
Ground Plane Detection Using
an RGB-D Sensor
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Abstract Ground plane detection is essential for successful navigation of vision
based mobile robots. We introduce a very simple but robust ground plane detection
method based on depth information obtained using anRGB-Depth sensor.We present
two different variations of the method: the simplest one is robust in setups where the
sensor pitch angle is fixed and has no roll, whereas the second one can handle changes
in pitch and roll angles. Our comparisons show that our approach performs better
than the vertical disparity approach. It produces accurate ground plane-obstacle seg-
mentation for difficult scenes, which includemany obstacles, different floor surfaces,
stairs, and narrow corridors.

Keywords Ground plane detection · Kinect · Depth-map · RGB-D · Autonomous
robot navigation · Obstacle detection · V-disparity

1 Introduction

Ground plane detection and obstacle detection are essential tasks to determine pass-
able regions for autonomous navigation. To detect the ground plane in a scene the
most common approach is to utilize depth information (i.e., depthmap). Recent intro-
duction of RGB-D sensors (Red-Green-Blue-Depth) allowed affordable and easy
computation of depth maps. Microsoft Kinect— is the pioneer of such sensors—
integrates an infrared (IR) projector, a RGB camera, a monochrome IR camera, a tilt
motor and a microphone array to provide a 640× 480 pixels depth map and RGB
video stream at a rate of 30 fps.

Kinect uses an IR laser projector to cast a structured light pattern over the
scene. Simultaneously, its monochrome CMOS IR camera acquires an image. The
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disparities between the expected and the observed patterns are used to estimate a
depth value for each pixel. Kinect works well indoor. However, the depth reading is
not reliable for regions that are far more than 4m; at the boundaries of the objects
because of the shadowing; reflective or IR absorbing surfaces; and at the places that
are illuminated directly by sunlight which causes IR interference. Accuracy under
different conditions was studied in [1–3].

Regardless of themethod or the device that is used to obtain the depthmap, several
works approach to the ground plane detection problem based on the relationship
between a pixel’s position and it is disparity [4–9].

Li et al. show that the vertical position (y) of a pixel of the ground plane is
linearly related to its disparity D(y) such that one can seek a linear equation D(y) =
K1+ K2∗ y, where K1 and K2 are constants, which are determined by the sensor’s
intrinsic parameters, height, and tilt angle. However, ground plane can be directly
estimated on the image coordinates using the plane equation based on disparity
D(x, y) = ax + by + c without determining mentioned parameters. A least squares
estimation of the ground plane can be performed offline (i.e., by pre-calibration)
if a ground plane only depth image of the scene is available [5]. Another common
approach is to use RANSAC algorithm which allows fitting of the ground plane even
the image includes other planes [4, 10, 11].

Some other approaches aim to segment the scene into relevant planes [11, 12].
The work of Holz et al. clusters surface normals to segment planes and reported to
be accurate in close ranges [11].

In [7], histograms of the disparity image rows were used to model the ground
plane. In the image formed of the row histograms (named as V-disparity), the ground
plane appears as a diagonal line. This line, which is detected by Hough Transform,
was used as the ground plane model.

In this paper, we present a novel and simple algorithm to detect the ground plane
without the assumption that it is the largest region. Assuming a planar ground plane
model which may probably cause problems if the floor has significant inclination
or declination [6, 7], we use the fact that if a pixel is from the ground plane, its
depth value must be on a rationally increasing curve placed on its vertical position.
Although the degree of this curve is not known, it can be estimated by an exponential
curve fit to use it as the ground planemodel. Later, the pixelswhich are consistentwith
the model are detected as ground plane whereas the others are marked as obstacles.
While this is our base model which can be used for a fixed viewing angle scenario,
we provide an extension of it for dynamic environments where sensor viewing angle
changes from frame to frame. Moreover, we note the relation of our approach to
V-disparity approach [7], which rely on the linear increase of disparity and fitting of
a line to model the ground plane, and compare our method by tests on the same data.
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2 Method

2.1 Detection for Fixed Pitch

In a common scenario, the sensor views the ground plane with an angle (i.e., pitch
angle), in which we can assume that the sensor is fixed and its roll angle is zero (Fig.
1b). The sensor’s pitch angle (Fig. 1a) causes allocation of more pixels for the closer
scene than the farther. So that linear distance from the sensor is projected on the
depth map as a rational function. This is demonstrated in (Fig. 1c). Any column of
the depth image shows that the depth value increases not linearly but rationally from
bottom to top (i.e., right to left in Fig. 1d). Furthermore, a “ground plane only” depth
image must have all columns equal to each other, which is estimable by a curve fit
of sum of two exponential functions in the following form:

f (x) = aebx + cedx (1)

where f (x) is the pixel’s depth value and x is the its vertical location (i.e., row index)
in the image. The coefficients (a, b, c, d) depend on the intrinsic parameters, pitch
angle, and the height of the sensor.

A least squares fitting estimation of these coefficients make it possible to recon-
struct a curve, which is named as the reference ground plane curve (CR). In order to
detect ground plane pixels in a new depth frame, its columns(CU) are compared to
CR; any value under CR represents an object (or a protrusion), whereas values above
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Fig. 1 a Roll & pitch axis, b sensor view pitch causes linearly spaced points to mapped as an
exponential increasing function. c An example depth map image, d one column (y = 517) of the
depth map and its fitted curve representing the ground plane, e ground plane curves for different
pitch angles, f depth map in three dimensions showing the drop-offs caused by the objects
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the reference curve represent drop-offs, holes (e.g., intrusions, downstairs, edge of
a table). Hence, we compare the absolute difference against a pre-defined threshold
value T ; mark the pixels as ground plane if difference is less than T . Here, the depth
values that are equal to zero were ignored as they indicate sensor reading errors. The
related experiments are in Sect. 3.

2.2 Detection for Changing Pitch and Roll

The fixed pitch angle scheme explained above is quite robust. However, it is not
suitable for the scenarios where the pitch and roll angles of the sensor changes. Such
as of the mobile robots that cause movements on the sensors’ platform. These can be
compensated by using an additional gyroscopic stabilization [13]. However, here we
propose a computational solution in which a new reference ground curve is estimated
for each new input frame.

A higher pitch angle (sensor almost parallel to the ground) will increase the slope
of the ground plane curve.Whereas a non-zero roll angle (horizontal angular change)
of the sensor forms different ground plane curves along columns of the depth map
(Fig. 1e). Such that at one end the depth map exhibits curves of higher pitch angles,
while toward the other end, it has curves of lower pitch angles, which complicate the
use of a single reference curve for that frame.

To overcome the roll angle effects our approach aims to rotate the depth map to
make it orthogonal to the ground plane. If the sensor is orthogonal to the ground plane
it is expected to produce equal or very similar depth values along every horizontal
line (i.e., rows), which can be captured by a histogram of the row values such that a
higher histogram peak value indicates more similar values along a row. Let hr shows
the histogram of the r th row of a depth image (D) of R rows, and let us denote the
rotation of depth image with Dθ .

argmaxθ (

R∑

r=1

argmaxi (hr (i, Dθ )) (2)

Thus for each angle value θ in a predefined set, the depth map is rotated with an
angle θ and the histogram hr is computed for every row r . Then, the angle θ that
maximizes the sum of the histogram peak values is estimated as the best angle to
rotate the depth map prior to the ground plane curve estimation. This removes the
roll angle effect.

The changes of pitch angle create different projection and different curves along
the image columns (Fig. 1e). However, in a scene that consists of both the ground
plane and objects, the maximum value along a particular row of the depth map must
be due the ground plane, unless an object is covering the whole row (as in Fig. 1f).
This is because the objects are closer to the sensor than the ground plane surface that
they occlude. Therefore, if the maximum value across each row (r ) of the depth map
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(D) is taken, which we name as the depth envelope (E), it can be used to estimate
the reference ground plane curve (CR) for this particular scene and frame.

E(r) = maxi (D(ci , r)) (3)

The estimation is again performed by fitting the aforementioned exponential curve
(1). Prior to the curve fitting we perform median filtering to smooth the depth enve-
lope. Moreover, depth values must increase exponentially from bottom of the scene
to the top. However, when the scene ends with a wall or group of obstacles this is
reflected as a plateau in the depth envelope. Hence, the envelope (E) is scanned from
right to left and the values after the highest peak are excluded from fitting as they
cannot be a part of the ground plane. After the curve is estimated pixels of the frame
are classified, as described in Sect. 2.1.

Two conditions affect the ground plane curve fit adversely. First, when one or
more objects cover an entire row, this will produce a plateau in the profile of the
depth map. However, if the rows of the “entire row covering object or group” do not
form the highest plateau in the image, ground plane curve continues afterwards and
the object will not affect the curve estimation. Second, drop-offs of the scene cause
sudden increases (hills) on the depth envelope because they exhibit depth values
higher than the ground plane’s: If a hill is found on the depth envelope, the estimated
curve will be produced by a higher fitting error.

3 Experiments

We tested our algorithm on four different datasets comprised of several 640× 480
frames. Dataset-1 and dataset-2 were composed of 300 frames captured on a robot
platform which moves on the floor among several obstacles. Dataset-3 was cre-
ated with the same platform; however, the pitch and roll angles change excessively.
Dataset-4 included 12 individual frames acquired from difficult scenes such as nar-
row corridors, wall only scenes etc. Dataset-1 and dataset-2 were manually labeled
to provide the ground truth and were used in plotting ROCs (Receiver Operating
Curve), whereas the other two were visually examined.

We compared three different versions for our approach: fixed pitch (A1), pitch
compensated (A2), pitch and roll compensated (A3). There is only one free parameter
for A1 and A2 that is the threshold T , which is estimated by ROC analysis, whereas
the third roll compensation algorithm requires a pre-defined angle set for the search
for best rotation angle: {−30◦, −28◦,…,+30◦}. Least squares fit was performed by
Matlab curve fitting function with default parameters.

Moreover, we compared the results with V-disp method [7], which is originally
developed for stereo depth calculation where the disparity is available before depth.
To implement V-disp method, we calculated disparity from the Kinect depth map
(i.e., 1/D); calculated the row histograms to form V-disp image; and then run Hough
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Fig. 2 a ROC curves comparing V-disp and our fixed and pitch compensated algorithms (A1-A2),
b average accuracy over 300 frames versus thresholds, c accuracy and curve fit error of A2 for
individual frames

transform to estimate the ground plane line. We put a constraint on the Hough line
search in [−60◦,−30◦] range.

Since A3 and A2 algorithms are same, except for the roll compensation, we
examine and compare results of A2 to A1 and V-disp; however, we compare A3
results only against A2 to show the effect of the roll compensation.

Figure2a, b show ROC curves and overall accuracies plotted for our fixed and
pitch compensated algorithms (A1 and A2) and V-disp method on dataset-2. It can
be seen that our pitch compensated algorithm is superior to V-disp which is better
than our fixed algorithm.

When we select the best accuracy point thresholds and run our algorithms on
dataset-2, we obtained accuracy versus frames (Fig. 2c). In addition, we recorded
the curve fitting error for the pitch compensated algorithm (A2). Both methods were
quite stable with the exception of some high curve fitting error frames for A2. Those
frames can be automatically rejected to improve accuracy.

Some example inputs and outputs of our algorithm A2 is shown in Fig. 3. The
examples include a cluttered scene (Fig. 3a–c), stairs (Fig. 3d–f), one of the frames
from dataset-3, where the sensor is rolled almost 20◦ degrees (Fig. 3g). Figure3h, i
shows the respective outputs of A2 and A3. It can be seen that the roll compensation
provides a significant advantage.

Finally, Fig. 3j, k shows output pairs (overlaid on RGB) for A2 and V-disp. Both
methods detect the ground planes in the scenes where ground plane is not the largest
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Fig. 3 Experimental results from different scenes. RGB, depth-map and pitch compensatedmethod
output (white pixels represent objects whereas black pixels represent ground plane): a, b, c lab
environment with many objects and reflections; d, e, f stairs g, h, i respective outputs of pitch
compensated (A-2) and pitch&roll compensated method on an image where sensor was positioned
with a roll angle (A-3). j, k Comparison of pitch compensated (left) and V-disp method (right) in
narrow corridor

nor the dominant plane. Note that A2 is better than V-disp, though the thresholds
used by both methods were determined for the highest respective overall accuracy
for dataset-1, -2.
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If the frames are buffered beforehand, our algorithm A2 processed 83 fps on a
Pentium i5 processor using Matlab 2011a. Datasets and more results can be found
in our web site.

4 Conclusion

We have presented a novel, and robust ground plane detection algorithm which
uses depth information obtained from an RGB-D sensor. Our approach includes
two different methods, where the first one is simple but quite robust for fixed pitch
and no-roll angle scenarios, whereas the second one is more suitable for dynamic
environments. Both algorithms are based on an exponential curve fit to model the
ground plane which exhibits rationally increasing depth values. We compared our
method to the popular V-disp [7] method which is based on detection of a ground
plane model line by Hough transform which relied on linear increasing disparity
values. We have shown that the proposed method is better than V-disp and produces
acceptable and useful ground plane-obstacle segmentation for many difficult scenes,
which included many obstacles, different surfaces, stairs, and narrow corridors.

Our method produce errors especially when the curve fitting is not successful.
Our future work will focus on these situations that are easy to detect by checking the
RMS error of the fit, which has been shown to be highly correlated with the accuracy
of segmentation.
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