGjj C jjujj � .�.�1/C p
C/
p
�2n.fG < �ag/:

Therefore

K�.w/ � jf .w/j2
jjf jj2 � c.n; a/

�2n.fG < �ag/ ;

where

c.n; a/ D Ei .na/2

.Ei .na/C p
C/2

:

We are now going to use the tensor power trick. For a big natural number m
consider the domain e� D �m in C

nm andew D .w; : : : ;w/ 2 e�. Then

Ke�.ew/ D .K�.w//
m

and by [13] (see also [9])

Ge�;ew.z
1; : : : ; zm/ D max

jD1;:::;m G.z
j /;
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therefore

�2nm.fGe�;ew < �ag/ D .�2n.fG < �ag/m:

It follows from the previous part that

.K�.w//
m � c.nm; a/

.�2n.fG < �ag//m

and it is enough to use the fact that

lim
m!1 c.nm; a/1=m D e�2na:

ut
Theorem 2 follows immediately from Theorem 1 and the following result by

approximation.

Proposition 3. Assume that � is a bounded, smooth, strongly convex domain in
C
n. Then for any w 2 �

lim
a!1 e2na�2n.fG�;w < �ag/ D �2n.I�.w//: (8)

Proof. Denote I WD I�.w/, G WD G�;w, we may assume that w D 0. By the results
of Lempert [15] there exists a diffeomorphismˆ W NI ! N� such that for v 2 @I the
mapping� 3 � 7! ˆ.�v/ is a geodesic in �, that is

G.ˆ.�v// D log j�j: (9)

(ˆ can be treated as an exponential map for the Kobayashi distance.) We also have

ˆ.�v/ D �v CO.j�j2/:

By (9)

fG < �ag D ˆ.e�aint I /

and therefore

�2n.fG < �ag/ D
ˆ

e�aI

Jacˆd�2n:

Since ˆ0.0/ is the identity, we obtain (8). ut
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3 Applications to the Bourgain-Milman Inequality

Assume that L is a convex symmetric body in R
n. In view of Theorem 2, in order

to prove Nazarov’s lower bound (6) it is enough to show the estimate

�2n.ITL.0// �
�
4

�

�2n
.�n.L//

2: (10)

But this follows immediately from the following:

Proposition 4. ITL.0/ � 4

�
. NLC i NL/.

Proof. We will use an idea of Nazarov [17] here. Let ˆ be a conformal mapping
from the strip fjRe �j < 1g to � with ˆ.0/ D 0, so that jˆ0.0/j D �=4. For u 2 L0
we can then define F 2 O.TL;�/ by F.z/ D ˆ.z � u/. For ' 2 O.�; TL/ with
'.0/ D 0 by the Schwarz lemma we have j.F ı '/0.0/j � 1. Therefore j' 0.0/ � uj �
4=� and �

4
ITL.0/ � LC, where

LC D fz 2 C
n W jz � uj � 1 for all u 2 L0g � NLC i NL:

ut
It will be convenient to use the notation JL WD �

4
ITL.0/, so that by the proof of

Proposition 4

JL � LC � NLC i NL: (11)

We thus have �2n.JL/ � .�n.L//
2 but we conjecture that

�2n.JL/ �
��

4

�n
.�n.L//

2: (12)

Note that JŒ�1;1�n D �n, so that we have equality for cubes. The inequality (12)
would give the optimal lower bound for the Bergman kernel in tube domains (7).

We first give an example that (11) cannot give us (12):

Example. Let L D fx21 C x22 < 1g be the unit disc in R
2. One can then show that

LC D fjzj2 � 1C .x1y2 � x2y1/
2g and

�4.LC/ D 2�2

3
>
�4

16
D
��

4

�2
.�2.L//

2:
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4 Lempert’s Theory in Tube Domains

Our goal is to approach (12) using Lempert’s theory. First assume that� is bounded,
smooth, strongly convex domain in C

n. Then for any z;w 2 �, z ¤ w, there exists
unique extremal disc ' 2 O.�;�/ \ C1. N�; N�/ such that '.0/ D w, '.�/ D z for
some � with 0 < � < 1, and

G�;w.'.�// D log j�j; � 2 �:

Lempert [15] showed in particular the following characterization of extremal discs:
a disc ' 2 O.�;�/ \ C. N�; N�/ is extremal if and only if '.@�/ � @� and there
exists h 2 O.�;Cn/\C. N�;Cn/ such that the vector eith.eit/ is outer normal to @�
at '.eit/ for every t 2 R.

Lempert [15] also proved that for every extremal disc ' in � there exists a
left-inverse F 2 O.�;�/ (that is F.'.�// D � for � 2 �). It solves the equation

.z � '.F.z/// � h.F.z// D 0; z 2 �: (13)

Now assume that L is a smooth, strongly convex body in R
n. Although TL is

neither bounded nor strongly convex, we may nevertheless try to apply Lempert’s
condition for extremal discs (the details have been worked out by Zając [20]). First
note that h 2 O.�;Cn/ \ C. N�;Cn/ in our case must be such that eith.eit/ is an
outer normal to TL and therefore its imaginary part vanishes:

Im .e�ith.eit// D 0; t 2 R: (14)

It follows that h must be of a very special form:

Lemma 5 ([20]). If h 2 O.�/\C. N�/ satisfies (14) then h.�/ D aC b�C Na�2 for
some a 2 C and b 2 R.

Proof. Set a WD h.0/. Then for � 2 @�

0 D Im

�
h.�/

�

�

D Im

�
h.�/ � a

�
� Na�

�

and therefore

h.�/ � a
�

� Na� D b 2 R; � 2 N�:

ut
We thus see that in our case h must be of the form

h.�/ D w C �b C �2 Nw; � 2 N�;
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for some w 2 C
n and b 2 R

n. Take the extremal disc ' for TL associated with h.
Since eith.eit/ is an outer normal to TL at '.eit/ and its imaginary part vanishes, it
follows that its real part is an outer normal to L at Re .'.eit//. Therefore

Re '.eit/ D ��1
�
b C Re .e�itw/

jb C Re .e�itw/j
�

; (15)

where

� W @L ! S
n�1

is the Gauss map.
For ' 2 O.�/ \ C. N�/ we can recover the values of ' in � from the values of

Re ' on @� using the Schwarz formula:

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � Re '.eit/ dt C i Im'.0/; � 2 �:

Therefore extremal discs satisfying (15) are given by

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � �
�1
�
b C Re .e�itw/

jb C Re .e�itw/j
�

dt C i Im'.0/; � 2 �:

We now assume that L is in addition symmetric and then consider the case when
b D 0 and Im'.0/ D 0:

'.�/ D 1

2�

ˆ 2�

0

eit C �

eit � � �
�1
�

Re .e�itw/

jRe .e�itw/j
�

dt: (16)

Since L is symmetric the function B.t/ under the integral in (16) satisfies B.t C
�/ D �B.t/. We thus have '.0/ D 0 and one can show (see [20] for details) that
all geodesics of TL passing through the origin are given by (16). They are bounded
and smooth up to the boundary if Re w and Im w are linearly independent in R

n. If
Re w and Im w are linearly dependent (and w ¤ 0) then (16) gives special extremal
discs of the form

'.�/ D ˆ�1.�/ x; x 2 @L;

where ˆ is as in the proof Proposition 4. Left-inverses to these ' are then given by
F.z/ D ˆ.z � u/ for unique u 2 @L0 with x � u D 1.

For geodesics (16) we have

' 0.0/ D 1

�

ˆ 2�

0

eit ��1
�

Re .eitw/

jRe .eitw/j
�

dt: (17)
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These vectors parametrize the boundary of the Kobayashi indicatrix IL.0/. If F 2
O.�;�/ is the left-inverse of ' satisfying (13) we get, since h0.0/ D 0,

F 0.0/ D w

' 0.0/ � w
:

Therefore

JL D fz 2 C
n W jz � wj � j‰.w/j for all w 2 .Cn/�g; (18)

where

‰.w/ D 1

4

ˆ 2�

0

eitw � ��1
�

Re .eitw/

jRe .eitw/j
�

dt:

Both (17) and (18) give a description of the set JL. It would be interesting to try
to use it to prove (12). We can at least show this for a ball:

Example. Let B D fjxj < 1g be the unit ball in R
n. For w 2 .Cn/� we have

Im‰.w/ D 1

4

ˆ 2�

0

Im .eitw/ � Re .eitw/

jRe .eitw/j dt D �1
4

ˆ 2�

0

d

dt
jRe .eitw/jdt D 0

and thus

‰.w/ D 1

4

ˆ 2�

0

jRe .eitw/jdt � �p
8

jwj:

By (18) JB is contained in a ball with radius �=
p
8 in C

n. Therefore

�2n.JB/ � �3n

8nnŠ
:

On the other hand,

�n.B/ D �n=2

�.n
2

C 1/
;

and we see that (12) holds for B if n � 3. To show this also for n D 2 we have to
use in addition Proposition 4: JB � . NB C i NB/ \ .r0 NB/, where r0 D �=

p
8. With

�0 D
q
r20 � 1 we will get

�4.JB/ � �2�20C�2
ˆ 1

�0

�.r20��2/d� D �6

256
C�4

16
��

2

2
<
�4

16
D
��

4

�2
.�2.B//

2:
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An Improved Estimate in the Restricted
Isometry Problem

Jean Bourgain

Abstract It is shown that for the n � n-Hadamard matrix (or, more generally, a
bounded orthogonal matrix) the RIP-property for r-space vectors holds, with row
restriction to a set S of size

jS j < C."/.logn/2.log r/r:

This bound represents a slight improvement over (Rudelson and Vershynin, Com-
mun Pure Appl Math 61:1025–1045, 2008) in that the power of the logarithm is
decreased by one unit.

1 Preliminaries

Let H be an .n � n/-matrix such that

kHxk2 D p
nkxk2 and jHij j D 1

(the argument below can be generalized).
Denote

Er D fx 2 R
nI kxk2 D 1 and j supp xj � rg:

Recall that S � f1; : : : ; ng satisfies the "-RIP property with respect to the set Er ,
provided

.1 � "/
p
mkxk2 �

�X

i2S
jhHx; ei ij2

� 1
2 � .1C "/

p
mkxk2 for all x 2 Er

wherem D jS j.
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In what follows, we recall a classical entropy result. It is then used to carry out a
construction (Lemma 2 below) providing an approximation crucial to our argument
(completed in the next section).

Lemma 1 (Entropy Bound).

logN.HEr ; tB1/ � c
.logn/2

t2
r .t � p

r/: (1)

Proof. Since Er � p
rB1;n, it follows

N.HEr ; tB1/ � N.HB1;n;
tp
r
B1/

and using Lemma 3.9 from [1] (Maurey’s lemma)

logN.HEr ; tB1/ � c.log n/2
r

t2

ut
Lemma 2. Fix " > 0, log 1

"
� O.log r/.

To each x 2 HEr , we may associate a vector Qx of the form

Qx D
X

j

X

i2Ij
.1C "/j ei (2)

where the sum is over all j 2 Z satisfying

"

4
< .1C "/j <

p
r (3)

such that

• The sets Ij are disjoint
•

j Qxi j D �
1CO."/

�jxi j CO."/ for 1 � i � n (4)

• Ij belongs to a class Fj of subsets of f1; : : : ; ng satisfying

log jFj j . "�3.logn/2.1C "/�2j r: (5)

Proof. According to Lemma 1, there is a finite set Dj � H�r such that

max
x2HEr

min
x02Dj

kx � x0k1 <
"

10
.1C "/j (6)

log jDj j < c.log n/2.1C "/�2j "�2r: (7)
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Let x 2 H�r . We construct Qx. Take j satisfying (3) and x.j / 2 Dj such that
kx � x.j /k1 < "

10
.1C "/j . Denote

I 0
j D fi I .1C "/j�2 < jx.j /i j < .1C "/jC1g
Ij D I 0

jn
[

j 0>j

I 0
j 0

and let

Qx D
X

j

.1C "/j
X

i2Ij
ei :

Assume i 2 Ij . Then i 2 I 0
j and

1

2
" <.1C "/j�2 < jx.j /i j < .1C "/jC1

jx.j /i � xi j < ".1C "/j

implying

jxi j D .1C "/j
�
1CO."/

�
for i 2

[
Ij :

If i 62 S Ij ; Qxi D 0 and jxi j < ". Indeed, if

"

2
< .1C "/j�1 < jxi j < .1C "/j

we get

"

4
< .1C "/j�2 < jx.j /i j < .1C "/jC1

and therefore i 2 I 0
j � S

j 0�j Ij 0 .
This proves (4).
Next, the number of sets I 0

j introduced above is at most jDj j and hence the
number of sets Ij at most

Y

j 0�j
jDj 0j:

Therefore (5) follows from (7). ut
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We also need the following probabilistic statement

Lemma 3. Let G`; ` D 1; 2; : : : be collections of subsets of f1; : : : ; ng and r` > 0

such that
P
2�r` � 1

2
. Then there is a subset S � f1; : : : ; ng, jS j D m D ın,

satisfying for each `

max
I2G`

ˇ
ˇjS \ I j � ıjI jˇˇ � C fı 12 .r` C log jG`j/ 12 .max

I2G`
jI j/ 12 C r` C log jG`jg (8)

Proof. Denote ES the expectation over all S � f1; : : : ; ng of size jS j D m D ın.
Standard probabilistic considerations show that for any x 2 R

n; q � 1,

n
ES

hˇ
ˇ
ˇ
X

i2S
xi � ı

nX

iD1
xi

ˇ
ˇ
ˇ
qo 1q � C

p
q
n
ES

h�X

i2S
x2i
�q=2

io 1
q
: (9)

Take q D q` D r` C log jG`j and apply (9) with x D 1I ; I 2 G`. It follows that

˚
ES

�
max
I2G`

ˇ
ˇjI \ S j � ıjI jˇˇq	
 1q

� c
p
q
˚

max
I2G`

ES

�jI \ S j q2 	
 1q

� c
p
ı
p
q
�

max
I2G`

jI j� 12 C c
p
q
˚
ES

�
max
I2G`

ˇ
ˇjI \ S j � ıjI jˇˇq	
 1

2q

from which one deduces that

˚
ES

�
max
I2G`

ˇ
ˇjI \ S j � ıjI jˇˇq`	
 1

q` � c
p
ı
p
q`
�

max
I2G`

jI j� 12 C cq`: (10)

Next, from (10) and Tche’bychev’s inequality, we obtain

ES

�
max
I2G`

ˇ
ˇjI \ S j � ıjI jˇˇ > 2c

p
ı
p
q`
�

max
I2G`

jI j� 12 C 2cq`
	

(11)

< 2�q` < 2�r`: (12)

Finally, since
P

` 2
�r` < 1

2
, (11) implies existence of a set S � f1; : : : ; ng,

jS j D ın for which (8) holds for each `. ut

2 Proof of the Result

Let S � f1; : : : ; ng, be the subset corresponding to the row restriction jS j D m D
ın. It follows from (4) that
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�
1 �O."/�

X

i2S
Qx2i �O."2m/ <

X

i2S
x2i <

�
1CO."/

�X

i2S
Qx2i CO."2m/:

Hence, it will suffice to ensure that

X

i2S
Qx2i D �

1CO."/
�
m: (13)

Note that

nX

iD1
Qx2i D �

1CO."/
�
n D

X

j

.1C "/2j jIj j (14)

and by (2)

X

i2S
Qx2i D

X

j

.1C "/2j jIj \ S j:

From (14),

jIj j � .1C "/�2j n � nj (15)

let

Fj;s D fI 2 Fj I jI j 	 2�snj g for 0 � s < s� (16)

with s� taken as to satisfy

2s� 	 log r

"2
: (17)

Let then

Fj;s
�

D fI 2 Fj ; jI j < 2�s
�nj g: (18)

Apply Lemma 3 to the system fFj;sg, taking

rj;s D rj D "�3.logn/2.1C "/�2j r � log jFj j � log jFj;sj (19)

recalling (5). Hence, by (3)

X

j;s�s
�

2�rj;s � s�
X

j

1

rj
< log

� log r

"2

� "2

.logn/2
<
1

2
: (20)
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Therefore, by Lemma 3 and (16), (18), we may introduce a set S; jS j D m such that
for all j and s and I 2 Fj;s

jI \ S j D ıjI j CO
�
r
1
2

j .ı2
�snj /

1
2 C rj

�
: (21)

Thus the second term in (21) is bounded by

.logn/"�3=2.1C "/�j
p
r

q
ı:jIj j C .logn/"�3=2.1C "/�2j

p
r
p
2�s

�

p
m

C .logn/2"�3.1C "/�2j r: (22)

Recalling (14), we obtain

X

i2S
Qx2i D �

1CO."/
�
mC (23)

where by (2), (3), (17)

(23) ..logn/"�3=2pr
p
ı
hX

j

.1C "/j jIj j 12
i

C .logn/.log r/
1
2 "� 3

2
p
r
p
m

C .logn/2"�4r log r: (24)

By Cauchy-Schwarz, (3), (14), the first term in (24) is at most

.logn/"�2prpmplog r:

Hence

(23) . .logn/
p

log r "�2prpmC .logn/2.log r/"�4:r (25)

< O."m/

provided

m > C.logn/2.log r/"�6r: (26)
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On Eigenvalue Spacings for the 1-D Anderson
Model with Singular Site Distribution

Jean Bourgain

Abstract We study eigenvalue spacings and local eigenvalue statistics for 1D
lattice Schrödinger operators with Hölder regular potential, obtaining a version of
Minami’s inequality and Poisson statistics for the local eigenvalue spacings. The
main additional new input are regularity properties of the Furstenberg measures and
the density of states obtained in some of the author’s earlier work.

1 Introduction

This Note results from a few discussions with A. Klein (UCI, summer 011) on
Minami’s inequality and the results from [7] on Poisson local spacing behavior for
the eigenvalues of certain Anderson type models. Recall that the HamiltonianH on
the lattice Z

d has the form

H D �V C� (1)

with � the nearest neighbor Laplacian on Z
d and V D .vn/n2Zd IID variables with

a certain distribution. Given a box � � Z
d , H� denotes the restriction of H to �

with Dirichlet boundary conditions. Minami’s inequality, which is a refinement of
Wegner’s estimate, is a bound on the expectation that H� has two eigenvalues in a
given interval I � R. This quantity can be expressed as

E
�
TrXI .H�/

�
TrXI .H�/ � 1�	 (2)

where the expectation is taken over the randomness V . An elegant treatment may
be found in [6].

Assuming the site distribution has a bounded density, (2) satisfies the expected
bound

C j�j2jI j2: (3)
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More generally, considering a site distribution probability measure � which is
Hölder with exponent 0 < ˇ � 1, i.e.

�.I / � C jI jˇ for all intervals I � R (4)

it is shown in [6] that

(2) � C j�j2jI j2ˇ: (5)

For the sake of the exposition, we briefly recall the argument. Rewrite (2) as

EV

hX

j2�
hıj ;XI .H.V /

� /ıj i�TrXI .H.V /
� / � 1�

i
(6)

where .ıj / denote the unit vectors of Z
d . Introduce a second independent copy

W D .wn/ of the potential V . Fixing j 2 �, denote by .V ?
j ; �j / the potential with

assignments vn for n 6D j and �j for n D j . Assuming �j � vj , it follows from the
interlacing property for rank-one perturbations that

TrXI .H.V /
� / � TrXI

�
H
.V?

j ;�j /

�

�C 1 (7)

and hence

(6) � EV EW

hX

j2�
hıj ;XI .H.V /

� /ıj i TrXI .H.V?

j ;kvj k
1

Cwj /

� /
i
: (8)

Next, invoking the fundamental spectral averaging estimate (see [6, Appendix
A]), we have

Evj Œhıj ;XI .H
.V?

j ;vj /

� /ıj � � C jI jˇ (9)

so that

(8) � C jI jˇ
X

j2�
EV?

j
Ewj

�
TrXI

�
H
.V?

j ;kvj k
1

Cwj /

�

�	
: (10)

The terms in (10) may be bounded using a Wegner estimate. Applying again (9),
the j -term in (10) is majorized by C j�j jI jˇ, leading to the estimate C jI j2ˇj�j2
for (2). It turns out that at least in 1D, one can do better than reapplying the spectral
averaging estimate. Indeed, it was shown in [2] that in 1D, SO’s with Hölder regular
site distribution have a smooth density of states. This suggests in (5) a better jI j-
dependence, of the form jI j1Cˇ. Some additional work will be needed in order to
turn the result from [2] into the required finite scale estimate. We prove the following
(set � D 1 in (1)).
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Proposition 1. Let H be a 1D lattice random SO with Hölder site distribution
satisfying (4) for some ˇ > 0. DenoteHN D HŒ1;N �. Then

EŒI \ SpecHN 6D �� � Ce�cN C CNjI j: (11)

It follows that EŒTrXi .HN /� � Ce�cN C CN2jI j.
The above discussion then implies the following Minami-type estimate.

Corollary 2. Under the assumption from Proposition 1, we have

EŒTrXI .H�/.TrXI .H�/� 1/� � C j�j3jI j1Cˇ (12)

provided � � Z is an interval of size j�j > C1 log.2 C 1
jI j /, where C;C1 depend

on V .

Denote N the integrated density of states (IDS) of H and k.E/ D dN
dE

. Recall
that k is smooth for Hölder regular site distribution (cf. [2]).

Combined with Anderson localization, Proposition 1 and Corollary 2 permit to
derive forH as above.

Proposition 3. Assuming log 1
ı
< cN, we have for I D ŒE0 � ı; E0 C ı� that

EŒTrXI .HN /� D Nk.E0/jI j CO
�
Nı2 C ı log

�
N C 1

ı

��
(13)

and

Proposition 4.

EŒH� has at least two eigenvalues in I � � C j�j2jI j2CC j�j log2
�
j�jC 1

jI j
�
:jI j1Cˇ:

(14)

Following a well-known strategy, Anderson localization permits a decoupling for
the contribution of pairs of eigenvectors with center of localization that are at least
C log 1

jI j -apart. Invoking (11), this yields the first term in the r.h.s of (14). For the
remaining contribution, use Corollary 2.

With Propositions 3, 4 at hand and again exploiting Anderson localization,
the analysis from [7] becomes available and we obtain the following universality
statement for 1D random SO’s with Hölder regular site distribution.

Proposition 5. Let E0 2 R and I D ŒE0; E0 C L
N
� where we let first N ! 1 and

then L ! 1. The rescaled eigenvalues

fN.E �E0/XI .E/gE2 SpecHN

converge to a Poisson point process in the limit N ! 1.
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At the end of the paper, we will make some comments on eigenvalue spacings for
the Anderson-Bernoulli (A-B) model, where in (1) the vn are f0; 1g-valued. Further
results in line of the above for A-B models with certain special couplings � will
appear in [4].

2 Proof of Proposition 1

Set � D 1 in (1). We denote

Mn D Mn.E/ D
1Y

jDn

�
E � vj �1
1 0

�

(15)

the usual transfer operators. Thus the equationH� D E� is equivalent to

Mn

�
�1
�0

�

D
�
�nC1
�n

�

: (16)

Considering a finite scale Œ1; N �, let HŒ1;N � be the restriction ofH with Dirichlet
boundary conditions. Fix I D ŒE0� ı; E0Cı� and assumeHŒ1;N � has an eigenvalue
E 2 I with eigenvector � D .�j /1�j�N . Then

MN.E/

�
�1
0

�

D
�
0

�N

�

: (17)

Assume j�1j � j�N j (otherwise replaceMN byM�1
N which can be treated similarly).

It follows from (17) that

kMN.E/e1k � 1 (18)

with .e1; e2/ the R
2-unit vectors. On the other hand, from the large deviation

estimates for random matrix products (cf. [1]), we have that

log kMN.E0/e1k > cN (19)

with probability at least 1 � e�cN (in the sequel, c; C will denote various constants
that may depend on the potential).

Write

ˇ
ˇ log kMN.E/e1k� log kMN.E0/e1k

ˇ
ˇ �

ˆ ı

�ı

ˇ
ˇ
ˇ
d

dt
Œlog kMN.E0C t/e1k�

ˇ
ˇ
ˇdt: (20)
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The integrand in (20) is clearly bounded by

X

jD1;2

NX

nD1

jhM.vN ;:::;vnC1/

N�n .E0 C t/e1; ej ij:jhM.vn�1;:::;v1/
n�1 .E0 C t/e1; e1ij

kM.vN ;:::;v1/
N .E0 C t/e1k

(21)

� 2jE �E0j
NX

nD1

kM.vN ;:::;vnC1/

N�n .E0 C t/k
kM.vN ;:::;vnC1/

N�n .E0 C t/�nk
(22)

where

�n D M
.vn�1;:::;v1/
n�1 .E0 C t/e1

kM.vn�1;:::;v1/
n�1 .E0 C t/e1k

(23)

depends only on the variables v1; : : : ; vn�1.
At this point, we invoke some results from [2]. It follows from the discussion in

[2, Sect. 5] on SO’s with Hölder potential that for ` > C D C.V /, the inequality

Ev1;:::;v` ŒkM`.�/k < "kM`k� . " (24)

holds for any " > 0 and unit vector � 2 R
2, M` D M

.v1;:::;v`/
` .

A word of explanation. It is proved in [2] that if we take n large enough, the map
.v1; : : : ; vn/ 7! M

.vn;:::;vn/
n defines a bounded density on SL2.R/. Fix then some

n D O.1/ with the above property and write for ` > n,

kM`.�/k � jhMn.�/;M
�̀�nej ij .j D 1; 2/

noting that hereMn andM`�n are independent as functions of the potential. Choose
j such that kM �̀�nejk 	 kM �̀�nk D kM`�nk 	 kM`k and fix the vector M �̀�nej .
Since then .v1; : : : ; vn/ 7! Mn.�/ defines a bounded density, inequality (24) holds.

Since always kM`k < C` and kM`.�/k > C�`, it clearly follows from (24) that

EV

h kM.V /

` k
kM.V /

` .�/k
i

� C`: (25)

Therefore

EV Œ(22)� < CN2ı: (26)

Hence, we showed that, assuming (19), SpecH.V /
N \ I 6D � with probability at

most CNı. Therefore SpecH.V /
N \ I 6D � with probability at most CNı C Ce�cN ,

proving (11).
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3 Proof of Propositions 3 and 4

Assume log 1
jI j < cN and set M D C log

�
N C 1

jI j
�

for appropriate constants c; C .
From the theory of Anderson localization in 1D, the eigenvectors �˛ ofHN , j�˛j D 1

satisfy

j�˛.j /j < e�cjj�j˛ j for jj � j˛j > M

10
(27)

with probability at least 1 � e�cM , with j˛ the center of localization of �˛ .
The above statement is well-known and relies on the large deviation estimates for

the transfer matrix. Let us also point out however that the above (optimal) choice of
M is not really important in what follows and taking for M some power of the log
would do as well.

We may therefore introduce a collection of intervals .ƒs/1�s. N
M

of size M

covering Œ1; N �, such that for each ˛, there is some 1 � s . N
M

satisfying

j˛ 2 ƒs and k�˛ jŒ1;N �nƒsk < e�cM (28)

k.Hƒs � E˛/�˛;sk < e�cM (29)

with �˛;s D �˛jƒs . Therefore dist .E˛ , SpecHƒs / < e
�cM < ı.

Let us establish Proposition 3. Denoting ƒ1 and ƒs
�

the intervals appearing at
the boundary of Œ1; N �, one obtains by a well-known argument based on exponential
localization

EŒTrXI .HN /� D N:N .I /CO
�
e�cM CEŒTrX QI .Hƒ1/�CEŒTrX QI .Hƒs

�

/�
�

(30)

with QI D ŒE0�2ı;E0C2ı�. Invoking then Proposition 1 and Corollary 2, we obtain

EŒTrXI .Hƒs /� < ce�cM C CMı C CM3ı1Cˇ < CMı (31)

by the choice of M and assuming .logN/2ıˇ < 1, as we may.
Substituting (31) in (30) gives then

N

ˆ

I

k.E/dE CO.Mı/

D Nk.E0/jI j CO
�
Nı2 C ı log

�
N C 1

ı

��

since k is Lipschitz. This proves (13).
Next, we prove Proposition 4.
Assume E˛;E˛0 2 I; ˛ 6D ˛0. We distinguish two cases.
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Case 1. jj˛ � j˛0 j > CM.
Here C is taken large enough as to ensure that the corresponding boxes ƒs;ƒs0

introduced above are disjoint. Thus

SpecHƒs \ I 6D � (32)

SpecHƒs0
\ I 6D �: (33)

Since the events (32), (33) are independent, it follows from Proposition 1 that the
probability for the joint event is at most

Ce�cM C CM2ı2 < CM2ı2 (34)

by our choice of M . Summing over the pairs s; s0 . N
M

gives therefore the bound
CN2ı2 for the probability of a Case 1 event.

Case 2. jj˛ � j˛0 j � CM.
We obtain an interval ƒ as union of at most C consecutive ƒs-intervals such

that (28), (29) hold withƒs replaced byƒ for both .�˛; E˛/, .�˛0 ; E˛0/. This implies
that SpecHƒ \ QI contains at least two elements. By Corollary 2, the probability for
this is at most CM3ı1Cˇ. Hence, we obtain the bound CM2Nı1Cˇ for the Case 2
event.

The final estimate is therefore

e�cM C CN2ı2 C CM2Nı1Cˇ

and (14) follows from our choice of M .

4 Sketch of the Proof of Proposition 5

Next we briefly discuss local eigenvalue statistics, following [7].
The Wegner and Minami type estimates obtained in Propositions 3 and 4 above

permit to reproduce essentially the analysis from [G-K] proving local Poisson
statistics for the eigenvalues of H!

N . We sketch the details (recall that we consider a
1D model with Hölder site distribution).

Let M D K logN;M1 D K1 logN with K 
 K1 
 1 (! 1 with N ) and
partition

ƒ D Œ1; N � D ƒ1 [ƒ1;1 [ƒ2 [ƒ2;1 [ : : : D
[

˛. N
MCM1

.ƒ˛ [ƒ˛;1/

whereƒ˛ (resp.ƒ˛;1) are M (resp.M1) intervals
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Denote

E˛ D eigenvalue of Hƒ with center of localization in ƒ˛

E˛;1 D ƒ˛;1

Let ƒ0̨ (resp. ƒ0̨
;1) be a neighborhood of ƒ˛ (resp. ƒ˛;1) of size 	 logN taken

such as to ensure that

dist .E; SpecHƒ0

˛
/ <

1

NA
for E 2 E˛

(A a sufficiently large constant), and

dist .E; SpecHƒ0

˛;1
/ <

1

NA
for E 2 E˛;1: (35)

ChoosingK1 large enough, we ensure that theƒ0̨ are disjoint and hence fSpecH!
ƒ0

˛
g

are independent.
Consider an energy interval

I D
h
E0;E0 C L

N

i

Denote

P�.I / D XI .H�/

with L a large parameter, eventually ! 1.
We obtain from (11) and our choice of M1 that

PŒE˛;1 \ I 6D �� . M1jI j

and hence

PŒ
[

˛

E˛;1 \ I 6D �� . N

M
M1jI j . LK1

K
D o.1/ (36)

provided

K1L D o.K/: (37)

Also, by (12)
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PŒjE˛ \ I j � 2� �

PŒHƒ0

˛
has at least two eigenvalues in QI � . M3jI j1Cˇ < M3 L

1Cˇ

N 1Cˇ (38)

so that

PŒmax
˛

jE˛ \ I j � 2� . N

M
(38) . M2L1Cˇ

Nˇ
< N�ˇ=2: (39)

Next, we introduce the (partially defined) random variables

E˛.V / D
X

E2 SpecH
ƒ0

˛
\I
E provided jSpecHƒ0

˛
\ I j � 1: (40)

Thus theE˛; ˛ D 1; : : : ; N
MCM1

take values in I , are independent since fSpec Hƒ0

˛
g

are independent and have the same distribution.
Let J � I be an interval, jJ j of the order of 1

N
. Then by (38) and Proposition 3.

EŒ1J .E˛/� D EŒTrPƒ0

˛
.J /�CO

� 1

N 1Cˇ=2
�

D k.E0/
�
1CO

� 1

K

��
jJ jM 0 (41)

whereM 0 D jƒ0̨ j.
Therefore fN.E˛ � E0/g˛� N

MCM1

converge in distribution to a Poisson process

(in a weak sense), proving Proposition 5.

5 Comments on the Bernoulli Case

Consider the model (1) with V D .vn/n2Z independent f0; 1g-valued. For large
j�j, H does not have a bounded density of states. It was shown in [3] that for
certain small algebraic values of the coupling constant �, k.E/ D dN

dE
can be made

arbitrarily smooth (see [3] for the precise statement). In particular k 2 L1 and
one could ask if Proposition 4 remains valid in this situation. One could actually
conjecture that the analogue of Proposition 4 holds for the A-B model in 1D, at
small disorder. This problem will be pursued further in [4]. What we prove here
is an eigenvalue separation property at finite scale for the A-B model at arbitrary
disorder � 6D 0. Denote again HN the restriction of H to Œ1; N � with Dirichlet
boundary conditions. We have

Proposition 6. With large probability, the eigenvalues of HN are at least N�C
separated, C D C.�/.

A statement of this kind is known for random SO’s with Hölder site distribution
of regularity ˇ > 1

2
, in arbitrary dimension [6]. But note that our proof of
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Proposition 6 is specifically 1D, as will be clear below. There are three ingredients,
each well-known.

1. Anderson localization

Anderson localization holds also for the 1D A-B model at any disorder. In
fact, there is the following quantitative form. Denote �.1/; : : : ; �.N / the normalized
eigenvectors of HN . Then, with large probability .> 1 � N�A/, each �.j / is
essentially localized on some interval of size C.�/ logN , in the sense that there
is a center of localization �j 2 Œ1; N � such that

j�.j /n j < e�c.�/jn��j j for jn � �j j > C.�/ logN: (42)

2. Hölder regularity of the IDS

The IDS N .E/ of H is Hölder of exponent 
 D 
.�/ > 0. There are various
proofs of this fact (see in particular [5] and [8]). In fact, it was shown in [2] that

.�/ ! 1 for � ! 0 but we will not need this here. What we use is the following
finite scale consequence.

Lemma 7. Let M 2 ZC, E 2 R, ı > 0. Then

EŒthere is a vector � D .�j /1�j�M; k�k D 1, such that

k.HM � E/�k < ı; j�1j < ı; j�M j < ı� � CMı
 : (43)

The derivation is standard and we do briefly recall the argument.
TakeN ! 1 and split Œ1; N � in intervals of sizeM . Denoting � the l.h.s. of (43),

we see that

E
�
#.SpecHN \ ŒE � 5ı;E C 5ı�/

	 � N

M
�:

Dividing both sides by N and letting N ! 1, one obtains that

�

M
� N .ŒE � 5ı;E C 5ı�/

where N is the IDS of H .

3. A repulsion phenomenon

The next statement shows that eigenvectors with eigenvalues that are close
together have their centers far away. The argument is based on the transfer matrix
and hence strictly 1D.

Lemma 8. Let �; � 0 be distinct normalized eigenvectors ofHN with centers �; �0,

HN� D E�

HN �
0 D E 0�: (44)
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Assuming jE � E 0j < N�C.�/, it follows that

j� � �0j & log
1

jE � E 0j : (45)

Proof. Let ı D jE � E 0j and assume 1 � � � �0 � N . Take M D C.�/ logN
satisfying (42) andƒ an M -neighborhood of Œ�; �0� in Œ1; N �.

In particular, we ensure that

j�nj; j� 0
nj < N�10 for n 62 ƒ: (46)

We can assume that j�� j > 1

2
p
M

. Since k� 0
�� � ���

0k � j�� j > 1

2
p
M

, it follows
from (46) that for some n0 2 ƒ

j� 0
��n0 � ��� 0

n0
j & 1p

M
pjƒj : (47)

Next, denote for n 2 Œ1; N �

Dn D � 0
��n � ��� 0

n

and

Wn D � 0
n�nC1 � �n� 0

nC1:

Clearly, using Eq. (44)

k.HN �E/Dk � ı (48)

and

X

1�n<N
jWn �WnC1j < ı: (49)

Let � < N . Since D� D 0, it follows from (48) that

jDnj � .2C j�j C jEj/jn��j.jD�C1j C 2ı/: (50)

(If � D N , replace � C 1 by � � 1). From (47), (50)

1p
M
pjƒj . .2C j�j C jEj/jƒj.jD�C1 C 2ı/

and since D�C1 D W� , it follows that
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jW� j C 2ı > 10�jƒj: (51)

Invoking (49), we obtain for n 2 Œ1; N �

jWnj > 10�jƒj � .jn� �j C 1/ı: (52)

On the other hand, by (42)

jWnj � j�nj C j�nC1j < e�c�2jn��j for jn � �j > C.�/ logN:

Taking jn � �j 	 jƒj appropriately, it follows that

ı & 1

jƒj10
�jƒj

and hence

j� � �0j CM & log
1

ı
:

Lemma 8 follows. ut
Proof of Proposition 6. Assume HN has two eigenvaluesE;E 0 such that

jE � E 0j < ı < N�C1

where C1 is the constant from Lemma 8. It follows that the corresponding
eigenvectors �; � 0 have resp. centers �; �0 2 Œ1; N � satisfying

j� � �0j & log
1

ı
: (53)

Introduce ı0 > ı (to specify),M D C2.�/ log 1
ı0

andƒ D Œ��M;�CM�\ Œ1; N �,
ƒ0 D Œ�0 � M;�0 C M� \ Œ1; N �. Let Q� D �jƒ

k�jƒk ; Q� 0 D �0jƒ0

k�0jƒ0
k . According to (42),

chooseM such that

k.Hƒ � E/ Q�k < e�c�2M < ı0 and j�j@ƒj < ı0 (54)

and

kHƒ0 � E 0/ Q� 0k < ı0 and j� 0j@ƒ0 j < ı0: (55)

Requiring

log
1

ı
> C3M
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(53) will ensure disjointness ofƒ;ƒ0. HenceHƒ;Hƒ0 are independent as functions
of V . It follows in particular from (54) that dist .E;SpecHƒ/ < ı0, hence jE �
E0j < ı0 for some E0 2 SpecHƒ. Having fixed E0, (55) implies that

k.Hƒ0 �E0/� 0k < jE � E 0j C 2ı0 < 3ı0: (56)

Apply Lemma 7 to Hƒ0 in order to deduce that the probability for (56) to hold with
E0 2 SpecHƒ fixed, is at most CMı
0 . Summing over all E0 2 SpecHƒ and then
over all pairs of boxesƒ;ƒ0 gives the bound

O.N2M2ı


0 / D O

�
N2
�

log
1

ı0

�2
ı


0

�
< N2ı


=2
0 : (57)

It remains to take ı0 D N
� 5

 , log 1

ı
> C log 1

ı0
. ut
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On the Local Eigenvalue Spacings for Certain
Anderson-Bernoulli Hamiltonians

Jean Bourgain

Abstract The aim of this work is to extend the results from Bourgain (On
eigenvalue spacings for the 1D Anderson model with singular site distribution)
on local eigenvalue spacings to certain 1D lattice Schrodinger with a Bernoulli
potential. We assume the disorder satisfies a certain algebraic condition that enables
one to invoke the recent results from Bourgain (An application of group expansion
to the Anderson-Bernoulli model. Preprint) on the regularity of the density of states.
In particular we establish Poisson local eigenvalue statistics in those models.

1 Introduction

The aim of this Note is to exploit the results from [2] on certain Anderson-Bernoulli
(A-B) Hamiltonians, in order to extend some of the eigenvalue spacing properties
obtained in [3] for Hamiltonians with Hölder site-distribution to the A-B setting.

As in [3], all models are 1D. Recall that the A-B Hamiltonian with coupling � is
given by

H D H� D �C �V (1)

where V D .v1/n2Z are IID-variables ranging in f�1; 1g, EŒvn D �1� D 1
2

D
Prob Œvn D 1�. It is believed that for � 6D 0 sufficiently small, the integrated density
of states (IDS) N of H is Lipschitz and becomes arbitrary smooth for � ! 0. A
first result in this direction was obtained in [2], for small � with certain specific
algebraic properties.

Proposition 1 (See [2]). Let H� be the A-B model considered above and restrict
jEj < 2 � ı0 for some fixed ı0 > 0. Given a constant C > 0 and k 2 ZC, there
is some �0 D �0.C; k/ > 0 such that N .E/ is Ck-smooth on Œ�2 C ı0; 2 � ı0�

provided � satisfies the following conditions.
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j�j < �0 (2)

� is an algebraic number of degree d < C and minimal polynomial (3)

Pd .x/ 2 ZŒX� with coefficients bounded by (
1

�
/C

� has a conjugate �0 of modulus j�0j � 1 (4)

In what follows, we assume � satisfies the conditions of Proposition 1 and the
energyE restricted to Œ�2C ı0; 2 � ı0�, unless specified differently.

Once we are in the presence of the Hamiltonian with a bounded density of
states k.E/ D dN

dE
, it becomes a natural question to inquire about local eigenvalue

statistics for ‘truncated’ models HN , denoting HN the restriction of H to the
interval Œ1; N � with Dirichlet boundary conditions. This problem was explored in
[3], assuming the site distribution vn of V Hölder regular of some exponent ˇ > 0,
and we extended (in 1D) the theorem from [5] on Poisson statistics in this setting.
Here we consider the A-B situation.

Proposition 2. With H as in Proposition 1, the rescaled eigenvalues of HN

fN.E �E0/XI .E/gE2 SpecHN

where I D ŒE0; E0 C L
N
� and we let first N ! 1, then L ! 1, obey Poisson

statistics.

This is the analogue of [3, Proposition 5]. Again one could conjecture the above
statement to hold under the sole assumption that � be sufficiently small.

Proposition 2 gives a natural example of a Jacobi Schrödinger operator with
bounded density of states where the local eigenvalue spacing distribution differs
from that of the potential (cf. S. Jitomirskaya’s talk ‘Eigenvalue statistics for ergodic
localization’, Berkeley 11/10/2010).

Even with the smoothness of the IDS at hand, the arguments from [3] do not
carry over immediately to the A-B setting. For instance, the ‘classical’ approach to
Minami’s inequality (see [4]) rests also on regularity of the single site distribution
(in addition to a Wegner estimate) which makes it inapplicable in the A-B case. This
will require us to develop an alternative argument in order to deal with near resonant
eigenvalues.

Roughly speaking, it turns out that for the analysis below, the following
ingredients suffice.

(1) The Furstenberg measures �E are absolutely continuous with bounded density
(2) The density of states k is C1

Hence the results from [3] for Hölder site distribution follow from the present
treatment. We believe however that the presentation in [3] remains of interest since
it is considerably simpler than the method from this paper.

As in [3], the techniques are very much 1D and based on the usual transfer matrix
formalism.
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Recall that

Mn D Mn.E/ D
1Y

jDn

�
E � vj �1
1 0

�

(5)

and that the equationH� D E� on the positive side is equivalent to

Mn

�
�1
�0

�

D
�
�nC1
�n

�

: (6)

What follows will use extensively ideas and techniques developed in [2, 3].

2 Preliminary Estimates

Denote �E the Furstenberg measure at energy E . This is the unique probability
measure on P1.R/ ' S1 which is � D 1

2
.ıg

C

C ıg
�

/ - stationary, where

gC D
�
E C � �1
1 0

�

and g� D
�
E � � �1
1 0

�

: (7)

Thus

�E D
X

g

�.g/��
g Œ�E� (8)

where �g denotes the projective action of g 2 SL2.R/.
It was proven in [2] that in the context of Proposition 1, �E is absolutely

continuous wrt Haar measure on S1 and moreover d�E
d�

becomes arbitrarily smooth
for � ! 1.

The results of this section are stated for A-B Hamiltonians without further
assumption on the specific nature of the coupling constant however and rely on
general random matrix product theory.

Lemma 1 (cf. [1]). Let �; � be unit vectors in R
2. Given E and " > 0, N >

C.�/ log 1
"

we have

EŒjhMN.E/.�/; �ij < "kMN.E/.�/k� � �."/ (9)

where �."/ D maxjI jD" �E.I /; I � S1 an interval.
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Proof. Let � D ei� , � D ei . If MN D gN � � �g1; gj 2 fgC; g�g, then

ˇ
ˇ
ˇ
hMN.�/; �i
kMN.�/k

ˇ
ˇ
ˇ D ˇ

ˇ cos.�gN ���g1.�/�  /
ˇ
ˇ:

Hence the l.h.s. of (9) is bounded by

Eg1;:::;gN

�j�gN ���g1.�/ �  0j < "	 . 0 D  ?/

D
X

g

�.N/.g/ 1Œ 0�"; 0C"�.�g.�//:
(10)

Let 0 � f � 1 be a smooth function on S1 such that f D 1 on Œ 0 � ";  0 C "�,
suppf � Œ 0 �2";  0 C2"� and j@˛f j .˛

�
1
"

�˛
. Then, invoking the large deviation

estimate for the �-random walk, we obtain

(10) �
X

g

�.N/.g/.f ı �g/

�
ˆ
fd�E C e�c.�/N kf kC1

� �E.Œ 
0 � 2";  0 C 2"�/C 1

"
e�c.�/N

proving the lemma. ut
Lemma 2. Assume the Lyapounov exponent Hölder regular of exponent ˛ > 0.
Then

max
jE�E0j<�

log kMN.E/k < L.E0/N C c�˛N (11)

outside a set � of measure at most e��0N .

Proof. Recall the large deviation theorem for the Lyapounov exponent

E

hˇ
ˇ
ˇ
1

N
log kMN.E/k � L.E/

ˇ
ˇ
ˇ > �

i
. e�� 0N : (12)

Set �1 D C�˛. It follows from (12) that for jE � E0j < �

EŒlog kMN.E/k > L.E0/N C �1N � . e��0N (13)

since jL.E/ � L.E0/j . �˛.
More generally, given indices N > `1 > `2 > � � � > `r > 1

�
r D O.1/

�
, we

have for jE �E0j < � that
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EŒlog kM vN ;:::;v`1C1

N�`1
.E/k C log kM.v`1�1;:::;v`2C1/

`1�`2�1
.E/k C � � � C log kM.v`r�1;:::;v1/

`r�1
.E/k

> L.E0/N C �1N � . e��0N :
(14)

Set � D e� 1
2 �

0N and let E be a finite subset of jE � E0j < �, jE j < 1
�

such that
maxjE�E0j<� dist.E; E/ < � . Take r D r.�/ and � � f1;�1gN such that (14) holds
for V 62 �;E 2 E and all N > `1 > � � � > `r > 1,

j�j . Nr:jE je��0N < e� 1
3 �

0N : (15)

Take thenE 2 ŒE0��;E0C�� andE1 2 E ; jE�E1j < � . Using a truncated Taylor
expansion, we get

MN .E/ D MN .E1/C
h X

1�`�N

MN�`.E1/

 
1 0

0 0

!

M`�1.E1/
i
.E �E1/C � � �

C 1

rŠ

h X

1�`1<`2<���<`r�N

MN�`1 .E1/

 
1 0

0 0

!

M`1�`2�1.E1/

 
1 0

0 0

!

� � �M`r�1.E1/
i
.E �E1/

r

CO.CN �rC1/:

(16)

Taking r 	 1
�0

, we ensure the remainder term < e�N , while for V 62 �

k(16)k < e.L.E0/C�1/N C �e.L.E0/C�1/N C � � � C �re.L.E0/C�1/N

Lemma 2 follows. ut

3 A Wegner Estimate

Proposition 3. Assume the Furstenberg measures ofH have bounded density. Then

EŒ SpecHN \ I 6D �� < CN:jI j C Ce�cN (17)

if I � R is an interval.

Proof. What follows is an adaptation of the argument used in [3]. Let I D
ŒE0 � ı; E0 C ı� and assume HN has an eigenvalue E 2 I with eigenvector
� D .�j /1�j�N . Then

MN.E/

�
�1

0

�

D
�
0

�N

�

:
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Assume j�1j � j�N j (otherwise, we replace MN by M�1
N ). It follows that

kMN.E/e1k � 1: (18)

On the other hand, from the large deviation theorem

log kMN.E0/e1k > L.E0/N � �N (19)

for V 62 �, where

j�j < e��0N : (20)

Here � > 0 is an appropriate constant.
In view of Lemma 2, we may moreover assume that for jE � E0j < ı

max
n

kM.vN ;:::;vnC1/

N�n .E/k kM.vn�1;:::;vn/
n�1 .E/k < eL.E0/NC�N (21)

if V 62 �.
Denote

B D eL.E0/N�2�N :

Then, for V 62 �,

�N � ˇ
ˇ log.kMN.E/e1k CB/ � log.kMN.E0/e1k C B/

ˇ
ˇ

�
ˆ ı

�ı

ˇ
ˇ
ˇ
d

dt
log.kMN.E0 C t/e1k C B/

ˇ
ˇdt:

(22)

The integrand in (22) is clearly bounded by

X

jD1;2

NX

nD1

jhM.vN ;:::;vnC1/

N�n .E0 C t/e1; ej ij jhM.vn�1;:::;v1/
n�1 .E0 C t/e1; e1ij

kM.vN ;:::;v1/
N .E0 C t/e1k C B

(23)

and we estimate the n-term by

k�M.vN ;:::;vnC1/

N�n .E0 C t/
��
ejk:kM.vn�1;:::;v1/

n�1 .E0 C t/e1k
jh�M vn;:::;vnC1

N�n .E0 C t/
��
ej ;M

.vn�1;:::;v1/
n�1 .E0 C t/e1ij

: (24)

We distinguish two cases. If n � N
2

, set

� D .M
.vN ;:::;vnC1/

N�n .E0 C t/
��
ej

k.M .vN ;:::;vnC1/

N�n .E0 C t/�ejk
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which is independent from v1; : : : ; vn. From Lemma 1, we get the distributional
inequality

Ev1;:::;vn�1 ŒjhM vn�1;:::;v1/
n�1 .E0C t/e1; �ij < "kM.vn�1;:::;v1/

n�1 .E0C t/e1k� � C" (25)

since by assumption �.E/ � C". If n < N
2

, set

� D M
vn�1;:::;v1/
n�1 .E0 C t/e1

kM.vn�1;:::;v1/
n�1 .E0 C t/e1k

and argue similarly, considering
�
M

.vN ;:::;vn�1/
N�n .E0 C t/

��
.

Hence we proved that

Ev1;:::;vN Œ(24) > u� < Cu�1 for u < ecN : (26)

On the other hand, the n-term in (23) is also bounded by

1

B
kM.vN ;:::;vnC1/

N�n .E0 C t/k:kM.vn�1;:::;v1/
n�1 .E0 C t/k < e3�N (27)

since V 62 �, by (21). Therefore, taking � in (27) appropriately, (26), (27) imply
that

EŒ(23) 1�c � . N2: (28)

Consequently, recalling (22), we obtain from (28) and Tchebychev’s inequality

EŒ SpecHN \ I 6D �� � j�j C C
ı

�N
N2 < e��0N C c

�
ıN

proving (17). ut
Let H be as in Proposition 1 on the sequel.
The energy range is restricted to Œ�2C ı0; 2 � ı0� according to Proposition 1.
Using Proposition 3 and Anderson localization, one deduces then the analogue

of Proposition 3 in [3]. We leave the details to the reader (see [3]).

Proposition 4. Assuming log 1
ı
< c.�/N , we have for I D ŒE0 � ı; E0 C ı� that

EŒTrXI .HN /� D Nk.E0/jI j CO
�
Nı2 C ı log2

�
N C 1

ı

��
: (29)
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4 Near Resonances

In what follows, we develop an alternative to Minami’s argument that is applicable
in the A-B context (recall that H D H� with � satisfying the conditions from
Proposition 1).

Lemma 3. Let I D ŒE0 � ı; E0 C ı� be as above. Let N 2 ZC.
The probability for existence of a pair of orthogonal unit vectors �; � 0 2 R

n

satisfying

k.HN � E0/�k2 < ı; k.HN � E0/�
0k2 < ı (30)

max
j<

p
N

.j�j j; j�N�j j; j� 0
j j; j� 0

N�j j/ < 1

N 10
(31)

is at most

CN7ı2 C e�cpN : (32)

Proof. We take
p
N < � < N � p

N such that j�� j & 1p
N

. Since �?� 0;
k��� 0 � � 0

��k2 & 1p
N

and there is some �1 so that

j��� 0
�1

� � 0
���1 j

1

N
: (33)

Again by (31).
p
N < �1 < N � p

N . Set further for 1 � j � N

.�j ; �
0
j / D �

�2j C .� 0
j /
2
� 1
2 ei�j : (34)

Hence (33) certainly implies that

j sin.�� � ��1/j >
1

N
: (35)

Assume � < �1 (the other alternative is similar). We distinguish two cases.

Case 1. There is some � < j1 < �1 such that

j sin.�� � �j1/j >
1

10N
and j sin.��1 � �j1/j >

1

10N
: (36)

Define the vector

� D �j1�
0 � � 0

j1
�

.�2j1 C .� 0
j1
/2/

1
2

:
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Obviously k�k2 D 1 and �j1 D 0. Also, from (30) it easily follows that

k.HN �E0/�k2 < 2ı: (37)

From (36)

j��j D �
�2� C .� 0

�/
2
� 1
2 j sin.�j1 � ��/j & 1

N 3=2
(38)

j��1 j & 1

N 2
: (39)

Next, we introduce the vectors

�.1/ D �jŒ1;j1Œ and �.2/ D �jŒj1C1;N �
as well as the restrictions

H.1/ D HŒ1;j1Œ andH.2/ D HŒj1C1;N � (40)

with Dirichlet boundary conditions. By (38), (39), k�.1/k2; k�.2/k2 & 1
N2 while

by (37) and �j1 D 0, it follows that k.H.1/ � E0/�
.1/k2 < 2ı;

k.H.2/ � E0/�
.2/k2 < 2ı.

Hence

dist.E; Spec H.1// < N2ı; dist.E; Spec H.2// < N2ı: (41)

Note that H.1/, H.2/ are independent as functions of V D .vn/1�n�N and by
construction,

p
N � j1 � N � p

N . Involving Proposition 3, it follows that the
probability for the joint event (41) is at most

cŒj1N
2ı C ecj1 �Œ.N � j1/N 2ı C e�c.N�j1/� < CN6ı2 C e�cpN : (42)

Case 2. For all � � j � �1, either j sin.�� ��j /j � 1
10N

or j sin.��1 ��j /j � 1
10N

.
Take then the smallest � < j1 � �1 for which j sin.��1 � �j1/j � 1

10N
. Hence

j sin.�� � �j1�1/j � 1
10N

. Denote

�.1/ D �j1�
0 � � 0

j1
�

.�2j1 C .� 0
j1
/2/

1
2

ˇ
ˇ
ˇ
1�j�j1�1

�.2/ D �j1�1� 0 � � 0
j1�1�

.�2j1�1 C .� 0
j1�1/2/

1
2

ˇ
ˇ
ˇ
j1�j�N
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and H.1/ D HŒ1;j1Œ;H
.2/ D HŒj1;N �. Since �.1/j1 D 0; k.H.1/ � E0/�

.1/k2 < 2ı.

Also k�.1/k2 � j�� j & 1p
N

j sin.�� � �j1/j & 1p
N

�
1
N

� 1
10N

�
> 1

N2 , implying

dist.E; Spec H.1// < N2ı. Similarly dist.E; Spec H.2// < N2ı and we conclude as
in Case 1.

Summing (42) over j , Lemma 3 follows. ut
We may now establish an analogue of Proposition 4 in [3] for Anderson-Bernoulli

Hamiltonians as considered above.

Proposition 5. Let I D ŒE0 � ı; E0 C ı� � Œ�2C ı0�; Œ2C ı0� and log 1
ı
< c

p
N .

Then

EŒHN has at least two eigenvalues in I � � CN2ı2 C Cı log
�
N C 1

ı

�
: (43)

Proof. Proceeding as in [3], set M D C log2
�
N C 1

ı

�
for an appropriate constant

C . From the theory of Anderson localization, the eigenvectors �˛ of HN j�˛j D 1,
satisfy

j�˛.j /j < e�cjj�j˛ j for jj � j˛j > M

10
(44)

with probability at least 1 � e�cM , with j˛ the center of localization of �˛ . We may
therefore introduce a collection .ƒs/1�s�s1 ; s1 . N

M
, of sizeM subinterval of Œ1; N �

such that for each ˛, there is some 1 � s � s1 satisfying

j˛ 2 ƒs and k�˛jŒ1;N �nƒs k2 < e�cM (45)

k.Hƒs � E˛/�˛;sk2 < e�cM: (46)

where �˛;s D �˛
ˇ
ˇ
ƒs

. For 1 < s < s1, we may moreover ensure that

j�˛.j /j < e�cM if dist. j; @ƒs/ <
M

10
: (47)

By (45), (46), dist.E˛; Spec Hƒs/ < e�cM and hence SpecHƒs \ QI 6D �, QI D
ŒE0 � 2ı;E0 C 2ı�, if E˛ 2 I . According to Proposition 3, by our choice of M

EŒ SpecHƒs \ QI 6D �� < CMı C ce�cM < CMı: (48)

Note that if ƒs \ƒs0 D �, then Hƒs ;Hƒs0
are independent.

Hence, by construction and (48),

E Œthere are ˛; ˛0 s.t. E˛;E˛0 2 I and jj˛ � j˛0 j > 4M� �
C
X

s;s0

.Mı/2 < CN2ı2:
(49)
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with the s; s0-sum performed over pairs such that ƒs \ƒs0 D �.
It remains to consider the case jj˛ � j˛0 j � 4M . If dist. j˛; f1;Ng/ < 2M then

SpecHŒ1;4M� \ QI 6D � or SpecHŒN�4M;N � \ QI 6D �.
Again by Proposition 3, the probability for this event is less than

CMı < C log
�
N C 1

ı

�
ı: (50)

Next assume moreover dist.fj˛; j˛0g; f1;Ng/ � 2M. Then

j˛ 2 ƒt ; j˛0 2 ƒt 0 where 1 < t; t 0 < s1 and jt � t 0j < 10:

Introduce an intervalƒ obtained as union of at most ten consecutiveƒs intervals,
such that ƒt ;ƒt 0 � ƒ. By (45), (47), setting Q�˛ D �˛jƒ; Q�˛0 D �˛0 jƒ, we get

k.Hƒ �E˛/ Q�˛k2 < e�cM; k.Hƒ �E˛0/ Q�˛0k2 < e�cM

so that for E˛;E˛0 2 I

k.Hƒ � E0/ Q�˛k2 < 2ı; k.Hƒ � E0/ Q�˛0k2 < 2ı: (51)

Also, by (47), maxdist. j;@ƒ/<M
10
.j�˛.j /j; j�˛0 .j /j/ < e�cM < 1

jƒj10 . Hence, Lemma 3
applies to Hƒ. According to (32), the probability that Hƒ satisfies the above
property is at most (again by our choice of M )

CM7ı2 C e�cpM < CM7ı2: (52)

Summing over the different boxesƒ introduced above gives then

CN:M 7ı2 < CN
�

log
�
N C 1

ı

��7
ı2: (53)

Adding the contributions (49), (50), (53) and noting that the last is majorized by the
first two, inequality (43) follows. ut

5 Local Eigenvalue Statistics

Following the same argument as in Proposition 5 of [3], Propositions 4 and 5 above
permit to establish Poisson statistics for the local eigenvalue spacings. Thus we
obtain Proposition 2 stated in Sect. 1.

The proof is completely analogous to that of Proposition 5 in [3], except
that instead of choosing M D K logN , M1 D K1 logN , we take say M D
.logN/4;M1 D .logN/3.
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On the Control Problem for Schrödinger
Operators on Tori

Jean Bourgain

Abstract We consider the linear Schrödinger equation on the three dimensional
torus with a bounded spatially dependent potential and prove controllability. This
extends the earlier work due to Burq, Zworski and the author in the two dimensional
case.

1 Introduction

The starting point of this Note is the paper [7] on Schrödinger operators (SO for
short) on the 2-torus with rough potentials. Let T2 D R

2=Z2 or, more generally
T
2 D R

2=AZ�BZ, A;B 2 Rnf0g and V 2 L1.T2/ a time independent potential.
Consider the Schrödinger equation on T

2

iut D ���C V.x/
�
u with .x; t/ 2 T

2 � R (1)

and in initial condition

ujtD0 D � 2 L2.T2/: (2)

Let � � T
2 be a fixed open set and T > 0. In [7] (see Theorem 2) the following

observability result is proven.

Theorem 1. There is a constant C D C.V;�; T / such that with above notations

k�k22 � C

ˆ T

0

ku.x; t/k2
L2.�/

dt: (3)

The HUM method implies then a controllability property.

Theorem 2. For any � 2 L2.T2/, there exists f 2 L2.� � Œ0; T �/ such that the
solution of the equation

J. Bourgain (�)
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( �
i@t C� � V.x/

�
u D f 11��Œ0;T �

ujtD0 D �
(4)

satisfies

ujtDT D 0: (5)

We note that an earlier paper [8] established the above result for continuous
potentials V D V.x/ 2 C.T2/, while in [1] the problem is treated in arbitrary
dimension, again for continuous potentials V D V.x/ 2 C.Td / (in fact, a larger
class but which does not capture L1.Td /).

There are two obvious remaining problems. The first is the generalization of
Theorems 1 and 2 to higher dimension, assuming V D V.x/ 2 L1.Td /. The
second issue is the controllability question for time dependent potentials V D
V.x; t/, which will not be discussed here. The main harmonic analysis input in
the proof of Theorem 1 is Zygmund’s inequality, stating the uniform equivalence of
L2.T2/ and L4.T2/ norms for toral eigenfunctions in dimension d D 2.

Thus, denoting e.u/ D e2�iu.

Theorem 3. There is an absolute constant C such that for all E 2 ZC,

�
�
�

X

n2Z2;jnj2DE
cne.nx/

�
�
�
L4.T2/

� C
�X

jcnj2
� 1
2

(6)

for all coefficients fcng.

Proposition. Does there exist for each d � 3 some exponent p D p.d/ > 2 such
that for some constant Cd , the inequality

�
�
�

X

n2Zd ;jnj2DE
cne.n:x/

�
�
�
Lp.Td /

� Cd

�X
jcnj2

� 1
2

(7)

holds for all E 2 ZC and coefficients fcng?

It is conjectured that any p < 2d
d�2 should satisfy (7) for some constant c.d; p/.

At this time however, Zygmund’s inequality for d D 2 seems to be the only known
inequality of this type. In [5], the following estimate is obtained.

Theorem 4. Let d � 3; p D 2d
d�1 . Then, for any " > 0, there is a constant C" such

that

�
�
�

X

n2Zd ;jnj2DE
cne.n:x/

�
�
�
Lp.Td /

� C"E
"
�X

jcnj2
� 1
2
: (8)

For d D 3, one may in fact take p D 4 (see also the recent paper [6]).
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Following the approach in [7], an affirmative answer to the above problem in
dimension d would allow to generalize Theorems 1 and 2 to that dimension. A
statement of the type (8) turns out to be insufficient however, unless one makes the
stronger assumption V 2 L1.Td /\Hs.Td / for some s > 0.

It appears that in fact, in order to prove Theorem 1 in dimension d , it is already
sufficient to have an inequality of the form (7), p > 2, in dimension d � 1. Thus, in
view of Theorem 3

Theorem 5. Theorems 1 and 2 hold in dimension d D 3.

We sketch the argument in the next section. The general case is based on similar
considerations (and an induction on the dimension), which we do not elaborate on
here since there are no further applications at this point.

2 Proof of Theorem 1 or d D 3

Denote u�V the solution of the equation on T
d � R

(
iut D � ��C V.x/

�
u

ujtD0 D �:
(9)

It follows from the uniqueness-compactness argument due to Bardos-Lebeau-Rauch
[2] (see also [7], Sect. 6 for a quantitative form) that in order to establish (3), it
suffices to prove the weaker inequality (we may clearly replace Œ0; T � by Œ�T; T �)

k�k22 � C1

ˆ T

�T
ku.x; t/k2

L2.�/
dt C C2k�k2

H�1 : (10)

Assuming (10) violated, we obtain a sequence f�j g of initial data in L2.Td /,
k�1k1 D 1 such that

�j ! 0 weakly (11)

and

ˆ T

�T
ku

�j
V .x; t/k2L2.�/dt ! 0: (12)

Denote W D Ws regularizations of V with finitely supported Fourier transform
obtained by suitable convolutions of V . Thus

kWsk1 � kV k1 and Ws ! V in Lq.Td / for all q < 1. (13)
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By (12), denoting I D Œ0; T
2
�

lim
j

ˆ

I

ku
�j
W .x; t/k2L2.�/dt � lim

j
ku

�j
V � u

�j
W kL2.Td�I /: (14)

Comparing the SO’s with respective potentials V and W , write

(
.i@t C� �W /uV D .V �W /uV

uV jtD0 D �j D UW jtD0
(15)

implying by Duhamel’s formula and unitarily that

kuV uW kL2.Td�I / �
�
�
�

ˆ t

0

ei.t��/.��CW /�.V �W /uV .�/
�
d�
�
�
�
L2.Td�I /

� T k.V �W /uV kL2.Td�I /: (16)

Hence the r.h.s. of (14) may be bounded by

C lim
j

k.V �W /u
�j
V kL2.Td�I / (17)

The solutions u
�j
W in the l.h.s. of (14) are obtained from the SO

�� C W with smooth potential W . Setting d D 3 and invoking the analysis
from [1] for smooth potential, the quantum limit produced by the sequence fu

�j
W g

may be represented as a superposition of quantum limits obtained by Fourier
restriction to certain sub-lattices in Z

3 that are at most two-dimensional (rather than
invoking the semi-classical approach from [1], one may alternatively use a ‘cluster-
decomposition’ in lower dimensional clusters as introduced below; note that this
part of the analysis is ‘soft’ because the potentialW is smooth). Next, we may apply
Theorem 1 to these lower dimensional quantum limits, produced from potentials
QW obtained by suitable Fourier restriction of W D Ws and hence ranging in an
L2-pre-compact set. It was indeed noted in [7] that although the constant C in (3)
depends on V , it remains bounded for V ranging in a compact subset of L2.T2/.
The outcome of the above discussion is that the left side of (14) satisfies a positive
lower bound, which is independent from the regularization W D Ws . In order to
obtain a contradiction, it remains to show that (17) can be made arbitrarily small for
W D Ws; s ! 1.

Assume T < 1
2
. The function u D uV solving (9) admits on

T
d � Œ�T; T � a representation

u.x; t/ D
X

n2Zd
m2Z

Ou.n;m/e.n:x C mt/ for .x; t/ 2 T
d � Œ�T; T � (18)
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where

jjjujjj D
� X

n2Zd
m2Z

.1C ˇ
ˇjnj2 �mj/2jOu.n;m/j2

� 1
2 � Ck�k2 (19)

(cf. [3]). Also, since lim �j D 0 (weakly),

lim
j!1 u

�j
V .t/ D 0(weakly): (20)

We will need the following version of the ‘cluster structure’ of lattice points on
quadrics (cf. [4, Lemma 19.10]). Denote� W Zd�Z ! Z

d the coordinate projection.

Lemma. Let N be large and consider the set

S D SN D f.n; jnj2/ 2 Z
d � ZI jnj > N g:

Let K < Nc . There is a partition

S D
[

S˛

with the following properties.

�.S˛/ is contained in a lower dimensional affine subspace (depending on ˛)
(21)

dist.S˛;Sˇ/ > K for ˛ 6D ˇ (22)

diam S˛ < K
C for each ˛ (23)

where c; C are constants depending on d .

Recalling (12), we take j sufficiently large as to ensure that u D u
�j
V satisfies

ˆ T

�T

ˆ

�

ju.x; t/j2dxdt < " (24)

(fixing some arbitrary " > 0).
Introduce a smooth function ! D !.x; t/; 0 � ! � 1 such that

supp O! � BR for some R D R.�; T; "/ (25)

“

juj2!dxdt < " (26)

ˆ
!.x; t/dx >

1

2
j�j for t 2 I D

h
0;
T

2

i
. (27)
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Set

K D 10
�
R C 1

"

�
(28)

and N > K large enough for the lemma to be applicable. By (20), we can take j
sufficiently large as to ensure that Ou.n;m/ � 0 for jnj C jmj < 2N . In view of (19)
and the preceding, the function

u0.x; t/ D
X

n2Zd ;m2Z
jnj>N;jm�jnj2 j< 1

"

Ou.m; n/e.n:x C mt/ (29)

satisfies

ku � u0kL2.Td�Œ�T;T �/ < C" (30)

and therefore, denoting k k2 D k kL2t2I L2x ,

ku.V �W /k2 � ku0.V �W /k2 C CkV k1 " (31)

“

ju0j2! < C": (32)

Let fS˛g be the decomposition of SN obtained in the lemma, satisfying (21)–(23).
Defining

S0̨ D
n
.n;m/ 2 �.S˛/ � ZI jm � jnj2j < 1

2

o
(33)

it follows from (29) that

u0 D
X

˛

P˛u0 (34)

with P˛ the Fourier projection operator on S0̨ .
By (22)

dist.S0̨ ;S0̌ / >
K

2
>
1

"
for ˛ 6D ˇ

and (25) implies

C" >

“

ju0j2! D
X

˛

“

jP˛u0j2!: (35)
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We distinguish the following two cases
(*) �.S˛/ D �.S0̨ / is a single point fng.

Then clearly

“

jP˛u0j2! �
ˆ

I

kP˛u0k2
L2x

�ˆ
!.x; t/dx

�
dt

(27)� ckP˛u0k22:

Hence, by (35)

X

˛.�/
kP˛u0k22 < C" (36)

��
�
�
�.S˛ consists of at least two elements.

Let .n; jnj2/ 2 S˛; .n
0jn0j2/ 2 S˛ with n 6D n0. It follows from (23) that

0 < jn � n0j D j�j < KC (37)

and

ˇ
ˇjnj2 � jn0j2ˇˇ D ˇ

ˇjnj2 � jnC �j2ˇˇ < KC : (370)

Hence

jn:�j � 1

2
.KC CK2C / < K2C : (38)

Note that there are at most O.KCd/ vectors � 2 Z
d with 0 < j�j < KC . We

showed that for any n 2 S

˛. �

�

/

�.S˛/, there is some � 2 Z
d satisfying (37) and (38).

Denote

u00 D
X

˛. �

�

/

P˛u0: (39)

It follows from (36) that

ku0 � u00k2 D
�
�
�
X

˛.�/
P˛u0

�
�
�
2

D
�X

˛.�/
kP˛u0k22

� 1
2
< C

p
"

and hence, returning to (31)

ku0.V �W /k2 � ku00.V �W /k2 C C
p
": (40)
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Next, letting 1
p

C 1
q

D 1, estimate

ku00.V �W /k2 � kV �W k2q
�X

m

�
�
�
X

n

bu00.n;m/e.n:x/
�
�
�
2

L
2p
x

� 1
2
: (41)

In the inner sum, m is fixed and, by (33), n satisfies

ˇ
ˇm � jnj2ˇˇ < 1

"
: (42)

Also, from the preceding, there is some � 2 Z
d , j�j < KC such that (38) holds

restricting n to at most KC.dC2/ affine hyperplanes H� . Hence, by (42), n belongs
to a union of at most 2

"
KC.dC1/ .d � 2/-spheres S� � H� . We estimate

�
�
�
X

n

bu00.n;m/e.n; x/
�
�
�
L
2p
x

�
X

�

�
�
�
X

n2S�
bu00.n;m/e.n:x/

�
�
�
L
2p
x

:

At this point, recall that d D 3 so that S� is a 1-sphere. Taking p D q D 2,
Zygmund’s inequality applies and we get

�
�
�
X

n2S�
bu00.n;m/e.n:x/

�
�
�
L4x

� C
�X

n2S�

ˇ
ˇbu00.n;m/

ˇ
ˇ2
� 1
2
: (43)

This gives the bound

(41) � CkV �W k4
�2

"
KC.dC2/�

1
2
�X

n;m

jbu00.n;m/j2
� 1
2

� C
�1

"
KC.dC2/

� 1
2 kV �W k4 (44)

which can be made arbitrarily small by appropriate choice of W .
From (31), (40), (44), it follows that for a suitable smoothingW of V ,

lim
j

ku
�j
V .V �W /kL2I L2x < C

p
" (45)

and hence (17) can be made arbitrarily small.
This completes the proof of Theorem 5.
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Bounding the Norm of a Log-Concave Vector
Via Thin-Shell Estimates

Ronen Eldan and Joseph Lehec

Abstract Chaining techniques show that if X is an isotropic log-concave random
vector in R

n and � is a standard Gaussian vector then

EkXk � Cn1=4Ek� k

for any norm k � k, where C is a universal constant. Using a completely different
argument we establish a similar inequality relying on the thin-shell constant

�n D sup
�p

Var.jX j/I X isotropic and log-concave on R
n
�
:

In particular, we show that if the thin-shell conjecture �n D O.1/ holds, then n1=4

can be replaced by log.n/ in the inequality. As a consequence, we obtain certain
bounds for the mean-width, the dual mean-width and the isotropic constant of an
isotropic convex body. In particular, we give an alternative proof of the fact that a
positive answer to the thin-shell conjecture implies a positive answer to the slicing
problem, up to a logarithmic factor.

1 Introduction

Given a stochastic process .Xt/t2T , the question of obtaining bounds for the quantity

E
�
sup
t2T

Xt
�
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is a fundamental question in probability theory dating back to Kolmogorov, and the
theory behind this type of question has applications in a variety of fields.

The case that .Xt/t2T is a Gaussian process is perhaps the most important one.
It has been studied intensively over the past 50 years, and numerous bounds on the
supremum in terms of the geometry of the set T have been attained by Dudley,
Fernique, Talagrand and many others.

The case of interest in this paper is a certain generalization of the Gaussian
process. We consider the supremum of the process

.Xt D hX; ti/t2T
where X is a log-concave random vector in R

n and T � R
n is a compact

set. Throughout the article hx; yi denotes the inner product of x; y 2 R
n and

jxj D phx; xi the Euclidean norm of x. Our aim is to obtain an upper bound
on this supremum in terms of the supremum of a corresponding Gaussian process
Yt D h�; ti where � is a gaussian random vector having the same covariance
structure as X .

Before we formulate the results, we begin with some notation. A probability
density � W Rn ! Œ0;1/ is called log-concave if it takes the form � D exp.�H/
for a convex functionH W Rn ! R [ fC1g. A probability measure is log-concave
if it has a log-concave density and a random vector taking values in R

n is said to
be log-concave if its law is log-concave. Two canonical examples of log-concave
measures are the uniform probability measure on a convex body and the Gaussian
measure. It is a well-known fact that any log-concave probability density decays
exponentially at infinity, and thus has moments of all orders. A log-concave random
vector X is said to be isotropic if its expectation and covariance matrix satisfy

E.X/ D 0; cov.X/ D id:

Let �n be the so-called thin-shell constant:

�n D sup
X

p
Var.jX j/ (1)

where the supremum runs over all isotropic, log-concave random vectors X in R
n.

It is trivial that �n � p
n and it was proven initially by Klartag [9] that in fact

�n D o.
p
n/:

Shortly afterwards, Fleury-Guédon-Paouris [5] gave an alternative proof of this
fact. Several improvements on the bound have been established since then, and
the current best estimate is �n D O.n1=3/ due to Guédon-Milman [6]. The
thin-shell conjecture, which asserts that the sequence .�n/n�1 is bounded, is still
open. Another related constant is:

�2n D sup
X

sup
�2Sn�1

nX

i;jD1
E
�
XiXj hX; �i�2; (2)
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where the supremum runs over all isotropic log-concave random vectors X in R
n.

Although it is not known whether �n D O.�n/, we have the following estimate,
proven in [3]

�2n D O
� nX

kD1

�2k
k

�
: (3)

The estimate �n D O.n1=3/ thus gives �n D O.n1=3/, whereas the thin-shell
conjecture yields �n D O.

p
logn/.

We denote by � the standard Gaussian vector in R
n (with identity covariance

matrix). We are now ready to formulate our main theorem.

Theorem 1. Let X be an isotropic log-concave random vector in R
n and let k � k

be a norm. Then there is a universal constant C such that

EkXk � C
p

logn �n Ek� k: (4)

Remark 1. It is well known that, as far as EkXk is concerned, there is no loss of
generality assuming additionally that the support ofX is contained in a ball of radius
C0

p
n for some sufficiently large constant C0 (see for instance Lemma 3 below).

Then it is easily seen that X satisfies the following  2 estimate

P
�jhX; �ij � t/ � C e�ct2=

p
n; 8t � 0; 8� 2 S

n�1;

where C; c are universal constants. Combining this with chaining methods devel-
oped by Dudley-Fernique-Talagrand (more precisely, using Theorem 1.2.6. and
Theorem 2.1.1. of [12]), one gets the inequality

EkXk � C 0n1=4Ek� k;
we refer to [1] for more details. This means that using the current best-known bound
for the thin-shell constant: �n D O.n1=3/, the above theorem does not give us
anything new. On the other hand, under the thin-shell hypothesis we obtain using (3)

EkXk � C lognEk� k:

As an application of Theorem 1, we derive several bounds related to the mean width
and dual mean width of isotropic convex bodies and to the so-called hyperplane
conjecture. We begin with a few definitions. A convex body K � R

n is a compact
convex set whose interior contains the origin. For x 2 R

n, we define

kxkK D inff�I x 2 �Kg
to be the gauge associated to K (it is a norm if K is symmetric about 0). The polar
body of K is denoted by

Kı D fy 2 R
nI hx; yi � 1; 8x 2 Kg:
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Next we define

M.K/ D
ˆ

Sn�1

kxkK �.dx/;

M �.K/ D
ˆ

Sn�1

kxkKı �.dx/;

where � is the Haar measure on the sphere, normalized to be a probability measure.
These two parameters play an important rôle in the asymptotic theory of convex
bodies.

The convex body K is said to be isotropic if a random vector uniform on K is
isotropic. When K is isotropic, the isotropic constant of K is then defined to be

LK D jKj�1=n;

where jKj denotes the Lebesgue measure of K . More generally, the isotropic
constant of an isotropic log-concave random vector isLX D f .0/1=n where f is the
density of X . The slicing or hyperplane conjecture asserts that LK � C for some
universal constant C . The current best estimate is LK � Cn1=4 due to Klartag [8].
We are ready to formulate our corollary:

Corollary 1. Let K be an isotropic convex body. Then one has,

(i) M �.K/ � c
p
n=.

p
logn �n/,

(ii) LK � C�n.logn/3=2,

where c; C > 0 are universal constants.

Remark 2. Part (ii) of the corollary is nothing new. Indeed, in [4], it is shown that
LK � C�n for a universal constant C > 0. Our proof uses different methods and
could therefore shed some more light on this relation, which is the reason why we
provide it.

Using similar methods, we attain an alternative proof of the following correlation
inequality proven initially by Hargé in [7].

Proposition 1 (Hargé). Let X be a random vector on R
n. Assume that E.X/ D 0

and that X is more log-concave than � , i.e. the density of X has the form

x 7! exp
��V.x/ � 1

2
jxj2�

for some convex function V WRn ! .�1;C1�. Then for every convex function
'WRn ! R we have

E'.X/ � E'.� /:
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The structure of the paper is as follows: in Sect. 2 we recall some properties of
a stochastic process constructed in [3], which will serve as one of the central
ingredients in the proof of Theorem 1, as well as establish some new facts about
this process. In Sect. 3 we prove the main theorem and Proposition 1. Finally, in
Sect. 4 we prove Corollary 1.

In this note, the letters c; Qc; c0; C; QC;C 0; C 00 will denote positive universal
constants, whose value is not necessarily the same in different appearances. Further
notation used throughout the text: id will denote the identity n � n matrix. The
Euclidean unit sphere is denoted by S

n�1 D fx 2 R
nI jxj D 1g. The operator norm

and the trace of a matrix A are denoted by kAkop and Tr.A/, respectively. For two
probability measures�, � on R

n, we let T2.�; �/ be their transportation cost for the
Euclidean distance squared:

T2.�; �/ D inf
�

ˆ

Rn�Rn

jx � yj2 �.dx; dy/

where the infimum is taken over all measures � on R
2n whose marginals onto the

first and last n coordinates are the measures � and � respectively. Finally, given a
continuous martingale .Xt/t�0, we denote by ŒX�t its quadratic variation. If X is
R
n-valued, then ŒX�t is a non-negative matrix whose i; j coefficient is the quadratic

covariation of the i -th and j -th coordinates of X at time t .

2 The Stochastic Construction

We make use of the construction described in [3]. There it is shown that, given
a probability measure � having compact support and whose density with respect
to the Lebesgue measure is f , and given a standard Brownian motion .Wt /t�0 on
R
n; there exists an adapted random process .�t /t�0 taking values in the space of

absolutely continuous probability measures such that �0 D � and such that the
density ft of �t satisfies

dft .x/ D ft .x/hA�1=2
t .x � at /; dWti; 8t � 0; (5)

for every x 2 R
n, where

at D
ˆ

Rn

x �t .dx/;

At D
ˆ

Rn

.x � at /˝ .x � at / �t .dx/

are the barycenter and the covariance matrix of �t , respectively.
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Let us give now the main properties of this process. Some of these properties
have already been established in [3], in this case we will only give the general idea
of the proof. We refer the reader to [3, Sect. 2,3] for complete proofs. Firstly, for
every test function � the process

�ˆ

Rn

� d�t
�

t�0

is a martingale. In particular

E

ˆ

Rn

� d�t D
ˆ

Rn

� d�; 8t � 0: (6)

The Itô differentials of at and At read

dat D A
1=2
t dWt (7)

dAt D �At dt C
ˆ

Rn

.x � at /˝ .x � at /hA�1=2
t .x � at /; dWti�t.dx/: (8)

Recall that� is assumed to have compact support, and observe that the support of�t
is included in that of �, almost surely. This shows that the processes .at / and .At /
as well as the process involved in the local martingale part of Eq. (8) are uniformly
bounded. In particular the local martingales of the last two equations are actually
genuine martingales. Thus we get from (8)

d

dt
ETr.At / D �ETr.At /:

Integrating this differential equation we obtain

ETr.At / D e�tTr.A0/; t � 0: (9)

Combining this with (7) we obtain

Ejat j2 D ja0j2 C
ˆ t

0

ETr.As/ ds D ja0j2 C .1 � e�t /Tr.A0/:

The process .at /t�0 is thus a martingale bounded in L2. By Doob’s theorem, it
converges almost surely and in L2 to some random vector a1.

Proposition 2. The random vector a1 has law �.

Proof. Let �; be functions on R
n satisfying

�.x/C  .y/ � jx � yj2; x; y 2 R
n: (10)
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Then

�.at /C
ˆ

Rn

 .y/ �t .dy/ �
ˆ

Rn

jat � yj2 dy D Tr.At /:

Taking expectation and using (6) and (9) we obtain

ˆ

Rn

� d�t C
ˆ

Rn

 d� � Tr.A0/e�t ;

where �t is the law of at . This holds for every pair of functions satisfying
the constraint (10). By the Monge-Kantorovich duality (see for instance [13,
Theorem 5.10]) we obtain

T2.�t ; �/ � e�tTr.A0/

where T2 is the transport cost associated to the Euclidean distance squared, defined
in the introduction. Thus �t ! � in the T2 sense, which implies that at ! � in law,
hence the result. ut
Let us move on to properties of the operator norm of At . We shall use the following
lemma which follows for instance from a theorem of Brascamp-Lieb [2, Theo-
rem 4.1.]. We provide an elementary proof using the Prékopa-Leindler inequality.

Lemma 1. Let X be a random vector on R
n whose density � has the form

�.x/ D exp

�

�1
2

hBx; xi � V.x/
�

where B is a positive definite matrix, and V WRn ! .�1C1� is a convex function.
Then one has,

cov.X/ � B�1:

In other words, if a random vector X is more log-concave than a Gaussian vector
Y , then cov.X/ � cov.Y /.

Proof. There is no loss of generality assuming that B D id (replace X by B1=2X

otherwise). Let

�Wx 7! logE.ehx;Xi/:

Since log-concave vectors have exponential moment� is C1 in a neighborhood of
0 and it is easily seen that

r2�.0/ D cov.X/: (11)
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Fix a 2 R
n and define

f Wx 7! ha; xi � 1

2
jxj2 � V.x/;

gWy 7! �ha; yi � 1

2
jyj2 � V.y/;

hW z 7! �1
2

jzj2 � V.z/:

Using the inequality

1

2
ha; x � yi � 1

4
jxj2 � 1

4
jyj2 � 1

2
jaj2 � 1

8
jx C yj2;

and the convexity of V we obtain

1

2
f .x/C 1

2
g.y/ � 1

2
jaj2 C h

�x C y

2

�
; 8x; y 2 R

n:

Hence by Prékopa-Leindler

�ˆ

Rn

ef .x/ dx
�1=2�ˆ

Rn

eg.y/ dy
�1=2� ejaj2=2

ˆ

Rn

eh.z/ dz:

This can be rewritten as

1

2
�.a/C 1

2
�.�a/ ��.0/ � 1

2
jaj2:

Letting a tend to 0 we obtain hr2�.0/a; ai � jaj2 which, together with (11), yields
the result. ut
Recalling (5) and applying Itô’s formula to log.ft / yields

d log.ft /.x/ D hA�1=2
t .x � at /; dWti � 1

2
hA�1

t .x � at /; x � at i dt

This shows that the density of the measure �t satisfies

ft .x/ D f .x/ exp
�
ct C hbt ; xi � 1

2
hBtx; xi

�
(12)

where ct ; bt are some random processes, and

Bt D
ˆ t

0

A�1
s ds: (13)
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Lemma 2. If the initial measure� is more-log-concave than the standard Gaussian
measure, then almost surely

kAtkop � e�t ; 8t � 0:

Proof. Since � is more log-concave than the Gaussian, Eq. (12) shows that the
density ft of �t satisfies

ft .x/ D exp
�
�1
2

jxj2 � 1

2
hBtx; xi � Vt .x/

�

for some convex function Vt . By the previous lemma, the covariance matrix At of
�t satisfies

At � .Bt C id/�1 � 1

�t C 1
id;

where �t is the lowest eigenvalue of Bt . Therefore

kAtkop � 1

�t C 1
:

On the other hand, the equality (13) yields

�t �
ˆ t

0

kAsk�1
op ds;

showing that

ˆ t

0

kAsk�1
op ds C 1 � kAtk�1

op :

Integrating this differential inequality yields the result. ut
The following proposition will be crucial for the proof of our main theorem. Its proof
is more involved than the proof of previous estimate, and we refer to [3, Sect. 3].

Proposition 3. If the initial measure � is log-concave then

EkAtkop � C0kA0kop�
2
n log.n/ e�t ; 8t � 0;

where C0 is a universal constant.
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3 Proof of the Main Theorem

We start with an elementary lemma.

Lemma 3. Let X be a log-concave random vector in R
n and let k � k be a norm.

Then for any event F

E
�kXkI F � � C1

p
P.F /E

�kXk�;

where C1 is a universal constant. In particular, if P.F / � .2C1/
�2, one has

E
�kXk� � 2E

�kXkI F c
�
; (14)

where F c is the complement of F .

Proof. This is an easy consequence of Borell’s lemma, which states as follows.
There exist universal constants C; c > 0 such that,

P

�
kXk > tE�kXk�

�
� C e�ct:

By Fubini’s theorem and the Cauchy-Schwarz inequality

E
�kXkI F � D

ˆ 1

0

P
�kXk > t; F � dt �

�ˆ 1

0

q
P
�kXk > t� dt

�
�
p
P.F /:

Plugging in Borell’s inequality yields the result, with constant C1 D 2C=c. ut
The next ingredient we will need is the following proposition, which we learnt from
B.Maurey. The authors are not aware of any published similar result.

Proposition 4. Let .Mt/t�0 be a continuous martingale taking values in R
n.

Assume that M0 D 0 and that the quadratic variation of M satisfies

8t > 0; ŒM �t � id;

almost surely. Then .Mt/t�0 converges almost surely, and the limit satisfies the
following inequality. Letting � be a standard Gaussian vector, we have for every
convex function 'WRn ! R [ fC1g

E'.M1/ � E'.� /:

Proof. The hypothesis implies that M is bounded in L2, hence convergent by
Doob’s theorem. Let X be a standard Gaussian vector on R

n independent of
.Mt/t�0. We claim that

Y D M1 C .id � ŒM �1/1=2X



Bounding the Norm of a Log-Concave Vector Via Thin-Shell Estimates 117

is also a standard Gaussian vector. Indeed, for a fixed x 2 R
n one has

E

�
eihx;Y i j .Mt /t�0

�
D exp

�

ihx;M1i C 1

2
hŒM �1x; xi � 1

2
jxj2

�

D exp

�

iL1 C 1

2
ŒL�1 � 1

2
jxj2

�

;

where L is the real martingale defined by Lt D hMt; xi. Itô’s formula shows that

Dt D exp

�

iLt C 1

2
ŒL�t

�

is a local martingale. On the other hand the hypothesis yields

jDt j D exp

�
1

2
hŒM �tx; xi

�

� exp

�
1

2
jxj2

�

almost surely. This shows that .Dt /t�0 is a bounded martingale; in particular

E.D1/ D E.D0/ D 1;

since M0 D 0. Therefore

E
�
eihx;Y i� D e�jxj2=2;

proving the claim. Similarly (just replace X by �X )

Z D M1 � .id � ŒM �1/1=2X

is also standard Gaussian vector. Now, given a convex function �, we have

E'.M1/ D E'

�
Y CZ

2

�

� 1

2
E .'.Y /C '.Z// D E'.Y /;

which is the result. ut
We are now ready to prove the main theorem.

Proof (of Theorem 1). Let us prove that given a norm k � k and a log-concave vector
X satisfying E.X/ D 0 we have

EkXk � C�n.logn/1=2 kcov.X/k1=2op Ek� k; (15)

for some universal constant C . If X is assumed to be isotropic, then cov.X/ D id
and we end up with the desired inequality (4).
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Our first step is to reduce the proof to the case that X has a compact support.
Assume that (15) holds for such vectors, and for r > 0, let Yr be a random vector
distributed according to the conditional law of X given the event fjX j � rg. Then
Yr is a compactly supported log-concave vector, and by our assumption,

EkYr � E.Yr /k � C�n.logn/1=2kcov.Yr/k1=2op Ek� k: (16)

Besides, it is easily seen by dominated convergence that

lim
r!C1EkYr � EYrk D EkXk;

lim
r!C1 cov.Yr / D cov.X/:

So letting r tend to C1 in (16) yields (15). Therefore, we may continue the proof
under the assumption that X is compactly supported.

We use the stochastic process .�t /t�0 defined in the beginning of the previous
section, with the starting law � being the law of X .

Let T be the following stopping time:

T D inf
�
t � 0;

ˆ t

0

As ds > C 2�2n logn kA0kop

�
;

where C is a positive constant to be fixed later and with the usual convention that
inf.;/ D C1. Define the stopped process aT by

.aT /t D amin.t;T /:

By the optional stopping theorem, this process is also a martingale and by definition
of T its quadratic variation satisfies

ŒaT �t � C2�2n logn kA0kop; 8t � 0:

Also .aT /0 D a0 D E.X/ D 0. Applying Proposition 4 we get

EkaT k D Ek.aT /1k � C�n.logn/1=2 kA0k1=2op Ek� k: (17)

On the other hand, using Proposition 3 and Markov inequality we get

P.T < C1/ D P

�ˆ 1

0

kAskop ds > C 2�2n logn kA0kop

�

� C0

C 2
:

So P.T < C1/ can be rendered arbitrarily small by choosing C large enough.
By Proposition 2 we have a1 D X in law; in particular a1 is log-concave. If
P.T < C1/ is small enough, we get using Lemma 3
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EkXk D Eka1k � 2E
�ka1kI T D 1�

D 2E
�kaT kI T D 1� � 2EkaT k:

Combining this with (17) and recalling that A0 D cov.X/ we obtain the result (15).
ut

The proof of Proposition 1 follows the same lines. The main difference is that
Proposition 2 is used in lieu of Proposition 3.

Proof (of Proposition 1). Let Yr b a random vector distributed according to the
conditional law of X given jX j � r . Then Yr is also more log-concave than � and

E'.Yr/ ! E'.X/

as r ! C1. So again we can assume that X is compactly supported, and consider
the process .�t /t�0 starting from the law of X .

By Lemma 2, the process .at /t�0 is a martingale whose quadratic variation
satisfies

Œa�t D
ˆ t

0

As ds � id; 8t � 0;

almost surely. Since again a0 D E.X/ D 0, Proposition 4 yields the result. ut
Remark 3. This proof is essentially due to Maurey; although his (unpublished)
argument relied on a different stochastic construction.

4 Application to Mean Width and to the Isotropic Constant

In this section, we prove Corollary 1.
Let � be a standard Gaussian vector in R

n and let � be a point uniformly
distributed in S

n�1. Integration in polar coordinates shows that for any norm k � k,

Ek� k D cnEk�k;

where

cn D Ej� j D p
nCO.1/;

since � has the thin-shell property. Theorem 1 can thus be restated as follows. If Y
is an isotropic log-concave random vector and K is a convex body containing 0 in
its interior then

EkY kK � C
p
n logn �n M.K/: (18)
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Now let K be an isotropic convex body and let X be a random vector uniform on
K . Since X 2 K almost surely, we have kXkKı � jX j2, hence

EkXkKı � EjX j2 D n:

Applying (18) to Kı and to X thus gives

M �.K/ � c
p
np

logn �n
;

which is (i).
In [1], Bourgain combined the inequality

EkXk � Cn1=4Ek� k (19)

with a theorem of Pisier to get the estimate

LK � Cn1=4 logn:

Part (ii) of the corollary is obtained along the same lines, replacing (19) by our main
theorem. We sketch the argument for completeness.

Recall that K is assumed to be isotropic and that X is uniform on K . Let T be a
positive linear map of determinant 1. Then by the arithmetic-geometric inequality

EkXk.TK/ı � EhX;TXi D Tr.T / � n:

Applying (18) to the random vector X and the convex body .TK/ı we get

M �.TK/ � c
p
np

logn �n
: (20)

Now we claim that given a convex bodyK containing 0 in its in interior, there exists
a positive linear map T of determinant 1 such that

M �.TK/ � C jKj1=npn logn: (21)

Taking this for granted and combining it with (20) we obtain

jKj�1=n � C 0.logn/3=2�n:

which is part (ii) of the corollary.
It remains to prove the claim (21). Clearly

M �.K/ � M �.K �K/;
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and by the Rogers-Shephard inequality (see [11])

jK �Kj � 4njKj:

This shows that it is enough to prove the claim when K is symmetric about the
origin. Now ifK is a symmetric convex body in R

n, Pisier’s Rademacher-projection
estimate together with a result of Figiel and Tomczak-Jaegermann (see e.g. [10,
Theorems 2.5 and 3.11]) guarantee the existence of T such that

M.TK/M �.TK/ � C log.n/;

where C is a universal constant. On the other hand, using Jensen’s inequality and
integrating in polar coordinate we get

M.TK/ D
ˆ

Sn�1

k�kTK �.d�/ �
�ˆ

Sn�1

k�k�n
TK �.d�/

��1=n

D
� jBn

2 j
jTKj

�1=n � cp
n jKj1=n ;

finishing the proof of (21).
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On the Oscillation Rigidity of a Lipschitz
Function on a High-Dimensional Flat Torus

Dmitry Faifman, Bo’az Klartag, and Vitali Milman

Abstract Given an arbitrary 1-Lipschitz function f on the torus Tn, we find a k-
dimensional subtorus M � T

n, parallel to the axes, such that the restriction of f
to the subtorus M is nearly a constant function. The k-dimensional subtorus M
is selected randomly and uniformly. We show that when k � c logn=.log logn C
log 1="/, the maximum and the minimum of f on this random subtorusM differ by
at most ", with high probability.

1 Introduction

A uniformly continuous function f on an n-dimensional space X of finite volume
tends to concentrate near a single value as n approaches infinity, in the sense that
the "-extension of some level set has nearly full measure. This phenomenon, which
is called the concentration of measure in high dimension, is frequently related to a
transitive group of symmetries acting on X . The prototypical example is the case of
a 1-Lipschitz function on the unit sphere Sn, see [3, 4, 8].

One of the most important consequences of the concentration of measure is the
emergence of spectrum, as was discovered in the 1970s by the third named author,
see [5–7]. The idea is that not only does the distinguished level set have a large
"-extension in a sense of measure, but one may actually find structured subsets on
which the function is nearly constant. When we have a group G acting transitively
on X , this structured subset belongs to the orbit fgM0 Ig 2 Gg where M0 � X is a
fixed subspace. The third named author also noted some connections with Ramsey
theory, which were developed in two different directions: by Gromov [2] in the
direction of metric geometry, and by Pestov [9, 10] in the unexpected direction of
dynamical systems.

The phenomenon of spectrum thus follows from concentration, and it comes
as no surprise that most of the results in Analysis which establish spectrum, have
appeared as a consequence of concentration. In this note we demonstrate an instance
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where no concentration of measure is available, but nevertheless a geometrically
structured level set arises.

To state our result, consider the standard flat torus T
n D R

n=Zn D .R=Z/n,
which inherits its Riemannian structure from R

n. We say that M � T
n is a

coordinate subtorus of dimension k if it is the collection of all n-tuples .�j /njD1 2 T
n

with fixed n � k coordinates. Given a manifold X and f W X ! R we denote the
oscillation of f along X by

Osc.f IX/ D sup
X

f � inf
X
f:

Theorem 1. There is a universal constant c > 0, such that for any n � 1; 0 <

" � 1 and a function f W T
n ! R which is 1-Lipschitz, there exists a

k-dimensional coordinate subtorus M � T
n with kD

j
c

log n
log log.5n/C log j"j

k
, such

that Osc.f IM/� ".
Note that the collection of all coordinate subtori equals the orbit fgM0 I g 2 Gg

where M0 � T
n is any fixed k-dimensional coordinate subtorus, and the group

G D R
n Ì Sn acts on T

n by translations and permutations of the coordinates.
Theorem 1 is a manifestation of spectrum, yet its proof below is inspired by proofs
of the Morrey embedding theorem, and the argument does not follow the usual
concentration paradigm. We think that the spectrum phenomenon should be much
more widespread, perhaps even more than the concentration phenomenon, and we
hope that this note will be a small step towards its recognition.

2 Proof of the Theorem

We write j � j for the standard Euclidean norm in R
n and we write log for the natural

logarithm. The standard vector fields @=@x1; : : : ; @=@xn on R
n are well-defined also

on the quotient Tn D R
n=Zn. These n vector fields are the coordinate directions

on the unit torus T
n. Thus, the partial derivatives @1f; : : : ; @nf are well-defined

for any smooth function f W T
n ! R, and we have jrf j2 D Pn

iD1.@if /2. A
k-dimensional subspace E � TxT

n is a coordinate subspace if it is spanned by k
coordinate directions. For f W Tn ! R andM � T

n a submanifold, we write rMf

for the gradient of the restriction f jM W M ! R.
Throughout the proof, c; C will always denote universal constants, not necessar-

ily having the same value at each appearance. Since the Riemannian volume of Tn

equals one, Theorem 1 follows from the case ˛ D 1 of the following:

Theorem 2. There is a universal constant c > 0 with the following property: Let
n � 1; 0 < " � 1; 0 < ˛ � 1 and 1 � k � c

log n
log log.5n/Cj log "jCj log˛j . Let f W Tn ! R

be a locally-Lipschitz function such that, for p D k.1C ˛/,
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ˆ

Tn

jrf jp � 1: (1)

Then there exists a k-dimensional coordinate subtorus M � T
n with Osc

.f IM/ � ".

The essence of the proof is as follows. First, for some large k we find a
k-dimensional coordinate subtorus M where the derivative is small on average,

in the sense that
� ´

M
jrMf jp

�1=p
is small. The existence of such a subtorus is

a consequence of the observation that at every point, most of the partial derivatives
in the coordinate directions are small. We then restrict our attention to this subtorus
and take any two points Qx; Qy 2 M . Our goal is to show that f . Qx/ � f . Qy/ < ".

To this end we construct a polygonal line from Qx to Qy which consists of intervals
of length 1=2. For every such interval Œx; y� we randomly select a point Z in a
.k � 1/-dimensional ball which is orthogonal to the interval Œx; y� and is centered
at its midpoint. We then show that jf .x/ � f .Z/j and jf .y/ � f .Z/j are typically
small, since jrMf j is small on average along the intervals Œx;Z� and Œy;Z�.

We proceed with a formal proof of Theorem 2, beginning with the following
computation:

Lemma 3. For any n � 1; 0 < " � 1; 0 < ˛ � 1 and 1 � k �
c

log n
log log.5n/Cj log "jCj log˛j , we have that k � n=2 and

 
2k

ı2n

!1=p

�
p
k � ı (2)

where p D .1C ˛/k and

ı D ˛

16.1C ˛/
� "

k3=2
: (3)

Proof. Take c D 1=200. The desired conclusion (2) is equivalent to 4k2�p �
ı2pC4n2, which in turn is equivalent to

28pC18 �
�
˛ C 1

˛

�2pC4
� k2pC8 � "2pC4n2: (4)

Since c � 1=12 and ˛ � 1 we have that 6p � 12k � logn=j log "j and hence
"2pC4n2 � "6pn2 � n. Since ˛ C 1 � 2 then in order to obtain (4) it suffices to
prove

�
32

˛
� k
�2pC8

� n: (5)



126 D. Faifman et al.

Since c � 1=200 and k � c logn=.log log.5n// then 24k log k � logn. Since
k � c

log n
j log˛jClog.log 5/ then 24k log

�
32
˛

� � logn. We conclude that 12k log
�
32
˛

� k� �
logn, and hence

�
32

˛
� k
�12k

� n: (6)

However, p D .1C ˛/k and hence 2pC 8 � 12k. Therefore the desired bound (5)
follows from (6). Since k � 1

2
logn � n=2, the lemma is proven. ut

Our standing assumptions for the remainder of the proof of Theorem 2 are that
n � 1; 0 < " � 1; 0 < ˛ � 1 and that

1 � k � c
logn

log log.5n/C j log "j C j log˛j (7)

where c > 0 is the constant from Lemma 3. We also denote

p D .1C ˛/k (8)

and we write e1; : : : ; en for the standard n unit vectors in R
n.

Lemma 4. Let v 2 R
n and let J � f1; : : : ; ng be a random subset of size k, selected

uniformly from the collection of all

�
n

k

�

subsets. Consider the k-dimensional

subspace E � R
n spanned by fej I j 2 J g and let PE be the orthogonal projection

operator onto E in R
n. Then,

�
EjPEvjp�1=p � ˛

8.1C ˛/
� "
k

� jvj:

Proof. We may assume that v D .v1; : : : ; vn/ 2 R
n satisfies jvj D 1. Let ı > 0 be

defined as in (3). Denote I D fi I jvi j � ıg. Since jvj D 1, we must have jI j � 1=ı2.
We claim that

P.I \ J D ;/ � 1 � 2k

ı2n
: (9)

Indeed, if 2k
ı2n

� 1 then (9) is obvious. Otherwise, jI j � ı�2 � n=2 � n � k and

P.I\J D ;/ D
k�1Y

jD0

n� jI j � j

n � j �
�

1 � jI j
n � k C 1

�k
�
�

1 � 2

ı2n

�k
� 1� 2k

ı2n
:
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Thus (9) is proven. Consequently,

EjPEvjp D E

0

@
X

j2J

v2j

1

A

p=2

� 2k

ı2n
CE

2

6
41

fI\JD;g

�
0

@
X

j2J

v2j

1

A

p=2
3

7
5 � 2k

ı2n
C
 

k �ı2
!p=2

;

where 1A equals one if the event A holds true and it vanishes otherwise. By using
the inequality .aC b/1=p � a1=p C b1=p we obtain

�
EjPEvjp�1=p �

 
2k

ı2n

!1=p

C
p
k � ı � 2

p
k � ı D ˛

8.1C ˛/
� "
k
;

where we utilized (3) and Lemma 3. ut
Corollary 5. Let f W Tn ! R be a locally-Lipschitz function with

´
Tn

jrf jp � 1.
Then there exists a k-dimensional coordinate subtorusM � T

n such that

�ˆ

M

jrMf jp
�1=p

� ˛

8.1C ˛/
� "
k
: (10)

Proof. The set of all coordinate k-dimensional subtori admits a unique probability
measure, invariant under translations and coordinate permutations. Let M be a
random coordinate k-subtorus, chosen with respect to the uniform distribution. All
the tangent spaces TxTn are canonically identified with R

n, and we let E � R
n

denote a random, uniformly chosen k-dimensional coordinate subspace. Then we
may write

EM

ˆ

M

jrMf jp D
ˆ

Tn

EE jPErf jp � Ap
ˆ

Tn

jrf jp � Ap;

where A D ˛
8.1C˛/ � "

k
and we used Lemma 4. It follows that there exists a subtorus

M which satisfies (10). ut
The following lemma is essentially Morrey’s inequality (see [1, Sect. 4.5]).

Lemma 6. Consider the k-dimensional Euclidean ballB.0;R/ D fx 2 R
k I jxj �

Rg. Let f W B.0;R/ ! R be a locally-Lipschitz function, and let x; y 2 B.0;R/

satisfy jx � yj D 2R. Recall that p D .1C ˛/k. Then,

jf .x/ � f .y/j � 4
1C ˛

˛
� k 1

2.1C˛/ �R1� k
p

�ˆ

B.0;R/

jrf .x/jpdx

�1=p
: (11)

Proof. We may reduce matters to the case R D 1 by replacing f .x/ by f .Rx/;
note that the right-hand side of (11) is invariant under such replacement. Thus x is
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a unit vector, and y D �x. Let Z be a random point, distributed uniformly in the
.k � 1/-dimensional unit ball

B.0; 1/\ x? D fv 2 R
k I jvj � 1; v � x D 0g;

where v � x is the standard scalar product of x; v 2 R
k . Let us write

Ejf .x/ � f .Z/j � Ejx �Zj
ˆ 1

0

jrf ..1 � t/x C tZ/j dt (12)

� 2Ejrf ..1 � T /x C TZ/j D 2

ˆ

B.0;1/

jrf .z/j�.z/dz;

where T is a random variable uniformly distributed in Œ0; 1�, independent of Z, and
where � is the probability density of the random variable .1 � T /x C TZ. Then,

�..1 � r/x C rz/ D ck

rk�1

when z 2 B.0; 1/\ x?; 0 < r < 1. We may compute ck as follows:

1 D ck

ˆ 1

0

1

rk�1 Vk�1.r/dr D ckVk�1.1/ D ck
�k�1

�
�
kC1
2

� ;

where Vk�1.r/ is the .k�1/-dimensional volume of a .k�1/-dimensional Euclidean
ball of radius r . Denote q D p=.p � 1/. Then,

ˆ

B.0;1/

�q D
ˆ 1

0

� ck

rk�1

�q
Vk�1.r/dr D c

q

kVk�1.1/

.k � 1/.1� q/C 1
D p � 1

p � k

0

@
�
�
kC1
2

�

�k�1

1

A

q�1

;

and hence

�ˆ

B.0;1/

�q
�1=q

D
�
p � 1

p � k

�1=q
 
�
�
kC1
2

�

�k�1

!1=p

(13)

�
�
1C ˛

˛

�1=q �
kk=2

�k�1

�1=p

� 1C ˛

˛
� k 1

2.1C˛/ :

Denote C˛;k D 1C˛
˛

� k 1
2.1C˛/ . From (12), (13) and the Hölder inequality,

Ejf .x/�f .Z/j � 2

�ˆ

B.0;1/

jrf jp
� 1

p
�ˆ

B.0;1/

�q
� 1

q

� 2C˛;k

�ˆ

B.0;1/

jrf jp
� 1

p

:

(14)
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A bound similar to (14) also holds for Ejf .y/ � f .Z/j, since y D �x. By the
triangle inequality,

jf .x/�f .y/j � Ejf .y/�f .Z/jCEjf .Z/�f .x/j � 4C˛;k

�ˆ

B.0;1/

jrf jp
�1=p

:

ut
Proof of Theorem 2. According to Corollary 5 we may select a coordinate subtorus
M D T

k so that

�ˆ

M

jrMf jp
�1=p

� ˛

8.1C ˛/
� "
k
: (15)

Given any two points x; y 2 M , let us show that

jf .x/ � f .y/j � ": (16)

The distance between x and y is at most
p
k=2. Let us construct a curve, in fact

a polygonal line, starting at x and ending at y which consists of at most
p
k C 1

intervals of length 1=2. For instance, we may take all but the last two intervals to be
intervals of length 1=2 lying on a minimizing geodesic between x to y. The last two
intervals need to connect two points whose distance is at most 1=2, and this is easy
to do by drawing an isosceles triangle whose base is the segment between these two
points.

Let Œxj ; xjC1� be any of the intervals appearing in the polygonal line constructed
above. Let B � T

k D M be a geodesic ball of radius R D 1=4 centered at the
midpoint of Œxj ; xjC1�. This geodesic ball on the torus is isometric to a Euclidean
ball of radius R D 1=4 in R

k. Lemma 6 applies, and implies that

jf .xj /� f .xjC1/j � 4
1C ˛

˛
� k 1

2.1C˛/

�
1

4

�1� k
p
�ˆ

B

jrMf jp
� 1

p

� 4
1C ˛

˛
�
p
k

�ˆ

M

jrMf jp
� 1

p

:

Since the number of intervals in the polygonal line is at most
p
k C 1 � 2

p
k, then

jf .x/ � f .y/j �
X

j

jf .xj /� f .xjC1/j � 8
1C ˛

˛
� k
�ˆ

M

jrMf jp
�1=p

� ";

where we used (15) in the last passage. The points x; y 2 M were arbitrary, and
hence Osc.f IM/ � ". ut
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Remarks. 1. It is evident from the proof of Theorem 2 that the subtorus M is
selected randomly and uniformly over the collection of all k-dimensional
coordinate subtori. It is easy to obtain that with probability at least 9=10, we
have that Osc.M If / � ".

2. The assumption that f is locally-Lipschitz in Theorem 2 is only used to
justify the use of the fundamental theorem of calculus in (12). It is possible to
significantly weaken this assumption; it suffices to know that f admits weak
derivatives @1f; : : : ; @nf and that (1) holds true, see [1, Chap. 4] for more
information.

It is quite surprising that the conclusion of the theorem also holds for non-
continuous, unbounded functions, with many singular points, as long as (1) is
satisfied in the sense of weak derivatives. The singularities are necessarily of a
rather mild type, and a variant of our proof yields a subtorus M on which the
function f is necessarily continuous with Osc.f IM/ � ".

3. Another possible approach to the problem would be along the lines of the proof
of the classical concentration theorems—namely, finding an "-net of points in
a subtorus, where all the coordinate partial derivatives of the function are small.
However, this approach requires some additional a-priori data about the function,
such as a uniform bound on the Hessian.

4. We do not know whether the dependence on the dimension in Theorem 1 is
optimal. Better estimates may be obtained if the subtorus M � T

n is permitted
to be an arbitrary k-dimensional rational subtorus, which is not necessarily a
coordinate subtorus. Recall that a rational torus is a quotient of Rn by a lattice
which is spanned by n vectors with rational coordinates.
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Identifying Set Inclusion by Projective Positions
and Mixed Volumes

Dan Florentin, Vitali Milman, and Alexander Segal

Abstract We study a few approaches to identify inclusion (up to a shift) between
two convex bodies in R

n. To this goal we use mixed volumes and fractional linear
maps. We prove that inclusion may be identified by comparing volume or surface
area of all projective positions of the sets. We prove similar results for Minkowski
sums of the sets.

1 Introduction and Results

Set inclusionA � B of two convex bodies (elements of Kn, namely compact convex
non degenerate sets), implies that for every monotone functional f W Kn ! R, one
has by definition, f .A/ � f .B/. For example, for the volume functional we have
jAj � jBj. Our goal is to achieve a reverse implication: describing a family F of
such functionals, with the property of identifying inclusion, that is, givenA;B 2 Kn,
if f .A/ � f .B/ for all f 2 F , then A � B (or more generally, B contains a
translate of A). Note that if a family of functionals F identifies inclusion, then it
separates elements in Kn, that is, if f .A/ D f .B/ for all f 2 F , then A D B (or
more generally,B is a translate of A). The converse, however, is not true in general.
That is, some families separate points but do not identify inclusion. For example,
see the theorem by Chakerian and Lutwak below.

R. Schneider showed in [10] that a convex body is determined, up to translation,
by the value of its mixed volumes with some relatively small family of convex
bodies. An extension to this fact was given by W. Weil in the same year:

Theorem (Weil [12]). Let A;B 2 Kn. Then B contains a translate ofA if and only
if for all K2; : : : ; Kn 2 Kn:
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V.A;K2; : : : ; Kn/ � V.B;K2; : : : ; Kn/;

where V.K1; : : : ; Kn/ denotes the n-dimensional mixed volume.

Actually, it is possible to reduce even further the information on the bodies A and
B , as follows from the result of Lutwak [7] which we discuss in Sect. 3.

We will investigate a few approaches to achieve the same goal. First we use
a family of transformations on R

n. We examine two such families in this note: the
group of affine transformations AFn, and the group of the far less explored fractional
linear (or projective) transformations FLn. For example we may consider FL D
ff ı T W T 2 AFng, where f is the volume functional, and T is considered as a
map on Kn. Unfortunately, the affine structure respects volume too well, that is, if
jAj � jBj, then for every T 2 AFn we have jTAj � jTBj as well. In other words, the
action of the affine group is not rich enough to describe inclusion. However, it turns
out that the larger family FP D ff ıT W T 2 FLng is identifying inclusion. We will
consider replacing the volume functional by a mixed volume, as well as replacing
the family of transformations by different operations (such as Minkowski sums with
arbitrary bodies). We would like to emphasize that the proofs we present in this note
are not very sophisticated. However, they point to some directions which Convexity
Theory did not explore enough, and lead to new and intriguing questions.

Let us introduce a few standard notations. First, for convenience we will fix an
Euclidean structure and some orthonormal basis feign1 . For a vector x 2 R

n we will
often write x D .x1; : : : ; xn/ D Pn

1 xi ei . Given a subspaceE � R
n,PE will denote

the orthogonal projection onto E . We denote by Dn the n-dimensional Euclidean
ball and, for 1 � i � n, by Wn�i .K/ the quermassintegral:

Wn�i .K/ D V.KŒi �;DnŒn � i �/:

For further definitions and well known properties of mixed volumes and quermass-
integrals see [11]. We denote the support function of K by:

hK.u/ D sup
x2K

hx; ui:

Let us recall the definition of fractional linear maps. We identify R
n with a subset of

the projective space RPn, by fixing some point z 2 R
nC1 n f0g, and considering the

affine subspace En D fxjhz; xi D 1g � R
nC1. Every point in En corresponds to a

unique line in RnC1 passing through the origin. A regular linear transformation QL W
R
nC1 ! R

nC1 induces an injective map L on RPn. A fractional linear map is the
restriction of such a map to En \L�1.En/. The maximal (open) domainDom.F /,
of a non-affine fractional linear map F is Rn n H , for some affine hyperplane H .
Since our interest is in convex sets, we usually consider just one side of H as the
domain, i.e. our maps are defined on half spaces. They are the homomorphisms of
convexity, in the sense that there are no other injective maps that preserve convexity
of every set in their domain. The big difference, compared to linear maps, is that the
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Jacobian matrix is not constant, and its determinant is not bounded (on the maximal
domain). In Sect. 2 we show that FP is an identifying family:

Theorem 1.1. Let n � 1, and A;B 2 Kn. If for every admissible F 2 FLn, one
has

Vol.FA/ � Vol.FB/;

then A � B .

When we say that F is admissible we mean that A;B � Dom.F /. Theorem 1.1 is
a particular case of the following fact, where the volume is replaced by any of the
quermassintegrals:

Theorem 1.2. Let n � 2, A;B 2 Kn, and fix 1 � i � n. If for every admissible
F 2 FLn one has

Wn�i .FA/ � Wn�i .FB/;

then A � B .

The proof of Theorem 1.2 is based on the non boundedness of the Jacobians
of admissible fractional linear maps. That is, if A n B is of positive volume, we
may choose an admissible F 2 FLn such that FA exceeds FB in volume or, say,
surface area, regardless of how small jA n Bj is. The exact formulation is given in
Lemma 2.3.

Had we considered only F 2 FLn which are affine in Theorem 1.1, clearly the
conclusion could not have been reproduced (since jFAj D det.F /jAj, we in fact
only assume that jAj � jBj). One may ask the same question in the case of surface
area, namely i D n � 1. Since the surface area is not a linear invariant, not even up
to the determinant (as in the case of volume), the answer is not trivial, but it does
follow immediately (along with the restriction to n � 3) from the negative answer
to Shephard’s problem. In [8, 9] Petty and Schneider showed:

Theorem (Petty, Schneider). Let n � 3. Then there exist centrally symmetric
bodies A;B 2 Kn, such that Vol.A/ > Vol.B/, and yet for every n � 1 dimensional
space E , Voln�1.PEA/ � Voln�1.PEB/. In particular, A 6� B .

We say that K 2 Kn is centrally symmetric (or symmetric), if K D �K
(i.e. its center is 0). Chakerian and Lutwak [3] showed that the bodies from the
previous theorem satisfy a surface area inequality in every position. For the sake of
completeness, we append the proof.

Theorem (Chakerian, Lutwak). Let n � 3. Then there exist centrally symmetric
bodies A;B 2 Kn, such that A 6� B , and yet for every L 2 AFn we have

Voln�1.@LA/ � Voln�1.@LB/:
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Proof. Let A;B be the sets whose existence is assured by the previous theorem.
Recall the definition of the projection body…K of a convex bodyK:

h…K.u/ D Voln�1.Pu?
.K//:

Using this notion, the assumption on A and B can be reformulated as …A � …B .
By Kubota’s formula W1.…K/ D cnj@Kj, which implies that j@Aj � j@Bj. Let
L 2 AFn. There exists QL 2 GLn such that for all K 2 Kn, …LK D QL…K . Thus,
the inclusion…LA � …LB holds as before, and we get for all L 2 AFn:

j@LAj � j@LBj:

ut
In Sect. 2 we recall some of the properties of fractional linear maps and gather

some technical lemmas, to deduce Theorem 1.2.
In Sect. 3 we consider a different type of an identifying family of functionals.

The volume of projective (or linear) transformations of a body A is replaced by
the volume of Minkowski sums of A with arbitrary bodies. First let us mention the
following curious yet easy facts, which, in the same time, demonstrate well our
intention.

Theorem 1.3. Let n � 1, and let A;B 2 Kn be centrally symmetric bodies. If for
all K 2 Kn, one has jACKj � jB CKj, then A � B .

Moreover:
Let n � 1, K0 2 Kn, and let A;B 2 Kn be centrally symmetric bodies. If for every
linear image K D LK0, one has jACKj � jB CKj, then A � B .

Theorem 1.4. Let n � 1, and let A;B 2 Kn. If for every K 2 Kn, one has jA C
Kj � jB CKj, then there exists x0 2 R

n such that A � B C x0.
Moreover:

Let n � 1, and let A;B 2 Kn. If for every simplex � 2 Kn, one has jA C �j �
jB C�j, then there exists x0 2 R

n such that A � B C x0.

We include a direct proof of the symmetric case, since in this case the argument
is far simpler. To prove the general case, we first obtain the inequality:

8K 2 Kn W V.A;KŒn � 1�/ � V.B;KŒn � 1�/;

where V is the n dimensional mixed volume, and KŒn � 1� stands for n � 1 copies
of the body K . Finally, the proof may be completed by applying a beautiful result
of Lutwak to the last inequality (see Sect. 3). In the rest of Sect. 3 we investigate the
situation where we only assume that the n� 1 dimensional volume of every section
of ACK is smaller than that of B CK (for everyK).

In the last two sections, we formulate conditions to achieve inclusions between
two n-tuples of convex bodies, K1; : : : ; Kn; L1; : : : ; Ln, in terms of the mixed
volume of their affine or projective positions.
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We would like to thank Rolf Schneider for his remarks and attention.

2 Fractional Linear Maps

Let us recall the definition and some properties of fractional linear maps. A
fractional linear map is a map F W Rn nH ! R

n, of the form

F.x/ D Ax C b

hx; ci C d
;

where A is a linear operator in R
n, b; c 2 R

n and d 2 R, such that the matrix

OA D
�
A b

c d

�

is invertible (in R
nC1). The affine hyperplane H D fxjhx; ci C d D 0g is called

the defining hyperplane of F . Since such maps are traces of linear maps in R
nC1,

we sometimes call the image F.K/ of a convex body K under such a map a
projective position of the body K . These are the only transformations (on, say, open
convex domains), which map any interval to an interval. Note that affine maps are
a subgroup of fractional linear maps, and that any projective position of a closed
ellipsoid is again an ellipsoid. The same is true for a simplex. For more details,
including proofs of the following useful facts, see [1].

Proposition. Denote by HC the half space fx1 > 1g (where x1 is the first
coordinate of x) and let the map F0 W HC ! HC (called the canonical form of
a fractional linear map) be given by

F0.x/ D x

x1 � 1
:

For any x0; y0 2 R
n and a non-affine fractional linear map F with F.x0/ D y0,

there exist B;C 2 GLn such that for every x 2 R
n,

B.F.Cx C x0/ � y0/ D F0.x/:

Fractional linear maps turn up naturally in convexity. For example, they are
strongly connected to the polarity map, as can be seen in the following, easily
verified proposition.

Proposition. Let K � fx1 < 1g � R
n be a closed convex set containing 0. Then

for the canonical form F0.x/ D x
x1�1 the following holds:

F0.K/ D .e1 �Kı/ı;
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where e1 D .1; 0; : : : ; 0/ 2 R
n.

Remark 2.1. Let K;T 2 Kn. It is useful to note that when K 6� T , there exist
disjoint closed ballsDK;DT of positive radius, and a hyperplaneH (which divides
R
n to two open half spaces HC, H�), such that:

DK � K \H�; T � DT � HC:

This trivial observation means it is sufficient in many cases to consider the action
of fractional linear maps on dilations of the ball. To this end we write the following
easily verified fact, resulting from a direct computation:

Fact 2.2 Let ER;r;ı stand for the image of the Euclidean ballDn under the diagonal
linear map AR;r D diagfR; r; : : : ; rg, shifted by .1 � ı � R/e1, so that the distance
of ER;r;ı from the hyperplaneH0 D fx1 D 1g is ı. That is:

ER;r;ı D AR;rDn C .1 � ı � R/e1:

Then for the canonical form F0 one has:

F0.ER;R;ı/ D E R
ı.ıC2R/ ;

R

ı
p

ıC2R
; 1
ıC2R

:

In particular, F0.ER;R;ı/ contains a translate ofmDn and is contained in a translate
of MDn, where m D R

ı
minf 1

ıC2R ;
1p
ıC2R g, and M D R

ı
maxf 1

ıC2R ;
1p
ıC2R g.

We shall now prove the main Lemma required for Theorem 1.2.

Lemma 2.3. Let K;T 2 Kn satisfy K 6� T . For every " > 0 there exist x0 2 R
n

and a fractional linear map F such that:

F.T / � "Dn; Dn C x0 � F.K/:

Proof. Let " > 0, and let DK;DT be balls satisfying the inclusions in Remark 2.1.
It suffices to find a fractional linear map F such that F.DK/ contains a translate of
Dn, and F.DT / � "Dn. Without loss of generality (by applying an affine map), we
may assume that the centers of DK and DT both lie on the x1 coordinate axis, and
that:

DK D E1;1;ı ; DT D ER;R;d ;

for some d > 2, and R; ı > 0. From 2.2 it follows that F0.DK/ contains a translate
of 1

ı.ıC2/Dn, and F0.DT / is contained in a translate of R

d
p
dC2RDn � RDn. Since ı

is arbitrarily small, the result follows. ut
Theorem 1.2 now follows in an obvious way.
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3 Comparing Convex Bodies Via Minkowski Sums

We will begin with proving the symmetric case.

Proof of Theorem 1.3. We assume that the symmetric sets A;B satisfy jACKj �
jBCKj, for allK 2 Kn. The case n D 1 is trivial. Assume n � 2 and let u 2 Sn�1.
Note that the inequality jA C Kj � jB C Kj holds also for a compact convex set
K with empty interior, and let K � u? be an n � 1 dimensional Euclidean ball of
(n � 1 dimensional) volume 1. The leading coefficient in jA C rKj for r ! 1 is
the width wA.u/ D 2hA.u/, and since jAC rKj � jB C rKj we have:

8u 2 Sn�1; hA.u/ � hB.u/;

as required. ut
In the case of general bodies, the previous inequality on the widths:

8u 2 Sn�1; wA.u/ � wB.u/;

does not imply the desired inclusionA � B . However, an inequality on the integrals´
hAd�K � ´

hBd�K , against any surface area measure �K of a convex body K ,
may be obtained by an argument similar to that from the proof of Theorem 1.3. It
turns out to be sufficient, by the following theorem from [7]:

Theorem (Lutwak). Let A;B 2 Kn. Assume that for every simplex � 2 Kn one
has

V.A;�Œn � 1�/ � V.B;�Œn � 1�/:

Then there exists x0 2 R
n such that AC x0 � B .

Proof of Theorem 1.4. It follows from the assumption that for every K 2 Kn and
every " > 0, we have jKC "Aj � jKC "Bj. Comparing derivatives at " D 0 yields
an inequality between mixed volumes:

8K 2 Kn; V .A;KŒn � 1�/ � V.B;KŒn � 1�/:

The conclusion follows from Lutwak’s Theorem. ut
Clearly, these families of functionals are by no means minimal. In the proof

of Theorem 1.4 we have in fact used only the functionals fA 7! jA C �jg. In
the symmetric case, we only used dilates of a flat ball. This leads to the formally
stronger formulations of Theorems 1.3, 1.4.

Let us use these facts to add some information to the well known Busemann-Petty
problem. The Busemann-Petty problem is concerned with comparisons of volume of
central sections. That is, given two centrally symmetric sets A;B 2 Kn, satisfying
jA \ Ej � jB \ Ej for every n � 1 dimensional subspace E , does it imply that



140 D.I. Florentin et al.

jAj � jBj? As shown in [5, 6, 13], the answer is negative for all n � 5 and positive
for n � 4. However, if we combine intersections with Minkowski sums, we may
use Theorem 1.3 to get:

Corollary 3.1. Let n � 2, and let A;B 2 Kn be centrally symmetric bodies. If for
all K 2 Kn and E 2 Gn;n�1 one has

jE \ .ACK/j � jE \ .B CK/j;

then A � B . As in Theorem 1.3, it suffices to fix a bodyK0, and check the condition
only for linear images of K0.

The non symmetric case is not as simple. In this case we know that for every
E 2 Gn;n�1 there exists a point xE 2 E , such that E \A � E \B CxE . However,
this does not imply that there exists a point x 2 R

n such that A � B C x, as shown
in the following example:

Example 3.2. There existA;B 2 K2, such that for every lineE passing through the
origin, the interval B \ E is longer than the interval A \ E , and yet no translation
of B contains A.

The construction is based on (the dual to) the Reuleaux triangleR, a planar body
of constant width: 8u 2 S1; wR.u/ D hR.u/ C hR.�u/ D 2. In other words, the
projection of R to u? is an interval of length 2, say Pu?

.R/ D Œ˛ � 2; ˛� for some
˛ D ˛.u/ 2 .0; 2/. Then:

jRı \ u?j D j.Pu?
.R//ıj D jŒ1=.˛ � 2/; 1=˛�j � 2 D jD2 \ u?j:

However, no translation of Rı containsD2.

Although Corollary 3.1 may not be extended to non symmetric bodies, one can
show the following fact, in the same spirit:

Theorem 3.3. Let n � 2 and A;B 2 Kn. If for all K 2 Kn and E 2 Gn;n�1 one
has

jE \ .ACK/j � jE \ .B CK/j; (1)

then A� A � B � B . In particular, there exist xA; xB 2 R
n such that:

AC xA � B � B � .nC 1/.B C xB/:

Proof. Apply condition (1) for convex sets of the form �ACK to get:

jE \ .A� ACK/j � jE \ .B �ACK/j:

Then apply condition (1) for convex sets of the form �B CK:

jE \ .A� B CK/j � jE \ .B � B CK/j:
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Since jE \ .B �ACK/j D jE \ .A�B �K/j, we get for all symmetric K 2 Kn:

jE \ .A� ACK/j � jE \ .B � B CK/j;

which by Corollary 3.1 implies that A � A � B � B . The theorem now follows,
since A�A contains a translate of A, and nB contains a translate of �B (as shown
by Minkowski. See, e.g., Bonnesen and Fenchel [2], Sect. 7, 34, pp. 57–58 for a
proof). ut

We also consider the projection version of Theorem 3.3:

Theorem 3.4. Let n � 2 and A;B 2 Kn. If for all K 2 Kn and E 2 Gn;n�1 one
has

jPE.ACK/j � jPE.B CK/j; (2)

then there exists x0 2 R
n such that AC x0 � 2B .

Proof. Since projection is a linear operator, PE.ACK/ D PE.A/C PE.K/. Due
to surjectivity we may rewrite condition (2) as follows. For every n� 1 dimensional
subspace E and for every convex bodyK 0 � E we have:

jPE.A/CK 0j � jPE.B/CK 0j:

Theorem 1.4 implies that there exists a shift xE 2 E such that PE.A/ � PE.B/C
xE . By a result of Chen, Khovanova, and Klain (see [4]) there exists x0 2 R

n such
that:

AC x0 � n

n � 1B � 2B:

Note that, while the dimension free constant equals 2, we have in fact seen the
dimension dependent constant n

n�1 , which tends to 1 when n ! 1. ut
Let us formulate a problem which arises from Theorem 3.3:

Problem A: LetA;B 2 Kn such that 0 2 int.A\B/. Assume that for every n�1
dimensional subspace E 2 Gn;n�1 there exists xE 2 R

n such that A \ E C xE �
B \ E . Does there exist a universal constant C > 0 such that A C x0 � CB for
some x0 2 R

n? Of course, we are interested in C independent of the dimension. We
suspect that C D 4 suffices.

4 Comparing n-Tuples: Affine Case

Although very little may be said about inclusion of the convex body in another one
using only affine images of those bodies, some information is anyway available
through the use of mixed volumes.
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Theorem 4.1. Let A;B;K2; : : : ; Kn 2 Kn be centrally symmetric bodies. If for all
u 2 SLn one has

V.uA; K2; : : : ; Kn/ � V.uB; K2; : : : ; Kn/; (3)

then A � B .

Proof. Due to multilinearity of mixed volume, (3) holds for any u 2 GLn as well.
Since V.uK1; : : : ; uKn/ D j det.u/jV.K1; : : : ; Kn/, we get for every u 2 GLn:

V.A; uK2; : : : ; uKn/ � V.B; uK2; : : : ; uKn/:

Fix a direction v 2 Sn�1, and let E D v?. We may choose a sequence fung � GLn
such that for all K 2 Kn, un.K/ ! PE.K/ in the Hausdorff metric. By continuity
of mixed volume with respect to the Hausdorff metric we get that:

V.A;PEK2; : : : ; PEKn/ � V.B;PEK2; : : : ; PEKn/; that is:

wA.v/ � V.PEK2; : : : ; PEKn/ � wB.v/ � V.PEK2; : : : ; PEKn/:

In the last inequality, V stands for the n�1 dimensional mixed volume, and sinceKi

have non empty interior, it does not vanish. Thus for all v 2 Sn�1, wA.v/ � wB.v/,
which implies inclusion, since the bodies are symmetric. ut
Theorem 4.2. Let A1;B1; : : : ; An; Bn 2 Kn be centrally symmetric bodies. If for
all u1; : : : ; un 2 SLn one has

V.u1A1; : : : ; unAn/ � V.u1B1; : : : ; unBn/; (4)

then there exist positive constants t1; : : : ; tn such that …n
1ti D 1 and Ai � tiBi .

Proof. For 2 � i � n, denote:

ti D max
t>0

ft W tAi � Bi g;

and let vi 2 Sn�1 be such that ti hAi .vi / D hBi .vi /. Since we may rotate the bodies
Ai separately as desired, we may assume without loss of generality that vi D ei . Let
v 2 Sn�1, let g be a rotation such that g.v/ D e1, and denote t1 D .t2 : : : tn/

�1.
Due to continuity of mixed volume, (4) holds also for degenerate ui . Applying
it to g ı Pv; Pv2 ; : : : ; Pvn (where Pw denotes the orthogonal projection onto the
1-dimensional subspace spanned by w) yields:

2nhA1.v/ � hA2.v2/ � : : : � hAn.vn/ D V.gPvA1; Pv2A2; : : : ; PvnAn/

� V.gPvB1; Pv2B2; : : : ; PvnBn/
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D 2nhB1.v/ � hB2.v2/ � : : : � hBn.vn/

D 2n

t1
hB1.v/ � hA2.v2/ � : : : � hAn.vn/:

This implies ht1A1 .v/ � hB1.v/. Since v was arbitrary, t1A1 � B1. This completes
the proof, since for i � 2, tiAi � Bi by the definition of ti , and …n

iD1ti D 1. ut
Corollary 4.2. Let A;B 2 Kn be centrally symmetric bodies. If for all ui 2 SLn
one has

V.u1A; : : : ; unA/ � V.u1B; : : : ; unB/;

then A � B . ut
Remark 4.4. Theorem 4.2 is not true if the bodies are not assumed to be centrally
symmetric. One example in R

2 is given by the bodies K1 D R, the Reuleaux
triangle, and K2 D L1 D L2 D D2, the Euclidean unit ball. In fact for any n � 2,
the choice K1 D �L1 D A and Li D Ki D Si yields a counter example, for trivial
reasons, provided that A 6D �A, and Si D �Si , for i � 2.

Let us mention a problem inspired by Corollary 4.2.

Problem B: Let K;L be convex bodies with barycenter at the origin. Denote

a.K;L/ D sup
x¤0

hK.x/

hL.x/
:

Assume that for any n � 1 dimensional subspace E we have

a.K;L/jPE.K/j � jPE.L/j:
Does this imply that jKj � jLj?

5 Comparing n-Tuples: Fractional Linear Case

Let us denote by Kn
.0/ the subset of Kn of bodies with 0 in their interior. We have:

Theorem 5.3. Let n � 1 and letK1; : : : ; Kn; L1; : : : ; Ln 2 Kn
.0/ such that for every

�1; : : : ; �n > 0 and every admissible (for �1K1; : : : ; �nKn) F 2 FLn one has

V.F.�1K1/; : : : ; F .�nKn// � V.F.�1L1/; : : : ; F .�nLn//:

Then for every 1 � i � n, Ki � Li .
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Proof. Assume the claim is false, for example K1 6� L1. Apply Remark 2.1 for
K1;L1 and select HC to contain 0. Let DK1;DL1 be the balls from Remark 2.1
(note again that these balls are not necessarily centered at 0), and take a ball D
centered at the origin such that D � DL1 . Without loss of generality (by a correct
rescaling) we may assume that D is the Euclidean unit ball Dn. Fix �2; : : : ; �n > 0
such that �iKi ; �iLi are contained in the unit ball, and choose "0 such that for every
2 � i � n:

"0Dn � �iKi � Dn; "0Dn � �iLi � Dn:

It follows that for every admissible F we have:

V.F.DK1/; F."0Dn/Œn � 1�/ � V.F.DL1/Œn�/: (5)

Without loss of generality, we may assume that the centers of the balls DK1; "0Dn,
andDL1 are collinear (for example, we may replaceDL1 by a larger ball containing
it, while keeping the intersection DL1 \DK1 empty). By applying an affine map A
we may further assume that:

A.DK1/ D E1;1;ı ; A.DL1/ D ER;R;d ; A."0Dn/ D E"1;"1;d1 ;

where R; "1 > 0, d; d1 > 2, and ı > 0 is arbitrarily small. By 2.2, we have:

1

ı.ı C 2/
Dn � F0ADK1 ;

"1

d1.d1 C 2"1/
� F0A"0Dn; F0ADL � R

d
p
d C 2R

Dn:

Substituting F D F0A in (5), and using multilinearity of mixed volumes, we get:

1

ı.ı C 2/

�
"1

d1.d1 C 2"1/

�n�1
�
�

R

d
p
d C 2R

�n
;

which is false for sufficiently small ı > 0. ThusK1 � L1, as required. ut
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Vitushkin-Type Theorems
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Abstract It is shown that for a subset A � R
n that has the global Gabrielov

property, a Vitushkin-type estimate holds. Concrete examples are given for sub-level
sets of certain classes of functions.
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1 Introduction

The metric entropy of a subsetA � R
n can be bounded in terms of the i -dimensional

“size” of A. Indeed, the theory of multi-dimensional variations, developed by
Vitushkin [6, 7], Ivanov [2], and other, provides a bound by measuring the
i -dimensional “size” of A in terms of its variations.

Let us recall a general definition of the metric entropy of a set. Let X be a metric
space, A � X a relatively compact subset. For every " > 0, denote by M.";A/ the
minimal number of closed balls of radius " in X , coveringA (note that this number
does exist because A is relatively compact). The real numberH".A/ D logM.";A/
is called the "-entropy of the setA. In our setting, we assumeX D R

n, and it will be
convenient to modify slightly this definition, and consider coverings by the "-cubes
Q", which are translations of the standard "-cube, Qn

" D Œ0; "�n, that is, the "
2
-ball

in the `1 norm.
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The following inequality, which we refer to as Vitushkin’s bound, bounds the
metric entropy of a set A in terms of its multi-dimensional variations, that is, for
every A � R

n it holds

M.";A/ � c.n/

nX

iD0
Vi .A/="

i ; (1)

where the i -th variation of A, Vi .A/, is the average of the number of connected
components of the section A \ P over all .n � i/-affine planes P in R

n. Note that
if the components are points, the Vitushkin invariants are essentially the volumes,
via the Crofton formula, but when the components are of higher dimensions, the
geometric interpretation of these invariants is less straightforward.

In particular, our definition of the metric entropy implies that the last term in (1)
has the form �n.A/="

n, where �n.A/ denotes the n-dimensional Lebesgue measure
(or the volume) of the set A.

Vitushkin’s bound is sometimes considered as a difficult result, mainly because
of the so-called multi-dimensional variations which are used. However, in some
cases (cf. [1, 8, 9]) the proof is indeed very short and transparent. In this note, we
present a Vitushkin-type theorem, which works in situations where we can control
the number of connected components of the sections A \ P over all .n � i/-affine
planes P . In Sect. 2 we present our main observation that we can replace the i -th
variation Vi .A/ of A, with an upper bound on the number of connected components
of the section A\P over all .n� i/-affine planesP . As in some cases, it is easier to
compute this upper bound rather than Vi which is the average. In Sect. 3, we extend
Vitushkin’s bound for semi-algebraic sets, to sub-level sets of functions, for which
we have a certain replacement of the polynomial Bézout theorem. These results can
be proved using a general result of Vitushkin in [6, 7] through the use of multi-
dimensional variations. However, in our specific case the results below are much
simpler and shorter and produce explicit (“in one step”) constants.

2 Gabrielov Property and Vitushkin’s Bound

In this section we establish a relation between Vitushkin’s bound and the global
Gabrielov property of a set A. We show that an a priori knowledge about the
maximal number of connected components of a set A, intersected with every
`-affine plane in R

n, allows us to estimate the metric entropy of A.
More precisely, we say that a subset A � R

n has the local Gabrielov property if
for a 2 A there exist a neighborhood U of a and an integer OC` such that for every
`-affine plane P , the number of connected components of U \ A \ P is bounded
by OC`. If we can take U D R

n, we say that A has the global Gabrielov property. For
example, every tame set has the local Gabrielov property (for more details see [9]).
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The following theorem is applicable to arbitrary subsets A � Qn
1 . The boundary

@A of A is defined as the intersection of the closures of A and of Qn
1 nA.

Theorem 1 (Vitushkin-Type Theorem). Let A � Qn
1 and let 0 < " � 1. Assume

that the boundary @A of A has the global Gabrielov property, with explicit bound
OC` for 0 � ` � n. Then

M.";A/ � C0 C C1="C � � � C Cn�1="n�1 C �n.A/="
n;

where Ct WD OCn�t 2t
�
n

t

�
.

Proof. Let us subdivide Qn
1 into adjacent "-cubes Qn

" , with respect to the standard
Cartesian coordinate system. Each Qn

" , having a non-empty intersection with A,
is either entirely contained in A, or it intersects the boundary @A of A. Certainly,
the number of those cubes Qn

" , which are entirely contained in A, is bounded by
�n.A/=�n.Q"/ D �n.A/="

n. In the other case, in whichQn
" intersects @A, it means

that there exist faces of Qn
" that have a non-empty intersection with @A. Among

all these faces, let us take one with the smallest dimension s, and denote it by F .
In other words, there exists an s-face F of the smallest dimension s that intersects
@A, for some s D 0; 1; : : : ; n. Let us fix an s-affine plane V , which corresponds
to F . Then, by the minimality of s, F contains completely some of the connected
components of @A \ V , otherwise @A would intersect a face of Qn

" of a dimension
strictly less than s. By our assumption, the number of connected components with
respect to an s-affine plane is bounded by OCs . According to the subdivision of Qn

1

to Q" cubes, we have at most
�
1
"

C 1
�n�s

s-affine planes with respect to the same
s coordinates, and the number of different choices of s coordinates is

�
n
s

�
. It means

that the number of cubes, that have an s-face F which contains completely some
connected component of A\ V , is at most

OCs
 
n

s

!�
1

"
C 1

�n�s
� OCs2n�s

 
n

s

!

="n�s:

Let us define the constant

Cn�s WD OCs2n�s
 
n

s

!

:

Note that C0 is the bound on the number of cubes that contain completely some
of the connected components of A. Thus, we have

M.";A/ � C0 C C1="C � � � C Cn�1="n�1 C �n.A/="
n:

This completes the proof. ut
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3 Entropy Estimates of Sub-level Sets

In this section we extend Vitushkin’s bound to sub-level sets of certain natural
classes of functions, beyond polynomials. We do so by “counting” the singularities
of these functions, and then bounding the number of the connected components of
their sub-level set through the number of singularities.

We start with a general simple “meta”-lemma, which implies, together with a
specific computation of the bound on the number of singularities, all our specific
results below. Consider a class of functions F on R

n. We assume that F is closed
with respect to taking partial derivatives, restrictions to affine subspaces of Rn, and
with respect to sufficiently rich perturbations. There are many classes of functions
that comply with this condition, for example, we may speak about the class of
real polynomials of n variables and degree d , and the classes considered below in
this section. Assume that for each f1; ; : : : ; fn 2 F the number of non-degenerate
solutions of the system

f1 D f2 D � � � D fn D 0;

is bounded by the constant C.D.f1; : : : ; fn//, where D.f1; : : : ; fn/ is a collection
of “combinatorial” data of fi , like degrees, which we call a “Diagram” of
f1; : : : ; fn. We assume that the diagram is stable with respect to the deformations we
use. In each of the examples below we define the appropriate diagram specifically.

Let f 2 F . Denote by

W D W.f; �/ D fx 2 Qn
1 W f .x/ � �g; (2)

the �-sub-level set of f , and let OCs D C.D.
@f .x/

@x1
; : : : ;

@f .x/

@xs
//; s D 1; : : : ; n:

Lemma 2. The boundary @W has the global Gabrielov property, i.e. the number of
connected components of @W \ P , where P is an s-affine plane in R

n, is bounded
by OCs .
Proof. We may assume that P is a parallel translation of the coordinate plane in
R
n generated by xj1 ; : : : ; xjs . Inside each connected component of @W \ P there

is a critical point of f restricted to P (its local maximum or minimum), which is
defined by the system of equations

@f .x/

@xj1
D � � � D @f .x/

@xjs
D 0:

After a small perturbation of f , we can always assume that all such critical points
are non-degenerate. Hence by the assumptions above, the number of these points,
and therefore the number of connected components, is bounded by OCs: ut



Vitushkin-Type Theorems 151

In other words, W has the global Gabrielov property, with explicit bound OC`.
Therefore, Theorem 1 can be applied to this set, and under the assumptions above,
we have

Corollary 3. Let 0 < " � 1. Then

M.";W / � C0 C C1="C � � � C Cn�1="n�1 C �n.W /="
n;

where Ct WD OCn�t 2t
�
n
t

�
.

4 Concrete Bounds on OCs
In view of Corollary 3, our main goal now is to give concrete bounds on constants
OCs in specific situations.

4.1 Polynomials and Bézout’s Theorem

Let p.x/ D p.x1; : : : ; xn/ be a polynomial in R
n of degree d . We consider the sub-

level set W.p; �/ as defined in (2). Clearly, in this situation, by Bézout’s theorem,
we have

OCs.W.p; �// � .d � 1/s:

4.2 Laurent Polynomials and Newton Polytypes

Let ˛ 2 Z
n. A Laurent monomial in the variables x1; : : : ; xn is x˛ D x

˛1
1 � � �x˛nn .

A Laurent polynomial is a finite sum of Laurent monomials,

p.x/ D p.x1; : : : ; xn/ D
X

˛2A�Zn

a˛x
˛:

The Newton polytope of p is the polytope

N.p/ D convf˛ 2 Z
n
ˇ
ˇ a˛ ¤ 0g:

A natural generalization of the Bézout bound above is the following Kušhnirenko
bound for polynomial systems with the prescribed Newton polytope.
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Theorem 4 ([4]). Let f1; : : : ; fn be Laurent polynomials with the Newton polytope
N � R

n. Then the number of non-degenerate solutions of the system

f1 D f2 D � � � D fn D 0;

is at most nŠVoln.N /.

The Newton polytope of a general polynomial of degree d is the simplex

�d D f˛ 2 R
n; j˛j � d g:

Its volume is dn=nŠ, and the bound of Theorem 4 coincides with the Bézout’s
bound dn. The notion of the Newton polytope is connected to a representation of
the polynomial p in a fixed coordinate system x1; : : : ; xn in R

n. As we perform
a coordinate changes (which may be necessary when we restrict a polynomial p
to a certain affine subspace P of R

n), N.p/ may change strongly. However, in
Theorem 1 we restrict our functions only to affine subspaces P spanned by a part
of the standard basis vectors in a fixed coordinate system. The following lemma
describes the behavior of the Newton polytope of p under such restrictions, and
under partial differentiation.

Lemma 5. The Newton polytope N. @p
@xi
/ is Ni.p/ obtained by a translation of

N.p/ to the vector �ei , where e1; : : : ; en are the vectors of the standard basis in R
d .

The Newton polytope N.pjP/ of a restriction of p to P , where P is a translation
of a certain coordinate subspace, is contained in the projection �P .N.p// of N.p/
on P .

Proof. The proof of the first claim is immediate. In a restriction of p to P , we
substitute some of the xi ’s for their specific values. The degrees of the free variables
remain the same. ut

For a Newton polytope N � R
n define

Cs.N / WD maxfVols.NPs /
ˇ
ˇ s-dimensional coordinate subspaces Psg;

whereNPs is the convex hull of the sets �Ps .Ni.p//, for all the coordinate directions
in Ps . Here, �Ps .Ni.p// is the projection of N to Ps , shifted by �1 in one of
coordinate directions xi in Ps .

Theorem 6. Let p be a Laurent polynomial with the Newton polytope N . Then for
s D 1; : : : ; n

OCs.W.p; �// � Cs.N /

sŠ
:
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Proof. According to Lemma 2, the constants OCs.W.p; �// do not exceed the number
of solutions in Qn

1 of the system @p.x/

@xj1
D � � � D @p.x/

@xjs
D 0: Now application of

Theorem 4, Lemma 5, and of the definition of Cs.N / above, completes the proof.
ut

An important example is provided by “multi-degree d” polynomials. A polyno-
mial p.x/ D p.x1; : : : ; xn/ is called multi-degree d , if each of its variable enters p
with degrees at most d . The total degree of such p may be nd. In particular, multi-
linear polynomials contain each variable with the degree at most one. Multi-linear
polynomials appear in various problems in Mathematics and Computer Science,
in particular, since the determinant of a matrix is a multi-linear polynomial in its
entries.

Theorem 7. Let p be a multi-degree d polynomial. Then for s D 1; : : : ; n

OCs.W.p; �// � ds

sŠ
:

Proof. The Newton polytope N.p/ of a multi-degree d polynomial p is contained
in a cubeQn

d with the edge d . Its projection to each Ps isQs
d . After the shift by �1

in one of the coordinate directions inPs , it remains inQs
d . SoQs

d can be taken as the

common Newton polytope of @p.x/

@xj1
; � � � ; @p.x/

@xjs
: Application of Theorem 6 completes

the proof. ut

4.3 Quasi-Polynomials and Khovanskii’s Theorem

Let f1; : : : ; fk 2 .Cn/� be a pairwise different set of complex linear functionals fj
which we identify with the scalar products fj � z; z D .z1; : : : ; zn/ 2 C

n. We shall
write fj D aj C ibj . A quasi-polynomial is a finite sum

p.z/ D
kX

jD1
pj .z/e

fj �z;

where pj 2 CŒz1; : : : ; zn� are polynomials in z of degrees dj . The degree of p is
m D degp D Pk

jD1.dj C 1/.
Below we consider p.x/ for the real variables x D .x1; : : : ; xn/ 2 R

n, and we
are interested in the following sub-level set of p which is defined as fx 2 Qn

1 W
jp.x/j � �g. Denote q.x/ D jp.x/j2, then this sub-level set is also defined by
W.q; �2/.

A simple observation that q.x/ D jp.x/j2 D p.x/ Np.x/ tells us that we can
rewrite q as follows
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Lemma 8. q.x/ is a real exponential trigonometric quasi-polynomial with Pij;Qij

real polynomials in x of degree di C dj , and at most � WD k.k C 1/=2 exponents,
sinus and cosinus elements. Moreover,

q.x/ D
X

0�i�j�k
ehaiCaj ;xi�Pij.x/ sinhbij; xi CQij.x/ coshbij; xi	;

where bij D bi � bj 2 R
n.

Now, we need to bound the singularities of q. This can be done using the
following theorem due to Khovanskii, which gives an estimate of the number of
solutions of a system of real exponential trigonometric quasi-polynomials.

Theorem 9 (Khovanskii Bound [3], Sect. 1.4). Let P1 D � � � D Pn D 0 be a
system of n equations with n real unknowns x D x1; : : : ; xn, where Pi is polynomial
of degreemi in nCkC2p real variables x, y1; : : : ; yk , u1; : : : ; up, v1; : : : ; vp, where
yi D exphaj ; xi, j D 1; : : : ; k and uq D sinhbq; xi, vq D coshbq; xi, q D 1; : : : ; p.
Then the number of non-degenerate solutions of this system in the region bounded
by the inequalities jhbq; xij < �=2, q D 1; : : : ; p, is finite and less than

m1 � � �mn

�X
mi C p C 1

�pCk
2pC.pCk/.pCk�1/=2:

Clearly, all the partial derivatives @q.x/

@xj
have exactly the same form as q.

Therefore, Khovanskii’s theorem gives the following bound on the number of
critical points of q. More precisely, we have

Lemma 10. Let V be a parallel translation of the coordinate subspace in R
n

generated by xj1 ; : : : ; xjs . Then the number of non-degenerate real solutions in
V \Qn

� of the system

@q.x/

@xj1
D � � � D @q.x/

@xjs
D 0;

is at most

.
2

�

p
s��/s

sY

rD1
.djr C dir /

 
sX

rD1
.djr C dir /C 2� C 1

!2�

2�C.2�/.2��1/=2;

where � WD max kbijk is the maximal frequency in q.

Proof. The following geometric construction is required by the Khovanskii bound:
Let Qij D fx 2 R

n; jhbij; xij � �
2
g and let Q D T

0�i�j�k Qij. For every B � R
n

we define M.B/ as the minimal number of translations of Q covering B . For an
affine subspace V of Rn we defineM.B\V / as the minimal number of translations
of Q \ V covering B \ V . Notice that for B D Qn

r , a cube of size r , we have
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M.Qn
r / � . 2

�

p
nr�/n. Indeed,Q always contains a ball of radius �

2�
. Now, applying

the Khovanskii’s theorem on the system

@q.x/

@xj1
D � � � D @q.x/

@xjs
D 0;

we get that the number of non-degenerate real solutions in V \Qn
� is at most

.
2

�

p
s��/s

sY

rD1
.djr C dir /

 
sX

rD1
.djr C dir /C 2� C 1

!2�

2�C.2�/.2��1/=2:

Note that this bound is given in term of the “diagram” of q, and therefore of p.
ut

Theorem 11. Let p.x/ a real quasi-polynomial (as described above). Then for s D
1; : : : ; n

OCs.W.q; �2//

� .
2

�

p
s��/s

sY

rD1
.djr C dir /

 
sX

rD1
.djr C dir /C 2� C 1

!2�

2�C.2�/.2��1/=2;

where q.x/ D jp.x/j2.

4.4 Exponential Polynomials and Nazarov’s Lemma

In a particular case where p is an exponential polynomial, that is,

p.t/ D
mX

kD0
cke

�kt ;

where ck; �k 2 C, t 2 R, we can avoid Khovanskii’s theorem and instead use
the following result of Nazarov [5, Lemma 4.2], which gives a bound on the local
distribution of zeroes of an exponential polynomial.

Lemma 12. The number of zeroes of p.z/ inside each disk of radius r > 0 does not
exceed

4mC 7 O�r;

where O� D max j�kj.
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Note that this result is applicable only in dimension 1. Let B � R be an interval.
Therefore, the number of real solutions of p.t/ � � inside the interval B does not
exceed Nazarov’s bound, that is, 4mC 7 O��1.B/, which gives us

OC1.W.p; �// � 4mC 7 O�:

For the case of a real exponential polynomial p.t/ D Pm
kD0 cke�kt , ck; �k 2

R, we get an especially simple and sharp result, as the number of zeroes of
a real exponential polynomial is always bounded by its degree m (indeed, the
“monomials” e�kt form a Chebyshev system on each real interval).

4.5 Semialgebraic and Tame Sets

We conclude with a remark about even more general settings for which Theorem 1
is applicable.

A set A � R
n is called semialgebraic, if it is defined by a finite sequence

of polynomial equations and inequalities, or any finite union of such sets. More
precisely, A can be represented in a form A D Sk

iD1 Ai with Ai D Tji
jD1 Aij,

where each Aij has the form

fx 2 R
n W pij.x/ > 0g or fx 2 R

n W pij.x/ � 0g;

where pij is a polynomial of degree dij. The diagram D.A/ of A is the collective
data

D.A/ D .n; k; j1; : : : ; jk; .dij/iD1;:::;k; jD1;:::;ji /:

A classical result tells us that the number of connected components of a plane
section A\ P is uniformly bounded. More precisely, we have

Theorem 13 ([9]). Let A � R
n be a semialgebraic set with diagram D.A/. Then

the number of connected components of A\P , where P is an `-affine plane of Rn,
is bounded by

OC` � 1

2

kX

iD1
.di C 2/.di C 1/`�1;

where di D Pji
jD1 dij.

In other words, Theorem 13 says that any semialgebraic set has the global
Gabrielov property.

However, not only semialgebraic sets, but a very large class of sets has the
Gabrielov property. These sets are called tame sets. The precise definition of these
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sets and the fact that they satisfy the Gabrielov property can be found, in particular,
in [9].
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M -Estimates for Isotropic Convex Bodies
and Their Lq-Centroid Bodies

Apostolos Giannopoulos and Emanuel Milman

Abstract Let K be a centrally-symmetric convex body in R
n and let k � k be its

induced norm on R
n. We show that if K  rBn

2 then:

p
nM.K/ 6 C

nX

kD1

1p
k

min

�
1

r
;
n

k
log

�
e C n

k

� 1

v�
k .K/

�

where M.K/ D ´
Sn�1 kxkd�.x/ is the mean-norm, C > 0 is a universal constant,

and v�
k .K/ denotes the minimal volume-radius of a k-dimensional orthogonal

projection of K . We apply this result to the study of the mean-norm of an isotropic
convex body K in R

n and its Lq-centroid bodies. In particular, we show that if K
has isotropic constant LK then:

M.K/ 6 C log2=5.e C n/
10
p
nLK

:

1 Introduction

Let K be a centrally-symmetric convex compact set with non-empty interior
(“body”) in Euclidean space .Rn; h�; �i/. We write k � k for the norm induced on
R
n byK and hK for the support function ofK; this is precisely the dual norm k � k�.

The parameters:

M.K/ D
ˆ

Sn�1

kxkd�.x/ and M �.K/ D
ˆ

Sn�1

hK.x/ d�.x/; (1)
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where � denotes the rotationally invariant probability measure on the unit Euclidean
sphere Sn�1, play a central role in the asymptotic theory of finite dimensional
normed spaces.

Let vrad.K/ WD �jKj=jBn
2 j�1=n denote the volume-radius of K , where jAj

denotes Lebesgue measure in the linear hull of A and Bn
2 denotes the unit Euclidean

ball. It is easy to check that:

M.K/�1 6 vrad.K/ 6 M �.K/ D M.Kı/; (2)

where Kı D fy 2 R
n W hx; yi 6 1 for all x 2 Kg is the polar body to K , i.e.

the unit-ball of the dual norm k � k�. Indeed, the left-hand side is a simple
consequence of Jensen’s inequality after we express the volume of K as an integral
in polar coordinates, while the right-hand side is the classical Urysohn inequality.
In particular, one always has M.K/M �.K/ > 1.

In the other direction, it is known from results of Figiel–Tomczak-Jaegermann
[11], Lewis [18] and Pisier’s estimate [29] on the norm of the Rademacher
projection, that for any centrally-symmetric convex bodyK , there exists T 2 GL.n/
such that:

M.TK/M �.TK/ 6 C logn; (3)

where C > 0 is a universal constant. Throughout this note, unless otherwise stated,
all constants c; c0; C; : : : denote universal numeric constants, independent of any
other parameter, whose value may change from one occurrence to the next. We
write A ' B if there exist absolute constants c1; c2 > 0 such that c1A 6 B 6 c2A.

The role of the linear map T in (3) is to put the body in a good “position”,
since without it M.K/M �.K/ can be arbitrarily large. The purpose of this note is
to obtain good upper bounds on the parameter M.K/, when K is already assumed
to be in a good position—the isotropic position. A convex body K in R

n is called
isotropic if it has volume 1, its barycenter is at the origin, and there exists a constant
LK > 0 such that:

ˆ

K

hx; �i2dx D L2K; for all � 2 Sn�1: (4)

It is not hard to check that every convex bodyK has an isotropic affine image which
is uniquely determined up to orthogonal transformations [24]. Consequently, the
isotropic constant LK is an affine invariant of K . A central question in asymptotic
convex geometry going back to Bourgain [5] asks if there exists an absolute constant
C > 0 such that LK 6 C for every (isotropic) convex body K in R

n and every
n > 1. Bourgain [6] proved that LK 6 C 4

p
n logn for every centrally-symmetric

convex body K in R
n. The currently best-known general estimate, LK 6 C 4

p
n, is

due to Klartag [14] (see also the work of Klartag and Milman [16] and a further
refinement of their approach by Vritsiou [32]).

It is known that if K is a centrally-symmetric isotropic convex body in R
n then

K  LKB
n
2 , and hence trivially M.K/ 6 1=LK . It seems that, until recently, the
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problem of bounding M.K/ in isotropic position had not been studied and there
were no other estimates besides the trivial one. The example of the normalized
`n1 ball shows that the best one could hope is M.K/ 6 C

p
logn=

p
n. Note

that obtaining a bound of the form M.K/ 6 n�ıL�1
K immediately provides a

non-trivial upper bound on LK , since M.K/ > vrad.K/�1 ' 1=
p
n, and hence

LK 6 c�1n 1
2�ı . The current best-known upper bound onLK suggests thatM.K/ 6

C.n1=4LK/
�1 might be a plausible goal.

Paouris and Valettas (unpublished) proved that for every isotropic
centrally-symmetric convex bodyK in R

n one has:

M.K/ 6 C 3
p

log.e C n/
12
p
nLK

: (5)

Subsequently, this was extended by Giannopoulos, Stavrakakis, Tsolomitis and
Vritsiou in [12] to the case of the Lq-centroid bodies Zq.�/ of an isotropic
log-concave probability measure � on R

n (see Sect. 5 for the necessary definitions).
The approach of [12] was based on a number of observations regarding the
local structure of Zq.�/; more precisely, lower bounds for the in-radius of their
proportional projections and estimates for their dual covering numbers (we briefly
sketch an improved version of this approach in Sect. 7).

In this work we present a different method, applicable to general
centrally-symmetric convex bodies, which yields better quantitative estimates. As
always, our starting point is Dudley’s entropy estimate (see e.g. [31, Theorem 5.5]):

p
nM �.K/ 6 C

X

k>1

1p
k
ek.K;B

n
2 /; (6)

where ek.K;Bn
2 / are the entropy numbers of K . Recall that the covering number

N.K;L/ is defined to be the minimal number of translates of L whose union covers
K , and that ek.K;L/ WD inf

˚
t > 0 W N.K; tL/ 6 2k



.

Our results depend on the following natural volumetric parameters associated
with K for each k D 1; : : : ; n:

wk.K/ WD sup fvrad.K \E/ W E 2 Gn;kg ; v�

k .K/ WD inf fvrad.PE.K// W E 2 Gn;kg ;

where Gn;k denotes the Grassmann manifold of all k-dimensional linear subspaces
of R

n, and PE denotes orthogonal projection onto E 2 Gn;k . Note that by the
Blaschke–Sanataló inequality and its reverse form due to Bourgain and V. Milman
(see Sect. 2), it is immediate to verify that wk.Kı/ ' 1

v�

k .K/
.

Theorem 1. For every centrally-symmetric convex bodyK in R
n and k > 1:

ek.K;B
n
2 / 6 C

n

k
log

�
e C n

k

�
sup

16m6min.k;n/

n
2� k

3m wm.K/
o
:
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By invoking Carl’s theorem (see Sect. 2), a slightly weaker version of Theorem 1
may be deduced from the following stronger statement:

Theorem 2. Let K be a centrally-symmetric convex body in R
n. Then for any

k D 1; : : : ; bn=2c there exists F 2 Gn;n�2k so that:

K \ F � C
n

k
log

�
e C n

k

�
wk.K/B

n
2 \ F; (7)

and dually, there exists F 2 Gn;n�2k so that:

PF .K/  1

C n
k

log.e C n
k
/
v�
k .K/PF .B

n
2 /: (8)

A weaker version of Theorem 2, with the parameters wk.K/, v�
k .K/ above

replaced by:

vk.K/ WD sup fvrad.PE.K// W E 2 Gn;kg ; w�

k .K/ WD inf fvrad.K \E/ W E 2 Gn;kg ;

respectively, was obtained by V. Milman and G. Pisier in [25] (see Theorem 7). Our
improved version is crucial for properly exploiting the corresponding properties of
isotropic convex bodies.

By (essentially) inserting the estimates of Theorem 1 into (6) (withK replaced by
Kı), we obtain that ifK is a centrally-symmetric convex body in R

n withK  rBn
2

then:

p
nM.K/ 6 C

nX

kD1

1p
k

min

�
1

r
;
n

k
log

�
e C n

k

� 1

v�
k .K/

�

: (9)

In the case of the centroid bodies Zq.�/ of an isotropic log-concave probability
measure � on R

n, one can obtain precise information on the growth of the
parameters v�

k .Zq.�//. We recall the relevant definitions in Sect. 5, and use (9) to
deduce in Sect. 6 that:

2 6 q 6 q0 WD .n log n/2=5 H) M.Zq.�// 6 C

p
log q
4
p
q
: (10)

In particular, since Zn.�/  Zq0.�/ and M.K/ ' M.Zn.�K=LK //=LK , where
�A denotes the uniform probability measure on A, we immediately obtain:

Theorem 3. If K is a centrally-symmetric isotropic convex body in R
n then:

M.K/ 6 C log2=5.e C n/
10
p
nLK

: (11)

It is clear that (11) is not optimal. Note that if (10) were to remain valid until

q0 D n, we would obtain the bound M.K/ 6 C
p

log.eCn/
n1=4LK

, which as previously
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explained would in turn imply that LK 6 C
p

log.e C n/ n1=4, in consistency
with the best-known upper bound on the isotropic constant. We believe that it is
an interesting question to extend the range where (10) remains valid. In Sect. 6, we
obtain such an extension when � is in addition assumed to be �˛ (see Sect. 6 for
definitions).

Our entire method is based on Pisier’s regular versions of V. Milman’s
M -ellipsoids associated to a given centrally-symmetric convex bodyK , comparing
between volumes of sections and projections ofK and those of its associated regular
ellipsoids. This expands on an approach already employed in [7, 12, 15, 17, 31].

We conclude the introduction by remarking that the dual question of providing
an upper bound for the mean-width M �.K/ of an isotropic convex body K has
attracted more attention in recent years. Until recently, the best known estimate was
M �.K/ 6 Cn3=4LK , where C > 0 is an absolute constant (see [9, Chap. 9] for a
number of proofs of this inequality). The second named author has recently obtained
in [21] an essentially optimal answer to this question—for every isotropic convex
bodyK in R

n one hasM �.K/ 6 C
p
n log2 nLK .

2 Preliminaries and Notation from the Local Theory

Let us introduce some further notation. Given F 2 Gn;k , we denote BF D Bn
2 \ F

and SF D Sn�1 \ F . A centrally-symmetric convex body K in R
n is a compact

convex set with non-empty interior so that K D �K . The norm induced by K on
R
n is given by kxkK D minft > 0 W x 2 tKg. The support function of K is defined

by hK.y/ WD kyk�
K D max

˚hy; xi W x 2 K
, with Kı denoting the unit-ball of the
dual-norm. By the Blaschke–Santaló inequality (the right-hand side below) and its
reverse form due to Bourgain and V. Milman [8] (the left-hand side), it is known that:

0 < c 6 vrad.K/vrad.Kı/ 6 1: (12)

Recall that the k-th entropy number is defined as

ek.K;L/ WD inf
˚
t > 0 W N.K; tL/ 6 2k



:

A deep and very useful fact about entropy numbers is the Artstein–Milman–Szarek
duality of entropy theorem [1], which states that:

ek.B
n
2 ;K/ 6 Ceck.K

ı; Bn
2 / (13)

for every centrally-symmetric convex bodyK and k > 1.
In what follows, a crucial role is played by G. Pisier’s regular version of V.

Milman’s M -ellipsoids. It was shown by Pisier (see [30] or [31, Chap. 7]) that
for any centrally-symmetric convex body K in R

n and ˛ 2 .0; 2/, there exists an
ellipsoid E D EK;˛ so that:
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maxfek.K;E /; ek.Kı;E ı/; ek.E ; K/; ek.E ı; Kı/g 6 P˛

�n

k

�1=˛
; (14)

where P˛ 6 C
�
˛
2�˛

�1=2
is a positive constant depending only on ˛.

Given a pair of centrally-symmetric convex bodies K;L in R
n, the Gelfand

numbers ck.K;L/ are defined as:

ck.K;L/ WD
(

inf fdiamL\F .K \ F / W F 2 Gn;n�kg k D 0; : : : ; n � 1
0 otherwise

;

where diamA.B/ WD inf fR > 0 W B � RAg. We denote ck.K/ D ck.K;B
n
2 / and

ek.K/ D ek.K;B
n
2 /.

Carl’s theorem [10] relates any reasonable Lorentz norm of the sequence of
entropy numbers fem.K;L/g with that of the Gelfand numbers fcm.K;L/g. In
particular, for any ˛ > 0, there exist constants C˛; C 0̨ > 0 such that for any k > 1:

sup
mD1;:::;k

m˛em.K;L/ 6 C˛ sup
mD1;:::;k

m˛cm.K;L/; (15)

and:

kX

mD1
m�1C˛em.K;L/ 6 C 0̨

kX

mD1
m�1C˛cm.K;L/: (16)

In fact, Pisier deduces the covering estimates of (14) from an application of Carl’s
theorem, after establishing the following estimates:

maxfck.K;E /; ck.Kı;E ı/g 6 P˛

�n

k

�1=˛
for all k 2 f1; : : : ; ng : (17)

Our estimates depend on a number of volumetric parameters of K , already
defined in the Introduction, which we now recall:

wk.K/ WD sup fvrad.K \ E/ W E 2 Gn;kg ; vk.K/ WD sup fvrad.PE.K// W E 2 Gn;kg ;

and

w�

k .K/ WD inf fvrad.K \E/ W E 2 Gn;kg ; v�

k .K/ WD inf fvrad.PE.K// W E 2 Gn;kg :

Note that 0 < c 6 w�
k .K/vk.K

ı/; v�
k .K/wk.K

ı/ 6 1 by (12). Also observe that
k 7! vk.K/ is non-increasing by the Alexandrov inequalities and Kubota’s formula,
and that k 7! w�

k .K/ is non-decreasing by polar-integration and Jensen’s inequality.
We refer to the books [26] and [31] for additional basic facts from the local theory

of normed spaces.
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3 New Covering Estimates

The main result of this section provides a general upper bound for the entropy
numbers ek.K;Bn

2 /.

Theorem 4. Let K be a centrally-symmetric convex body in R
n, and let k > 1.

Then:

ek.K;B
n
2 / 6 C

n

k
log

�
e C n

k

�
sup

16m6min.k;n/

n
2� k

3m wm.K/
o
:

We combine this fact with Dudley’s entropy estimate

p
nM �.K/ 6 C

X

k>1

1p
k
ek.K;B

n
2 /: (18)

(see [31, Theorem 5.5] for this formulation). As an immediate consequence, we
obtain:

Corollary 5. Let K be a centrally-symmetric convex body in R
n with K � RBn2 .

Then:

p
nM �.K/ 6 C

X

k>1

1p
k

min

(

R;
n

k
log

�
e C n

k

�
sup

16m6min.k;n/

n
2� k

3m wm.K/
o
)

:

Dually, let K be a centrally-symmetric convex body in R
n with K  rBn

2 . Then:

p
nM.K/ 6 C

X

k>1

1p
k

min

(
1

r
;
n

k
log

�
e C n

k

�
sup

16m6min.k;n/

�

2� k
3m

1

v�
m.K/

)

Proof. The first claim follows by a direct application of (18) if we estimate
ek.K;B

n
2 / using Theorem 4 and the observation that ek.K;Bn

2 / 6 R for all
k > 1 (recall that K � RBn

2 ). Then, the second claim follows by duality since
wm.Kı/ ' 1

v�

m .K/
. ut

We will see in the next section that the supremum over m above is unnecessary
and that one may always use m D k, only summing over k D 1; : : : ; n. But we
proceed with the proof of Theorem 4, as it is a simpler approach.

Proof of Theorem 4. Assume without loss of generality that k is divisible by 3, and
use the estimate:

ek.K;B
n
2 / 6 ek=3.K;E /e2k=3.E ; B

n
2 /;

where E D EK;˛k is Pisier’s ˛k-regular M -ellipsoid associated to K , with ˛k 2
Œ1; 2/ to be determined. The first term is controlled directly by Pisier’s regular
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covering estimate (14). For the second term we use the following simple fact about
covering numbers of ellipsoids (see e.g. [31, Remark 5.15]):

ej .E ; B
n
2 / ' sup

16m6n
2�j=mwm.E / ' sup

16m6min.j;n/
2�j=mwm.E /I

the latter equivalence follows since wm.E / is the geometric average of them largest
principal radii of E , and so m 7! wm.E / is non-increasing. Now recall that

wm.E / ' 1=v�
m.E

ı/: (19)

To estimate v�
m.E

ı/, we use a trivial volumetric bound: for any E 2 Gn;m,

vrad.PE.Kı//
vrad.PE.E ı//es.Kı;E ı/

6 N.PE.K
ı/; es.Kı;E ı/PE.E ı//1=m

6 N.Kı; es.Kı; Eı/E ı/1=m 6 2s=m;

for s > 1 to be determined. Consequently:

v�
m.E

ı/ > 1

2s=mes.Kı;E ı/
v�
m.K

ı/;

and plugging this back into (19), we deduce:

wm.E / 6 C2s=mes.K
ı;E ı/wm.K/;

and hence:

e2k=3.E ; B
n
2 / 6 C sup

16m6min.k;n/
2
s�2k=3
m es.K

ı;E ı/wm.K/:

Setting s D k=3, we conclude that:

e2k=3.E ; B
n
2 / 6 Cek=3.K

ı;E ı/ sup
16m6min.k;n/

2� k
3m wm.K/:

Combining everything, we obtain:

ek.K;E / 6 Cek=3.K;E /ek=3.K
ı;E ı/ sup

16m6min.k;n/
2� k

3m wm.K/

6 C 0

2 � ˛k

�n

k

� 2
˛k sup

16m6min.k;n/
2� k

3m wm.K/:

Setting ˛k D 2 � 1
log.eCn=k/ , the assertion follows. ut
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Remark 6. Theorem 4 implies the following dual covering estimate:

ek.B
n
2 ;K/ 6 C

n

k
log

�
e C n

k

�
sup

16m6min.k;n/

�

2� k
3m

1

v�
m.K/



: (20)

Indeed, this is immediate from the duality of entropy theorem (13) and the fact that
wm.Kı/ ' 1

v�

m .K/
. Alternatively, one may simply repeat the proof of Theorem 4

with the roles ofK and Bn
2 exchanged.

4 New Diameter Estimates

This section may be read independently of the rest of this work, and contains a
refinement of the following result of V. Milman and G. Pisier from [25], as exposed
in [31, Lemma 9.2]:

Theorem 7 (Milman–Pisier). Let K be a centrally-symmetric convex body in R
n.

Then, for any k D 1; : : : ; n=2:

c2k.K/ 6 C
n

k
log

�
e C n

k

�
vk.K/:

In other words, there exists F 2 Gn;n�2k so that:

K \ F � C
n

k
log

�
e C n

k

�
vk.K/BF ; (21)

and dually, there exists F 2 Gn;n�2k so that:

PF .K/  1

C n
k

log.e C n
k
/
w�
k .K/BF : (22)

Our version refines these estimates by replacing vk.K/ and w�
k .K/ above by the

stronger wk.K/ and v�
k .K/ parameters, respectively; this refinement is crucial for

our application in this paper.

Theorem 8. Let K be a centrally-symmetric convex body in R
n. Then for any

k D 1; : : : ; n=2:

c2k.K/ 6 C
n

k
log

�
e C n

k

�
wk.K/:

In other words, there exists F 2 Gn;n�2k so that:

K \ F � C
n

k
log

�
e C n

k

�
wk.K/BF ; (23)
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and dually, there exists F 2 Gn;n�2k so that:

PF .K/  1

C n
k

log.e C n
k
/
v�
k .K/BF : (24)

Our refinement will come from exploiting the full strength of Pisier’s result on
the existence of regularM -ellipsoids. In contrast, the Milman–Pisier result is based
on V. Milman’s quotient-of-subspace theorem, from which it seems harder to obtain
enough regularity to deduce our proposed refinement.

Proof of Theorem 8. Given k D 1; : : : ; n=2, let E D EK;˛k denote Pisier’s
˛k-regular M -ellipsoid, for some ˛k 2 Œ1; 2/ to be determined. By the second
estimate in (17), we know that there exists E 2 Gn;n�k so that:

PE.K/  1

P˛k

�
k

n

�1=˛k
PE.E /:

For the ellipsoid E 0 WD PE.E / � E , we may always find a linear subspace F � E

of codimensionm in E so that:

PF .E
0/  inf

H2Gm.E/
sup
H 0	H

˚
vrad.PH 0.E 0//



BF ;

where Gm.E/ is the Grassmannian of all m-dimensional linear subspaces of E .
Indeed, this is immediate by choosing H to be the subspace spanned by the m
shortest axes of E 0, and setting F to be its orthogonal complement. Consequently,
there exists a subspace F 2 Gn;n�.kCm/ so that:

PF .K/  1

P˛k

�
k

n

�1=˛k
inf

H2Gn;m
sup
H 0	H

fvrad.PH 0.E //gBF : (25)

We now deviate from the proof of our refined version, to show how one may
recover the Milman–Pisier estimate; the reader solely interested in the proof of our
refinement may safely skip this paragraph. Assume for simplicity that k < n=3. By
the first estimate in (17), we know that there exists J 2 Gn;n�k so that:

K \ J � P˛k

�n

k

�1=˛k
E \ J:

Given H 2 Gn;m and denoting H 0 WD H \ J 2 Gm0.H/ with m0 2 Œm � k;m�, it
follows that:

PH 0.E /  E \H 0  1

P˛k

�
k

n

�1=˛k
K \H 0:
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Setting m D 2k, it follows from (25) that there exists F 2 Gn;n�3k so that:

PF .K/  1

P 2
˛k

�
k

n

�2=˛k
inf
˚
vrad.K \H 0/ W H 0 2 Gn;m0 ; m0 2 Œk; 2k�
BF :

Noting that the sequence m0 7! w�
m0

.K/ is non-decreasing, and setting ˛k D 2 �
1

log.eCn=k/ , we have found F 2 Gn;n�3k such that

PF .K/  c
n
k

log.e C n
k
/
w�
k .K/;

as asserted in (22) (with perhaps an immaterial constant 3 instead of 2). The
assertion of (21) follows by duality.

To obtain our refinement, we will use instead of the first estimate in (17),
the covering estimate (14) (which Pisier obtains from (17) by an application of
Carl’s theorem, requiring the entire sequence of ck estimates, not just the one for
our specific k). Setting m D k, we use a trivial volumetric estimate to control
vrad.PH .E //, exactly as in the proof of Theorem 4: for anyH 2 Gn;k ,

vrad.PH .K//

vrad.PH .E //ek.K;E /
6 N.PH.K/; ek.K;E /PH .E //

1=k

6 N.K; ek.K;E/E /
1=k 6 2:

Together with (14), we obtain:

vrad.PH .E // > 1

2ek.K;E /
vrad.PH .K// > 1

2P˛k

�
k

n

�1=˛k
vrad.PH .K//:

Plugging this into (25) and setting as usual ˛k D 2� 1
log.eCn=k/ , the asserted estimate

(24) follows. The other estimate (23) follows by duality. ut
As immediate corollaries, we have:

Corollary 9. For every centrally-symmetric convex body K in R
n, k D 1; : : : ; n

and ˛ > 0:

ek.K;B
n
2 / 6 C˛ sup

mD1;:::;k

�m

k

�˛ n

m
log

�
e C n

m

�
wm.K/;

where C˛ > 0 is a constant depending only on ˛.

Proof. This is immediate from Theorem 8 and Carl’s theorem (15). Note that
k 7! ck.K;B

n
2 / is non-increasing, and so there is no difference whether we take

the supremum on the right-hand-side just on the even integers. ut
Corollary 10. For every centrally-symmetric convex body K in R

n so that K �
RBn2 , we have:
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p
nM �.K/ 6 C

nX

kD1

1p
k

min
�
R;
n

k
log

�
e C n

k

�
wk.K/

�
:

Dually, for every centrally-symmetric convex body K in R
n so that K  rBn

2 , we
have:

p
nM.K/ 6 C

nX

kD1

1p
k

min

�
1

r
;
n

k
log

�
e C n

k

� 1

v�
k .K/

�

:

Proof. Let us verify the first claim, the second follows by duality. Indeed, this is
immediate from Dudley’s entropy estimate (6) coupled with Carl’s theorem (16):

p
nM �.K/ 6 C

nX

kD1

1p
k
ek.K/ 6 C 0

nX

kD1

1p
k
ck.K/:

Obviously ck.K/ 6 R for all k, and so the assertion follows from the estimates of
Theorem 8. ut

Both Corollaries should be compared with the results of the previous section.

Remark 11. It may be insightful to compare Theorem 8 to some other known
estimates on diameters of k-codimensional sections, besides the Milman–Pisier
Theorem 7. One sharp estimate is the Pajor–Tomczak-Jaegermann refinement [27]
of V. Milman’s low-M � estimate [22]:

ck.L/ � C

r
n

k
M �.L/; (26)

for any origin-symmetric convexL and k D 1; : : : ; n. However, for our application,
we cannot use this to control ck.Kı/ since we do not a-priori know M �.Kı/ D
M.K/. A type of dual low-M estimate was observed by Klartag [13]:

ck.L/ � C
n
k vrad.L/

n
k M.L/

n�k
k :

Since M.Kı/ D M �.K/ is now well understood for an isotropic origin-symmetric
convex body [21], this would give good estimates for low-dimensional sections
(large codimension k), but unfortunately this is not enough for controlling M.K/.
Klartag obtains the latter estimate from the following one, which is more in the spirit
of the estimates we obtain in this work:

ck.L/ � C
n
k

vrad.L/
n
k

wn�k.L/
n�k
k

:

Again, this seems too rough for controlling the diameter of high-dimensional
sections.
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5 Preliminaries from Asymptotic Convex Geometry

An absolutely continuous Borel probability measure � on R
n is called log-concave

if its density f� is of the form exp.�'/ with ' W Rn ! R[fC1g convex. Note that
the uniform probability measure on K , denoted �K , is log-concave for any convex
bodyK .

The barycenter of � is denoted by bar.�/ WD ´
Rn

xd�.x/. The isotropic constant
of �, denoted L�, is the following affine invariant quantity:

L� WD . sup
x2Rn

f�.x//
1
n det Cov.�/

1
2n ; (27)

where Cov.�/ WD ´
x ˝ xd�.x/ � ´

xd�.x/ ˝ ´
xd�.x/ denotes the covariance

matrix of �. We say that a log-concave probability measure � on R
n is isotropic if

bar.�/ D 0 and Cov.�/ is the identity matrix. Note that a convex bodyK of volume
1 is isotropic if and only if the log-concave probability measure �K=LK is isotropic,
and that L�K indeed coincides with LK . It was shown by K. Ball [2, 3] that given
n > 1:

sup
�
L� 6 C sup

K

LK;

where the suprema are taken over all log-concave probability measures � and
convex bodiesK in R

n, respectively (see e.g. [14] for the non-even case). Klartag’s
bound on the isotropic constant [14] thus reads L� 6 Cn1=4 for all log-concave
probability measures � on R

n.
Given E 2 Gn;k , we denote by �E� WD � ı P�1

E the push-forward of � via PE .
Obviously, if � is centered or isotropic then so is �E�, and by the Prékopa–Leindler
theorem, the same also holds for log-concavity.

Given a log-concave probability measure � on R
n and q > 1, the Lq-centroid

body of �, denoted Zq.�/, is the centrally-symmetric convex body with support
function:

hZq.�/.y/ WD
�ˆ

Rn

jhx; yijqd�.x/
�1=q

: (28)

Observe that� is isotropic if and only if it is centered andZ2.�/ D Bn
2 . By Jensen’s

inequalityZ1.�/ � Zp.�/ � Zq.�/ for all 1 6 p 6 q < 1. Conversely, it follows
from work of Berwald [4] or by employing Borell’s lemma (see [26, Appendix III]),
that:

1 6 p 6 q H) Zq.�/ � C
q

p
Zp.�/:
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When � D �K is the uniform probability measure on a centrally-symmetric convex
body K in R

n, it is easy to check (e.g. [9]) using the Brunn–Minkowski inequality
that:

cK � Zn.�K/ � K:

Let� denote an isotropic log-concave probability measure� onRn. It was shown
by Paouris [28] that

1 6 q 6
p
n H) M ��Zq.�/

� ' p
q; (29)

and that:

1 6 q 6 n H) vrad.Zq.�// 6 C
p
q: (30)

Conversely, it was shown by Klartag and E. Milman in [16] that:

1 6 q 6
p
n H) vrad.Zq.�// > c1

p
q: (31)

This determines the volume radius of Zq.�/ for all 1 6 q 6
p
n. For larger values

of q one can still use the lower bound:

1 6 q 6 n H) vrad.Zq.�// > c2
p
q L�1

� ; (32)

obtained by Lutwak et al. [20] via symmetrization.
We refer to the book [9] for further information on isotropic convex bodies and

log-concave measures.

6 M -Estimates for Isotropic Convex Bodies and Their
Lq-Centroid Bodies

Let� denote an isotropic log-concave probability measure on R
n, and fixH 2 Gn;k .

A very useful observation is that:

PH
�
Zq.�/

� D Zq
�
�H.�/

�
:

It follows from (31) that:

1 6 q 6
p
k H) vrad.PH .Zq.�/// > c

p
q: (33)

Furthermore, using (32), we see that:

q �
p
k H) vrad.PH .Zq.�/// > c0 max

 
4
p
k;

p
min.q; k/

L�H�

!

: (34)
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Unfortunately, we can only say in general that supfL�H� W H 2 Gn;kg 6 C
4

p
k,

and so the estimate (34) is not very useful, unless we have some additional
information on �. Recalling the definition of v�

k .Zq.�//, we summarize this
(somewhat sloppily) in:

Lemma 12. Let � be an isotropic log-concave probability measure on R
n. For any

q > 1 and k D 1; : : : ; n we have:

v�
k .Zq.�// > c

q

min.q;
p
k/:

Assuming that supfL�H� W H 2 Gn;kg 6 Ak we have:

v�
k .Zq.�// > c0

Ak

p
min.q; k/:

6.1 Estimates for Zq.�/

Plugging these lower bounds for v�
k .Zq.�// into either Theorem 4 or Corollary 9

coupled with Remark 6, we immediately obtain estimates on the entropy numbers
ek.B

n
2 ;Zq.�//. Similar estimates on the maximal (with respect to F 2 Gn;n�k)

in-radius of PF .Zq.�// are obtained by invoking Theorem 8.

Theorem 13. Given q > 2 and an integer k D 1; : : : ; n, denote:

Rk;q WD min

(

1; C
1

min.
p
q;

4
p
k/

n

k
log

�
e C n

k

�
)

:

Then, for any isotropic log-concave probability measure � on R
n:

ek.B
n
2 ;Zq.�// 6 Rk;q;

and there exists F 2 Gn;n�k so that:

PF .Zq.�//  1

Rk;q
BF :

Proof. From (20) and Lemma 12 we have:

ek.B
n
2 ;Zq.�// 6 C

n

k
log

�
e C n

k

�
sup

16m6k

�

2� k
3m

1

min.
p
q; 4

p
m/



:
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Then, it suffices to observe that:

sup
16m6k

�

2� k
3m

1

min.
p
q; 4

p
m/



' sup
16m6k

�

2� k
3m

�
1p
q

C 1
4
p
m

�

6 C

�
1p
q

C 1
4
p
k

�

' 1

min.
p
q;

4
p
k/
;

because 2� k
3m =

p
q 6 1=

p
q for all 1 6 m 6 k, and m 7! 2

k
3m 4

p
m attains its

minimum at m ' k, so that sup16m6k.2
� k
3m = 4

p
m/ 6 C=

4
p
k. We also use the fact

that in a certain range of values for q > 2 and k > 1, we might as well use the trivial
estimates:

ek.B
n
2 ;Zq.�// 6 1 ; PF .Zq.�//  BF ; (35)

which hold since Zq.�/  Z2.�/ D Bn
2 . ut

An elementary computation based on Corollary 10 then yields a non-trivial
estimate for M.Zq.�//. It is interesting to note that without using the trivial
information that Zq.�/  Bn

2 (or equivalently, the trivial estimates in (35)),
Corollary 10 would not yield anything meaningful.

Theorem 14. For any isotropic log-concave probability measure � on R
n:

2 6 q 6 q0 WD .n log.e C n//2=5 H) M.Zq.�// 6 C

p
log q
4

p
q
:

Proof. We use the estimate:

p
nM.Zq.�// 6 C

nX

kD1

1p
k

min

(

1; C
1

min.
p
q;

4
p
k/

n

k
log

�
e C n

k

�
)

;

which follows from Corollary 10 combined with Theorem 13. We set k.n; q/ D
.n log q/=

p
q. Note that if k > k.n; q/ then k > cq2. Therefore, we may write:

p
nM.Zq.�// 6 C

k.n;q/X

kD1

1p
k

C Cnp
q

nX

kDk.n;q/

1

k3=2
log

�
e C n

k

�

6 C1
p
k.n; q/C C2

n log q
p
qk.n; q/

6 C3

p
n log q
4

p
q

:

The result follows. ut
For larger values of q, we obtain no additional information beyond the trivial

monotonicity:
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q0 6 q H) M.Zq.�// 6 M.Zq0.�// 6 C
log2=5.e C n/

n1=10
:

If K is an isotropic centrally-symmetric convex body in R
n, using that �K=LK is

isotropic log-concave and thatZn.�K=LK / is isomorphic toK=LK , one immediately
translates the above results to corresponding estimates for K .

Theorem 15. Given k D 1; : : : ; n, set:

Rk WD min

�

1; C
1
4
p
k

n

k
log

�
e C n

k

�

:

Then, for any isotropic centrally-symmetric convex bodyK in R
n:

ek.B
n
2 ;K/ 6 Rk

LK
;

and there exists F 2 Gn;n�k so that:

PF .K/  LK

Rk
BF :

Moreover:

M.K/ 6 C

LK

log2=5.e C n/

n1=10
:

6.2 Assuming that the Isotropic Constant is Bounded

It is interesting to perform the same calculations under the assumption that L� 6 C

for any log-concave probability measure � (regardless of dimension). In that case:

v�
k .Zq.�// > c

p
min.q; k/:

This would yield the following conditional result:

Theorem 16. Given q > 2 and an integer k D 1; : : : ; n, denote:

Rk;q WD min

(

1; C
1

p
min.q; k/

n

k
log

�
e C n

k

�
)

:

Assuming that L� 6 C for any log-concave probability measure (regardless
of dimension), then for any isotropic log-concave probability measure � on R

n:
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ek.B
n
2 ;Zq.�// 6 Rk;q;

and there exists F 2 Gn;n�k so that:

PF .Zq.�//  1

Rk;q
BF :

Furthermore:

M.Zq.�// 6 C

p
log q
4
p
q

for all 2 6 q 6 .n log n/2=3:

Consequently, for every isotropic convex bodyK in R
n one would have:

M.K/ 6 C
log1=3.e C n/

n1=6
:

6.3  ˛-Measures

Finally, rather than assuming that L� is always bounded, we repeat the calculations
for a log-concave measure � which is assumed to be  ˛-regular. Recall that � is
called  ˛ with constant b˛ (˛ 2 Œ1; 2�) if:

Zq.�/ � b˛q
1=˛Z2.�/ for all q > 2:

Note that this property is inherited by all marginals of �, and that any log-concave
measure is  1 with b1 D C a universal constant.

It was shown by Klartag and E. Milman [16] that when � is a  ˛ log-concave
probability measure on R

n with constant b˛ , then:

1 6 q 6 C
n
˛
2

b˛˛
H) vrad.Zq.�// > c

p
q;

and:

L� 6 C

q
b˛˛n

1�˛=2:

This implies that for such a measure, for anyH 2 Gn;k :

1 6 q 6 C
k
˛
2

b˛˛
H) vrad.PH .Zq.�/// > c

p
q:
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By (32), we know that:

q � q0 WD C
k
˛
2

b˛˛
H) vrad.PH .Zq.�/// > c0 max

 
p
q0;

p
min.q; k/

L�H�

!

:

(36)

Unfortunately, since we only know that:

L�H� 6 C

q
b˛˛k

1�˛=2;

we again see that the maximum in (36) is always attained by the
p
q0 term.

Summarizing, we have:

Lemma 17. Let � be an isotropic log-concave probability measure on R
n which is

 ˛ with constant b˛ for some ˛ 2 Œ1; 2�. Then for any q > 1 and k D 1; : : : ; n we
have:

v�
k .Zq.�// > c

s

min

�

q;
k˛=2

b˛˛

�

:

Plugging this estimate into the general results of Sects. 3 and 4, we obtain:

Theorem 18. Let � denote an isotropic log-concave probability measure on R
n

which is  ˛ with constant b˛ for some ˛ 2 Œ1; 2�. Given q > 2 and an integer
k D 1; : : : ; n, denote:

Rk;q WD min

8
ˆ̂
<

ˆ̂
:
1; C

1
r

min
�
q; k

˛=2

b˛˛

�
n

k
log

�
e C n

k

�

9
>>=

>>;
:

Then:

ek.B
n
2 ;Zq.�// 6 Rk;q;

and there exists F 2 Gn;n�k so that:

PF .Zq.�//  1

Rk;q
BF :

Furthermore:

M.Zq.�// 6 C

p
logq
4

p
q

for all 2 6 q 6 c
.n log.e C n//

2˛
˛C4

b
4˛
˛C4
˛

:
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Consequently, for every isotropic convex body K in R
n so that �K is  ˛ with

constant b˛, one has:

M.K/ 6 C

LK
b

˛
˛C4
˛

log
2

˛C4 .e C n/

n
˛

2.˛C4 /
:

Remark 19. Better estimates for the entropy-numbers ek.Bn
2 ;Zq.�// and Gelfand

numbers ck.Zq.�/ı/ may be obtained for various ranges of k by employing the
alternative known estimates mentioned in Remark 11. However, these do not result
in improved estimates on M.Zq.�//, which was our ultimate goal. We therefore
leave these improved estimates on the entropy and Gelfand numbers to the interested
reader. We only remark that even the classical low-M � estimate (26) coupled with
our estimate on M.Zq.�// yield improved estimates for ek and ck in a certain
range—a type of “bootstrap” phenomenon.

7 Concluding Remarks

In this section we briefly describe an improved and simplified version of the
arguments from [12] and compare the resulting improved estimates to the ones from
the previous section. Following the general approach we employ in this work, the
arguments are presented for general centrally-symmetric convex bodies, and this in
fact further simplifies the exposition of [12].

We mainly concentrate on presenting an alternative proof of the following
slightly weaker variant of Theorem 13:

Theorem 20. Let K be a centrally-symmetric convex body in R
n. For any

k D 1; : : : ; bn=2c there exists F 2 Gn;n�2k such that:

PF
�
K
�  c

n
k

log2
�
e C n

k

�v�
k .K/BF

where c > 0 is an absolute constant.

For the proof of Theorem 20, we use a sort of converse to Carl’s theorem (15)
on the diameter of sections of a convex body satisfying 2-regular entropy estimates,
which is due to V. Milman [23] (see also [9, Chap. 9]).

Lemma 21. Let L be a symmetric convex body in R
n. Then:

p
k ck.L;B

n
2 / 6 C log.e C n=k/ sup

k6m6n

p
m em.L;B

n
2 /:

Remark 22. Clearly, by applying a linear transformation, the statement equally
holds with Bn

2 replaced by an arbitrary ellipsoid.
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Proof of Theorem 20. Given k D 1; : : : ; bn=2c, let E D EK;˛k denote Pisier’s
˛k-regular M -ellipsoid, for some ˛k 2 Œ1; 2/ to be determined. Instead of directly
using Pisier’s estimate (17) on the Gelfand numbers as in the proof of Theorem 8 to
deduce the existence of E 2 Gn;n�k so that:

PE.K/  1

P˛k

�
k

n

�1=˛k
PE.E /; (37)

the starting point in [12] are the more traditional covering estimates (14):

maxfek.K;E /; ek.Kı;E ı/; ek.E ; K/; ek.E ı; Kı/g 6 P˛

�n

k

�1=˛k
: (38)

In [12], the following estimate was used (see [31, Theorem 5.14]):

ck.K
ı;E ı/ 6 C

r
n

k
ek.K

ı;E ı/:

However, this estimate does not take into account the regularity of the cover-
ing. Consequently, a significantly improved estimate is obtained by employing
Lemma 21 (and the subsequent remark) which exploits this regularity:

p
k ck.K

ı;E ı/ 6 C log.e C n=k/ sup
k6m6n

p
mem.K

ı;E ı/

6 C log.e C n=k/ sup
k6m6n

p
m P˛k

� n

m

�1=˛k
:

Even with this improvement, note that this is where the current approach incurs
some unnecessary logarithmic price with respect to the approach in the previous
sections: instead of using (37) directly, one uses (38) which Pisier obtains from
(37) by applying Carl’s theorem, and then uses the converse to Carl’s theorem
(Lemma 21) to pass back to Gelfand number estimates.

Using ˛k D 2 � 1
log.eCn=k/ , we deduce that:

ck.K
ı;E ı/ 6 C

r
n

k
log3=2.e C n=k/;

or in other words, the existence of E 2 Gn;n�k such that:

PE.K/  1

C
p

n
k

log3=2.e C n=k/
PE.E /:

The rest of the proof is identical to that of Theorem 8. For the ellipsoid E 0 WD
PE.E /we may always find a linear subspaceF � E of codimension k inE so that:

PF .E
0/  inf

H2Gk.E/
˚
vrad.PH .E 0//



BF :
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Estimating vrad.PH .E 0// D vrad.PH .E // by comparing to vrad.PH .K// via the
dual covering estimate on ek.K;E / (note that there is no need to use the duality of
entropy theorem here), we obtain:

vrad.PH .E
0// > 1

2ek.K; E /
vrad.PH .K// > 1

2C
p

n
k

log1=2.e C n=k/
vrad.PH .K//:

Combining all of the above, we deduce the existence of F 2 Gn;n�2k so that:

PF .K/  1

C 0 n
k

log2.e C n=k/
vrad.PH .K//BF :

This concludes the proof. ut
Having obtained a rather regular estimate on the Gelfand numbers, the next goal

is to obtain an entropy estimate. To this end, one can use Carl’s theorem (15) or
(16), as we do in Sect. 4. The approach in [12] proceeds by employing an entropy
extension theorem of Litvak et al. [19]. We remark that this too may be avoided, by
employing the following elementary covering estimate (see e.g. [9, Chap. 9]):

Lemma 23. Let K be a symmetric convex body in R
n and assume that Bn

2 � �K

for some � > 1. LetW be a subspace of Rn with dimW D m andPW ?
.K/  BW?

.
Then, we have

N.Bn
2 ; 4K/ 6 .3�/m :

Finally, having a covering estimate at hand, the estimate onM.K/ is obtained by
Dudley’s entropy bound (6). Plugging in the lower bounds on v�

k .Zq.�// given in
Sect. 6, the results of [12] are recovered and improved.

As the reader may wish to check, the improved approach of this section over the
arguments of [12] yields estimates which are almost as good as the ones obtained in
Sect. 6, and only lose by logarithmic terms.
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Remarks on the Central Limit Theorem
for Non-convex Bodies

Uri Grupel

Abstract In this note, we study possible extensions of the Central Limit Theorem
for non-convex bodies. First, we prove a Berry-Esseen type theorem for a certain
class of unconditional bodies that are not necessarily convex. Then, we consider
a widely-known class of non-convex bodies, the so-called p-convex bodies, and
construct a counter-example for this class.

1 Introduction

Let X1; : : : ; Xn be random variables with EXi D 0 and EXiXj D ıi;j for i; j D
1; 2; : : : ; n. Let � 2 Sn�1, where Sn�1 � R

n is the unit sphere centered at 0,
and let G be a standard Gaussian random variable, that is G has density function
1=

p
2�e�x2=2. We denote X D .X1; : : : ; Xn/. In this paper we examine different

conditions onX under whichX �� is close toG in distribution. The classical central
limit theorem states that if X1; : : : ; Xn are independent then for most � 2 Sn�1 the
marginal X � � is close to G. It was conjectured by Anttila et al. [1] and by Brehm
and Voigt [6] that if X is distributed uniformly in a convex body K � R

n, then for
most � 2 Sn�1 the marginal X � � is close to G. This is known as the central limit
theorem for convex sets and was first proved by Klartag [12].

In this note we examine extensions of the above theorem to non-convex settings.
Our study was motivated by the following observation on the unit balls of lp spaces
for 0 < p < 1:

We denote byBn
p D fx 2 R

nI jx1jp C � � � C jxnjp � 1g the unit ball of the space
lnp . ForX D .X1; : : : ; Xn/ that is distributed uniformly on cp;nBn

p , p > 0, � 2 Sn�1,
and G a standard Gaussian, one can show that

jP.� �X � t/ � P.G � t/j � Cp

nX

kD1
j�kj3
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where cp;n is chosen such that EXi D 0 and EXiXj D ıi;j for i; j D 1; 2; : : : ; n,
and Cp > 0 does not depend on n.

In order to formulate our results we use the following definitions: Let X D
.X1; : : : ; Xn/ be a random vector in R

n. A random vector X is called isotropic if
EXi D 0 and EXiXj D ıi;j for i; j D 1; 2; : : : ; n. A random vector X is called
unconditional if the distribution of ."1X1; : : : ; "nXn/ is the same as the distribution
of X for any "i D ˙1; i D 1; : : : ; n.

The first class of densities we define is based on Klartag’s recent work [14] and
includes the uniform distribution over Bn

p for 0 < p < 1.

Theorem 1. Let X be an unconditional, isotropic random vector with density
e�u.x/, where the function u

�
x�1 ; : : : ; x

�
n

�
is convex in R

nC D ˚
x 2 R

nI xi � 0 8i 2
f1; 2; : : : ; ng
 for � > 1. Let G be a standard Gaussian random variable and
� 2 Sn�1. Then

jP .� �X � t/ � P.G � t/j � C�

nX

kD1
j�kj3;

where C� > 0 depends on � only, and does not depend on n.

In order to see that Theorem 1 includes the uniform distribution over Bn
p for

0 < p < 1 take

u.x/ D
�
0; x

p
1 C � � � C x

p
n � 1

1; otherwise
;

and set � D 1=p.
The error rate in Theorem 1 is the same as in the classical Central Limit

Theorem. For example, by choosing � D �
1=

p
n; : : : ; 1=

p
n
�
, we get an error rate

of O
�
1=

p
n
�
.

The symmetry conditions in Theorem 1 are highly restrictive. Hence, we are led
to study p-convex bodies, which satisfy fewer symmetry conditions and are shown
to share some of the properties of convex bodies.

We say that K � R
n is p-convex with 0 < p < 1 if K D �K and for all

x; y 2 K and 0 < � < 1, we have

�1=px C .1 � �/1=py 2 K:

These bodies are related to unit balls of p-norms and were studied in relation to
local theory of Banach spaces by Gordon and Lewis [10], Gordon and Kalton [9],
Litvak et al. [16] and others (see [2, 7, 11, 15, 17]).

The following discussion explains why the class of p-convex bodies does not give
the desired result.

Theorem 2. Set N D nC n5=2 log2 n. There exists a random vector X distributed
uniformly in a 1=2-convex body K � R

N , and a subspace E with dim.E/ D n,
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such that for any � 2 SN�1 \ E , the random variable � � ProjEX is not close
to a Gaussian random variable in any reasonable sense (Kolmogorov distance,
Wasserstein distance and others).

A similar construction can be made for any fixed parameter 0 < p < 1. Since
dim.E/ tends to infinity with n, a similar theorem is not true in the convex case.
Hence, the central limit theorem for convex sets cannot be extended for the p-convex
case. Thus, we need to look for a new class of bodies (densities) that includes the lnp
unit balls, with a weaker condition than the unconditional one.

Remark 1. In [15] Litvak constructed an example of a p-convex body for which the
volume distribution is very different from the convex case. Litvak’s work studies the
large deviations regime for p-convex distributions, while our work is focused on the
central limit theorem.

Throughout the text the letters c; C; c0; C 0 will denote universal positive con-
stants that do not depend on the dimension n. The value of the constant may change
from one instance to another. We use C˛; C.˛/ for constants that depend on a
parameter ˛ and nothing else. �n�1 will denote the Haar probability measure on
Sn�1. f .n/ D O.g.n// is the big O notation, i.e. there exists a constant C > 0 such
that jf .n/j � Cg.n/; 8n 2 N.

2 A Class of Densities with Symmetries

In this section we use Klartag’s recent work [14] in order to exhibit a family of
functions, which includes the indicator functions of lnp unit balls, for 0 < p < 1,
having almost Gaussian marginals.

A special case of Theorem 1.1 in [14] gives us the following lemma.

Lemma 1. Let � > 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is a probability density function and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then

VarjX j2 � c�

nX

jD1
EjXj j4;

where c� depends only on �.

Lemma 2. Let � � 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is a probability density function and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then for any p � 1 and i D 1; : : : ; n,

EjXi jp � cp;�
�
EjXi j2

�p=2
:
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Proof. If p � 2 then, by Hölder’s inequality, we have cp;� D 1. Assume that
p � 2. Define � W RnC ! R

nC by �.x/ D .jx1j�; : : : ; jxnj�/. The Jacobian of �
is
Qn
jD1 �jxj j��1. Using the symmetry of � we obtain

ˆ

R
n

jxi jpe��.x/dx D 2n
ˆ

R
nC

jxi jpe��.x/dx

D 2n
ˆ

R
nC

jxi jp�
0

@
nY

jD1
�jxj j��1

1

A e��.�.x//dx

Now set u.x/ D �.�.x//� .� � 1/
nX

jD1
log jxj j. The function e�u.x/ is log-concave

on R
nC, with �n

ˆ

R
nC
e�u.x/ D 1=2n, and

ˆ

R
nC

jxi jpe��.x/dx D �n
ˆ

R
nC

jxi jp�e�u.x/dx:

By Borell’s Lemma (see [4, 5, 18]) we obtain

.2�/n
ˆ

R
nC

jxi jp�e�u.x/dx � C�;p

 

.2�/n
ˆ

R
nC

jxi j2�e�u.x/dx

!p=2

D C�;p

�ˆ

R
n

jxi j2e��.x/dx

�p=2

Lemma 3. Let � > 1 and let � W Rn ! R be an unconditional function such that
e��.x/ is an isotropic probability density and �.x�1 ; : : : ; x

�
n/ is convex on R

nC. Let X
be a random vector with density e��.x/. Then, for any a 2 R

n

Var.a21X
2
1 C � � � C a2nX

2
n/ � C�

nX

jD1
jaj j4:

Proof. By applying a linear transformation, Lemma 1 gives

Var.a21X
2
1 C � � � C a2nX

2
n/ � C 0

�

nX

jD1
Ea4j jXj j4:

By Lemma 2, we obtain
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Var.a21X
2
1 C� � �Ca2nX2

n/�C 0
�

nX

jD1
Ea4j jXj j4 � C�

nX

jD1
a4j
�
EjXj j2�2 DC�

nX

jD1
jaj j4:

We are now ready to prove Theorem 1.

Proof. Since X is unconditional,

P .� �X � t/ D P

 
nX

kD1
�kXk"k � t

!

;

where "1; : : : ; "n are i.i.d. random variables distributed uniformly on f˙1g that are
independent of X . By the triangle inequality,

ˇ
ˇ
ˇ
ˇ
ˇ
P

 
nX

kD1

�kXk"k � t

!

� P.G � t /

ˇ
ˇ
ˇ
ˇ
ˇ

� EX

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
P.G � t / � PG

0

B
@G � t

qPn
kD1 �

2
kX

2
k

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

CEX

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
P"

 
nX

kD1

"k�kXk � t

!

� PG

0

B
@G � t

qPn
kD1 �

2
kX

2
k

1

C
A

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

We estimate each term separately. Denote Yn D Pn
kD1 �2kX2

k . By the Berry-Esseen
Theorem (see [8]),

EX

ˇ
ˇ
ˇ
ˇ
ˇ
P"

 
nX

kD1
"k�kXk � t

!

� PG

�

G � tp
Yn

�ˇˇ
ˇ
ˇ
ˇ

� C

 

EX

nX

kD1

j�kj3jXkj3
.Yn/

3=2
1Œ1=2;1/ .Yn/C 2P

�

Yn <
1

2

�!

� C

 

10

nX

kD1
EX j�kj3jXkj3 C 2P

�

Yn <
1

2

�!

� C�

nX

kD1
j�kj3 C CP

�

Yn <
1

2

�

Here we used Lemma 2 to estimate EjXkj3. Note that

EXYn D EX

nX

jD1
�2j X

2
j D

nX

jD1
�2jEXX

2
j D

nX

jD1
�2j D 1;

so by Chebyshev’s inequality and Lemma 3

P

�

jYn � 1j � 1

2

�

� Var .Yn/

1=4
� 4C�

nX

jD1
j�j j4 (1)
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Hence, since j�i j � 1 for all i D 1; : : : ; n,

EX

ˇ
ˇ
ˇ
ˇ
ˇ
P"

 
nX

kD1
"k�kXk � t

!

� P

�

G � tp
Yn

�ˇˇ
ˇ
ˇ
ˇ

� C�

nX

kD1
j�kj3:

Now, in order to estimate EX

ˇ
ˇ
ˇ
ˇP.G � t/ � P

�

G � tp
Yn

�ˇ
ˇ
ˇ
ˇ we use (1) and

Klartag’s argument in [13] (Sect. 6, Lemma 7) and conclude that it is enough
to show that

E

�

.Yn � 1/2
ˇ
ˇ
ˇ
ˇYn � 1

2

�

� C

0

@
nX

jD1
j�j j3

1

A

By Lemma 3 we get

E .Yn � 1/2 D Var .Yn/ � C�

nX

jD1
j�j j4

Hence,

E

�

.Yn � 1/2
ˇ
ˇ
ˇ
ˇYn � 1

2

�

� E .Yn � 1/2 P

�

Yn � 1

2

��1

� C�

0

@
nX

jD1
j�j j4

1

AP

�

Yn � 1

2

��1

From inequality (1) it follows that

�

P

�

Yn � 1

2

���1
D P

0

@
nX

jD1
�2j X

2
j � 1

2

1

A

�1

� 1

1 � C�Pn
jD1 j�j j4 :

We may assume that
nX

jD1
j�j j4 is bounded by some small positive constant depend-

ing on �, since otherwise the result is trivial, and obtain

1

1 � C�
Pn

jD1 j�j j4 � 1C C�

nX

jD1
j�j j4

which completes our proof.
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3 The p-Convex Case

In this section we construct a random vector X , distributed uniformly in a
1=2�convex body K , such that for a large subspace E � R

n the random vector
ProjEX has no single approximately Gaussian marginal. We define a function
f W RC ! RC such that the radial density rn�1e�f .r/ is spread across an interval
of length proportional to

p
n; that is, we want rn�1e�f .r/ to be constant (or close

to constant) on such an interval. Such densities have marginals that are far from
Gaussian. We use the density function introduced above and an approximation
argument to construct the desired bodyK .

In order to construct a p-convex body from a function f , we restrict ourselves to
p-convex functions.

Definition 1. A function f W Rn ! R[f1g is called p-convex if for any x; y 2 R
n

and t 2 Œ0; 1�,

f
�
t1=px C .1 � t/1=py

� � tf .x/C .1 � t/f .y/: (2)

The following proposition allows us to construct a p-convex body with 0<p<1
from a p-convex function.

Proposition 1. For  W Rn ! RC p-convex function with 0 < p < 1 and fixed
N > 0, define fN .x/ D .1 �  .x/=N /NC. Then the set

KN. / D
n
.x; y/I x 2 R

n; y 2 R
N ; jyj < f 1=N

N .x/
o

is p-convex.

Proof. Let .x1; y1/; .x2; y2/2KN. /. Since .xi ; yi /2KN. /we have fN .xi / > 0.
Therefore,

f
1=N
N .xi / D 1 �  .xi /

N
:

Let 0 � t � 1 we get

f
1=N
N .t1=px1 C .1� t/1=px2/ � 1� 1

N
 .t1=px1 C .1 � t/1=px2/

� 1� 1

N
.t .x1/C .1� t/ .x2//

D tf 1=NN .x1/C .1� t/tf 1=NN .x2/ > t jy1j C .1 � t/jy2j
� jt 1=py1j C j.1� t/1=py2j � jt 1=py1 C .1� t/1=py2j:

Hence, t1=p.x1; y1/C .1 � t/1=p.x2; y2/ 2 KN. /, as needed.
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Proposition 2. There exists a universal constant C > 0 such that, for a � C the
function

f .x/ D
8
<

:

log a; if 0 � x � a

logx; if a � x � 2ap
x � p

2aC log 2a; if 2a � x

is 1=2-convex.

Proof. We begin by verifying that the function f is 1=2-convex for each interval
Œ0; a�; Œa; 2a�; Œ2a;1/. Then we need to check that condition (2) holds when x
and y are from different intervals. By symmetry, we may assume that x < y. The
cases x; y 2 Œ0; a� and x; y 2 Œ2a;1/ are straightforward. In order for condition
(2) to hold for the function logx on an interval Œa; b� we must show that for any
x; y 2 Œa; b�

log..1� t/2x C t2y/ � .1 � t/ log.x/C t log.y/ D log
�
x1�t yt

�
: (3)

This is equivalent to

.1 � t/2x C t2y � x1�t yt � 0:

Setting here y D cx, we obtain

.1 � t/2 C t2c � ct � 0:

This inequality holds for every 1 � c � 4 and 0 � t � 1. To see that note that
g.t; c/ D .1�t/2Ct2c�ct is a convex function in c (as a sum of convex functions).
Hence, it is enough to verify that g.t; 1/ � 0 and g.t; 4/ � 0 for any 0 � t � 1.
Indeed,

g.t; 1/ D .1 � t/2 C t2 � 1 D 2t.t � 1/ � 0

and

g.t; 4/ D .1 � t/2 C t24 � 4t ) @2g.t; 4/

@t2
D 2C 8 � .log 4/24t � 2:

Hence, g.t; 4/ is convex in t . Since g.0; 4/ D g.1; 4/ D 0, we obtain, g.t; 4/ � 0

for all 0 � t � 1.
Consequently (3) holds for any interval of the form Œa; b� � Œa; 4a�.
Next, we verify condition (2) for f when x 2 Œa; 2a�, y 2 Œ2a;1/, and t2x C

.1 � t/2y 2 Œa; 2a�. We consider two cases
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1. y 2 Œ2a; 4a�. By inequality (3),

f .t2x C .1 � t/2y/ D log.t2x C .1 � t/2y/ � t log.x/C .1 � t/ log.y/

� log.x/C .1 � t/.log.2a/C p
y � p

2a/

D tf .x/C .1 � t/f .y/:

The second inequality holds thanks to the elementary inequality log.y/ �
log.2a/ � p

y � p
2a. Since for y D 2a we have equality, and .

p
y/0 D

1=
p
4y � 1=y D .log.y//0 for y � 4, the inequality holds if 2a � 4.

2. y � 4a. Define

g.t/ D log.t2x C .1 � t/2y/ � t log.x/ � .1� t/.
p
y � p

2aC log.2a//:

We need to show that g.t/ � 0 for all t 2 Œ0; 1�. Since g.1/ D 0, it is enough to
show that g0.t/ � 0 for all 0 � t � 1. We have,

g0.t/ D 2tx � 2.1� t/y

t2x C .1 � t/2y � log.x/C p
y � p

2a C log.2a/

� 2tx � 2.1 � t/y
t2x C .1 � t/2y C

�

1 � 1p
2

�p
y

Hence, if 2tx�2.1�t/yC
�
1 � 1=

p
2
�p

y.t2xC.1�t/2y/ � 0, then g0.t/ � 0.

Recalling that t2x C .1 � t/2y � a, it suffices to prove that

2tx � 2.1� t/y C
�

1 � 1p
2

�p
ya � 0:

Using the fact that .1�t/2y � t2xC.1�t/2y � 2a, we obtain .1�t/py � p
2a.

Hence,

2tx � 2.1 � t/y C
�

1 � 1p
2

�

a
p
y � 2ta � 2p2ap

y C
�

1 � 1p
2

�

a
p
y

� p
y

��

1 � 1p
2

�

a � 2
p
2a

�

:

This gives the condition

�

1 � 1p
2

�

a � 2
p
2a � 0;

Which is satisfied for a � 100.
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When x 2 Œa; 2a� and y 2 Œ2a;1/ and t2x C .1 � t/2y � 2a, we have

f .t2x C .1 � t/2y/ D
p
t2x C .1 � t/2y � p

2a C log 2a

� t
p
x C .1 � t/py � p

2a C log 2a

and

tf .x/C .1 � t/f .y/ D t logx C .1 � t/.
p
y � p

2aC log 2a/:

Hence, (2) holds thanks to the elementary inequality log 2a�log xCp
x�p

2a � 0,
which holds for a � 4.

If x 2 Œ0; a�, then f .x/ D f .a/ and f .t2x C .1 � t/2y/ � f .t2a C .1 � t/2y/.
Hence, for x 2 Œ0; a� and y 2 Œa;1/ we have

f .t2xC.1�t/2y/ � f .t2aC.1�t/2y/ � tf .a/C.1�t/f .y/ D tf .x/C.1�t/f .y/:

Proposition 3. Let f W RC ! RC be a p-convex function with parameter 0 < p <
1. Then x 7! f .jxj/ is a p-convex function on R

n.

Proof. First, we prove that f is non-decreasing. Let 0 < x < y. There exists some
k � 1 such that 2�k.1=p�1/y � x. We proceed by induction on k. For k D 1, note
that h.t/ D t1=pyC.1� t/1=py is continuous, h.0/ D y, and h .1=2/ D 2�.1=p�1/y.
Hence, there exists some 0 � t0 � 1 for which h.t0/ D x, and so

f .x/ D f .t
1=p
0 y C .1 � t0/

1=py/ � t0f .y/C .1 � t0/f .y/ D f .y/

For k � 2, f .2�.k�1/.1=p�1/y/ � f .y/ by the induction hypothesis, and by the
same argument as above

f .x/ � f .2�.k�1/.1=p�1/y/ � f .y/:

We thus showed that f is monotone non-decreasing. Now, by the triangle inequality,
for any x; y 2 R

n and 0 < t < 1 we have

f .jt1=px C .1 � t/1=pyj/ � f .t1=pjxj C .1 � t/1=p jyj/ � tf .jxj/C .1 � t/f .jyj/

Using the function from Proposition 2, we are ready to construct the 1=2-convex
bodyK and prove Theorem 2.

Definition 2. A sequence of probability measures f�ng on R
n is called essentially

isotropic if
´
xd�n.x/ D 0 and

´
xixj d�n.x/ D .1C"n/ıij for all i; j D 1; : : : ; n,

when "n �!
n!1 0.

Proposition 4. The probability measure d� D Cne
�.n�1/f .jxj/dx, where f is

defined as in Proposition 2, with a D p
3n=7, is essentially isotropic. That is,
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ˆ
xixj d�.x/ D .1C "n/ıij

for all i; j D 1; 2; : : : ; n, when j"nj � C=n.

Proof. The density � is spherically symmetric, hence

ˆ

R
n
xixj d�.x/ D 0;

for i ¤ j , and

ˆ

R
n
x2i d�.x/ D 1

n

ˆ

R
n

jxj2d�.x/;

for i D 1; 2; : : : ; n. Integration in spherical coordinates and using Laplace
asymptotic method yields

ˆ
jxj2d�.x/ D

2

6
6
6
6
4

ˆ p
3n=7

0

rnC1
�p

3n=7
�n�1 dr C

ˆ 2
p
3n=7

p
3n=7

r2dr

C
�
e
p
2
p

3n=7

2
p
3n=7

�n�1 ˆ 1

2
p
3n=7

rnC1e�.n�1/prdr

3

7
7
7
7
5

2

6
6
6
6
4

ˆ p
3n=7

0

 
r

p
3n=7

!n�1
dr C

ˆ 2
p
3n=7

p
3n=7

dr

C
�
e
p
2
p

3n=7

2
p
3n=7

�n�1 ˆ 1

2
p
3n=7

rn�1e�.n�1/prdr

3

7
7
7
7
5

D
p
3=7n3=2 CO

�p
n
�

q
3
7
nCO

�
1=

p
n
� D nCO.1/:

Proposition 5. Let X be a random vector in R
n distributed according to � from

Proposition 4. Then,

P

 r
3

7
n � jX j � 2

r
3

7
n

!

� 1 � C

n
:

Proof. By the same arguments as in Proposition 4

P

�p
3n=7 � jX j � 2

p
3n=7

�
D

ˆ 2
p
3n=7

p
3n=7

dr

p
3n=7CO

�
1=

p
n
� D 1CO .1=n/ :
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Proposition 6. Let X be a random vector in R
n distributed according to � from

Proposition 4, and let eX be a random variable distributed according to de� D
fCn .1 � .n � 1/f .jxj/=N /NC. Then for N � n5=2 log2 n, eX is essentially isotropic,
namely

ˆ
xixj de�.x/ D .1C "0

n/ıij

for all i; j D 1; 2; : : : ; n, when j"0
nj � C=

p
n. Also

8t; ˇ
ˇP.jX j � t/ � P.j QX j � t/

ˇ
ˇ � Cp

n
:

Proof. The random vector eX is spherically symmetric. Hence

ˆ

R
n
xixj de�.x/ D 0;

for i ¤ j , and

ˆ

R
n
x2i de�.x/ D 1

n

ˆ

R
n

jxj2de�.x/;

for i D 1; 2; : : : ; n. Since both densities are spherically symmetric, we need to
estimate the one-dimensional integrals

Ik D
ˆ 1

0

rk

 

e�.n�1/f .r/ �
�

1 � .n � 1/f .r/

N

�N

C

!

dr

for k D n � 1; nC 1. Define ˛ by the equation

0

@
p
˛ �

s

2

r
3

7
nC log

 

2

r
3

7
n

!1

A .n � 1/ D N

2
:

That is, for any r � ˛ we have .n � 1/f .r/=N � 1=2. By Taylor’s Theorem, for
any r � ˛,

ˇ
ˇ
ˇ
ˇ
ˇ
log

�

1 � .n � 1/f .r/

N

�N

C
� .�.n � 1/f .r//

ˇ
ˇ
ˇ
ˇ
ˇ

� C
.n � 1/2
N

f 2.r/:

Hence, for any r � ˛



Remarks on the Central Limit Theorem for Non-convex Bodies 195

ˇ
ˇ
ˇ
ˇ
ˇ
e�.n�1/f .r/ �

�

1 � .n � 1/

N
f .r/

�N

C

ˇ
ˇ
ˇ
ˇ
ˇ

D e�.n�1/f .r/
ˇ
ˇ
ˇ
ˇ
ˇ
1 � exp

 

.n � 1/f .r/ � log

�

1 � .n � 1/
N

f .r/

�N

C

!ˇ
ˇ
ˇ
ˇ
ˇ

� C
n2

N
e�.n�1/f .r/f 2.r/:

Note that
ˇ
ˇ
ˇ
ˇ
ˇ

ˆ 1

˛

 

e�.n�1/f .r/ �
�

1 � .n � 1/
N

f .r/

�N

C

!

dr

ˇ
ˇ
ˇ
ˇ
ˇ

� C

ˆ 1

˛

e�.n�1/f .r/dr � Ce�n:

Combining the above inequalities, we obtain

jIkj � C1
n2

N

ˆ ˛

0

rke�.n�1/f .r/f 2.r/drCC2e�n � C
n2

N

ˆ 1

0

rke�.n�1/f .r/f 2.r/dr:

Hence,

jIn�1j � C
n2

N

 
p
n log2 nCO

 
log2 np
n

!!

� C1;

jInC1j � C
n2

N

�
n
3
2 log2 nCO

�
log2 n

p
n
�� � C2n:

By the estimation on In�1, and the calculations in Proposition 4 we obtain

ˇ
ˇ
ˇ
ˇ
ˇ

ˆ 1

0

�

1 � .n � 1/

N
f .r/

�N

C
dr �

r
3

7
n

ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ

ˆ 1

0

�

1 � .n � 1/
N

f .r/

�N

C
dr �

ˆ 1

0

e�.n�1/f .r/dr

ˇ
ˇ
ˇ
ˇ
ˇ
CO

�
1p
n

�

D jIn�1j CO

�
1p
n

�

� C1:

Hence,

•

 ˆ 1

0

�

1 � .n � 1/
N

f .r/

�N

C
dr

!�1
D
q

1
3
7 n

�
1CO

�
1p
n

��
;

• 8t; ˇ
ˇP.jX j � t/ � P.j QX j � t/

ˇ
ˇ � Cp

n
.
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By the estimation of InC1 we obtain,

ˇ
ˇEX2

i � E QX2
i

ˇ
ˇ D 1

n

ˇ
ˇEjX j2 � Ej QX j2ˇˇ � C

1p
n

1

n
jInC1j � Cp

n
:

Remark 2. It is possible to take a � p
3n=7 in the definition of f , such that eX is

isotropic.

We use the following estimation in our proof of Theorem 2.

Proposition 7. LetZ1; ::; Zn be independent standard Gaussian random variables,
and let 0 < ı < 1=2. Then,

P

�ˇ
ˇ
ˇ
ˇ

q
Z2
1 C : : :CZ2

n � p
n

ˇ
ˇ
ˇ
ˇ � nı

�

� 1 � Ce�cn2ı ;

where c; C > 0 are constants.

Proof. Note that

ˇ
ˇZ2

1 C � � � CZ2
n � n

ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

q
Z2
1 C � � � CZ2

n � p
n

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

q
Z2
1 C � � � CZ2

n C p
n

ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ

q
Z2
1 C � � � CZ2

n � p
n

ˇ
ˇ
ˇ
ˇ
p
n:

Therefore it is enough to show that

P

�ˇ
ˇZ2

1 C � � � CZ2
n � n

ˇ
ˇ � nıC

1
2

�
� 1 � Ce�cn2ı :

Note that for all m � 1 and for all i D 1; : : : ; n, we have

EjZ2
i � 1jm �

mX

kD1

 
m

k

!

EZ2k
i � 2m.2m/ŠŠ � 4mmŠ

where .2m/ŠŠ D 1 � 3 � 5 � � � .2m�1/. Hence, by Bernstein’s inequality [3] we obtain

P

�ˇ
ˇ.Z2

1 � 1/C � � � C .Z2
n � 1/

ˇ
ˇ > n

1
2Cı

�
� Ce�cn2ı :

We are now ready to prove Theorem 2.

Proof. By Proposition 2, the function .n � 1/f .jxj/ is 1=2-convex. Proposition 1
with N D n5=2 log2 n yields a 1=2-convex body K . Let X be a random vector
distributed uniformly inK . By the definition ofK the marginal ofX with respect to
the first n coordinates has density proportional to .1 � .n � 1/f .jxj/=N /NC. Denote
this subspace by E . By Proposition 6, ProjEX is essentially isotropic. Let G be
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a standard Gaussian random variable. In order to show that Y D ProjEX has no
approximately Gaussian marginals, we examine P.j�0 � Y j � t/, for any �0 2 Sn�1.
Using the symmetry of Y and the rotation invariance of �n�1, we obtain,

P.j�0 � Y j � t/ D E1Œ0;t �.j�0 � Y j/ D
ˆ

Sn�1

E1Œ0;t �.j� � Y j/d�n�1.�/

D E

ˆ

Sn�1

1Œ0;t �.�1jY j/d�n�1.�/;

where � D .�1; : : : ; �n/. LetZ D .Z1; : : : ; Zn/, whereZi are independent standard
Gaussian random variable. SinceZ is invariant under rotations,Z=jZj is distributed
uniformly on Sn�1. Hence,

P.j�0 � Y j � t/ D P

�

jZ1jjY j � t

q
Z2
1 C � � � CZ2

n

�

:

By Proposition 7, P.j
q
Z2
1 C � � � CZ2

n � p
nj � n1=100/ � 1 � Ce�cn1=50 . Hence,

P.j�0 � Y j � t/ D P
�jZ1jjY j � t

p
n
�
1CO

�
n�1=2C1=100���CO

�
e�cn1=50

�
:

(4)

By Propositions 6 and 5, there exists a random vector Y 0 such that

8t ˇˇP �jY 0j � t
� � P .jY j � t/

ˇ
ˇ � Cp

n
; P

 r
3

7
n � jY 0j � 2

r
3

7
n

!

� 1 � C

n
;

and jY 0j has constant density function on
hp
3n=7; 2

p
3n=7

i
. By the triangle

inequality, for W distributed uniformly on
hp
3=7; 2

p
3=7

i
and any

p
3=7 � ˛ �

ˇ � 2
p
3=7 we have

jP.pn˛ � jY j � p
nˇ/ � P.˛ � W � ˇ/j � Cp

n
:

Combining with (4),

P.j�0 � Y j � t/ D P
�jGjW � t.1CO.n�1=2C1=100//

�CO

�
1p
n

�

:

We conclude that jY � �0j is very close to a distribution which is the product of
a Gaussian with a uniform random variable, and the latter distribution is far from
Gaussian.
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Reflectionless Measures
and the Mattila-Melnikov-Verdera
Uniform Rectifiability Theorem

Benjamin Jaye and Fedor Nazarov

Abstract The aim of these notes is to provide a new proof of the Mattila-Melnikov-
Verdera theorem on the uniform rectifiability of an Ahlfors-David regular measure
whose associated Cauchy transform operator is bounded. They are based on lectures
given by the second author in the analysis seminars at Kent State University and Tel-
Aviv University.

1 Introduction

The purpose of these notes is to provide a new proof of Mattila, Melnikov, and
Verdera’s theorem. The exposition is self-contained, relying only on a knowledge of
basic real analysis.

Theorem 1.1 ([8]). An Ahlfors-David regular measure� whose associated Cauchy
transform operator is bounded in L2.�/ is uniformly rectifiable.

The precise statement of this theorem is given in Sect. 3. The scheme employed
to prove Theorem 1.1 in these notes is quite different from that in [8], and relies
upon a characterization of reflectionless measures. In this regard, one may compare
the proof to that of Mattila’s theorem [5]: Suppose that � is a finite Borel measure
satisfying lim infr!0

�.B.z;r//
r

2 .0;1/ for �-a.e. z 2 C. If the Cauchy transform of
� exists�-a.e. in the sense of principal value, then� is rectifiable. Mattila’s proof of
this theorem uses a characterization of symmetric measures, the reader may consult
Chap. 14 of the book [4] for more information.

Subsequently, Mattila’s theorem was generalized to the case of singular integrals
in higher dimensions by Mattila and Preiss in [6]. To find the analogous general-
ization of the proof we carry out here would answer a longstanding problem of
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David and Semmes [1]. Very recently, Nazarov et al. [10] completed the solution
of the problem of David and Semmes in the case of singular integral operators of
co-dimension 1. They proved that if � is a d -dimensional Ahlfors-David regular
measure in R

dC1, then the boundedness of the d -dimensional Riesz transform
in L2.�/ implies that one of the criteria for uniform rectifiability given in [1] is
satisfied. See [10] for more details, and for further references and history about this
problem.

Throughout this paper, we shall only consider Ahlfors-David regular measures.
For closely related results without this assumption, see the paper of Léger [3].

2 Notation

We shall adopt the following notation:

• B.z; r/ denotes the open disc centred at z with radius r > 0.
• For a square Q, we set zQ to be the centre of Q, and `.Q/ to denote the side-

length of Q.
• We shall denote by D the standard lattice of dyadic squares in the complex plane.

A dyadic square is any square of the form Œk2j ; .k C 1/2j / � Œ`2j ; .` C 1/2j /

for j; k and ` in Z.
• We define the Lipschitz norm of a function f by

kf kLip D sup
z;�2C;z¤�

jf .z/ � f .�/j
jz � �j :

• We denote by Lip0.C/ the space of compactly supported functions with finite
Lipschitz norm. The continuous functions with compact support are denoted by
C0.C/.

• For f W C ! C, we set kf k1 D supz2C jf .z/j: In particular, note that we are
taking the pointwise everywhere supremum here.

• The closure of a set E is denoted by E
• The support of a measure � is denoted by supp.�/.
• For a line L, we write the one dimensional Hausdorff measure restricted to L by

H1
L. If L D R, we instead write m1.

• We will denote by C and c various positive absolute constants. These constants
may change from line to line within an intermediate argument. The constant C
is thought of as large (at the very least greater than 1), while c is thought of
as small (certainly smaller than 1). We shall usually make any dependence of
a constant on a parameter explicit, unless it is clear from the context what the
dependencies are.
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3 The Precise Statement of Theorem 1.1

3.1 The Cauchy Transform of a Measure �

LetK.z/ D 1
z for z 2 Cnf0g. For a measure �, the Cauchy transform of � is formally

defined by

C.�/.z/ D
ˆ

C

K.z � �/d�.�/; for z 2 C:

In general, the singularity in the kernel is too strong to expect the integral to
converge absolutely on supp.�/. It is therefore usual to introduce a regularized
Cauchy kernel. For ı > 0, define

Kı.z/ D Nz
max.ı; jzj/2 :

Then the ı-regularized Cauchy transform of � is defined by

Cı.�/.z/ D
ˆ

C

Kı.z � �/d�.�/; for z 2 C:

Before we continue, let us introduce a very natural condition to place upon �. A
measure � is called C0-nice if �.B.z; r// � C0r for any disc B.z; r/ � C.

If � is a C0-nice measure, then for any f 2 L2.�/ and z 2 C, we have that
C�;ı.f /.z/ WD Cı.f�/.z/ is bounded in absolute value in terms of ı, C0, and
kf kL2.�/. To see this, we shall need an elementary tail estimate, which we shall
refer to quite frequently in what follows:

Lemma 3.1. Suppose � is C0-nice measure. For every " > 0 and r > 0, we have

ˆ

CnB.0;r/

1

j�j1C" d�.�/ � C0.1C "/

"
r�":

The proof of Lemma 3.1 is a standard exercise, and is left to the reader. With
this lemma in hand, we return to our claim that C�;ı.f / is bounded. First apply the
Cauchy-Schwarz inequality to estimate

jC�;ı.f /.z/j �
�ˆ

C

jKı.z � �/j2d�.�/
�1=2kf kL2.�/:

But now
´
C

jKı.z��/j2d�.�/ � ´
B.z;ı/

j��zj2
ı4

d�.�/C´
CnB.z;ı/

1
j��zj2 d�.�/: The first

term on the right hand side of this inequality is at most �.B.z;ı//
ı2

� C0
ı

, and the second
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term is no greater than 2C0
ı

by Lemma 3.1. We therefore see that jC�;ı.f /.z/j �
�
3C0
ı

�1=2kf kL2.�/. In particular, we have C�;ı.f /.z/ 2 L2loc.�/.
One conclusion of this discussion is that for any nice measure �, it makes sense

to ask if C�;ı is a bounded operator from L2.�/ to L2.�/.

Definition 3.2. We say that � is C0-good if it is C0-nice and

sup
ı>0

kC�;ıkL2.�/!L2.�/ � C0:

By definition, the Cauchy transform operator associated with � is bounded inL2.�/
if � is good.

The two dimensional Lebesgue measure restricted to the unit disc is good.
However, this measure is not supported on a 1-rectifiable set and so such measures
should be ruled out in a statement such as Theorem 1.1. To this end, we shall deal
with Ahlfors-David (AD) regular measures.

Definition 3.3. A nice measure � is called AD-regular, with regularity constant
c0 > 0, if �.B.z; r// � c0r for any disc B.z; r/ � C with z 2 supp.�/.

3.2 Uniform Rectifiability

A set E � C is called uniformly rectifiable if there exists M > 0 such that for
any dyadic square Q 2 D, there exists a Lipschitz mapping F W Œ0; 1� ! C with
kF kLip � M`.Q/ and E \Q � F.Œ0; 1�/.

We can alternatively say thatE is uniformly rectifiable if there existsM > 0 such
that for any dyadic square Q 2 D, there is a rectifiable curve containing E \Q of
length no greater than M`.Q/.

A measure � is uniformly rectifiable if the set E D supp.�/ is uniformly
rectifiable.

We may now restate Theorem 1.1 in a more precise way.

Theorem 3.4. A good AD-regular measure � is uniformly rectifiable.

4 Making Sense of the Cauchy Transform on supp.�/

The definition of a good measure does not immediately provide us with a workable
definition of the Cauchy transform on the support of �. In this section, we rectify
this matter by defining an operator C� as a weak limit of the operators C�;ı as ı ! 0.
This idea goes back to Mattila and Verdera [7]. We fix a C0-good measure �.

Note that if f 2 Lip0.C/, then f is bounded in absolute value by kf kLip �
diam.supp.f //.
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Fix f; g 2 Lip0.C/. Then for any ı > 0, we may write

hC�;ı.f /; gi� D 1

2

“

C�C

Kı.z � �/�f .�/g.z/ � f .z/g.�/	d�.z/d�.�/:

Let H.z; �/ D 1
2

�
f .�/g.z/ � f .z/g.�/

	
. It will be useful to denote by Iı.f; g/ the

expression

Iı.f; g/ D Iı;�.f; g/ D
“

C�C

Kı.z � �/H.z; �/d�.�/d�.z/:

Now, note that if S D supp.f /[ supp.g/, it is clear that supp.H/ � S � S .
In addition H is Lipschitz in C

2 with Lipschitz norm no greater than
1p
2

�kf k1kgkLip C kgk1kf kLip
�
. To see this, first observe that jH.z; �/ �

H.!; �/j � 1
2

�kf k1kgkLip C kgk1kf kLip
�jz � !j, whenever z; !; � 2 C. By

using this inequality twice, we see that

jH.z1; z2/�H.�1; �2/j � 1
2

�kf k1kgkLip C kgk1kf kLip
�
Œjz1 � �1j C jz2 � �2j�;

and the claim follows since jz1��1jCjz2��2j � p
2
pjz1 � �1j2 C jz2 � �2j2. Since

H.z; z/ D 0, this Lipschitz bound immediately yields

jH.z; �/j � 1p
2

�kf k1kgkLip C kgk1kf kLip
�jz � �j for any z ¤ �:

As a result of this bound on the absolute value of H , there exists a constant
C.f; g/ > 0 such that

jKı.z � �/jjH.z; �/j � C.f; g/�S�S .z; �/:

On the other hand, since � is a nice measure, the set f.z; �/ 2 C � C W z D �g is
� � � null, and so for � � � almost every .z; �/, the limit as ı ! 0 of Kı.z � �/

is equal to K.z � �/. As a result, the Dominated Convergence Theorem applies to
yield

lim
ı!0

Iı.f; g/ D
“

C�C

K.z � �/H.z; �/d�.z/d�.�/:

This limit will be denoted by I.f; g/ D I�.f; g/. Moreover, there is a quantitative
estimate on the speed of convergence:

jI.f; g/� Iı.f; g/j �
“

.z;�/2S�S W
jz��j<ı

C.f; g/d�.z/d�.�/ � C.f; g/ı�.S/:
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Since � is C0-nice, �.S/ can be bounded in terms of the diameters of the supports
of f and g, and we see that jI.f; g/ � Iı.f; g/j � C.f; g/ı.

We have now justified the existence of an operator C� acting from the space of
compactly supported Lipschitz functions to its dual with respect to the standard
pairing hf; gi� D ´

C
fgd�.

Since � is C0-good, for any ı > 0 we have

jIı.f; g/j � C0kf kL2.�/kgkL2.�/; for any f; g 2 L2.�/; (1)

and this inequality allows us to extend the definition of I.f; g/ to the case when f
and g are L2.�/ functions. To do this, we first pick functions f and g in L2.�/.
Let " > 0. Using the density of Lip0.C/ in L2.�/, we write f D f1 C f2 and
g D g1 C g2, where f1 and g1 are compactly supported Lipschitz functions, and
the norms of f2 and g2 in L2.�/ are as small as we wish (say, less than "). We
know that Iı.f1; g1/ ! I.f1; g1/ as ı ! 0. Consequently, for each " > 0, Iı.f; g/
can be written as a sum of two terms, the first of which (namely Iı.f1; g1/) has a
finite limit, and the second term (which is Iı.f1; g2/C Iı.f2; g1/C Iı.f2; g2/) has
absolute value no greater than C0".3"C kf kL2.�/ C kgkL2.�//. It follows that the
limit as ı ! 0 of Iı.f; g/ exists. We define this limit to be I.f; g/ D I�.f; g/.

From (1), we see that jI.f; g/j � C0kf kL2.�/kgkL2.�/. Therefore we may apply
the Riesz-Fisher theorem to deduce the existence of a (unique) bounded linear
operator C� W L2.�/ ! L2.�/ such that

hC�.f /; gi� D I.f; g/ for all f; g 2 L2.�/:

Having defined an operator C� for any good measure�, we now want to see what
weak continuity properties this operator has.

Definition 4.1. We say that the sequence �k tends to � weakly if, for any ' 2
C0.C/,

ˆ

C

' d�k !
ˆ

C

' d� as k ! 1:

We now recall a standard weak compactness result, which can be found in
Chap. 1 of [4] (or any other book in real analysis).

Lemma 4.2. Let f�kgk be a sequence of measures. Suppose that for each compact
set E � C, supk �k.E/ < 1. Then there exists a subsequence f�kj gkj and a
measure � such that �kj converges to � weakly.

An immediate consequence of this lemma is that any sequence f�kgk of C0-
nice measures has a subsequence that converges weakly to a measure �. The next
lemma shows that the various regularity properties of measures that we consider are
inherited by weak limits.
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Lemma 4.3. Suppose that �k converges to � weakly. If each measure �k is C0-
good with AD regularity constant c0, then the limit measure � is also C0-good with
AD regularity constant c0.

Proof. We shall first check that � is AD regular. Let x 2 supp.�/, r > 0, and
choose " 2 .0; r=2/. Consider a smooth non-negative function f , supported in the
disc B.x; "/, with f � 1 on B.x; "

2
/. Then

´
C

fd� > 0. Hence, for all sufficiently
large k,

´
C

fd�k > 0. For all such k, B.x; "/ \ supp.�k/ ¤ ¿, and so there exists
xk 2 B.x; "/ satisfying �k.B.xk; r � 2"// � c0.r � 2"/. As a result, �k.B.x; r �
"// > c0.r � 2"/.

Now let ' 2 C0.C/ be nonnegative and supported in B.x; r/, satisfying k'k1 �
1 and ' � 1 on B.x; r � "/. Then

�.B.x; r// �
ˆ

C

'd� D lim
k!1

ˆ

C

'd�k � c0.r � 2"/:

Letting " ! 0, we arrive at the desired AD regularity. The property that� is C0-nice
is easier and left to the reader (it also follows from standard lower-semicontinuity
properties of the weak limit).

It remains to show that � is C0-good. Fix f; g 2 Lip0.C/ and define H and S
as before. Note that Kı.z � �/H.z; �/ is a Lipschitz function in C

2, and has support
contained in S � S . Let U � S be an open set with �.U / � �.S/ C 1. The
(complex valued) Stone-Weierstrass theorem for a locally compact space tells us
that the algebra of finite linear combinations of functions in C0.U / � C0.U / is
dense in C0.U � U / (with respect to the uniform norm in C

2). Let " > 0. There
are functions '1; : : : ; 'n and  1; : : : ;  n, all belonging to C0.U /, such that jKı.z �
�/H.z; �/ �Pn

jD1 '.z/ .�/j < " for any .z; �/ 2 U � U . For each j D 1; : : : ; n,
we have

lim
k!1

“

C�C

'j .z/ j .�/d�k.z/d�k.�/ D
“

C�C

'j .z/ j .�/d�.z/d�.�/:

It therefore follows that

lim sup
k!1

jIı;�k .f; g/ � Iı;�.f; g/j � ".lim sup
k!1

�k.U /
2 C �.U /2/:

On the other hand, �k is C0 nice, and so �k.U / � C.f; g/. Since " > 0 was
arbitrary, we conclude that Iı;�k .f; g/ ! Iı;�.f; g/ as k ! 1.

As a result of this convergence, we have that

jI�;ı.f; g/j � C0 lim inf
k!1

�kf kL2.�k/kgkL2.�k/
�
:

But since both jf j2 and jgj2 are in C0.C/, the right hand side of this inequality
equals kf kL2.�/kgkL2.�/. We now wish to appeal to the density of Lip0.C/ inL2.�/
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to extend this inequality to all f; g 2 L2.�/. Let R > 0. As � is C0-nice, we
saw in Sect. 3 that C�;ı W L2.�/ ! L2.B.0;R/; �/. But then, since the space of
Lipschitz function compactly supported in B.0;R/ is dense in L2.B.0;R/; �/, we
conclude that jjC�;ıjjL2.�/!L2.B.0;R/;�/ � C0. Finally, taking the limit as R ! 1,
the monotone convergence theorem guarantees that kC�;ıkL2.�/!L2.�/ � C0, and
hence � is C0-good. ut

The proof of the next lemma is left as an exercise.

Lemma 4.4. Suppose that�k is a sequence of c0 AD-regular measures converging
weakly to a measure �. If zk 2 supp.�k/ with zk ! z as k ! 1, then z 2 supp.�/.

Our last task is to check that the bilinear form I�k has nice weak convergence
properties. For this, let f; g 2 Lip0.C/. For ı > 0, we write

jI�k .f; g/ � I�.f; g/j � jI�k .f; g/ � Iı;�k .f; g/j C jIı;�k .f; g/ � Iı;�.f; g/j
C jIı;�.f; g/ � I�.f; g/j:

The first and third terms are bounded by C.f; g/ı. The second term converges to 0
as k ! 1. Therefore

lim sup
k!1

jI�k .f; g/ � I�.f; g/j � C.f; g/ı:

But ı > 0 was arbitrary, and so I�k .f; g/ converges to I�.f; g/ as k ! 1.

5 Riesz Systems

Throughout this section we fix a C0-nice measure �.
A system of functions  Q .Q 2 D/ is called a C -Riesz system if  Q 2 L2.�/

for each Q, and

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
X

Q2D
aQ Q

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

L2.�/
� C

X

Q2D
jaQj2; (2)

for every sequence faQgQ2D. By a simple duality argument, we see that if  Q is a
C -Riesz system, then

X

Q2D

ˇ
ˇhf; Qi�

ˇ
ˇ2� Ckf k2

L2.�/
; for any f 2 L2.�/:

Suppose now that with each square Q 2 D, we associate a set ‰Q of L2.�/
functions. We say that ‰Q .Q 2 D/ is a C -Riesz family if, for any choice of
functions  Q 2 ‰Q, the system  Q forms a C -Riesz system.
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We now introduce a particularly useful Riesz family. Suppose that � is a C0-nice
measure. Fix A > 1, and define

‰
�
Q;AD

n
 W supp. /� B.zQ;A`.Q//; k kLip � `.Q/�3=2;

ˆ

C

 d� D 0
o
:

Lemma 5.1. For any A > 1, ‰�
Q;A is a C -Riesz family, with constant C D

C.C0; A/.

Proof. For each Q 2 D, pick a function  Q 2 ‰�
Q;A. Then we have

k Qk1 � k QkLip � diam.supp. Q// � `.Q/�3=2 � 2A`.Q/ � CA`.Q/�1=2;

and

k Qk2
L2.�/

� jj Qjj2L1

�.B.zQ;A`.Q/// � CA3:

Now, if Q0;Q00 2 D with `.Q0/ � `.Q00/, then h Q0 ;  Q00i� D 0 pro-
vided that B.zQ0 ; A`.Q0// \ B.zQ00 ; A`.Q00// D ¿: If B.zQ0 ; A`.Q0// intersects
B.zQ00 ; A`.Q00//, we instead have the bound

jh Q0 ;  Q00i�j � CA3
� `.Q0/
`.Q00/

�3=2
:

Indeed, note that k Q0kL1.�/ � jj Q0 jjL1�.B.zQ0 ; A`.Q0/// � CA2`.Q0/1=2,
while the oscillation of  Q00 on the set B.zQ0 ; A`.Q0// (which contains the support

of  Q0 ) is no greater than A`.Q0/

`.Q00/3=2
. By multiplying these two estimates we arrive at

the desired bound on the absolute value of the inner product.
Consider a sequence faQgQ 2 `2.D/. Then

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
X

Q2D
aQ Q

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
2

L2.�/
� 2

X

Q0;Q002DW
`.Q0/�`.Q00/

jaQ0 jjaQ00 jjh Q0 ;  Q00i�j:

Inserting our bounds on the inner products into this sum, we see that we need to
bound the sum

CA3
X

`.Q0/�`.Q00/;
B.zQ0

;A`.Q0//\B.zQ00
;A`.Q00//¤¿

jaQ0kaQ00 j
� `.Q0/
`.Q00/

�3=2
:

(Since all sums involving squares will be taken over the lattice D, we will not write
this explicitly from now on.) Using Cauchy’s inequality, we estimate

jaQ0kaQ00 j
� `.Q0/
`.Q00/

�3=2� jaQ0 j2
2

� `.Q0/
`.Q00/

�1=2CjaQ00 j2
2

� `.Q0/
`.Q00/

�5=2
:
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It therefore suffices to estimate two double sums:

I D
X

Q0

jaQ0 j2
X

Q00W`.Q0/�`.Q00/;
B.zQ0

;A`.Q0//\B.zQ00
;A`.Q00//¤¿

� `.Q0/
`.Q00/

�1=2
;

and

II D
X

Q00

jaQ00 j2
X

Q0W`.Q0/�`.Q00/;
B.zQ0

;A`.Q0//\B.zQ00
;A`.Q00//¤¿

� `.Q0/
`.Q00/

�5=2
:

For each dyadic length ` greater than `.Q0/, there are at most CA2 squares
Q00 of side length ` for which B.zQ00 ; A`/ has non-empty intersection with
B.zQ0 ; A`.Q0//. Hence

I �
X

Q0

jaQ0 j2
X

k�0
CA22�k=2 � CA2

X

Q

jaQj2:

Concerning II, all the relevant squaresQ0 in the inner sum are contained in the disc
B.zQ00 ; 3A`.Q00//. Therefore, at scale ` there are at most CA2

�
`.Q00/

`

�2
squares Q0

of side length ` that can contribute to the inner sum. As a result,

II � CA2
X

Q00

jaQ00 j2
X

k�0
2�k=2 � CA2

X

Q

jaQj2:

Combining our bounds, we see that the ‰�
Q;A is a Riesz family, with Riesz constant

C.C0/A
5. ut

6 Bad Squares and Uniform Rectifiability

In this section we identify a local property of the support of a measure, which
ensures that the measure is uniformly rectifiable. The mathematics in this section
is largely due to David, Jones, and Semmes, see [1, Chap. 2.1], and is simpler than
Jones’ geometric Traveling Salesman theory [2], which was used in [8].

Fix a C0-nice measure �, which is AD-regular with regularity constant c0. Set
E D supp.�/.

6.1 The Construction of a Lipschitz Mapping

We will begin by constructing a certain graph. For our purposes, a graph � D
.N ; E/ is a set of points N (the vertices), endowed with a collection of line
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Fig. 1 An example of a
graph consisting of two
connected components

p

q

segments E (the edges) where each segment has its end-points at vertices. A
connected component of the graph is a maximal subset of vertices that can be
connected through the edges. For example, the graph depicted in Fig. 1 below has
two connected components.

The distance between connected components of a graph is measured as the
distance between the relevant sets of vertices. Therefore, the distance between the
components of the graph depicted in Fig. 1 is the distance between the vertices
labeled p and q.

Definition 6.1. For a graph � D .N ; E/, and a square Q, we define �Q to be the
subgraph with vertex set N \7Q, endowed with the edges from E connecting those
vertices in 7Q.

Let � 2 .0; 1/. Fix P 2 D (this square is to be considered as the viewing window
in the definition of uniform rectifiability). Choose a (small) dyadic fraction `0 with
`0 < `.P /.

We shall construct a graph adapted to P inductively. Set N to be a maximal �`0
separated subset of E . Note that N forms a �`0 net of E .

The Base Step. For each square Q 2 D with `.Q/ D `0 and 3Q \ N ¤ ¿, fix a
point which lies in 3Q\N . Then join together every point of N \ 3Q to this fixed
point by line segments, as illustrated in the figure below.

In 3Q, there are at most C��2 points of N , and so the total length of the line
segments in 3Q is C��2`0 (Fig. 2).

We thereby form the graph �`0.`0/ comprised of the vertex set N , and the set of
line segments E`0.`0/ obtained by carrying out the above procedure for all squares
Q 2 D with `.Q/ D `0.

This is the base step of the construction.

The Inductive Step. Let ` be a dyadic fraction no smaller than `0. Suppose that we
have constructed the graph �`0.`/ D .N ; E`0.`//.

The graph �`0.2`/ is set to be the pair .N ; E`0.2`//, where E`0.2`/ is obtained
by taking the union of E`0 .`/ with the collection of line segments obtained by
performing the following algorithm (Fig. 3):

For every square Q 2 D with `.Q/ D 2`, consider the graph � D .�`0.`//Q.
If � has at least two components that intersect 3Q, then for each such component,
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�0

Q3Q

Fig. 2 The base step in the construction applied in 3Q

3Q7Q a

Fig. 3 The induction algorithm applied to a square Q. The grey edges indicate the edges of �`0 .`/
not included in the subgraph � D .�`0 .`//Q . The dashed lines indicate the edges added by
applying the algorithm. Note that in this case the graph � has seven components, four of which
intersect 3Q. The fixed point in 3Q \ N is denoted by a

choose a vertex that lies in its intersection with N \ 3Q. Fix a point in 3Q \ N ,
and join each of the chosen points to this fixed point with an edge.

We carry out the inductive procedure for ` D `0; : : : ;
`.P /

2
, and thereby obtain

the graph �`0.`.P //. To continue our analysis, first note the following elementary
fact:
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Lemma 6.2. Let Q 2 D with `.Q/ D 2`. For any two points z1; z2 2 4Q with
jz1 � z2j < `, there is a dyadic squareQ0 of sidelength `, such that 7Q0 � 7Q, and
z1; z2 2 3Q0.

Proof. Pick the square Q0 to be the dyadic square of side length ` containing z1.
Then dist.Q0;Cn3Q0/ D `, so z2 2 3Q0.

Since `.Q/ D 2`, we have that 4Q is a union of dyadic squares of side-length
`. Therefore Q0 is contained in 4Q. As the square annulus 7Qn4Q is of width
3
2
`.Q/ D 3`, we conclude that 7Q0 � 7Q. ut

We shall use this lemma (or rather a weaker statement with 4Q replaced by 3Q)
to deduce the following statement.

Claim 6.3. For each ` � `0, and Q 2 D with `.Q/ D 2`, any two connected
components of .�`0.`//Q which intersect 3Q are `-separated in 3Q.

Proof. First suppose ` D `0. Let z1; z2 2 3Q with jz1 � z2j < `0. Choose Q0 as
in Lemma 6.2. We have that z1; z2 2 3Q0, and 3Q0 � 7Q. But then z1 and z2 must
have been joined when the base step rule was applied to the square Q0, and so they
lie in the same component of .�`0 .`//Q.

Now suppose that ` > `0, and z1; z2 2 3Q with jz1 � z2j < `. Again, let Q0
be the square of Lemma 6.2. The induction step applied at level `

2
to the square Q0

ensures that z1 and z2 are joined by edges in E`0.`/ that are contained in 7Q0 � 7Q.
Therefore, z1 and z2 lie in the same component of .�`0 .`//Q. ut
Claim 6.4. There exists a constant C > 0, such that for each ` � `0, and for every
Q 2 D with `.Q/ D 2`, the iterative procedure applied to Q increases the length
of �`0.2`/ by at most C`.

Proof. From Claim 6.3, we see that the graph .�`0.`//Q can have at most C com-
ponents which have non-empty intersection with 3Q. Consequently, the application
of the inductive procedure can generate at most C new edges, each of which having
length no greater than

p
2 � 6`. The claim follows. ut

Adapting the Graph to P . We begin with another observation about the induction
algorithm. Note that any two vertices in 3P\N can be joined by edges in E`0.`.P //
that are contained in 7P . Thus, the graph .�`0 .`.P ///P has only one connected
component which intersects 3P , and we denote this component by � . Let us denote
by L D L.`0/ the total length of � .

By Euler’s theorem, there is a walk through � which visits each vertex of � at
least once, and travels along each edge at most twice. By a suitable parametrization
of this walk, we arrive at the following lemma:

Lemma 6.5. There exists F W Œ0; 1� ! C, with kF kLip � 2L, and such that
F.Œ0; 1�/ � N \ 3P .

If we have a suitable control over L.`0/ independently of `0, then E \ P is
contained in the image of a Lipschitz graph:
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Lemma 6.6. Suppose that there exists M > 0 such that L.`0/ � M`.P / for every
`0 > 0. Then there exists F W Œ0; 1� ! C, such that kF kLip � 2M`.P /, and
E \ P � F.Œ0; 1�/.

Proof. Let `0 D 2�k . Let Fk denote the function of Lemma 6.5. Then Fk.Œ0; 1�/ is
a �2�k-net of E \ P .

By appealing to the Arzela-Ascoli theorem, we see that there is a subsequence
of the Fk (which we again denote by Fk), converging uniformly to some limit
function F . The function F is Lipschitz continuous with Lipschitz norm no greater
than 2M`.P /.

Now, for any x 2 E \ P , there exists a sequence fxkgk where xk 2 Fk.Œ0; 1�/,
and jx � xk j < �2�k . Take tk 2 Œ0; 1� with Fk.tk/ D xk . There is a convergent
subsequence of ftkgk which converges to some t 2 Œ0; 1�. But then F.t/ D x, and
the proof is complete. ut

We shall now estimate L.`0/ in terms of the total side length of squares where
the induction step has been carried out. Note that only the base and inductive steps
applied to the dyadic squaresQ contained in 7P can contribute to the length.

We shall first estimate the contribution to the length by the base step.

Claim 6.7. The contribution to the length of � from the base step is no greater than
C��2`.P /.

Proof. Let N denote the number of dyadic sub-squares of 7P with side length `0
where the base step has been carried out. For any such squareQ, we must have 3Q\
supp.�/ ¤ ¿. From the AD-regularity of �, it follows that �.4Q/ � c0`.Q/ D
c0`0. Hence

c0`0N �
X

Q2DWQ�7P; `.Q/D`0
�.4Q/ � C�.CP/ � C`.P /;

and therefore N � C
`.P/

`0
. Consequently, the contribution to the length of � from

the base step is no greater than C��2`0 `.P /`0
, as required. ut

We now denote by Q.P; `0/ the collection of dyadic squares Q 2 D such that
`.Q/ 2 Œ`0; `.P /�, Q � 7P , and the inductive step has been carried out non-
vacuously in Q at scale `.Q/

2
.

Claim 6.4 guarantees that for eachQ 2 Q.P; `0/, an application of the inductive
procedure increases the length L.`0/ by no more than C`.Q/. Combining this
observation with Claim 6.7, we infer the following bound:

L.`0/ � C��2`.P /C C
X

Q2Q.P;`0/
`.Q/: (3)
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6.2 Bad Squares

Given the construction above, we would like to find a convenient way of identifying
whether a square has been used in the inductive procedure at some scale. Since we
don’t want these squares to occur very often, we call them bad squares.

Definition 6.8. We say that Q 2 D is a .�/-bad square if there exist �; � 2
B.zQ; 10`.Q// \ supp.�/, such that j� � �j � `.Q/=2, and there exists z 2 Œ�; ��

such that B.z; �`.Q// \E D ¿.

We now justify the use of this definition:

Lemma 6.9. Suppose that � < 1
16

. Suppose that the inductive algorithm has been
applied to Q 2 D. Then Q is a bad square.

Proof. If the inductive algorithm has been applied, then there is a graph � D
.N ; E/1, with the following properties:

(1) The set N forms a �`.Q/

2
net of E .

(2) For every dyadic squareQ0 with `.Q0/ < `.Q/ and 7Q0 � 7Q, we have that if
z1; z2 2 3Q0 \ N , then z1 and z2 lie in the same component of �Q.

(3) The connected components of �Q that intersect 3Q are at least `.Q/

2
separated

in 3Q.

(In fact, property (2) implies property (3), as was seen in Claim 6.3).
By assumption, there exist two points � and � in 3Q \ N that lie in different

components of �Q. Then j�� �j � `.Q/

2
. Consider the line segment Œ�; ��. Cover this

segment with overlapping discs of radius �`.Q/, such that the centre of each disc
lies in the line segment Œ�; �� (see Fig. 4).

Suppose that every disc has positive � measure. If � < 1
16

, the concentric double
of each disc is contained in 4Q. Furthermore, in the concentric double of each disc,
there must be a point from N . We therefore form a chain of points in N \ 4Q, with
every consecutive pair of points in the chain are separated by a distance of at most
8�`.Q/ < `.Q/=2. Furthermore, the first point in the chain is within a distance
of `.Q/=2 of �, and the last point in the chain is no further than `.Q/=2 from �.
Therefore, Lemma 6.2 ensures that each consecutive pair of points in the chain are
contained in the concentric triple of some dyadic square Q0 with `.Q0/ < `.Q/

and 7Q0 � 7Q. But then property (2) yields that each such pair lies in the same
component of �Q. As a result, � and � also lie in the same component of �Q.

From this contradiction, we see that one of the discs of radius �`.Q/ has zero
measure, which implies that Q is a bad square. ut

Now let B� denote the set of those squares Q 2 D that are bad. To prove
Theorem 1.1, it suffices to prove the following proposition:

1In the notation of the previous section, � D �`0
�
`.Q/

2

�
, for some `0 � `.Q/

2
.
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τ�(Q)

ζ

ξ

3Q

4Q

Fig. 4 The intersecting discs of radius �`.Q/, along with their concentric doubles. The cloud of
points represents those points of N

Proposition 6.10. Suppose that � is a C0-good measure with AD regularity
constant c0. There is a constant C D C.A;C0; c0/ > 0 such that for each P 2 D,

X

Q2B�;Q�P
`.Q/ � C`.P /: (4)

Let us see how Theorem 1.1 follows from this proposition. Fix P 2 D, and
construct �`0.`.P // for `0 < `.P /. From Proposition 6.10, the bound (3) for
the length L.`0/ is no more than M`.P /, where M can be chosen to depend on
A; c0; C0, and � (in particular, M can be chosen independently of P ). But now
Lemma 6.6 yields the existence of a function F W Œ0; 1� ! C with Lipschitz norm
no greater than M`.P /, such that E \ P � F.Œ0; 1�/. This is the required uniform
rectifiability.

The condition (4) is very well known in harmonic analysis, and a family of
squares B� satisfying (4) is often referred to as a Carleson family. The best constant
C > 0 such that (4) holds for all P 2 D is called the Carleson norm of B�.

7 Bad Squares and the Riesz Family f‰�
Q;A

gQ

Fix a C0-good measure � with AD-regularity constant c0 > 0.
ChooseA0 > 1, withA0 � A. Recall the Riesz family‰�

Q;A introduced in Sect. 5.
For eachQ 2 D, we define

‚A;A0.Q/ D ‚
�

A;A0

.Q/ D inf
F
B.zQ;A0`.Q//

sup
 2‰�Q;A

`.Q/�1=2jhC�.�F /;  i�j:
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Consider a fixed P 2 D. Then for each Q � P there exists a function  Q 2
‰
�
Q;A such that ‚A;A0.Q/2`.Q/ � 2jhC�.�B.zP ;2A0`.P ///;  Qi�j2 (note here that

B.zQ;A0`.Q// � B.zP ; 2A0`.P // wheneverQ � P ). Hence

X

Q�P
‚A;A0.Q/2`.Q/ � 2

X

Q�P
jhC�.�B.zP ;2A0`.P ///;  Qi�j2:

Since  Q (Q 2 D) forms a C.C0; A/-Riesz system, the right hand side of this
inequality is bounded by C.C0; A/kC�.�B.zP ;2A0`.P ///k2L2.�/. As � is C0-good, this
quantity is in turn bounded by C.C0; A/�.B.zP ; 2A0`.P ///, which is at most
C.C0; A;A

0/`.P /. Therefore

X

Q�P
‚A;A0.Q/2`.Q/ � C.C0; A;A

0/`.P /:

As an immediate corollary of this discussion, we arrive at the following result:

Lemma 7.1. Let 
 > 0. Consider the set F
 of dyadic squares Q satisfying
‚A;A0.Q/ > 
 . Then F
 is a Carleson family, with Carleson norm bounded by
C.C0; A;A

0/
�2.

In order to prove Proposition 6.10 (from which Theorem 1.1 follows), it therefore
suffices to prove the following proposition:

Proposition 7.2. Suppose � is a C0-good measure with AD regularity constant
c0 > 0. There exist constants A;A0 > 1, and 
 > 0, such that for any square
Q 2 B�,

‚
�

A;A0

.Q/ � 
:

We end this section with a simple remark about scaling.

Remark 7.3 (Scaling Remark). Fix a square Q, a function  2 ‰
�
Q;A, and a

compact set F � C. For z0 2 C, set e�.�/ D 1
`.Q/

�.`.Q/ � Cz0/, e .�/ D
`.Q/1=2 .`.Q/ � Cz0/ and eF D 1

`.Q/
.F � z0/. Then jje jjLip � 1, supp.e / �

B.
zQ�z0
`.Q/

; A/, and

hCe�.�eF /;e ie� D `.Q/�1=2hC�.�F /;  i�:

8 Reflectionless Measures

In this section, we explore what happens if Proposition 7.2 fails. To do this, we shall
need a workable definition of the Cauchy transform operator of a good measure
acting on the constant function 1. Suppose that � is a C0-good measure with 0 62
supp.�/.
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8.1 The Function eC�.1/

Let us begin with an elementary lemma.

Lemma 8.1. Suppose that � is a C0-nice measure with 0 62 supp.�/. Let z 2 C

with z 62 supp.�/. Set d0 D dist.f0; zg; supp.�//. Then

ˆ

C

ˇ
ˇ
ˇ
1

z � �
C 1

�

ˇ
ˇ
ˇd�.�/ � C.C0/jzj

d0
:

Proof. Note the estimate

ˆ

C

ˇ
ˇ
ˇ
1

z � �
C 1

�

ˇ
ˇ
ˇd�.�/ � 2

d0
�.B.0; 2jzj//C 2

ˆ

CnB.0;2jzj/
jzj
j�j2 d�.�/:

The first term on the right hand side has size no greater than 2C0jzj
d0

. Since the
domain of integration in the second term can be replaced by CnB.0;max.d0; 2jzj//,
Lemma 3.1 guarantees that the second integral is bounded by C jzj

max.2jzj;d0/ . ut
For z 62 supp.�/, define

eC�.1/.z/ D
ˆ

C

h 1

z � � C 1

�

i
d�.�/ D

ˆ

C

ŒK.z � �/ �K.��/�d�.�/: (5)

Lemma 8.1 guarantees that this integral converges absolutely.
To extend the definition to the support of �, we shall follow a rather standard

path. We shall initially define eC�.1/ as a distribution, before showing it is a well
defined function �-almost everywhere. Recall from Sect. 4 how we interpret C� as a
bounded operator in L2.�/.

Fix  2 Lip0.C/. Choose ' 2 Lip0.C/ satisfying ' � 1 on a neighbourhood of
the support of  . Then define

heC�.1/;  i� D hC�.'/;  i� � C�.'/.0/ �
ˆ

C

 d�

C
ˆ

C

 .z/
ˆ

C

.1 � '.�//�K.z � �/�K.��/	d�.�/d�.z/:
(6)

Note that Lemma 8.1, applied with � D j1 � 'j � �, yields that

sup
z2supp. /

ˆ

C

j.1 � '.�//j � jK.z � �/ �K.��/jd�.�/ < 1:

Therefore the inner product in (6) is well defined. We now claim that this inner
product is independent of the choice of '. To see this, let '1 and '2 be two compactly
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supported Lipschitz continuous functions, that are both identically equal to 1 on
some neighbourhood of supp. /. If z 2 supp. /, then

ˆ

C

.1 � '1.�//
h 1

z � � C 1

�

i
d�.�/ �

ˆ

C

.1 � '2.�//
h 1

z � � C 1

�

i
d�.�/

D
ˆ

C

.'2.�/ � '1.�//
h 1

z � �
C 1

�

i
d�.�/

D
ˆ

C

.'2.�/ � '1.�//K.z � �/d�.�/C C�.'1/.0/� C�.'2/.0/:

(All integrals in this chain of equalities converge absolutely.) Now consider

ˆ

C

 .z/
ˆ

C

.'2.�/ � '1.�//K.z � �/d�.�/d�.z/:

As a result of the anti-symmetry of K , this equals

1

2

ˆ

C

ˆ

C

K.z � �/
�
 .z/Œ'2.�/ � '1.�/� �  .�/Œ'2.z/ � '1.z/�

	
d�.�/d�.z/:

However, as we saw in Sect. 4, K.z � �/. .z/'j .�/ �  .�/'j .z// 2 L1.� � �/ for
each j D 1; 2. Hence, by using the linearity of the integral, and applying Fubini’s
theorem, we see that the last line equals I�.'2;  /� I�.'1;  /. By definition, this is
equal to hC�.'2/;  i� � hC�.'1/;  i� . The claim follows.

We have seen thateC�.1/ is well-defined as a distribution. For any bounded open
set U � C, if we choose ' to be identically equal to 1 on a neighbourhood of U ,
theneC�.1/ 2 L2.U; �/. Since Lipschitz functions with compact support are dense
in L2.U; �/, we find thateC�.1/ is well-defined �-almost everywhere.

Finally, we note that the smoothness of the function ' is not essential. If  2
Lip0.C/, let U be a bounded open set containing supp. /. Then it is readily seen
that heC�.1/;  i� equals

hC�.�U /;  i� � C�.�U /.0/ � h1;  i� C
Dˆ

CnU
ŒK.� � �/CK.�/�d�.�/;  

E

�
:

8.2 The Weak Continuity of eC�.1/

We shall introduce a couple more sets of functions. ˆ�A will denote those functions
 with k kLip � 1, that satisfy

´
C
 d� D 0 and supp. / � B.0;A/. We define

ˆ� to be the set of compactly supported functions  with k kLip � 1, satisfying´
C
 d� D 0.
We start with another standard estimate.
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Lemma 8.2. Suppose that � is C0-nice measure. For R > 0, suppose that  2 ˆ�R.
Then k kL1.�/ � C.C0/R

2.

Proof. Simply note that

ˆ

B.0;R/

j jd� D
ˆ

B.0;R/

ˇ
ˇ
ˇ � 1

�.B.0;R//

ˆ

B.0;R/

 d�
ˇ
ˇ
ˇd�:

This quantity is no greater than oscB.0;R/. /�.B.0;R//, which is less than or equal
to 2R � C0R. ut

Our next lemma concerns a weak continuity property ofeC�.1/.
Lemma 8.3. Let �k be a sequence of C0-good measures, with 0 62 supp.�k/.
Suppose that �k converge weakly to � (and so � is C0-good), with 0 62 supp.�/.
Fix non-negative sequencese
k and eAk , satisfyinge
k ! 0, and eAk ! eA 2 .0;1�.

If jheC�k .1/;  i�k j �e
k for all  2 ˆ�keAk , then

jheC�.1/;  i� j D 0 for all  2 ˆ�eA:

(Here ˆ�eA D ˆ� if eA D 1.)

Proof. If �.B.0;eA// D 0, then there is nothing to prove, so assume that
�.B.0;eA// > 0. Let " > 0. Pick  2 ˆ�eA. Then there exists R 2 .0;1/ such that

supp. / � B.0;R/ � B.0;eAk/ for all sufficiently large k, and �.B.0;R// > 0.
Fix � 2 Lip0 with supp.�/ � B.0;R/, such that

´
C
�d� D c� > 0. Define

 k D  � bk�; with bk D 1
´
C
� d�k

ˆ

C

 d�k:

Note that  k is supported in B.0;R/, and has �k-mean zero. Since bk ! 0, we
have that k kkLip � 2 for all sufficiently large k. Therefore, for these k, we have
jheC�k .1/;  ki�k j � 2e
k .

Now pick ' 2 Lip0 with ' � 1 on B.0; 2R/ and 0 � ' � 1 on C, such that both

jhC�k .'/;  ki�k � heC�k .1/;  ki�k j < ";

for all sufficiently large k, and

jhC�.'/;  i� � heC�.1/;  i� j < ":

To see that such a choice is possible, note that if ' � 1 onB.0;R0/ forR0 > 2R,
then jhC�k .'/;  ki�k � heC�k .1/;  ki�k j is bounded by

ˆ

B.0;R/

j k.z/j
ˆ

C

j1 � '.�/j
ˇ
ˇ
ˇ
1

z � �
C 1

�

ˇ
ˇ
ˇd�k.�/d�k.z/;
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(recall here that  k has �k mean zero). For any z 2 B.0;R/, note that
dist.z; supp.1 � '// � R0

2
, and so by applying Lemma 8.1, we see that

the above quantity is no greater than Ck kkL1.�k/ RR0

. Applying Lemma 8.2,

we see that jhC�k .'/;  ki�k � heC�k .1/;  ki�k j � C R3

R0

, which can be made
smaller than " with a reasonable choice of R0. The same reasoning shows that
jhC�.'/;  i� � heC�.1/;  i� j < " providedR0 is chosen suitably.

On the other hand, as �k is C0-good, we have jhC�k .'/; �i�k j � C0k'kL2.�k/k�kL2.�k/. Since ' and � are compactly supported Lipschitz functions, the right
hand side of this inequality converges to C0k'kL2.�/k�kL2.�/, and so it is bounded
independently of k.

Bringing together these observations, we see that hC�k .'/;  ki�k converges to
hC�.'/;  i� as k ! 1. But since jheC�k .1/;  ki�k j � 2e
k for k large enough, we
deduce from the triangle inequality that jheC�.1/;  i� j � 4". ut

Let us now suppose that Proposition 7.2 is false. Fix A � 100. For each k 2 N,
k � 2A, there is a C0-good measure �k with AD-regularity constant c0 > 0, a
squareQk 2 B�k , and a set Ek � B.zQk

; k`.Qk// such that

jhC�k .�Ek /;  i�k j � 1

k
; for all  2 ‰�k

A;Qk
: (7)

In addition, by the scale invariance of the condition (7) (see Remark 7.3), we may
dilate and translate the square Qk so that it has side length 1, and so that there
are �k; �k 2 B.zQk

; 10/ \ supp.�k/ with j�k � �k j � 1=2, such that 0 2 Œ�k; �k�

and B.0; �/ \ supp.�k/ D ¿. Note that the translated and dilated square is not
necessarily dyadic.

By passing to a subsequence if necessary, we may assume that �k converge
weakly to a measure�.A/ (using the uniform niceness of the�k). This limit measure
is C0-good, with AD-regularity constant c0, and 0 62 �.A/. Furthermore, it is routine
to check that �.A/ satisfies the following property (recall Lemma 4.4):

There exist �; � 2 B.0; 20/\ supp.�.A//; with j� � �j � 1

2
;

such that 0 2 Œ�; �� and B.0; �/ \ supp.�.A// D ¿:
(8)

Now, for each k we have that B.0; A
2
/ � B.zQk

; A/ and Ek � B.0; k
2
/ �

B.0;A/. We claim that

jheC�k .1/;  i�k j � 1

k
C CA3

k
; for all  2 ˆ�kA

2

:

To see this, note that for any  2 ˆ�kA
2

, heC�k .1/;  i�k is equal to
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hC�k .�Ek /;  i�k C
ˆ

B.0;
A
2
/

 .z/
ˆ

CnEk

� 1

z � �
C 1

�

�
d�k.�/d�k.z/:

The first term is smaller than 1
k

in absolute value. To bound the second term, note
that for any z 2 B.0; A

2
/, dist.z;CnEk/ � k

2
so Lemma 8.1 yields that this second

term is no larger than CA
k

k kL1.�k/, and applying Lemma 8.2 yields the required
estimate.

We now apply Lemma 8.3 with �k D �k , e
k D 1
k

C CA3

k
, and eAk D A

2
. Our

conclusion is that jheC�.A/.1/;  i�.A/ j D 0; for all  2 ˆ�.A/A
2

.

We now set A D k, for k > 100. The above argument yields a measure �.k/

satisfying jheC�.k/ .1/;  i�.k/ j D 0; for all  2 ˆ�.k/k
2

. We now pass to a subsequence

of f�.k/gk so that �.k/ ! � weakly as k ! 1. The measure � is C0-good with
AD-regularity constant c0, and satisfies the property (8) with � replacing �.A/. By
applying Lemma 8.3 with e�k D �.k/,e� D �, eAk D k

2
, ande
k D 0, we arrive at the

following result:

Lemma 8.4. Suppose that Proposition 7.2 fails. Then there exists a C0-good
measure � with AD-regularity constant c0, such that

jheC�.1/;  i�j D 0; for all  2 ˆ�; (9)

and there exist �; � 2 B.0; 20/\ supp.�/, with j� � �j � 1
2
; such that 0 2 Œ�; �� and

B.0; �/ \ supp.�/ D ¿:

We call any measure � that satisfies (9) a reflectionless measure. It turns out that
there aren’t too many good AD-regular reflectionless measures.

Proposition 8.5. Suppose that � is a non-trivial reflectionless good AD-regular
measure. Then � D cH1

L for a line L, and a positive constant c > 0.

Note that Proposition 8.5 contradicts the existence of the measure � in
Lemma 8.4. Therefore, once Proposition 8.5 is proved, we will have asserted
Proposition 7.2, and Theorem 1.1 will follow. Hence it remains to prove the
proposition. It is at this stage where the precise structure of the Cauchy transform is
used.

9 The Cauchy Transform of a Reflectionless Good Measure
� is Constant in Each Component of Cn supp.�/

Our goal is now to prove Proposition 8.5. Suppose that � is a reflectionless C0-
good measure. We may assume that 0 62 supp.�/. All constants in this section may
depend on C0 without explicit mention.
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SinceeC�.1/ is a well defined �-almost everywhere function and satisfies (9), we
conclude that it is a constant �-almost everywhere in C, say with value ~ 2 C.

Lemma 9.1. Suppose that� is a C0-good reflectionless measure, and 0 62 supp.�/.
Then there exists ~ 2 C such thateC�.1/ D ~ �-almost everywhere.

Our considerations up to now have been quite general, but now our hand is
forced to use the magic of the complex plane. The main difficulty is to obtain some
information about the values ofeC�.1/ away from the support of � in terms of the
constant value ~.

9.1 The Resolvent Identity

Lemma 9.2. For every z 62 supp.�/,

ŒeC�.1/.z/�2 D 2~ �eC�.1/.z/:

An immediate consequence of Lemma 9.2 is that either eC�.1/.z/ D 2~ or
eC�.1/.z/ D 0 for any z 62 supp.�/. Since eC�.1/ is a continuous function away
from supp.�/, it follows that eC�.1/ is constant in each connected component of
Cn supp.�/.

A variant of Lemma 9.2, where the Cauchy transform is considered in the sense
of principal value, has previously appeared in work of Melnikov, Poltoratski, and
Volberg, see Theorem 2.2 of [9]. We shall modify the proof from [9] in order to
prove Lemma 9.2.

We shall first provide an incorrect proof of this lemma. Indeed, note the following
regularized version of the resolvent identity: for any three distinct points z; �; ! 2 C,

h 1

z � � C 1

�

i
�
h 1

� � !
C 1

!

i
C
h 1

z � !
C 1

!

i
�
h 1

! � � C 1

�

i

D
h 1

z � �
C 1

�

i
�
h 1

z � !
C 1

!

i
:

(10)

Integrating both sides of this equality with respect to d�.�/d�.!/, we (only
formally!) arrive at 2eC�.eC�.1//.z/ D ŒeC�.z/�2. Once this is established, Lemma 9.1
completes the proof. The proof that follows is a careful justification of this
integration.

Proof. We shall define eC�;ı.'/.!/ D ´
C

�
Kı.! � �/ C 1

�

	
'.�/d�.�/ for ' 2

Lip0.C/. In particular, as ı tends to 0, eC�;ı.'/ converges to eC�.'/ D C�.'/ �
C�.'/.0/ weakly in L2.�/.

Set d0 D dist.fz; 0g; supp.�//. Since d0 > 0, Lemma 8.1 tells us that ŒK.z � �/C
K.�/� 2 L1.�/.
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For N > 0, define a bump function 'N 2 Lip0.C/, satisfying 'N � 1 on
B.0;N /, and supp.'/ � B.0; 2N /. Consider the identity (10), and multiply both
sides by 'N .�/'N .!/. After integration against d�.�/d�.!/, the right hand side of
this equality becomes

ˆ

C

h 1

z � � C 1

�

i
'N .�/d�.�/

ˆ

C

h 1

z � ! C 1

!

i
'N .!/d�.!/:

But since
�
K.z � �/C K.�/	2 L1.�/, the dominated convergence theorem ensures

that as N ! 1, this expression converges to ŒeC�.1/.z/�2.
Now, let ı > 0, and note that

1

� � !
D Kı.� � !/C �B.0;ı/.� � !/ �

h 1

� � !
� � � !

ı2

i
:

Consider the integral

ˆ

C

ˆ

C

�B.0;ı/.� � !/
h 1

� � !
� � � !

ı2

i
�
h 1

z � �
C 1

�
� 1

z � ! � 1

!

i

'N .�/'N .!/d�.�/d�.!/:

Note that
ˇ
ˇ 1

z�� C 1
�

� 1
z�! � 1

!

ˇ
ˇ� 2

d20
j� � !j for �; ! 2 supp.�/, and so this integral

is bounded in absolute value by a constant multiple of
´
C
'N .�/�.B.�; ı//d�.�/,

which is bounded by CıN: This converges to zero as ı ! 0.
Making reference to (10), we have thus far shown that

lim
N!1 lim

ı!0

ˆ

C

ˆ

C

'N .�/'N .!/
nh 1

z � � C 1

�

ih
Kı.� � !/C 1

!

i

C
h 1

z � !
C 1

!

ih
Kı.! � �/C 1

�

io
d�N .�/d�N .!/ D ŒeC�.1/.z/�2:

By Fubini’s theorem, and the weak convergence of eC�;ı.'/ to eC�.'/, the left
hand side of this equality is equal to twice the following limit

lim
N!1

hˆ

C

'N .�/
h 1

z � �
C 1

�

i
eC�.'N /.�/d�.�/

i
: (11)

Therefore, to prove the lemma, it suffices to show that this limit equals ~eC�.1/.z/.
To do this, let ˛ 2 . 1

2
; 1/. First consider

IN D
ˆ

B.0;N˛/

'N .�/
ˇ
ˇ
ˇ
1

z � � C 1

�

ˇ
ˇ
ˇ�jeC�.'N /.�/ �eC�.1/.�/jd�.�/:
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Note that, for j�j � N˛ , we have

jeC�.'N /.�/ �eC�.1/.�/j �
ˆ

C

j1 � 'N .!/j
ˇ
ˇ
ˇ
1

� � ! � 1

!

ˇ
ˇ
ˇd�.!/:

Applying Lemma 8.1 yields an upper bound for the right hand side of C j�j
N

�
CN˛�1: But as ŒK.z � �/CK.�/� 2 L1.�/, we conclude that IN ! 0 as N ! 1.
Next, note that

ˆ

B.0;N˛/

'N .�/
h 1

z � �
C 1

�

i
eC�.1/.�/d�.�/D~

ˆ

B.0;N˛/

'N .�/
h 1

z � � C 1

�

i
d�.�/;

which converges to ~ �eC�.1/.z/ as N ! 1.
To complete the proof the lemma, it now remains to show that

lim
N!1

ˆ

B.0;2N/nB.0;N˛/

jeC�.'N /.�/j �
ˇ
ˇ
ˇ
1

z � � � 1

�

ˇ
ˇ
ˇd�.�/ D 0:

To do this, first note that jeC�.'N /.�/j � jC�.'N /.�/j C C log N
d0

(this merely uses

the C0-niceness of �). On the other hand, for sufficiently large N ,
ˇ
ˇ 1

z�� � 1
�

ˇ
ˇ� 8jzj

N2˛

for j�j � N˛ . Therefore, there is a constant C D C.C0; d0/ > 0 such that

ˆ

B.0;2N/nB.0;N˛/

jeC�.1/.�/j �
ˇ
ˇ
ˇ
1

z � �
� 1

�

ˇ
ˇ
ˇd�.�/

� C jzj logN

N2˛
�.B.0; 2N //C C jzj

N2˛

ˆ

B.0;2N/

jC�.'N /.�/jd�.�/;

Finally, since kC�.'N /kL2.�/ � C
p
�.B.0; 2N //, and �.B.0; 2N // � CN, we

estimate the right hand side here by a constant multiple of jzjN logN
N2˛ , which tends to

zero as N ! 1. ut

10 The Proof of Proposition 8.5

In this section we conclude our analysis by proving Proposition 8.5. To do this,
we shall use the notion of a tangent measure, which was developed by Preiss [11].
Suppose that � is a Borel measure on C. The measure �z;�.A/ D �.�ACz/

�
is called a

�-blowup of � at z. A tangent measure of � at z is any measure that can be obtained
as a weak limit of a sequence of �-blowups of � at z with � ! 0.

Now suppose that � is a nontrivial C0-good with AD regularity constant c0.
Then any �-blowup measure of � at z 2 supp.�/ will again have these properties
(C0-goodness, and c0-AD regularity). Therefore, both properties are inherited by
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any tangent measure of �. In particular, every tangent measure of � at z 2
supp.�/ is non-trivial, provided that � is non-trivial. Lastly, we remark that if �
is reflectionless, then any tangent measure of � is also reflectionless. This follows
from a simple application of Lemma 8.3.

In what follows, it will often be notationally convenient to translate a point on
supp.�/ to the origin. Whenever this is the case, the definition of eC�.1/ in (5) is
translated with the support of the measure, and becomes

eC�.1/.z/ D
ˆ

C

ŒK.z � �/ �K.z0 � �/�d�.�/; (12)

for some z0 62 supp.�/. If � is reflectionless, then eC�.1/ is constant in each
component of Cn supp.�/, and takes one of two values in Cn supp.�/.

10.1 Step 1

Suppose that supp.�/ � L, for some line L. Then by translation and rotation we
may as well assume thatL D R. If the support is not the whole line, then there exists
an interval .x; x0/ disjoint from the support of �, with either x or x0 in the support
of �. By rotating the support if necessary, we may assume that x0 2 supp.�/.

Denote by Q� a non-zero tangent measure of� at x0. Then Q� has support contained
in the segment Œx0;1/, and x0 2 supp. Q�/. Since Q� is reflectionless, we may apply
Lemma 9.2 to deduce that eC Q�.1/.x0 � t/ is constant for all t > 0. Differentiating
this function with respect to t , we arrive at

´ 1
x0

1
.x�t�y/2 d Q�.y/: This integral is

strictly positive as Q� is not identically zero. From this contradiction we see that
supp.�/ D R.

Consequently, we have that d�.t/ D h.t/dt, where c0 � h.t/ � C0. Now let
y > 0 and consider, for x 2 R,

eC�.1/.x � yi/ �eC�.1/.x C yi/ D 2i

ˆ

R

y

.x � t/2 C y2
h.t/dt:

The expression on the left hand side is constant in x 2 R and y > 0. On the
other hand, the integral on the right hand side is a constant multiple of the harmonic
extension of h to R

2C. The Poisson kernel is an approximate identity, and so by
letting y ! 0C we conclude that h is a constant. Therefore � D cm1; with c > 0.

10.2 Step 2

We now turn to the general case. We first introduce some notation. For z 2 C and a
unit vector e,Hz;e denotes the (closed) half space containing z on the boundary, with
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inner unit normal e. With ˛ 2 .0; 1/, we denote Cz;e.˛/ D f� 2 C W h� � z; ei >
˛j� � zjg, where h�; �i is the standard inner product in R

2.

Lemma 10.1. Suppose that z 62 supp.�/. Let Qz be a closest point in supp.�/ to
z, and set e D Qz�z

jQz�zj . For each ˛ 2 .0; 1/, there is a radius r˛ > 0 such that
B.Qz; r˛/ \ CQz;e.˛/ is disjoint from supp.�/.

Proof. We may suppose that z D �ri for some r > 0 and Qz D 0, (and so e D i ).
We shall examine the imaginary part of the Cauchy transform evaluated at �ti for
t 2 .0; r

2
/:

=ŒeC�.1/.�ti/� D
ˆ

C

h=.�/C t

j� C itj2 � =.� � z0/

j� � z0j2
i
d�.�/:

Lemma 9.2 guarantees that =ŒeC�.1/.�ti/� D =ŒeC�.1/.z/� for any t > 0. In
particular, it is bounded independently of t .

Making reference to Fig. 5, we let R > 3r , and define three regions: I D
CnB.0;R/, II D ˚

� 2 B.0;R/ W =.�/ < �tg, and III D B.0;R/nII:

e

z

−ti

z̃ = 0

II

I

Cz̃,e(α) ∩ B(0, R)

arcsinα

Fig. 5 The set-up for Lemma 10.1
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Set d0 D dist.z0; supp.�//: First note that ifR > 3jz0j, and � 2 CnB.0;R/, then

ˇ
ˇ
ˇ
=.�/C t

j� C itj2 � =.� � z0/

j� � z0j2
ˇ
ˇ
ˇ� C

j�j2 :

Therefore,

ˆ

j�j�R

ˇ
ˇ
ˇ
=.�/C t

j� C itj2 � =.� � z0/

j� � z0j2
ˇ
ˇ
ˇd�.�/C

ˆ

B.0;R/

ˇ
ˇ
ˇ
=.� � z0/

j� � z0j2
ˇ
ˇ
ˇd�.�/

�
ˆ

j�j�R
C

j�j2 d�.�/C
ˆ

B.0;R/

1

j� � z0jd�.�/:

The right hand side of this inequality if finite and independent of t .
Next, note that if � 2 II \ supp.�/, then j� � itj2 � �.=.�/ C t/r , provided

that j=.�/j < r
2

and t < r
2
. To see this, note that j� � zj > r , and so by elementary

geometry, j� � itj2 � r2 � .r C .=.�/ C t//2. This is at least �.=.�/ C t/r under
our assumptions on � and t . Therefore, if t < r

2
, then

ˆ

II

=.�/C t

j� C itj2 d�.�/ � �
ˆ

II\B.0; r
2
/

1

r
d�.�/�

ˇ
ˇ
ˇ

ˆ

IInB.0; r
2
/

=.�/C t

j� C itj2 d�.�/
ˇ
ˇ
ˇ:

Both terms on the right hand side are bounded in absolute value by C �.B.0;R//

r
� CR

r

(recall that B.z; r/\ supp.�/ D ¿). Note that the integral on the left hand side is at
most zero.

Our conclusion thus far is that there is a constant �, depending on C0; d0; R; r
and =.eC�.1/.z//, such that for any t < r

2
,

ˇ
ˇ
ˇ

ˆ

III

=.�/C t

j� C itj2 d�.�/
ˇ
ˇ
ˇ� �: (13)

Note that the integrand in this integral is positive for any � 2 III.
Suppose now that the statement of the lemma is false. Then there exists ˛ > 0,

along with a sequence zj 2 C0;e.˛/\ supp.�/ with zj ! 0 as j ! 1. By passing
to a subsequence, we may assume that jzj j � R

2
for each j , and also that the balls

Bj D B.zj ; ˛2 jzj j/ are pairwise disjoint.
Each ball Bj � III, and provided that t � ˛

2
jzj j, we have

=.�/C t

j� C tij2 � ˛jzj j
8jzj j2 D ˛

8jzj j ; for any � 2 Bj :

As a result, we see that
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ˆ

III

=.�/C t

j� C itj2 d�.�/ �
X

j W t�jzj j=2

ˆ

Bj

=.�/C t

j� C tij2 d�.�/ �
X

j W t�jzj j=2
�.Bj /

˛

8jzj j :

But �.Bj / � c0˛
2

jzj j, and so the previous integral over III has size at least c0˛
2

16
�

cardfj W t � 1
2
jzj jg. However, if t is sufficiently small, then this quantity may be

made larger than the constant � appearing in (13). This is absurd. ut
We now pause to prove a simple convergence lemma.

Lemma 10.2. Suppose that �k is a sequence of C0-nice measures with AD-
regularity constant c0 that converges to � weakly as k ! 1 (and so � is C0-nice
with AD-regularity constant c0). If z0 62 supp.�/, then for any z 62 supp.�/,eC�k .1/.z/
is well defined (as in (12)) for sufficiently large k, and eC�k .1/.z/ ! eC�.1/.z/ as
k ! 1.

Proof. First note that there exists r > 0 such that �.B.z0; r// D 0 D �.B.z; r//.
But then, by the AD regularity of each �k , we must have that �k.B.z0; r2 // D 0 D
�k.B.z;

r
2
// for sufficiently large k, and henceeC�k .1/.z/ is well defined. Let N > 0,

and choose 'N 2 Lip0.C/ satisfying 'N � 1 on B.0;N / and 0 � 'N � 1 in C. For
large enough k, jeC�.1/.z/�eC�k .1/.z/j is no greater than the sum of j ´

C
ŒK.z � �/�

K.z0��/�'N .�/d.���k/.�/j and j ´
C
ŒK.z��/�K.z0��/�Œ1�'N .�/�d.���k/.�/j.

The first of these two terms tends to zero as k ! 1, while the second has size
at most C jz�z0j

N
(for sufficiently large N ) due to Lemma 8.1. This establishes the

required convergence. ut
Lemma 10.3. Suppose that z 62 supp.�/, and Qz is a closest point on the support of
� to z. Let e D Qz�z

jQz�zj . Then supp.�/ � HQz;e .

Proof. Write e D ei� . By translation, we may assume that Qz D 0. To prove the
lemma, it suffices to show that B.��e; �/ \ supp.�/ D ¿ for all � > 0.

Fix t0 small enough to ensure that te 62 supp.�/ for any 0 < t � t0. The existence
of t0 > 0 is guaranteed by Lemma 10.1. Now set � DeC�.1/.z/�eC�.1/.t0e/. Notice
that the value of � is independent of the choice of z0 62 supp.�/ in (12), so we
shall fix z0 D t0e. Now, let �? denote a tangent measure to � at 0. On account of
Lemma 10.1, the support of �? is contained in the line L through 0 perpendicular
to e. By Step 1, �? D c?H1

L with c? 2 Œc0; C0�. As a result, for any y > 0, we have
that

eC�?.1/.�ye/�eC�?.1/.ye/D
ˆ

R

�2e�i�y
t2 C y2

c?dm1.t/D�2�c?e�i� : (14)

We claim thateC�?.1/.�ye/�eC�?.1/.ye/ D � . To see this, note that for � > 0 small
enough so that y� � t0, we haveeC�0;�.1/.�ye/ �eC�0;�.1/.ye/ D eC�.1/.��ye/ �
eC�.1/.�ye/. But this equals � because ��ye and �ye lie in the same connected
components of Cn supp.�/ as z and t0e respectively. Since �? is a weak limit
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of measures �0;�k for some sequence �k ! 0, applying Lemma 10.2 proves the
claim. Consequently, we have that � determines the direction of tangency from z to
supp.�/ (the angle �).

The right hand side of (14) is non-zero, and so t0e lies in a different component
of Cn supp.�/ to z. As there are only two possible values that eC�.1/ can take in
Cn supp.�/, � is determined byeC�.1/.z/. SinceeC�.1/ is constant in each connected
component ofCn supp.�/, the direction of tangency from any point in the connected
component of Cn supp.�/ containing z to supp.�/ is the same. Finally, set

I D ˚
� > 0 W f�te W t 2 .0; ��g lies in the same connected component

of Cn supp.�/ as z


:

We claim that if � 2 I, then B.��e; �/ \ supp.�/ D ¿. Indeed, otherwise there is
a point � ¤ 0 which is a closest point in supp.�/ to ��e. But then it follows that
e D �C�e

j�C�ej . Given that f�te W t 2 .0; ��g \ supp.�/ D ¿, this is a contradiction.
From this claim, we see that if � 2 I, then .0; 2�/ � I. Since jzj 2 I, it follows
that I D .0;1/, so B.��e; �/ \ supp.�/ D ¿ for any � > 0. ut
Proof of Proposition 8.5. An immediate corollary of Lemma 10.3 is the following
statement: For each z 62 supp.�/, there is a half space with z on its boundary which
does not intersect supp.�/.

Now, suppose that there are three points z; �; � 2 supp.�/which are not collinear.
Then they form a triangle. Since � is AD-regular, there is a point in the interior of
this triangle outside of the support of �. Let’s call this point !. But then there is a
half space, with ! on its boundary, which is disjoint from supp.�/. This half space
must contain at least one of the points z, � or �. This is absurd. ut
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Logarithmically-Concave Moment Measures I

Bo’az Klartag

Abstract We discuss a certain Riemannian metric, related to the toric Kähler-
Einstein equation, that is associated in a linearly-invariant manner with a given
log-concave measure in R

n. We use this metric in order to bound the second
derivatives of the solution to the toric Kähler-Einstein equation, and in order to
obtain spectral-gap estimates similar to those of Payne and Weinberger.

1 Introduction

In this paper we explore a certain geometric structure related to the moment measure
of a convex function. This geometric structure is well-known in the community of
complex geometers, see, e.g., Donaldson [13] for a discussion from the perspective
of Kähler geometry.

Our motivation stems from the Kannan-Lovasź-Simonovits conjecture [17,
Sect. 5], which is concerned with the isoperimetric problem for high-dimensional
convex bodies. Essentially, our idea is to replace the standard Euclidean metric by
a special Riemannian metric on the given convex body K . This Riemannian metric
has many favorable properties, such as a Poincaré inequality with constant one,
a positive Ricci tensor, the linear functions are eigenfunctions of the Laplacian,
etc. Perhaps this alternative geometry does not deviate too much from the standard
Euclidean geometry on K , and it is conceivable that the study of this Riemannian
metric will turn out to be relevant to the Kannan-Lovasź-Simonovits conjecture.

Let � be an arbitrary Borel probability measure on R
n whose barycenter is at the

origin. Assume furthermore that � is not supported in a hyperplane. It was proven
in [12] that there exists an essentially-continuous convex function  W Rn ! R [
fC1g, uniquely determined up to translations, such that � is the moment measure
of  , i.e.,

ˆ

Rn

b.y/d�.y/ D
ˆ

Rn

b.r .x//e� .x/dx (1)
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for any �-integrable function b W Rn ! R. In other words, the gradient map x 7!
r .x/ pushes the probability measure e� .x/dx forward to �. The argument in
[12] closely follows the variational approach of Berman and Berndtsson [5], which
succeeded the continuity methods of Wang and Zhu [29] and Donaldson [13].

Even in the case where � is absolutely-continuous with a C1-smooth density,
it is not guaranteed that  is differentiable. From the regularity theory of the
Brenier map, developed by Caffarelli [9] and Urbas [28], we learn that in order
to conclude that  is sufficiently smooth, one has to assume that the support of � is
convex.

An absolutely-continuous probability measure on R
n is called log-concave if

it is supported on an open, convex set K � R
n, and its density takes the form

exp.��/ where the function � W K ! R is convex. An important example of a log-
concave measure is the uniform probability measure on a convex body in R

n. Here
we assume that � is log-concave and furthermore, we require that the following
conditions are met:

The convex set K � R
n is bounded, the function � is C1-smooth; and

� and its derivatives of all orders are bounded in K:
(2)

Under these regularity assumptions, we can assert that

The convex function  is finite and C1-smooth in the entire R
n: (3)

The validity of (3) under the assumption (2) was proven by Wang and Zhu [29] and
by Donaldson [13] via the continuity method. Berman and Berndtsson [5] explained
how to deduce (3) from (2) by using Caffarelli’s regularity theory [9]. In fact, the
argument in [5] requires only the boundness of �, and not of its derivatives, see
also the Appendix in Alesker et al. [2]. Since the function  is smooth, it follows
from (1) that the transport equation

e��.r .x// det r2 .x/ D e� .x/ (4)

holds everywhere in R
n, where r2 .x/ is the Hessian matrix of  . In the case

where � � Const, Eq. (4) is called the toric Kähler-Einstein equation. We write
x � y for the standard scalar product of x; y 2 R

n, and jxj D p
x � x.

Theorem 1. Let � be a log-concave probability measure on R
n with barycenter at

the origin that satisfies the regularity conditions (2). Then, with the above notation,
for any x 2 R

n,

	 .x/ � 2R2.K/

where R.K/ D supx2K jxj is the outer radius of K , and 	 D P
i @

2 =@x2i is the
Laplacian of  .
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Theorem 1 is proven by analyzing a certain weighted Riemannian manifold.
A weighted Riemannian manifold, sometimes called a Riemannian metric-measure
space, is a triple

X D .˝; g; �/

where˝ is a smooth manifold (usually an open set in R
n), where g is a Riemannian

metric on ˝ , and � is a measure on ˝ with a smooth density with respect to
the Riemannian volume measure. In this paper we study the weighted Riemannian
manifold

M �
� D �

R
n;r2 ; e� .x/dx

�
: (5)

That is, the measure associated with M �
� has density e� with respect to the

Lebesgue measure on R
n, and the Riemannian tensor on R

n which is induced by
the Hessian of  is

nX

i;jD1
 ijdxidxj ; (6)

where we abbreviate  ij D @2 =@xi @xj . There is also a dual description of M �
� .

Recall that the Legendre transform of f W Rn ! R [ fC1g is the convex function

f �.x/ D sup
y2Rn

f .y/<C1

Œx � y � f .y/� .x 2 R
n/:

We refer the reader to Rockafellar [26] for the basic properties of the Legendre
transform. Denote ' D  �. From (4) we see that the Hessian matrix of the convex
function is always invertible, hence it is positive-definite. Therefore ' is a smooth
function in K whose Hessian is always positive-definite. Consequently, the map
r' W K ! R

n is a diffeomorphism, and r is its inverse map. One may directly
verify that the weighted Riemannian manifoldM �

� is canonically isomorphic to

M� D �
K;r2'; �

�
;

with x 7! r .x/ being the isomorphism map. In differential geometry, the
isomorphism between M� and M �

� is the passage from complex coordinates to
action/angle coordinates, see, e.g., Abreu [1]. Here are some basic properties of
our weighted Riemannian manifold:

(i) The space M� is stochastically complete. That is, the diffusion process
associated with M� is well-defined, it has � as a stationary measure and “it
never reaches the boundary of K”.
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(ii) The Bakry-Émery-Ricci tensor of M� is positive. In fact, it is at least half of
the Riemannian metric tensor.

(iii) The Laplacian associated with M� has an interesting spectrum: The first non-
zero eigenvalue is �1, and the corresponding eigenspace contains all linear
functions.

Property (ii) is a particular case of the results of Kolesnikov [23, Theorem 4.3]
(the notation of Kolesnikov is related to ours via V D ˚ D  ), and properties (i)
and (iii) are discussed below.

It is important to note that the construction ofM� does not rely on the Euclidean
structure: Suppose that V is a real n-dimensional linear space and � is a probability
measure on V satisfying the assumptions of Theorem 1. Then the convex function
 W V � ! R whose moment measure is � is well-defined up to translations,
and it induces the weighted Riemannian manifolds M� and M �

� via the procedure
described above. The fact that M� is well-defined without any reference to a
Euclidean structure is in sharp contrast with the Riemannian metric-measure space
.Rn; j � j; �/ that is frequently used for the analysis of the log-concave measure �.

In the following sections we prove the assertions made in the Introduction, and
as a sample of possible applications, we explain below how to recover the classical
Payne-Weinberger spectral gap inequality [25], up to a constant factor:

Corollary 1. Let � be a log-concave probability measure on R
n with barycenter

at the origin that satisfies the regularity conditions (2). Then, for any �-integrable,
smooth function f W K ! R,

ˆ

K

f 2d��
�ˆ

K

fd�

�2
� 2R2.K/

ˆ

K

jrf j2d�: (7)

The constant 2R2.K/ on the right-hand side of (7) is not optimal. In the case
where � is the uniform probability measure on a convex body K � R

n with a
central symmetry (i.e., K D �K), the best possible constant is 4R2.K/=�2, see
Payne and Weinberger [25].

Throughout this note, a convex body in R
n is a bounded, open, convex set. We

write log for the natural logarithm. A smooth function or a smooth manifold are
C1-smooth. The unit sphere is Sn�1 D fx 2 R

nI jxj D 1g. The five sections below
use a variety of techniques, from Itô calculus to maximum principles. We tried to
make each section as independent of the others as possible.

2 Continuity of the Moment Measure

This section is concerned with the continuity of the correspondence between convex
functions and their moment measures. Our main result here is Proposition 1 below.
We say that a convex function  W Rn ! R is centered if
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ˆ

Rn

e� .x/dx D 1;

ˆ

Rn

xi e
� .x/dx D 0; i D 1; : : : ; n: (8)

The role of the barycenter condition in (8) is to prevent translations of  which
result in the same moment measure. It is well-known that any convex function  W
R
n ! R satisfying

´
e� D 1 must tend to C1 at infinity. More precisely, for any

such convex function  there exist A;B > 0 with

 .x/ � Ajxj � B .x 2 R
n/; (9)

see, e.g., [19, Lemma 2.1]).

Proposition 1. Let ˝ � R
n be a compact set, and let  ; 1;  2; : : : W R

n ! R

be centered, convex functions. Denote by �;�1; �2; : : : the corresponding moment
measures, which are assumed to be supported in ˝ . Then the following are
equivalent:

(i)  ` �!  pointwise in R
n.

(ii) �` �!� weakly (i.e.,
´

bd�` ! ´
bd� for any continuous function

b W˝!R).

Several lemmas are required for the proof of Proposition 1. For a centered,
convex function  W Rn ! R we define

K. / D
�

x 2 R
n I  .x/ � 2nC inf

y2Rn  .y/


;

a convex set in R
n. Since the barycenter of e� .x/dx lies at the origin, then  .0/ �

nC infx2Rn  .x/, according to Fradelizi [14]. Hence the origin is necessarily in the
interior of K. /. For x 2 R

n consider the Minkowski functional

kxk D inf f� > 0I x=� 2 K. /g :

Since a convex function is continuous, then  .x=kxk / D 2n C inf for 0 ¤
x 2 R

n.

Lemma 1. Let  W Rn ! R be a centered, convex function. Then,

 .x/ � nkxk C  .0/ � 2n .x 2 R
n/: (10)

Proof. Since the barycenter of e� .x/dx lies at the origin, from Fradelizi [14],

 .0/ � nC inf
x2Rn  .x/: (11)

Whenever x 2 K. / we have kxk � 1. Therefore (10) follows from (11) for
x 2 K. /. In order to prove (10) for x 62 K. /, we observe that for such x we have
kxk � 1 and hence
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 .0/Cn � inf
y2Rn  .y/C2n D  

�
x

kxk 
�

�
�

1 � 1

kxk 
�

� .0/C 1

kxk � .x/;

due to the convexity of  . We conclude that  .x/ �  .0/ C nkxk for any x 62
K. /, and (10) is proven in all cases. ut
Proof of the direction (i) ) (ii) in Proposition 1. Denote

K D fx 2 R
nI .x/ � 2nC 1C  .0/g;

a convex set containing a neighborhood of the origin. Since e� is integrable,
then K must be of finite volume, hence bounded. According to Rockafellar [26,
Theorem 10.8], the convergence of  ` to  is locally uniform in R

n. In particular,
the convergence is uniform on K , and there exists `0 � 1 such that  `.x/ >
2n C  `.0/ for any x 2 @K and ` � `0. Setting M D  .0/ � 1 we conclude
that

K. `/ � K;  `.0/ � M for all ` � `0: (12)

Denote R D supx2K jxj. From (12) and Lemma 1, for any ` � `0,

 `.x/ � nkxk ` C  `.0/� 2n � n

R
jxj C .M � 2n/ .x 2 R

n/: (13)

According to our assumption (i) and [26, Theorem 24.5] we have that

r `.x/ `!1�! r .x/

for any x 2 R
n in which  ; 1;  2; : : : are differentiable. Let b W ˝ ! R be a

continuous function. Since a convex function is differentiable almost everywhere,
we conclude that

b.r `.x//e� `.x/ `!1�! b.r .x//e� .x/ for almost any x 2 R
n:

The function b is bounded because ˝ is compact. We may use the dominated
convergence theorem, thanks to (13), and conclude that

ˆ

˝

bd�` D
ˆ

Rn

b.r `.x//e� `.x/dx
`!1�!

ˆ

Rn

b.r .x//e� .x/dx D
ˆ

˝

bd�:

Thus (ii) is proven. ut
It still remains to prove the direction (ii) ) (i) in Proposition 1. A function

f W Rn ! R is L-Lipschitz if jf .x/ � f .y/j � Ljx � yj for any x; y 2 R
n.
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Lemma 2. Let L; " > 0. Suppose that  W R
n ! R is a centered, L-Lipschitz,

convex function, such that

ˆ

Rn

jr .x/ � � je� .x/dx � " for all � 2 Sn�1: (14)

Then,

˛jxj � ˇ �  .x/ � Ljxj C 
 .x 2 R
n/; (15)

where ˛; ˇ; 
 > 0 are constants depending only on L; " and n.

Proof. Fix � 2 Sn�1 and setH D �?, the hyperplane orthogonal to � . The function

m�.y/ D inf
t2R .y C t�/ .y 2 H/

is convex. Furthermore, for any fixed y 2 H , the function t 7!  .y C t�/ is
convex, L-Lipschitz and tends to C1 as t ! ˙1. Hence the one-dimensional
convex function t 7!  .y C t�/ attains its minimum at a certain point t0 2 R,
is non-decreasing on Œt0;C1/ and non-increasing on .�1; t0�. Therefore, for any
y 2 H ,

ˆ 1

�1

ˇ
ˇ
ˇ
ˇ
@ .y C t�/

@t

ˇ
ˇ
ˇ
ˇ e

� .yCt�/dt D
ˆ 1

�1

ˇ
ˇ
ˇ
ˇ
@

@t
e� .yCt�/

ˇ
ˇ
ˇ
ˇ dt D 2e�m�.y/:

We now integrate over y 2 H and use Fubini’s theorem to conclude that

ˆ

Rn

jr .x/ � � je� .x/dx D 2

ˆ

H

e�m�.y/dy: (16)

Consider the interval

I� D ft 2 R I t� 2 K. /g : (17)

Then,

ˆ 1

�1
e� .t�/=2dt �

ˆ

I�

e� .t�/=2dt � e�n�m� .0/

2 jI� j (18)

where jI� j is the length of the interval I� . Fix a point y 2 H . Then there exists
t0 2 R for whichm�.y/ D  .y C t0�/. From (18) and from the convexity of  ,

ˆ 1

�1
e� . y2 Ct�/dt D 1

2

ˆ 1

�1
e

� 
�
yCt0�
2 C t�

2

�

dt � 1

2
e�m� .y/

2

ˆ 1

�1
e�  .t�/

2 dt
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� 1

2
e�m� .y/Cm� .0/

2 e�njI� j � 1

2
e�m�.y/e�2njI� j; (19)

where in the last passage we used that m�.0/ �  .0/ � n C inf � n C m�.y/,
because the barycenter of e� .x/dx lies at the origin. Integrating (19) over y 2 H ,
we see that

ˆ

H

e�m�.y/dy � 2e2n

jI� j
ˆ

H

ˆ 1

�1
e� . y2 Ct�/dtdy D 2ne2n

jI� j
ˆ

Rn

e� D 2ne2n

jI� j :

Combine the last inequality with (14) and (16). This leads to the bound

jI� j � Cn

�ˆ

Rn

jr .x/ � � je� .x/dx

��1
� Cn

"
; (20)

for some constant Cn depending only on n. Recall that the origin belongs to K. /
and hence 0 2 I� . By letting � range over all of Sn�1 and glancing at (17) and (20),
we see that

K. / � B .0; Cn="/ (21)

where B.x; r/ D fy 2 R
nI jy � xj � rg. From (21) and from Lemma 1,

 .x/ �  .0/ � 2nC nkxk �  .0/ � 2nC "

QCn
jxj .x 2 R

n/; (22)

for QCn D Cn=n. By integrating (22) we obtain

1 D
ˆ

Rn

e� � e�. .0/�2n/
ˆ

Rn

e�"jxj= QCndx:

Therefore,  .0/ � 
 for 
 D 2n C log.
´
Rn
e�"jxj= QCndx/. Since  is L-Lipschitz,

then the right-hand side inequality of (15) follows. Next, observe that

1 D
ˆ

Rn

e� .x/dx �
ˆ

Rn

e� .0/�Ljxjdx D e� .0/
ˆ

Rn

e�Ljxjdx:

Hence  .0/ � log.
´
Rn
e�Ljxjdx/, and the left-hand side inequality of (15) follows

from (22). ut
Proof of the direction (ii) ) (i) in Proposition 1.

Step 1. We claim that

lim inf
`!1

�

inf
�2Sn�1

ˆ

˝

jx � � jd�`.x/
�

> 0: (23)
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Assume that (23) fails. Then there exist sequences `j 2 N and �j 2 Sn�1 such
that

lim
j!1

ˆ

˝

jx � �j jd�`j .x/ D 0: (24)

Passing to a subsequence, if necessary, we may assume that �j �! �0 2 Sn�1.
The sequence of functions jx � �j j tends to jx � �0j uniformly in x 2 ˝ . Hence,
from (ii) and (24),

ˆ

˝

jx � �0jd�.x/ D lim
j!1

ˆ

˝

jx � �0jd�`j .x/ D lim
j!1

ˆ

˝

jx � �j jd�`j .x/ D 0:

Therefore � is supported in the hyperplane �?
0 . However, � is the moment

measure of the convex function  W R
n ! R, and according to [12,

Proposition 1], it cannot be supported in a hyperplane. We have thus arrived at a
contradiction, and (23) is proven.

Step 2. We will prove that there exist ˛; ˇ; 
 > 0 and `0 � 1 such that

˛jxj � ˇ �  `.x/ � Ljxj C 
 .` � `0; x 2 R
n/: (25)

Indeed, according to Step 1, there exists `0 � 1 and "0 > 0 such that

ˆ

Rn

jr `.x/ � � je� `.x/dx D
ˆ

˝

jx � � jd�`.x/ > "0 .` � `0; � 2 Sn�1/:
(26)

Denote L D supx2˝ jxj. The function  ` is centered and convex. Furthermore,
for almost any x 2 R

n we know that r `.x/ 2 ˝ , because the moment measure
of  ` is supported in ˝ . Hence, for ` � 1,

jr `.x/j � L for almost any x 2 R
n: (27)

Since a convex function is always locally-Lipschitz, then (27) implies that  `
is L-Lipschitz, for any `. We may now apply Lemma 2, thanks to (26), and
conclude (25).

Step 3. Assume by contradiction that there exists x0 2 R
n for which  `.x0/ does

not converge to  .x0/. Then there exist " > 0 and a subsequence `j such that

j `j .x0/ �  .x0/j � " .j D 1; 2; : : :/: (28)

From (25) we know that the sequence of functions f `j gjD1;2;::: is uniformly
bounded on any compact subset of R

n. Furthermore,  `j is L-Lipschitz for
any j . According to the Arzelá-Ascoli theorem, we may pass to a subsequence
and assume that  `j converges locally uniformly in R

n, to a certain function F .
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The function F is convex and L-Lipschitz, as it is the limit of convex and L-
Lipschitz functions. Furthermore, thanks to (25) we may apply the dominated
convergence theorem and conclude that F is centered.
To summarize, the functions F; `1 ;  `2 ; : : : are L-Lipschitz, centered and
convex. We know that  `j �! F locally uniformly in R

n. According to the
implication (i) ) (ii) proven above, the sequence of measures f�`j gjD1;2;:::
converges weakly to the moment measure of F . But we assumed that �`j
converges weakly to �, and hence � is the moment measure of F . Thus  ;F W
R
n ! R are two centered, convex functions with the same moment measure �.

This means that  � F , according to the uniqueness part in [12]. Therefore
 `j �!  pointwise in R

n, in contradiction to (28), and the proof is complete.
ut

3 A Preliminary Weak Bound Using the Maximum Principle

In this section we prove a rather weak form of Theorem 1, which will be needed
for the proof of the theorem later on in Sect. 5. Throughout this section, � is a log-
concave probability measure on R

n with barycenter at the origin, supported on a
convex body K � R

n, with density e�� satisfying the regularity conditions (2).
Also,  W Rn ! R is the smooth, convex function whose moment measure is �,
which is uniquely defined up to translation, and ' D  � is its Legendre transform.
In this section we make the following strict-convexity assumptions:

(?) The convex body K has a smooth boundary and its Gauss curvature is positive
everywhere. Additionally, there exists "0 > 0 with

r2�.x/ � "0 � Id .x 2 K/; (29)

in the sense of symmetric matrices.

Denote by kAk the operator norm of the matrix A. Our goal in this section is to
prove the following:

Proposition 2. Under the above assumptions,

sup
x2Rn

kr2 .x/k < C1:

The argument we present for the demonstration of Proposition 2 closely follows
the proof of Caffarelli’s contraction theorem [10, Theorem 11]. An alternative
approach to Proposition 2 is outlined in Kolesnikov [22, Sect. 6]. We begin the proof
of Proposition 2 with the following lemma, which is due to Berman and Berndtsson
[5]. Their proof is reproduced here for completeness.

Lemma 3. sup
x2K

'.x/ < C1.
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Proof. Since K is bounded, it suffices to show that ' is ˛-Hölder for some ˛ > 0.
According to the Sobolev inequality in the convex domain K � R

n (see, e.g., [27,
Chap. 1]), it is sufficient to prove that

ˆ

K

jr'.x/jpdx < C1; (30)

for some p > n. Fix p > n. The map x 7! r'.x/ pushes the measure � forward
to exp.� .x//dx. Hence,

ˆ

K

jr'jpd� D
ˆ

Rn

jxjpe� .x/dx < C1; (31)

where we used the fact that e� decays exponentially at infinity (see, e.g., (9) above
or [19, Lemma 2.1]). Since � is a bounded function on K and e�� is the density of
�, then (30) follows from (31). ut

For x 2 R
n denote hK.x/ D supy2K x � y, the supporting functional of K . The

following lemma is analogous to [10, Lemma 4].

Lemma 4. lim
R!1 sup

jxj�R
jr .x/ � rhK.x/j D 0:

Proof. The function ' W K ! R is convex, hence bounded from below by some
affine function, which in turn is greater than some constant on the bounded set K .
According to Lemma 3, the function ' is also bounded from above. Set M D
supx2K j'.x/j. By elementary properties of the Legendre transform, for any x 2 R

n,

 .x/ D x � r .x/ � '.r .x// � x � r .x/CM: (32)

Recall that x=jxj is the outer unit normal to K at the boundary point rhK.x/
whenever 0 ¤ x 2 R

n, and that supy2K x � y D x � rhK.x/. Therefore, for any
x 2 R

n,

 .x/ D sup
y2K

Œx � y � '.y/� � �M C sup
y2K

x � y D �M C x � rhK.x/: (33)

Using (32) and (33),

.rhK.x/ � r .x// � xjxj � 2M

jxj .0 ¤ x 2 R
n/: (34)

Recall that r .x/ 2 K for any x 2 R
n. Since @K is smooth with positive Gauss

curvature, inequality (34) implies that there exist RK; ˛K > 0, depending only on
K , with

jrhK.x/ � r .x/j � ˛K

s
2M

jxj for jxj � RK: (35)

The lemma follows from (35). ut
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For " > 0; � 2 R
n and a function f W Rn ! R denote

ı
."/

�� f .x/ D f .x C "�/C f .x � "�/� 2f .x/ .x 2 R
n/:

For a smooth f and a small ", the quantity ı."/�� f .x/="
2 approximates the pure

second derivative f��.x/. We would like to use the maximum principle for the
function �� .x/, but we do not know whether or not it attains its supremum. This is
the reason for using the approximate second derivative ı."/��  .x/ as a substitute.

Corollary 2. Fix 0 < " < 1. Then the supremum of ı."/��  .x/ over all x 2 R
n and

� 2 Sn�1 is attained.

Proof. According to Lemma 4 and the continuity and 0-homogeneity of rhK.x/,

lim
R!1 sup

jxj�R
x1;x22B.x;1/

jr .x1/� r .x2/j D lim
R!1 sup

jxj�R
x1;x22B.x;1/

jrhK.x1/ � rhK.x2/j

D lim
R!1 sup

jxjD1
x1;x22B.x;1=R/

jrhK.x1/ � rhK.x2/j D 0; (36)

where B.x; r/ D fy 2 R
nI jx � yj < rg. From Lagrange’s mean value theorem,

ı
."/

��  .x/ D . .x C "�/�  .x// � . .x/ �  .x � "�//
� " sup

x1;x22B.x;"/
jr .x1/� r .x2/j: (37)

According to (36) and (37),

lim
R!1 sup

jxj�R

�2Sn�1

ı
."/

��  .x/ � " lim
R!1 sup

jxj�R
x1;x22B.x;"/

jr .x1/� r .x2/j D 0: (38)

Since  is convex and smooth, then the function ı
."/

��  is non-negative and
continuous in .x; �/ 2 R

n � Sn�1. It thus follows from (38) that its supremum
is attained. ut

We shall apply the well-known matrix inequality, which states that when A and
B are symmetric, positive-definite n � n matrices, then

log detB � log detAC Tr
�
A�1.B � A/

	 D log detAC Tr
�
A�1B

	 � n; (39)

where Tr.A/ stands for the trace of the matrix A. Recall that the transport
equation (4) is valid, hence,

log det r2 .x/ D � .x/C .� ı r /.x/ .x 2 R
n/: (40)
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In particular, r2 .x/ is always an invertible matrix which is in fact positive-
definite. We denote its inverse by

�r2 .x/
��1 D . ij.x//i;jD1;:::;n. For a smooth

function u W Rn ! R denote

Au.x/ D Tr
h�r2 .x/

��1 r2u.x/
i

D  ij.x/uij.x/ .x 2 R
n/; (41)

where we adhere to the Einstein convention: When an index is repeated twice in
an expression, once as a subscript and once as a superscript, then we sum over this
index from 1 to n. According to (39) for any � 2 R

n,

log det r2 .x C �/ � log det r2 .x/C  ij.x/ ij.x C �/� n .x 2 R
n/;

(42)

with an equality for � D 0.

Proof of Proposition 2. We follow Caffarelli’s argument [10, Theorem 11]. Our
assumption (29) yields that the function �.x/ � "0jxj2=2 is convex. Hence, for any
x; y such that x � y; x C y; x 2 K ,

�.xCy/C�.x�y/�2�.x/ � "0

2

�jx C yj2 C jx � yj2 � 2jxj2� D "0jyj2: (43)

Fix 0 < " < 1 and abbreviate ı��f D ı
."/

�� f . From (40) and (42) as well as some
simple algebraic manipulations, for any � 2 R

n,

A.ı�� / � ı��
�
log det r2 

� D �ı�� C ı�� .� ı r /: (44)

According to Corollary 2, the maximum of .x; �/ 7! ı�� .x/ over Rn � Sn�1 is
attained at some .x0; e/ 2 R

n � Sn�1. Since  is smooth, then at the point x0,

0 D r.ıee /.x0/ D r .x0 C "e/C r .x0 C "e/� 2r .x0/:

In other words, there exists a vector u 2 R
n such that

r .x0 C "e/ D r .x0/C u; r .x0 � "e/ D r .x0/� u:

Setting v D r .x0/ and using (43), we obtain

ıee.� ı r /.x0/ D �.v C u/C �.v � u/� 2�.v/ � "0juj2: (45)

The smooth function x 7! ıee .x/ reaches a maximum at x0, hence the matrix
r2 .ıee / .x0/ is negative semi-definite. Since the matrix .r2 /�1.x0/ is positive-
definite, then from the definition (41),

0 � A.ıee /.x0/: (46)
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Now, (44), (45) and (46) yield

ıee .x0/ � ıee .� ı r / .x0/ � "0juj2: (47)

By the convexity of  ,

 .x0 C "e/�  .x0/ � r .x0 C "e/ � ."e/ D .v C u/ � ."e/

and

 .x0 � "e/�  .x0/ � r .x0 � "e/ � .�"e/ D .v � u/ � .�"e/:

Summing the last two inequalities yields

ıee .x0/ � .v C u/ � ."e/C .v � u/ � .�"e/ D 2".u � e/ � 2juj": (48)

The inequalities (47) and (48) imply that juj � 2"="0 and hence from (48),

ıee. /.x0/ � 4"2="0:

Consequently, for any x 2 R
n and � 2 Sn�1 we have ı."/��  .x/ � 4"2="0, and hence

 �� .x/ D lim
"!0C

ı
."/

��  .x/

"2
� 4

"0
:

Therefore kr2 .x/k � 4="0 for any x 2 R
n, and the proof is complete. ut

Remark 1. Our proof of Proposition 2 provides the explicit bound

sup
x2Rn

kr2 .x/k � 4="0: (49)

By arguing as in [11], one may improve the right-hand side of (49) to just 1="0. We
omit the straightforward details.

4 Diffusion Processes and Stochastic Completeness

In this section we consider a diffusion process associated with transportation of
measure. Our point of view owes much to the article by Kolesnikov [23], and
we make an effort to maintain a discussion as general as the one in Kolesnikov’s
work.
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Let � be a probability measure supported on an open set K � R
n, with density

e�� where � W K ! R is a smooth function. Let  W Rn ! R be a smooth, convex
function with

lim
R!1

�

inf
jxj�R

 .x/

�

D C1: (50)

Condition (50) holds automatically when
´
e� < 1, see (9) above. Rather than

requiring that the transport equation (4) hold true, in this section we make the more
general assumption that

e��.r .x// det r2 .x/ D e�V.x/ .x 2 R
n/ (51)

for a certain smooth function V W Rn ! R. Clearly, when � is the moment measure
of , Eq. (51) holds true with V D  and condition (50) holds as well. The transport
equation (51) means that the map x 7! r .x/ pushes the probability measure
e�V.x/dx forward to �. In this section we explain and prove the following:

Proposition 3. LetK � R
n be an open set, and let V; W Rn ! R and � W K ! R

be smooth functions with  being convex. Assume (50) and (51), and furthermore,
that

inf
x2K r�.x/ � x > �1: (52)

Then the weighted Riemannian manifold M D �
R
n;r2 ; e�V.x/dx

�
is stochasti-

cally complete.

Remark 2. Note that in the most interesting case where V D  , the weighted
Riemannian manifold M from Proposition 3 coincides with M �

� as defined in (5)
and (6) above. Additionally, in the case where � is log-concave with barycenter at
the origin, condition (52) does hold true: In this case, according to Fradelizi [14],
we know that �.0/ � nC infx2K �.x/. By convexity,

r�.x/ � x � �.x/ � �.0/ � �n .x 2 K/;

and (52) follows. Thus Proposition 3 implies the stochastic completeness of M �
�

when � is a log-concave probability measure with barycenter at the origin, which
satisfies the regularity conditions (2).

We now turn to a detailed explanation of stochastic completeness of a weighted
Riemannian manifold. See, e.g., Grigor’yan [15] for more information. The Dirich-
let form associated with the weighted Riemannian manifold M D .˝; g; �/ is
defined as

� .u; v/ D
ˆ

˝

g
�rgu;rgv

�
d�; (53)
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where u; v W ˝ ! R are smooth functions for which the integral in (53) exists. Here,
rgu stands for the Riemannian gradient of u. The Laplacian associated with M is
the unique operator L, acting on smooth functions u W ˝ ! R, for which

ˆ

˝

.Lu/vd� D �� .u; v/ (54)

for any compactly-supported, smooth function v W ˝ ! R. In the case of the
weighted manifoldM D �

R
n;r2 ; e�V.x/dx

�
from Proposition 3, we may express

the Dirichlet form as follows:

� .u; v/ D
ˆ

Rn

�
 ijuivj

�
e�V (55)

where r2 .x/�1 D . ij.x//i;jD1;:::;n and ui D @u=@xi . Note that the matrix
r2 .x/ is invertible, thanks to (51). As in Sect. 3 above, we use the Einstein
summation convention; thus in (55) we sum over i; j from 1 to n. We will also make
use of abbreviations such as  ijk D @3 =.@xi@xj @xk/, and also  ij` D  ik jk`

and  ij
k D  i` jm `mk . Therefore, for example,

. ij/k D @ ij.x/

@xk
D � i` jm `mk D � ij

k :

We may now express the LaplacianL associated withM D �
R
n;r2 ; e�V.x/dx

�
by

Lu D  ijuij � . ij
j C  ijVj /ui (56)

as may be directly verified from (55) by integration by parts.

Lemma 5. For any smooth function u W Rn ! R,

Lu D  ijuij �
nX

jD1
�j .r .x//uj : (57)

Proof. We take the logarithmic derivative of (51) and obtain that for ` D 1; : : : ; n,

 ii`.x/ D �V`.x/C
nX

iD1
�i .r .x// i`.x/ .x 2 R

n/: (58)

Multiplying (58) by  j` and summing over ` we see that for j D 1; : : : ; n,

 
ij
i .x/ D � j`.x/V`.x/C �j .r .x// .x 2 R

n/: (59)

Now (57) follows from (56) and (59). ut
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Lemma 6. Under the assumptions of Proposition 3, there exists A � 0 such that
for all x 2 R

n,

.L /.x/ � A:

Proof. Set A D max
˚
0; n � infy2K r�.y/ � y
, which is a finite number according

to our assumption (52). From Lemma 5,

L .x/ D  ij ij �
nX

jD1
�j .r .x// j .x/ D n �

nX

jD1
�j .r .x// j .x/:

It remains to prove that n�Pj �j .r .x// j .x/ � A, or equivalently, we need to
show that

r�.y/ � y � n � A for all y 2 K: (60)

However, (60) holds true in view of the definition of A above. Therefore L � A

pointwise in R
n. ut

The Laplacian L associated with a weighted Riemannian manifold M is a
second-order, elliptic operator with smooth coefficients. We say thatM is stochasti-
cally complete if the Itô diffusion process whose generator isL is well-defined at all
times t 2 Œ0;1/. In the particular case of Proposition 3, this means the following:
Let .Bt /t�0 be the standard n-dimensional Brownian motion. The diffusion equation
with generator L as in (57) is the stochastic differential equation:

dY t D p
2
�r2 .Yt /

��1=2
dBt � r�.r .Yt //dt; (61)

where .r2 .x//�1=2 is the positive-definite square root of .r2 .x//�1. For back-
ground on stochastic calculus, the reader may consult sources such as Kallenberg
[16] or Øksendal [24]. The stochastic completeness of M is equivalent to the
existence of a solution .Yt /t�0 to Eq. (61), with an initial condition Y0 D z for a
fixed z 2 R

n, that does not explode in finite time. Proposition 3 therefore follows
from the next proposition:

Proposition 4. Let  ; V and � be as in Proposition 3. Fix z 2 R
n. Then there

exists a unique stochastic process .Yt /t�0, adapted to the filtration induced by the
Brownian motion, such that for all t � 0,

Yt D z C
ˆ t

0

p
2
�r2 .Yt/

��1=2
dBt �

ˆ t

0

r�.r .Yt //dt; (62)

and such that almost-surely, the map t 7! Yt .t � 0/ is continuous in Œ0;C1/.
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Proof. Since  .x/ tends to C1 when x ! 1, then the convex set f � Rg D
fx 2 R

nI .x/ � Rg is compact for anyR 2 R. We use Theorem 21.3 in Kallenberg
[16] and the remark following it. We deduce that there exists a unique continuous
stochastic process .Yt /t�0 and stopping times Tk D infft � 0I .Yt / � kg such that
for any k >  .z/; t � 0,

Yminft;Tkg D z C
ˆ minft;Tkg

0

p
2
�r2 .Yt /

��1=2
dBt �

ˆ minft;Tkg

0

r�.r .Yt //dt:

(63)

Denote T D supk Tk. We would like to prove that T D C1 almost-surely.
According to Dynkin’s formula and Lemma 6, for any k >  .z/ and t � 0,

E .Yminft;Tkg/ D  .z/C E

ˆ minft;Tkg

0

.L /.Yt /dt �  .z/C 2At;

where A is the parameter from Lemma 6. Set ˛ D � infx2Rn  .x/, a finite number
in view of (50). Then .x/C˛ is non-negative. By Markov-Chebyshev’s inequality,
for any t � 0 and k >  .z/,

P.Tk � t/ D P
�
 .Yminft;Tkg/ � k

� � E .Yminft;Tkg/C ˛

k C ˛
� 2At C  .z/C ˛

k C ˛
:

Hence, for any t � 0,

P.T � t/ � inf
k
P.Tk � t/ � lim inf

k!1
2At C  .z/C ˛

k C ˛
D 0:

Therefore T D C1 almost surely. We may let k tend to infinity in (63) and
deduce (62). The uniqueness of the continuous stochastic process .Yt /t�0 that
satisfies (62) follows from the uniqueness of the solution to (63). ut

For z 2 R
n write .Y .z/t /t�0 for the stochastic process from Proposition 4 with

Y0 D z. Denote by � the probability measure on R
n whose density is e�V.x/dx. The

lemma below is certainly part of the standard theory of diffusion processes. We were
not able to find a precise reference, hence we provide a proof which relies on the
existence of the heat kernel.

Lemma 7. There exists a smooth function pt .x; y/ .x; y 2 R
n; t > 0/ which is

symmetric in x and y, such that for any y 2 R
n and t > 0, the random vector

Y
.y/
t

has density x 7! pt .x; y/ with respect to �.

Proof. We appeal to Theorems 7.13 and 7.20 in Grigor’yan [15], which deal with
heat kernels on weighted Riemannian manifolds. According to these theorems, there
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exists a heat kernel, that is, a non-negative function pt .x; y/ .x; y 2 R
n; t > 0/

symmetric in x and y and smooth jointly in .t; x; y/, that satisfies the following two
properties:

(i) For any y 2 R
n, the function u.t; x/ D pt .x; y/ satisfies

@u.t; x/

@t
D Lxu.t; x/ .x 2 R

n; t > 0/

where by Lxu.t; x/ we mean that the operator L is acting on the x-variables.
(ii) For any smooth, compactly-supported function f W Rn ! R and x 2 R

n,

ˆ

Rn

pt .x; y/f .y/d�.y/
t!0C

�! f .x/; (64)

and the convergence in (64) is locally uniform in x 2 R
n.

Theorem 7.13 in Grigor’yan [15] also guarantees that
´
pt .x; y/d�.x/ � 1 for

any y. It remains to prove that the random vector Y .y/t has density x 7! pt .x; y/

with respect to �. Equivalently, we need to show that for any smooth, compactly-
supported function f W Rn ! R and y 2 R

n; t > 0,

Ef
�
Y
.y/
t

�
D

ˆ

Rn

f .x/pt .x; y/d�.x/: (65)

Denote by v.t; y/ .t > 0; y 2 R
n/ the right-hand side of (65), a smooth, bounded

function. We also set v.0; y/ D f .y/ .y 2 R
n/ by continuity, according to (ii).

Then the function v.t; y/ is continuous and bounded in .t; y/ 2 Œ0;C1/ � R
n.

Since f is compactly-supported then we may safely differentiate under the integral
sign with respect to y and t , and obtain

@v.t; y/

@t
D

ˆ

Rn

f .x/
@pt .x; y/

@t
d�.y/; Lyv.t; y/D

ˆ

Rn

f .x/
�
Lypt .x; y/

�
d�.y/:

From (i) we learn that

@v.t; y/

@t
D Lyv.t; y/ .y 2 R

n; t > 0/: (66)

Fix t0 > 0 and y 2 R
n. Denote Zt D v

�
t0 � t; Y

.y/
t

�
for 0 � t � t0. Then

.Zt /0�t�t0 is a continuous stochastic process. From Itô’s formula and (66), for 0 �
t � t0,

Zt D Z0 C Rt C
ˆ t

0

�

Lyv
�
t0 � t; Y

.y/
t

�
� @v

@t

�
t0 � t; Y .y/t

��

dt D Z0 C Rt
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where .Rt /0�t�t0 is a local martingale with R0 D 0. Since v is bounded, then
.Zt /0�t�t0 is a bounded process, and .Rt /0�t�t0 is in fact a martingale. In particular
ERt0 D ER0 D 0. Thus,

Ef
�
Y
.y/
t0

�
D EZt0 D EZ0 D v.t0; y/ D

ˆ

Rn

f .x/pt0 .x; y/d�.x/;

and (65) is proven. ut
Corollary 3. Suppose that Z is a random vector in R

n, distributed according
to �, independent of the Brownian motion .Bt /t�0 used for the construction of
.Y

.z/
t /t�0;z2Rn .
Then, for any t � 0, the random vector Y .Z/t is also distributed according to �.

Proof. According to Lemma 7, for any measurable set A � R
n,

P

�
Y
.Z/
t 2 A

�
D

ˆ

Rn

P

�
Y
.z/
t 2 A

�
d�.z/ D

ˆ

Rn

�ˆ

A

pt .z; x/d�.x/

�

d�.z/

D
ˆ

A

�ˆ

Rn

pt .x; z/d�.z/

�

d�.x/ D �.A/:

ut
Remark 3. Our choice to use stochastic processes in this paper is just a matter
of personal taste. All of the arguments here can be easily rephrased in analytic
terminology. For instance, the proof of Proposition 4 relies on the fact that L is
bounded from above, similarly to the analytic approach in Grigor’yan [15, Sect. 8.4].
Another example is the use of local martingales towards the end of Lemma 7, which
may be replaced by analytic arguments as in [15, Sect. 7.4].

5 Bakry-Émery Technique

In this section we prove Theorem 1. While the viewpoint and ideas of Bakry and
Émery [4] are certainly the main source of inspiration for our analysis, we are not
sure whether the abstract framework in [3, 4] entirely encompasses the subtlety of
our specific weighted Riemannian manifold. For instance, Lemma 9 below seems
related to the positivity of the carré du champ �2 and to property (ii) in Sect. 1
above. In the case " � 1=2, Lemma 9 actually follows from an application of
[3, Lemma 2.4] with f .x/ D x1 and � D 1=2. Yet, in general, it appears to us
advantageous to proceed by analyzing our model for itself, rather than viewing it as
an abstract diffusion semigroup satisfying a curvature-dimension bound.

Let � be a log-concave probability measure on R
n satisfying the regularity

assumptions (2), whose barycenter lies at the origin. Let  W Rn ! R be convex
and smooth, such that the transport equation (4) holds true. In Sect. 4 we proved
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that M �
� is stochastically complete. Since M�� is isomorphic to M�, then M� is

also stochastically complete.
Let us describe in greater detail the diffusion process associated with M� D

.K;r2'; �/. Recall that the Legendre transform ' D  � is smooth and convex on
K , and that

'.x/C  .r'.x// D x � r'.x/ .x 2 K/:

We may rephrase (4) in terms of ' D  �, and using .r2'.x//�1 D r2 .r'.x//,
we arrive at the equation

det r2'.x/ D ex�r'.x/�'.x/��.x/ .x 2 K/: (67)

The Hessian matrix r2' is invertible everywhere, so we write
�r2'.x/

��1 D
.' ij.x//i;jD1;:::;n, and as before we use abbreviations such as ' jk

i D 'j`'km'i`m.
In this section, for a smooth function u W K ! R, denote

Lu.x/ D ' ijuij � xiui for x D .x1; : : : ; xn/ 2 K: (68)

The following lemma is “dual” to Lemma 5.

Lemma 8. The operatorL from (68) is the Laplacian associated with the weighted
Riemannian manifoldM�.

Proof. By taking the logarithmic derivative of (67) and arguing as in the proof of
Lemma 5, we obtain that for any x 2 K; i D 1; : : : ; n,

'
ij
j D xi � 'ij �j : (69)

Integrating by parts and using (69), we see that for any two smooth functions u; v W
K ! R with one of them compactly-supported,

ˆ

K

' ijuivj d� D �
ˆ

K

v.' ijuij � .' ij
j C ' ij�j /ui /e

�� D �
ˆ

K

v.Lu/d�:

ut
Lemma 9. Fix " > 0. For x 2 K set f .x/ D '11.x/. Then, for the function
f ".x/ D f .x/" we have

L.f "/C "f " � 0:

Proof. For i; j D 1; : : : ; n,

fi D .'11/i D �'1k'1`'ik`; fij D �'11ij C 2'1kj '
1
ik:
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Therefore,

Lf D ' ijfij � xifi D �'11jj C 2'
1j
i '

1i
j C xj '11j : (70)

Taking the logarithm of (67) and differentiating with respect to xi and x`, we see
that

'
j

ji` � ' jk
i 'jk` D ��i` C 'i` C xj 'i j̀ .i; ` D 1; : : : ; n/:

Multiplying by '1i'1` and summing yields

'
j11
j � '1jk '1kj D �'1i'1`�i` C '11 C xj '11j : (71)

Since � is convex then its Hessian matrix is non-negative definite and �i`'1i'1` � 0.
From (70) and (71),

Lf D '
1j

k '
1k
j � '11 C �i`'

1i'1` � '
1j

k '
1k
j � '11 D '

1j

k '
1k
j � f: (72)

The chain rule of the Laplacian is L.�.f // D �0.f /Lf C�00.f /' ijfj fj , as may be
verified directly. Using the chain rule with �.t/ D t " we see that (72) leads to

L.f "/ D "f "�1Lf C "."� 1/f "�2'11j '11j

� "f "�1'1jk '
1k
j � "f " C "."� 1/f "�2'11j '11j :

That is,

L.f "/C "f " � "f "�1
"

'
1j

k '
1k
j C ." � 1/

'11j'11j

'11

#

� "f "�1
"

'
1j

k '
1k
j � '11j '11j

'11

#

;

(73)

where we used the fact that '11j '11j � 0 in the last passage (or more generally,
' ijhihj � 0 for any smooth function h). It remains to show that the right-hand side

of (73) is non-negative. Denote A D .'
1j

k /j;kD1;:::;n. The matrix B D .'1jk/j;kD1;:::;n
is a symmetric matrix, since '1jk D '1`'jm'kr'`mr . We have A D .r2'/B , and
hence

'
1j

k '
1k
j D Tr.A2/ D Tr

h�
.r2'/1=2B.r2'/1=2

�2i

D �
�.r2'/1=2B.r2'/1=2

�
�2

HS
;
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since the matrix .r2'/1=2B.r2'/1=2 is symmetric, where kT kHS stands for the
Hilbert-Schmidt norm of the matrix T . We will use the fact that the Hilbert-Schmidt
norm is at least as large as the operator norm, that is, kT k2HS � jT xj2=jxj2 for any
0 ¤ x 2 R

n. Setting e1 D .1; 0; : : : ; 0/, we conclude that

'
1j

k '
1k
j �

ˇ
ˇ.r2'/1=2B.r2'/1=2.r2'/�1=2e1

ˇ
ˇ2

ˇ
ˇ.r2'/�1=2e1

ˇ
ˇ2

D '11i'ij'
11j

'11
D '11j '

11j

'11
:

Therefore the right-hand side of (73) is non-negative, and the lemma follows. ut
Let .Bt /t�0 be the standard n-dimensional Brownian motion. From the results of

Sect. 4, the diffusion process whose generator isL from (68) is well-defined. That is,
there exists a unique stochastic process .X.z/

t /t�0;z2K , continuous in t and adapted
to the filtration induced by the Brownian motion, such that for all t � 0,

X
.z/
t D z C

ˆ t

0

p
2
�
r2'

�
X
.z/
t

���1=2
dBt �

ˆ t

0

X
.z/
t dt: (74)

Our proof of Theorem 1 relies on a few lemmas in which the main technical obstacle
is to prove the integrability of certain local martingales.

Lemma 10. Fix z 2 K and set Xt D X
.z/
t .t � 0/. Then for any t � 0,

EXt D e�t z; (75)

and for any � 2 Sn�1,

e2tE.Xt � �/2 � .z � �/2 C 2

ˆ t

0

e2sE
�
.r2'/�1.Xs/� � �	 ds: (76)

Proof. From Itô’s formula and (74),

d.etXt / D etdXt C etXtdt D p
2et

�r2'.Xt/
��1=2

dBt :

Therefore .etXt/0�t�T is a local martingale, for any fixed number T > 0. However,
etXt 2 eTK for 0 � t � T , and K � R

n is a bounded set. Therefore .etXt /0�t�T
is a bounded process, and hence it is a martingale. We conclude that

EetXt D Ee0X0 D z .t � 0/;

and (75) is proven. It remains to prove (76). Without loss of generality we may
assume that � D e1 D .1; 0; : : : ; 0/. Denoting Yt D Xt � e1, we obtain from (74) that

dY t D p
2
�r2'.Xt /

��1=2
e1 � dBt � Ytdt:
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Set Zt D e2tY 2t D e2t .Xt � e1/2. According to Itô’s formula,

dZt D 2e2tY 2t dt C 2e2tYtdYt C 1

2
� .2e2t / � 2'11.Xt /dt D 2e2t'11.Xt /dt C dMt

where .Mt /t�0 is a local martingale with M0 D 0. This implies that for any t � 0,

Zt D .z � e1/2 CMt C
ˆ t

0

�
2e2s'11.Xs/

�
ds: (77)

Since '11 is positive, then for any t � 0,

Zt � .z � e1/2 � Mt: (78)

The convex bodyK is bounded, and hence .Zt /0�t�T is a bounded process for any
number T > 0. According to (78), the local martingale .Mt /0�t�T is bounded from
above, and by Fatou’s lemma it is a sub-martingale. In particular EMt � EM0 D 0

for any t . From (77),

EZt � .z � e1/2 C 2E

ˆ t

0

e2s'11.Xs/ds .t � 0/:

Since EZt < C1 and '11 is positive, we may use Fubini’s theorem to conclude
that for any t � 0,

EZt � .z � e1/2 C 2

ˆ t

0

e2sE'11.Xs/ds:

ut
Remark 4. Once Theorem 1 is established, we can prove that equality holds in (76).
Indeed, it follows from Theorem 1 and (77) that .Mt /0�t�T is a bounded process
and hence a martingale.

Lemma 11. Assume that the convex body K has a smooth boundary and that its
Gauss curvature is positive everywhere. Assume also that there exists "0 > 0 with

r2�.x/ � "0 � Id .x 2 K/ (79)

in the sense of symmetric matrices. Fix z 2 K and set Xt D X
.z/
t .t � 0/. Denote

f .x/ D '11.x/ for x 2 K . Then, for any t; " > 0,

f .z/ � et .Ef ".Xt//
1="
: (80)

Proof. Our assumptions enable the application of Proposition 2. According to the
conclusion of Proposition 2, there existsM > 0 such that

r2 .y/ � M � Id .y 2 R
n/:
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Since .r2'/�1.x/ D r2 .r'.x//, then,

f .x/ D '11.x/ � M .x 2 K/: (81)

From Itô’s formula and (74),

e"tf ".Xt / D f ".z/CMt C
ˆ t

0

e"s Œ.Lf "/.Xs/C "f ".Xs/� ds; (82)

where Mt is a local martingale with M0 D 0. According to (82) and Lemma 9, for
any t � 0,

e"tf ".Xt/ � f ".z/CMt: (83)

We may now use (81) and (83) in order to conclude that the local martingale
.Mt/0�t�T is bounded from above, for any number T > 0. Hence it is a sub-
martingale, and EMt � EM0 D 0 for any t � 0. Now (80) follows by taking
the expectation of (83). ut
Remark 5. We will only use (80) for " D 1, even though the statement for a small
" is much stronger. In the limit where " tends to zero, it is not too difficult to prove
that the right-hand side of (80) approaches exp.t C E logf .Xt //.

The covariance matrix of a square-integrable random vectorZ D .Z1; : : : ; Zn/ 2
R
n is defined to be

Cov.Z/ D �
EZiZj � EZi � EZj

�
i;jD1;:::;n :

Corollary 4. Assume that the convex body K has a smooth boundary and that its
Gauss curvature is positive everywhere. Assume also that there exists "0 > 0 with

r2�.x/ � "0 � Id .x 2 K/: (84)

Then for any z 2 K and t > 0,

.r2'/�1.z/ � e2t

2.et � 1/ � Cov
�
X
.z/
t

�

in the sense of symmetric matrices.

Proof. Fix z 2 K; t > 0 and � 2 Sn�1. We need to prove that

�r2'.z/
��1

� � � � e2t

2.et � 1/
Var.X.z/

t � �/: (85)
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Without loss of generality we may assume that � D e1 D .1; 0; : : : ; 0/. We use
Lemma 10 and also Lemma 11 with " D 1, and obtain

e2tE.X
.z/
t � e1/2 � .z � e1/2 C 2

ˆ t

0

e2sE'11.X.z/
s /ds � .z � e1/2 C 2'11.z/

ˆ t

0

esds:

Recall that EX.z/
t D e�t z, according to Lemma 10. Consequently,

'11.z/ � e2t

2.et � 1/
�
E.X

.z/
t � e1/2 � .e�t z � e1/2

�
D e2t

2.et � 1/
Var.X.z/

t � e1/;

and (85) is proven for � D e1. ut
Proof of Theorem 1. Assume first that the convex body K has a smooth boundary,
that its Gauss curvature is positive everywhere, and that there exists "0 for
which (84) holds true. We apply Corollary 4 with t D log 2, and conclude that
for any z 2 K ,

Tr
�
.r2'/�1.z/

	 � 2Tr
h
Cov.X.z/

t /
i

� 2E
ˇ
ˇ
ˇX

.z/
t

ˇ
ˇ
ˇ
2 � 2R2.K/

as X.z/
t 2 K almost surely. Therefore, for any x 2 R

n, setting z D r .x/ we have

	 .x/ D Tr
�r2 .x/

	 D Tr
�
.r2'/�1.z/

	 � 2R2.K/: (86)

It still remains to eliminate the extra strict-convexity assumptions. To that end, we
select a sequence of smooth convex bodies K` � R

n, each with a positive Gauss
curvature, that converge in the Hausdorff metric to K . We then consider a sequence
of log-concave probability measures �` with barycenter at the origin that converge
weakly to �, such that �` is supported on K` and such that the smooth density of
�` satisfies (84) with, say, "0 D 1=`. We also assume that �` and K` satisfy the
regularity conditions (2).

It is not very difficult to construct the �`’s: For instance, convolve � with a
tiny Gaussian (this preserves log-concavity), multiply the density by exp.�jxj2=`/,
truncate with K` and translate a little so that the barycenter would lie at the origin.
This way we obtain a sequence of smooth, convex functions  ` W Rn ! R such that
�` is the moment measure of  `. We may translate, and assume that  and each of
the  0̀s are centered, in the terminology of Sect. 2. According to (86), we know that

	 `.x/ � 2R2.K`/ .x 2 R
n; ` � 1/: (87)

Furthermore, �` �! � weakly, and by Proposition 1, also  ` �!  pointwise in
R
n. Since  ` and  are smooth, then [26, Theorem 24.5] implies that

r `.x/ `!1�! r .x/ .x 2 R
n/:
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The function ` is R.K`/-Lipschitz, andR.K`/ �! R.K/. Hence sup`;x jr `.x/j
is finite. By the bounded convergence theorem, for any x0 2 R

n and " > 0,

ˆ

B.x0;"/

	 ` D
ˆ

@B.x0;"/

r ` �N `!1�!
ˆ

@B.x0;"/

r �N D
ˆ

B.x0;"/

	 ; (88)

where N is the outer unit normal. From (87) and (88) we conclude that for any
x0 2 R

n and " > 0,

ˆ

B.x0;"/

	 � Voln.B.x0; "// � lim sup
`!1

2R2.K`/ D 2Voln.B.x0; "//R
2.K/;

where Voln is the Lebesgue measure in R
n. Since  is smooth, then we may let "

tend to zero and conclude that	 .x0/ � 2R2.K/, for any x0 2 R
n. ut

Posteriori, we may strengthen Corollary 4 and eliminate the strict-convexity
assumptions. These assumptions were used only in the proof of Lemma 11, to
deduce the existence of some number M > 0 for which r2 .x/ � M � Id, for
all x 2 R

n. Theorem 1 provides such a number M D 2R2.K/, without any strict-
convexity assumptions on � or K . We may therefore upgrade Corollary 4, and
conclude that

Corollary 5. Suppose that � is a log-concave probability measure in R
n with

barycenter at the origin, satisfying the regularity conditions (2). Let .X.z/
t /t�0;z2K be

the stochastic process given by (74). Then this process is well-defined and bounded,
and for any z 2 K and t > 0,

.r2'/�1.z/ � e2t

2.et � 1/ � Cov
�
X
.z/
t

�

in the sense of symmetric matrices.

6 The Brascamp-Lieb Inequality as a Poincaré Inequality

We retain the assumptions and notation of the previous section. That is, � is a log-
concave probability measure on R

n, with barycenter at the origin, that satisfies the
regularity assumptions (2). The measure � is the moment-measure of the smooth
and convex function  W Rn ! R. Equation (4) holds true, and we denote ' D  �.
According to the Brascamp-Lieb inequality [8], for any smooth function u W Rn !
R such that ue� is integrable,

ˆ

Rn

ue� D 0 H)
ˆ

Rn

u2e� �
ˆ

Rn

�
.r2 /�1ru � ru

	
e� : (89)
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Equality in (89) holds when u.x/ D r .x/ � � for some � 2 R
n. Note that (89) is

precisely the Poincaré inequality with the best constant of the weighted Riemannian
manifoldM �

� . By using the isomorphism betweenM� andM �
� , we translate (89) as

follows: For any smooth function f W K ! R which is �-integrable,

Var�.f / �
ˆ

K

�
' ijfifj

�
d�; (90)

where Var�.f / D ´
f 2d� � .

´
fd�/2. Equality in (90) holds when f .x/ D AC

x � � for some � 2 R
n and A 2 R. This is in accordance with the fact that linear

functions are eigenfunctions, i.e.,

Lxi D �xi .i D 1; : : : ; n/

whereLu D ' ijuij�xiui is the Laplacian of the weighted Riemannian manifoldM�.
In fact, (90) means that the spectrum of the (Friedrich extension of the) operator L
cannot intersect the interval .�1; 0/, and that the restriction of �L to the subspace
of mean-zero functions is at least the identity operator, in the sense of symmetric
operators.

Theorem 1 states that 	 .x/ � 2R2.K/ everywhere in R
n. A weak conclu-

sion is that r2 .x/ � 2R2.K/ � Id, or rather, that .r2'.x//�1 � 2R2.K/ � Id.
By substituting this information into (90), we see that for any smooth function
f 2 L1.�/,

Var�.f / � 2R2.K/

ˆ

K

jrf j2d�: (91)

This completes the proof of Corollary 1. See [20, 21] for more Poincaré-type
inequalities that are obtained by imposing a Riemannian structure on the convex
body K . The Kannan-Lovasź-Simonovits conjecture speculates that R2.K/ in (91)
may be replaced by a universal constant times kCov.�/k, where Cov.�/ is the
covariance matrix of the random vector that is distributed according to �, and k � k
is the operator norm.

A potential way to make progress towards the Kannan-Lovasź-Simonovits
conjecture is to try to bound the matrices .r2'/�1.x/ .x 2 K/ in terms of Cov.�/.
The following proposition provides a modest step in this direction:

Proposition 5. Fix � 2 Sn�1 and denote

V D
ˆ

Rn

.x � �/2d�.x/:

Then, for any p � 1,

 ˆ

K

ˇ
ˇ
ˇ
ˇ
.r2'/�1� � �

V

ˇ
ˇ
ˇ
ˇ

p

d�

!1=p

� 4p2:
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Proof. Without loss of generality, assume that � D e1 D .1; 0; : : : ; 0/. According
to Corollary 5, for any z 2 K and t > 0,

'11.z/ � e2t

2.et � 1/
Var

�
X
.z/
t � e1

�
� e2t

2.et � 1/
E

�
X
.z/
t � e1

�2
: (92)

Let Z be a random vector that is distributed according to �, independent of the
Brownian motion used in the construction of the process .X.z/

t /t�0;z2K . It follows
from Corollary 3 that for any fixed t � 0 the random vector X.Z/

t is also distributed
according to �. By setting t D log 2 in (92) and applying Hölder’s inequality, we
see that for any p � 1,

E
ˇ
ˇ'11.Z/

ˇ
ˇp � 2pE

ˇ
ˇ
ˇX

.Z/
t � e1

ˇ
ˇ
ˇ
2p D 2pE jZ � e1j2p : (93)

The random vector Z has a log-concave density. According to the Berwald
inequality [6, 7],

�
E jZ � e1j2p

�1=.2p/ � � .2p C 1/1=.2p/

� .3/1=2

q

E jZ � e1j2 � 2pp
2

p
V : (94)

(The Berwald inequality is formulated in [6, 7] for the uniform measure on a
convex body, but it is well-known that is applies for all log-concave probability
measures. For instance, one may deduce the log-concave version from the convex-
body version by using a marginal argument as in [18]). The proposition follows
from (93) and (94). ut
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Estimates for Measures of Sections of Convex
Bodies

Alexander Koldobsky

Abstract A
p
n estimate in the hyperplane problem with arbitrary measures has

recently been proved in [12]. In this note we present analogs of this result for
sections of lower dimensions and in the complex case. We deduce these inequalities
from stability in comparison problems for different generalizations of intersection
bodies.

1 Introduction

The following inequality has recently been proved in [12]. Let K be an origin
symmetric convex body in R

n; and let � be a measure on K with even continuous
non-negative density f so that �.B/ D ´

B
f for every Borel subset of K: Then

�.K/ � p
n

n

n � 1cn max
�2Sn�1

�.K \ �?/ jKj1=n ; (1)

where cn D ˇ
ˇBn

2

ˇ
ˇ
n�1
n =

ˇ
ˇBn�1

2

ˇ
ˇ < 1; Bn

2 is the unit Euclidean ball in R
n; and jKj

stands for volume of proper dimension. Note that cn < 1 for every n:
In the case of volume, when f D 1 everywhere on K; inequality (1) was proved

in [17, p. 96]. Another argument follows from [6, Theorem 8.2.13]; in [6] this
argument is attributed to Rolf Schneider. Also, in the case of volume the constantp
n can be improved to Cn1=4;whereC is an absolute constant, as shown by Klartag

[9] who improved an earlier estimate of Bourgain [4]. These results are much more
involved. The question of whether n1=4 can also be removed in the case of volume
is the matter of the hyperplane conjecture [1–3, 17]; see the book [5] for the current
state of the problem.

In this note we prove analogs of inequality (1) for sections of lower dimensions
and in the complex case; see Theorems 2 and 4, respectively. As in [12], the proofs
are based on certain stability results for generalizations of intersection bodies.

A. Koldobsky (�)
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
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2 Lower Dimensional Sections

We need several definitions and facts. A closed bounded set K in R
n is called a star

body if every straight line passing through the origin crosses the boundary of K at
exactly two points different from the origin, the origin is an interior point ofK; and
the Minkowski functional of K defined by

kxkK D minfa � 0 W x 2 aKg

is a continuous function on R
n:

The radial function of a star bodyK is defined by

�K.x/ D kxk�1
K ; x 2 R

n:

If x 2 Sn�1 then �K.x/ is the radius of K in the direction of x:
If � is a measure on K with even continuous density f , then

�.K/ D
ˆ

K

f .x/ dx D
ˆ

Sn�1

0

B
@

k�k�1
Kˆ

0

rn�1f .r�/ dr

1

C
A d�: (2)

Putting f D 1, one gets

jKj D 1

n

ˆ

Sn�1

�nK.�/d� D 1

n

ˆ

Sn�1

k�k�n
K d�: (3)

For 1 � k � n � 1; denote by Grn�k the Grassmanian of .n � k/-dimensional
subspaces of R

n: The .n � k/-dimensional spherical Radon transform Rn�k W
C.Sn�1/ 7! C.Grn�k/ is a linear operator defined by

Rn�kg.H/ D
ˆ

Sn�1\H
g.x/ dx; 8H 2 Grn�k

for every function g 2 C.Sn�1/:
The polar formulas (2) and (3), applied to sections ofK , express volume in terms

of the spherical Radon transform:

�.K \H/ D
ˆ

K\H
f D

ˆ

Sn�1\H

 ˆ k�k�1
K

0

rn�k�1f .r�/ dr

!

d�

D Rn�k

 ˆ k�k�1
K

0

rn�k�1f .r �/ dr

!

.H/: (4)
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and

jK \H j D 1

n � k

ˆ

Sn�1\�?

k�k�nCk
K d� D 1

n � kRn�k.k � k�nCk
K /.H/: (5)

The class of intersection bodies was introduced by Lutwak [15] and played a
crucial role in the solution of the Busemann-Petty problem; see [6,10] for definition
and properties. A more general class of bodies was introduced by Zhang [18] in
connection with the lower dimensional Busemann-Petty problem. Denote

Rn�k
�
C.Sn�1/

� D X � C.Grn�k/:

Let MC.X/ be the space of linear positive continuous functionals on X , i.e. for
every � 2 MC.X/ and non-negative function f 2 X , we have �.f / � 0.

An origin symmetric star body K in R
n is called a generalized k-intersection

body if there exists a functional � 2 MC.X/ so that for every g 2 C.Sn�1/,
ˆ

Sn�1

kxk�k
K g.x/ dx D �.Rn�kg/: (6)

When k D 1 we get the class of intersection bodies. It was proved by Grinberg
and Zhang [7, Lemma 6.1] that every intersection body in R

n is a generalized k-
intersection body for every k < n: More generally, as proved later by Milman
[16], if m divides k, then every generalized m-intersection body is a generalized
k-intersection body.

We need the following stability result for generalized k-intersection bodies.

Theorem 1. Suppose that 1 � k � n � 1; K is a generalized k-intersection body
in R

n; f is an even continuous function onK; f � 1 everywhere on K; and " > 0:
If

ˆ

K\H
f � jK \H j C "; 8H 2 Grn�k; (7)

then
ˆ

K

f � jKj C n

n � k
cn;k jKjk=n"; (8)

where cn;k D jBn
2 j n�k

n =jBn�k
2 j < 1:

Proof. Use polar formulas (4) and (5) to write the condition (7) in terms of the
.n � k/-dimensional spherical Radon transform: for all H 2 Grn�k

Rn�k

 ˆ k�k�1
K

0

rn�k�1f .r �/ dr

!

.H/ � 1

n � kRn�k
�
k � k�nCk

K

�
.H/C ":
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Let � be the functional corresponding to K by (6), apply � to both sides of the
latter inequality (the direction of the inequality is preserved because � is a positive
functional) and use (6). We get

ˆ

Sn�1

k�k�k
K

 ˆ k�k�1
K

0

rn�k�1f .r�/ dr

!

d�

� 1

n � k
ˆ

Sn�1

k�k�n
K d� C "�.1/: (9)

Split the integral in the left-hand side into two integrals and then use f � 1 as
follows:

ˆ

Sn�1

 ˆ k�k�1
K

0

rn�1f .r�/ dr

!

d�

C
ˆ

Sn�1

 ˆ k�k�1
K

0

.k�k�k
K � rk/rn�k�1f .r�/ dr

!

d�

�
ˆ

K

f C
ˆ

Sn�1

 ˆ k�k�1
K

0

.k�k�k
K � rk/rn�k�1 dr

!

d�

D
ˆ

K

f C k

n � k
jKj: (10)

Now estimate �.1/ by first writing 1 D Rn�k1=jSn�k�1j and then using
definition (6), Hölder’s inequality and jSn�1j D njBn

2 j:

�.1/ D 1
ˇ
ˇSn�k�1ˇˇ�.Rn�k1/ D 1

ˇ
ˇSn�k�1ˇˇ

ˆ

Sn�1

k�k�k
K d�

� 1
ˇ
ˇSn�k�1ˇˇ

ˇ
ˇSn�1ˇˇ n�k

n

�ˆ

Sn�1

k�k�n
K d�

� k
n

D 1
ˇ
ˇSn�k�1ˇˇ

ˇ
ˇSn�1ˇˇ n�k

n nk=njKjk=n D n

n � k
cn;kjKjk=n: (11)

Combining (9)–(11) we get

ˆ

K

f C k

n � k
jKj � n

n� k
jKj C n

n � k
cn;kjKjk=n":

ut
It was proved in [13] (generalizing the result for k D 1 from [11]) that if L is a

generalized k-intersection body and � is a measure with even continuous density,
then
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�.L/ � n

n� k
cn;k max

H2Grn�k

�.L \H/ jLjk=n:

We show now that it is possible to extend this inequality to arbitrary origin
symmetric convex bodies in R

n at the expense of an extra constant nk=2:

Theorem 2. Suppose that L is an origin symmetric convex body in R
n; and � is a

measure with even continuous non-negative density g on L: Then

�.L/ � nk=2
n

n � k
cn;k max

H2Grn�k

�.L \H/ jLjk=n: (12)

Proof. By John’s theorem [8], there exists an origin symmetric ellipsoid K such
that

1p
n
K � L � K:

The ellipsoid K is an intersection body [6, Corollary 8.1.7], and every intersection
body is a generalized k-intersection body for every k [7, Lemma 6.1]. Let f D
�K C g�L; where �K; �L are the indicator functions of K and L; then f � 1

everywhere on K: Put

" D max
H2Grn�k

�ˆ

K\H
f � jK \H j

�

D max
H2Grn�k

ˆ

L\H
g:

Now we can apply Theorem 1 to f;K; " (the function f is not necessarily
continuous on K; but the result holds by a simple approximation argument). We
get

�.L/ D
ˆ

L

g D
ˆ

K

f � jKj

� n

n � k cn;k jKjk=n max
H2Grn�k

ˆ

L\H
g

� nk=2
n

n � k
cn;kjLjk=n max

H2Grn�k

�.L\H/;

becauseK � p
nL; so jKj � nn=2jLj: ut

3 The Complex Case

Origin symmetric convex bodies in C
n are the unit balls of norms on C

n:We denote
by k � kK the norm corresponding to the bodyK:

K D fz 2 C
n W kzkK � 1g:
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In order to define volume, we identify C
n with R

2n using the standard mapping

� D .�1; : : : ; �n/ D .�11 C i�12; : : : ; �n1 C i�n2/ 7! .�11; �12; : : : ; �n1; �n2/:

Since norms on C
n satisfy the equality

k�zk D j�jkzk; 8z 2 C
n; 8� 2 C;

origin symmetric complex convex bodies correspond to those origin symmet-
ric convex bodies K in R

2n that are invariant with respect to any coordinate-
wise two-dimensional rotation, namely for each � 2 Œ0; 2�� and each � D
.�11; �12; : : : ; �n1; �n2/ 2 R

2n

k�kK D kR�.�11; �12/; : : : ; R� .�n1; �n2/kK; (13)

whereR� stands for the counterclockwise rotation of R2 by the angle � with respect
to the origin. We shall say that K is a complex convex body in R

2n if K is a convex
body and satisfies Eq. (13). Similarly, complex star bodies are R� -invariant star
bodies in R

2n:

For � 2 C
n; j�j D 1; denote by

H� D fz 2 C
n W .z; �/ D

nX

kD1
zk�k D 0g

the complex hyperplane through the origin, perpendicular to �: Under the standard
mapping from C

n to R
2n the hyperplane H� turns into a .2n � 2/-dimensional

subspace of R2n:
Denote by Cc.S

2n�1/ the space of R� -invariant continuous functions, i.e.
continuous real-valued functions f on the unit sphere S2n�1 in R

2n satisfying
f .�/ D f .R� .�// for all � 2 S2n�1 and all � 2 Œ0; 2��: The complex spherical
Radon transform is an operator Rc W Cc.S2n�1/ ! Cc.S

2n�1/ defined by

Rcf .�/ D
ˆ

S2n�1\H�
f .x/dx:

We say that a finite Borel measure � on S2n�1 is R� -invariant if for any
continuous function f on S2n�1 and any � 2 Œ0; 2��,

ˆ

S2n�1

f .x/d�.x/ D
ˆ

S2n�1

f .R�x/d�.x/:

The complex spherical Radon transform of an R� -invariant measure � is defined as
a functional Rc� on the space Cc.S2n�1/ acting by
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.Rc�; f / D
ˆ

S2n�1

Rcf .x/d�.x/:

Complex intersection bodies were introduced and studied in [14]. An origin
symmetric complex star body K in R

2n is called a complex intersection body if
there exists a finite Borel R� -invariant measure � on S2n�1 so that k � k�2

K and Rc�

are equal as functionals on Cc.S2n�1/; i.e. for any f 2 Cc.S2n�1/
ˆ

S2n�1

kxk�2
K f .x/ dx D

ˆ

S2n�1

Rcf .�/d�.�/: (14)

Theorem 3. Suppose that K is a complex intersection body in R
2n; f is an even

continuousR� -invariant function on K; f � 1 everywhere onK; and " > 0: If

ˆ

K\H�
f � jK \H� j C "; 8� 2 S2n�1; (15)

then
ˆ

K

f � jKj C n

n � 1
dn jKj1=n"; (16)

where dn D jB2n
2 j n�1

n =jB2n�2
2 j < 1:

Proof. Use the polar formulas (4) and (5) to write the condition (15) in terms of the
complex spherical Radon transform: for all � 2 S2n�1

Rc

 ˆ k�k�1
K

0

r2n�3f .r �/ dr

!

.�/ � 1

2n � 2Rc

�k � k�2nC2
K

�
.�/C ":

Let � be the measure on S2n�1 corresponding to K by (14). Integrate the latter
inequality over S2n�1 with the measure � and use (14):

ˆ

S2n�1

k�k�2
K

 ˆ k�k�1
K

0

r2n�3f .r�/ dr

!

d�

� 1

2n � 2
ˆ

S2n�1

k�k�2n
K d� C "

ˆ

S2n�1

d�.�/

D n

n� 1
jKj C "

ˆ

S2n�1

d�.�/: (17)
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Recall (2), (3) and the assumption that f � 1: We estimate the integral in the left-
hand side of (17) as follows:

ˆ

S2n�1

k�k�2
K

 ˆ k�k�1
K

0

r2n�3f .r�/ dr

!

d�

D
ˆ

S2n�1

 ˆ k�k�1
K

0

r2n�1f .r�/ dr

!

d�

C
ˆ

S2n�1

 ˆ k�k�1
K

0

.k�k�2
K � r2/r2n�3f .r�/ dr

!

d�

�
ˆ

K

f C
ˆ

S2n�1

 ˆ k�k�1
K

0

.k�k�2
K � r2/r2n�3 dr

!

d�

D
ˆ

K

f C 1

2.n� 1/n

ˆ

S2n�1

k�k�2n
K d� D

ˆ

K

f C 1

n � 1
jKj: (18)

Let us estimate the second term in the right-hand side of (17) by adding the
complex spherical Radon transform of the unit constant function under the integral
(Rc1.�/ D ˇ

ˇS2n�3ˇˇ for every � 2 S2n�1), using again (14) and then applying
Hölder’s inequality:

"

ˆ

S2n�1

d�.�/ D "

jS2n�3j
ˆ

S2n�1

Rc1.�/ d�.�/

D "

jS2n�3j
ˆ

S2n�1

k�k�2
K d�

� "

jS2n�3j
ˇ
ˇS2n�1ˇˇ n�1

n

�ˆ

S2n�1

k�k�2n
K d�

� 1
n

D "

jS2n�3j
ˇ
ˇS2n�1ˇˇ n�1

n .2n/1=njKj1=n D n

n � 1
dnjKj1=n": (19)

In the last step we used jS2n�1j D 2njB2n
2 j: Combining (17)–(19) we get

ˆ

K

f C 1

n � 1
jKj � n

n � 1 jKj C n

n � 1dnjKj1=n":

ut
It was proved in [14] that if K is a complex intersection body in R

2n and 
 is an
arbitrary measure on R

2n with even continuous density, then


.K/ � n

n � 1dn max
�2S2n�1


.K \H�/ jKj 1n :
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In Theorem 4 below, we remove the condition thatK is a complex intersection body
at the expense of an extra constant. We use a result from [14, Theorem 4.1] that a
complex star body is a complex intersection body if and only if k � k�2

K is a positive
definite distribution, i.e. its Fourier transform in the sense of distributions assumes
non-negative values on non-negative test functions. We refer the reader to [10, 14]
for details.

Theorem 4. Suppose that L is an origin symmetric complex convex body in R
2n

and 
 is an arbitrary measure on R
2n with even continuous density g, then


.L/ � 2n
n

n � 1
dn max

�2S2n�1

.L\H�/ jLj 1n :

Proof. By John’s theorem [8], there exists an origin symmetric ellipsoid K such
that

1p
2n
K � L � K:

Construct a new bodyKc by

kxk�2
Kc

D 1

2�

ˆ 2�

0

kR�xk�2
K d�:

Clearly, Kc is R� -invariant, so it is a complex star body. For every � 2 Œ0; 2��

the distribution kR�xk�2
K is positive definite, because this is a linear transformation

of the Euclidean norm. So kxk�2
Kc

is also a positive definite distribution, and, by
Koldobsky et al. [14, Theorem 4.1], Kc is a complex intersection body. Since
1p
2n
K � L � K and L is R� -invariant as a complex convex body, we have

1p
2n
R�K � L � R�K; 8� 2 Œ0; 2��;

so

1p
2n
Kc � L � Kc:

Let f D �Kc C g�L; where �Kc ; �L are the indicator functions of Kc and L:
Clearly, f is R� -invariant and f � 1 everywhere onK: Put

" D max
�2S2n�1

 ˆ

Kc\H�
f � jKc \H� j

!

D max
�2S2n�1

ˆ

L\H�
g
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and apply Theorem 3 to f;Kc; " (the function f is not necessarily continuous on
Kc; but the result holds by a simple approximation argument). We get

�.L/ D
ˆ

L

g D
ˆ

Kc

f � jKcj

� n

n � 1dnjKcj1=n max
�2S2n�1

ˆ

L\H�
g

� 2n
n

n � 1dnjLj1=n max
�2S2n�1

�.L \H�/;

because jKcj1=n � 2n jLj1=n: ut
Theorem 4 shows that if bodies have additional symmetries then maximum in

the slicing inequality can be taken over a rather small set of subspaces.

Acknowledgements I wish to thank the US National Science Foundation for support through
grant DMS-1265155.
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Remarks on the KLS Conjecture
and Hardy-Type Inequalities

Alexander V. Kolesnikov and Emanuel Milman

Abstract We generalize the classical Hardy and Faber-Krahn inequalities to
arbitrary functions on a convex body ˝ � R

n, not necessarily vanishing on the
boundary @˝ . This reduces the study of the Neumann Poincaré constant on ˝ to
that of the cone and Lebesgue measures on @˝; these may be bounded via the
curvature of @˝ . A second reduction is obtained to the class of harmonic functions
on ˝ . We also study the relation between the Poincaré constant of a log-concave
measure � and its associated K. Ball body K�. In particular, we obtain a simple
proof of a conjecture of Kannan–Lovász–Simonovits for unit-balls of `np , originally
due to Sodin and Latała–Wojtaszczyk.

1 Introduction

Given a compact connected set ˝ with non-empty interior in Euclidean space
.Rn; j�j/ (n � 2) and a smooth function f on ˝ vanishing on @˝ , a version of
the classical Hardy inequality (e.g. [15]) states that:

ˆ

˝

f 2dx � 4

n2
inf
x02Rn

ˆ

˝

jx � x0j2jrf j2dx: (1)

The classical Faber–Krahn inequality (e.g. [4]) states that under the same conditions:
ˆ

˝

f 2dx � PD
˝�

ˆ

˝

jrf j2dx; (2)

where PD
˝�

is the best constant in the above inequality under the same conditions
with ˝ D ˝�, the Euclidean Ball having the same volume as ˝ . PD is called the
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Poincaré constant with zero Dirichlet boundary conditions; it is elementary to verify
that PD

˝�

' 1
n

j˝�j2=n (see Remark 3 for more precise information).
In this note we explore what may be said when f does not necessarily vanish on

the boundary, and develop applications for estimating the Poincaré constant with
Neumann boundary conditions. Here and elsewhere, we use jM j to denote the
k-dimensional Hausdorff measure H k of the k-dimensional manifold M , and
A ' B to denote that c � A=B � C , for some universal numeric constants
c; C > 0. All constants c; c0; C; C 0; C1; C2, etc. appearing in this work are positive
and universal, i.e. do not depend on ˝ , n or any other parameter, and their value
may change from one occurrence to the next.

Let �˝ denote the uniform (Lebesgue) probability measure on ˝ , and let PN
˝

denote the Poincaré constant of ˝ , i.e. the best constant satisfying:

Var�˝f � PN
˝

ˆ

˝

jrf j2d�˝ 8 smooth f W ˝ ! R ; (3)

without assuming any boundary conditions on f . Here and throughoutVar�.f / WD´
f 2d�� .´ fd�/2 for any probability measure �. It is well-known that when @˝

is smooth, 1=PN
˝ coincides with the first non-zero eigenvalue (“spectral-gap”) of the

Laplacian on˝ with zero Neumann boundary conditions, explaining the superscript
N in our notation for PN

˝ . The classical Szegö–Weinberger inequality (e.g. [4])
states that PN

˝ � PN
˝�

' Vol.˝�/2=n. By inspecting domains with very narrow
bottlenecks, or even convex domains which are very narrow and elongated in a
certain direction, it is clear that without some additional information on ˝ , PN

˝

is not bounded from above. However, a conjecture of Kannan–Lovász–Simonovits
[17] asserts that on a convex domain˝ , the Poincaré inequality (3) will be saturated
by linear functions f , up to a universal constant C > 0 independent of n and ˝ ,
i.e.:

PN
˝ � CP Lin

˝ ; P Lin
˝ WD sup

�2Sn�1

Var�˝ h�; �i

It is easy to reduce the KLS conjecture to the case that ˝ is isotropic, meaning that
its barycenter is at the origin and the variance of all unit linear functionals is 1, i.e.:

ˆ
xid�˝ D 0 ;

ˆ
xixj d�˝ D ıij 8i; j D 1; : : : ; n:

The conjecture then asserts that PN
˝ � C for any convex isotropic domain˝ in R

n.
Given a Borel probability measure � on R

n (not necessarily absolutely contin-
uous), we denote by P1

� the best constant in the following weak L2-L1 Poincaré
inequality:

Var�f � P1
� kjrf .x/jk2L1.�/ 8 smooth f W Rn ! R : (4)

Set P 1̋ WD P1
�˝

; clearly P 1̋ � PN
˝ . In [26], the second-named author showed that

when˝ is convex, the latter inequality may be reversed:



Remarks on the KLS Conjecture and Hardy-Type Inequalities 275

PN
˝ � CP 1̋ ; (5)

whereC > 1 is a universal numeric constant. This reduces the KLS conjecture to the
class of 1-Lipschitz functions f (satisfying kjrf jkL1

� 1). Another remarkable
reduction was obtained by R. Eldan, who showed [11] that it is essentially enough
(up to logarithmic factors in n) to establish the conjecture for the Euclidean norm
function f .x/ D jxj, but simultaneously for all isotropic convex domains in R

n.
Employing an estimate on the variance of jxj due to O. Guédon and the second-
named author [16], it follows from Eldan’s reduction that for a general convex body
in R

n, PN
˝ � Cn2=3 log.1C n/P Lin

˝ .
In this work, we obtain several additional reductions of the KLS conjecture. First,

we obtain a sufficient condition by reducing to the study of P1
�@˝

and P1
�@˝

, the
cone and Lebesgue measures on @˝ , respectively. In particular, it suffices to bound
the variance of homogeneous functions which are 1-Lipschitz on the boundary.
This is achieved by obtaining Neumann versions of the Hardy and Faber-Krahn
inequalities (1) and (2) for general functions (not necessarily vanishing on the
boundary). The parameters P1

�@˝
or P1

�@˝
may then be bounded using a result from

our previous work [21], by averaging certain curvatures on @˝ (see Theorem 11).
Second, we reduce the KLS conjecture to the class of harmonic functions.

Thirdly, we consider the Poincaré constant of an unconditional convex body
bounded by the principle hyperplanes, when a certain mixed Dirichlet–Neumann
boundary condition is imposed. It is interesting to check which of the boundary
conditions will dominate this Poincaré constant, and we determine that it is the
Dirichlet ones, resulting in a Faber–Krahn / Hardy-type upper bound.

Lastly, we reveal a general relation between the Poincaré constant of a log-
concave measure � and its associated K. Ball bodyK�, assuming that the latter has
finite-volume-ratio. In particular, we obtain a quick proof of the KLS conjecture for
unit-balls of `np , p 2 Œ1; 2� (first established by S. Sodin [32]), which avoids using
the concentration estimates of Schechtman and Zinn [31]. This is also extended to
arbitrary p � 2 bounded away from 1.

Our proofs follow classical arguments for establishing the Hardy inequality,
which can be viewed as a Lyapunov function or vector-field method, in which one is
searching for a vector-field whose magnitude is bounded from above on one hand,
and whose divergence is bounded from below on the other. For more applications of
Lyapunov functions to the study of Sobolev-type inequalities, see [9].

2 Hardy-Type Inequalities

Let ˝ denote a compact connected set in R
n with smooth boundary and having the

origin in its interior. We denote by � the unit exterior normal-field to @˝ . We denote
by �@˝ the uniform probability measure on @˝ induced by the Lebesgue measure,
i.e. H n�1j@˝= j@˝j.
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Our basic starting point is the following integration-by-parts formula. Let g
denote a smooth function and � a smooth vector field on ˝ . Then:

ˆ

˝

div.�/gdx D �
ˆ

˝

h�;rgi dx C
ˆ

@˝

h�; �i g dH n�1 : (6)

Applying this to g D f 2 and using the Cauchy-Schwartz inequality (in additive
form), we obtain for any positive function � on˝:

ˆ

˝

div.�/f 2dx �
ˆ

˝

�f 2dx C
ˆ

˝

1

�
jh�;rf ij2 dx C

ˆ

@˝

h�; �if 2 dH n�1;

or equivalently:

ˆ

˝

.div.�/ � �/ f 2dx �
ˆ

˝

1

�
jh�;rf ij2 dx C

ˆ

@˝

h�; �i f 2 dH n�1: (7)

Let us apply this to several different vector fields �.

2.1 Radial Vector Field

In this subsection, assume in addition that ˝ is star-shaped, meaning that ˝ D
fx I kxk � 1g, where kxk WD inf f� > 0I x 2 �˝g denotes its associated gauge
function. We denote by �@˝ the induced cone probability measure on @˝ , i.e. the
push-forward of �˝ via the map x 7! x

kxk . It is well-known and immediate to check
that:

�@˝ D 1

j˝j
hx; �i
n

� H n�1j@˝:

Theorem 1 (Hardy with Boundary). Let f denote a smooth function on˝ . Then:

Var�˝f � 4

n2

ˆ

˝

hx;rf i2d�˝ C 2Var�@˝f: (8)

Proof. Apply (7) with �.x/ D x, so that div.�/ D n, and � � n=2. We obtain:

ˆ

˝

f 2dx � 4

n2

ˆ

˝

hx;rf i2dx C 2

n

ˆ

@˝

hx; �if 2dH n�1.x/: (9)

In particular, we see that (8) immediately follows when f vanishes on @˝ . For
general functions, we divide (9) by Vol.˝/ and apply the resulting inequality to
f � a with a WD ´

@˝
fd�@˝ :
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Var�˝f �
ˆ
.f � a/2d�˝ � 4

n2

ˆ

˝

hx;rf i2d�˝ C 2Var�@˝f j@˝:

This is the desired assertion. ut

2.2 Optimal Transport to Euclidean Ball

A remarkable theorem of Y. Brenier [5] asserts that between any two absolutely con-
tinuous probability measures �; � on R

n (say having second moments), there exists
a unique (� a.e.) map T which minimizes the transport-cost

´ jT .x/ � xj2 d�.x/,
among all maps pushing forward � onto �; moreover, this optimal transport map
T is characterized as being the gradient of a convex function '. See also [25] for
refinements and extensions. The regularity properties of T have been studied by
Caffarelli [6–8], who discovered that a necessary condition for T to be smooth is that
� have convex support; in particular, Caffarelli’s results imply that when � D �˝ ,
� D �Bn2 and @˝ is smooth, then so is the Brenier map T0 WD r'0 pushing forward
� onto �, on the entire closed˝ (i.e. all the way up to the boundary). By the change-
of-variables formula, we obviously have:

Jac T0 D det dT0 D
ˇ
ˇBn

2

ˇ
ˇ

j˝j :

Theorem 2 (Faber–Krahn with Boundary). Let f denote a smooth function on
˝ . Then:

Var�˝f � 4 j˝j2=n
n2
ˇ
ˇBn

2

ˇ
ˇ2=n

ˆ

˝

jrf j2 d�˝ C 2 j@˝j
n
ˇ
ˇBn

2

ˇ
ˇ1=n j˝j.n�1/=nVar�@˝ f j@˝:

(10)

Proof. Identifying R
n with its tangent spaces, we set � D r'0 (where '0 was

defined above). Note that since '0 is convex, hence Hess '0 is positive-definite,
we may apply the arithmetic-geometric means inequality:

div.�/ D 	'0 D tr.Hess'0/ � n.det Hess'0/
1=n D n.det dT0/

1=n D n

ˇ
ˇBn2

ˇ
ˇ1=n

j˝j1=n DW ˛:

Applying (7) with � � ˛=2, and using that � D r'0 2 Bn
2 , we obtain:

ˆ

˝

f 2dx � 4 j˝j2=n
n2
ˇ
ˇBn

2

ˇ
ˇ2=n

ˆ

˝

jrf j2 dx C 2 j˝j1=n
n
ˇ
ˇBn

2

ˇ
ˇ1=n

ˆ

@˝

f 2dH n�1:
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In particular, when f vanishes on @˝ , we deduce (2) with a slightly inferior
constant; however, this constant is asymptotically (as n ! 1) best possible, see
Remark 3 below. Dividing by j˝j and applying the resulting inequality to f � a

with a WD ´
@˝
fd�@˝ , the assertion follows. ut

Remark 3. It is known (e.g. [13, p. 139]) that 1=PD
Bn2

is equal to the square of the
first positive zero of the Bessel function of order .n � 2/=2. According to [33,
p. 516], the first zero of the Bessel function of order ˇ is ˇ C c0ˇ

1=3 CO.1/, for a
constant c0 ' 1:855, and so consequently PD

Bn2
D 4

n2
.1C o.1//. By homogeneity, it

follows that PD
˝�

D 4 j˝�j2=n =.n2 ˇˇBn
2

ˇ
ˇ2=n/.1Co.1//, confirming that the constant

in Theorem 2 is asymptotically best possible.

Remark 4. Note that if we start from (6) and avoid employing the Cauchy-Schwartz
inequality used to derive (7), the above proof (using � D r'0 and g � 1) yields the
isoperimetric inequality with sharp constant for smooth bounded domains:

j@˝j � n jBn
2 j1=n j˝j.n�1/=n : (11)

This proof was first noted by McCann [24], extending an analogous proof by
Knothe and subsequently Gromov of the Brunn-Minkowski inequality [28] using
the Knothe map [20]. See [12] for rigorous extensions of such an approach to non-
smooth domains.

2.3 Normal Vector Field

In this subsection, we assume in addition that ˝ is strictly convex. We employ the
vector field:

�.x/ D �.x= kxk/ ;

the exterior unit normal-field to the convex set ˝x WD kxk˝ . Note that this field is
not well defined (and in particular not continuous) at the origin, so strictly speaking
we cannot appeal to (7). However, this is not an issue, since div.�/ is homogeneous
of degree �1, and so the Jacobian term in polar coordinates rn�1 will absorb the
blow-up of the divergence near the origin (recall n � 2). To make this rigorous, we
simply repeat the derivation of (7) by integrating by parts on˝ n Bn

2 , and note that
we may take the limit as  ! 0, since the contribution of the additional boundary
@Bn

2 goes to zero as � and f are bounded.
Now, observe that:

div.�/.x/ D H@˝x .x/ D 1

kxkH@˝.x= kxk/;
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where HS.y/ denotes the mean-curvature (trace of the second fundamental form
IIS ) of a smooth oriented hypersurface S at x. Indeed, by definition r�j�?

D II@˝x ,
and 2r�� D r h�; �i D 0, and so div.�/ D tr.r�/ D H@˝x .

Theorem 5 (Mean-Curvature Weighted Hardy). For any strictly convex ˝ and
smooth function f defined on it:

ˆ

˝

H@˝.x= kxk/
kxk f 2.x/dx � 4

ˆ

˝

kxk
H@˝.x= kxk/ hrf .x/; �.x= kxk/i2 dx

C2
ˆ

@˝

f 2dH n�1:

Proof. Immediate after appealing to (7) with �.x/ D 1
2

H@˝.x=kxk/
kxk . ut

Remark 6. We note for future reference that by (6) with g � 1 we have:

ˆ

˝

H@˝.x= kxk/
kxk d�˝ D j@˝j

j˝j :

Also, integration in polar coordinates immediately verifies:

ˆ

˝

H@˝.x= kxk/
kxk d�˝.x/ D n

n � 1
ˆ

@˝

H@˝d�@˝ ;

ˆ

˝

kxk
H@˝.x= kxk/d�˝.x/ D n

nC 1

ˆ

@˝

d�@˝

H@˝

:

2.4 Unconditional Sets

Finally, we consider one additional vector-field for the Lyapunov method, which
is useful when ˝ is the intersection of an unconditional convex set with the
first orthant Q WD Œ0;1/n under a certain mixed Dirichlet–Neumann boundary
condition. Let int.Q/ denote the interior of Q.

Theorem 7. Let ˝ � Q denote a set having smooth boundary, such that every
outer normal � to @˝ \ int.Q/ has only non-negative coordinates. Let f denote a
smooth function vanishing on @Q. Then:

ˆ

˝

f 2

jxj2 dx � 4

n2

ˆ

˝

jrf j2dx:

Proof. Consider the vector field:

� D �
�
1

x1
; � � � ; 1

xn

�

:
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Since h�; �i � 0 in int.Q/\ @˝ and f j@Q\@˝ D 0, we have:

ˆ

˝

nX

iD1

1

x2i
f 2dx D

ˆ

˝

div.�/f 2dx D �2
ˆ

˝

f hrf; �i dxC
ˆ

@˝

h�; �if 2dH n�1

� �2
ˆ

˝

f hrf; �i dx � 2

v
u
u
t

ˆ

˝

nX

iD1

1

x2i
f 2dx

sˆ

˝

jrf j2dx:

Finally, by the arithmetic-harmonic means inequality, we obtain:

n2
ˆ

˝

f 2

jxj2 dx �
ˆ

˝

nX

iD1

1

x2i
f 2dx � 4

ˆ

˝

jrf j2dx:

ut
We stress that this result is very similar to the following variant of the Hardy

inequality:

ˆ

˝

f 2

jxj2 dx �
� 2

n � 2

�2 ˆ

˝

jrf j2dx;

which holds for any smooth f vanishing on @˝ (see [15]).

3 Reduction of KLS Conjecture to Subclasses of Functions

3.1 Reduction to the Boundary

Let us now see how the Hardy-type inequalities of the previous section may be
used to reduce the KLS conjecture to the behaviour of 1-Lipschitz functions on the
boundary @˝ . We remark that we use here the term “reduction” in a rather loose
sense—we obtain a sufficient condition for the KLS conjecture to hold, but we were
unable to show that this is also a necessary one.

Together with (5), Theorem 1 immediately yields:

Corollary 8. For any smooth convex domain˝ with barycenter at the origin:

PN
˝ � CP 1̋ � C

�
4

n
P Lin
˝ C 2P1

�@˝

�

: (12)

where C > 0 is a universal constant.

Proof. Apply Theorem 1 to an arbitrary 1-Lipschitz function f , and note that´ jxj2 d�˝ D Pn
iD1 Var�˝ .xi / � nP Lin

˝ . ut
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Consequently, a sufficient criterion for verifying the KLS conjecture is to establish
that P1

�@˝
� C 0 for any isotropic convex ˝—a “weak KLS conjecture for cone

measures”. This suggests that the most difficult part of the conjecture concerns the
behavior of 1-Lipschitz functions on the boundary.

It may be more desirable to work with the Lebesgue measure �@˝ instead of the
cone measure �@˝ . Since:

P Lin
˝ � P Lin

˝�

' j˝�j2=n ; jBn
2 j1=n ' 1p

n
; (13)

(see e.g. [27]), Theorem 2 together with (5) immediately yields:

Corollary 9. For any smooth convex domain˝ with barycenter at the origin:

PN
˝ � C1P

1̋ � C2

�
4

n
P Lin
˝ C 2IP1

�@˝

�

; I WD j@˝j
n
ˇ
ˇBn

2

ˇ
ˇ1=n j˝j.n�1/=n : (14)

Note that for an isotropic convex body, the isoperimetric ratio term I satisfies:

1 � I � C 0pn j˝j1=n : (15)

The left-hand side in fact holds for any arbitrary set ˝ by the sharp isoperimetric
inequality (11). The right-hand side follows since when ˝ is convex and isotropic,
it is known that ˝ � 1

C
Bn
2 (e.g. [27]). Consequently (see e.g. [2]):

j@˝j D lim
!0

ˇ
ˇ˝ C Bn

2

ˇ
ˇ � j˝j


� lim

!0

j˝ C C˝j � j˝j


D nC j˝j ;

and so (15) immediately follows. Up to the value of C 0, the right-hand side is also
sharp, as witnessed by the n-dimensional cube. Note that by (13), j˝j1=n ' P Lin

˝�

�
P Lin
˝ D 1 for any isotropic convex body˝ , and so in fact I � C 00pn.

To avoid the isoperimetric ratio term I which may be too large, we can instead
invoke Theorem 5:

Corollary 10. For any strictly convex smooth domain˝:

PN
˝ � C2

�

A2 C A
j@˝j
j˝j P

1
�@˝

�

; A WD
ˆ

@˝

d�@K

H@˝

: (16)

Note that by Jensen’s inequality and Remark 6:

A
j@˝j
j˝j � 1

´
@˝
H@˝d�@K

j@˝j
j˝j D n

n � 1 ;

but perhaps the term A j@˝j
j˝j is nevertheless still more favorable than I .
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For the proof, we require the following variant of the notion of P 1̋:

P
1;1
˝ WD sup

(�ˆ
jf � med�˝f j d�˝

�2
I kjrf jkL1.�˝/

� 1

)

:

It follows from the results of [26] that for any convex˝:

PN
˝ � C1P

1;1
˝ � C2P

1̋ � C2P
N
˝ : (17)

Proof of Corollary 10. By Cauchy-Schwartz:

�ˆ

˝

jf jd�˝
�2

�
ˆ

˝

kxk
H@˝.x= kxk/d�˝.x/

ˆ

˝

H@˝.x= kxk/
kxk f 2.x/d�˝.x/

Assuming that f is 1-Lipschitz and invoking Theorem 5, it follows that:

�ˆ

˝
jf jd�˝

�2
� B

�

4B C 2
j@˝j
j˝j

ˆ

@˝
f 2d�@˝

�

; B WD
ˆ

˝

kxk
H@˝.x= kxk/d�˝.x/:

Applying this to f � a where a WD ´
@˝
fd�@˝ , we obtain:

P1;1
˝ � B

�

4B C 2
j@˝j
j˝j P

1
�@˝

�

:

But B D n
nC1A by Remark 6, and so the assertion follows from (17). ut

3.2 A Concrete Bound

To control the variance of 1-Lipschitz functions on the boundary @˝ , we recall
an argument from our previous work [21], where a generalization of the following
inequality of A. Colesanti [10] was obtained:

ˆ

@˝

Hf 2dH n�1 � n � 1
n

�´
@˝
fdH n�1�2

Vol.˝/
�

ˆ

@˝

˝
II�1
@˝ r@˝f;r@˝f

˛
dH n�1 ;

(18)

for any strictly convex ˝ with smooth boundary and smooth function f on @˝ .
Applying the Cauchy-Schwartz inequality, we obtain for any 1-Lipschitz function
f with

´
@˝
fd�@˝ D 0:

�ˆ

@˝

jf �med�@˝f j d�@˝
�2

�
�ˆ

@˝

jf j d�@˝
�2

�
ˆ

@˝

d�@˝

H@˝

ˆ

@˝

d�@˝

�@˝
;
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where �@˝.x/ denotes the (positive) minimal principle curvature of @˝ at x, so that
II@˝ � �Id . Consequently, the right-hand-side is an upper bound on P1;1

�@˝
. Using

the equivalence (17) in a more general Riemannian setting, we were able to deduce
in [21] that:

.P1
�@˝

� / PN
�@˝

� CP1;1
�@˝

� C

ˆ

@˝

d�@˝

H@˝

ˆ

@˝

d�@˝

�@˝
: (19)

Plugging this estimate into the estimates of the previous subsection, we obtain:

Theorem 11. For n larger than a universal constant and any isotropic strictly
convex body˝ with smooth boundary in R

n:

PN
˝ � C2

j@˝j
p
n j˝j n�1

n

ˆ

@˝

d�@˝

H@˝

ˆ

@˝

d�@˝

�@˝
:

Proof. The easiest option is to invoke Corollary 9, but note that Corollary 8 or 10
would also work after an appropriate application of Cauchy-Schwartz. Coupled
with (19), it follows that:

PN
˝ � C1

 
4

n
P Lin
˝ C j@˝j

p
n j˝j n�1

n

ˆ

@˝

d�@˝

H@˝

ˆ

@˝

d�@˝

�@˝

!

:

But since P Lin
˝ � PN

˝ , the assertion follows for e.g. n � 8C1. ut
Note that this estimate yields the correct result, up to constants, for the Euclidean

ball. A concrete class of isotropic convex bodies for which the first term above j@˝jp
n

is upper bounded by a constant, is the class of quadratically uniform convex bodies
˝ , since in isotropic position ˝ � c

p
nBn

2 and j˝j1=n ' 1 (see e.g. [19]). It
is not hard to show that when in addition ˝ � C1

p
nBn

2—i.e. ˝ is an isotropic
quadratically uniform convex body which is isomorphic to a Euclidean ball—then
PN
˝ � C2. It would be very interesting to see if the additional assumption ˝ �
C1

p
nBn

2 could be removed by employing the estimate given by Theorem 11.

3.3 Reduction to Harmonic Functions

We conclude this section by providing another different reduction of the KLS
conjecture:

Theorem 12 (Reduction to Harmonic Functions). There exists a universal con-
stant C > 1 so that:

PN
˝ � CPH

˝ ; PH
˝ WD sup

h2H
Var�˝h´ jrhj2 d�˝

;
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where H denotes the class of harmonic functions h on ˝ . In fact, for large enough
n, one can use C D 2.

Proof. Fix an arbitrary smooth function f on ˝ , and solve the Poisson equation
	h D 0, hj@˝ D f j@˝ . One has:

Var�˝f � 2.Var�˝ .f � h/C Var�˝h/:

Since f � h vanishes on @˝ , the Faber-Krahn inequalities (2) or (10) imply:

Var�˝ .f � h/ � 4 j˝j2=n
n2
ˇ
ˇBn

2

ˇ
ˇ2=n

ˆ
jrf � rhj2 d�˝:

It follows that:

Var�˝f � max

�
C1

n
j˝j2=n ; 2PH

˝

��ˆ
jrf � rhj2 d�˝ C

ˆ
jrhj2 d�˝

�

:

But since h is harmonic and .f � h/j@˝ D 0 we have
´ hrf � rh;rhid�˝ D 0,

and consequently:

ˆ
�jrf � rhj2 C jrhj2�d�˝ D

ˆ
jrf j2d�˝:

It remains to note that since linear functions are harmonic, PH
˝ � P Lin

˝ � P Lin
˝�

'
j˝�j2=n, concluding the proof. ut
Remark 13. It is not clear to us if it enough to only control the variance of harmonic
functions h, so that the restriction hj@˝ is 1-Lipschitz. The reason is that we do not
know whether h has bounded Lipschitz constant on the entire ˝ , and so we cannot
apply (5). We believe that the latter would be an interesting property of convex
domains which is worth investigating. A small observation in this direction is that
jrhj2 is subharmonic and hence satisfies the maximum principle, but we do not
know how to control the derivative in the normal direction to @˝ .

4 Transferring Poincaré Inequalities from � to K�

Given an absolutely continuous probability measure � on R
n having upper-semi-

continuous density f , the following set was considered by K. Ball [1]:

K� WD
n
x 2 R

n I kxkK� � 1
o
; where

1

kxkK�
D
�

n

ˆ 1

0

rn�1f .rx/dr

�1=n
:
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Integration in polar coordinates immediately verifies that
ˇ
ˇK�

ˇ
ˇ D k�k D 1. A

remarkable observation of Ball is that when f is log-concave (i.e. logf W Rn !
R [ f�1g is concave), then K� is a compact convex set (see [18] for the case that
f is non-even). If in addition the origin is in the interior of the support of �, then it
will also be in the interior ofK�—we will say in that case thatK� is a convex body.

Given a convex bodyK , consider the map T .x/ D x
kxkK where k�kK denotes the

gauge function of K (whenK is origin-symmetric, this function defines a norm). It
is an elementary exercise to show that T�� D �@K if and only ifK D cK� for some
c > 0 (see [29, Proposition 3.1]).

Proposition 14. Let � D f .x/dx denote a probability measure with log-concave
density on R

n (n � 3) and barycenter at the origin, and set T .x/ D x
kxkK� . Assume

that K� � RBn2 . Then:

ˆ

Rn

kdT �.x/k2op d�.x/ � C
f .0/2=n

R2

ˆ

K�

jxj2 dx;

where k�kop denotes the operator norm, and dT �.x/ is the dual operator to the
differential dT .x/ W TxRn ! TT.x/@K�.

For the proof, we first require:

Lemma 15. If T .x/ D x
kxkK and @K is smooth then:

�
�dT �.x/

�
�
op

D jxj jr kxkK j
kxk2K

D 1

kxkK hx= jxj ; �@K.T .x//i D jxj
kxk2K hK.�@K.T .x///

;

where hK.�/ D sup fhx; �i I x 2 Kg denotes the support function of K .

Proof. Since r kxkK is parallel to � D �@K.T .x//, taking the partial derivative in
the direction of x verifies that:

r kxkK D kxkK
hx; �i�:

Consequently dT .x/ D 1
kxk .Id � x˝�

hx;�i /. Now observe that:

kdT .x/�k2op D sup
n
hdT .x/dT .x/�v; vi I v 2 T �

T .x/@K ; jvj � 1
o
:

But dT .x/dT .x/� D 1

kxk2 .Id C u ˝ u/, where u D �� x
hx;�i . Consequently, its top

eigenvalue is:

1

kxk2 .1C juj2/ D 1

kxk2K
jxj2

hx; �i2 :



286 A.V. Kolesnikov and E. Milman

It remains to note that when x 2 @K then hx; �@K.x/i is precisely the support
function of K in the direction of the latter normal. Consequently, hx; �i D
kxkK hK.�/, and the assertion follows. ut
Proof of Proposition 14. It is easy to see that if the density f of � is smooth, then
so is @K�, and so by approximation we may assume that this is indeed the case.
Consequently, if K� � RBn2 , we have by Lemma 15:

ˆ

Rn

�
�dT �.x/

�
�2
op
d�.x/ D

ˆ

Rn

jxj2
kxk4K� h2K�.�@K�.T .x///

d�.x/ � 1

R2

ˆ

Rn

jxj2
kxk4K�

d�.x/:

(20)

Integrating in polar coordinates, we have:

ˆ

Rn

jxj2
kxk4K�

d�.x/ D
ˆ

Sn�1

1

k�k4K�

ˆ 1

0

rn�3f .r�/drd�: (21)

Denoting kp.�/ WD .p
´ 1
0
rp�1f .r�/dr/1=p , we use that for any non-negative

function f on Œ0;1/:

0 < p1 � p2 ) kp1.�/

M
1=p1
�

� kp2.�/

M
1=p2
�

;

where M� D supr2Œ0;1/ f .r�/. See [1, 3, 27] for case that f is even and [18,
Lemmas 2.5 and 2.6] or [30, Lemma 3.2 and (3.12)] for the general case. Applying
this to (21) with p1 D n � 2 and p2 D n, denotingM D maxx2Rn f .x/, and using
polar integration again, it follows that:

ˆ

Rn

jxj2
kxk4K�

d�.x/ � M2=n 1

n � 2
ˆ

Sn�1

1

k�knC2
K�

d� D M2=n nC 2

n � 2

ˆ

K�

jxj2 dx:

It remains to apply a result of M. Fradelizi [14] stating that for a log-concave
measure � D f .x/dx with barycenter at the origin:

M � enf .0/:

Plugging all of these estimates into (20), the assertion is proved. ut
We can now obtain:

Theorem 16. Let � D f .x/dx denote a log-concave probability measure on R
n

having barycenter at the origin. Assume thatK� � RBn2 . Then for large-enough n:

PN
K�

� C

´ jxj2 d�K�.x/
R2

f .0/2=nPN
� :
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In particular, if� satisfies the KLS conjecture then so does �K� , as soon as
´ jxj2d�K�

R2

is bounded above by a constant.

Remark 17. This result was already noticed by Bo’az Klartag and the second-
named author using a more elaborate computation which was never published. The
idea is to control the average Lipschitz constant of the radial map from [29] pushing
forward � onto �K� instead of �@K� .

Proof. We employ Corollary 8 and Proposition 14. When n is large-enough,
C 4
n
P Lin
K�

� 1
2
P Lin
K�

� 1
2
PN
K�

, and hence by Corollary 8:

PN
K�

� C 0P1
�@K�

:

Denoting T .x/ D x
kxkK� , we see by Proposition 14 that for any 1-Lipschitz function

f on @K�:

Var�@K� .f / D Var�.f ı T / � PN
�

ˆ
jr.f ı T /j2 d�

� PN
�

ˆ
ˇ
ˇr@K�f

ˇ
ˇ2 .T .x// kdT �.x/k2op d�.x/

� PN
�

ˆ
kdT �.x/k2op d�.x/ � C

f .0/2=n

R2

ˆ

K�

jxj2 dx PN
� :

This implies the first part of the assertion.
The second part follows since, as shown by Ball [1] (see [18] for the non-even

case):

P Lin
K�

' f .0/2=nP Lin
� : (22)

Consequently:

PN
� � APLin

� ) PN
K�

� C

´ jxj2 d�K�
R2

A P Lin
K�
:

ut
We thus obtain a simple recipe for obtaining good spectral-gap estimates on

certain convex bodies K having in-radius R so that
´ jxj2 d�K.x/=R2 is bounded

above by a constant: if we can find a log-concave measure � having good spectral-
gap so that K� D K , Theorem 16 will imply that K also has good spectral-gap.

Remark 18. An inspection of the proofs of Proposition 14 and Theorem 16 shows
that we may replaces 1

R2
in all of the occurrences above, with the more refined

expression
´
@K�

d�@K�

h2K� .�@K�/
. However, we do not know how to effectively control the

latter quantity.



288 A.V. Kolesnikov and E. Milman

4.1 An Example: Unit-Balls of `np, p 2 Œ1; 2�

We illustrate this for unit-balls Bn
p of `np, p 2 Œ1; 2�. It was first shown by S. Sodin

[32] that these convex bodies satisfy the KLS conjecture. An alternative derivation
was obtain in [26] by using the weaker P1 parameter and the equivalence (5). Both
approaches relied on the Schechtman–Zinn concentration estimates for these bodies
[31].

Using Theorem 16, we avoid passing through the Schechtman–Zinn concen-
tration results. Indeed, let �p denote the one-dimensional probability measure

1
2� .1=pC1/ exp.� jt jp/dt. The n-fold product measure �np WD �˝n

p has density f n
p .x/

where:

f n
p .x/ D 1

2n� .1=p C 1/n
exp.�

nX

iD1
jxi jp/:

By the tensorization property of the Poincaré inequality [23], PN
�np

D PN
�p

, and
since any one-dimensional log-concave measure satisfies the KLS conjecture, then
so does any log-concave product measure. Now, since all level sets of f n

p are
homothetic copies of Bn

p , it is immediate to see that K�np
must be (the necessarily

volume one) homothetic copy QBn
p of Bn

p . In the range p 2 Œ1; 2�, it is known

(e.g. [28]) and easy to check that QBn
p are finite volume-ratio bodies, meaning that

QBn
p � c

p
nBn

2 . On the other hand, by (22):

ˆ
jxj2 � QBnp 'f n

p .0/
2=n

ˆ
jxj2 d�np.x/D 1

22� .1=pC 1/2
n

ˆ 1

�1
jt j2d�p.t/ � Cn;

uniformly in p 2 Œ1; 2�. Consequently, Theorem 16 implies that QBn
p (and hence Bn

p)
satisfy the KLS conjecture, uniformly in n and p 2 Œ1; 2�. Similar versions may
easily be obtained for convex functions more general than jt jp ; we leave this to the
interested reader.

4.2 Another Example: Unit-Balls of `np, p 2 .2 ;1/

To conclude, we use the unit-balls of `np for p 2 .2;1/ to further illustrate the
advantage and disadvantage of the method we propose in this section. Note that
QBn
p are not finite volume-ratio bodies when p 2 .2;1�, and so Theorem 16 does

not directly apply. However, by inspecting its proof and avoiding using the wasteful
bound (20), we can still deduce the KLS conjecture for these bodies when p is
bounded away from 1. It was first shown by R. Latala and J.O. Wojtaszczyk [22]
that in the entire range p 2 Œ2;1�, there exists a globally Lipschitz map pushing
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forward �np onto � QBnp , different from the radial map we have considered in this
section. It is interesting to note that the radial-map is nevertheless Lipschitz on-
average, at least when p < 1.

Indeed, by inspecting the proof of Theorem 16 and employing Lemma 15, we
see that we just need to control:

ˆ

Rn

kdT �.x/k2op d�np.x/ D
ˆ

Rn

jxj2 jr kxk QBnp j2
kxk4QBnp

d�np.x/

D c2p;n

ˆ

Rn

jxj2 jr kxkp j2
kxk4p

d�np.x/;

where QBn
p D cp;nB

n
p . It is well-known and easy to calculate that cp;n ' n1=p . Using

that jxj2 � n1�2=p kxk2p (since p � 2), that:

jr kxkp j2 D
Pn

iD1 jxi j2p�2

kxk2p�2
p

;

and the invariance under permutation of coordinates, we conclude that:

ˆ

Rn

kdT �.x/k2op d�np.x/ ' n2
ˆ jx1j2p�2

kxk2pp
d�np.x/:

Integrating by parts, we have:

ˆ

Rn

exp.� kxkpp/
kxk2pp

jx1j2p�2 dx D
ˆ

Rn

ˆ 1

kxkpp
exp.�t/

�
1

t2
C 2

t3

�

dt jx1j2p�2 dx

D
ˆ 1

0
exp.�t/

�
1

t2
C 2

t3

�ˆ

t 1=pBnp

jx1j2p�2 dx dt

D
ˆ 1

0
exp.�t/

�
1

t2
C 2

t3

�

t
nC2p�2

p dt
ˆ

Bnp

jx1j2p�2 dx;

and so by a similar computation we conclude:

ˆ jx1j2p�2

kxk2pp
d�np.x/ D AB ;

A WD
´ 1
0

exp.�t/ � 1
t2

C 2
t3

�
t
nC2p�2

p dt
´ 1
0

exp.�t/t nC2p�2
p dt

; B WD
ˆ

jx1j2p�2 d�np.x/:
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Now:

B D
ˆ 1

�1
jt j2p�2 d�p.t/ D � .�1=p/

p� .1C 1=p/
� C1

p
;

uniformly in p 2 Œ2;1�, whereas it is elementary to verify that in that range:

A � C2 min

�
p2

n2
;
p

n

�

:

Putting everything together, we see that:

ˆ

Rn

kdT �.x/k2op d�np.x/ � C min.p; n/: (23)

Consequently, the same argument as in the previous subsection shows that QBn
p verify

the KLS conjecture uniformly in n, as long as p is bounded above.
It is natural to wonder whether the only inequality we have used to derive the

above estimate, namely jxj2 � n1�2=p kxk2p, was perhaps too crude. However, this
is not the case, and unfortunately it is the method of working with the map T .x/ D
x= kxkK� which is too crude. Indeed, when p D 1, so that �n1 is the uniform
measure on Œ�1; 1�n andK D K�n

1

D Œ�1=2; 1=2�n, we see by Lemma 15 that:

kdT �.x/kop D jxj jr kxkK j
kxk2K

D jxj
4 kxk21

;

and consequently:

ˆ

Rn

kdT �.x/k2op d�np.x/ ' n;

confirming that our estimate (23) is tight. This example suggests that perhaps it is
better to work with the radial map from [29] pushing forward � onto �K� instead of
our map T which pushes � onto �@K� .
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Modified Paouris Inequality

Rafał Latała

Abstract The Paouris inequality gives the large deviation estimate for Euclidean
norms of log-concave vectors. We present a modified version of it and show how
the new inequality may be applied to derive tail estimates of lr -norms and suprema
of norms of coordinate projections of isotropic log-concave vectors.

1 Introduction and Main Results

A random vector X is called log-concave if it has a logarithmically concave
distribution, i.e. P.X 2 �K C .1 � �/L/ � P.X 2 K/�P.X 2 L/1�� for
all nonempty compact sets K;L and � 2 Œ0; 1�. The result of Borell [4] states
that a random vector with the full dimensional support is log-concave iff it has a
logconcave density, i.e. a density of the form e�h.x/, where h is a convex function
with values in .�1;1�. A typical example of a log-concave vector is a vector
uniformly distributed over a convex body. In recent years the study of log-concave
vectors attracted attention of many researchers, cf. the monograph [5].

The fundamental result of Paouris [8] gives the large deviation estimate for
Euclidean norms of log-concave vectors. It may be stated, c.f. [1], in the form

.EjX jp/1=p � C1.EjX j C �X.p// for any p � 1;

and any log-concave vector X , where here and in the sequel Ci denote universal
constants, jxj is the canonical Euclidean norm on R

n and

�X.p/ WD sup
jt jD1

.Ejht; Xijp/1=p; p � 1:

In particular if X is additionally isotropic, i.e. it is centered and has identity
covariance matrix then

.EjX jp/1=p � C1.
p
nC �X.p// for p � 1: (1)
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Together with Chebyshev’s inequality this implies

P.jX j � 2eC1t
p
n/ � exp.���1

X .t
p
n// for t � 1: (2)

In this note we show the following modification of the Paouris inequality.

Theorem 1. For any isotropic log-concave n-dimensional random vector X and
p � 1,

E

 
nX

iD1
X2
i 1fjXi j�tg

!p

� .C2�X.p//
2p for t � C2 log

�
n

�X.p/2

�

: (3)

Obviously
Pn

iD1 X2
i 1fjXi j�tg � t2NX.t/, where

NX.t/ WD
nX

iD1
1fjXi j�tg; t > 0;

thus (3) generalizes the estimate derived in [2]:

E.t2NX.t//
p � .C�X.p//

2p for t � C log

�
n

�X.p/2

�

:

It is also not hard to see that Theorem 1 implies Paouris’ inequality (1). To see
this let p0 WD inffq � pW �X.q/ � p

ng. Then

.EjX jp/1=p � .EjX j2p0

/1=2p
0 � C2�X.p

0/ � C2.
p
nC �X.p//;

where the second inequality follows by (3) aplied with p D p0 and t D 0.
In fact we may extend estimate (1) replacing the Euclidean norm by the lr -norm,

kxkr WD .
P

i jxi jr /1=r , r � 2.

Theorem 2. For any r � 2 and any isotropic log-concave n-dimensional random
vector X ,

.EkXkpr /1=p � C3.rn1=r C �X.p// for p � 1: (4)

Theorem 2 gives better bounds than presented in [6], since the constant does not
explode for r ! 2C and the parameter p is replaced by the smaller quantity �X.p/.
Estimate (4) and Chebyshev’s inequality imply for t � 1,

P.kXkr � 2eC3trn1=r / � exp.���1
X .trn1=r //:

In general (4) is sharp up to a multiplicative constant, since for a random vector
X with i.i.d. symmetric exponential coordinates with variance 1 we have �X.p/ �
p�X.2/ D p and
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.EkXkpr /1=p � maxfEkXkr ; .EjX1jp/1=p/ � 1

C
maxfrn1=r ; pg:

However there are reasons to believe that the following stronger estimate may hold
for log-concave vectors (c.f. [7])

.EkXkpr /1=p � C

 

EkXkr C sup
ktkr0 �1

.Ejht; Xijp/1=p
!

:

Another consequence of Theorem 3 is the uniform version of the Paouris
inequality. For I � f1; : : : ; ng by PI we denote the coordinate projection from
R
n into R

I .

Theorem 3. For any isotropic log-concave n-dimensional random vector X and
1 � m � n we have

�

E max
jI jDm

jPIX jp
�1=p

� C4

�p
m log

�en

m

�
C �X.p/

�
for p � 1: (5)

Again the example of a vector with the product isotropic exponential distribution
shows that in general estimate (5) is sharp. Theorem 3 and Chebyshev’s inequality
yield for t � 1,

P

�

max
jI jDm

jPIX j � 2eC4t
p
m log

�en

m

��

� exp
�
���1

X

�
t
p
m log

�en

m

���
;

which removes an exponential factor from Theorem 3.4 in [2].
The paper is organised as follows. In Sect. 2 we recall basic facts about log-

concave vectors and prove Theorem 1. In Sect. 3 we show how to use (3) to get
estimates for the joint distribution of order statistics of X and derive Theorems 2
and 3.

Notation. For a r.v. Y and p > 0 we set kY kp WD .EjY jp/1=p. We write jI j for the
cardinality of a set I . By a letter C we denote absolute constants, value of C may
differ at each occurrence. Whenever we want to fix a value of an absolute constant
we use letters C1; C2; : : :.

2 Proof of Theorem 1

The result of Barlow et al. [3] imply that for symmetric log-concave random
variables Y , and p � q > 0, kY kp � � .p C 1/1=p=� .q C 1/1=qkY kq . If Y
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is centered and log-concave and Y 0 is an independent copy of Y then Y � Y 0 is
symmetric and log-concave, hence for p � q � 2,

kY kp � kY �Y 0kp � � .p C 1/1=p

� .q C 1/1=q
kY �Y 0kq � 2

� .p C 1/1=p

� .q C 1/1=q
kY kq � 2

p

q
kY kq:

Thus for isotropic log-concave vectorsX ,

�X.�p/ � 2��X.p/ and ��1
X .�t/ � �

2
��1
X .t/ for p � 2; t; � � 1:

In particular �X.p/ � p for p � 2.
If Y is a log-concave r.v. (not necessarily centered) then for p � 2, kY kp �

jEY j C kY � Y 0kp � .p C 1/kY k2 and Chebyshev’s inequality yields P.jY j �
e.p C 1/kY k2/ � e�p . Thus we obtain a �1-estimate for log-concave r.v’s

P.jY j � t/ � exp

�

2 � t

2ekY k2
�

for t � 0: (6)

We start with a variant of Proposition 7.1 from [2].

Proposition 4. There exists an absolute positive constantC5 such that the following
holds. Let X be an isotropic log-concave n-dimensional random vector, A D fX 2
Kg, whereK is a convex set in R

n satisfying 0 < P.A/ � 1=e. Then for every t � 1,

nX

iD1
EX2

i 1A\fXi�tg � C5P.A/
�
�2X.� log.P.A///C nt2e�t=C5� (7)

and for every t > 0, u � 1,

1X

kD0
4kjfi � nW P.A\ fXi � 2ktg/ � e�u

P.A/gj

� C5u2

t2

�
�2X.� log.P.A///C n1ft�uC5g

�
:

(8)

Proof. Let Y be a random vector defined by

P.Y 2 B/ D P.A\ fX 2 Bg/
P.A/

D P.X 2 B \K/
P.X 2 K/ ;

i.e. Y is distributed as X conditioned on A. Clearly, for every measurable set B one
has P.X 2 B/ � P.A/P.Y 2 B/. It is easy to see that Y is log-concave, but not
necessarily isotropic.
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The Paouris inequality (2) (applied for the isotropic vector PIX ) implies that for
any ; ¤ I � f1; : : : ; ng and t � .2eC1/

2jI j,

P

 
X

i2I
X2
i � t

!

D P.jPIX j � p
t / � exp

�

���1
X

�
1

2eC1

p
t

��

: (9)

Let

I WD fi � nW EY 2i � 2.2eC1/
2g:

Log-concavity of Y (and as a consequence also of PIY ) yields EjPIY j4 �
C.EjPIY j2/2. The Paley-Zygmund inequality implies

P

 
X

i2I
Y 2i � 1

2

X

i2I
EY 2i

!

� 1

4

.E
P

i2I Y 2i /2

E.
P

i2I Y 2i /2
� 1

C6
:

Therefore

P

 
X

i2I
X2
i � 1

2

X

i2I
EY 2i

!

� P.A/P

 
X

i2I
Y 2i � 1

2

X

i2I
EY 2i

!

� 1

C6
P.A/:

Together with (9) this gives

1

C6
P.A/ � exp

 

���1
X

 
1

2eC1

s
1

2

X

i2I
EY 2i

!!

;

hence

X

i2I
EY 2i � C�2X.� logP.A//:

Moreover if i … I , i.e. EY 2i � 2.2eC1/
2 then (6) yields EY 2i 1fjYi j�tg � Ct2e�t=C

for t � 1. Therefore

nX

iD1
EX2

i 1A\fjXi j�tg D P.A/

nX

iD1
EY 2i 1fjYi j�tg

� P.A/

 
X

i2I
EY 2i C nCt2e�t=C

!

� CP.A/
�
�2X.� log.P.A///C nt2e�t=C � :
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To show (8) note first that for every i the random variable Yi is log-concave,
hence for s � 0,

P.A\ fXi � sg/
P.A/

D P.Yi � s/ � exp

�

2 � t

2ekYik2
�

:

Thus, if P.A\fXi � 2ktg/ � e�u
P.A/ and u � 1 then kYik2 � 2kt=.2e.u C2// �

2kt=.6eu/. In particular it cannot happen if i … I , k � 0 and u � t=C5 with C5
large enough.

Therefore

1X

kD0
4kjfi � nW P.A\ fXi � 2ktg/ � e�u

P.A/gj

�
0

@
X

i2I
C1ft�uC5g

X

i…I

1

A
1X

kD0
4k1f.EY 2i /1=2�2k t=.6eu/g

� 2.6eu/2

t2

0

@
X

i2I
C1ft�uC5g

X

i…I

1

AEY 2i

� Cu2

t2

�
�2X .� log.P.A///C n1ft�uC5g

�
:

ut
We will also use the following simple combinatorial lemma (Lemma 11 in [6]).

Lemma 5. Let `0 � `1 � : : : � `s be a fixed sequence of positive integers and

F WD ff W f1; 2; : : : ; l0g ! f0; 1; 2; : : : ; sgW 81�i�s jfr Wf .r/ � igj � lig :

Then

jF j �
sY

iD1

�
eli�1
li

�li
:

Proof of Theorem 1. We have by the Paouris estimate (1)

E

 
nX

iD1
X2
i 1fjXi j�tg

!p

� EjX j2p � .C1.
p
nC �X.2p///

2p;

so the estimate (3) is obvious if �X.p/ � 1
8

p
n, we will thus assume that �X.p/ �

1
8

p
n.
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Observe that for l D 1; 2; : : :,

E

 
nX

iD1
X2
i 1fXi�tg

!l

� E

 
nX

iD1

1X

kD0
4kC1t21fXi�2k tg

!l

D .2t/2l
nX

i1;:::;ilD1

1X

k1;:::;klD0
4k1C:::CklP.Bi1;k1:::;il ;kl /;

where

Bi1;k1:::;il ;kl WD fXi1 � 2k1 t; : : : ; Xil � 2kl tlg:

Define a positive integer l by

p < l � 2p and l D 2m for some positive integerm:

Then �X.p/ � �X.l/ � �X.2p/ � 4�X.p/. Since �X is also isotropic log-concave
and for any nonnegative r.v. Y , .EY p/1=p � .EY l/1=l , it is enough to show that

m.l/ WD
1X

k1;:::;klD0

nX

i1;:::;ilD1
4k1C:::CklP.Bi1;k1:::;il ;kl / �

�
C�X.l/

t

�2l
(10)

provided that t � C2 log. n
�X .l/2

/. Since �X.l/ � 4�X.p/ � 1
2

p
n this in particular

implies that t � C2.
We divide the sum in m.l/ into several parts. Define sets

I0 WD ˚
.i1; k1; ; : : : ; il ; kl /W P.Bi1;k1;:::;il ;kl / > e�l
 ;

and for j D 1; 2; : : :,

Ij WD
n
.i1; k1; ; : : : ; il ; kl /W P.Bi1;k1;:::;il ;kl / 2 .e�2j l ; e�2j�1l �

o
:

Thenm.l/ D P
j�0 mj .l/, where

mj.l/ WD
X

.i1;k1;:::;il ;kl /2Ij
4k1C:::CklP.Bi1;k1:::;il ;kl /:

To estimate m0.l/ define for 1 � s � l ,

PsI0 WD f.i1; k1; : : : ; is; ks/W .i1; k1; : : : ; il ; kl / 2 I0 for some isC1; : : : ; klg:
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We have by (6) (if C2 is large enough)

P.Bi1;k1:::;is ;ks / � P.Bi1;k1/ � exp.2 � 2k1�1t=e/ � e�1:

Thus for s D 1; : : : ; l � 1,

t2
X

.i1;:::;ksC1/2PsC1I0

4k1C:::CksC1P.Bi1;:::;ksC1
/

�
X

.i1;:::;ks /2PsI0
4k1C:::Cks

nX

isC1D1

1X

ksC1D0
4ksC1 t2P.Bi1;:::;ks \ fXisC1

� 2ksC1 tg/

�
X

.i1;:::;ks /2PsI0
4k1C:::Cks

nX

isC1D1
E2X2

isC1
1Bi1;:::;ks\fXisC1

�tg

� 2C5
X

.i1;:::;ks /2PsI0
4k1C:::CksP.Bi1;:::;ks /.�2X.� logP.Bi1;:::;ks //C nt2e�t=C5/;

where the last inequality follows by (7). Note that for .i1; : : : ; ks/ 2 PsI0 we
have P.Bi1;:::;ks / � e�l and, by our assumptions on t (if C2 is sufficiently large)
nt2e�t=C5 � ne�t=.2C5/ � �2X.l/. Therefore

X

.i1;:::;ksC1/2PsC1I0

4k1C:::CksC1P.Bi1;:::;ksC1
/

� 4C5t
�2�2X.l/

X

.i1;:::;ks /2PsI0
4k1C:::CksP.Bi1;:::;ks /:

By induction we get

m0.l/ D
X

.i1;:::;kl /2I0
4k1C:::CklP.Bi1;:::;kl /

� .4C5t
�2�2X.l//l�1

X

.i1;k1/2P1I0
4k1P.Bi1;k1/

� .4C5t
�2�2X.l//l�1t�2

nX

iD1
2EX2

i 1fXi�tg

� .4C5t
�2�2X.l//l�1nCe�t=C �

�
C�X.l/

t

�2l
;

where the last inequality follows from the assumptions on t .
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Now we estimate mj .l/ for j > 0. Fix j > 0 and define a positive integer r1 by

2r1�1 <
t

C5
� 2r1:

For all .i1; k1; : : : ; il ; kl / 2 Ij define a function fi1;k1;:::;il ;kl W f1; : : : ; `g !
f0; 1; 2; : : :g by

fi1;k1;:::;il ;kl .s/ WD
8
<

:

0 if
P.Bi1;k1;:::;is ;ks /

P.Bi1;k1;:::;is�1;ks�1 /
> e�1;

r if e�2r < P.Bi1;k1;:::;is ;ks /

P.Bi1;k1;:::;is�1;ks�1 /
� e�2r�1 ; r � 1:

Note that for every .i1; k1; : : : ; il ; kl / 2 Ij one has

1 D P.B;/ � P.Bi1;k1 / � P.Bi1;k1;i2;k2/ � : : : � P.Bi1;k1:::;il ;kl / > exp.�2j l/:

Denote

Fj WD ˚
fi1;k1;:::;il ;kl W .i1; k1; : : : ; il ; kl / 2 Ij



:

Then for f D fi1;k1;:::;il ;kl 2 Fj and r � 1 one has

exp.�2j l/ < P.Bi1;k1;:::;il ;kl / D
Ỳ

sD1

P.Bi1;k1:::;is ;ks /

P.Bi1;k1;:::;is�1;ks�1 /

� exp.�2r�1jfsW f .s/ � rgj/:

Hence for every r � 1 one has

jfsW f .s/ � rgj � minf2jC1�r l; lg DW lr : (11)

In particular f takes values in f0; 1; : : : ; j C 1 C blog2 lcg. Clearly,
P

r�1 lr D
.j C 2/l and lr�1= lr � 2, so by Lemma 5

jFj j �
jC1Cblog2 lcY

rD1

�
elr�1
lr

�lr
� e2.jC2/l :

Now fix f 2 Fj and define

Ij .f / WD f.i1; k1; : : : ; il ; kl /W fi1;k1;:::;il ;kl D f g

and for s � l ,

Ij;s.f / WD f.i1; k1; : : : ; is; ks/W fi1;k1;:::;il ;kl D f for some isC1; ksC1 : : : ; il ; klg:
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Recall that for s � 1, P.Bi1;k1;:::;is ;ks / � e�1, moreover for s � l ,

�X.� logP.Bi1;k1;:::;is ;ks // � �X.� logP.Bi1;k1;:::;il ;kl // � �X.2
j l/

� 2jC1�X.l/:

Hence estimate (8) applied with u D 2f.sC1/ implies for 1 � s � l � 1,

X

.i1;k1;:::;isC1;ksC1/2Ij;sC1.f /

4k1C:::CksC1P.Bi1;k1;:::;isC1;ksC1
/

� g.f .s C 1//
X

.i1;k1;:::;is ;ks /2Ij;s.f /
4k1C:::CksP.Bi1;k1;:::;is ;ks /;

where

g.r/ WD
8
<

:

C5t
�24jC1�2X.l/ for r D 0;

C5t
�24rCjC1�2X.l/ exp.�2r�1/ for 1 � r < r1;

C5t
�24r .4jC1�2X .l/C n/ exp.�2r�1/ for r � r1:

Suppose that .i1; k1/ 2 I1.f / and f .1/ D r then

exp.�2r/ � P.Xi1 � 2k1t/ � exp.2 � 2k1�1t=e/;

hence 2k1t � e2rC2. W.l.o.g. C5 > 4e, therefore r � r1. Moreover, 4k1 �
16e24r t�2, hence

X

.i1;k1/2Ij;1.f /
4k1P.Bi1;k1 / � n32e2t�24r exp.�2r�1/ � g.r/ D g.f .1//;

since we may assume that C5 � 32e2. Thus the easy induction shows that

mj .f / WD
X

.i1;:::;kl /2Ij .f /
4k1C:::CklP.Bi1;k1;:::;il ;kl / �

lY

sD1
g.f .s// D

1Y

rD0
g.r/nr ;

where nr WD jf �1.r/j.
Observe that

e�2j�1l � P.Bi1;k1;:::;il ;kl / D
lY

sD1

P.Bi1;k1;:::;is ;ks /

P.Bi1;k1;:::;is�1;ks�1 /
� e�l Y

sWf .s/�1
e�2f.s/ ;

therefore
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1X

rD1
nr2

r�1 D 1

2

X

sWf .s/�1
2f .s/ � 1

2
l.2j�1 � 1/:

Moreover 4jC1�2X.l/C n � 2 � 4jC1n and

X

r�1
rnr � .j C 1/l C

X

r�jC2
rlr D .2j C 4/l:

Hence

1Y

rD0
g.r/nr �

�
C54

jC1�2X .l/
t2

�l

4.2jC4/l
�

2n

�2X.l/

�m
exp

�

� l
2
.2j�1 � 1/

�

:

where m D P
r�r1 nr � lr1 � 2jC1�r1l . By the assumption on l we have

.2n=�2X.l// � 2 exp.t=C2/ � exp.2r1�4/ if C2 is large enough with respect to
C5. Hence

mj .l/ � jFj j
�p

eC54
3jC5�2X.l/
t2

�l

exp.�l2j�3/

and we get

m.l/ D
1X

jD0
mj .l/ �

�
C�X.l/

t

�2l
C
X

j�1

�
C5e

2jC543jC5�2X.l/
t2

�l

exp.�l2j�3/

and (10) easily follows. ut

3 Estimates for Joint Distribution of Order Statistics

For a random vector X D .X1; : : : ; Xn/ by X�
1 � X�

2 � : : : � X�
n we

denote the nonincreasing rearrangement of jX1j; : : : ; jXnj, in particular X�
1 D

maxfjX1j; : : : ; jXnjg and X�
n D minfjX1j; : : : ; jXnjg. The following consequence

of Theorem 1 generalizes Theorem 3.3 from [2].

Theorem 6. Let X be an isotropic log-concave vector, 0 D l0 < l1 < l2 < : : : <

lk � n and t1; : : : ; tk � 0 be such that

tr � C7 log

 
C2
7 nPs

jD1 t2j .lj � lj�1/

!

for 1 � r � k:
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Then

P
�
X�
l1

� t1; : : : ; X
�
lk

� tk
� � exp

0

@���1
X

0

@ 1

C7

v
u
u
t

kX

jD1
t2j .lj � lj�1/

1

A

1

A :

Proof. Let t WD minft1; : : : ; tkg, u WD .
Pk

jD1 t2j .lj � lj�1//1=2 and p WD
��1
X .e�1=2u=C2/. It is not hard to see that if C7 is large enough then u � p

eC2,
so p � 2. Assumptions imply (if C7 is large enough) that C2 log.n=�2X.p// D
C2 log.enC22=u2/ � t . Therefore Chebyshev’s inequality and Theorem 1 yield

P

�
X�
l1

� t1; : : : ; X
�
lk

� tk

�
� P

 
nX

iD1
X2
i 1fjXi j�tg � u2

!

� u�2p
E

 
nX

iD1
X2
i 1fjXi j�tg

!p

�
�
C2�X.p/

u

�2p
� e�p:

ut
Corollary 7. Let X be an isotropic log-concave vector and

Yj WD �
X�
2j�1 � C7 log.4n2�j /

�
C ; 1 � j � 1C log2 n:

Then for any 1 � s � 1C log2 n and u1; : : : ; us � 0 with
Ps

jD1 us > 0 we have

P.Y1 � u1; : : : ; Ys � us/ � exp

0

@���1
X

0

@ 1

2C7

v
u
u
t

sX

jD1
2ju2j

1

A

1

A :

Proof. Let

I D fj � 0W uj > 0g D fi1 < : : : < ikg:

By our assumptions I ¤ ;, hence k � 1. Let l0 D 0, lj D 2ij�1, tj WD
C7 log.4n2�ij / C uij for 1 � j � k and u WD .

Pk
jD1.lj � lj�1/t2j /1=2. Then

for 1 � j � k, u2 � C2
7 2

ij�2 therefore tj � C7 log.C 2
7 n=u2/ for all j and we may

apply Theorem 6 and get

P.Y1 � u1; : : : ; Ys � us/ D P.X�
l1

� t1; : : : ; X
�
lk

� tk/ � exp

�

���1
X

�
1

C7
u

��

� exp

0

@���1
X

0

@ 1

2C7

v
u
u
t

sX

jD1
2ju2j

1

A

1

A :

ut
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Lemma 8. For nonnegative r.v.’s Y1; : : : ; Ys and u > 0 we have

P

 
sX

iD1
Yi � u

!

�
X

.k1;:::;ks/2Is
P

�

Y1 � k1u

2s
; : : : ; Ys � ksu

2s

�

;

where

Is WD fk1; : : : ; ks 2 f0; 1; : : : ; sgsW k1 C : : :C ks D sg:

Proof. It is enough to observe that if y1 C : : : C ys � u and we set li WD b2syi =uc
then yi � liu=.2s/ and

Ps
iD1 li � Ps

iD1.2syi =u � 1/ � s. ut
Proof of Theorem 2. Let s WD 1C blog2 nc and Yj , 1 � j � s be as in Corollary 7.
We have

kXkrr D
nX

iD1
jX�

i jr �
sX

jD1
2j�1jX�

2j�1 jr �
sX

jD1
2rCj�1.Y rj C C r

7 logr .4n2�j //

� .C8r/
rnC

sX

jD1
2rCj�1Y rj :

By Lemma 8

P

0

@
sX

jD1
2rCj�1Y rj � ur

1

A �
X

.k1;:::;ks /2Is
P

�

2Y r1 � k1ur

s2r
; : : : ; 2sY rs � ksur

s2r

�

:

Moreover for any .k1; : : : ; ks/ 2 Is ,

sX

jD1
2j�2j=r

�
kj

s

�2=r
�

sX

jD1

�
kj

s

�2=r
�
0

@
sX

jD1

kj

s

1

A

2=r

D 1:

Therefore Corollary 7 yields

P

0

@
sX

jD1
2rCj�1Y rj � ur

1

A � jIsj exp

�

���1
X

�
u

4C7

��

:

However jIsj D �
2s�1
s�1

� � 22s�2 � n2, so we obtain for u � 2C8rn1=r ,

P.kXkr � u/ � n2 exp

�

���1
X

�
u

8C7

��

:
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Since rn1=r � e logn and for �; s � 1, ��1
X .2�s/ � ���1

X .s/ and ��1
X .s/ � s we

get

P.kXkr � Ct/ � exp.���1
X .t// for t � rn1=r :

Integration by parts easily yields (4). ut
Proof of Theorem 3. Let s WD 1Cblog2 mc and Yj , 1 � j � s be as in Corollary 7.
Then

sup
jI jDm

jPIX j2 D
mX

iD1
jX�

i j2 �
sX

jD1
2j�1jX�

2j�1 j2 �
sX

jD1
2j .C 2

7 log2.4n2�j /C Y 2j /

� C9m log2.en=m/C
sX

jD1
2j Y 2j :

Moreover,

P

0

@
sX

jD1
2j Y 2j � u2

1

A �
X

.k1;:::;ks /2Is
P

�

2Y 21 � k1u2

2s
; : : : ; 2sY 2s � ksu2

2s

�

� jIsj exp

�

���1
X

�
u

2
p
2C7

��

;

where the first inequality follows by Lemma 8 and the second one by Corollary 7.
Observe that jIsj D �

2s�1
s�1

� � 22s�2 � m2, thus we showed that for u �p
2C9m log.en=m/

P

�

max
jI jDm

jPIX j � u

�

� m2 exp

�

���1
X

�
u

4C7

��

:

Since for �; s � 1, ��1
X .2�s/ � ���1

X .s/ and ��1
X .s/ � s we easily get for t � 1,

P

�

max
jI jDm

jPIX j � Ct
p
m log.en=m/

�

� exp
����1

X

�
t
p
m log.en=m/

��
:

Theorem 3 follows by integration by parts. ut
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Remarks on Gaussian Noise Stability,
Brascamp-Lieb and Slepian Inequalities

Michel Ledoux

Abstract E. Mossel and J. Neeman recently provided a heat flow monotonicity
proof of Borell’s noise stability theorem. In this note, we develop the argument
to include in a common framework noise stability, Brascamp-Lieb inequalities
(including hypercontractivity), and even a weak form of Slepian inequalities. The
scheme applies furthermore to families of measures with are more log-concave than
the Gaussian measure.

1 Introduction

Borell’s noise stability theorem [12] expresses that if 
 is the standard Gaussian
measure d
.x/ D d
n.x/ D e�jxj2=2 dx

.2�/n=2
on R

n, and ifA;B are Borel measurable
sets in R

n and H;K parallel half-spaces

H D ˚
.x1; : : : ; xn/ 2 R

nI x1 � a


; K D ˚

.x1; : : : ; xn/ 2 R
nI x1 � b




with respectively the same Gaussian measures 
.H/ D 
.A/, 
.K/ D 
.B/, then,
for every t � 0,

ˆ

Rn

1A Qt.1B/d
 �
ˆ

Rn

1H Qt.1K/d
: (1)

Here .Qt/t�0 D .Qn
t /t�0 is the Ornstein-Uhlenbeck semigroup defined, on suitable

functions f W Rn ! R, by

Qtf .x/ D
ˆ

Rn

f
�
e�t x C

p
1 � e�2t y

�
d
.y/; t � 0; x 2 R

n: (2)
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According to this representation, setting � D e�t , if X D Xn and Y D Y n are
independent with distribution 
 D 
n,

ˆ

Rn

1A Qt .1B/d
 D P
�
X 2 A; �X C

p
1 � �2 Y 2 B�

so that the conclusion (1) equivalently reads as

P
�
X 2 A; �X C

p
1 � �2 Y 2 B� � P

�
X 2 H; �X C

p
1 � �2 Y 2 K�: (3)

The result then extends to any � 2 Œ�1;C1�, with however the inequality in (3)
reversed when � 2 Œ�1; 0�. For simplicity in the exposition, we mostly only consider
� 2 Œ0; 1� below (actually � 2 .0; 1/ since the cases � D 0 and � D 1 are
straightforward). The content of (3) is that the (Gaussian) noise stability (of a set A)

P
�
X 2 A; �X C

p
1 � �2 Y 2 A�

is maximal for half-spaces.
Towards the proof of (1), C. Borell [12] developed symmetrization arguments

with respect to the Gaussian measure introduced by A. Ehrhard in [20] (see also
[10,15]). Recently, E. Mossel and J. Neeman [28] proposed an alternative semigroup
proof. The purpose of this note is to somewhat broaden their argument to cover in the
same mould various related inequalities such as hypercontractivity, Brascamp-Lieb
and Slepian inequalities. Heat flow arguments towards Brascamp-Lieb inequalities
[13] have been investigated in the recent years by E. Carlen et al. [16] and J. Bennett
et al. [8] (see also [5, 7, 17]). Section 2 describes the main theorem of [28] as
an equivalent concavity property covering at the same time hypercontractivity and
Borell’s noise stability theorem. In Sect. 3, we consider multidimensional versions
which were recently emphasized in [30], and discuss their applications to various
families of concave functions towards Brascamp-Lieb and (a weak form of) Slepian-
type inequalities. In the next section, we address extensions from the Gaussian
model to families of measures d� D e�V dx with a lower bound on the Hessian
of V following the basic semigroup interpolation argument. Section 5 comments on
some analogous issues on the discrete cube which raise questions on a family of
concave functions in connection with the recent discrete proof by A. De et al. [18]
of the “Majority is Stablest” theorem of [29].

2 Hypercontractivity and Gaussian Noise Stability

The main result of E. Mossel and J. Neeman [28] expresses an integral concavity
property for correlated Gaussian vectors for a specific family of functions on R

2.
Say that a C2 function J on R

2, or some open rectangle R D I1 � I2 � R
2, where

I1 and I2 are open intervals, is �-concave for some � 2 R if the matrix
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�
@11J � @12J

� @12J @22J

�

is (uniformly) semi-negative definite. � D 1 amounts to standard concavity while
� D 0 amounts to concavity along each coordinate.

Theorem 1. Let � 2 .0; 1/ and let J on R D I1 � I2 � R
2 be of class C2. Then,

ˆ

Rn

ˆ

Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y��d
.x/d
.y/

� J

� ˆ

Rn

f d
;

ˆ

Rn

g d


� (4)

for every suitably integrable functions f W Rn ! I1, g W Rn ! I2 if and only if J
is �-concave.

Let us sketch at this stage the heat flow proof of Theorem 1 following [28], the
detailed argument being developed in the more general context of Sect. 4. Consider,
for t (> 0) fixed and (smooth) functions f W Rn ! I1, g W Rn ! I2,

 .s/ D
ˆ

Rn

ˆ

Rn

J
�
Qsf .x/;Qsg

�
�x C

p
1 � �2 y��d
.x/d
.y/; s � 0:

By ergodicity,Qsf ! ´
Rn
fd
 andQsg ! ´

Rn
gd
 as s ! 1 so that it is enough

to show that  is non-decreasing in order that  .0/ �  .1/. Differentiating and
integrating by parts with respect to the infinitesimal generator L D �� x � r of the
Ornstein-Uhlenbeck semigroup .Qs/s�0 yields

 0.s/ D
ˆ

Rn

ˆ

Rn

�
@1J LQsf C @2J LQsg

	
d
 d


D �
ˆ

Rn

ˆ

Rn

�
@11J jrQsf j2 C �@12J rQsf � rQsg

	
d
 d


C
ˆ

Rn

ˆ

Rn

@2J LQsg d
 d
:

By Gaussian rotational invariance, setting .x; y/� D �x Cp
1 � �2 y,

ˆ

Rn

ˆ

Rn

@2J LQsg d
 d


D
ˆ

Rn

ˆ

Rn

@2J
�
Qsf .x/;Qsg

�
.x; y/�

��
LQsg

�
.x; y/�

�
d
.x/d
.y/

D
ˆ

Rn

ˆ

Rn

@2J
�
Qsf

�
.x;�y/�

�
;Qsg.x/

�
LQsg.x/d
.x/d
.y/
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D �
ˆ

Rn

ˆ

Rn

h
�@12J

�
Qsf

�
.x;�y/�

�
;Qsg.x/

�rQsf
�
.x;�y/�

� � rQsg.x/

C @22J
�
Qsf

�
.x;�y/�

�
;Qsg.x/

� ˇ
ˇrQsg.x/

ˇ
ˇ2
i
d
.x/d
.y/

D �
ˆ

Rn

ˆ

Rn

h
�@12J

�
Qsf .x/;Qsg

�
.x; y/�

��rQsf .x/ � rQsg
�
.x; y/�

�

C @22J
�
Qsf .x/;Qsg

�
.x; y/�

�� ˇ
ˇrQsg

�
.x; y/�

�ˇ
ˇ2
	
d
 d
:

Finally

 0.s/ D
ˆ

Rn

ˆ

Rn

h
.�@11J /jrQsf j2 C .�@22J /jrQsgj2

�2 � @12J rQsf � rQsg
i
d
 d


From the hypothesis of �-concavity on J , it follows that  0 � 0 which is the result.
The converse was observed by R. O’Donnell, and communicated to us by

J. Neeman. Indeed, applying (4) to f .x/ D aC"x and g.y/ D bC"y (in dimension
one) and letting " ! 0 shows that J is �-concave.

It may be mentioned that due to the product structure of the Gaussian measure

n, the inequality of Theorem 1 immediately tensorizes so that it is actually enough
to establish it in dimension one.

Let us now illustrate the application of Theorem 1 to two main examples of
�-concave function J , covering hypercontractivity and noise stability at the same
time.

Let first

J H.u; v/ D u˛vˇ; .u; v/ 2 Œ0;1/2:

Since

@11J
H D ˛.˛ � 1/u˛�2vˇ; @22J

H D ˇ.ˇ � 1/u˛vˇ�2; @12J
H D ˛ˇu˛�1vˇ�1;

J H is �-concave on .0;1/2 as soon as ˛; ˇ 2 Œ0; 1� and

�2˛ˇ � .˛ � 1/.ˇ � 1/: (5)

The function J H will be called the hypercontractive function in this context.
Indeed, let 1 < p < q < 1 and � D e�t 2 .0; 1/ be such that

1

�2
D q � 1

p � 1
:

Denote by q0 the conjugate of q, 1
q

C 1
q0

D 1. Then, according to (5), the function

J H with ˛ D 1
q0

and ˇ D 1
p

is �-concave on .0;1/2. By Theorem 1, for strictly
positive functions f; g W Rn ! R,
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ˆ

Rn

ˆ

Rn

f 1=q0

.x/g1=p
�
e�t x C

p
1 � e�2t y

�
d
.x/d
.y/

�
�ˆ

Rn

f d


�1=q0� ˆ

Rn

g d


�1=p
:

In other words, changing f into f q0

and g into gp ,

ˆ

Rn

f Qtg d
 � kf kq0

kgkp:

By duality

kQtgkq � kgkp
which amounts to hypercontractivity of the Ornstein-Uhlenbeck semigroup [23,31]
(cf. e.g. [3]). Clearly, the conclusion of Theorem 1 for J H is actually equivalent to
hypercontractivity. Note that a prior to the proof of hypercontractivity along these
lines may be found in [24].

The second example involves a new function introduced in [28] defined for
.u; v/ 2 Œ0; 1�2 by

J B.u; v/ D J B
� .u; v/ D P

�
X1 � ˆ�1.u/; �X1 C

p
1 � �2 Y 1 � ˆ�1.v/

�

where ˆ.a/ D 
1..�1; a�/, a 2 R, is the distribution of the standard normal on
R and � 2 Œ�1;C1�. For the connection with Borell’s theorem, observe that if H
and K are the (parallel) half-spaces H D fx1 � ag and K D fx1 � bg for some
a; b 2 R, with � D e�t and the integral representation (2) ofQt ,

J B�
.H/; 
.K/
� D P

�
X1 � a; �X1 C

p
1 � �2 Y 1 � b

�

D
ˆ

Rn

1H Qt.1K/d
:
(6)

Apply now Theorem 1 to the function J B. Since J B.u; 0/ D J B.0; v/ D 0 and
J B.1; 1/ D 1, for f and g approaching 1A and 1B respectively,

ˆ

Rn

ˆ

Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y��d
.x/d
.y/ D

ˆ

Rn

1A Qt .1B/d
:

We then recover Borell’s noise stability theorem (1) since by (6),

J B

� ˆ

Rn

f d
;

ˆ

Rn

g d


�

D J B�
.A/; 
.B/
� D J B�
.H/; 
.K/

�

D
ˆ

Rn

1H Qt.1K/d
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for parallel half-spacesH and K such that respectively 
.A/ D 
.H/ and 
.B/ D

.K/. When � 2 Œ�1; 0�, observe that

J B
� .u; v/ D u � J B��.u; 1� v/

so that J B is �-convex in this case, and the conclusion of Theorem 1 for the function
J B
� is thus reversed. As pointed out in [28], (1) on sets may actually be turned to

Theorem 1 (for J B) through epigraphs of functions on R
n�1.

It remains to check the �-concavity of J B. To this task, it is convenient to recall
that Qtf .x/ may be given alternatively by the Mehler kernel

Qtf .x/ D
ˆ

Rn

f .y/qt .x; y/d
.y/ (7)

where, for t > 0, .x; y/ 2 R
n � R

n,

qt .x; y/ D qnt .x; y/

D 1p
1 � e�2t exp

�

� e�2t

2.1� e�2t /
�jxj2 C jyj2 � 2 etx � y	

�

:
(8)

In particular, if � D e�t ,

J B.u; v/ D
ˆ ˆ�1.u/

�1

ˆ ˆ�1.v/

�1
q1t .x; y/d


1.x/d
1.y/:

Observe also that .ˆ�1/0 D 1
'ıˆ�1 where ' D ˆ0 is the density of 
1 on R. Hence,

@1J
B.u; v/ D

ˆ ˆ�1.v/

�1
q1t
�
ˆ�1.u/; y

�
d
1.y/

and

@12J
B.u; v/ D q1t

�
ˆ�1.u/; ˆ�1.v/

�
:

On the other hand, by the integral representations (2) and (7), for h smooth enough,

@x

ˆ

R

h.y/q1t .x; y/d

1.y/D @xQ

1
t h.x/D �Q1

t h
0.x/D �

ˆ

R

h0.y/q1t .x; y/d
1.y/:

With h a smooth approximation of 1.�1;b�,

@x

ˆ b

�1
q1t .x; y/d


1.y/ D �� q1t .x; b/'.b/:
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Therefore,

@11J
B.u; v/ D �� q1t

�
ˆ�1.u/; ˆ�1.v/

� ' ıˆ�1.v/
' ıˆ�1.u/

:

Similarly,

@22J
B.u; v/ D �� q1t

�
ˆ�1.u/; ˆ�1.v/

� ' ıˆ�1.u/
' ıˆ�1.v/

:

Hence, on .0; 1/2,

@11J
B @22J

B � �2.@12J
B/2 D 0

and @11J B � 0, @22J B � 0 so that J B is indeed �-concave.
It would be of interest to find other relevant examples of function J . It is also of

interest to directly compare the conclusion of Theorem 1 for the hypercontractive
function J H and for the Borell noise stability function J B, and namely to show
that noise stability is a stronger statement implying hypercontractivity. One way
towards this end, however along a rather long detour, is to observe, as emphasized
in [26], that Borell’s noise stability theorem may be used to reach the Gaussian
isoperimetric inequality. Now, the latter implies in turn the standard logarithmic
Sobolev inequality for the Gaussian measure, equivalent to hypercontractivity
(cf. [3, 26]).

There is an alternative direct argument towards this relationship, applying
Theorem 1 for J B to "f and ıg and letting "; ı ! 0. To this task, it is necessary
to investigate the asymptotics of J B."u; ıv/ as "; ı ! 0. Similar asymptotics are
investigated in [19].

Set � D e�t 2 .0; 1/ and fix 0 < u; v < 1. Let furthermore 0 < " < 1, ı D "�
2

where � < � < 1
�

, and

Z D
r

2 log
1

"
; U D log

1

u
; V D log

1

v
:

In this notation, after a change of variables,

J B."u; ıv/ D UV

�Z2

ˆ 1

c

ˆ 1

d

Qq1t
�

�Z � Ux

Z
;��Z � Vy

�Z

�
dxdy

where

c D �Z
U

�
Z Cˆ�1."u/

	
and d D � Z

�V

�
�Z Cˆ�1.ıv/

	
;
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and

Qq1t .x; y/ D .2�/�1q1t .x; y/ e�.x2Cy2/=2; .x; y/ 2 R � R:

After some algebra,

J B."u; ıv/ D UV e�Z
2

2�
p
1 � �2�Z2

ˆ 1

c

ˆ 1

d

e�˛Ux�ˇVy�R.x;y/dxdy

where

� D �1 � 2��C �2

2.1� �2/
; ˛ D 1 � ��

1� �2
; ˇ D 1 � ��1�

1 � �2

and

R.x; y/ D � 1

2.1� �2/

�
U 2x2

Z2
C V 2x2

�2Z2
� 2�

UVxy

�Z2

�

:

It is classical that

ˆ�1."/ D �
r

2 log
1

"
C o

�r

2 log
1

"

�

as " ! 0, so that

ˆ�1."u/ D �Z � U

Z
C o.Z/

as Z ! 1. Moreover, o.Z/ can be made uniform over � � u � 1 � � for � > 0

fixed. As a consequence, as " ! 0, c; d ! 1 and

2�
p
1 � �2 �Z2e��Z2J B."u; ıv/ ! UV

ˆ 1

1

ˆ 1

1

e�˛Ux�ˇVydxdy D 1

˛ˇ
e�˛U�ˇV :

By definition of U and V , the right-hand side is 1
˛ˇ

u˛vˇ .
Let now f; g on R

n such that � � f; g � 1� � for some fixed � > 0. Translating
the preceding asymptotics into the inequality

ˆ

Rn

ˆ

Rn

J B
�
"f .x/; ıg

�
�x C

p
1 � �2 y�� d
.x/d
.y/

� J B

�

"

ˆ

Rn

f d
; ı

ˆ

Rn

g d


�
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yields

ˆ

Rn

ˆ

Rn

f ˛.x/gˇ
�
�x C

p
1 � �2 y

�
d
.x/d
.y/ �

�ˆ

Rn

f d


�˛� ˆ

Rn

g d


�ˇ
:

This inequality extends to all positive measurable functions f; g W Rn ! R by
homogeneity. Now, as is immediately checked, for the values of ˛; ˇ defined above,

.˛ � 1/.ˇ � 1/ D �2˛ˇ;

that is condition (5) of hypercontractivity holds. Given therefore any ˛; ˇ 2 .0; 1/

satisfying this relation, one may choose � < � < 1
�

such that ˛ D 1���
1��2 and

ˇ D 1���1�

1��2 as above. The announced claim follows.
It would be worthwhile to examine similarly noise stability for the Lebesgue

measure � with respect to the standard heat kernel expressing that for Borel sets A,
B in R

n with finite volume,

ˆ

Rn

1A Ht .1B/dx �
ˆ

Rn

1C Ht .1D/dx

where

Htf .x/ D
ˆ

Rn

f .y/ e�jx�yj2=4t dy

.4�t/n=2
; t > 0; x 2 R

n;

and C and D are centered balls in R
n such that �.A/ D �.C / and �.B/ D �.D/.

This classical result is going back to the Riesz rearrangement inequality [33]
(see also [14,27,34]), and one might wonder for a heat flow proof. A similar question
may be formulated on the sphere (cf. [1, 10, 15]).

3 Multidimensional Extensions

On the basis of the heat flow proof of Theorem 1, we address in this section multidi-
mensional extensions and develop connections to Brascamp-Lieb and Slepian-type
inequalities. The multidimensional version of noise stability was already put
forward by J. Neeman in [30]. The Brascamp-Lieb applications are essentially
contained with the same approach in [8, 16] (see also [17]). At the same time, the
investigation provides a somewhat different analytical treatment of the conclusions
of Sect. 2.

Let J be a (smooth) real-valued function on some rectangle subset R of Rm. It
will implicitly be assumed below that a composition like J ıf is meant for functions
f with values in R.
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Let f1; : : : ; fm be (smooth) functions on R
n and consider, for f D .f1; : : : ; fm/,

 .s/ D
ˆ

Rn

J ıQsf d
; s � 0;

where .Qs/s�0 is the Ornstein-Uhlenbeck semigroup on R
n (extended to functions

with values in R
m). Arguing as in Sect. 2, by integration by parts with respect to the

Ornstein-Uhlenbeck generator,

 0.s/ D
nX

kD1

ˆ

Rn

@kJ ıQsf LQsfk d


D �
mX

k;`D1

ˆ

Rn

@k`J ıQsf rQsfk � rQsf` d
:

(9)

Definition. Given a smooth function J on an open subset of R
m and

� D .�k`/1�k;`�m where �k` are p�p matrices (p � 1), say that J is �-concave if

mX

k;`D1
@k`J �k` vk � v` � 0 (10)

for all vectors vk , k D 1; : : : ; m, in R
p. If p D 1, the meaning of this condition is

that the point-wise (Hadamard) product Hess.J / ı � of the Hessian of J and of �
is (semi-) negative definite.

When m D 2, p D n and � is the 2n � 2n matrix

�
Idn � Idn
� Idn Idn

�

(11)

where � 2 R, the �-concavity of J (on R
2) amounts to its �-concavity.

In (9), replace now n by qn, q� 1 integer, and assume that for every
k D 1; : : : ; m,

fk D gk ı Ak
where gk W Rp ! R and Ak is a (constant) p � qn matrix such that Ak tAk is the
identity matrix (of Rp). By the integral representation (2) of Qs ,

rQsfk D e�s tAk.rQsgk/ ı Ak
where on the left-hand side the semigroupQs is acting on R

qn and on the right-hand
side, it is acting on R

p. Hence

 0.s/ D � e�2s
mX

k;`D1

ˆ

Rqn
@k`J ıQsf �k`.rQsgk/ ı Ak � .rQsg`/ ı A` d
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where �k` D A`
tAk (which is a p � p matrix).

With this choice of � D .�k`/1�k;`�m, the following proposition summarizes the
conclusion at this level of generality.

Proposition 2. In the preceding setting, assume that J is �-concave. Then´
Rqn J ı f d
 � J.

´
Rqn f d
/, that is

ˆ

Rqn
J.g1 ı A1; : : : ; gm ı Am/d
 � J

� ˆ

Rqn
g1 ı A1d
; : : : ;

ˆ

Rqn
gm ı Amd


�

:

To connect with Sect. 2, take for example p D n and q D m D 2 and let A1 and
A2 be the n � 2n matrices A1 D .IdnI 0n/ and A2 D .� IdnI

p
1 � �2 Idn/ so that

f1.x; y/ D g1.x/ and f2.x; y/ D g2
�
�x C

p
1 � �2 y�; .x; y/ 2 R

n � R
n:

Since � is given by (11), the monotonicity property follows from the �-concavity
of J .

We next systematically investigate illustrations of Proposition 2 for some main
examples of interest. For simplicity, we only consider p D q D 1, the multidimen-
sional cases being often obtained by tensor products with the identity matrix (as in
the preceding example). The �-concavity thus amounts to Hess.J / ı � � 0 in the
following.

(i) The first illustration examines Brascamp-Lieb inequalities under geometric
conditions. Consider unit vectors A1; : : : ; Am which decompose the identity in R

n

in the sense that for 0 � ck � 1, k D 1; : : : ; m,

mX

kD1
ckAk ˝ Ak D Idn: (12)

Then, for

J.u1; : : : ; um/ D uc11 � � � ucmm

on .0;1/m and fk.x/ D gk.Ak � x/, gk W R ! R, k D 1; : : : ; m, the �-concavity
with respect to �k` D Ak � A`, k; ` D 1; : : : ; m, is expressed by

mX

k;`D1
ckc`Ak � A` vkv` �

mX

kD1
ckv2k (13)

for all v1; : : : ; vm 2 R. Now, if x D Pm
kD1 ckAkvk ,

jxj2 D
mX

kD1
ckAkvk � x �

� mX

kD1
ckv2k

�1=2� mX

kD1
ck.Ak � x/2

�1=2
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Since, by the decomposition (12), jxj2 D Pm
kD1 ck.Ak � x/2, it follows that

jxj2 D
ˇ
ˇ
ˇ
ˇ

mX

kD1
ckAkvk

ˇ
ˇ
ˇ
ˇ

2

�
mX

kD1
ckv2k

which is precisely the requested condition (13). We therefore conclude to the
following result.

Corollary 3. Under the decomposition (12), for non-negative functions gk on R,
k D 1; : : : ; m,

ˆ

Rn

mY

kD1
g
ck
k .Ak � x/d
 �

mY

kD1

� ˆ

R

gkd


�ck
:

This inequality is part of the Brascamp-Lieb inequalities under the geometric
Ball condition (12) [4] (cf. e.g. [7, 8]). It is more classically stated with respect to
the Lebesgue measure as

ˆ

Rn

mY

kD1
f
ck
k .Ak � x/dx �

mY

kD1

� ˆ

R

fkdx

�ck

which is immediately obtained after the change fk.x/ D gk.x/e�x2=2 (using thatPm
kD1 ck D n/.
The heat flow proof of Corollary 3 is thus going back to [16] and [8] in which

more general statements are considered and achieved in this way. One of the
motivations of [16] was actually to investigate similar inequalities for coordinates
on the sphere. Let Sn�1 be the standard n-sphere in R

n and denote by � the uniform
(normalized) measure on it. In this framework, one result then reads as follows. If
gk , k D 1; : : : ; n, are, say bounded measurable, functions on R, then

ˆ

Sn�1

J
�
g1.x1/; : : : ; gn.xn/

�
d� � J

� ˆ

Sn�1

g1.x1/d�; : : : ;

ˆ

Sn�1

gn.xn/d�

�

as soon as J on R
n, or some open (convex) set in R

n, is separately concave in any
two variables. The proof proceeds as the one of Proposition 2 along now the heat
flow of the Laplace operator

� D 1

2

nX

k;`D1
.xk@` � x`@k/2

on S
n�1. The monotonicity condition on J then takes the form

nX

k;`D1
@k`J .ık` � xkx`/vkv` � 0
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which is easily seen to be satisfied under concavity of J in any two variables. The
case considered in [16] simply corresponds to

J.u1; : : : ; un/ D .u1 � � � un/
1=2

on R
nC. More general forms under decompositions (12) of the identity have been

considered in [6, 7].
In the further illustrations, consider X D .X1; : : : ; Xm/ a centered Gaussian

vector on R
m with covariance matrix � D A tA such that �kk D 1 for every

k D 1; : : : ; m. The vector X has the distribution of Ax, x 2 R
n, under the standard

normal distribution 
 on R
n. Applying the general Proposition 2 to the unit vectors

(1 � n matrices) Ak , k D 1; : : : ; m, which are the lines of the matrix A, and to
fk.x/ D gk.Ak � x/, x 2 R

n, where gk W R ! R, k D 1; : : : ; m, with respect to

 , yields that whenever Hess.J / ı � � 0, under suitable integrability properties on
the gk’s,

E

�
J
�
g1.X1/; : : : ; gm.Xm/

�� � J
�
E
�
g1.X1/

�
; : : : ;E

�
gm.Xm/

��
: (14)

Note that, as in Sect. 1, the condition Hess.J / ı � � 0 is actually necessary and
sufficient for (14) to hold.

(ii) This illustration deals with a correlation inequality for Gaussian vectors which
covers in particular the classical hypercontractivity property. For a Gaussian vector
X as above, let as in the first illustration,

J.u1; : : : ; um/ D uc11 � � � ucmm

on .0;1/m, with 0 � ck � 1, k D 1; : : : ; m. This function J is the suitable
multidimensional analogue of the hypercontractive function J H. For this choice of
J , the condition Hess.J / ı� � 0 (where � is the covariance matrix of X ) amounts
to

mX

k;`D1
ckc` �k` vkv` �

mX

kD1
ckv2k (15)

for all vk 2 R, k D 1; : : : ; m. Note that this condition expresses equivalently
that � � �c in the sense of symmetric matrices where �c is the diagonal matrix
. 1
ck
/
1�k�m. While the next Corollary 4 is somewhat part of the folklore (implicit for

example in [7]), it has been emphasized recently in [17] together with reverse and
multidimensional versions (in particular, if � � �c , the conclusion is reversed in
(16)).
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Corollary 4. Under (15), for all non-negative functions gk WR!R, k D 1; : : : ; m,

E

� mY

kD1
g
ck
k .Xk/

�

�
mY

kD1
E
�
gk.Xk/

�ck
: (16)

One application concerns the Ornstein-Uhlenbeck process Z D .Zt /t�0 (in
dimension one) with stationary measure 
 D 
1 and associated Markov semigroup
.Qt/t�0 D .Q1

t /t�0. If X is the vector .Zt1 ; : : : ; Ztm/ with 0 � t1 � � � � � tm, the

covariance matrix � has entries �k` D e�jtk�t`j, k; ` D 1; : : : ; m. In particular, for
t1 D 0 and t2 D t > 0, (15) reads

2 e�t c1c2v1v2 � c1.1 � c1/v
2
1 C c2.1 � c2/v22

for all v1; v2 2 R which amounts to (5)

e�2t c1c2 � .c1 � 1/.c2 � 1/

and the conclusion of Corollary 4 leads to hypercontractivity. The condition

mX

k;`D1
ckc` e�jtk�t`jvkv` �

mX

kD1
ckv2k

yields a multidimensional form of hypercontractivity

E

� mY

kD1
g
ck
k .Zsk /

�

�
mY

kD1
E
�
gk.Zsk /

�ck :

In terms of the Mehler kernel (8),

ˆ

R

� � �
ˆ

R

mY

kD1
g
ck
k .xk/ qt2�t1 .x1; x2/ � � �qtm�tm�1 .xm�1; xm/d
.x1/ � � �d
.xm/

�
mY

kD1

� ˆ

R

gkd


�ck
:

(iii) We next turn to the multidimensional versions of Gaussian noise stability
following [30]. As above, let X D .X1; : : : ; Xm/ be a centered Gaussian vector
on R

m with (non-degenerate) covariance matrix � . Define, for u1; : : : ; um in
.0; 1/,

J.u1; : : : ; um/ D P
�
X1 � ˛1.u1/; : : : ; Xm � ˛m.um/

�
(17)
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where ˛1; : : : ; ˛m are smooth functions on .0; 1/. For specific choices of ˛k , this
function will turn as the multidimensional analogue of the noise stability function
J B. Denoting by p the density of the distribution of X with respect to the
Lebesgue measure, elementary (although a bit tedious, see [30]) differential calculus
leads to

@k`J D ˛0
k.uk/˛

0̀ .u`/
ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk` dx

for k 6D ` and

@kkJ D
�

˛00
k .uk/ � ˛k.uk/˛0

k.uk/
2

�kk

� ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk dx

� ˛0
k.uk/

2
X

6̀Dk

�k`

�kk

ˆ ˛1.u1/

�1
� � �

ˆ ˛m.um/

�1
pk` dx

where

pk D p
�
x1; : : : ; ˛k.uk/; : : : ; xm

�
;

pk` D p
�
x1; : : : ; ˛k.uk/; : : : ; ˛`.u`/; : : : ; xm

�
:

Choose now ˛k D ˆ�1, k D 1; : : : ; m, where we recall the distribution function
ˆ of the standard normal, and ' its derivative. Since

˛0
k D 1

' ıˆ�1 and ˛00
k D ˆ�1

.' ıˆ�1/2
;

in order for the condition Hess.J / ı � � 0 to hold it is thus sufficient that �kk D 1

for every k D 1; : : : ; m and

mX

kD1

X

6̀Dk
�k` pk` v2k �

X

k 6D`
pk` �k` vkv` � 0

for all v1; : : : ; vm 2 R. This holds as soon as �k` � 0 for all k; `.
For the application to the following corollary, recall that for the choice of

˛k D ˆ�1, the function J of (17) is equal to 0 if one of the uk’s is (approaches)
0, and is equal to (approach) 1 if all the uk’s are equal to 1. The following corollary,
thus due to J. Neeman [30], is then a consequence of (14) applied to gk D 1Bk ,
k D 1; : : : ; m. The restriction �kk D 1, k D 1; : : : ; m, is lifted after a simple scaling
of the Gaussian vector and the Borel sets.
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Corollary 5. Let X D .X1; : : : ; Xm/ be a centered Gaussian vector in R
m with

(non-degenerate) covariance matrix � such that �k` � 0 for all k; ` D 1; : : : ; m.
Then, for any Borel sets B1; : : : ; Bm in R,

P.X1 2 B1; : : : ; Xm 2 Bm/ � P.X1 � b1; : : : ; Xm � bm/

where P.Xk 2 Bk/ D ˆ.bk=�k/, �k D p
�kk, k D 1; : : : ; m.

When �k` � 0 whenever k 6D `, the inequality in the conclusion of Corollary 5
is reversed. As developed in [30], the result applies similarly to Gaussian vectors
X1; : : : ; Xm with covariance identity matrix. A related work by M. Isaksson and
E. Mossel [25] establishes the conclusion of Corollary 5 under the (stronger)
hypothesis that the off-diagonal elements of the inverse of � are non-positive. Their
approach relies on a rearrangement inequality for kernels on the sphere. Corollary 5
(as well as actually, after some work, the result of [25]—see [30]) covers the
example of the Ornstein-Uhlenbeck process, and thus of C. Borell’s result [12] in
the form of the following corollary.

Corollary 6. Let .Zt /t�0 be the Ornstein-Uhlenbeck process on the line, and let
0 � t1 � � � � � tm. For any Borel sets B1; : : : ; Bm in R,

P.Zt1 2 B1; : : : ; Ztm 2 Bm/ � P.Zt1 � b1; : : : ; Ztm � bm/

where P.Ztk 2 Bk/ D 
.Bk/ D ˆ.bk/, k D 1; : : : ; m.

(iv) This illustration is a variation on the previous multidimensional noise stability
result which actually leads to a weak form of the classical Slepian inequalities. Let
as above X D .X1; : : : ; Xm/ be a centered Gaussian vector on R

m with covariance
matrix � D �X such that �Xkk D 1 for every k D 1; : : : ; m. Consider furthermore
Y D .Y1; : : : ; Ym/ a centered Gaussian vector on R

m with covariance matrix �Y

also such that �Ykk D 1 for every k D 1; : : : ; m, yielding a J function (17)

J.u1; : : : ; um/ D P
�
Y1 � ˛1.u1/; : : : ; Ym � ˛m.um/

�
; u1; : : : ; um 2 .0; 1/:

Choose now again ˛k D ˆ�1. Arguing as in (iii) towards Hess.J / ı �X � 0, the
condition is now that

mX

kD1

X

6̀Dk
�Yk` pk` v2k �

X

k 6D`
pk` �

X
k` vkv` � 0

for all v1; : : : ; vm 2 R (where p is here the density of the law of Y ). This holds as
soon as �Yk` � 0 and

�
�Xk`

�2 � �
�Yk`

�2

for all k 6D `. As a conclusion
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Corollary 7. Let X D .X1; : : : ; Xm/ and Y D .Y1; : : : ; Ym/ be centered Gaussian
vectors on R

m with respective (non-degenerate) covariance matrices �X and �Y .
Assume that �Xkk D �Ykk D 1 and

ˇ
ˇ�Xk`

ˇ
ˇ � �Yk`

for all k; ` D 1; : : : ; m. Then, for any Borel sets B1; : : : ; Bm in R,

P.X1 2 B1; : : : ; Xm 2 Bm/ � P.Y1 � b1; : : : ; Ym � bm/

where P.Xk 2 Bk/ D ˆ.bk/, k D 1; : : : ; m. In particular, for every r1; : : : ; rm in R,

P.X1 � r1; : : : ; Xm � rm/ � P.Y1 � r1; : : : ; Ym � rm/:

This result is of course a weak form, in particular due to the constraint �Yk` � 0

(with however a somewhat stronger conclusion), of the classical Slepian lemma
which indicates that for Gaussian vectors X and Y in R

m, the conclusion of
Corollary 7 holds whenever �Xkk D �Ykk and �Xk` � �Yk` for all k; ` D 1; : : : ; m.
Note that the traditional proof of Slepian’s lemma [21,22,32,36] is an interpolation
between the covariances �X and �Y which is not exactly the same as the one at the
root of Corollary 7.

4 Log-Concave Measures

In this section, we develop the heat flow proof of Theorem 1 of E. Mossel and
J. Neeman in the somewhat extended context of probability measures d� D e�V dx
on R

n such that V is a smooth potential with a uniform lower bound on its Hessian.
The typical application actually concerns potentials V which are more convex
than the quadratic one, corresponding to Gaussian measures. The argument may
be extended to the more general context of Markov diffusion semigroups and the
�-calculus as exposed in [3] although for the simplicity of this note, we stay in the
familiar Euclidean setting.

Consider therefore a probability measure d� D e�V dx on the Borel sets of
R
n, invariant and symmetric measure of the second order differential operator

L D � � rV � r where V is a smooth potential on R
n. The (symmetric) semigroup

.Pt /t�0 with generator L may be represented by (smooth) probability kernels

Pth.x/ D
ˆ

Rn

h.y/ pt .x; dy/: (18)

It will be assumed that V � c jxj2
2

is convex for some c 2 R, in other words the
Hessian of V is bounded from below by c Idn as symmetric matrices. It is by
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now classical (cf. [3]) that this convexity assumption ensures that for all (smooth)
h W Rn ! R,

jrPthj � e�ctPt
�jrhj�: (19)

The Gaussian example of the Ornstein-Uhlenbeck semigroup .Qt/t�0 with invariant
measure 
 is included with c D 1. In this case, due to the representation (2), the
gradient bound (19) actually turns into the identity rQth D e�tQt .rh/.

We start with the analogue of Theorem 1 in this context following therefore the
argument of [28].

Theorem 8. Let J be �-concave, � > 0, on R D I1 � I2 � R
2 where I1 and I2 are

open intervals. Then, for every f W Rn ! I1, g W Rn ! I2 suitably integrable, and
with � D e�ct, t > 0,

ˆ

Rn

ˆ

Rn

J
�
f .x/; g.y/

�
pt .x; dy/d�.x/ � J

� ˆ

Rn

f d�;

ˆ

Rn

g d�

�

:

Proof. It is enough to assume that f and g are taking values in respective compact
sub-intervals of I1 and I2. Set

 .s/ D
ˆ

Rn

ˆ

Rn

J
�
Psf .x/; Psg.y/

�
pt .x; dy/d�.x/; s � 0:

The task is to show that  is non-decreasing. Taking derivative in time s,

 0.s/ D
ˆ

Rn

ˆ

Rn

@1J
�
Psf .x/; Psg.y/

�
LPsf .x/pt .x; dy/d�.x/

C
ˆ

Rn

ˆ

Rn

@2J
�
Psf .x/; Psg.y/

�
LPsg.y/pt .x; dy/d�.x/:

By integration by parts in space with respect to the operator L, expressed (for smooth
functions �; � W Rn ! R) by

ˆ

Rn

�.�L�/d� D
ˆ

Rn

r� � r� d�;

it holds
ˆ

Rn

ˆ

Rn

@1J
�
Psf .x/; Psg.y/

�
LPsf .x/pt .x; dy/d�.x/

D �
ˆ

Rn

ˆ

Rn

@11J
�
Psf .x/; Psg.y/

�ˇ
ˇrPsf .x/

ˇ
ˇ2pt .x; dy/d�.x/

�
ˆ

Rn�Rn

@1J
�
Psf .x/; Psg.y/

�rPsf .x/ � rxpt .x; dy/d�.x/:
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For x 2 R
n fixed, consider h.y/ D @1J.Psf .x/; Psg.y//, y 2 R

n. Since

rPth.z/ D
ˆ

Rn

h.y/rzpt.z; dy/; z 2 R
n;

at z D x,

ˆ

Rn

@1J
�
Psf .x/; Psg.y/

�rPsf .x/ � rxpt .x; dy/ D rPth.x/ � rPsf .x/:

Now, by (19),

ˇ
ˇrPth.x/

ˇ
ˇ � e�ctPt

�jrhj�.x/ D e�ct
ˆ

Rn

ˇ
ˇrh.y/ˇˇpt .x; dy/:

Since

rh.y/ D @12J
�
Psf .x/; Psg.y/

�rPsg.y/;

it follows that
ˆ

Rn

ˆ

Rn

@1J
�
Psf .x/; Psg.y/

�rxpt .x; dy/ � rPsf .x/d�.x/

� e�ct
ˆ

Rn

ˆ

Rn

j@12J j�Psf .x/; Psg.y/
�ˇ
ˇrPsg.y/

ˇ
ˇ
ˇ
ˇrPsf .x/

ˇ
ˇpt.x; dy/d�.x/:

Summarizing, and by the symmetric conclusion in the y variable,  0.s/ is
bounded from below by

ˆ

Rn

ˆ

Rn

h
.�@11J /jrPsf j2 C .�@22J /jrPsgj2 � 2 e�csj@12J jjrPsf jjrPsgj

i

� pt .x; dy/d�.x/:

From the hypothesis on the Hessian of J , it follows that  0 � 0 which is the result.
ut

As in the Gaussian case, the examples of illustration of Theorem 8 cover both
hypercontractivity and noise stability for the choices of J D J H or J D J B. Under
c > 0, the choice of J H yields hypercontractivity of the semigroup associated
to this family of invariant measures, and thus the equivalent logarithmic Sobolev
inequality for � (cf. [3]). On the other hand, the noise stability part actually turns
into a comparison theorem.

Corollary 9. Let .Pt /t�0 be the Markov semigroup with invariant reversible mea-
sure d� D e�V dx where V is a smooth potential on R

n such that Hess.V / � c Idn
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with c > 0. Then, whenever A;B are Borel sets in R
n and H;K are respective

parallel half-spaces such that �.A/ D 
.H/, �.B/ D 
.K/, then

ˆ

Rn

1APt .1B/d� �
ˆ

Rn

1H Qct.1K/d
:

Again, as in the Gaussian setting (cf. [26]), the comparison property of
Corollary 9 may be shown to imply the isoperimetric comparison theorem of [2]
(see [3]) comparing the isoperimetric profile of measures d� D e�V dx to the
Gaussian one.

Next, we turn to the multidimensional version of the preceding result, with
therefore in the following c > 0. Let X D .Xt/t�0 be the Markov process with
generator L D � � rV � r and initial invariant distribution d� D e�V dx. We
are interested in the distribution of .Xt1; : : : ; Xtm/ where 0 � t1 � � � � � tm.
Consider the covariance matrix � the Ornstein-Uhlenbeck process at speed ct, that
is �k` D e�cjtk�t`j, k; ` D 1; : : : ; m. In the Gaussian case, this extension (for thus
the Ornstein-Uhlenbeck process) was achieved by the study of general Gaussian
vectors. In the present case, we deal with the kernels as given by (18), for simplicity
one-dimensional.

Theorem 10. In the preceding notation, assume that the Hadamard product of
.j@k`J j/1�k;`�m and � is (semi-) negative-definite. Then, for every fi W R ! Ii ,
i D 1; : : : ; m, suitably integrable,

ˆ

R

� � �
ˆ

R

J
�
f1.x1/; : : : ; fm.xm/

�
ptm�tm�1 .xm�1; dxm/ � � �pt2�t1 .x1; dx2/d�.x1/

� J

� ˆ

R

f1 d�; : : : ;

ˆ

R

fm d�

�

:

We outline the argument when m D 3. Consider

 .s/ D
ˆ

R

ˆ

R

ˆ

R

J
�
Psf .x/; Psg.y/; Psh.z/

�
pt�u.y; dz/pt .x; dy/d�.x/; s � 0;

for t > u > 0 and three functions f; g; h. Differentiating  and integrating by parts
in space leads to consider expressions such as

ˆ

R

ˆ

R

ˆ

R

@1J pt�u.y; dz/@xpu.x; dy/@xPsf d�.x/:

Arguing as in the proof of Theorem 8, this expression is equal to

ˆ

R

@xPsk @xPsf d�.x/
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where k D k.y/ D ´
R
@1J pt�u.y; dz/. Now by (19)

j@xPskj � e�csPs
�j@ykj�:

Since

@yk D
ˆ

R

@12J pt�u.y; dz/C
ˆ

R

@1J @ypt�u.y; dz/;

similarly

j@ykj �
ˆ

R

j@12J jpt�u.y; dz/C e�c.t�u/
ˆ

R

j@13J j@ypt�u.y; dz/:

The proof is then completed in the same way.
With the J function (17) associated to a finite-dimensional distribution of the

Ornstein-Uhlenbeck process, the following consequence holds true.

Corollary 11. Let c > 0 and 0 � t1 � � � � � tm. For any Borel sets B1; : : : ; Bm
in R,

P.Xt1 2 B1; : : : ; Xtm 2 Bm/ � P.Zct1 � b1; : : : ; Zctm � bm/

where P.Xtk 2 Bk/ D �.Bk/ D ˆ.bk/, k D 1; : : : ; m and where .Zct/t�0 is the
Ornstein-Uhlenbeck process with speed ct.

As suggested by J. Neeman following his arguments developed in [30], Corol-
lary 11 may be used towards a comparison property between hitting times. For a
Borel set B in R, let eXB D infft � 0 IXt … Bg be the exit time of the Markov
process X D .Xt/t�0 from the set B .

Corollary 12. Under the preceding notation, for any s � 0,

P
�
eXB � s

� � P
�
eZH � s

�

where H is a half-line in R such that 
.H/ D �.B/ and Z D .Zct/t�0 the
Ornstein-Uhlenbeck process at speed ct.

5 The Discrete Cube

To conclude this note, we briefly address in this last section the corresponding noise
stability issue on the discrete cube, and collect a few remarks in connection with the
recent development [18] on the “Majority is Stablest” theorem.
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By Theorem 1, a function J is �-concave in the sense that

�
@11J � @12J

� @12J @22J

�

� 0

if and only if for all suitable functions f and g on R
n,

ˆ

Rn

ˆ

Rn

J
�
f .x/; g

�
�x C

p
1 � �2 y

��
d
.x/d
.y/

� J

� ˆ

Rn

f d
;

ˆ

Rn

g d


�

:

(20)

The analogue of the Gaussian couple .X; �X C p
1 � �2 Y / with correlation

� Idn, � 2 Œ�1; 1�, on the discrete cube †n D f�1;C1gn, with n D 1 to start with,
leads to consider a couple with distribution

.1C �xy/d�.x/d�.y/

on †2, where � is the uniform probability measure on † D f�1;C1g. The latter
inequality (20) on the two-point space † D f�1;C1g therefore amounts to

ˆ

†

ˆ

†

J
�
f .x/; g.y/

�
K�.x; y/d�.x/d�.y/ � J

� ˆ

†

f d�;

ˆ

†

g d�

�

(21)

for every functions f; g W † ! R, where K�.x; y/ D 1C �xy. This inequality (21)
is stable under product. On †n D f�1;C1gn equipped with the uniform product
measure �n, let for � 2 R and x D .x1; : : : ; xn/ 2 †n, y D .y1; : : : ; yn/ 2 †n,

K�.x; y/ D
nY

iD1
.1C � xiyi /:

If (21) holds, for every f , g on †n,

ˆ

†n

ˆ

†n
J
�
f .x/; g.y/

�
K�.x; y/d�

n.x/d�n.y/ � J

� ˆ

†n
fd�n;

ˆ

†n
gd�n

�

:

One may of course wonder for the equivalence of (21) with the �-concavity of
J . Actually, (21) expresses equivalently a 4-point inequality similar to the standard
characterization of concavity. Say namely that a function J on some open convex
set O of R2 is strongly �-concave for some � 2 R if for all .u; v/ 2 O, .u0; v0/ 2 O,

1C�
4
J.u; v/C 1��

4
J.u0; v/C 1��

4
J.u; v0/C 1C�

4
J.u0; v0/

� J
�

uCu0

2
; vCv0

2

�
:

(22)
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Lemma 13. Strong �-concavity implies �-concavity (for smooth functions).

Proof. By a Taylor expansion, at any .a; b/ 2 O, .h; k/ 2 R
2, such that

.a˙ h; b ˙ k/ 2 O,

.1C �/
�
J.a C h; b C k/C J.a � h; b � k/� 2J.a; b/

	

C .1 � �/�J.a C h; b � k/C J.a � h; b C k/ � 2J.a; b/	

D 2h2@11J.a; b/C 4�hk@12J.a; b/C 2k2@22J.a; b/C o.h2 C k2/:

With u D a C h, v D b C k, u0 D a � h, v0 D b � k, (22) implies the �-concavity
of J as h; k ! 0. ut

It is a main result, namely the Bonami-Beckner hypercontractivity theorem
[9,11], that the hypercontractive function J H is strongly �-concave under (5) (along
the equivalence between hypercontractivity and Theorem 1 described in Sect. 2 for
the Ornstein-Uhlenbeck semigroup). However, we could not establish directly the
strong �-concavity of J H in this case. Such a proof could give a better understanding
of the strong �-concavity property.

On the other hand, it is not true in general that �-concavity implies back strong
�-concavity and one example, taken from [18], is simply Borell’s noise stability
function J B (with parameter � 2 .0; 1/). Indeed, for u D v D 1 and u0 D v0 D 0 (in
the Boolean analysis terminology, this choice corresponds to the dictator functions
f .x/ D 1

2
C x

2
, g.y/ D 1

2
C y

2
), (22) would imply that

1C � � 4 J B
�1

2
;
1

2

�
(23)

since J B.1; 1/ D 1 and J B.1; 0/ D J B.0; 1/ D J B.0; 0/ D 0. But

J B
�1

2
;
1

2

�
D

ˆ 0

�1

ˆ 0

�1
q1t .x; y/d


1.x/d
1.y/ D
ˆ 1

0

ˆ.˛x/d
1.x/

where ˛ D �p
1��2 and � D e�t . Taking the derivative in ˛ easily shows that

J B
�1

2
;
1

2

�
D 1

4
C 1

2�
arctan.˛/ D 1

2
� 1

2�
arccos.�/

so that (23) indeed fails as � ! 0. This value of J B
�
1
2
; 1
2

�
appears in Sheppard’s

formula put forward in [35] as early as 1899 as the asymptotic noise stability of the
Majority function (see [18, 29]).

It would be of interest to understand which additional property to �-concavity
ensures strong �-concavity. A. De et al. [18] recently observed by a suitable Taylor
expansion that there exists, for any � 2 .0; 1/, C.�/ > 0 such that

ˇ
ˇ
ˇ
ˇ
@3J B

� .u; v/

@iu @j v

ˇ
ˇ
ˇ
ˇ � C.�/

�
uv.1 � u/.1 � v/

	�C.�/
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for all i; j � 0 with i C j D 3. This property then implies the approximate validity
of (22) in the sense that for every u; u0; v; v0 2 Œ"; 1 � "� for some " > 0,

1C�
4
J B
� .u; v/C 1��

4
J B
� .u

0; v/C 1��
4
J B
� .u; v

0/C 1C�
4
J B
� .u

0; v0/

� J B
�

�
uCu0

2
; vCv0

2

�
C C 0.�/ "�C 0.�/

�ju � u0j3 C jv � v0j3�:
(24)

As a main achievement, the authors of [18] develop from this conclusion and
tensorization a fully discrete proof of the “Majority is Stablest” theorem of [29]
(with Sheppard’s constant J B

�
1
2
; 1
2

�
as stability value) by suitably controlling the

error term via the influences of the Boolean functions under investigation.
One further observation of [18] is that the preceding two-point inequality (24) is

still good enough to reach, after tensorization and the central limit theorem, Borell’s
noise stability theorem for the Ornstein-Uhlenbeck semigroup.
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Quantitative Version of a Silverstein’s Result

Alexander E. Litvak and Susanna Spektor

Abstract We prove a quantitative version of a Silverstein’s Theorem on the 4-th
moment condition for convergence in probability of the norm of a random matrix.
More precisely, we show that for a random matrix with i.i.d. entries, satisfying
certain natural conditions, its norm cannot be small.

Let w be a real random variable with Ew D 0 and Ew2 D 1, and let wij , i; j � 1

be its i.i.d. copies. For integers n and p D p.n/ consider the p � n matrix Wn D
fwij gi�p; j�n, and consider its sample covariance matrix �n WD 1

n
WnW

T
n . We also

denote by Xj D .wj1; : : : ;wjn/, j � p, the rows of Wn.
The questions on behavior of eigenvalues are of great importance in random

matrix theory. We refer to [4, 6, 15] for the relevant results, history and references.
In this note we study lower bounds on maxi�p jXi j, where j � j denotes the

Euclidean norm of a vector, and on the operator (spectral) norms of matrices Wn

and �n. Note, as �n is symmetric, its largest singular value �max is equal to the norm
and that in general we have

�max.�n/ D k�nk D 1

n
kWnk2 � 1

n
max
i�p jXi j2: (1)

Assume that p.n/=n ! ˇ > 0 as n ! 1. In [20] it was proved that Ew4 < 1
then k�nk ! .1Cpˇ/2 a.s., while in [7] it was shown that lim supn!1 k�nk D 1
a.s. if Ew4 D 1.

In [17] Silverstein studied the weak behavior of k�nk. In particular, he proved
that assuming p.n/=n ! ˇ > 0 as n ! 1, k�nk converges to a non-random
quantity (which must be .1 C p

ˇ/2) in probability if and only if n4P.jwj � n/ D
o.1/.

The purpose of this note is to provide the quantitative counterpart of Silverstein’s
result. More precisely, we want to show an estimate of the type P

�k�nk � K
� �
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ı D ı.K/ for an arbitrary large K , provided that w has heavy tails (in particular,
provided that w does not have 4-th moment). Our proof essentially follows ideas of
[17]. It gives a lower bound on maxi�p jXi j as well.

Theorem 1. Let ˛ � 2, c0 > 0. Let w be a random variable satisfying Ew D 0,
Ew2 D 1 and

8t � 1 P.jwj � t/ � c0

t˛
: (2)

Let Wn D fwij gi�p; j�n be a p � n matrix whose entries are i.i.d. copies of w and
let Xi; i � p, be the rows of Wn. Then, for every K � 1,

P

�

max
i�p jXi j � p

Kn

�

� min

�
c0p

4n.˛�2/=2K˛=2
;
1

2



: (3)

In particular, �n D 1
n
WnW

T
n satisfies for every K � 1,

P .k�nk � K/ � min

�
c0p

4n.˛�2/=2K˛=2
;
1

2



:

Remark 2. TakingK D .c0pn=2/
2=˛=n we observe

P
�kWnk � .c0pn=2/

1=˛
� � P

�

max
i�p jXi j � .c0pn=2/

1=˛

�

� 1

2
:

This estimate seems to be sharp in view of the following result (see Corollary 2 in
[5]). Let 0 < ˛ < 4 and let w be defined by

P.jwj > t/ D minf1; t�˛g for t > 0:

Let Wn and Xi ’s be as in Theorem 1. Assume that p=n ! ˇ > 0 as n ! 1. Then

lim
n!1P

�kWnk � .pn/1=˛ t
� D exp.�t�˛/:

Remark 3. If p is proportional to n, say p D ˇn, the theorem gives

P .k�nk � K/ � P

�

max
i�p jXi j � p

Kn

�

� min

�
c0 ˇ

4n.˛�4/=2K˛=2
;
1

2



;

in particular, taking K D .c0ˇ=2/
2=˛ n4=˛�1, we observe

P
�kWnk � .c0ˇ=2/

1=˛ n2=˛
� � P

�

max
i�p jXi j � .c0ˇ=2/

1=˛ n2=˛
�

� 1

2
:
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Remark 4. Note that by Chebychev’s inequality one has P.jwj � t/ � t�2. Note
also that we use condition (2) in the proof only once, with t D p

Kn.

Remark 5. If p � .2=c0/K
˛=2n.˛�2/=2; then, by condition (2), we have

n

2
P.w2 � Kn/ � nc0

2.Kn/˛=2
D c0

2K˛=2n.˛�2/=2 � 1

p
:

Therefore in this case the proof below gives

P.k�nk � K/ � P

�

max
i�p jXi j � p

Kn

�

� 1

2
:

In particular, if ˛ D 4 and p � .2K2=c0/n then k�nk � K with probability at least
1=2.

Before we prove the theorem we would like to mention that last decade many
works appeared on non-limit behavior of the norms of random matrices with random
entries. In most of them maxi�p jXi j appears naturally (or

p
n, when Xi is with

high probability bounded by
p
n). For earlier works on Gaussian matrices we refer

to [10, 11, 19] and references therein. For the general case of centered i.i.d. wi;j (as
in our setting) Seginer [16] proved that

EkWnk � C

�

Emax
i�p jXi j C Emax

j�n jYj j
�

;

where Yj , j � n, are the columns of Wn. Later Latała [12] was able to remove the
condition that wi;j are identically distributed (his formula involves 4-th moments).
Moreover, Mendelson and Paouris [13] have recently proved that for centered i.i.d.
wi;j of variance one satisfying Ejw1;1jq � L for some q > 4 and L > 0 with high
probability one has

EkWnk � maxfpp;png C C.q;L/minfpp;png:

In [1, 3, 13, 14, 18] matrices with independent columns (which can have dependent
coordinates) were investigated. In particular, in [1] (see Theorem 3.13 there) it was
shown that if columns of p � n matrix A satisfy

sup
q�1

sup
i�p

sup
y2Sn�1

1
q
.EjhXi; yijq/1=q �  

then with probability at least 1 � exp .�cpp/ one has

kAk � 6max
i�p jXi j C C 

p
p (4)
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(using Theorem 5.1 in [2] the factor 6 can be substituted by .1 C "/ in which case
constants C and c will be substituted with C ln.2="/ and c ln.2="/ correspond-
ingly). Moreover, very recently (4) was extended to the case of matrices whose
(independent) columns satisfy

sup
i�p

sup
y2Sn�1

.EjhXi; yijq/1=q �  

for some q > 4 with the constant C depending on q ([8, 9]).

Proof of the Theorem. By (1) the “In particular” part of the Theorem follows
immediately from (3). Thus, it is enough to prove (3).

Since X1; : : : ; Xp are i.i.d. random vectors and since jX1j2 is distributed as
nX

jD1
w21;j , we observe for everyK � 1,

P

�

max
i�p jXi j � p

Kn

�

D 1 � P

�

max
i�p jXi j <

p
Kn

�

D 1 � P

�n
8i W jXi j <

p
Kn

o�

(5)

D 1 �
�

P.jX1j <
p
Kn/

�p
D 1 �

�

P

� nX

jD1
w21;j < Kn

��p
:

For j � n consider the events Aj WD fw21;j � nKg. Clearly,

A WD
8
<

:

nX

jD1
w21;j � nK

9
=

;
�

n[

jD1
Aj :

By the inclusion-exclusion principle, we have

P.A/ � P

� n[

jD1
Aj



�
nX

jD1
P.Aj /�

X

j¤k
P
�
Aj \Ak

�

D
nX

jD1
P
�
w2 � nK

��
X

j¤k

�
P
�
w2 � nK

��2

D nP
�
w2 � nK

� � n2 � n

2

�
P
�
w2 � nK

��2

D n

2
P.w2 � nK/.2� .n � 1/P.w2 � nK//:
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By Chebychev’s inequality we have P.w2 � nK/ � 1

nK
, hence,

2 � .n� 1/P.w2 � nK/ � 1:

Thus, by (5),

P

�

max
i�p

jXi j � p
Kn

�

� 1�
0

@1� P

0

@ 1

n

nX

jD1

w21;j � K

1

A

1

A

p

� 1�
�
1� n

2
P
�
w2 � nK

��p
:

If
n

2
P.w2 � Kn/ � 1

p
, then

P

�

max
i�p jXi j � p

Kn

�

� 1 �
�

1 � 1

p

�p
� 1 � 1

e
� 1

2
:

Finally assume that

n

2
P.w2 � Kn/ � 1

p
: (6)

Using that .1 � x/p � .1C px/�1 on Œ0; 1�, we get

P

�

max
i�p jXi j � p

Kn

�

� 1 � 1

.np=2/P.w2 � Kn/C 1
:

Applying condition (2) with t D p
Kn and using (6) again, we observe

1 � np

2
P.w2 � Kn/ � np

2

c0

.Kn/˛=2
:

Thus,

P

�

max
i�p jXi j � p

Kn

�

� c0p

4n.˛�2/=2K˛=2
;

which completes the proof. ut
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The (B) Conjecture for Uniform Measures
in the Plane

Amir Livne Bar-on

Abstract We prove that for any two centrally-symmetric convex shapes K;L �
R
2, the function t 7! jetK \ Lj is log-concave. This extends a result of Cordero-

Erausquin, Fradelizi and Maurey in the two dimensional case. Possible relaxations
of the condition of symmetry are discussed.

1 Introduction

It was conjectured by Banaszcyk (see Latała [1]) that for any convex set K � R
n

that is centrally-symmetric (i.e.,K D �K) and for a centered Gaussian measure 
 ,


.s1��t�K/ � 
.sK/1��
.tK/� (1)

for any � 2 Œ0; 1� and s; t > 0.
This conjecture was proven in [2], in the equivalent form that the function

t 7! 
.etK/ is log-concave. The same paper raises the question whether (1) remains
valid when 
 is replaced by other log-concave measures. The proof of (1) for
unconditional sets and log-concave measures was given in [2] as well:

Theorem 1 ([2], Proposition 9). Let K � R
d be a convex set and let � be a

log-concave measure on R
d , and assume that both are invariant under coordinate

reflections. Then t 7! �.etK/ is a log-concave function.

This paper explores the situation in R
2. To distinguish this special case, we call

a convex set K � R
2, which is compact and has a non-empty interior, a shape. The

main result is

This paper is a part of an M.Sc. thesis written under the supervision of Bo’az Klartag.
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Theorem 2. Let K;L � R
2 be centrally-symmetric convex shapes. Then

t 7! jetK \ Lj

is a log-concave function.

Here, j � j is the Lebesgue measure, so Theorem 2 is an analog of (1) for uniform
measures—with density d�.x/ D 1L.x/dx. Note that a uniform measure on a set is
log-concave if and only if the set is convex.

This theorem also follows from the logarithmic Brunn-Minkowski theory, as
shown in [5].

The condition of central symmetry in Theorem 2 can be replaced by dihedral
symmetry. For an integer n � 2, let Dn be the group of symmetries of R2 that is
generated by two reflections, one across the axis Spanf.1; 0/g and the other across
the axis Spanf.cos �

n
; sin �

n
/g. The dihedral group Dn contains 2n transformations.

A Dn-symmetric shape A � R
2 is one invariant under the action of Dn.

Theorem 3. Let n � 2 be an integer, and let K;L � R
2 be Dn-symmetric convex

shapes. Then t 7! jetK \Lj is a log-concave function.

Examples and Open Questions. For what sets and measures is (1) valid?
The (B)-conjecture or (1) is not necessarily true for measures and sets with just

one axis of symmetry in R
2. An example with a log-concave uniform measure is

L D conv f.�5;�2/; .0; 3/; .5;�2/g ;
K D Œ�6; 6� � Œ�3; 1�:

The function t 7! jetK \Lj is not log-concave in a neighbourhood of t D 0.
Another negative result is for quasi-concave measures. These are measures with

density d�.x/ D '.x/dx satisfying '..1 � �/x C �y/ � maxf'.x/; '.y/g for all
0 � � � 1. If

�.A/ D jA\Qj C jAj; Q D Œ�1; 1� � Œ�1; 1�;

then the corresponding function t 7! �.etQ/ is not log-concave in a neighbourhood
of t D 1.

The (B)-conjecture for general centrally-symmetric log-concave measures is not
settled yet, even in two dimensions. It is also of interest to generalize the method of
this paper to higher dimensions.

Notation. For a convex shapeK � R
2, its boundary is denoted by @K . The support

function is denoted hK.x/ D supy2Khx; yi. The normal map �K W @K ! S1 is
defined for all smooth points on the boundary, and �K.p/ is the unique direction that
satisfies h�K.p/; xi D hK.x/. We denote the unit square byQ D Œ�1; 1��Œ�1; 1� D
B21. The Hausdorff distance between sets A;B � R

n is defined as dH .A;B/ D
maxfsupa2A d.a; B/; supb2B d.b; A/g. The radial function �K W R ! R of a convex
shape K � R

2 is �K.�/ D maxfr 2 R W .r cos �; r sin �/ 2 Kg, with period 2� .
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2 Main Result

This section proves Theorem 2:

Theorem. LetK;L � R
2 be centrally-symmetric convex shapes. Then the function

fK;L.t/ D jetK \Lj is log-concave.

Obviously, it suffices to show log-concavity around t D 0.
If we consider the space of centrally-symmetric convex shapes in the plane,

equipped with the Hausdorff metric dH , then the operations K;L 7! K \ L and
K 7! jKj are continuous. This means that the correspondence K;L 7! fK;L is
continuous as well. Since the condition of log-concavity in the vicinity of a point
is a closed condition in the space C.R/ of bounded continuous functions, the class
of pairs of centrally-symmetric shapesK;L � R

2 for which fK;L.t/ is log-concave
near t D 0 is closed with respect to Hausdorff distance. Thus in order to prove
Theorem 2 it suffices to prove that fK;L.t/ is a log-concave function near t D 0 for
a dense set in the space of pairs of centrally-symmetric convex shapes.

As a dense subset, we shall pick the class of transversely-intersecting convex
polygons. This class will be denoted by F . The elements of F are pairs .K;L/ of
shapesK;L � R

2 that satisfy:

• The pairs .K;L/ are pairs of centrally-symmetric convex polygons in R
2.

• The intersection @K \ @L is finite.
• None of the points x 2 @K \ @L are vertices ofK or of L. That is, there is some
" > 0 such that B.x; "/ \ @K and B.x; "/ \ @L are line segments.

• For every x 2 @K \ @L, �K.x/ ¤ �L.x/.

Claim. The class F is dense in the space of pairs of centrally-symmetric convex
shapes (with respect to the Hausdorff metric).

Hence, in order to prove Theorem 2, it is enough to consider polygons with
transversal intersection.

Deriving a Concrete Inequality.

Lemma 4. If .K;L/ 2 F , then fK;L.t/ is twice differentiable in some neighbour-
hood of t D 0.

Remark. In this case, log-concavity around t D 0 amounts to the inequality

d2

dt2
logf .t/

ˇ
ˇ
ˇ
ˇ
tD0

� 0

f .0/ � f 00.0/ � f 0.0/2: (2)
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Proof. The area of the intersection is

jaK \ Lj D
ˆ a

0

dr
ˆ

x2r@K\L
hK.�K.

x
r
//d`;

where d` is the length element.
Denote

gK;L.r/ D
ˆ

x2r@K\L
hK.�K.

x
r
//d`:

The transversality of the intersection implies that gK;L.r/ is continuous near r D 1.
Therefore a 7! jaK \ Lj is continuously differentiable near a D 1.

The contour r@K \ L is a finite union of segments in R
2. Transversality implies

that the number of connected components does not change with r in a small
neighbourhood of r D 1. The beginning and end points of each component are
smooth functions of r , also in some neighbourhood of r D 1. Therefore gK;L.r/ is
differentiable as claimed. ut

Note that in such a neighbourhood of r D 1, the function gK;L.r/ only depends
on the parts ofK andL that are close to @K\L, and is in fact a sum of contributions
from each of the connected components.

Writing (2) in terms of g.r/, we get the following condition:

Definition. For convex shapes .K;L/ 2 F , we say that K and L satisfy property
B , or that B.K;L/, if

jK \Lj � ŒgK;L.1/C g0
K;L.1/� � gK;L.1/

2: (3)

The set F is open with respect to the Hausdorff metric, and in particular, if
.K;L/ 2 F then .K; rL/ 2 F for every r in some neighbourhood of r D 1. If
B.K; rL/ holds for every r in such a neighbourhood, then fK;L.t/ is log-concave in
some neighbourhood of t D 0, as

fK;L.t0 C t/ D e2t0fK;e�t0 L.t/:

Therefore verifying (3) for all pairs .K;L/ 2 F will prove Theorem 2.

Reduction to Parallelograms. Given two polygons .K;L/ 2 F , the intersection
@K \ L consists of a finite number of connected components. Due to central
symmetry, they come in opposite pairs. We denote these components by S1; : : : ; S2n,
and SiCn D f�x W x 2 Si g.

We define a pair of convex shapesK.i/; L.i/ for each 1 � i � n via the following
properties.
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Fig. 1 Two examples of the extension K;L H) K.1/; L.1/. The shaded shape in each diagram
is K and the white shape with a solid boundary line is the corresponding L

• The shape K.i/ is the largest convex set whose boundary contains Si [ SiCn.
Equivalently, denoting by x1; x2 the endpoints of Si , and by x the solution of the
equations

(
h�K.x1/; xi D hK.�K.x1//

h�K.x2/; xi D �hK.�K.x2//

then K.i/ D conv .Si [ SiCn [ fx;�xg/.
• The shape L.i/ is the parallelogram defined by the four lines

h�L.x1/; xi D ˙hL.�L.x1// ; h�L.x2/; xi D ˙hL.�L.x2//

See Fig. 1 for examples.
If Si is a segment then K.i/ described above is an infinite strip, and if

�L.x1/ D �L.x2/ then L.i/ is an infinite strip. We would like to work with compact
shapes, thus we apply a procedure to modifyK.i/; L.i/ to become bounded without
changing their significant properties. Transversality implies that the intersection
K.i/ \ L.i/ is bounded, even if both sets are strips. For each 1 � i � n we pick a
centrally-symmetric stripA � R

2 such thatA\K.i/ andA\L.i/ are both bounded,
and which containsK andL, and whichever ofK.i/; L.i/ that is bounded. From now
on we replace K.i/ and L.i/ by their intersection with A.

Remark. Note that the sets grow in the process: K � K.i/ and L � L.i/

for all i D 1 : : : n. They satisfy @K.i/ \ L.i/ D Si [ SiCn. Also note that if
K is a parallelogram then so are the K.i/, for every i . It is trivial to check that
.K.i/; L.i// 2 F when .K;L/ 2 F .

Lemma 5. If B.K.i/; L.i// for all i D 1 : : : n, then B.K;L/.

Proof. The function gK;L.r/ takes non-negative values for r > 0. In addition,
its value is the sum of contributions from the different connected components of
r@K \ L. From transversality, these components vary continuously around r D 1,
hence g0

K;L.1/ is also a sum of values coming from the different components.
Therefore we can write



346 A. Livne Bar-on

jK \ Lj � ŒgK;L.1/C g0
K;L.1/� D jK \ Lj �

nX

iD1

h
gK.i/;L.i/ .1/C g0

K.i/;L.i/
.1/
i

�
nX

iD1
jK.i/ \ L.i/j �

h
gK.i/;L.i/ .1/C g0

K.i/;L.i/
.1/
i

�
byB.K.i/;L.i//

nX

iD1
gK.i/;L.i/ .1/

2 �
 

nX

iD1
gK.i/;L.i/ .1/

!2

D gK;L.1/
2

ut
Lemma 6. If B.K;L/ holds for all pairs of parallelograms .K;L/ 2 F , then
Theorem 2 follows.

Proof. Let .K;L/ 2 F be any polygons. Construct the sequence of pairs K.i/; L.i/

from K;L. The shape L.i/ is a parallelogram for every i . Then construct the

pairs
�
L.i/

�.j /
;
�
K.i/

�.j /
from L.i/; K.i/, for all i . The shapes

�
L.i/

�.j /
and

�
K.i/

�.j /
will be parallelograms for every i; j . Under our assumption, we have

B
��
L.i/

�.j /
;
�
K.i/

�.j /
�

. From this and the previous lemma, B.L.i/; K.i// follows.

The property B is symmetric in the shapes. That is, B.S; T / ” B.T; S/ for
all .S; T / 2 F . This is since fS;T and fT;S differ by a log-linear factor:

fS;T .t/ D jetS \ T j D e2tfT;S .�t/

This means that we have B.K.i/; L.i// as well. Applying the previous lemma
again gives B.K;L/. ut

All that remains in order to deduce Theorem 2 is to analyse the case of centrally-
symmetric parallelograms.

IfK;L are parallelograms andK D TQ where T is an invertible linear map and
Q D Œ�1; 1� � Œ�1; 1�,

fK;L D detT � fQ;T�1L:

Therefore we can take one of the parallelograms to be a square. In other words,
establishing B.Q;L/ where Q is the unit square and L is a parallelogram, and
.Q;L/ 2 F , will imply Theorem 2.

In fact, we may place additional geometric constraints on the square and the
parallelogram.

If neitherQ nor L contains a vertex of the other quadrilateral in its interior, then
@Q\L has four connected components. Applying the reduction above toQ;L gives
Q.i/; L.i/ with i D 1; 2, and the intersection @Q.i/ \ L.i/ has only two connected
components, as remarked above.
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Since the shapes are convex, if all the vertices of one shape are contained in the
other, we haveQ � L or L � Q, and then (3) holds trivially. If L contains vertices
of Q but Q does not contain vertices of L, we shall swap them.

These arguments leave two cases to be considered:

1. Q contains two vertices of L, and L does not contain vertices of Q. In this case
the intersection @Q \ L is contained in two opposite edges ofQ.
This case is proved in Lemma 7 below.

2. Q contains two vertices of L, and L contains two vertices of Q. In this case the
intersection @Q \ L is a subset of the edges around these vertices of Q.
This case is proved in Lemma 8 below.

Computation of the Special Cases. These cases are defined by four real
parameters—the coordinates of the vertices of L. A symbolic expression for
f .t/ can be derived, and (3) will be a polynomial inequality in these parameters.
The geometric conditions given above are also polynomial inequalities in these
parameters. Thus each of the two cases can each be expressed by a universally-
quantified formula in the language of real closed fields. By Tarski’s theorem
[3], this first order theory has a decision procedure. This is implemented in the
QEPCAD B computer program [4]. Relevant computer files, for generation of the
symbolic condition and for running the logic solver, for one of the two cases above,
are available at http://www.tau.ac.il/~livnebaron/files/bconj_201311/bconj_corners.
mac and http://www.tau.ac.il/~livnebaron/files/bconj_201311/bconj_qelim.txt.

A human-readable proof of both cases is included here as well.

Lemma 7. If L is a centrally-symmetric parallelogram that satisfies .Q;L/ 2 F ,
and if L crosses Q only inside the vertical edges ofQ, then B.Q;L/.

Proof. Let ˛; ˇ; c; d be as in Fig. 2.
The equations for the edges of L are

�
x cos˛ C y sin ˛ D ˙.c cos˛ C d sin˛/
x cosˇ C y sinˇ D ˙.c cosˇ C d sinˇ/

K = Q

L

(c,d)β

α

Fig. 2 Geometric setting of Lemma 7

http://www.tau.ac.il/~livnebaron/files/bconj_201311/bconj_corners.mac
http://www.tau.ac.il/~livnebaron/files/bconj_201311/bconj_corners.mac
http://www.tau.ac.il/~livnebaron/files/bconj_201311/bconj_qelim.txt
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Relevant parameters are computed as follows:

@Q \ @L D ˚˙�1; .c � 1/ cot˛ C d
�
;˙�1; .c � 1/ cotˇ C d

�


gQ;L.1/ D 2.c � 1/.cot˛ � cotˇ/

g0
Q;L.1/ D �2.cot˛ � cotˇ/

gQ;L.1/C g0
Q;L.1/ D .2c � 4/.cot˛ � cotˇ/:

The area ofL is comprised ofQ\L and of two triangles. The area of the triangles
is 1

2
g.1/ � .c � 1/ so

jQ \Lj D jLj � .c � 1/2.cot˛ � cotˇ/:

Note that 0 < ˛ < �
2
< ˇ < � so cot˛ � cotˇ is a positive quantity, and that if

c < 2 the value of g.1/Cg0.1/ is negative so inequality (3) is satisfied immediately.
Assume c > 2 from now on. What we need to prove is

.2c� 4/.cot˛� cotˇ/ � �jLj � .c� 1/2.cot˛� cotˇ/
	 � 4.c� 1/2.cot˛� cotˇ/2:

Or equivalently

.2c � 4/jLj � .c � 1/2.cot˛ � cotˇ/ � .4C 2c � 4/;

or still

jLj � �
1C 2

c�2
� � 1

2
.c � 1/g.1/:

The amount 1
2
.c�1/g.1/ is the area of the trianglesLnQ. By convexity the area

of L cannot be larger than that times
�
c
c�1
�2

. It remains to verify that for c > 2,
c2

.c�1/2 < 1C 2
c�2 . This is a simple exercise in algebra:

c2

.c � 1/2 D 1C 2c � 1

.c � 1/2 D 1C 2
c�2 � .c � 1

2 /.c � 2/

.c � 1/2
D 1C 2

c�2
�

1 � c=2

.c � 1/2
�

� 1C 2
c�2

ut
Lemma 8. If L is a centrally-symmetric parallelogram that satisfies .Q;L/ 2 F ,
and each of Q;L contains two vertices of the other, then B.Q;L/.

Proof. Let a and b be as in Fig. 3, and let S stand for the area S D jQ \ Lj. The
numbers a and b are in the range 0<a; b <2, and ˛ and ˇ satisfy 1

2
� <˛<ˇ<� .

The area S is in the range 4 � ab < S < 4.
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K = Q

L

a

b
S

α

β

p

Fig. 3 Geometric setting of Lemma 8

The quantity g.1/ is simply 8 � 2a � 2b, and g0.1/ will soon be shown to be
bounded by

g0.1/ � �8 S � .4 � ab/

.4 � S/C 1
2
.a � b/2

:

This gives an inequality in the 3 variables a; b; S , which will be proved for values
in the prescribed ranges.

The length of each dotted line in Fig. 3 is .a2 C b2/1=2. Denoting the height of
the triangle (the distance between p and the closest dotted line) by h, the area is

S D .4 � ab/C 2 � 1
2
h � .a2 C b2/1=2;

so

h D S � .4 � ab/

.a2 C b2/1=2
:

The formula for g0.1/ in terms of the angles ˛; ˇ is

g0.1/ D 4C 2 tan˛ C 2 cotˇ:
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Denote c D ˇ � ˛. Holding c fixed, the function

˛ 7! g0.1/ D 4C 2 tan˛ C 2 cot.˛ C c/

is concave and takes the same value for ˛ as for 3
2
��c�˛. Therefore its maximum

is attained at ˛ D 3
4
� � 1

2
c. This gives a bound for g0.1/ for a given c D ˇ � ˛:

g0.1/ � 4C 2 tan
�
3
4
� � 1

2
c
�C 2 cot

�
3
4
� C 1

2
c
�
:

This bound is stronger for higher values of c, since tan is an increasing function and
cot is a decreasing function.

The angle between the edges of Lmeeting at p is � � .ˇ�˛/ D � �c. When a,
b, and h are kept fixed, the position of p gives a bound for g0.1/. This bound is the
weakest when the angle � � c is the largest. Simple geometric considerations show
that in a family of triangles with the same base and height, the apex angle is largest
when the triangle is isosceles, so we will pursue the case where the triangle formed
by p and the nearest dotted line is isosceles.

The value of c in this case is c D 2 tan�1 1
2 .a

2Cb2/1=2
h

, and we get

g0.1/ � 4C 2 tan

 

3
4
� � 1

2
� C tan�1

1
2
.a2 C b2/1=2

h

!

C 2 cot

 

3
4
� C 1

2
� � tan�1

1
2
.a2 C b2/1=2

h

!

D 4C 4 tan

�
1
4
� C tan�1 1

2

a2 C b2

S � .4 � ab/

�

D 4C 4 �
1C 1

2
a2Cb2

S�.4�ab/

1 � 1
2

a2Cb2
S�.4�ab/

D 8

1 � 1
2

a2Cb2
S�.4�ab/

D �8 S � .4 � ab/

.4 � S/C 1
2
.a � b/2

;

which proves the forementioned bound for g0.1/.
Therefore, to prove (3) it is enough to show

S �
 

8 � 2a � 2b � 8
S � .4 � ab/

.4� S/C 1
2
.a � b/2

!

� .8 � 2a � 2b/2

Rearranging and taking into account that S < 4, this is equivalent to

.8 � 2a � 2b/.8 � 2a � 2b � S/
�
.4 � S/C 1

2
.a � b/2�C 8S.S � .4 � ab//

„ ƒ‚ …
E

� 0
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When a and b are held fixed, this is a 2nd degree condition on S . Since
0 < a; b < 2, the value and the first two derivatives in the point S D 4 � ab are
positive:

EjSD4�ab D .8 � 2a � 2b/.2� a/.2 � b/ � 1
2
.a2 C b2/ > 0;

@E

@S

ˇ
ˇ
ˇ
ˇ
SD4�ab

D .a C b/
�
.5 � a � b/2 � 1

�C 2.a � b/2 > 0;

@2E

@S2

ˇ
ˇ
ˇ
ˇ
SD4�ab

D 18.4� ab/ > 0:

This means that the condition stays true for all S > 4 � ab, as required. ut

3 Dihedral Symmetry

This section deals with dihedrally symmetric sets. The group Dn is defined in the
introduction.

Theorem (3). Let n � 2 be an integer, and let K;L � R
2 beDn-symmetric convex

shapes. Then t 7! jetK \Lj is a log-concave function.

For n D 2 the groupDn is generated by reflections across the standard axes. This
corresponds to unconditional sets and functions, and Theorem 1 from [2] solves this
case.

The proof for n � 3 is by reduction to the unconditional case.
A smooth strongly-convex shape K � R

2 is one whose boundary is a smooth
curve with strictly positive curvature everywhere. The radial function �K of a
smooth strongly-convex shape K � R

2 is a smooth function. The boundary @K
is the curve


K.�/ D .�K.�/ cos �; �K.�/ sin �/ :

The convexity ofK is reflected in the sign of the curvature of 
K . Positive curvature
can be written as a condition on the radial function:

�.�/2 C 2�0.�/2 � �.�/�00.�/ > 0: (4)

Proof of Theorem 3. For any Dn-symmetric convex shape K�R
2 there is a

sequence of Dn-symmetric convex shapes whose boundaries are smooth and
strongly convex curves, and whose Hausdorff limit isK . By the continuity argument
from the previous section, the general case follows from the smooth case. From here
on,K and L are smoothDn-symmetric shapes.
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Dn-symmetric shapes correspond to radial functions that are even and have
period 2�

n
. These shapes are completely determined by their intersection with the

sector

Gn D ˚
.r cos �; r sin �/ W r � 0; � 2 Œ0; �

n
�


:

Given two such shapes K;L the area function is

fK;L.t/ D jetK \ Lj D 2nfK\Gn;L\Gn.t/:

LetK � R
2 be aDn-symmetric strongly convex shape, and consider the function

Q�.�/ D �K.
2
n
�/. This is an even function with period � . The function Q�.�/ also

satisfies (4):

Q�.�/2 C Q�0.�/2 � Q�.�/ Q�00.�/ D
4
n2

�
�K.

2
n
�/2 C 2�0

K.
2
n
�/2 � �K.

2
n
�/�00

K.
2
n
�/
�C .1 � 4

n2
/�K.

2
n
�/2 > 0:

This means that Q�.�/ is the radial function of some D2-symmetric (uncondi-
tional) strongly convex shape. We denote this w.K/: the unique shape that satisfies
�w.K/.�/ D �K.

2
n
�/.

The following function, also named w, is defined on Gn:

w

�
r cos �
r sin �

�

D
 
r cos n

2
�

r sin n
2
�

!

:
�
for r � 0; � 2 Œ0; �

n
�
�

The point function w is an bijection between Gn and G2. It relates to the shape
function w by the formula

fw.x/ W x 2 K \Gng D w.K/\G2:

The point function w is differentiable inside Gn, and has a constant Jacobian
determinant n

2
.

Hence

fK;L.t/ D 2nfK\Gn;L\Gn.t/ D 4fw.K/\G2;w.L/\G2.t/ D fw.K/;w.L/.t/;

and the theorem follows from the result in [2]. ut
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Maximal Surface Area of a Convex Set
in R

n with Respect to Log Concave Rotation
Invariant Measures

Galyna Livshyts

Abstract It was shown by K. Ball and F. Nazarov, that the maximal surface area
of a convex set in R

n with respect to the Standard Gaussian measure is of order
n
1
4 . In the present paper we establish the analogous result for all rotation invariant

log concave probability measures. We show that the maximal surface area with

respect to such measures is of order
p
n

4
p

VarjX jpEjX j , where X is a random vector

in R
n distributed with respect to the measure.

1 Introduction

In this paper we will study geometric properties of the probability measures 
 on R
n

with densityCne�'.jyj/;where '.t/ is a nonnegative nondecreasing convex function,
which may take infinity as a value, and the normalizing constant

Cn D
�ˆ

Rn

e�'.jyj/dy

��1
:

We recall that the Minkowski surface area of a convex set Q with respect to the
measure 
 is defined to be


.@Q/ D lim inf
"!C0


..QC "Bn
2 /nQ/

"
; (1)

where Bn
2 denotes the Euclidian unit ball in R

n:

The special case of '.t/ D t 2

2
, which corresponds to the standard Gaussian

measure 
2, has been actively studied. Sudakov and Tsirelson [18] and Borell [5]
proved, that among all convex sets of a fixed Gaussian measure, half spaces have
the smallest Gaussian surface area. Mushtari and Kwapien asked the reverse version
of isoperimetric inequality, i.e. how large the Gaussian surface area of a convex set
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A � R
n can be. It was shown by Ball [1], that Gaussian surface area of a convex set

in R
n is asymptotically bounded by Cn

1
4 , where C is an absolute constant. Nazarov

[17] proved the sharpness of Ball’s result and gave the complete solution to this
asymptotic problem:

0:28n
1
4 � max

Q2Kn


2.@Q/ � 0:64n
1
4 ; (2)

where by Kn we denote the set of all convex sets inRn. Further estimates for 
2.@Q/
for the special case of polynomial level set surfaces were provided by D. Kane [10].
He showed that for any polynomial P.y/ of degree d , 
2.P.y/ D 0/ � dp

2
.

Isoperimetric inequalities for a wider class of rotation invariant measures were
studied by Sudakov and Tsirelson [18]. Recently, geometric properties for various
classes of rotation invariant measures were established by Bobkov [2–4], Bray and
Morgan [6], Maurmann and Morgan [15] and others.

The maximal surface area of convex sets for the probability measures 
p with

densities Cn;pe
� jxj

p

p , where p > 0, was studied in [14]. It was shown there, that

c.p/n
3
4� 1

p � max
Q2Kn


p.@Q/ � C.p/n
3
4� 1

p ; (3)

where c.p/ and C.p/ are constants depending on p only.
In the present paper we obtain a generalization of results due to Ball and

Nazarov, and find an expression for the maximal surface area with respect to an
arbitrary rotation invariant log concave measure 
 . The expression depends on the
measure’s natural characteristics, i.e. expectation and variance of a random variable,
distributed with respect to 
:

We shall use notation - for an asymptotic inequality: we say that A.n/ - B.n/

if there exists an absolute positive constant C (independent of n), such that A.n/ �
CB.n/. Correspondingly,A.n/ � B.n/ means that B.n/ - A.n/ - B.n/.

The following theorem is the main result of the present paper:

Theorem 1. Fix n � 2. Let 
 be log concave rotation invariant measure on R
n:

Consider a random vector X in R
n distributed with respect to 
 . Then

max
Q2Kn


.@Q/ �
p
n

p
EjX j 4

p
VarjX j ;

where, as usual, EjX j and VarjX j denote the expectation and the variance of jX j
correspondingly.

Let us note, that the above Theorem implies (2). It also implies (3) in the case
p � 1; and the details of these implications are shown in Sect. 3.

Another classical example of a log concave rotation invariant measure is the
normalized Lebesgue measure restricted to the unit ball. In that case '.t/ equals
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to zero for all t < 1 and takes infinity as a value for all t � 1. For that measure

EjX j � 1 and VarjX j � n�2, so the maximal surface area is of order
p
n

4p
n�2�1 D n.

The set with the maximal surface area is the sphere of radius 1, which is also clear
by monotonicity of the standard surface area measure.

We outline, that for isotropic measures (see [16] for definitions and details),
Theorem 1 together with the result from [12] entails that the maximal perimeter
varies between C1n

1
4 and C2n

1
2 , where C1 and C2 are absolute constants. The

standard Gaussian measure is an example of an isotropic measure with the maximal
surface area of order n

1
4 , and the Lebesgue measure restricted to a ball of radius

p
n

is an example of an isotropic measure with the maximal surface area of order n
1
2 . If

the measures 
p from (3) are brought to the isotropic position, the maximal surface

area with respect to them is of order n
1
4 .

The main definitions, technical lemmas and some preliminary facts are given in
Sect. 2. Some connections between the probabilistic and analytic setup are provided
in Sect. 3. The upper bound for Theorem 1 is obtained in Sect. 4, and the lower
bound is shown in Sect. 5. In Sect. 6 we provide some examples to exhibit the
sharpness of Theorem 1.

2 Some Definitions and Lemmas

This section is dedicated to some general properties of spherically invariant log
concave measures. We outline some basic facts which are needed for the proof.
Some of them have appeared in literature. See [11] for an excellent overview of the
properties of log concave measures, in particular the proof of Lemma 4.5, where
some portion of the current section appears.

We write all the calculations in R
nC1 instead of Rn for the notational simplicity.

We use notation j � j for the norm in Euclidean space R
nC1; jAj stands for the

Lebesgue measure of a measurable set A � R
nC1. We will write BnC1

2 D fx 2
R
nC1 W jxj � 1g for the unit ball in R

nC1 and Sn D fx 2 R
nC1 W jxj D 1g for the unit

sphere. We denote �nC1 D jBnC1
2 j D �

nC1
2

� . nC1
2 C1/ . We note that jSnj D .nC 1/�nC1.

We fix a convex nondecreasing function '.t/ W Œ0;1/ ! Œ0;1�. Let 
 be a
probability measure on R

nC1 with density CnC1e�'.jyj/ . The normalizing constant
CnC1 equals to Œ.nC 1/�nC1Jn��1, where

Jn D
ˆ 1

0

tne�'.t/dt: (4)

We introduce the notation gn.t/ D tne�'.t/. Since we normalize the measure
anyway, we may assume that '.0/ D 0.

Without loss of generality we may assume that ' 2 C2Œ0;1/. This can be shown
by the standard smoothing argument (see, for example, [7]).
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We shall use a well known integral formula for 
.@Q/, which holds true,
in particular, for the measures with continuous densities:


.@Q/ D CnC1
ˆ

@Q

e�'.jyj/d�.y/; (5)

where d�.y/ stands for Lebesgue surface measure (see the Appendix for the proof).
The below Lemma shows that the surface area with respect to 
 is stable under

small perturbations.

Lemma 1. Fix n � 2. LetM be a measurable subset of a boundary of a convex set
in R

nC1. Then

CnC1
ˆ

1

1C 1
n
M

e�'.jyj/d�.y/ % 
.M/:

Proof. We observe, that '
� jyj
1C 1

n

�
� '.jyj/, since '.t/ is nondecreasing. Also,

d�

 
y

1C 1
n

!

D
�

1C 1

n

��n
d�.y/ � d�.y/:

We conclude:

ˆ

1

1C 1
n
M

e�'.jyj/d�.y/ D
ˆ

M

e
�'

�
jyj

1C 1
n

�

d�

 
y

1C 1
n

!

% 
.M/: ut

Remark 1. We observe as well, that the same statement holds for all measures with
densities, decreasing along each ray starting at zero.

Definition 2. We define t0 to be the point of maxima of the function gn.t/, i.e., t0
is the solution of the equation

' 0.t/t D n: (6)

We note that Eq. (6) has a solution, since t' 0.t/ is nondecreasing, continuous and
limt!C1 t' 0.t/ D C1. This solution is unique, since t' 0.t/ strictly increases on
its support. This definition appears in most of the literature dedicated to rotation
invariant log concave measures: see, for example, [13, Sect. 2], [3, Remark 3.4] or
[11, Lemma 4.3].

Remark 2. We may define tn and tn�1 by

' 0.tn�1/tn�1 D n � 1; (7)

' 0.tn/tn D n: (8)
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We claim that tnn � tnn�1. To see this, we note that function t' 0.t/ is nondecreasing.
Hence tn � tn�1. On the other hand, subtracting (7) from (8), we get

1 D ' 0.tn/tn � ' 0.tn�1/tn�1 � ' 0.tn�1/.tn � tn�1/ D n � 1
tn�1

.tn � tn�1/:

The above leads to the following chain of inequalities:

1 � tn

tn�1
� 1C 1

n � 1
; (9)

and therefore tnn � tnn�1.
In a view of the above we introduce the notation “t0”. Everywhere in the paper it

is assumed that t0 D tnC1.
We notice in addition, that

'.t0/ D '.t0/� '.0/ � ' 0.t0/t0 D n; (10)

since '.0/ D 0 by our assumption.

The next lemma provides simple asymptotic bounds for Jn. It was proved in [13],
but for the sake of completeness we sketch the proof below.

Lemma 2.

gn.t0/t0

nC 1
� Jn � p

2�.1C o.1//
gn.t0/t0p

n
:

Sketch of the Proof. The integral Jn can be estimated from above by Laplace
method, which can be found, for example, in [8]. We rewrite

Jn D gn.t0/

ˆ 1

0

e
n log t

t0
C'.t0/�'.t/dt: (11)

By the Mean Value theorem, '.t0/�'.t/ � ' 0.t0/.t0� t/ D n.1� t
t0
/ for any t � 0.

Thus, (11) is less than

gn.t0/t0

ˆ 1

0

enh.t/dt;

where h.t/ D log t � tC1. It is easy to check that h.t/ satisfies Laplace’s condition
(see [8, pp. 85–86] for the formulation), so

Jn � .1C o.1//
p
2�
gn.t0/t0p

n
:
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On the other hand, since '.t/ is nondecreasing and positive,

Jn �
ˆ t0

0

tne�'.t/dt � e�'.t0/
ˆ t0

0

tndt D t0gn.t0/

nC 1
: (12)

ut
The next Lemma is a simple fact which we shall apply it to estimate the “tails”

of Jn.

Lemma 3. Let g.t/ D ef .t/ be a log concave function on [a,b] (where both a and b
may be infinite). Assume that f 2 C2Œa; b� and that t0 is the unique point of maxima
of f .t/. Assume that t0 > 0: Consider x > 0 and  > 0 such that

f .t0/ � f ..1C x/t0/ �  :

Then,
ˆ b

.1Cx/t0
g.t/dt � xt0g.t0/

 e 
:

Similarly, if f .t0/� f ..1 � x/t0/ �  ;

ˆ .1�x/t0

a

g.t/dt � xt0g.t0/

 e 
:

Proof. We pick any t > .1C x/t0. First, we notice by concavity:

 � f .t0/� f ..1C x/t0/ � �f 0..1C x/t0/xt0:

Next, since f .t/ is concave,

f .t/ � f 0..1C x/t0/.t � .1C x/t0/C f ..1C x/t0/ �

�  

xt0
.t � .1C x/t0/C f .t0/ �  :

Thus, for t > .1C x/t0,

g.t/ � g.t0/e
� e�  

xt0
.t�.1Cx/t0/: (13)

Consequently,

ˆ b

.1Cx/t0
g.t/dt � g.t0/e

� 
ˆ 1

0

e
�  

xt0
sds � xt0g.t0/

 e 
:

The second part of the Lemma can be obtained similarly. ut
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We note, that the condition t0 > 0 in the above Lemma is not crucial, and
everything can be restated for t0 < 0. For our purposes it is enough to consider
t0 > 0:

The function gn.t/ D tne�'.t/ is log concave on Œ0;1/, and we shall apply
Lemma 3 with g.t/ D gn.t/ and  D 1.

Definition 3. Define the “outer” �o to be a positive number satisfying:

'.t0.1C �o//� '.t0/� n log.1C �o/ D 1: (14)

Similarly, define the “inner” �i as follows:

'.t0.1� �i //� '.t0/� n log.1 � �i / D 1: (15)

We put

� WD �i C �o: (16)

We note that (14) is equivalent to

gn.t0/ D egn.t0.1C �o//; (17)

and (15) is equivalent to

gn.t0/ D egn.t0.1 � �i //: (18)

Parameter � from (16) has a nice property:

Lemma 4.

Jn � �t0gn.t0/:

Proof. We apply the first part of Lemma 3 with x D �o and  D 1. We get

ˆ 1

t0.1C�o/
gn.t/dt � 1

e
�ot0gn.t0/: (19)

Similarly, the second part of the Lemma applied with x D �i , gives

ˆ t0.1��i /

0

gn.t/dt � 1

e
�i t0gn.t0/: (20)

Along with the above, we observe:

ˆ t0.1C�o/

t0.1��i /
gn.t/dt � .�i C �o/t0gn.t0/ D �t0gn.t0/: (21)
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From (19), (20) and (21), applied together with the definition of �, it follows that:

Jn � e C 1

e
�t0gn.t0/: (22)

On the other hand,

Jn �
ˆ t0.1C�o/

t0.1��i /
gn.t/dt �

�i t0gn..1C �i /t0/C �ot0gn..1C �o/t0/ D 1

e
�t0gn.t0/; (23)

where the last equality is obtained in a view of (18) and (17). ut
Remark 3. Let us note, that Lemma 2 together with (22) and (23) leads to the
estimates:

e

e C 1

1

nC 1
� � � .1C o.1//

p
2�e

1p
n
: (24)

The above implies also, that both “inner” and “outer” lambdas are asymptotically
bounded by 1p

n
. In addition �i % 1

n
. To see this, we write:

ˆ t0

0

tne�'.t/dt � e�'.t0/
ˆ t0

0

tndt D t0gn.t0/

nC 1
: (25)

On the other hand, we estimate:

ˆ t0

t0.1��i /
tne�'.t/dt � �i t0gn.t0/:

Finally, we use (20) and conclude:

ˆ t0

0

tne�'.t/dt �
ˆ t0.1��i /

0

tne�'.t/dt C
ˆ t0

t0.1��i /
tne�'.t/dt

� 1

e
�i t0gn.t0/C �i t0gn.t0/: (26)

The inequalities (25) and (26) yield the estimate �i � e
eC1

1
nC1 .

However, �o can be arbitrarily small: for any " > 0 there exist a measure with
continuous density (close to the one of the normalized Lebesgue measure on the
unit ball) so that �o < ".
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Remark 4. Remark 3 shows that �o and �i are o.1/ when n ! 1. Consequently,
for sufficiently large n,

ˆ 2t0

1
2 t0

gn.t/dt � Jn;

The following fact is believed to be well known (see Remark 3.4 from [3] for the
best possible estimate).

Lemma 5. For all n � 2,

Jn

Jn�1
� t0:

Proof. In a view of Remark 4,

Jn D
ˆ 1

0

tne�'.t/dt �
ˆ 2t0

1
2 t0

tne�'.t/dt

� t0

ˆ 2t0

1
2 t0

tn�1e�'.t/dt � t0Jn�1;

which completes the proof of the Lemma. ut
Let us consider some computable examples of 
 -surface area. The first natural

example to look at is the sphere of radiusR > 0.


.RSn/ D 1

.nC 1/�nC1Jn

ˆ

RSn
e�'.jyj/d�.y/ D jRSnje�'.R/

.nC 1/�nC1Jn

D Rne�'.R/

Jn
� gn.R/

�t0gn.t0/
:

Since t0 is the maximum point for gn.t0/, we notice that among all the spheres, t0Sn

has the maximal 
 -surface area, and it is equivalent to 1
�t0

.
Next, for a unit vector � we consider the half space H� D fy W hy; �i � 0g.


.@H�/ D 1

.nC 1/�nC1Jn

ˆ

Rn

e�'.jyj/dy D n�nJn�1
.nC 1/�nC1Jn

: (27)

Applying the fact that �n
�nC1

D
p
np
2�
.1 C o.1// together with Lemma 5 and (27),

we obtain that 
.H/ �
p
n

t0
.

We shall use a trick from [1] to show a rough upper bound for 
.@Q/.
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Lemma 6. 
.@Q/ - n
t0

for any convex set Q.

Proof. We obtain the following integral expression for the density:

e�'.jyj/ D
ˆ 1

jyj
' 0.t/e�'.t/dt D

ˆ 1

0

' 0.t/e�'.t/�Œ0;t �.jyj/dt;

where �Œ0;t � stands for characteristic function of the interval Œ0; t �. Thus


.@Q/ D 1

.nC 1/�nC1Jn

ˆ

@Q

ˆ 1

0

' 0.t/e�'.t/�Œ0;t �.jyj/dtd�.y/

D 1

.nC 1/�nC1Jn

ˆ 1

0

' 0.t/e�'.t/j@Q \ tBnC1
2 jdt;

which by can be estimated from above by

.nC 1/�nC1
.nC 1/�nC1Jn

ˆ 1

0

tn' 0.t/e�'.t/dt; (28)

since Q \ tBnC1
2 � tBnC1

2 , and thus j@Q \ tBnC1
2 j � j@tBnC1

2 j by convexity.
After integrating (28) by parts and applying Lemma 5, we get


.@Q/ � n
Jn�1
Jn

� n

t0
:ut

The next lemma is an important tool in our proof.

Lemma 7. Assume that there exists a positive � such that

' .t0.1C �// � '.t0/� n log.1C �/ � log

�

�

r
n

�

�

� 1: (29)

Define

A WD .1C �/t0B
nC1
2 n t0

e
BnC1
2 :

Then


.@Q n A/ -
p
n

t0
p
�
:

Proof. First, define the surface B D @Q \ t0
e
BnC1
2 . Then,
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.B/ D 1

.nC 1/�nC1Jn

ˆ

B

e�'.jyj/d�.y/ � jBj
.nC 1/�nC1Jn

� j t0
e
S
nj

.nC 1/�nC1Jn
� tn0
en�t0e�'.t0/tn0

D 1

�t0

e'.t0/

en
; (30)

where the equivalence follows from Lemma 4. Recalling (10), which states that
'.t0/ � n, we estimate (30) from above by 1

�t0
. We recall as well, that 1

�t0
�


.t0S
n/ -

p
n

t0
p
�

, since � % 1
n

.

Next, let the surface P D @Q n .1C�/t0B
nC1
2 : As in Lemma 6, we make use of

the estimate (28) and integrate by parts:


.P / � 1

Jn

ˆ 1

.1C�/t0
tn' 0.t/e�'.t/dt -

gn..1C �/t0/C n
´ 1
.1C�/t0 gn�1.t/dt

�t0gn.t0/
: (31)

Lemma 3, applied with x D � and  D log
�
�
p

n
�

�
, entails that (31) is less than

e� 

�t0
C n�

�t0 e 
D 1

�t0
� .1C �n

 
/e� -

p
n

t0
p
�
;

where the last bound follows if we plug  D log
�
�
p

n
�

�
and use the fact that

 � 1. We also used Remark 3 which yields the fact that 1
�t0

-
p
n

t0
p
�
: ut

The next Lemma shows, that � in Lemma 7 can be chosen very small.

Lemma 8.

� D lognp
n

satisfies the condition of Lemma 7 for sufficiently large n.

Proof. First, notice that '..1C �/t0/ � '.t0/ � ' 0.t0/�t0 D n�: Thus

'.t0.1C �// � '.t0/� n log.1C �/ � n.� � log.1C �//: (32)

Plugging � D log np
n

into (32) and applying the Taylor approximation for logarithm,
we get that the right hand side of (32) is approximately equal to

p
n logn � n log

�

1C lognp
n

�

D log2 n

2
C o.1/: (33)
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In order to satisfy (29), we need to estimate log
�
�
p

n
�

�
from above:

log

�

�

r
n

�

�

D log

�
lognp
n

r
n

�

�

� log.5n logn/; (34)

since � � e
eC1

1
n

(see Remark 3). Observing, that for all n � 12, log .5n logn/ �
log2 n
2

C o.1/, we obtain the Lemma. ut

3 Connections to Probability

We consider a random vector X in R
nC1 distributed with respect to 
 . Then jX j is

a random variable distributed on Œ0;1/ with density gn.t/

Jn
. We shall use standard

notation for its expectation and variance: E D EjX j D 1
Jn

´ 1
0

tgn.t/dt and

�2 D VarjX j D 1

Jn

ˆ 1

0

.t � E/2gn.t/dt: (35)

The next two Lemmas give an expression for the expectation and variance of jX j in
terms of our parameters � and t0, which will be used to restate Theorem 1.

Lemma 9.

EjX j � t0:

Proof. We write

EjX j D Œ.nC 1/�nC1Jn��1
ˆ

RnC1

jyje�'.jyj/dy

D 1

Jn

ˆ 1

0

tnC1e�'.t/dt D JnC1
Jn

� t0;

where the last equivalence follows from Lemma 5. ut
Lemma 10.

VarjX j � .�t0/
2:

Proof. We notice first that (35) implies:

ˆ 1

0

gn.t/
.t �E/2
4�2

dt D Jn

4
: (36)
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Subtracting (36) from the equation Jn D ´ 1
0
gn.t/dt, we get

ˆ 1

0

gn.t/

�

1 � .t � E/2

4�2

�

dt D 3

4
Jn:

We observe that 1 � .t�E/2
4�2

is between zero and one whenever jt � Ej � 2� , and
negative otherwise. Thus

ˆ EC2�

E�2�
gn.t/dt �

ˆ EC2�

E�2�
gn.t/

�

1 � .t � E/2

4�2

�

dt � 3

4
Jn: (37)

On the other hand,

ˆ EC2�

E�2�
gn.t/dt � 4� � max

t2ŒE�2�;EC2��
gn.t/

� 4� max
t2Œ0;1/

gn.t/ D 4�gn.t0/: (38)

Bringing together Lemma 4, (37) and (38), we get

4�gn.t0/ � 3

4
Jn � �t0gn.t0/;

and thus � % �t0:

Next, we shall obtain the reverse estimate. We note that the expression

ˆ 1

0

.t � �/2gn.t/dt

is minimal when � D E . Thus for � D t0.1C �/ we get:

�2Jn �
ˆ 1

0

.t � t0.1C �//2gn.t/dt

D
ˆ t0.1��/

0

C
ˆ t0.1C�/

t0.1��/
C
ˆ 1

t0.1C�/
.t � t0.1C �//2gn.t/dt: (39)

The second integral in (39) can be bounded by

max
t2Œt0��t0;t0C�t0�

.t � t0.1C �//2
ˆ t0.1C�/

t0.1��/
gn.t/dt - .�t0/

2Jn: (40)
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In order to estimate the third integral we apply (13) with g.t/ D gn.t/,  D 1

and x D �. It implies that for all t > t0.1C �/; the following holds:

gn.t/ - gn.t0/e
� 1
�t0
.t�t0.1C�//:

Thus the third integral from (39) can be estimated from above with

gn.t0/

ˆ 1

t0.1C�/
.t � t0.1C �//2e

� 1
�t0
.t�t0.1C�//dt

D .�t0/
3gn.t0/

ˆ 1

0

s2e�sds D 2.�t0/
2�t0gn.t0/ � .�t0/

2Jn;

where the last equivalence follows from Lemma 4. The first integral in (39) can be
estimated similarly (with the loss of e�2). Adding both of them together with (40),
we obtain that

�2Jn - .�t0/
2Jn;

which finishes the proof. ut
Now we are ready to restate Theorem 1:

Theorem 4. Fix n � 2. Let t0 be the solution of ' 0.t/t D n � 1: Define e� D´
1

0 tn�1e�'.t/dt

tn0 e
�'.t0/

: Then

max
Q2Kn


.@Q/ �
p
n

p
e�t0

:

From now on we will be after proving Theorem 4. Notice, that by Lemma 4,e� is
equivalent to �, defined in the previous section.

Remark 5. The statement of Theorem 4 becomes shorter if the measure is isotropic.
We refer to [16] and [11] for the definitions and details. Here we observe only, that
t0 D p

n for isotropic measures on R
n, and after making a change of variables

e'.t/ D '. t0p
n
t/, we get a measuree
 with density C.n/e�e'.jyj/, which has properties

similar to 
 and for which the statement of Theorem 4 becomes:

max
Q2Kn

e
.@Q/ � 1
p
e�
:

Remark 6. For p � 1 we define 
p to be a probability measure on R
n with density

Cn;pe
� jyj

p

p (as in (3). In this case '.t/ D tp

p
, and ' 0.t/t D tp . Thus, for such

measures t0 D .n � 1/
1
p (see (6) for the definition of t0). Also, Laplace method

entails, that
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Jn D c.p/
.n � 1/ np e� n�1

p

p
n

D c.p/
t0gn.t0/p

n
:

(see [14] for the details.) In a view of Lemma 4 we conclude, that in this case
� � 1p

n
. So Theorem 4 asserts, that

max
Q2Kn


p.@Q/ � C.p/n
3
4� 1

p ;

which means that the result of [14] for the case p � 1, the result of [17] for
the standard Gaussian measure, and the result from [1] are consequences of the
current one.

4 Upper Bound

We will use the approach developed by Nazarov in [17]. We pick a convex set Q.
The aim is to estimate 
.@Q/ from above. By log concavity of measure 
 , we may
assume that Q contains the origin: otherwise we may shift Q towards the origin so
that the surface area does not decrease. Indeed, if Q does not contain the origin, let
y0 2 Q be the closest point to the origin. Apply the shift S.y/ D y � y0: The body
S.Q/ contains the origin in it’s boundary, and also jy � y0j � jyj for all y 2 Q.
Since ' is increasing, we get '.jy � y0j/ � '.jyj/, and thus 
.@S.Q// � 
.@Q/.
Moreover, by continuity of '.t/ we may assume that the origin is contained not in
the boundary, but in the interior of Q.

Let us consider “polar” coordinate system x D X.y; t/ in R
nC1 with y 2 @Q,

t > 0. We write

CnC1
ˆ

Rn

e�'.jyj/d�.y/ D CnC1
ˆ 1

0

ˆ

@Q

D.y; t/e�'.jX.y;t/j/d�.y/dt;

whereD.y; t/ is the Jacobian of x ! X.y; t/. Define

�.y/ D e'.jyj/
ˆ 1

0

D.y; t/e�'.jX.y;t/j/dt: (41)

Then

1 D CnC1
ˆ

@Q

e�'.jyj/�.y/d�.y/;

and thus
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.@Q/ D CnC1
ˆ

@Q

e�'.jyj/dy � 1

min
y2@Q �.y/

: (42)

Following [17], we shall consider two such systems.

4.1 First Coordinate System

We consider “radial” polar coordinate system X1.y; t/ D yt. The Jacobian
D1.y; t/ D tnjyj˛, where

˛ D ˛.y/ D cos.y; ny/; (43)

where ny stands for a normal vector at y. Without loss of generality we assume
that ny is defined uniquely for every y 2 @Q. Rewriting (41), making a change of
variables � D t jyj and applying Lemma 5, we get:

�1.y/ WD e'.jyj/
ˆ 1

0

tnjyj˛e�'.jtyj/dt D

e'.jyj/˛jyj�nJn % t0˛�
gn.t0/

gn.jyj/ : (44)

We define x D x.y/ to satisfy jyj D .1C x/t0 and

 .x/ WD '..1C x/t0/� '.t0/� n log.1C x/ D log
gn.t0/

gn..1C x/t0/
: (45)

Then, by (44),

�1.y/ % t0˛�e
 .x/: (46)

Remark 7. For the sake of completeness we note, that the above formula might
as well be obtained by projecting the set on the unit sphere and passing to new
coordinates. Indeed, let x D y

jyj . Then the coordinate change writes as d�.y/ D
jyjn
˛.y/

d�.x/, and we obtain


.@Q/ D Œ.nC 1/�nC1Jn��1
ˆ

@Q

e�'.jyj/d�.y/

D Œ.nC 1/�nC1Jn��1
ˆ

Sn

e�'.jyj/ jyjn
˛.y/

d�.x/ � max
y2@Q

gn.jyj/
˛.y/Jn

;
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which is equivalent to the bound we obtain from (41) and (46). This observation
shows, that no volume argument of the type (42) is needed here. However, we shall
need it below.

4.2 Second Coordinate System

We consider “normal” polar coordinate systemX2.y; t/ D yCtny . ThenD2.y; t/ �
1 for all y 62 Q. We write

'.jX2.y; t/j/ D '.jy C tny j/ D '
�p

jyj2 C t2 C 2t jyj˛
�
;

where ˛ D ˛.y/ was defined by (43). Let �2.y/ be �.y/ from (41), corresponding
to X.y; t/ D X2.y; t/. Then

�2.y/ � e'.jyj/
ˆ 1

0

e
�'

�p
jyj2Ct 2C2t jyj˛

�

dt: (47)

Define t1 D t1.y/ to be the largest number such that:

'

�q
jyj2 C t21 C 2t1jyj˛

�

� '.jyj/ D 1:

Such number always exists, since the function '
�pjyj2 C t2 C 2t jyj˛

�
is a

nondecreasing continuous function of t on Œ0;1/, and

lim
t!C1'

�p
jyj2 C t2 C 2t jyj˛

�
D C1:

We shall use an elementary inequality

ˆ
f .x/d�.x/ � a � �.f .x/ � a/;

which holds for all positive integrable functions f . Notice, that

jft � 0 W e�'
�p

jyj2Ct 2C2t jyj˛
�

� e�'.jyj/�1gj D t1:

Thus the right hand side of (47) is asymptotically bounded from below by t1.
We define�.t/ W Œ0;1/ ! Œ0;1/ the relation

'..1C�.t//t/ � '.t/ D 1: (48)
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By the definition of t1 D t1.y/,

s

1C t21
jyj2 C 2t1˛

jyj D 1C�.jyj/:

We solve the quadratic equation and obtain, that for all y 2 @Q

�2.y/ � t1

e
% jyjp�.jyj/C�2.jyj/

˛.y/p
�.jyj/C�2.jyj/ C 1

: (49)

4.3 Cases

We shall split the space into several annuli and estimate 
 -surface area of @Q
intersected with each annulus separately. The proof splits into several cases. Below
we assume that y 2 @Q:
Case 1: jyj � 1

2e
t0 or jyj � .1C log np

n
/t0.

We define @Q1 D fy 2 @Q W jyj � 1
2e
t0 or jyj � .1 C log np

n
/t0g. Direct

application of Lemmas 7 and 8 asserts that the desired upper bound holds for

.@Q1/ (we remark, that even though the application of Lemma 8 requires
n � 12; we may apply Lemma 6 for n � 12 and select the proper constant
at the end).

Case 2: 1
2e
t0 � jyj � .1 � 1

n
/t0. We define @Q2 D fy 2 @Q W 1

2e
t0 � jyj �

.1 � 1
n
/t0g. Pick y 2 @Q2: We observe:

'

�

.1 � 1

n
/t0 � .1C 1

n
/

�

� '
�

.1 � 1

n
/t0

�

�

'.t0/� '

�

.1 � 1

n
/t0

�

� t0

n
' 0.t0/ D 1: (50)

This asserts that �..1 � 1
n
/t0/ � 1

n
. We note, that �.t/ decreases, when t

increases. Thus�.jyj/ � 1
n

for any y such that jyj � .1� 1
n
/t0. We rewrite (49)

and get the estimate

�2.y/ % jyjp
n

� 1

˛
p
nC 1

: (51)

Since jyj is assumed to be asymptotically equivalent to t0, (51) rewrites as
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�2.y/ % t0p
n

� 1

˛
p
nC 1

: (52)

As for the first system, we apply a rough estimate  .x/ � 0 and rewrite (46)
as follows:

�1.y/ % t0˛�: (53)

We consider

�.y/ WD �1.y/C �2.y/ % (54)

t0˛�C t0p
n

� 1

˛
p
nC 1

:

We minimize the above expression with respect to ˛ 2 Œ0; 1�. The minimum is
attained when ˛ D 1p

�n
, and thus

�.y/ % t0
p
�p
n
;

which together with (41) and (42) leads to the desired estimate for 
.@Q2/.
Case 3: .1� 1

n
/t0 � jyj � t0 We define @Q3 D fy 2 @Q W .1� 1

n
/t0 � jyj � t0g.

Along the annulus the value of '.t/ doesn’t change that much. Namely, since
'.t/ is nondecreasing and by (50),

'

�

t0.1� 1

n
/

�

2 Œ'.t0/� 1; '.t0/�:

So for all y 2 @Q3, '.jyj/ � '.t0/. Thus we write


.@Q3/ D Œ.nC 1/�nC1Jn��1
ˆ

@Q3

e�'.jyj/d�.y/ �

e�'.t0/

.nC 1/�nC1Jn

ˆ

@Q3

d�.y/ D e�'.t0/

.nC 1/�nC1Jn
j@Q3j:

Since Q3 is a convex body contained in t0BnC1
2 , we get j@Q3j � jt0Snj, so the

above is less than

e�'.t0/jt0Snj

.nC 1/�nC1Jn
D e�'.t0/tn0

Jn
� 1

�t0
;
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where the last equivalence is a direct application of Lemma 4. We conclude that
the portion of any convex set in a very thin annulus around the maximal sphere
is at least as small as the maximal sphere itself, and, in particular, smaller than
our desired upper bound.

Case 4: t0 � jyj � .1C log np
n
/t0.

This case is the hardest one. We face the problem of controlling�.y/: there is no
way to get a proper lower bound for it unless we “step inside” the set a little bit.
Fortunately, Lemma 1 shows that stepping not too far does not change 
�surface

area too much. So we will be estimating �2
� jyj
.1C 1

n /
2

�
from below, rather than

�2.y/. The key estimate in all our computation is the following Proposition.

Proposition 1. For any y such that jyj 2 Œt0; .1C log np
n
/t0�,

�

 
jyj

.1C 1
n
/2

!

% 1

n
� 1

 .x/C 1C o.1/
;

where  .x/ is defined by (45),�.t/ is defined by (48) and jyj D .1C x/t0:

Proof. We fix jyj D .1 C x/t0. The parameter x in this case ranges between 0 and
log np
n

. Notice that by the Mean Value Theorem,

�.jyj/ % 1

jyj' 0..1C�.jyj//jyj/ : (55)

For any y such that jyj � t0,

�.jyj/ � '..1C�.jyj//jyj/� '.jyj/
jyj' 0.jyj/ D 1

jyj' 0.jyj/ � 1

t0' 0.t0/
D 1

n
: (56)

Since ' 0.t/ is nondecreasing, (55) is greater than 1

jyj'0..1C 1
n /jyj/ : We apply (55) with

jyj D 1Cx
.1C 1

n /
2
t0:

�

 
1C x

.1C 1
n
/2
t0

!

% 1

.1C x/t0' 0. .1Cx/t0
1C 1

n

/
� 1

t0' 0
�
.1Cx/t0
1C 1

n

� ; (57)

where the last equivalence holds in the current range of x. Next, we write that

' 0
 
.1C x/t0

1C 1
n

!

�
' ..1C x/t0/� '

�
.1Cx/t0
1C 1

n

�

.1C x/t0 � .1Cx/t0
1C 1

n

: (58)



Surface Area with Respect to Log Concave Rotation Invariant Measures 375

We note, that

.1C x/t0 � .1C x/t0

1C 1
n

D .1C x/t0

nC 1
� t0

n
(59)

in the current range of x. We shall invoke the function  .x/. Applying its
definition (45) in the numerator and (59) in the denominator of (58), we get that (58)
is equivalent to

 .x/C n log.1C x/C '.t0/� '
�
.1Cx/t0
1C 1

n

�

t0
n

: (60)

Notice now, that by the Mean Value Theorem,

'

 
.1C x/t0

1C 1
n

!

� '.t0/ % ' 0.t0/t0
�

x � 1C o.1/

n

�

D nx � 1C o.1/: (61)

By (60) and (61),

' 0
 
.1C x/t0

1C 1
n

!

- n

t0
� . .x/C n log.1C x/ � nx C 1C o.1// :

An elementary inequality x � log.1C x/ entails that

' 0
 
.1C x/t0

1C 1
n

!

- n

t0
. .x/C 1C o.1// : (62)

Finally, by (62) and (57) we conclude

�

 
1C x

.1C 1
n
/2
t0

!

% 1

n
� 1

 .x/C 1C o.1/
:ut

In the next few lines we use notation � D �.
jyj

.1C 1
n /
2
/ for clarity of the

presentation. We consider

e�.y/ WD �1.y/C �2.
y

.1C 1
n
/2
/

% t0˛�e
 .x/ C t0

p
�C�2

2 ˛p
�C�2 C 1

: (63)
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First, we shall minimize (63) with respect to ˛. It is minimized whenever

˛ � ˛min WD
p
�C�2

�
1p
e .x/�

� 1
�

:

Since  is increasing on .t0;1/, and due to our restrictions of the case 4, we may
assume that

 .x/ �  .t0.1C lognp
n
// D log

�r
n

�
x

�

� log

�
lognp
n

r
n

�

�

D log

�
lognp
�

�

:

Consequently,
p
�e .x/ � 4

p
�
p

logn D o.1/;

and thus ˛min �
q

�C�2
e .x/�

. Plugging it into (63), we obtain:

e�.y/ % t0

q
�.�C�2/e .x/: (64)

Finally, we apply (64) together with Proposition 1:

e�.y/ % t0
p
�p
n

s
e .x/

 .x/C 1C o.1/
% t0

p
�p
n
; (65)

where the last inequality holds since  .x/ is positive.

4.4 Balancing for Case 4

We restrict our attention on the part of the boundary which satisfies the condition of
the Case 4. Namely, denote @Q4 WD fy 2 @Q W t0 � jyj � .1C log np

n
/t0g.

We would like to apply (41) and (42) with �.y/ D �1.y/C �2.y/ and finish the
proof, but unfortunately we only have a lower bound for e�.y/ D �1.y/C�2. y

.1C 1
n /
2
/.

So we have to be a little bit more careful. We define A D fy 2 @Q4 W �1.y/ �
�2.

y

.1C 1
n /
2
/g and its compliment B D fy 2 @Q4 W �1.y/ < �2.

y

.1C 1
n /
2
/g: Note,

that both A and B are 
�measurable, since �1 and �2 are Borell functions and 

is absolutely continuous with respect to Lebesgue measure. We shall apply (41)
and (42) with �.y/ D �1.y/ on the set A and with �.y/ D �2.y/ on the set 1

.1C 1
n /
2
B .
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We write that

1 � Œ.nC 1/�nC1Jn��1
ˆ

A

ˆ 1

0

e�'.X1.y;t//D1.y; t/dtd�.y/

D Œ.nC 1/�nC1Jn��1
ˆ

A

e�'.jyj/�1.y/d�.y/ � 
.A/min
y2A �1.y/:

Thus,


.A/ � 1

miny2A �1.y/
: (66)

Similarly, we write

1 � Œ.nC 1/�nC1Jn��1
ˆ

1

.1C 1
n /
2
B

ˆ 1

0

e�'.X2.y;t//D2.y; t/dtd�.y/

D Œ.nC 1/�nC1Jn��1
ˆ

1

.1C 1
n /
2
B

e�'.jyj/�2.y/d�.y/

� min
y2B �2

 
y

.1C 1
n
/2

!




 
1

.1C 1
n
/2
B

!

: (67)

We apply Lemma 1 for M D 1

.1C 1
n /
2
B together with (67), and conclude that


.B/ - 1

miny2B �2. y

.1C 1
n /
2
/
: (68)

From (66) and (68) we obtain the following:


.@Q4/ D 
.A[ B/ - 1

miny2A �1.y/
C 1

miny2B �2. y

.1C 1
n /
2
/
:

Invoking the definitions of the sets A and B , we notice, that

min
y2A �1.y/ � 1

2
min
y2A

 

�1.y/C �2

 
y

.1C 1
n
/2

!!

� 1

2
min
y2@Q4

 

�1.y/C �2

 
y

.1C 1
n
/2

!!

;
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as well as

min
y2B �2

 
y

.1C 1
n
/2

!

� 1

2
min
y2B

 

�1.y/C �2

 
y

.1C 1
n
/2

!!

� 1

2
min
y2@Q4

 

�1.y/C �2

 
y

.1C 1
n
/2

!!

;

since the minimum over the smaller set is greater than the minimum over the larger
set. We conclude, that


.@Q4/ - 1

miny2@Q4
e�.y/

;

where e�.y/ D �1.y/ C �2.
y

.1C 1
n /
2
/. The desired lower bound for this quantity

was obtained earlier (65), which finishes the proof of the upper bound part for
Theorem 4.

5 Lower Bound

It seems impossible to construct an explicit example of a convex set Q with


.@Q/ �
p
np
�t0

. So we provide a probabilistic construction similar to the one in

[17]. Namely, we shall consider a random polytope circumscribed around a sphere
of a certain radius. The radius of the sphere and the number of faces shall be chosen
so that most of the time ˛.y/ D cos.y; ny/ � ˛min which appears in the proof
of the upper bound, and so that large enough portion of the polytope falls close
to the maximal sphere t0Sn. As it was shown in Lemma 4, a lot of the measure
is concentrated in the thin annulus around t0Sn; more precise results describing
the decay outside of the annulus were obtained in [11] (Theorem 1.4) and [12]
(Theorem 4.4). For simplicity of the calculations, we only look at the portion of
the polytope in that annulus, and it turns out to be enough for the lower bound.

We consider N uniformly distributed random vectors xi 2 S
n. Let % and W be

positive parameters, let r D t0 C w, where w 2 Œ�W;W �. For the purposes of
the calculation we assume from the beginning that W; % � t0

20
. Consider a random

polytopeQ in R
nC1, defined as follows:

Q D fx 2 R
nC1 W hx; xi i � %; 8i D 1; : : : ; N g:

Passing to the polar coordinates inHi D fx W hx; xi i D %g, we estimate the surface
area of the half space Ai D fx W hx; xi i � %g:
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.@Ai/ D 1

.nC 1/�nC1Jn

ˆ

Rn

e�'.
p

jyj2C%2/dy

% 1

.nC 1/�nC1Jn
.nC 1/�n

ˆ t0CW

t0�W
e�'.t/.t2 � %2/ n�1

2

p
t2 � %2
t

dt

%
p
n

Jn

�

1 � %2

.t0 �W /2

� n
2
ˆ t0CW

t0�W
e�'.t/tn�1dt:

Thus the expectation E
.@Q/ can be estimated from below by

N

p
n

Jn

�

1 � %2

.t0 �W /2

� n
2
ˆ t0CW

t0�W
e�'.t/tn�1.1 � p.t//N�1dt; (69)

wherep.t/ is the probability that the fixed point on the sphere of radius t is separated
from the origin by the hyperplaneHi .

As in [17], we use the formula for a surface area of a body of revolution to obtain
the formula for p.r/:

p.r/ D
�ˆ r

�r
.1 � t2

r2
/
n�2
2 dt

��1 ˆ r

%

.1 � t2

r2
/
n�2
2 dt: (70)

By Laplace method, the first integral is approximately equal to rp
n
: Thus, after the

change of variables x D t
r
, we obtain

p.r/ �
p
n

r
r

ˆ 1

%
r

.1 � x2/ n�2
2 dx D p

n

ˆ 1

%
r

.1 � x2/ n�2
2 dx: (71)

Notice, that for any z 2 .0; 1/,
ˆ 1

z
.1 � t2/mdt � 2

z

ˆ 1�z2

0

smds D 2

z.mC 1/
.1 � z2/mC1: (72)

By (71), (72) applied with z D %

r
and m D n�2

2
, and the fact that r � t0;

p.r/ - rp
n%

�

1 � %2

r2

� n
2

- t0p
n%

�

1 � %2

.t0 CW /2

� n
2

(73)

for all r 2 Œt0 �W; t0 CW �. At this point we choose

N D
p
n%

t0
.1 � %2

.t0 CW /2
/� n

2 :
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Observe that .1 � p.r//N�1 . .1 � 1
N
/N � e�1: Applying the above together

with (69) and (73), we get:

E.
.@Q// % n%

Jnt0

0

@
1 � %2

.t0�W /2
1 � %2

.t0CW /2

1

A

n
2 ˆ t0CW

t0�W
e�'.t/tn�1dt: (74)

Let us now plug W D �t0. By Lemmas 4 and 5 and Remark 2, we observe, that
Jn�1 � ´ t0C�t0

t0��t0 t
n�1e�'.t/. Thus,

E.
.@Q// % n%

t0
� Jn�1

Jn

0

@
1 � %2

.t0�W /2
1 � %2

.t0CW /2

1

A

n
2

� n%

t20

0

@
1 � %2

.t0�W /2

1 � %2

.t0CW /2

1

A

n
2

:

We plug % D 1

5
p
�n
t0. Then

1 � %2

.t0�W /2

1 � %2

.t0CW /2
� 1 � 1

n
;

which implies that

E.
.@Q// %
p
np
�t0
:

This finishes the lower bound part of the Theorem 4. �

6 Final Remarks

As was discussed in Sect. 3, Theorem 4 entails Theorem 1. Its conclusion can be
understood for any measure which has at least two bounded moments, so it is
interesting to explore sufficiency of our conditions, i.e. spherical invariance and log
concavity. We shall consider some examples of non rotation invariant or non log
concave measures, for which the conclusion of Theorem 1 does not hold.

Example 1. Consider Lebesgue measure concentrated on the cube Œ� 1
2
; 1
2
�n. Due to

convexity, the set of maximal surface area for this measure is the cube Œ� 1
2
; 1
2
�n itself.

Its surface area is 2n. However, EjX j � p
n and VarjX j � 1 (see [9] for the proof),

so if Theorem 1 was true, it would give n
1
4 as a maximal surface area. Thus there

is no hope for Theorem 1 to be true for all log concave measures. The isotropicity
assumption would not change anything due to the homogeneity of Theorem 1.



Surface Area with Respect to Log Concave Rotation Invariant Measures 381

Example 2. Pick " � 1
n

. We consider a rotation invariant non log concave measure

". Let its density be

f .y/ D cn

(
0 if jyj 2 Œ0; 1 � "� [ Œ1;1/

1 if jyj 2 .1 � "; 1/:
The normalizing constant

cn D �nC1.1 � .1 � "/nC1/ � .nC 1/"�nC1:

For a random variable X with density f we compute

EjX j D 1 � nC1
2
"

1 � n
2
"

C o..nC 1/"/ � 1

and

VarjX j � "2

4
:

Thus if Theorem 1 was true, the maximal surface area would be of order
p
np
"
.

However,


".S
n/ � 1

n"2
;

which is greater than
p
np
"

for " � 1
n

.

Example 2 shows, that for any dimension n there exist a rotation invariant
measure for which the conclusion of Theorem 1 fails, but it is hard to find an
example of a density function which would serve all sufficiently large dimensions
at once. It suggests the following conjecture.

Conjecture 1. Fix any real-valued function '.t/ on the positive semi-axes. Then
there exists a positive constant C' , depending on the function '.t/, such that for all
n � C' ,

max
Q2Kn


.@Q/ �
p
n

p
EjX j 4

p
VarjX j ;

where X is a random vector on R
n distributed with respect to the density e�'.jX j/.
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Appendix

In this Appendix we provide a technical lemma which is believed to be well known
to the specialists. See [10] for the proof of the same statement in the case of Standard
Gaussian Measure and polynomial level sets.

Lemma 11. Let 
 be a probability measure on R
nC1 with a continuous density

f .y/. Then, for any convex set Q in R
nC1,

ˆ

@Q

f .y/d�.y/ D lim
"!0


.QC "BnC1
2 / � 
.Q/
"

;

where, as before, d�.y/ stands for Lebesgue surface measure.

Proof. For a convex set Q in R
nC1 and " > 0, we introduce the notation AQ;" D�

Q C "BnC1
2

� n Q. We remark, that the normal vector ny is well defined almost
everywhere for y 2 @Q if Q is convex. So the function f .y C tny/ is defined
almost everywhere on @Q. We shall apply the second Nazarov’s system (40), which
we used in the proof of the main result. By convexity of Q,


.AQ;"/ �
ˆ

@Q

ˆ "

0

f .y C tny/dtd�.y/; (75)

where the integration is understood in the Lebesgue sense. By Lebesgue Differenti-
ation Theorem, for every y 2 @Q such that ny is defined,

lim
"!0

1

"

ˆ "

0

f .y C tny/dt D f .y/:

Consequently,

lim
"!0

1

"

.AQ;"/ �

ˆ

@Q

f .y/d�.y/: (76)

On the other hand, we compare the measure of our annulus to the surface area of
QC "BnC1

2 .
We note that for any " > 0 and x 2 AQ;" we may find y 2 @

�
Q C "BnC1

2

�
and

t 2 Œ0; "� so that x D y � tny .
To see this, inscribe a ball centred at x into Q C "BnC1

2 and chose y to be a
contact point of the ball and @.Q C "BnC1

2 /. We see, that jx � yj � ", since

dist.x; @.Q C "BnC1
2 // � ":

We write
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.AQ;"/ �
ˆ

@.QC"BnC1
2 /

ˆ "

0

f .y � tny/dtd�.y/: (77)

We observe, that

lim
"!0

1

"

.AQ;"/ �

ˆ

@Q

f .y/d�.y/: (78)

Finally, (76) and (78) entail the conclusion of the Lemma. ut
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On the Equivalence of Modes of Convergence
for Log-Concave Measures

Elizabeth S. Meckes and Mark W. Meckes

Abstract An important theme in recent work in asymptotic geometric analysis is
that many classical implications between different types of geometric or functional
inequalities can be reversed in the presence of convexity assumptions. In this note,
we explore the extent to which different notions of distance between probability
measures are comparable for log-concave distributions. Our results imply that weak
convergence of isotropic log-concave distributions is equivalent to convergence in
total variation, and is further equivalent to convergence in relative entropy when the
limit measure is Gaussian.

1 Introduction and Statements of Results

An important theme in recent work in asymptotic geometric analysis is that many
classical implications between different types of geometric or functional inequalities
can be reversed in the presence of convexity. A particularly striking recent example
is the work of E. Milman [11–13], showing for example that, on a Riemannian
manifold equipped with a probability measure satisfying a convexity assumption,
the existence of a Cheeger inequality, a Poincaré inequality, and exponential
concentration of Lipschitz functions are all equivalent. Important earlier examples
of this theme are C. Borell’s 1974 proof of reverse Hölder inequalities for log-
concave measures [4], and K. Ball’s 1991 proof of a reverse isoperimetric inequality
for convex bodies [1].

In this note, we explore the extent to which different notions of distance between
probability measures are comparable in the presence of a convexity assumption.
Specifically, we consider log-concave probability measures; that is, Borel probabil-
ity measures � on R

n such that for all nonempty compact sets A;B � R
n and every

� 2 .0; 1/,

�.�AC .1 � �/B/ � �.A/��.B/1��:
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We moreover consider only those log-concave probability measures � on R
n which

are isotropic, meaning that if X 	 � then

EX D 0 and EXXT D In:

The following distances between probability measures � and � on R
n appear

below.

1. The total variation distance is defined by

dTV .�; �/ WD 2 sup
A	Rn

j�.A/� �.A/j ;

where the supremum is over Borel measurable sets.
2. The bounded Lipschitz distance is defined by

dBL.�; �/ WD sup
kgkBL�1

ˇ
ˇ
ˇ
ˇ

ˆ
g d��

ˆ
g d�

ˇ
ˇ
ˇ
ˇ ;

where the bounded-Lipschitz norm kgkBL of g W Rn ! R is defined by

kgkBL WD max

(

kgk1 ; sup
x¤y

jg.x/ � g.y/j
kx � yk

)

and k�k denotes the standard Euclidean norm on R
n. The bounded-Lipschitz

distance is a metric for the weak topology on probability measures (see, e.g.,
[6, Theorem 11.3.3]).

3. The Lp Wasserstein distance for p � 1 is defined by

Wp.�; �/ WD inf
�

�ˆ
kx � ykp d�.x; y/

� 1
p

;

where the infimum is over couplings� of� and �; that is, probability measures�
on R

2n such that�.A�R
n/ D �.A/ and �.Rn�B/ D �.B/. TheLp Wasserstein

distance is a metric for the topology of weak convergence plus convergence of
moments of order p or less. (See [15, Sect. 6] for a proof of this fact, and a
lengthy discussion of the many fine mathematicians after whom this distance
could reasonably be named.)

4. If � is absolutely continuous with respect to �, the relative entropy, or
Kullback–Leibler divergence is defined by

H.� j �/ WD
ˆ �

d�

d�

�

log

�
d�

d�

�

d� D
ˆ

log

�
d�

d�

�

d�:
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It is a classical fact that for any probability measures � and � on R
n,

dBL.�; �/ � dTV.�; �/: (1)

This follows from a dual formulation of total variation distance: the Riesz represen-
tation theorem implies that

dTV.�; �/ D sup

�ˇ
ˇ
ˇ
ˇ

ˆ
g d��

ˆ
g d�

ˇ
ˇ
ˇ
ˇ Wg 2 C.Rn/; kgk1 � 1



: (2)

In the case that � and � are log-concave, there is the following complementary
inequality.

Proposition 1. Let � and � be log-concave isotropic probability measures on R
n.

Then

dTV.�; �/ � C
p

ndBL.�; �/:

In this result and below, C; c, etc. denote positive constants which are indepen-
dent of n, �, and �, and whose values may change from one appearance to the next.

In the special case in which n D 1 and � D 
1, Brehm, Hinow, Vogt and
Voigt proved a similar comparison between total variation distance and Kolmogorov
distance dK .

Proposition 2 ([5, Theorem 3.3]). Let � be a log-concave measure on R. Then

dTV .�; 
1/ � C
p

max f1; log.1=dK.�; 
1//g dK.�; 
1/:

Together with (1), Proposition 1 implies the following.

Corollary 3. On the family of isotropic log-concave probability measures on R
n,

the topologies of weak convergence and of total variation coincide.

Corollary 3 will probably be unsurprising to experts, but we have not seen it
stated in the literature.

Proposition 1 and Corollary 3 are false without the assumption of isotropicity.
For example, a sequence of nondegenerate Gaussian measures f�kgk2N on R

n may
weakly approach a Gaussian measure� supported on a lower-dimensional subspace,
but dTV.�k; �/ D 2 for every k. It may be possible to extend Corollary 3 to a class
of log-concave probability measures with, say, a nontrivial uniform lower bound on
the smallest eigenvalue of the covariance matrix, but we will not pursue this here.

The Kantorovitch duality theorem (see [15, Theorem 5.10]) gives a dual formu-
lation of the L1 Wasserstein distance similar to the formulation of total variation
distance in (2):

W1.�; �/ D sup
g

ˇ
ˇ
ˇ
ˇ

ˆ
g d��

ˆ
g d�

ˇ
ˇ
ˇ
ˇ ;
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where the supremum is over 1-Lipschitz functions g W R
n ! R. An immediate

consequence is that for any probability measures � and �,

dBL.�; �/ � W1.�; �/:

The following complementary inequality holds in the log-concave case.

Proposition 4. Let � and � be log-concave isotropic probability measures on R
n.

Then

W1.�; �/ � C max

�p
n; log

� p
n

dBL.�; �/

�

dBL.�; �/: (3)

The following graph of f .x/ D max
˚
1; log

�
1
x

�

x may be helpful in visualizing

the bounds in Proposition 4 and the results below.

In particular, when dBL is moderate, we simply have W1 � C
p
ndBL. When dBL

is small, the right hand side of (3) is not quite linear in dBL, but is o
�
n"=2d 1�"BL

�
for

each " > 0.
From Hölder’s inequality, it is immediate that if p � q, then Wp.�; �/ �

Wq.�; �/. In the log-concave case, we have the following.

Proposition 5. Let � and � be isotropic log-concave probability measures on R
n

and let 1 � p < q. Then

Wq.�; �/
q � C

 

max

(
p
n; log

 �
cmaxfq;png�q
Wp.�; �/p

!)!q�p
Wp.�; �/

p:

Because the bounded-Lipschitz distance metrizes the weak topology, and conver-
gence in Lp Wasserstein distance implies convergence of moments of order smaller
than p, Propositions 4 and 5 imply the following.
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Corollary 6. Let �, f�kgk2N be isotropic log-concave probability measures on
R
n such that �k ! � weakly. Then all moments of the �k converge to the

corresponding moments of �.

The following, known as the Csiszár–Kullback–Pinsker inequality, holds for any
probability measures � and �:

dTV.�; �/ �
p
2H.� j �/: (4)

(See [3] for a proof, generalizations, and original references.) Unlike the other
notions of distance considered above,H.� j �/ is not a metric, andH.� j �/ can only
be finite if � is absolutely continuous with respect to �. Nevertheless, it is frequently
used to quantify convergence; (4) shows that convergence in relative entropy is
stronger than convergence in total variation. Convergence in relative entropy is
particularly useful in quantifying convergence to the Gaussian distribution, and it
is in that setting that (4) can be essentially reversed under an assumption of log-
concavity.

Proposition 7. Let � be an isotropic log-concave probability measure on R
n, and

let 
n denote the standard Gaussian distribution on R
n. Then

H.� j 
n/ � C max

�

log2
�

n

dTV.�; 
n/

�

; n log.nC 1/



dTV.�; 
n/:

The proof of Proposition 7 uses a rough bound on the isotropic constant Lf D
kf k1=n1 of the density f of �. Better estimates are available but only result in a
change in the absolute constants in our bound. In the case that the isotropic constant
is bounded independent of n (e.g. if � is the uniform measure on an unconditional
convex body, or if the hyperplane conjecture is proved), then the bound above can
be improved slightly to

H.� j 
n/ � C max

�

log2
�

n

dTV.�; 
n/

�

; n



dTV.�; 
n/:

Corollary 8. Let f�kgk2N be isotropic log-concave probability measures on R
n.

The following are equivalent:

1. �k ! 
n weakly.
2. �k ! 
n in total variation.
3. H.�k j 
n/ ! 0.

It is worth noting that Proposition 7 implies that B. Klartag’s central limit
theorem for convex bodies (proved in [8, 9] in total variation) also holds in the a
priori stronger sense of entropy, with a polynomial rate of convergence.
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2 Proofs of the Results

The proof of Proposition 1 uses the following deconvolution result of R. Eldan and
B. Klartag.

Lemma 9 ([7, Proposition 10]). Suppose that f is the density of an isotropic log-
concave probability measure on R

n, and for t > 0 define

't.x/ D 1

.2�t2/n=2
e�kxk2=2t2 :

Then

kf � f � 'tk1 � cnt:

Proof (Proof of Proposition 1). Let g 2 C.Rn/ with kgk1 � 1. For t > 0, let
gt D g � 't , where 't is as in Lemma 9. It follows from Young’s inequality that
kgtk1 � 1 and that gt is 1=t-Lipschitz. We have

ˇ
ˇ
ˇ
ˇ

ˆ
g d� �

ˆ
g d�

ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ

ˆ
gt d� �

ˆ
gt d�

ˇ
ˇ
ˇ
ˇC

ˇ
ˇ
ˇ
ˇ

ˆ
.gt � g/ d�

ˇ
ˇ
ˇ
ˇ :

It is a classical fact due to C. Borell [4] that a log-concave probability measures
which is not supported on a proper affine subspace of Rn has a density. If f is the
density of �, then by Lemma 9,

ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

ˆ
g.f � f � 't /

ˇ
ˇ
ˇ
ˇ � kf � f � 'tk1 � cnt;

and
ˇ
ˇ
ˇ
ˇ

ˆ
.g � gt / d�

ˇ
ˇ
ˇ
ˇ � cnt

similarly. Furthermore,

ˇ
ˇ
ˇ
ˇ

ˆ
gt d��

ˆ
gt d�

ˇ
ˇ
ˇ
ˇ � dBL.�; �/ kgtkBL � dBL.�; �/maxf1; 1=tg:

Combining the above estimates and taking the supremum over g yields

dTV.�; �/ � dBL.�; �/maxf1; 1=tg C cnt

for every t > 0. The proposition follows by picking t D p
dBL.�; �/=2n � 1.
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The remaining propositions all depend in part on the following deep concentra-
tion result due to G. Paouris.

Proposition 10 ([14]). Let X be an isotropic log-concave random vector in R
n.

Then

P ŒkXk � R� � e�cR

for every R � C
p
n, and

�
E kXkp�1=p � C maxfpn; pg

for every p � 1.

The following simple optimization lemma will also be used in the remaining
proofs.

Lemma 11. Given A;B;M; k > 0,

inf
t�M

�
Atk C Be�t � � A

�
1C .max fM; log.B=A/g/k

�
:

Proof. Set t D maxfM; log.B=A/g.

Proof (Proof of Proposition 4). Let g W Rn ! R be 1-Lipschitz and without loss of
generality assume that g.0/ D 0, so that jg.x/j � kxk. For R > 0 define

gR.x/ D

8
ˆ̂
<

ˆ̂
:

�R if g.x/ < �R;
g.x/ if � R � g.x/ � R;

R if g.x/ > R;

and observe that kgRkBL � maxf1;Rg. Let X 	 � and Y 	 �. Then

jEg.X/ � Eg.Y /j � E jgR.X/ � gR.Y /j C E jg.X/ � gR.X/j C E jg.Y / � gR.Y /j
� maxf1;RgdBL.�; �/C E kXk�

kXk�R C E kY k�
kY k�R:

By the Cauchy–Schwarz inequality and Proposition 10,

E kXk�kXk�R �
p
nP ŒkXk � R� � p

ne�cR

for R � C
p
n, and the last term is bounded similarly. Combining the above

estimates and taking the supremum over g yields

W1.�; �/ � maxf1;RgdBL.�; �/C 2
p
ne�cR

for every R � C
p
n. The proposition follows using Lemma 11.
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Proof (Proof of Proposition 5). Let .X; Y / be a coupling of � and � on R
n � R

n.
Then for each R > 0,

E kX �Y kq�Rq�p
E
�kX �Y kp �kX �Y k�R

	 C
q

P ŒkX�Y k � R�E kX�Y k2q:

By Proposition 10,

P ŒkX � Y k � R� � P ŒkXk � R=2�C P ŒkY k � R=2� � e�cR

when R � C
p
n, and

�
E kX � Y k2q

�1=2q �
�
E kXk2q

�1=2q C
�
E kY k2q

�1=2q � C maxfq;png;

so that

E kX � Y kq � Rq�p
E kX � Y kp C �

C maxfq;png�q e�cR

for every R � C
p
n. Taking the infimum over couplings and then applying

Lemma 11 completes the proof.

The proof of Proposition 7 uses the following variance bound which follows from
a more general concentration inequality due to Bobkov and Madiman.

Lemma 12 (See [2, Theorem 1.1]). Suppose that � is an isotropic log-concave
probability measure on R

n with density f , and let Y 	 �. Then

Var
�
logf .Y /

� � Cn:

Proof (Proof of Proposition 7). Let f be the density of �, and let '.x/ D
.2�/�n=2e�kxk2=2 be the density of 
n. Let Z 	 
n, Y 	 �, X D f .Z/

'.Z/
, and

W D f .Y /

'.Y /
. Then

H.� j 
n/ D EX logX:

In general, if � and � have densities f� and f� , it is an easy exercise to show that
dTV.�; �/ D ´ ˇ

ˇf� � f�
ˇ
ˇ; from this, it follows that

dTV .�; 
n/ D E jX � 1j D 1

2
E.X � 1/�X�1:

Let h.x/ D x logx. Since h is convex and h.1/ D 0, we have that h.x/ �
a.x � 1/ for 1 � x � R as long as a is such that h.R/ � a.R � 1/. Let R � 2, so
that R

R�1 � 2. Then

h.R/ D R logR � 2.R � 1/ logR D a.R � 1/
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for a D 2 logR. Thus

EX logX � E.X logX/�X�1
� aE.X � 1/�X�1 C E.X logX/�X�R
D .logR/dTV.�; 
n/C E.X logX/�X�R:

The Cauchy–Schwarz inequality implies that

E.X logX/�X�R D E.logW /�W�R �
p
E.logW /2

p
P ŒW � R�:

By the L2 triangle inequality, we have

p
E.logW /2 D

q

E jlogf .Y / � log'.Y /j2

�
q

E jlogf .Y /j2 C
q

E jlog'.Y /j2;
and by Proposition 10,

E jlog'.Y /j2 D E

 
n

2
log 2� C kY k2

2

!2

� Cn2:

By Lemma 12,

E jlogf .Y /j2 � .E logf .Y //2 C Cn:

Recall that the entropy of � is

�
ˆ
f .y/ logf .y/ dy D �E logf .Y / � 0;

and that 
n is the maximum-entropy distribution with identity covariance, so that

.E logf .Y //2 � .E log '.Z//2 D
�
n log

p
2�e

�2
:

Thus
p
E.logW /2 � Cn:

By [10, Theorem 5.14(e)], kf k1 � 28nnn=2, and so

P ŒW � R� D P

�
f .Y /

'.Y /
� R

�

� P

h
ekY k2=2 � .217�n/�n=2R

i

D P

�

kY k �
q
2 log

�
.217�n/�n=2R

�
�
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for each R � .217�n/n=2. Proposition 10 now implies that

P ŒW � R� � e�cplogR� n
2 log.217�n/ � e�c0

p
logR

for logR � Cn log.nC 1/.
Substituting S D c

p
logR, all together this shows that

H.� j 
n/ � C
�
S2dTV.�; 
n/C ne�S �

for every S � c
p
n log.nC 1/. The result follows using Lemma 11.
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A Remark on the Diameter of Random Sections
of Convex Bodies

Shahar Mendelson

Abstract We obtain a new upper estimate on the Euclidean diameter of the
intersection of the kernel of a random matrix with iid rows with a given convex
body. The proof is based on a small-ball argument rather than on concentration and
thus the estimate holds for relatively general matrix ensembles.

1 Introduction

In this note we revisit the following problem.
Let � be an isotropic measure1 on R

n, and by ‘isotropic’ we mean a symmetric
measure with respect to zero that satisfies

ˆ

Rn

˝
x; t

˛2
d�.t/ D kxk2`n2 for every x 2 R

n:

Given a random vector X distributed according to � and for X1; : : : ; Xk that are
independent copies of X , let � be the k � n random matrix k�1=2Pk

iD1
˝
Xi; �

˛
ei ,

whose rows are X1; : : : ; Xk.

Question 1.1. If T � R
n is a convex body (that is, a convex, centrally-symmetric

set with a non-empty interior), what is the typical diameter of T \ ker.� /?

The origin of this problem was the study of the geometry of convex bodies, and in
particular, Milman’s low-M � estimate [11] and subsequent estimates on the Gelfand
widths of convex bodies, due to Pajor and Tomczak-Jaegermann [12, 13].

The focus of the original question had been the existence of a section of T of
codimension k and of a small Euclidean diameter, and was established by estimating

1We will abuse notation and not distinguish between the measure � and the random vector X that
has � as its law.
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Ediam.T \ E/ from above, relative to the uniform measure on the Grassmann
manifoldGn�k;n.

In recent years, more emphasis has been put on other choices of measures on
the Grassmann manifold, for example, using the distribution generated by kernels
of matrices selected from some random ensemble—like � D k�1=2Pk

iD1
˝
Xi ; �

˛
ei

defined above.
The standard way of estimating Ediam.T \ ker.� // for such matrix ensembles

is based on the quadratic empirical processes indexed by linear forms associated
with T .

It is straightforward to show (see, for example, the discussion in [8]) that given
r > 0, if

sup
x2T\rSn�1

ˇ
ˇ
ˇ
ˇ
ˇ

1

k

kX

iD1

˝
Xi; x

˛2 � E
˝
X; x

˛2
ˇ
ˇ
ˇ
ˇ
ˇ

� r2

2
; (1)

one has

1

2
kxk2`n2 � k� xk2

`k2
� 3

2
kxk2`n2

for every x 2 T of `n2 norm larger than r . Hence, on the event given by (1), diam.T\
ker.� // � r .

Setting r0.k; ı/ to be the smallest for which

Pr

 

sup
x2T\rSn�1

ˇ
ˇ
ˇ
ˇ
ˇ

1

k

kX

iD1

˝
Xi; x

˛2 � E
˝
X; x

˛2
ˇ
ˇ
ˇ
ˇ
ˇ

� r2

2

!

� 1 � ı;

it follows that with probability at least 1 � ı,

diam.T \ ker.� // � r0;

and a similar argument may be used to control Ediam.T \ ker.� //.
Unfortunately, estimating the quadratic empirical process is a difficult task. In

fact, one has a satisfactory estimate that holds for every convex body T � R
n only

for measures that are subgaussian or unconditional log-concave.

Definition 1.2. Given a real random variable Z, set kZk 2 D inffc > 0 W
E exp.jZj2=c2/ � 2g.

The measure � is L-subgaussian if k˝x; �˛k 2.�/ � Lk˝x; �˛kL2.�/ for every
x 2 R

n.

Theorem 1.3 ([6]). There exist absolute constants c1; c2 and c3 for which the
following holds. Let � be an isotropic, L-subgaussian measure (and, in particular,
for every x 2 R

n, k˝X; x˛k 2.�/ � Lkxk`n2 ).
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Let T � R
n and set dT D supt2T ktk`n2 . For u � c1, with probability at least

1 � 2 exp.�c2u2.EkGkT ı=dT /
2/;

sup
x2T

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
.
˝
Xi; x

˛2 � E
˝
X; x

˛2
/

ˇ
ˇ
ˇ
ˇ
ˇ

� c3L
2u2

�
u
p
kdTEkGkT ı C .EkGkT ı/2

�
;

where G D .g1; : : : ; gn/ is the standard gaussian vector in R
n and EkGkT ı D

E supt2T j˝G; t ˛j.
A version of Theorem 1.3 has been established in [8] when T � Sn�1 and with a
weaker probability estimate.

Theorem 1.3 follows from a general bound on the quadratic empirical process
that is based on a global complexity parameter of the indexing set [9], and that will
not be defined here. Thanks to Talagrand’s Majorizing Measures Theorem (see the
book [17] for a detailed survey on this topic), this complexity parameter is upper
bounded by 	 EkGkT ı in the subgaussian case, thus leading to Theorem 1.3.
However, in other cases, controlling the complexity parameter is nontrivial.

One other case in which the global complexity may be upper bounded using a
mean-width of T , is when X is isotropic, unconditional and log-concave. Using the
Bobkov-Nazarov Theorem [1], X is dominated by Y D .y1; : : : ; yn/, a vector with
independent, standard, exponential coordinates. One may show [9] that with high
probability,

sup
x2T

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
.
˝
Xi ; x

˛2 � E
˝
X; x

˛2
/

ˇ
ˇ
ˇ
ˇ
ˇ

.
p
kdTEkY kT ı C .EkY kT ı/2: (2)

The proof of (2) is based on two additional observations. First, that when X is
isotropic, unconditional and log-concave, the global complexity parameter of T may
be bounded using a mixture of Talagrand’s 
˛ functionals, and second, that this
mixture is equivalent to EkY kT ı [16].

Additional bounds on the quadratic process are known for more general mea-
sures, but only for very specific choices of sets T . The most important example
is when T is the Euclidean ball, and the quadratic empirical process may be used
to obtain a Bai-Yin type estimate on the largest and smallest singular values of �
[9, 10].

At this point, it should be noted that (1) is a much stronger statement than what is
actually needed to bound the diameter of T \ ker.� /. Clearly, any sort of a positive
lower bound on

inf
x2T\rSn�1

k� xk`k2 (3)
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would suffice—rather than the two-sided, ‘almost isometric’ bound that follows
from bounds on the quadratic process.

Here, we will show that (3) holds for rather general matrix ensembles.

Theorem 1.4. Let X be an isotropic vector on R
n and assume that linear forms

satisfy the following small-ball condition: that there is some � > 0 for which

Pr.j˝x;X ˛j � �kxk`n2 / � 99=100 for every x 2 R
n:

Then, there exist a constant c that depends only on �, for which, with probability at
least 3=4,

diam.T \ ker.� // � cp
k

� max

(

EkGkT ı ;Ekk�1=2
kX

iD1
XikT ı

)

:

Theorem 1.4 can be improved and extended in various ways.
First of all, the ‘correct’ upper estimate on the diameter should be based on a

fixed point condition defined using the norms k k.T\rBn2 /
ı rather than the norm k kT ı .

Also, the constant probability estimate of 3=4 may be improved significantly to
1 � 2 exp.�ck/ with a slightly more involved proof (see [4] and [7] for a similar
argument). We will formulate, without proof, a more general version of Theorem 1.4
at the end of the note.

Examples.

1. If X is an isotropic L-subgaussian vector, it is standard to verify that
k�1=2Pk

iD1 Xi is isotropic and cL-subgaussian for a suitable absolute constant c.
Therefore,

Ekk�1=2
kX

iD1
XikT ı � c1LEkGkT ı ;

and by Theorem 1.4, with probability at least 3=4,

diam.T \ ker.� // � c1.�;L/
EkGkT ıp

k
:

This coincides with the estimate from [8] (up to the ‘localization’ of using
k k.T\rBn2 /

ı instead of k kT ı mentioned above) and with the classical result of
[12] when X is the standard gaussian vector.

2. If X is an isotropic, unconditional, log-concave measure then so is Z D
k�1=2Pk

iD1 Xi . By the Bobkov-Nazarov Theorem [1], bothZ andG are strongly
dominated by Y , the random vector with independent, standard exponential
coordinates. Therefore, by Theorem 1.4, with probability at least 3=4,
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diam.T \ ker.� // � c2.�/
EkY kT ıp

k
:

3. Theorem 1.4 leads to a ‘heavy tails’ result in some cases. Since X is symmetric,Pk
iD1 Xi has the same distribution as

Pk
iD1 "iXi , where ."i /kiD1 are independent,

symmetric f�1; 1g-valued random variables that are independent of .Xi/kiD1. If
T ı has a Rademacher type 2 constant R2.T ı/, then

Ekk�1=2
kX

iD1
XikT ı D Ekk�1=2

kX

iD1
"iXikT ı � R2.T

ı/.EkXk2T ı

/1=2;

and with probability at least 3=4,

diam.T \ ker.� // � c3.�/p
k

� max
˚
EkGkT ı ; R2.T

ı/.EkXk2T ı

/1=2


:

For example, if TDBn
1 and X 2 ˇBn1 almost surely, then kXkT ıDkXk`n

1

�ˇ,
R2.`

n1/ � p
logn and EkGk`n

1

.
p

logn. Therefore,

diam.Bn
1 \ ker.� // � c3.�/ˇ

r
logn

k
:

2 Proof of Theorem 1.4

Lemma 2.1. Let � be a random variable that satisfies

Pr.j�j � �k�kL2/ � 1 � " (4)

for constants 0 < " < 1=12 and � > 0.
If �1; : : : ; �k are independent copies of �, then with probability at least 1� 2�6"k

there is a subset J � f1; : : : ; kg of cardinality at least .1 � 6"/k, and for every
j 2 J ,

j�j j � �k�kL2:

Proof. It suffices to show that no more than 6"k of the j�i j’s are smaller than
�k�kL2 . By a binomial estimate, if 6"k � k=2,

Pr
�9J � f1; : : : ; kg; jJ j D 6"k; j�j j � �k�kL2 if j 2 J �

�
 
k

6"k

!

Pr6"k .j�j � �k�kL2/ �
� e

6"

�6"k � "6"k � 2�6"k:

�
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Let f�i W 1 � i � N g be a collection of random variables, and for every i let
Zi 2 R

k be a random vector with independent coordinates, distributed according to
the random variable �i . Denote by Zi.j / the j -th coordinate of Zi .

Corollary 2.2. If each �i satisfies the small-ball condition (4) and N � 23"k, then
with probability at least 1 � 2�3"k , for every 1 � i � N there is a subset Ji �
f1; : : : ; kg, of cardinality at least .1 � 6"/k, and

jZi.j /j � �k�ikL2 for every j 2 Ji :

Proof of Theorem 1.4. Let " D 1=600 and observe that by the small ball assumption
and since k˝X; x˛kL2 D kxk`n2 then,

Pr.j˝X; x˛j � �kxk`n2 / � .1 � "/

for every x 2 R
n.

Fix r > 0 to be named later and set Tr D T \ rSn�1. Let

� D c
EkGkT ı

rp
"k

for a suitable absolute constant c and set Vr � Tr to be a maximal �-separated
subset of Tr with respect to the `n2 norm. Sudakov’s inequality (see, e.g. [5, 14])
shows that for the right choice of c, jVr j � 23"k .

Let

�i D ˝
X; vi

˛
; vi 2 Vr; 1 � i � 23"k;

and set Zi D .Zi .j //
k
jD1 D .

˝
Xj ; vi

˛
/kjD1 where X1; : : : ; Xk are independent

copies of X .
Applying Corollary 2.2 to the set fZi W 1 � i � 23"kg, it follows that with

probability at least 1 � 2�3"k , for every v 2 Vr there is a subset Jv � f1; : : : ; kg,
jJvj � .1 � 6"/k D 99k=100, and for every j 2 Jv,

j˝Xj ; v
˛j � �kvk`n2 D �r; (5)

and the last equality holds because Vr � rSn�1.
For every x 2 Tr , let �.x/ be the nearest point to x in Vr with respect to the `n2

norm. Therefore,

Ej˝X; x � �.x/
˛j � k˝x � �.x/; �˛kL2.�/ D kx � �.x/k`n2 � �:

By the Giné-Zinn symmetrization inequality [3], the contraction inequality for
Bernoulli processes (see, e.g., [5]), and since x � �.x/ 2 2T \ �Bn

2 for every
x 2 Tr ,
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E sup
x2Tr

1

k

kX

iD1
j˝Xi ; x � �.x/

˛j

� �C E sup
x2Tr

ˇ
ˇ
ˇ
ˇ
ˇ

1

k

kX

iD1
j˝Xi ; x � �.x/˛j � Ej˝Xi ; x � �.x/˛j

ˇ
ˇ
ˇ
ˇ
ˇ

� �C 2

k
E sup
x2Tr

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
"i j
˝
Xi; x � �.x/

˛j
ˇ
ˇ
ˇ
ˇ
ˇ

� �C 2

k
E sup
x2Tr

ˇ
ˇ
ˇ
ˇ
ˇ

kX

iD1
"i
˝
Xi ; x � �.x/˛

ˇ
ˇ
ˇ
ˇ
ˇ

� �C 2

k
E

�
�
�
�
�

kX

iD1
"iXi

�
�
�
�
�
.2T\�Bn2 /ı

� � C 4

k
E

�
�
�
�
�

kX

iD1
Xi

�
�
�
�
�
.T\�Bn2 /ı

:

Hence, by the choice of � and the trivial inclusion T \ �Bn
2 � T ,

E sup
x2Tr

1

k

kX

iD1
j˝Xi; x � �.x/

˛j � c
EkGkT ıp

"k
C 4

k
E

�
�
�
�
�

kX

iD1
Xi

�
�
�
�
�
T ı

: (6)

Set A D E supx2Tr k
�1Pk

iD1 j˝Xi; x � �.x/
˛j and let

Wr D ˚
.
˝
Xi; x � �.x/

˛
/kiD1 W x 2 Tr



:

Note that for 0 < ı < 1, with probability at least 1 � ı,

Wr � k.A=ı/Bk
1 :

On that event, if .wi /kiD1 2 Wr and .w�
i /
k
iD1 is a non-increasing rearrangement of

.jwi j/kiD1,

w�
k=100 �

kwk`k1
k=100

� 100

ı
A:

Thus, for every x 2 Tr there is a subset J 0
x � f1; : : : ; kg of cardinality at least

99k=100, and for every j 2 J 0
x ,

j˝Xi ; x � �.x/˛j � 100

ı
A: (7)

Fix X1; : : : ; Xk in the intersection of the two events defined in (5) and (7). For
every x 2 Tr set Ix D J 0

x \ J�.x/. Observe that jIxj � 98k=100 and that for every
i 2 Ix ,
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j˝Xi; x
˛j �j˝Xi ; �.x/

˛j � j˝Xi ; x � �.x/˛j � �r � 100

ı
A

��r � c1

ı
p
k

�
 

EkGkT ı C E

�
�
�
�
�

1p
k

kX

iD1
Xi

�
�
�
�
�
T ı

!

:

Therefore, if

r � c2.�; ı/p
k

� max

(

EkGkT ı ;E

�
�
�
�
�

1p
k

kX

iD1
Xi

�
�
�
�
�
T ı

)

;

then with probability at least 1 � ı � 2�3"k D 1 � ı � 2�k=200, for each x 2 Tr ,
j˝Xi ; x

˛j � .�=2/kxk`n2 on at least 98k=100 coordinates; Thus,

inf
x2Tr

k� xk`k2 & �kxk`n2 : (8)

Finally, using the convexity of T and since the condition in (8) is positive-
homogeneous, (8) holds for any x 2 T with kxk`n2 � r , as claimed. �

3 Concluding Comments

The proof of Theorem 1.4 has two components. The first is based on a small-ball
estimate for linear functionals and does not require additional information on their
tails. Thus, this part holds even for heavy-tailed ensembles.

The more restrictive condition is on the random vector k�1=2Pk
iD1 Xi . Still, it

is far easier to handle the norm kPk
iD1 XikT ı than the supremum of the quadratic

empirical process indexed by T .
The estimate in Theorem 1.4 can be improved using what is, by now, a standard

argument. First, observe that all the inequalities leading to (6) hold in probability
and not just in expectation (see, for example, [2, 15]). Keeping the ‘localization’
level r , one can define two fixed points:

�k.ı;Q1/ D inf

(

� W Pr

 

kk�1=2
kX

iD1
Xik.T\�Bn2 /ı � Q1�

p
k

!

� ı

)

;

and

rk.Q2/ D inffr W EkGk.T\rSn�1/ı � Q2r
p
kg:
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It is straightforward to verify that there are constants Q1 and Q2 that depend only
on �, for which, with probability at least 1 � ı � 2�k=200, if

kxk`n2 & maxf�k.ı;Q1/; rk.Q2/g;

then

k� xk`k2 & �kxk`n2 :

Thus, on the same event,

diam.T \ ker.� // . maxf�k.ı;Q1/; rk.Q2/g:

Finally, it is possible to use a slightly more involved, empirical processes based
method, that leads to an exponential probability estimate of 1 � 2 exp.�ck/ in
Theorem 1.4. Result of a similar flavour may by found in [4] and in [7].

Since the goal in this note was to present the idea of using a simple small-ball
argument, rather than pursuing an optimal result, we have opted to present this proof.
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A Note on Certain Convolution Operators

Piotr Nayar and Tomasz Tkocz

Abstract In this note we consider a certain class of convolution operators acting on
the Lp spaces of the one dimensional torus. We prove that the identity minus such
an operator is nicely invertible on the subspace of functions with mean zero.

1 Introduction

Let T D R=Z be the one dimensional torus viewed as a compact group with the
addition modulo 1, x ˚ y D .x C y/ mod 1, x; y 2 R, equipped with the Haar
measure, i.e. the unique invariant probability measure (the Lebesgue measure). To
begin with, fix 1 � p � 1 and consider the averaging operatorUt acting on Lp.T/

(with the usual norm kf k D �´
T

jf jp�1=p for p < 1, and kf k D ess sup
T
jf j for

p D 1),

.Utf /.x/ D 1

2t

ˆ Ct

�t
f .x ˚ s/ ds; t 2 .0; 1/: (1)

If t is small, is the operator I � Ut invertible, or, in other words, how much does
Utf differ from f ? Of course, averaging a constant function does not change it, but
excluding such a trivial case, we get a quantitative answer.

Theorem 1. Let t 2 .0; 1/. There exists a universal constant c such that for every
1 � p � 1 and every f 2 Lp.T/ with

´
T
f D 0 we have
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kf � Utf k � ct2 kf k ; (2)

where k�k denotes the Lp norm.

Note that if p was equal to 2, then, with the aid of the Fourier analysis, the
above estimate would be trivial. However, k � k is set to be the Lp norm for some
1 � p � 1, the constant does not depend on p, therefore the situation is more
subtle.

When p D 1, if we further estimate the left hand side of (2) using the Sobolev
inequality, see [4], we obtain the following corollary.

Corollary 1. Let us consider t 2 .0; 1/ and assume that f belongs to the Sobolev
space W 1;1.T/ with

´
T
f D 0. Then we have

ˆ

T

ˇ
ˇ
ˇ
ˇf

0.x/ � f .x ˚ t/ � f .x ˚ �t/
2t

ˇ
ˇ
ˇ
ˇ dx � ct2

ˆ

T

jf .x/j dx; (3)

where c > 0 is a universal constant.

Remark 1. Setting t D 1=2, inequality (3) becomes the usual Sobolev inequality,
so (3) can be viewed as a certain generalization of the Sobolev inequality.

Remark 2. Set f .x/ D cos.2�x/. Then kf � Utf k D kf k �1 � 1
2�t

sin.2�t/
� �

2
3
�2t2 kf k, for small t . Therefore, the inequality in Theorem 1 is sharp in a sense.

In this note we give a proof of a generalization of Theorem 1. We say that a T-valued
random variableZ is c-good with some positive constant c if P .Z 2 A/ � cjAj for
all measurableA � T. Equivalently, by Lebesgue’s decomposition theorem it means
that the absolutely continuous part of Z (with respect to the Lebesgue measure) has
a density bounded below by a positive constant. We say that a real random variable
Y is `-decent if Y1 C : : : C Y` has a nontrivial absolutely continuous part, where
Y1; Y2; : : : are i.i.d. copies of Y . Our main result reads

Theorem 2. Given t 2 .0; 1/ and an `-decent real random variable Y , consider
the operator At given by

.Atf /.x/ D Ef .x ˚ tY /: (4)

Then there exists a positive constant c which depends only on the distribution of the
random variable Y such that for every 1 � p � 1 and every f 2 Lp.T/ with´
T
f D 0 we have

kf �Atf k � ct2 kf k ;

where k�k denotes the Lp norm.
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Remark 3. One cannot hope to prove a statement similar to Theorem 2 for purely
atomic measures. Indeed, just consider the case p D 1 and let Y be distributed
according to the law �Y D P1

iD1 pi ıxi . Then for every " > 0 and every t 2 .0; 1/

there exists f 2 L1.T/ such that kf �At.f /k < " and kf k D 1. To see this take
N such that

P1
iDNC1 pi < "=4 and let fn.x/ D �

2
sin.2�nx/. Then kfnk D 1. Let

n0 � 8�=". Consider the sequence
�
.�ntx1 mod 2�; : : : ; �ntxN mod 2�/

�
n

for
n D 0; 1; 2; : : : ; nN0 and observe that by the pigeonhole principle there exist 0 �
n1 < n2 � nN0 such that for all 1 � i � N we have dist.�txi .n1 �n2/; 2�Z/ � 2�

n0
.

Taking n D n2 � n1 we obtain

kfn � At.fn/k � �

2

NX

iD1
pi ksin.2�nx/� sin.2�n.x C txi //k C "

2

D �

NX

iD1
pi j sin.�ntxi /j � kcos.2�nx ˚ �ntxi /k C "

2

� 2

NX

iD1
pi j sin.�ntxi /j C "

2
� 4�

n0

NX

iD1
pi C "

2
� ":ut

Our result gives the bound for the norm of an operator of the form .I�At/�1. The
main difficulty is that this operator is not globally invertible. Of course, boundedness
of a resolvent operator R�.A/ D .A � zI /�1 has been thoroughly studied (see e.g.
[1, 3] which feature Hilbert space settings for Hilbert-Schmidt and Schatten-von
Neumann operators). Let us also mention that the first part of the book [8] is a set
of related articles concerning mainly the problem of finding the inverse formula
for certain Toeplitz-type operators. The paper [6] contains the famous Gohberg-
Semencul formula for the inverse of a non-Hermitian Toeplitz matrix. In [5] the
authors generalized the results of [8] to the case of Toeplitz matrices whose entries
are taken from some noncommutative algebra with a unit. The operators of the form
I�K (acting e.g. onL1.Œ0; 1�/), whereK is a certain operator with a kernel k.t�s/,
are continuous versions of the operators given by Toeplitz matrices. Paper [6] deals
also with this kind of operators, namely

.I �K/.f /.x/ D f .x/ �
ˆ 1

0

k.t � s/f .s/ ds;

where k 2 L1.Œ�1; 1�/. In the case of I � K being invertible, the authors give a
formula for the inverse operator .I � K/�1 in terms of solutions of certain four
integral equations. See also Article 3 in [8] for generalizations of these formulas.



408 P. Nayar and T. Tkocz

2 Proof of Theorem 2

We begin with two lemmas.

Lemma 1. Suppose Y is an `-decent random variable. Let Y1; Y2; : : : be indepen-
dent copies of Y . Then there exist a positive integer N D N.Y / and numbers
c D c.Y / > 0, C0 D C0.Y / � 1 such that for all C � C0 and n � N the
random variable

X.C/
n D

�

C � Y1 C : : :C Ynp
n

�

mod 1 (5)

is c-good.

Proof. We prove the lemma in a few steps considering more and more general
assumptions about Y .

Step I. Suppose that the characteristic function of Y belongs to Lp.R/ for some
p � 1. In this case, by a certain version of the Local Central Limit Theorem, e.g.
Theorem 19.1 in [2, p. 189], we know that the density qn of .Y1 C : : : C Yn �
nEY /=

p
n exists for sufficiently large n, and satisfies

sup
x2R

ˇ
ˇ
ˇ
ˇqn.x/ � 1p

2��
e�x2=2�2

ˇ
ˇ
ˇ
ˇ ����!
n!1 0; (6)

where �2 D Var.Y /. Observe that the density g.C/n of X.C/
n equals

g.C/n .x/ D
X

k2Z

1

C
qn

�
1

C
.x C k/ � p

nEY

�

; x 2 Œ0; 1�:

Using (6), for ı D e�2=�2p
2��

we can find N D N.Y / such that

qn.x/ >
1p
2��

e�x2=2�2 � ı=8; x 2 R; n � N:

Therefore, to be close to the maximum of the Gaussian density we sum over only
those k’s for which x C k 2 .�2C; 2C /C C

p
nEY for all x 2 Œ0; 1�. Since there

are at least C and at most 4C such k’s, we get that

g.C/n .x/ >
1

C

1p
2��

e�2=�2 � C � 1

C

ı

8
� 4C D 1

2
p
2��

e�2=�2 :

In particular, it implies that X.C/
n is c-good with c D 1

2
p
2��

e�2=�2 . Thus, in this
case, it suffices to set C0 D 1.
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Step II. Suppose that the law of Y is of the form q�C .1� q/� for some q 2 .0; 1�
and some Borel probability measures �; � on R such that the characteristic function
of � belongs to Lp.R/ for some p � 1. Notice that

�Y1C:::CYN D �?NY D .q�C .1 � q/�/?N D
NX

kD0

 
N

k

!

qk.1 � q/N�k�?k ? �?.N�k/

�
NX

kDN0

 
N

k

!

qk.1 � q/N�k�?k ? �?.N�k/ D cN;N0
�
�?N0 ? �N;N0

�
;

where

�N;N0 D 1

cN;N0

NX

kDN0

 
N

k

!

qk.1 � q/N�k�?.k�N0/ ? �?.N�k/

is a probability measure, and

cN;N0 D
NX

kDN0

 
N

k

!

qk.1 � q/N�k

is a normalisation constant. Choosing N0 D bqN � C1
p
q.1 � q/N c we can

guarantee that cN;N0 � 1=2 eventually, say for N � QN . Denoting by NY , Z the
random variables with the law �, �N;N0 respectively and by NYi i.i.d. copies of NY , we
get

P

�
X
.C/
N 2 A

�
� cN;N0P

  

C
NY1 C : : :C NYN0p

N
C C

ZN;N0p
N

!

mod 1 2 A
!

:

By Step I, the first bit C. NY1 C : : : C NYN0/=
p
N is c-good for some c > 0 and

C � C
.II/
0 D supN� QN

p
N=N0 . Moreover, note that if U is a c-good T-valued r.v.,

then so is U ˚ V for every T-valued r.v. V which is independent of U . As a result,
X
.C/
N is c=2-good.

Step III. Now we consider the general case, i.e. Y is `-decent for some ` � 1. For
n � ` we can write

C � Y1 C : : :C Ynp
n

D C

r
bn=`c
n

�
QY1 C : : :C QYbn=`c

pbn=`c C C
QRp
n

with QYj D Y.j�1/`C1C: : :CYj` for j D 1; : : : ; bn=`c, and QR D Ybn=`c`C1C: : :CYn.
Since the absolutely continuous part of the law � of QYj is nontrivial, then � is of the
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form q�1 C .1� q/�2 with q 2 .0; 1� and the characteristic function of �1 belonging
to some Lp . Indeed,� has a bit which is a uniform distribution on some measurable
set whose characteristic function is in L2. Therefore, applying Step II for QYj ’s we

get that X.C/
n is c-good when C

q
bn=`c
n

� C
.II/
0 . So we can set C0 D C

.II/
0

p
2`.

Lemma 2. Suppose Z is a T-valued c-good random variable and BZ is the
operator defined by .BZf /.x/ D Ef .x ˚ Z/. Then for every 1 � p � 1 and
every f 2 Lp.T/ with

´
T
f D 0 we have kBZf k � .1 � c/ kf k, where k�k is the

Lp norm.

Proof. Fix 1 � p < 1. Let � be the law of Z. Define the measure �.A/ D
.�.A/ � cjAj/=.1 � c/ for measurable A � T. Since � is c-good, � is a Borel
probability measure on T. Take f 2 Lp.T/ with mean zero. Then by Jensen’s
inequality we have

kBZf kp D
ˆ 1

0

ˇ
ˇ
ˇ
ˇ

ˆ 1

0

f .x ˚ s/ d�.s/

ˇ
ˇ
ˇ
ˇ

p

dx

D .1 � c/p
ˆ 1

0

ˇ
ˇ
ˇ
ˇ

ˆ 1

0

f .x ˚ s/ d�.s/

ˇ
ˇ
ˇ
ˇ

p

dx

� .1 � c/p
ˆ 1

0

ˆ 1

0

jf .x ˚ s/jp d�.s/ dx

D .1 � c/p kf kp
ˆ 1

0

d�.s/ D .1 � c/p kf kp :

Since c does not depend on p we get the same inequality for p D 1 by passing
to the limit.

Now we are ready to give the proof of Theorem 2.

Proof. Fix 1 � p � 1. Let Y1; Y2; : : : be independent copies of Y . Observe that

.Ant f /.x/ D Ef .x ˚ .tY1 ˚ : : :˚ tYn//

D Ef

�

x ˚
�

t
p
n

�
Y1 C : : :C Ynp

n

�

mod 1

��

:

Take n.t/ D C2
0

˙
1=t2

�
N , where C0 and N are the numbers given by Lemma 1.

Therefore, with X.C/

n.t/ defined by (5), we can write

.A
n.t/
t f /.x/ D Ef

�
x ˚X

.C/

n.t/

�
;

where C D t
p
n.t/ D tC0

pd1=t2eN � C0
p
N � C0. Thus X.C/

n.t/ is c.Y /-good
with some constant c.Y / 2 .0; 1/. From Lemma 2 we have
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�
�
�A

n.t/
t f

�
�
� � .1 � c.Y // kf k

for all f satisfying
´
T
f D 0.

The operator At is a contraction, namely kAtf k � kf k for all f 2 Lp.T/.
Using this observation and the triangle inequality we obtain

kf � Atf k � 1

n

�kf �Atf k C �
�Atf �A2t f

�
� C : : :C �

�An�1
t f �Ant f

�
�
�

� 1

n
kf � Ant f k :

Taking n D n.t/ we arrive at

1

n.t/

�
�
�f �An.t/t f

�
�
� � 1

t�2 C 1
� 1

C 2
0 �N

�
kf k �

�
�
�A

n.t/
t f

�
�
�
�

� c.Y /

2C 2
0 �N t

2 kf k :

It suffices to take c D c.Y /=.2C 2
0 �N/.

Remark 4. Consider an `-decent random variable Y . As it was noticed in the proof
of Lemma 1 (Step III), the law Y1 C : : :CY` has a bit whose characteristic function
is in L2. Conversely, if the law of Sm D Y1 C : : :C Ym has the form q�C .1� q/�
with q 2 .0; 1� and the characteristic function of � belonging to Lp for some p � 1,
then the characteristic function of the bit �?dp=2e of the sum of dp=2e i.i.d. copies
of Sm is in L2. In particular, that bit has a density function in L1 \ L2. Thus Y is
.m dp=2e/-decent.

Remark 5. The idea to study the operatorsAt (see (4)) stemmed from the following
question posed by Gideon Schechtman (personal communication): given " > 0, is
it true that there exists a natural number k D k."/ such that for any bounded linear
operator T W L1Œ0; 1� ! L1Œ0; 1� with kT kL1!L1

� 1 which has the property

8f 2 L1Œ0; 1� . jsuppf j � 1=2 H) kTf k1 � " kf k1/

there exist ı > 0 and functions g1; : : : ; gk 2 L1Œ0; 1� such that

kTf k1 � ı kf k1 for any f 2 L1Œ0; 1� satisfying
ˆ 1

0

fgj D 0; j D 1; : : : ; k‹

This, in an equivalent form, was asked by Bill Johnson in relation with a question
on Mathoverflow (http://mathoverflow.net/questions/101253). Our hope was that an
operator T D I�At , for some Y , would provide a negative answer to Schechtman’s
question. However, Theorem 2 says that if Y is an `-decent random variable, then T
is nicely invertible on the subspace of functions f 2 Lp such that

´
f �1 D 0. Some

time after this paper had been written, the question was answered in the negative
(see [7]).

http://mathoverflow.net/questions/101253
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On Isotropicity with Respect to a Measure

Liran Rotem

Abstract A body C is said to be isotropic with respect to a measure � if the
function

� !
ˆ

C

hx; �i2 d�.x/

is constant on the unit sphere. In this note, we extend a result of Bobkov, and prove
that every body can be put in isotropic position with respect to any rotation invariant
measure.

When the body C is convex, and the measure � is log-concave, we relate the
isotropic position with respect to � to the famous M -position, and give bounds on
the isotropic constant.

1 Introduction

Let � be a finite Borel measure on R
n with finite second moments. For simplicity,

we will always assume our measures are even, i.e. measures which satisfy �.A/ D
�.�A/ for every Borel set A. We will say that such a measure is isotropic if the
function

� 7!
ˆ

hx; �i2 d�.x/

is constant on the unit sphere Sn�1 D fx W jxj D 1g.
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In particular, let C be an origin-symmetric and compact set in R
n with non-

empty interior. From now on, such sets will simply be called bodies. Let �C be the
restriction of the Lebesgue measure � to the set C :

�C .A/ D � .A \ C/ :

We say that C is isotropic if the measure �C is isotropic, i.e. if the integrals

ˆ

C

hx; �i2 dx

are independent of � 2 Sn�1.
For a discussion of isotropic bodies and measures see, for example, [9] and

[1]. Notice that at the moment we do not assume our measures and bodies satisfy
any convexity properties, nor do we assume any normalization condition. This will
change in Sect. 3.

In this note we will study the following notion:

Definition 1. Let � be an even locally finite Borel measure on R
n. Let C be a body

with �.C / > 0. We say that C is isotropic with respect to �, or that the pair .C; �/
is isotropic, if

ˆ

C

hx; �i2 d�.x/

is independent of � 2 Sn�1.

From a formal point of view, this is not a new definition. Isotropicity of the pair
.C; �/ is nothing more than isotropicity of the measure �C , where �C is the
restriction of � to C . In particular, C is isotropic with respect to the Lebesgue
measure if and only if it is isotropic. However, this new notation is better suited for
our needs, as we want to separate the roles of � and C .

Let us demonstrate this point by discussing the notion of an isotropic position.
It is well known that for any measure � one can find a linear map T 2 SL.n/ such
that the push-forward T]� is isotropic. The proof may be written in several ways
(again, see for example the proofs in [9] and [1]), but in any case this is little more
than an exercise in linear algebra. Since T] .�C / D �

T]�
�
T .C /

we see that for every

pair .C; �/ one can find a map T 2 SL.n/ such that
�
TC; T]�

�
is isotropic.

However, we are interested in a different problem. For us, the measure � is a
fixed “universal” measure, which we are unwilling to change. Given a body C , we
want to put it in an isotropic position with respect to this given �. In other words,
we want to find a map T 2 SL.n/ such that .TC; �/ is isotropic. This is already a
non-linear problem, and it is far less obvious that such a T actually exists.

Of course, there is one choice of � for which the problem is trivial. For the
Lebesgue measure � we know that T]� D � for any T 2 SL.n/. Hence the two
problems coincide, and there is nothing new to prove.
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There is one non-trivial case where the problem was previously solved. Let 
 be
the Gaussian measure on R

n, defined by


.A/ D .2�/�
n
2

ˆ

A

e�jxj2=2dx:

In [3], Bobkov proved the following result:

Theorem 1. Let C be a body in R
n. If 
.C / � 
.TC/ for all T 2 SL.n/, then C is

isotropic with respect to 
 .
If C is assumed to be convex, then the converse is also true.

A simple compactness argument shows that the map T 7! 
.TC/ attains a
maximum on SL.n/ for some map T0. Theorem 1 implies that T0C is isotropic
with respect to 
 .

The main goal of this note is to discuss isotropicity with respect any rotation
invariant measure. In the next section we will extend Bobkov’s argument, and prove
that C can be put in isotropic position with respect to any rotation invariant measure
�. Then in Sect. 3 we will restrict our attention to the case where C is convex and
� is log-concave (all relevant definitions will be given there). We will relate the
isotropicity of .C; �/ to the M -position, and give an upper bound on the isotropic
constant of C with respect to �.

2 Existence of Isotropic Position

In this section we will assume that � is rotation invariant:

Definition 2. We say that � is rotation invariant if there exists a bounded function
f W Œ0;1/ ! Œ0;1/ such that

d�

dx
D f .jxj/ :

We will always assume that f has a finite first moment, i.e.
´ 1
0
tf .t/dt < 1.

Our goal is to prove that if � is rotation invariant, then for every C one can find a
map T 2 SL.n/ such that .TC; �/ is isotropic. To do so we will need the following
definitions:

Definition 3. Let � D f .jxj/ dx be a rotation invariant measure on R
n. Then:

1. The associated measure O� is the measure on R
n with density g .jxj/, where g W

Œ0;1/ ! Œ0;1/ is defined by

g.t/ D
ˆ 1

t

sf .s/ds:
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2. Given a body C we define the associated functional J�;C W SL.n/ ! R by

J�;C .T / D O� .TC/ D
ˆ

C

g .jT xj/ dx:

When the measure � is obvious from the context, we will write JC instead of J�;C .
As one example of the definitions, notice that for the Gaussian measure 
 we have

O
 D 
 . Hence the functional J
;C is exactly the one being maximized in Bobkov’s
Theorem 1.

In the general case, we have the following Proposition:

Proposition 1. Fix a rotation invariant measure �, a body C , and T 2 SL.n/.
Then .TC; �/ is isotropic if and only if T is a critical point of J�;C .

Proof. We will first show that the identity matrix I is a critical point for JC if and
only if .C; �/ is isotropic. Indeed, I is a critical point if and only if

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

JC
�
etA
� D 0

for all maps A 2 sl.n/, i.e. all linear maps A with TrA D 0.
An explicit calculation of the derivative gives

d

dt

ˇ
ˇ
ˇ
ˇ
tD0

JC
�
etA
� D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

�ˆ

C

g
�ˇ
ˇetAx

ˇ
ˇ
�

dx

�

D
ˆ

C

�
d

dt

ˇ
ˇ
ˇ
ˇ
tD0

g
�ˇ
ˇetAx

ˇ
ˇ
�
�

dx

D
ˆ

C

g0 .jxj/ �
�
x

jxj ;Ax

�

dx D �
ˆ

C

jxj f .jxj/
�
x

jxj ;Ax

�

dx

D �
ˆ

C

hx;Axi d�.x/:

Hence we see that I is a critical value for JC if and only if

ˆ

C

hx;Axi d�.x/ D 0

for all maps A with TrA D 0. This condition is known and easily seen to be
equivalent to isotropicity of .C; �/.

So far we have proved the result only for T D I . For general case notice that
JTC.S/ D JC .ST / for every S; T 2 SL.n/. Hence T is a critical point for JC if and
only if I is a critical point for JTC, which holds if and only if .TC; �/ is isotropic.

From here it is easy to deduce the main result:

Theorem 2. Let � be a rotation invariant measure on R
n, and let C be a body in

R
n. Then there exists a map T 2 SL.n/ such that TC is isotropic with respect to �.
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Proof. Write sn.T / for the smallest singular value of a map T 2 SL.n/. It is not
hard to see that J�;C .T / ! 0 as sn.T / ! 0. Since

fT 2 SL.n/ W sn.T / � "g

is compact, it follows that J�;C attains a global maximum at some point T . In
particular, T is a critical point for J�;C , so .TC; �/ is isotropic.

Remark 1. When� D 
 and the bodyC is convex, the functionalJ�;C has a unique
positive definite critical point. In other words, there exists a positive definite matrix
S 2 SL.n/ such that the set of critical points of J�;C is exactly fUS W U 2 O.n/g.
Moreover, every such critical point is a global maximum. The proof of these facts,
which appears in [3], is based on the so-called (B) conjecture, proved by Cordero-
Erausquin et al. [6]. This fact explains the second half of Theorem 1. It also
implies that the isotropic position with respect to 
 is unique, up to rotations and
reflections.

For general measures �, we have no analog of the (B) conjecture, and so J�;C
may have critical points which are not the global maximum. Hence we define:

Definition 4. We say that C is in principle isotropic position with respect to � if
J�;C is maximized at the identity matrix I .

Proposition 1 shows that if C is in principle isotropic position with respect to �,
then it is also isotropic with respect to � in the sense of Definition 1. If the (B)
conjecture happens to hold for the measure �, then these two notions coincide.
However, we currently know the (B) conjecture for very few measures: the original
result concerns the Gaussian measure, and Livne Bar-On has recently proved the
conjecture when � is a uniform measure in the plane [2].

Let us conclude this section with one application of Theorem 2 for isotropicity of
bodies:

Proposition 2. Let B be a Euclidean ball of some radius r > 0. Then for every
body C one can find a map T 2 SL.n/ such that TC \ B is isotropic.

Proof. Let � D �B be the uniform measure on B . � is rotation invariant, so we can
apply Theorem 2 and find a map T 2 SL.n/ such that TC is isotropic with respect
to �. This just means that �TC D �TC\B is an isotropic measure, or that TC \ B is
an isotropic body.

Following Proposition 2, Prof. Bobkov asked about an interesting variant concern-
ing Minkowski addition. Recall that the Minkowski sum of sets A;B � R

n is
defined by

AC B D faC b W a 2 A; b 2 Bg :
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Bobkov then posed the following question:

Problem 1. Let B be a Euclidean ball of some radius r > 0. Given a convex body
C , is it always possible to find T 2 SL.n/ such that TC C B is isotropic?

Unfortunately, we do not know the answer to this question.

3 Properties of Isotropic Pairs

Let � be an (even) isotropic measure with density f . The isotropic constant of � is
defined as

L� D f .0/
1
n

� .Rn/
1
nC 1

2

�ˆ
hx; �i2 d�.x/

� 1
2

:

We define the isotropic constant of the pair .C; �/ to be the isotropic constant of
�C , so

L.C;�/ D f .0/
1
n

� .C /
1
nC 1

2

�ˆ

C

hx; �i2 d�.x/
� 1

2

:

A major open question, known as the slicing problem, asks if LK D L.K; �/

is bounded from above by a universal constant for every dimension n and every
isotropic convex body K in R

n (see [9] for a much more information). It turns out
that for certain rotation invariant measures� it is possible to give an upper bound on
L.K;�/wheneverK is a convex body in principle isotropic position with respect to
�. In the Gaussian case, this was done by Bobkov in [3]. We will demonstrate how
his methods can be extended, starting with the case where � is a uniform measure
on the Euclidean ball.

In order to prove our result, we will need the notion of M -position. Let B be the
Euclidean ball of volume (Lebesgue measure) 1. A convex body K of volume 1 is
said to be in M -position with constant C > 0 if

jK \ Bj � C�n:

There are many other equivalent ways to state this definition, but this definition will
be the most convenient for us. A remarkable theorem of Milman shows that for
every convex body K of volume 1 there exists a map T 2 SL.n/ such that TK is in
M -position, with some universal constant C (see [8]).

After giving all the definitions, we are ready to prove the following:

Theorem 3. Let K be a convex body of volume 1 such that K \ B is in principle
isotropic position (i.e.K is in principle isotropic position with respect to �, when �
is the uniform measure on B). Then
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1. K is in M -position. In fact

jK \ Bj �
�
1

2

�nC1
sup

T2SL.n/
jTK \ Bj � C�n

for some universal C > 0.
2. The isotropic constant of K \ B is bounded by an absolute constant.

Proof. We should understand how JK;� looks in this special case. If we denote the
radius of B by r , then d� D f .jxj/dx, where f D 1Œ0;r�. Hence

g.t/ D
ˆ 1

t

s � 1Œ0;r�.s/ds D
(
r2�t 2
2

t � r

0 t > r;

and

JK.T / D
ˆ

TK
g .jxj/ dx D

ˆ

TK\B
r2 � jxj2

2
dx:

Notice that JK.T / is almost the same as the volume jTK \ Bj (properly
normalized) for every T 2 SL.n/. Indeed, on the one hand we have

JK.T / D
ˆ

TK\B
r2 � jxj2

2
dx �

ˆ

TK\B
r2

2
dx D r2

2
jTK \ Bj ;

and on the other hand we have

JK.T / D
ˆ

TK\B
r2 � jxj2

2
dx �

ˆ

TK\B
2

r2 � jxj2
2

dx

�
ˆ

TK\B
2

r2 � �
r
2

�2

2
dx D 3

8
r2
ˇ
ˇ
ˇ
ˇ
TK \ B

2

ˇ
ˇ
ˇ
ˇ �

�
1

2

�nC1
r2

2
jTK \ Bj :

Since K is in principle isotropic position we know that for every T 2 SL.n/ we
have JK.T / � JK.I /, and then

jTK \ Bj � 2nC1 � 2
r2
JK .T / � 2nC1 2

r2
JK.I / � 2nC1 jK \ Bj ;

so the first inequality of (1) is proven. In particular, by Milman’s theorem we get
that jK \ Bj � C�n for some universal constant C > 0.

Finally, in order to prove (2), Notice that it follows from the definition that

LK\B D 1

jK \ Bj 1
nC 1

2

 ˆ

K\B
jxj2
n

dx

! 1
2

:
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Since B has radius � C
p
n we get that

LK\B � 1

jK \ Bj 1
nC 1

2

�
�ˆ

K\B
C 2n

n
dx

� 1
2

D C

jK \ Bj 1n
� C 0;

and the theorem is proven.

What happens for general rotation invariant measures �? In order to prove a similar
estimate, we will need to assume that the measure � is log-concave:

Definition 5. A Borel measure � on R
n is log-concave if for every Borel sets A

and B and every 0 < � < 1 we have

� .�AC .1 � �/B/ � �.A/��.B/1��:

Borel [4, 5] gave a simple and useful characterization of log-concave measures:
assume � is not supported on any affine hyperplane. Then � is log-concave if and
only if � has a density f , which is log-concave. Log-concavity of f just means that
.� logf / is a convex function.

For log-concave measures we have the following bound on the isotropic constant
of .K;�/:

Proposition 3. Let � be a log-concave, rotation invariant measure on R
n, and let

K � R
n be a convex body. Then

L.K;�/ � C � � .Rn/ 1n � �.K/� 1
n

for some universal constant C > 0.

Proof. Write d�.x/ D f .jxj/ dx. Since both sides of the inequality are invariant to
a scaling of f , we may assume without loss of generality that f .0/ D 1.

Recall the following construction of Ball [1]: If � is a log-concave measure with
density f , and p � 1, we define

Kp.�/ D
�

x 2 R
n W

ˆ 1

0

f .rx/rp�1dr � f .0/

p



:

Ball proved that Kp.�/ is a convex body, but we won’t need this fact in our proof.
We will need that fact that if p D n C 1 and f .0/ D 1, then LKnC1.�/ � L� and
jKnC1.�/j � � .Rn/. This is proven, for example, in Lemma 2.7 of [7]. Here the
notation A � B means that A

B
is bounded from above and from below by universal

constants.
Since our � is rotation invariant,KnC1 .�/ is just a Euclidean ball. If we denote

its radius by R, then

� .Rn/
1
n � jKnC1.�/j 1n � Rp

n
:
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Now we turn our attention to the body eK D KnC1 .�K/. It is obvious that eK �
KnC1 .�/. Hence we get

L.K;�/ � LeK D 1
ˇ
ˇeK
ˇ
ˇ 1nC 1

2

 ˆ

eK

jxj2
n

dx

! 1
2

� 1
ˇ
ˇeK
ˇ
ˇ 1nC 1

2

�ˆ

eK

R2

n
dx

� 1
2

D Rp
n

� ˇˇeKˇˇ� 1
n � � .Rn/

1
n � �K .Rn/� 1

n D � .Rn/
1
n � � .K/� 1

n ;

and the proof is complete.

Therefore in order to bound L.K;�/ from above we need to bound �.K/ from
below. Notice that we have three distinct functionals on SL.n/:

T 7! �.TK/

T 7! JK;�.T / D O�.TK/

T 7! jTK \ Bj :

The estimates of Theorem 3 only depend on these functionals being close to each
other. More concretely, we have the following:

Theorem 4. Let � be a log-concave rotation invariant measure on R
n, and letK �

R
n be a convex body of volume 1, which is in principle isotropic position with respect

to �. Assume that

sup
T2SL.n/

JK;�.T /

jTK \ Bj � an � inf
T2SL.n/

JK;�.T /

jTK \ Bj ;

and that

�.K/ � b�n � jK \ Bj :

Then:

1. K is in M-position with constant C � a for some universal C > 0.

2. L.K;�/ � C� .Rn/
1
n � ab for some universal constant C > 0.

Proof. There is very little to prove here. For (1), define for simplicity

m D inf
T2SL.n/

JK;�.T /

jTK \ Bj :

Then for every T 2 SL.n/ we have

jTK \ Bj � 1

m
� JK;�.T / � 1

m
� JK;�.I / � anm

m
� jK \ Bj D an jK \ Bj :
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By this estimate and Milman’s theorem, it follows that K is in M -position with
constant C � a.

Now for (2) we use Proposition 3 together with part (1) and immediately obtain

L.K;�/ � C� .Rn/
1
n �.K/�

1
n � C� .Rn/

1
n � b jK \ Bj� 1

n

� C� .Rn/
1
n � b � .Ca/ D C 0� .Rn/

1
n � ab

Of course, in general there is no reason for a and b to be small. However, for
any specific �, one may try and compute explicit values for these constants. Both
Theorem 3 and Bobkov’s theorem in the Gaussian case follow from this general
scheme.
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A Formula for Mixed Volumes

Rolf Schneider

Abstract An identity for mixed volumes, discovered by Gusev and Esterov, which
involves together with some convex bodies also the convex hull of their union, is
given a new proof, using only the classical approach to mixed volumes.

In the introduction to his paper [2], Esterov writes (with slightly different notation)
the following: “Counting Euler characteristics of the discriminant of the quadratic
equation in terms of Newton polytopes in two different ways, Gusev [3] found an
unexpected relation for mixed volumes of two polytopes P1 and P2 in R

n and the
convex hull P of their union. For instance, assuming n D 2 and denoting the mixed
area of polygonsA;B by V.A;B/, this relation specializes to

V.P;P / � V.P;P1/� V.P;P2/C V.P1; P2/ D 0:

We call it unexpected because it is not a priori invariant under parallel translations
of P1.”

Esterov [2] proved a multidimensional generalization of this equality. To
formulate it, we denote the support function of a convex body K � R

n by hK
and write the mixed volume V.K1; : : : ; Kn/ of the convex bodiesK1; : : : ; Kn in the
form V.hK1; : : : ; hKn/, that is, we consider it equivalently as a functional of support
functions. By linearity in each argument, the mixed volume can then be extended
to differences of support functions. This extension appears already in the work
of Aleksandrov [1, Sect. 6]; see also [4, Sect. 5.2]. Esterov’s extension of Gusev’s
formula (in a slightly more general form, which is needed for the inductive proof
below) then reads as follows. Here Kn denotes the set of convex bodies (nonempty,
compact, convex subsets) of Rn.

Theorem. Let 2 � k � n, let A1; : : : ; Ak; B1; : : : ; Bn�k; C1; : : : ; Cn�k 2 Kn, write

A WD conv.A1 [ � � � [ Ak/;
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and abbreviate the .n � k/-tuple .hB1 � hC1; : : : ; hBn�k
� hCn�k

/ by Hn�k . Then

V.hA � hA1 ; : : : ; hA � hAk ;Hn�k/ D 0: (1)

Note that

hA D maxfhA1; : : : ; hAk g;

hence, at each point of the unit sphere, at least one the functions hA�hA1 ; : : : ; hA�
hAk appearing in (1) vanishes. This observation may serve as an intuitive hint to the
validity of (1), but it is, of course, not a proof.

Using multilinearity, Eq. (1) can be written as an identity involving mixed
volumes of the bodies A1; : : : ; Ak and the convex hull of their union, and of the
bodies Bi ; Ci . By the symmetry of the mixed volume, the special role played by the
first k arguments in (1) can be taken over by any k arguments.

In addition to Esterov’s dictum of being ‘unexpected’, this identity may well be
called a surprise, since it deals with the well-established topic of mixed volumes,
but within this classical theory it had not been noticed before. In the following, we
give a proof of the identity (1) that, other than the proofs of Gusev and Esterov, stays
entirely within the classical theory.

This proof makes use of the representation of the mixed volume ofK1; : : : ; Kn 2
Kn by

V.K1; : : : ; Kn/ D 1

n

ˆ

Sn�1

hK1 dS.K2; : : : ; Kn; �/; (2)

where S
n�1 is the unit sphere of Rn and S.K2; : : : ; Kn; �/ denotes the mixed area

measure of the bodies K2; : : : ; Kn (see, e.g. [4, Sect. 5.1]). By linearity in each
argument, also the mixed area measures and formula (2) extend to differences of
support functions (also this extension appears already in [1]).

The following lemma expresses in a precise way how the mixed area measures
are ‘determined locally’.

Lemma. Let K;L;K2; : : : ; Kn�1 2 Kn, let ! � S
n�1 be an open set. If

hK.u/ D hL.u/ for all u 2 !;

then

S.K;K2; : : : ; Kn�1; !0/ D S.L;K2; : : : ; Kn�1; !0/

for all Borel sets !0 � !.

Proof. Let u 2 !. Since the functions hK and hL coincide in a neighbourhood of
u, their directional derivatives at u also coincide. Therefore, Theorem 1.7.2 and the
second displayed formula on p. 88 of [4] show that �.K; !/ D �.L; !/, where
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�.K; !/ denotes the reverse spherical image of K at !. This implies the equality
Sn�1.K; �/ ! D Sn�1.L; �/ ! for the restrictions of the surface area measures
Sn�1 to the set !; see [4, p. 215]. In this equation, K and L may be replaced (with
the same proof) byK C�2K2 C � � � C�n�1Kn�1 and LC�2K2 C � � � C�n�1Kn�1,
respectively, with any fixed �2; : : : ; �n�1 � 0. Now the assertion of the lemma
follows from [4], formula (5.21). ut

In the lemma, we can again use multilinearity to replace K2; : : : ; Kn�1 by
differences of support functions. Then the lemma immediately yields the case k D 2

of (1). For this, we put

!1 WD fu 2 S
n�1 W hA1.u/ � hA2.u/g;

!2 WD fu 2 S
n�1 W hA1.u/ < hA2.u/g:

Then hA.u/ D hA1.u/ for u 2 !1 and hA.u/ D hA2.u/ for u 2 !2. Since !2 is open,
the lemma gives

S.hA � hA2;Hn�2; �/ !2 D 0:

It follows that

nV.hA � hA1 ; hA � hA2;Hn�2/

D
ˆ

Sn�1

.hA � hA1/ dS.hA � hA2 ;Hn�2; �/

D
ˆ

!1

.hA � hA1/ dS.hA � hA2;Hn�2; �/C
ˆ

!2

.hA�hA1/ dS.hA�hA2 ;Hn�2; �/

D 0:

This is formula (1) for k D 2.
The general case of (1) is now proved by induction on k. Let 3 � k � n and

suppose the assertion has been proved for the convex hull of less than k convex
bodies. We abbreviate

h.m/ WD hconv.A1[���[Am/:

Then the identity

V.h.k/ � h1; : : : ; h
.k/ � hk;Hn�k/

D
k�2X

jD0
V .h.k�1/�h1; : : : ; h.k�1/�hj ; h.k/�h.k�1/; h.k/�hjC2; : : : ; h.k/�hk;Hn�k/

CV.h.k�1/ � h1; : : : ; h.k�1/ � hk�1; h.k/ � hk;Hn�k/ (3)
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holds. For the proof, we note that the summand with j D k � 2, which is

V.h.k�1/ � h1; : : : ; h.k�1/ � hk�2; h.k/ � h.k�1/; h.k/ � hk;Hn�k/;

and the last term (3) add up to

V.h.k�1/ � h1; : : : ; h.k�1/ � hk�2; h.k/ � hk�1; h.k/ � hk;Hn�k/:

Continuing in this way, we obtain the identity.
Each term in the sum vanishes, by the induction hypothesis for two convex

bodies, using the differences h.k/ � h.k�1/ and h.k/ � hk and observing that

conv.conv.A1 [ � � � [ Ak�1/[ Ak/ D conv.A1 [ � � � [ Ak/:

The last term (3) vanishes by the induction hypothesis for k � 1 convex bodies.

Acknowledgements I thank Vitali Milman for drawing my attention to the identity (1) of Gusev
and Esterov.
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On Convergence of Blaschke and Minkowski
Symmetrization Through Stability Results

Alexander Segal

Abstract We show how existing results of stability for Brunn-Minkowski and
related inequalities imply results regarding rate of convergences of Minkowski and
Blaschke symmetrization processes to the Euclidean ball. To be more precise, the
results imply that the amount of symmetrizations needed to approach the Euclidean
ball within some distance , a polynomial number of symmetrizations (in the
dimension and 1


) suffice.

1 Introduction

1.1 Blaschke and Minkowski Symmetrization

Given a convex set K and u 2 Sn�1 (where Sn�1 is the boundary of the Euclidean
unit ball Dn) one may consider two possible symmetrizations of K with respect to
u. The first one is well known and called the Minkowski symmetral of K , defined
as follows:

�u.K/ D K CRu.K/

2
;

where Ru is reflection with respect to the hyperplane defined by u?.
Another possibility of symmetrization process, which to our knowledge, hasn’t

been considered so far, is using the Blaschke sum. Before we introduce the Blaschke
sum, let us discuss the so called Minkowski existence problem. Consider a measure
� given on Sn�1. What can one say about the existence and uniqueness of a convex
set K such that � is its surface area measure? Recall that given a convex set K , the
surface area measure of K is defined to be

SK.A/ D �.fx 2 @K W N.x/ 2 Ag/;
where A � Sn�1 is a Borel set and N.x/ is unit normal at point x.
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This question was answered first by Minkowski for some special cases.
Minkowski’s proof contained the essential ideas for the general case which was
later shown by Alexandrov [1, 2] and independently by Fenchel and Jessen [7] (see
[19, pp. 390–393]). Namely, he showed the following:

Theorem 1.1. Let � be a finite Borel measure on Sn�1 such that

1.
´

ud�.u/ D 0.
2. � is not contained in any great sub-sphere.

Then, there exists a convex body K , unique up to a translation, such that � is its
surface area measure.

Using Theorem 1.1 one may define, up to translation, what is called the Blaschke
sum of two convex bodies K;L. The Blaschke sum K]L is defined as the convex
body whose surface area measure is the sum of the surface area measures of K
and L. Additionally, one may define multiplication by constant � �K as the convex
body corresponding to the measure �SK.�/.

Thus, given a set K and u 2 Sn�1 the Blaschke symmetral of K will be

Bu.K/ D 1

2
� .K]Ru.K//; (1)

where � � K is defined as the set whose surface area measure is �SK . Intuitively,
applying successive Minkowski or Blaschke symmetrization to a convex body K ,
one may expect a sequence that converges to the Euclidean ball. Indeed, it is
well known that for each convex body K , there exists a sequence of directions
fuig � Sn�1 such that �uk .: : : �u1 .K// converges to some Euclidean ball in the
Hausdorff metric. This fact gives rise to the question of the rate of convergence to
Euclidean ball. That is, given  > 0 how many Minkowski symmetrizations are
required in order to transform a convex set K into a new convex set K 0 which
is within Hausdorff distance of at most  from the corresponding Euclidean ball.
Before we discuss results regarding Minkowski symmetrization, we will need to
introduce several important notions often used in convex analysis. Our first notion
is the supporting functional of a convex bodyK , defined as follows:

hK.u/ D supfhx; ui W x 2 Kg;

where u 2 Sn�1 and h�; �i is the standard scalar product. Since hK.u/ C hK.�u/
describes the width of K in direction u, one may define mean-width of K by
averaging:

!.K/ D
ˆ

Sn�1

.hK.u/C hK.�u//d�.u/ D 2

ˆ

Sn�1

hK.u/d�.u/;

where � is the normalized Haar measure on Sn�1. However, in this note it would be
more comfortable to consider the mean radius of K rather than the mean diameter.
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We will denote this by M �.K/, which obviously differs from !.K/ by a factor of
2. This parameter is broadly used in asymptotic geometric analysis (see [11] for
detailed discussion).

Obviously, Minkowski symmetrization is a process that preserves the mean
width of a body. Additionally, by the Brunn-Minkowski inequality, Minkowski
symmetrization increases the volume. Thus, if one may choose a sequence of
Minkowski symmetrizations that converges to a ball, the Urysohn’s inequality
would follow:

M �.K/ �
� jKj
�n

�1=n
;

where j � j denotes the standard Lebesgue measure on R
n and �n WD jDnj. The first

result containing quantitative estimates for Minkowski symmetrization was given
by Bourgain, Lindenstrauss and Milman in [5]. The authors showed the following:

Theorem 1.2 (Bourgain et al. [5]). Let 0 <  < 1 and n > n0./. Given a convex
bodyK � R

n there exist cn lognCc./nMinkowski symmetrizations that transform
K into a bodyK 0 such that

.1 � /M �.K/Dn � K 0 � .1C /M �.K/Dn;

where c./; n0./ are of order exp.c�2 log 1

/ and c > 0 is a universal constant.

Theorem 1.2 was improved by Klartag in [14] whose result reads the following:

Theorem 1.3 (Klartag). Let 0 <  < 1
2
. Given a convex body K � R

n there exist
cn log 1


Minkowski symmetrizations that transform K into a bodyK 0 such that

.1 � /M �.K/Dn � K 0 � .1C /M �.K/Dn;

where c > 0 is a universal constant.

While the optimal rate of convergence of Minkowski symmetrizations to
Euclidean ball in Hausdorff metric is known, the proof involves heavy analysis.
Additionally, no similar results exist for Blaschke symmetrization. Moreover,
there is no proof that one may converge to the Euclidean ball applying successive
Blaschke symmetrizations. We will deal with these questions by using some stability
results we mention now.

1.2 Stability

The well known Brunn-Minkowski inequality states that

jK C Lj1=n � jKj1=n C jLj1=n: (2)
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It is well known that equality holds only when K and L are homothetic. However,
given that the right-hand side of inequality (2) is “close” to the left-hand side, one
may ask ifK andLmust be close in some sense (up to homothety), as well. Dealing
with stability of this inequality dates back to Diskant [6], where he provides a
quantitative answer in term of the Hausdorff metric. Diskant showed the following:

Theorem 1.4. Let K;L be convex sets with equal volume. Denote ˚.K;L; t/ D
j.1� t/KC tLj1=n � .1� t/jKj1=n � t jLj1=n. If ˚.K;L; t/ <  for some  > 0 and
for all 0 < t < 1, then dH .K;L/ < C1=n for some universal constant C > 0.

However, two convex sets can look very “similar” from the volume distribution point
of view and have a large Hausdorff distance (and vice vera). A more reasonable
metric to measure distance of convex sets is the symmetric difference, also known
as Nikodym metric. The first quantitative result of Brunn-Minkowski inequality in
terms of symmetric difference appeared in [8, 9]. Before we state the result, let
use introduce several notations. The first one is a way to measure similarity of two
convex sets, known as the Fraenkel asymmetry measure:

A.K;L/ WD inf
x02Rn

jK	.x0 C rL/j
jKj ;

where K	L D .K n L/ [ .L n K/ and rnjLj D jKj. The second notion is the
Brunn-Minkowski deficit which is self explanatory:

ˇ.K;L/ D jK C Lj1=n
jKj1=n C jLj1=n � 1:

Using this notation, the authors of [8, 9] showed that

A.K;L/ � C.n/
p
ˇ.K;L/; (3)

or equivalently,

jK C Lj 1n � .jKj 1n C jLj 1n /
�

1C A.K;L/2

C.n/2

�

:

In [9] it was shown that the constant C.n/ is of order n7 and that the power of ˇ is
optimal. In [16] the constant C.n/ was improved to be of order n3:5 in the general
case, and n3 when the sets are known to be centrally symmetric. It is easy to see that
inequality (2) implies the classical Brunn-Minkowski inequality, and that it provides
a stronger result in many cases.

The Lebesgue measure retains a similar concavity property with respect to
Blaschke sum. This is known as the Knesser-Suss inequality (see [19, p. 394]) which
states that given convex sets K;L we have

jK]Lj1� 1
n � jKj1� 1

n C jLj1� 1
n : (4)
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Moreover, Bucur, Fragala and Lamboley showed in [4] that the stability inequality
(3) implies the same stability for (4) with the same constant. That is, given two
convex sets with the same volume,

jK]Lj1� 1
n � .jKj1� 1

n C jLj1� 1
n /

�

1C A.K;L/2

C.n/2

�

: (5)

In this paper we will use both stability results to show convergence rate of
Blaschke and Minkowski symmetrization. Namely, we show the following:

Theorem 1.5. Let K be a convex set such that M �.K/ D 1 and let  > 0. Then,
there exist Cn7

2
Minkowski symmetrizations that transform K into a convex set K 0

such that A.K 0;Dn/ < .

Theorem 1.6. Let K be a convex set with surface area S.K/ D n�n and let  > 0.
Then, there exist Cn7

2
logn Blaschke symmetrizations that transformK into a convex

set K 0 such that A.K 0;Dn/ < .

Remark 1.7. The assumption that K and L are of equal volume in (3) and (5) is
actually not needed, and the inequalities hold in the general case up to some scaling
factor. However, we will make use only of the case where K and L are of equal
volume.

2 Some Tools

2.1 Properties of Blaschke Symmetrization

Lemma 2.1. LetK be a convex body and denote by SK.�/ its surface area measure.
Then, for any g 2 SO.n/ we have

1. SgK.!/ D SK.g
�1!/.

2. g.K]L/ D gK]gL.
3. g.� �K/ D � � gK.

Proof. The first part is clear from the definition of surface area measure. The second
part follows immediately:

Sg.K]L/.!/ D SK]L.g
�1!/ D SK.g

�1!/C SL.g
�1!/ D SgK.!/C SgL.!/

D SgK]gL.!/:

The third claim follows similarly.

Corollary 2.2. Let K be a convex body and let u 2 Sn�1. Then, Bu.K/ (as defined
in (1)) is symmetric with respect to u?.
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Proof. This follows immediately from Lemma 2.1. Indeed, let Ru be the reflection
with respect to u?. Then, Ru.Bu.K// D 1

2
� .Ru.K/]Ru.Ru.K// D Bu.K/.

Additionally, notice that since reflections with respect to orthogonal directions
commute, apply Blaschke symmetrization to Bu.K/ with respect to any direction
orthogonal to u does not affect the symmetry of Bu.K/.

For more details we refer the reader to [20].

2.2 Symmetric Surface Area Measure

We will use a result by Schneider for symmetric surface area measures (see [18]),
which was shown in a more general form by Averkov, Makai and Martini (see [3],
Theorem 3.1):

Theorem 2.3. Given a direction u 2 Sn�1 denote by SC
u D Sn�1 \ fx 2

R
n W hx; ui � 0g and S�

u D Sn�1 \ fx 2 R
n W hx; ui � 0g. Let K be a convex

set and SK its surface area measure. If

SK.S
C
u / D SK.S

�
u /

holds for every u 2 Sn�1, then the set K is centrally symmetric.

2.3 Stability of the Euclidean Ball

Here we show some “stability” property of a Euclidean ball with respect to
reflections. It is easy to see that the Euclidean ball is the only convex set which
is symmetric with respect to all possible reflections. Thus, it would make sense to
claim that a convex set which is close in some sense to all of its reflections should
be close to the Euclidean ball:

Lemma 2.4 ([13]). Let K be a centrally symmetric convex set in R
n and let  > 0.

If for any reflection Ru we have that A.K;Ru.K// <  then A.K;Dn/ < 4.

Proof. Using spherical coordinates we may write

A.K;Ru.K// D jK	Ru.K/j
jKj D jDnj

jKj
ˆ

Sn�1

jf .x/n � f .Ru.x//
njd�.x/ < ;

(6)

where f W Sn�1 ! R
C is the radial function of K and � is the normalized Haar

measure on the unit sphere. Since we know that (6) holds for every direction u 2
Sn�1, averaging over all the directions yields:
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jDnj
jKj

ˆ

Sn�1

ˆ

Sn�1

jf .x/n � f .y/njd�.x/d�.y/ < :

Denote by r0 the radius of the ball that satisfies jKj D jr0Dnj. This implies that
jK n r0Dnj D jr0Dn nKj.

Denote the sets A;B � Sn�1 such that A D fx 2 Sn�1 W f .x/n � rn0 g and
B D fx 2 Sn�1 W f .x/n � rn0 g. Obviously,

A.K;Dn/ D jDnj
jKj

ˆ

Sn�1

jf .x/n � rn0 jd�.x/ D 2
jDnj
jKj

ˆ

A

jf .x/n � rn0 jd�.x/

D 2
jDnj
jKj

ˆ

B

jf .x/n � rn0 jd�.x/:

Then, the following inequality holds:

 >
jDnj
jKj

ˆ

Sn�1

ˆ

Sn�1

jf .x/n � f .y/njd�.x/d�.y/

� jDnj
jKj

ˆ

B

ˆ

A

jf .x/n � f .y/njd�.x/d�.y/

� jDnj
jKj

ˆ

B

ˆ

A

jf .x/n � rn0 jd�.x/d�.y/ D 1

2
�.B/A.K;Dn/:

In the same way

 >
1

2
�.A/A.K;Dn/:

Combining the above we get that

A.K;Dn/ < 4:

2.4 Projection Body and Blaschke Sum

Given a convex centrally symmetric bodyK , its projection body˘K is defined by

h˘K.u/ D Voln�1.Proju?
K/ D 1

2

ˆ

Sn�1

jhu; vijdSK.v/:

It is not hard to check that for any A 2 GL.n/ we have

˘.AK/ D jdet.A/jA�T˘K;
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and h˘K.A�tu/ D hA�t .˘K/.u/. Thus, if � is a reflection operator we have that
˘.�K/ D �˘K .

Additionally, the map K ! ˘K is injective on the class of centrally symmetric
convex bodies. That is,

Theorem 2.5 (Alexandrov (see [10], p 142)). Let K;L be centrally symmetric
convex bodies such that ˘K D ˘L. Then K D L.

The projection body is closely related to Blaschke sum. More precisely, given two
convex centrally symmetric setsK;L; the following relation holds (see [10, p. 183])

˘.K]L/ D ˘K C˘L:

Using this fact we conclude that applying Blaschke symmetrization to a convex
body is equivalent to applying Minkowski symmetrization to its projection body:

�u.˘K/ D 1

2
.˘K CRu.˘K// D 1

2
.˘K C .˘.RuK// (7)

D 1

2
˘.K]RuK/ D ˘.

1

2
� .K]RuK// D ˘.Bu.K//:

The projection body is closely related to Shephard’s problem: If the area of the
shadow on the hyperplane of one convex body is always less than that of another,
can the same be said about their volumes? Formally, given two convex bodiesK;T
such that ˘K � ˘T , does this imply that jKj � jT j? Although the answer to
this question is negative for dimension n � 3 (see [15, 17]), it is known that if T
is a zonoid the result is affirmative. Thus, since ellipsoids are zonoids, one may use
John’s theorem to show that the answer to Shephard’s problem is positive up to a
multiplicative term of

p
n (see [10, p. 163]):

Theorem 2.6. Let K;T be centrally symmetric convex bodies such that ˘K �
˘T . Then jKj � p

njT j.
We will use Theorem 2.6 to get lower bounds for the volume of a convex body after
Blaschke symmetrization. Another useful note regarding the projection body is that
the following holds:

M �.˘K/ D �n�1
n�n

S.K/; (8)

where S.K/ is the surface area of K . Indeed, by Cauchy surface area formula (see
[10, p. 406]):

�n�1
n�n

S.K/ D
ˆ

Sn�1

jProju?
jd�.u/ D

ˆ

Sn�1

h˘K.u/d�.u/ D M �.˘K/:
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3 Minkowski Symmetrization

Using the tools described above we can estimate the amount of Minkowski
symmetrizations required to transform any convex set into a set close to the unit
ball (with a small asymmetry index) and prove Theorem 1.5. However, we will first
show a preliminary rate of convergence which also depends on the body we want to
symmetrize:

Theorem 3.1. Let K be a convex set such that M �.K/ D 1 and let  > 0.

Then, there exist
l

Cn5

2
log jDnj

jKj
m

Minkowski symmetrizations that transform K into

a convex set K 0 such that A.K 0;Dn/ < .

Proof. By Urysohn’s inequality we know that

1 � jKj
jDnj :

Without loss of generality, we may assume that K is centrally symmetric. Indeed,
otherwise, we may choose an orthonormal basis in R

n and apply n-Minkowski
symmetrizations with respect to the basis. The resulting set is centrally symmetric.
Consider the following process. Assume we have some fixed  > 0. If there exists
u 2 Sn�1 such that A.K;Ru.K// >  then define K1 D �u.K/. By the stability
result we have

jK1j1=n � jKj1=n
�

1C 2

Cn6

�

:

Notice that K is centrally symmetric, hence by Remark 4.2 in [16], we may use (3)
with C.n/ D Cn3. If it is possible to repeat the above procedure m times we get a
convex set Km that satisfies:

jDnj1=n � jKmj1=n � jKj1=n
�

1C 2

Cn6

�m

:

From this inequality we see that after at most log.jDnj=jKj/
n log

�
1C 2

Cn6

� , we get a set Km that

satisfies A.Km;Ru.Km// <  for each reflection Ru.
To sum it up, we get that after at most Cn5

2
log jDnj

jKj Minkowski symmetrizations
we obtain a set L that is close to all of it reflections:

A.L;Ru.L// < :

Applying Lemma 2.4 we get that after at most
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�
Cn5

2
log

jDnj
jKj

�

Minkowski symmetrizations, A.L;Dn/ < 4.

3.1 Removing Dependence on Volume of K

In order to remove the dependence of the volume of the initial set we symmetrize,
we would like to show some lower bound for this volume after a fixed number of
symmetrizations. To achieve this we use the following lemma.

Lemma 3.2. Let K be a centrally symmetric convex and denote its mean width by
m0. Then, there exist n Minkowski symmetrizations that transform K into a new set
K 0 such that m0

2n�2Qn � K 0, where Qn is the centered unit cube..

Proof. Since M �.K/ D m0 there exists a direction u such that K \ Ru is of
length 2m0. Choose V D fv1; : : : vn�1g 2 Sn�1 and ui WD Rviu such that the
set U D fu1; : : : un�1; ug is orthonormal, and apply Minkowski symmetrizations to
K with respect to the directions in V . Obviously, by Monotonicity of Minkowski
symmetrization, the resulting set K 0 contains the cube obtained by symmetrizating
the interval K \ Ru with respect to the same directions. It is easy to see that the
resulting set is the cube m0

2n�2Qn.

Applying Lemma 3.2 to the set K in Theorem 1.5 provides us with the estimate

log
jDnj
jKj � Cn2:

In total, we get that for every convex set Cn7

2
Minkowski symmetrizations suffice to

approach the Euclidean ball.

4 Blaschke Symmetrization

Once again, to prove Theorem 1.6 we will first show a preliminary result:

Theorem 4.2. Let K be a convex set with surface area S.K/ D n�n and let  > 0.

Then, there exist
l

Cn6

2
log jDnj

jKj
m

Blaschke symmetrizations that transform K into a

convex set K 0 such that A.K 0;Dn/ < .

Proof. As before, we may assume that K is centrally symmetric, since by applying
n symmetrization with respect to some orthogonal basis we get a surface area
measure that satisfies the conditions of Theorem 2.3. By the isoperimetric inequality
we know that �n � jKj.
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Fixing some  > 0 and applying the same symmetrization process as in
Theorem 3.1, with respect to Blaschke symmetrization, we conclude that after m
steps we obtain a set Km such that

�1�1=nn � jKj1�1=n
�

1C 2

Cn6

�m

:

Hence, after at mostm D log.�n=jKj/
log
�
1C 2

Cn6

� we obtain a set Km that satisfies

A.Km;Ru.Km// < 

for each reflection Ru.
Thus, after no more than Cn6

2
log jDnj

jKj Blaschke symmetrizations we obtain a set
L such that

A.L;Ru.L// < ;

for every reflection Ru. As before, applying Lemma 2.4 we get that after at most

�
Cn6

2
log

jDnj
jKj

�

Blaschke symmetrizations, A.L;Dn/ < 4.

Note that in both proofs the number of required symmetrizations is 0 if jKj D jDnj.
This is indeed correct, as we know that the equality case for both, the isoperimetric
and Urysohn’s inequalities is if and only if K D Dn.

4.1 Removing the Dependence on Volume ofK

Since it is not clear how to create a large cube insideK using Blaschke symmetriza-
tion, we will use Minkowski symmetrization to create a large cube in ˘K and
show that this is enough for our purpose. Since S.K/ D n�n, by (8) we have that
M �.˘K/ D �n�1. By Lemma 3.2 we know that there exist n � 1 Minkowski
symmetrizations �v1 ; : : : �vn�1 applied to ˘K transform it into a new body P 0 such
that �n�1

2n�2Qn � P 0, where Qn is the centered unit cube. Apply the corresponding
Blaschke symmetrizations Bv1 ; : : : Bvn�1 to K . By (7) we obtain a new body K 0
such that˘.K 0/ D P 0. Additionally, since ˘Qn D 2Qn (see [10, p. 145]), it is not

hard to see that ˘
��

�n�1

2n�1

� 1
n�1 Qn

�
D �n�1

2n�2Qn � ˘.K 0/. Thus, by Theorem 2.6 we

get that
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jK 0j � 1p
n

��n�1
2n�1

� n
n�1

;

which in turn gives us the bound

log
�n

jK 0j � Cn logn:

This completes the proof of Theorem 1.6.

Remark 4.2. Notice that in proof of Lemma 2.4 any value of r0 such that jK n
r0Dnj > 0 and jr0Dn n Kj > 0 will provide the same result. Also, since K is not
contained in the unit ball, we may choose r0 D 1 and get that

jK	Dnj
jKj < 4:

Thus we get a similar convergence result in the Nikodym metric as well.

5 Appendix: Relation to Hausdorff Metric

First let us check that we can get a result similar to 1.5 by applying the following
theorem of Groemer (see [12]) to Theorem 1.3:

Theorem 5.1 (Groemer). Assume that K and L be convex bodies and let D D
maxfdiam.K/; diam.L/g. Then, for n � 2 we have

jK	Lj � cndH .K;L/;

where cn D �n
21=n�1

�
D
2

�n�1
:

Now, assume we have a convex set K such that M �.K/ D 1. By Theorem 1.3
we may transform K into K 0 such that dH .K 0;Dn/ <  using at most Cn log 1



Minkowski symmetrizations. Thus, in this case we have that diam.K 0/ < 2 C 2

and .1 � /n�n � jK 0j � �n. Denote by r0 the volume radius of K 0. Then using
triangle inequality we have

A.K 0;Dn/ D jK 0	r0Dnj
jK 0j � jK 0	Dnj C .1 � r0/

n�n

.1� /n�n
� cn C n�n

.1 � /n�n

D
2

21=n�1 .1C /n�1 C n

.1 � /n :

Thus, for  small enough, say less than 1
n2

, we get the required estimate.
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Although no similar theorem exists for Blaschke symmetrizations, one may show
convergence in the Hausdorff metric using Theorem 1.6.

Lemma 5.2 ([13]). Let K be a centrally symmetric convex set such that jKj D
jDnj and A.K;Dn/ < , for some  > 0. Then dH .K;Dn/ < C1=n where C > 0

is a universal constant.

Proof. Let R be the outer radius of K and u 2 Sn�1 such that Ru 2 @K . Denote by
Kt the homothety centered at Ru, where t D R�1

2R
. That is, Kt D t.K � Ru/C Ru.

By convexity, tK � K and by the choice of u, Kt \ int.Dn/ is empty. Thus Kt �
K	Dn which implies that jKt j < jDnj. Since jKt j D tnjKj we get,

�

1 � 1

R

�n
< 2n:

Thus, R < 1

1�21=n : Similarly, we get a lower bound for the inradius. Indeed, let r
be the inradius of K and v 2 Sn�1 such that rv 2 @K . Denote by Dt the homothety
centered at v of Dn where t D 1�r

2
. Again, Dt � Dn and by the choice of v,

Dt \ int.K/ is empty. Thus,Dt � K	Dn which implies that jDt j < jDnj and

.1 � r/n < 2n:

Equivalently, r > 1 � 21=n and for  small enough we get that

dH.K;Dn/ < C
1=n;

where C is a universal constant.

Thus, Theorem 1.6 and Lemma 5.2 imply the following proposition:

Proposition 5.3. Let K be a convex body such that S.K/ D n�n. Then, there exist
C n8

2
logn Blaschke symmetrizations that transformK into a new bodyK 0 such that

dH.K
0;Dn/ < C

01=n, where C;C 0 > 0 are universal constants.
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Positive Temperature Versions of Two Theorems
on First-Passage Percolation

Sasha Sodin

Abstract The estimates on the fluctuations of first-passsage percolation due to
Talagrand (a tail bound) and Benjamini–Kalai–Schramm (a sublinear variance
bound) are transcribed into the positive-temperature setting of random Schröedinger
operators.

1 Introduction

Let H D � 1
2d
	 C V be a random Schrödinger operator on Z

d with non-negative
potential V � 0:

.H /.x/ D .1C V.x// .x/ � 1

2d

X

y�x
 .y/ ;  2 `2.Zd / :

Assume that the entries of V are independent, identically distributed, and satisfy

PfV.x/ > 0g > 0: (1)

The inverse G D H�1 of H defines a random metric

�.x; y/ D log

p
G.x; x/G.y; y/

G.x; y/
(2)

on Z
d (see Lemma 3 below for the verification of the triangle inequality). We are

interested in the behaviour of �.x; y/ for large kx � yk (here and forth k � k stands
for the `1 norm); to simplify the notation, set �.x/ D �.0; x/.

Zerner proved [25, Theorem A], using Kingman’s subadditive ergodic theorem
[13], that if V satisfies (1) and

E logd .1C V.x// < 1 : (3)
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then

�.x/ D kxkV .1C o.1// ; kxk ! 1 ; (4)

where k � kV is a deterministic norm on R
d determined by the distribution of V . As

to the fluctuations of �.x/, Zerner showed [25, Theorem C] that (1), (3), and

if d D 2; then P fV.x/ D 0g D 0

imply the bound

Var �.x/ � CV kxk : (5)

In dimension d D 1, the bound (5) is sharp; moreover, � obeys a central limit
theorem

�.x/ � E�.x/

�V jxj1=2
D�!

jxj!1
N.0; 1/ ;

which follows from the results of Furstenberg and Kesten [10]. In higher dimension,
the fluctuations of � are expected to be smaller: the fluctuation exponent

� D lim sup
kxk!1

1
2

log Var �.x/

log kxk

is expected to be equal to 1=3 in dimension d D 2, and to be even smaller for d � 3;
see Krug and Spohn [14].

These conjectures are closely related to the corresponding conjectures for first-
passage percolation. In fact, � is a positive-temperature counterpart of the (site)
first-passage percolation metric corresponding to ! D log.1 C V /; we refer to
Zerner [25, Sect. 3] for a more elaborate discussion of this connection.

The rigorous understanding of random metric fluctuations in dimension d � 2 is
for now confined to a handful of (two-dimensional) integrable models, where � D
1=3 (see Corwin [8] for a review), and to several weak-disorder models in dimension
d � 4, for which � D 0 (see Imbrie and Spencer [11], and Bolthausen [6]).

It is a major problem to find the value of the exponent� beyond these two classes
of models. We refer to the works of Chatterjee [7] and Auffinger–Damron [2, 3]
for some recent results (in arbitrary dimension) establishing a connection between
the fluctuation exponent � and the wandering exponent � describing transversal
fluctuations of the geodesics.

Here we carry out a much more modest task: verifying that the upper bounds
on the fluctuations in (bond) first-passage percolation due to Talagrand [23] and
Benjamini, Kalai, and Schramm [5] are also valid for the random metric (2).
Zerner’s bound (5) is a positive-temperature counterpart of Kesten’s estimate [12].
Kesten showed that the (bond) first-passage percolation �FPP satisfies
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Var �FPP.x/ � Ckxk I (6)

furthermore, if the underlying random variables have exponential tails, then so does
.�FPP.x/ � E�FPP.x//=

pkxk. Talagrand improved the tail bound to

P fj�FPP.x/ � E�FPP.x/j � tg � C exp

�

� t2

Ckxk


; 0 � t � kxk :

Benjamini, Kalai, and Schramm [5] proved, in dimension d � 2, the sublinear
bound

Var �FPP.x/ � Ckxk= log.kxk C 2/ ; (7)

for the special case of Bernoulli-distributed potential. Benaïm and Rossignol [4]
extended this bound to a wider class of distributions (“nearly gamma” in the termi-
nology of [4]), and complemented it with an exponential tail estimate. Damron, Han-
son, and Sosoe [9] proved (7) for arbitrary potential with 2C log moments. Exten-
sions of the Benjamini–Kalai–Schramm bound to other models have been found by
van der Berg and Kiss [24], Matic and Nolen [17], and Alexander and Zygouras [1].

Theorem 1 below is a positive temperature analogue of Talagrand’s bound (in
order to use a more elementary concentration inequality from [21, 23] instead of a
more involved one from [23], we establish a slightly stronger conclusion under a
slightly stronger assumption). Theorem 2 is a positive temperature analogue of the
Benjamini–Kalai–Schramm bound.

The strategy of the proof is very close to the original arguments; the modification
mainly enters in a couple of deterministic estimates. Compared to the closely related
work of Piza [19] on directed polymers, we economise on the use of the random
walk representation (16), with the hope that the savings will eventually suffice to
address an extension discussed in Sect. 4.

Set �.x/ D E�.x/.

Theorem 1. Suppose the entries of V are independent, identically distributed,
bounded from below by  > 0, and from above by 0 < M < 1. Then

P f�.x/ � �.x/ � tg � C exp

�

� t2

C.;M/.�.x/C 1/



; (8)

and

P f�.x/ � �.x/C tg � C exp

�

� t2

C.;M/.�.x/C t C 1/



; (9)

for every t � 0.

Remark 1. The assumption  � V � M yields the deterministic estimate

C�1
 kxk � �.x/ � CMkxk ; (10)
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which, in conjunction with (8) and (9), implies the inequality

P fj�.x/ � �.x/j � tg � C exp

�

� t2

C.;M/kxk


:

Theorem 2. Assume that the distribution of the potential is given by

P fV.x/ D ag D P fV.x/ D bg D 1=2

for some 0 < a < b, and that d � 2. Then

Var �.x/ � Ca;b
kxk

log.kxk C 2/
: (11)

We conclude the introduction with a brief comment on lower bounds. In
dimension d D 2, Newman and Piza [18] proved the logarithmic lower bound

Var �FPP.x/ � 1

C
log.kxk C 1/ : (12)

A version for directed polymers (the positive temperature counterpart of directed
first passage percolation) was proved by Piza [19]; the argument there is equally
applicable to the undirected polymers which are the subject of the current note. We
are not aware of any non-trivial lower bounds in dimension d � 3.

2 Proof of Theorem 1

The proof of Theorem 1 is based on Talagrand’s concentration inequality [21, 23].
We state this inequality as

Lemma 1 (Talagrand). Assume that fV.x/ j x 2 X g are independent random
variables, the distribution of every one of which is supported in Œ0;M �. Then, for
every convex (or concave) L-Lipschitz function f W RX ! R.

P ff � Ef C tg � C exp

�

� t2

CM2L2



;

where C > 0 is a constant.

Denote g.x/ D G.0; x/. To apply Lemma 1, we first compute the gradient of
logg, and then estimate its norm.
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Lemma 2. For any x; y 2 Z
d ,

@

@V.y/
logg.x/ D �G.0; y/G.y; x/

G.0; x/
:

Proof. Let Py D ıyı
�
y be the projector on the y-th coordinate. Set Hh D H C hPy ,

Gh D H�1
h . By the resolvent identity

Gh D G � hGPyGh ;

hence

d

dh

ˇ
ˇ
ˇ
hD0Gh D �GPyG

and

d

dh

ˇ
ˇ
ˇ
hD0Gh.0; x/ D �G.0; y/G.y; x/ :

ut
Our next goal is to prove

Proposition 1. Suppose V �  > 0. Then

X

y

�
G.0; y/G.y; x/

G.0; x/

�2
� A.�.x/C 1/ ; (13)

where A depends only on .

The proof consists of two ingredients. The first one, equivalent to the triangle
inequality for �, yields an upper bound on every term in the left-hand side of (13).

Lemma 3. For any x; y 2 Z
d ,

G.0; y/G.y; x/

G.0; x/
� G.y; y/ � C :

Proof. Let Hy be the operator obtained by erasing the edges that connect y to its
neighbours, and let Gy D H�1

y . By the resolvent identity,

G.0; x/ D Gy.0; x/C 1

2d

X

y0�y
Gy.0; y

0/G.y; x/ :
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In particular,

G.0; y/ D 1

2d

X

y0�y
Gy.0; y

0/G.y; y/ :

Therefore

G.0; x/ D Gy.0; x/C G.0; y/G.y; x/

G.y; y/
:

ut
The second ingredient is

Lemma 4. For any x 2 Z
d ,

X

y

G.0; y/G.y; x/

G.0; x/
� C.�.x/C 1/ :

The proof of Lemma 4 requires two more lemmata. Denote

g2.x/ D G2.0; x/ D
X

y

G.0; y/G.y; x/ ; u.x/ D g2.x/

g.x/
:

Lemma 5. For any x 2 Z
d ,

X

y�x

g.y/

2d.1C V.x//g.x/
D 1 � ı.x/

.1C V.0//g.0/
(14)

and

u.x/ D
X

y�x
u.y/

g.y/

2d.1C V.x//g.x/
C 1

1C V.x/
: (15)

Proof. The first formula follows from the relation Hg D ı, and the second one—
from the relation Hg2 D g. ut

Sete�.x/ D log G.0;0/

G.0;x/
.

Lemma 6. For any x 2 Z
d ,

e�.x/ �
X

y�x
e�.y/

g.y/

2d.1C V.x//g.x/

C log.1C V.x//C log

�

1 � 1

.1C V.0//g.0/

�

ı.x/ :
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Proof. For x ¤ 0, (14) and the concavity of logarithm yield

X

y�x

g.y/

2d.1C V.x//g.x/
log

2d.1C V.x//g.x/

g.y/
� log.2d/ :

Using (14) once again, we obtain

�e�.x/C
X

y�x
e�.y/

g.y/

2d.1C V.x//g.x/
C log.1C V.x// � 0 :

The argument is similar for x D 0. ut
Proof (Proof of Lemma 4). Let A � log�1.1C /. Then from Lemmata 5 and 6 the
function uA D u � Ae� satisfies

uA.x/ �
X

y�x
uA.y/

g.y/

2d.1C V.x//g.x/
�A log

�

1 � 1

.1C V.0//g.0/

�

ı.x/ :

By a finite-volume approximation argument (which is applicable due to the deter-
ministic bound (10)),

max uA.x/ D uA.0/ � � A

1 � 1
.1CV.0//g.0/

log

�

1 � 1

.1C V.0//g.0/

�

� A0
 ;

whence

u.x/ � A0
 C Ae�.x/ � C.1C �.x// :

ut
Proof (Proof of Proposition 1). By Lemma 3 ,

L D
X

y

�
G.0; y/G.y; x/

G.0; x/

�2

� max
y
G.y; y/

X

y

G.0; y/G.y; x/

G.0; x/
D max

y
G.y; y/ u.x/ :

The inequality V �  implies G.y; y/ � A00
 , and Lemma 4 implies

u.x/ � C.�.x/C 1/ :

ut
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Next, we need

Lemma 7. For any x 2 Z
d , logg.x/, log G.0;x/

G.0;0/
, and log G.0;x/

G.x;x/
are convex functions

of the potential. Consequently,

�.x/ D �1
2

�

log
G.0; x/

G.0; 0/
C log

G.0; x/

G.x; x/

�

is a concave function of the potential.

Proof. The first statement follows from the random walk expansion:

g.x/ D
X 1

1C V.x0/

1

2d

1

1C V.x1/

1

2d
� � � 1
2d

1

1C V.xk/
; (16)

where the sum is over all paths w W x0 D 0; x1; � � � ; xk�1; xk D x. Indeed, for
every w

Tw D log
1

1C V.x0/

1

2d

1

1C V.x1/

1

2d
� � � 1
2d

1

1C V.xk/

is a convex function of V , hence also logg.x/ D log
P

w e
Tw is convex.

To prove the second statement, observe that

G.0; x/ D 1

2d
G.0; 0/

X

y�0
G0.y; x/ ;

where G0 is obtained by deleting the edges adjacent to 0. Therefore

log
G.0; x/

G.0; 0/
D � log.2d/C log

X

y�0
G0.y; x/ I

for every y, logG0.y; x/ is a convex function of V , hence so is log G.0;x/

G.0;0/
. ut

Proof (Proof of Theorem 1). Denote �0.x/ D min.�.x/; �.x//. Then by Lemma 2
and Proposition 1

krV �0.x/k22 � A.�.x/C 1/ ;

A depends only on . By Lemma 7, �0 is concave, therefore by Lemma 1

P f�.x/ � �.x/ � tg � exp

�

� t2

CM2A.�.x/C 1/



:
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Similarly, set �t .x/ D min.�.x/; �.x/C t/. Then

krV �t .x/k22 � A.�.x/C t C 1/ ;

therefore by Lemma 1

P f�.x/ � �.x/C tg D P f�t .x/ � �.x/C tg

�
4

exp

�

� t2

CM2A.�.x/C t C 1/



:

ut

3 Proof of Theorem 2

The proof follows the strategy of Banjamini, Kalai, and Schramm [5]. Without loss
of generality we may assume that kxk � 2; set m D bkxk1=4c C 1.

To implement the Benjamini–Kalai–Schramm averaging argument, set

F D � 1

#B

X

z2B
logG.z; x C z/ ;

where

B D B.0;m/ D fz 2 Z
d j kzk � mg

is the ball of radiusm about the origin (cf. Alexander and Zygouras [1]). According
to Lemma 3,

G.0; x/ � G.z; x C z/G.0; z/G.x; x C z/

G.z; z/G.x C z; x C z/
;

therefore �.x/ � F CCa;bm; similarly, �.x/ � F �Ca;bm. It is therefore sufficient
to show that

VarF � Ca;b
kxk

log kxk :

We use another inequality due to Talagrand [22] (see Ledoux [16] for a
semigroup derivation). Let X be a (finite or countable) set. Let �C

x W fa; bgX !
fa; bgX be the map setting the x-th coordinate to b, and ��

x W fa; bgX ! fa; bgX
–the map setting the x-th coordinate to a. Denote

@xf D f ı �C
x � f ı ��

x :
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Lemma 8 (Talagrand). For any function f on fa; bgX ,

Varf � Ca;b
X

x2X

Ej@xf j2
1C log Ej@xf j2

.Ej@xf j/2
: (17)

Let us estimate the right-hand side for f D F , X D Z
d . Denote

�tx D t�C
x C .1 � t/��

x I

then

@xF D
ˆ 1

0

@F

@V.x/
ı �tx dt :

According to Lemma 2,

@F

@V.y/
D 1

#B

X

z2B

G.z; y/G.y; x C z/

G.z; x C z/
:

Therefore

E
@F

@V.y/
ı �ty D E

1

#B

X

z2B

G.z; y/G.y; x C z/

G.z; x C z/
ı �ty

D E
1

#B

X

z2B

G.0; y � z/G.y � z; x/

G.0; x/
ı �ty�z

D E
1

#B

X

v2yCB

G.0; v/G.v; x/

G.0; x/
ı �tv :

Lemma 9. For any Q � Z
d and any x0; x 2 Z

d ,

X

v2Q

G.x0; v/G.v; x/
G.x0; x/

� Ca.diam� QC 1/ � Ca;b.diamQ C 1/ : (18)

Let us first conclude the proof of Theorem 2 and then prove the lemma. Set
ı D m� 1

2 , and let

A D
n
y 2 Z

d
ˇ
ˇ
ˇE
�
@yF

�2 � ı E@yF
o
:

Then the contribution of coordinates in A to the right-hand side of (17) is at most
Cıkxk by Lemma 4. For y in the complement of A, Lemma 9 yields
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E@yF � Cm

#B
;

hence

E
�
@yF

�2 � ı E@yF � ı#B

Cm

�
E@yF

�2
;

and

log
E
�
@yF

�2

�
E@yF

�2 � log
ı

Cm
� log.kxk=C 0/

by the inequality #B � Cm2 (which holds with d -independentC ). The contribution
of the complement of A to (17) is therefore at most C 0 kxk

log kxk . Thus finally

VarF � C 00kxk
log kxk :

ut
Proof (Proof of Lemma 9). For Q � Z

d and x0; x 2 Z
d , set

uQ.x
0; x/ D .G�QG/.x

0; x/
G.x0; x/

D
P

q2Q G.x0; q/G.q; x/
G.x0; x/

:

Similarly to Lemma 5,

uQ.x
0; x/ D

X

y�x
uQ.x

0; y/
G.x0; y/

2d.1C V.x//G.x0; x/
C �Q.x/

1C V.x/
:

By a finite-volume approximation argument, it is sufficient to prove the estimate (18)
in a finite box. Then maxx uQ.x0; x/ is attained for some xmax 2 Q. By symmetry,
maxx0;x uQ.x0; x/ is attained when both x0 and x are in Q. On the other hand, for
x0; x 2 Q

uQ.x
0; x/ � uZd .x

0; x/ � C.1C log
1

G.x0; x/
/ � C 0.1C diam� Q/

by Lemma 4. ut
Remark 2. To extend Theorem 2 to the generality of the work of Benaïm and
Rossignol [4], one may use the modified Poincaré inequality of [4] instead of
Talagrand’s inequality (17); this argument also yields a tail bound as in [4].
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One may also hope that the even more general methods of Damron, Hanson, and
Sosoe [9] could be adapted to the setting of the current paper.

4 A Remark

Let H D � 1
2d
	C V be a random Schrödinger operator on Z

d . For z 2 C n R, set
Gz D .H � z/�1. The analysis of Somoza, Ortuño, and Prior [20] (see further Le
Doussal [15]) suggests that, in dimension d D 2,

Var log jGz.x; y/j � .kx � yk C 1/2=3 ;

and that a similar estimate is valid for the boundary values G�Ci0 (which exist for
almost every � 2 R) even when � is in the spectrum of H .

Having this circle of questions in mind, it would be interesting to study the
fluctuations of log jGz.x; y/j for z 2 C n R. In dimension d D 1, the results of
Furstenberg and Kesten [10] imply that

Var log jGz.x; y/j � jx � yj C 1 :

We are not aware of any rigorous bounds in dimension d � 2. In particular, we do
not know a proof of the estimate

Var log jGz.x; y/j D o.kx � yk2/ ; kx � yk ! 1 ; (19)

even when z is such that the random walk representation (16) is convergent.
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The Randomized Dvoretzky’s Theorem in l n1
and the �-Distribution

Konstantin E. Tikhomirov

Abstract Let " 2 .0; 1=2/. We prove that if for some n > 1 and k > 1, a majority
of k-dimensional sections of the ball in ln1 is .1 C "/-spherical then necessarily
k � C" lnn= ln 1

"
, where C is a universal constant. The bound for k is optimal up

to the choice of C .

1 Introduction

The classical theorem of A. Dvoretzky in the version improved and strengthened by
V. Milman, states: there is a function c."/ > 0 such that for all " 2 .0; 1=2/, n > 1
and 1 � k � c."/ lnn, any n-dimensional normed space admits a k-dimensional
subspace which is .1C "/-Euclidean.

See [2] and [6], respectively, for the original theorems. A broad perspective of
the subject and its developments can be found in the books [7] and [8], as well as in
a recent survey [11] and references therein.

The bound k � c."/ lnn is in general optimal with respect to n, but the form of
the function c."/ is not clear up to this day. The original formula for c."/ from [6]
was subsequently improved to c."/ D c"2 in [4] and then to c."/ D c"=.ln 1

"
/2

in [9]; this is the best known general result so far (note that in the class of n-
dimensional spaces with a 1-symmetric basis, c."/ D c= ln 1

"
[12]).

The problem of optimal dependence on " in Dvoretzky’s theorem can be
“randomized” as follows: given an n-dimensional normed space X , determine all
k such that a random k-dimensional subspace ofX is .1C "/-Euclidean with a high
probability. Of course, the solution depends on the definition of “randomness”. For
example, in [5] the question was considered for X D ln1 and a certain probabilistic
model which gives .1 C "/-Euclidean subspaces with a large probability for all
k � c lnn= ln 1

"
. However, the distribution of the random subspaces in [5] is not

invariant under rotations. The (unique) rotation invariant distribution of subspaces
of ln1 was studied in [10].
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It was proved in [10] that the standard Gaussian vector g D .g1; g2; : : : ; gn/ in
R
n satisfies

Pfkgk1 < .1 � "/M1g � 2 exp.�nc"/;
Pfkgk1 > .1C "/M1g � 2n�c";

where M1 is the median of the norm of g in ln1 and c > 0 is a universal constant.
A usual “"-net” argument then implies that a random k-dimensional subspace
E � ln1, uniformly distributed on the Grassmannian Gn;k , is .1 C "/-spherical
with probability at least 1 � 2n�Qc", provided that k � Qc " lnn= ln 1

"
. Of course, a

natural question is whether ln 1
"

in the upper bound for k can be removed. In [10] it
was claimed that it is indeed possible.

The main purpose of this note is to show that in fact ln 1
"

is necessary and the
bound k � Qc" lnn= ln 1

"
is optimal (up to the choice of the constant). In other

words, if k � max.2; C " lnn= ln 1
"
/ then with a substantial probability the random

k-dimensional subspace E � ln1 uniformly distributed on Gn;k is not .1 C "/-
spherical. To achieve our goal, we shall link the geometry of “typical” subspaces of
ln1 to certain properties of the �-distribution.

2 Preliminaries

Let us start with some notation. For any n � 1 and any vector x 2 R
n, kxk2

and kxk1 denote the canonical Euclidean norm and ln1-norm of x, respectively.
The probability space .P; ˙;˝/ is fixed. Everywhere in the text, g1; g2; : : :
are independent standard Gaussian variables and g D .g1; g2; : : : ; gn/ is the
standard Gaussian vector in R

n. By M2 (M1) we will denote the median of kgk2
(respectively, the median of kgk1). Finally, with some abuse of terminology, we
will call a subspace E � ln1 .1C "/-spherical if

max
x2Ekxk2D1

kxk1= min
x2Ekxk2D1

kxk1 � 1C ":

From well known estimates for the Gaussian distribution (see, for example, [1,
p. 264] or [3, Lemma VII.1.2]) it follows that for ˛ ! 0,

1

˛
P

n
jg1j �

p
2 ln.1=˛/� ln ln.1=˛/

4
p

ln.1=˛/

o
�! 0I (1)

1

˛
P

n
jg1j � p

ln.1=˛/
o

�! 1: (2)
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Fix some k > 1. The variable �.k/ D
s

kP

iD1
g2i has the �-distribution with k

degrees of freedom; the distribution density fk of �.k/ is given by

fk.t/ D
8
<

:

tk�1e�t2=2

2k=2�1� .k=2/
; t � 0I

0; otherwise:

where � is the Gamma function. It is obvious that Pf�.k/ � �g � Pfjg1j � �g for
all � > 0, so in view of (2) for all sufficiently small ˛ > 0,

P
˚
�.k/ � p

ln.1=˛/

 � ˛: (3)

We shall use the formula for fk to improve the last estimate. Suppose that � D �.˛/

satisfies Pf�.k/ � �g D ˛, i.e.

˛ D
1̂

�

fk.t/ dt:

By (3), for small ˛ we have � � p
ln.1=˛/ and

˛ D
1̂

�

tk�1e�t 2=2

2k=2�1� .k=2/
dt D

1̂

�2

tk=2�1e�t=2

2k=2� .k=2/
dt �

1̂

�2

.ln.1=˛//`e�t=2

2k=2� .k=2/
dt

D .ln.1=˛//`e��2=2

2`� .k=2/
;

where ` D k
2

� 1. Hence,

� �
s

2 ln.1=˛/C 2 ln
.ln.1=˛//`

2`� .k=2/
�
s

2 ln.1=˛/C 2` ln
ln.1=˛/

2`C 1
: (4)

Clearly, for ` � ln.1=˛/ we have ln.1=˛/ � ` ln ln.1=˛/
2`C1 , and (4) implies

� �
p
2 ln.1=˛/C ` ln ln.1=˛/

2`C1
2
p

ln.1=˛/
:
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Thus, we have shown the following:

Lemma 1. There are absolute constants ˛0 > 0 and c0 > 0 such that whenever
˛ 2 .0; ˛0/ and 2 � k � c0 ln.1=˛/ then

P

n
�.k/ � p

2 ln.1=˛/C .k=2 � 1/ ln ln.1=˛/
k�1

2
p

ln.1=˛/

o
� ˛: (5)

3 Random Subspaces of ln1

For natural numbers n and k, let �nk W Rk ! R
n be the standard Gaussian operator

given by

�nk.z/ D �nk.z1; z2; : : : ; zk/ D
nX

iD1

0

@
kX

jD1
gijzj

1

A ei

for z D .z1; z2; : : : ; zk/ 2 R
k , where e1; e2; : : : ; en is the canonical basis in R

n and
fgijg are independent standard Gaussian variables.

The following proposition, together with the results of [10] on the distribution of
kgk1, is the main tool in proving the central result of the note. It shows that with a
substantial probability, the number

max
z2Sk�1

k�nkzk1= min
z2Sk�1

k�nkzk1

is noticeably farther from 1 than kgk1=M1:

Proposition 1. There are universal constants c > 0 and n0 2 N such that for all
n � n0 and all k > 1,

max
z2Sk�1

k�nkzk1= min
z2Sk�1

k�nkzk1 > 1C ck ln c ln n
k

lnn
(6)

with probability greater than 1=2.

Proof. By (1), there exists ˛1 > 0 such that for all n � ˛�1
1 and k � 1,

P

n
k�nk.1; 0; : : : ; 0/k1 � p

2 lnn � ln ln n

4
p

lnn

o

D P

n
jg1j � p

2 lnn� ln lnn

4
p

lnn

on
>
1

2
C 1

e
: (7)
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Define n0 D dmax.˛�1
0 ; ˛

�1
1 /e and c D min.c0; 1=24/, where ˛0 and c0 are taken

from Lemma 1. Now, fix any n � n0 and k > 1. Note that for k � c0 lnn
the statement is trivial so we will assume that k < c0 lnn. For any point of the
probability space ! 2 ˝ ,

max
z2Sk�1

k�nk.!/zk1 D max
i

max
.z1;:::;zk/2Sk�1

jz1gi1.!/C � � � C zkgik.!/j

D max
i

p
gi1.!/2 C � � � C gik.!/2

D max
i
�i .!/;

where �1; �2; : : : ; �n are independent random variables having the �-distribution
with k degrees of freedom. Letting ˛ D 1=n in (5), we get:

P

n
max
i
�i � p

2 lnnC .k � 2/ ln lnn
k�1

4
p

ln n

o

D 1 � P

n
�1 � p

2 lnnC .k � 2/ ln ln n
k�1

4
p

ln n

on

� 1 �
�

1 � 1

n

�n

� 1 � 1

e
:

Combining the last estimate with (7), we get the result. ut
Further, we will need the following version of the “�-net” argument: Let k > 1

and N be a �-net (with respect to the Euclidean norm k�k2 in R
k) on Sk�1 for some

� < 1=2. Next, let X be a normed space and T W Rk ! X be a linear operator
such that for some M > 0 and ı 2 Œ0; 1/

.1 � ı/M � kTykX � .1C ı/M for all y 2 N :

Then for any z 2 Sk�1

.1 � 2ı � 2�/M � kTzkX � .1C 2ı C 2�/M: (8)

For convenience of a less experienced reader we give a short proof. For every z 2
Sk�1, there is y 2 N such that ky � zk2 � � . Then

kTzkX � kTykX C kT .y � z/kX � .1C ı/M C �kT k;

where kT k denotes the operator norm from `k2 to X . Taking the maximum over z,
we get kT k � .1 C ı/.1 � �/�1M . In particular this implies the right hand side
inequality in (8). For the left hand side we start with
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kTzkX � kTykX � kT .y � z/kX � .1 � ı/M � �kT k;

and then use the estimate for kT k obtained above.
The next statement expresses the well known fact that, for k � n, with a large

probability k�nkzk2 is almost a constant on the sphere Sk�1. Let C2 > 0 be such
that for all n > 1 the dimension of any 3=2-spherical subspace of ln1 is bounded
from above by C2 lnn.

Lemma 2. There is a universal constant n1 2 N such that for all n � n1 and
k � C2 lnn

P

n
max

z2Sk�1
k�nkzk2= min

z2Sk�1
k�nkzk2 � 1C 1

n1=4

o
� 3

4
: (9)

Proof. By a concentration inequality for Gaussian vectors (see, for example, [8,
Theorem 4.7] or [7, Theorem V.1]) and since M2 � p

n, we have for some C1 > 0,
all n � 1 and the standard Gaussian vector g in R

n

Pfjkgk2 � M2j > �M2g � 2 exp.�C1�2n/ for any � > 0: (10)

Then we choose the constant n1 2 N so that for all n � n1

1 � 2.48n1=4/C2 ln n exp.�C1
p
n=256/ � 3=4:

Fix any n � n1 and 1 � k � C2 ln n; let � D 1

16n1=4
and N be a �-net on Sk�1

of cardinality at most .3=�/k. For any point z 2 Sk�1, �nkz is the standard Gaussian
vector in R

n, so in particular

Pfjk�nkyk2 � M2j � �M2 for all y 2 N g
� 1 � .3=�/kPfjkgk2 � M2j > �M2g
� 1 � 2.3=�/k exp.�C1�2n/:

The “�-net” argument implies that

P

n
max

z2Sk�1
k�nkzk2= min

z2Sk�1
k�nkzk2 � 1C 16�

o

� 1 � 2.3=�/k exp.�C1�2n/
� 1 � 2.48n1=4/C2 ln n exp.�C1

p
n=256/

� 3

4
;

and the result follows. ut
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To emphasize the geometric character of our main result we shall present it in
terms of the Grassmann manifolds. Note that the probabilistic formulations used
until now—which are more convenient for calculations—still remain in the proof of
the theorem.

For natural numbers 1 � k � n, the Grassmann manifold of all k-dimensional
subspaces of R

n is denoted by Gn;k ; by �n;k we denote the normalized rotation
invariant Haar measure on Gn;k . In view of invariance of the distribution of the
Gaussian vector under rotations, we have for any Borel subset A � Gn;k

P
˚
Im�nk 2 A
 D �n;k.A/: (11)

Theorem 1. Let " 2 .0; 1=2/ and n > 1. Then

(1) There is an absolute constant Qc > 0 such that whenever k � Qc" lnn= ln 1
"
, then

�n;kfE 2 Gn;k W E is .1C "/-spherical subspace of ln1g � 1 � 2n�Qc"I
(12)

(2) Conversely, if for some k > 1

�n;kfE 2 Gn;k W E is .1C "/-spherical subspace of ln1g � 3

4
(13)

then necessarily k � C" lnn= ln 1
"
, where C > 0 is an absolute constant.

Proof. The first part of the theorem is essentially proved in [10]. Indeed, by [10,
Proposition 1], for some constant c1 > 0

Pfjkgk1 � M1j > "M1g � 2n�c1": (14)

When n is small or " < 1
ln n , (12) is obvious (for a well-chosen constant Qc), so we

can assume that

c1.64 lnn/2

C1n
� 1; " � 1

ln n
; (15)

where C1 is taken from (10). Pick a natural number k � c1" ln n
18 ln.1="/ . As before, �nk is

the Gaussian operator. Note that event fIm�nk is .1 C "/ � sphericalg contains the
event

˚
max

z2Sk�1
k�nkzk2= min

z2Sk�1
k�nkzk2 � 1C "

4
and

max
z2Sk�1

k�nkzk1= min
z2Sk�1

k�nkzk1 � 1C "

4

o
:
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Then in view of (11), (10), (14) and the “�-net” argument for � D "=64,

�n;kfE 2 Gn;k W E is .1C "/-sphericalg
� P

n
max

z2Sk�1
k�nkzk2= min

z2Sk�1
k�nkzk2 � 1C "

4
and

max
z2Sk�1

k�nkzk1= min
z2Sk�1

k�nkzk1 � 1C "

4

o

� 1 � .3=�/kPfjkgk2 � M2j > �M2g
� .3=�/kPfjkgk1 � M1j > �M1g

� 1 � 2.3=�/k exp.�C1�2n/ � 2.3=�/kn�c1":

By (15), C1�2n � c1" lnn, hence

P
˚
Im�nk is .1C "/� spherical


 � 1 � 4n�c1"n
c1
18 " ln 3

� = ln 1
" � 1 � 4n�c1"=2:

The statement follows by properly defining Qc.
Now, we turn to the second part of the theorem. Suppose that k > 1 satisfies (13).

This implies, in particular, that ln1 contains .1 C "/-Euclidean subspaces of
dimension k, so k � C3 lnn= ln 1

"
for an absolute constant C3 (see, for example,

[11, Claim 3.3]). Let n0, n1, C2 and c be as they were defined in Proposition 1 and
Lemma 2. The cases when n or 1=" is small, can be treated in a trivial way, so further
we assume

n � max.n0; n1/;
3 lnn

cn1=4
� 1; k � c

e
lnn; " <

c2

3
: (16)

Obviously, k � C2 ln n. Then (9) and (13) give

P
˚

max
z2Sk�1

k�nkzk1= min
z2Sk�1

k�nkzk1 � .1C "/.1C 1=n1=4/



� P

n
max

z2Sk�1
k�nkzk2= min

z2Sk�1
k�nkzk2 � 1C 1

n1=4
and

max
x2Im�nkkxk2D1

kxk1= min
x2Im�nkkxk2D1

kxk1 � 1C "
o

� 1

2
:

Hence, by Proposition 1,

1C ck ln c ln n
k

ln n
� .1C "/.1C 1=n1=4/: (17)
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If " � 1=n1=4 then, in view of (16) and (17), k � k ln c ln n
k

� 3 ln n
cn1=4

� 1, leading to
contradiction. Hence, " > 1=n1=4, and (17) yields

k � 3" lnn

c ln c lnn
k

: (18)

In particular (18) implies k
ln n � 3

c
", so ln c lnn

k
� ln c2

3"
: Substituting it back to (18)

we get

k � 3" lnn

c ln c2

3"

:

ut
Remark 1. The probability 3=4 in the second part of the Theorem can be replaced
with any (fixed) positive number; this only affects the constant.
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