
A Survey of Data Stream Processing Tools

Marcin Gorawski, Anna Gorawska and Krzysztof Pasterak

Abstract In current international context boundaries set for applications are being
pushed by the emergence of bursty and time-varying data streams required to be
processed in near real-time. Furthermore, traditional techniques for data mining can-
not be applied to data streams. Thus, stream-based applications must exhibit to excel
at a plurality of requirements. According to defined rules presented in previous pro-
mulgated researches on this subject we differ stream-based applications and evaluate
their aptitude to stream sources management. By this work we intend to present fea-
tures and drawbacks of existing software coming from both industry and academic
world, along with outlining our contribution to this field.

Keywords Data mining · Data stream processing · Real-time processing · Tool
comparison

1 Introduction

A large class of applications has been distinguished in accordance to source data
being generated asynchronously in an unpredictable manner. Data streams [13, 15],
as they were called, are massive sequences of data that are rapid, unbounded in size,
real-time and very often contain multidimensional data items, i.e., tuples. As it was
outlined in [15] there are attempts to adjust classical systems asDBMSor rule engines
to manage data stream processing. However, they tend to fail in terms of the most
important real-time processing requirements. Consequently, applications oriented

M. Gorawski (B) · A. Gorawska · K. Pasterak
Institute of Computer Science, Silesian University of Technology,
Akademicka 16,
44–100 Gliwice, Poland
e-mail: Marcin.Gorawski@polsl.pl

A. Gorawska
e-mail: Anna.Gorawska@polsl.pl

K. Pasterak
e-mail: Krzysztof.Pasterak@polsl.pl

© Springer International Publishing Switzerland 2014
T. Czachórski et al. (eds.), Information Sciences and Systems 2014,
DOI 10.1007/978-3-319-09465-6_31

295



296 M. Gorawski et al.

toward processing data streams are substantially different from conventional ones,
thereby ill-equipped, which cannot meet high-volume and low-latency processing
criterions. Tools primarily designed to serve this purpose are far more effective and
reliable in managing stream-oriented workloads.

1.1 Research Criterions

While creating data stream processing system from a scratch, following real-time
processing requirements [15] ought to be addressed:

1. In-stream processing. Where system processes data without any additional mem-
ory operations, i.e., storing, in a non-polling processing model. While providing
for ‘straight-through’ operations, time-intensive storage operations are omitted
in processing pipeline which results in increasing system’s time efficiency.

2. Stream SQL-like language. Built-in dedicated language where primitives and
operators express continuous stream processing characteristics.

3. Handling streams imperfections. With handling unpredictable sources resiliency
is essential in terms of performing calculation on partial, deficient, delayed, or
out-of-order data.

4. Predictable outcomes. Processing pipeline should secure time-ordered process-
ing of data, so when reprocessing sequence of tuples due to failure occurrence,
outcome would be the same as if failover did not happen. Therefore, performing
operations on stream data ought to lead to predictable, deterministic and repeat-
able results.

5. Integration of current and historical data. Although data streamprocessingmodel
aims at management of current real-time data, it must also provide basis for
historical data processing. By extending systems capabilities in such manner we
gain possibility to identify whether data pattern observed in current online data
is consistent with already established ones,

6. Safety and availability. Failure occurrence is a critical concern. Thus, stream-
based applications have to be up and in case of failover seamlessly recover ensur-
ing data availability and integrity.

7. Distributed processing. Spreading processing across multiple computing units is
sufficient in terms of gaining scalability.

8. Minimization of response time. Even if all previous features characterize system
when it is not optimized towards minimizing overheads it will not be able to
react efficiently to continual inputs from various stream sources. Therefore, when
escalation in number of data volumes in time is observed, system must procure
responses without latency in a continuous timely fashion.

Sensorization of the world have posed many challenges gathered as a list of eight
requirements. Next two sections will present applications which target those issues.
In Sect. 2 five selected data streamprocessing systemswill be shortly described,while



A Survey of Data Stream Processing Tools 297

Sect. 3 will serve a purpose of propagating our contribution in a form of constantly
maturing systems. Finally, we summarize features of described systems and provide
concluding remarks.

2 Selective Overview of Stream-Based Processing Systems

2.1 Aurora and Borealis

In its early stage Aurora [4] systemwas built as a single site stream-based application
at Brown University. Thus, it is not prepared for distributed and parallel processing.
Unfortunately, it does not satisfy requirements of scalability, reliability, and data
safety. Borealis processing engine [3] is a successor to the previously mentioned
Aurora system. Among modules of the Borealis system there are: stream processing
engine, load manager, and load shedder. Further, a mechanism of fault tolerance
satisfies the need to provide safety and availability in case of system’s failure, while
revision processing mechanism handles tuple’s imperfections by correcting erro-
neous ones. Apart from mentioned features it incorporates textual query definition
language built on the XML standard, dynamic revision of query results, and query
modification.

2.2 Apache Storm

Next system is an open-source and free product called Storm [2], which focus is set
on real-time data processing with ability to distribute and parallelize computation.
Moreover, the Storm cater fault tolerance in case of tuple imperfections and ensures
processing even if failover occurred. With an architecture inspired by Hadoop, the
Apache Storm is easy to use and what is more important it can be easily linked with
most of existing queuing and database technologies. Previously mentioned systems
came from academic world.

2.3 Apache Samza

Another stream-based application from Apache [1] aims at performing computation
over data streams by combining Apache Kafka’s messaging and Apache Hadoop
NextGen MapReduce (YARN). The last ones purpose is provision of fault tolerance,
processor isolation, security, and resource management. Input streams of events are
decomposed and partitioned so that data flow graph is created. Each graph con-
tains multiple streams and jobs (i.e., processing primitives), which describe different
utilities of continuous queries.



298 M. Gorawski et al.

2.4 Microsoft StreamInsight

Microsoft StreamInsight [5] is an extensible framework, merged with Microsoft
SQL Server, which leverages continuous processing of long-running (in theory even
infinite in time) streams of events. This system has been architected on the basis
of CEDR [7] project. The most important aspect is ability to integrate Microsoft
StreamInsight with almost any field of interest by constructing a proper processing
pipeline. Logic of queries is based on a temporal time model and operator algebra.
Meanwhile, the system aims at revealing patterns and trends.

2.5 StreamGlobe

StreamGlobe [14] is a grid-based P2P DSMS. With stream and result sharing mech-
anisms as well as early filtering and aggregation it enables to avoid redundancy in
terms of data stream transmissions and computation. Moreover, by using Stream-
Globe reduction of network traffic and pear load is observable.

3 Our Contribution to Data Stream Processing

In the previous section five selected systems where described shortly. In accordance
to mentioned features we want to present our contribution to this field.

3.1 StreamAPAS

The first system, StreamAPAS [10, 11], implements following stream operators:
selection, projection, duplicate elimination, grouping (aggregation), join, union,
intersection, and difference. In addition, it contains also a stream query language, as
well as a query graph optimizer.

The first important feature of the StreamAPAS system is timemodel—mixed time
model [10], combining both temporal and negative [9] time models. The mixed time
model was introduced in order to eliminate disadvantages of the aforementioned
models.

The stream processing system StreamAPAS includes a declarative stream query
language [11]. User defines format of final outcome rather than declaring subse-
quent steps of the algorithm (as in procedural languages). Therefore, process of
defining stream query is independent of the physical architecture of the system.
Moreover, the StreamAPAS language contains some features that are present in
object oriented languages, which increases its functionality extension capabilities.



A Survey of Data Stream Processing Tools 299

Another advantage is existence of attribute trees, i.e., hierarchical structures used
instead of simple values for defining tuple’s data, which makes organizing and man-
aging easier.

The next important feature of the StreamAPAS system is the usage of operator
partitions in a query graph optimization process. The operator’s partition is also
called the compound operator, which includes variety of simple (regular) stream
operators. The operator partition is seen by the system as an usual operator and its
internal components exchange tuples without buffering. Such objects are created
when the total time or memory characteristic of certain simple operators are worse
than characteristic of them bounded in one operator’s partition.

3.2 THSPS

Next step in our research on the stream-based processing systems was creation of
yet another system, THSPS, which supports selection, transformations (projection
and mathematical operations), join, and aggregation operations. In this system our
focus was set on different time model, the tri-temporal time model like in Microsoft
StreamInsight, where each tuple time is described by three dimensions:

• occurrence time. Time interval when the event described by tuple has appeared,
• validity time. Time interval in which tuple can be analyzed by the system,
• system time. Timestamp representing tuple’s arrival time, i.e., moment in time,
when it has arrived to the system.

Among many advantages of the tri-temporal time model the main benefit is pos-
sibility of analyzing both current and historical events—which enhances views of
stream sources.

Each tuple represents a real-world event, which is described by two time intervals,
while the system time is used rather by the system for maintaining proper order of
tuples and is not directly connected with the event itself. Therefore, operators that
use multiple tuples in one cycle (i.e., join and aggregation operators) need to con-
sider these time dimensions during their operations. When joining data is concerned,
outcome tuple is characterized by both time dimensions narrowed to the common
part of the corresponding dimensions of two joined tuples. Thus, the result of joining
operation is an event that occurs when two input tuples overlap.

Analogical situation occurs when in processing pipeline aggregation operator is
used. Input sequence of tuples after aggregation is merged into one. Outcome tuple
consists of aggregated value (e.g., sum, mean value) and time intervals equal to sum
of the corresponding time dimensions from all aggregated tuples. So, resulting tuple
carries information about an event which lasts as long as all aggregated tuples.

Another sufficient module of the THSPS system is the query graph optimizer,
which rebuilds internal structure of the graph to reduce number of unnecessarily
processed tuples. This graph represents processing pipeline. For example, moving



300 M. Gorawski et al.

Fig. 1 Join operation in tri-temporal time model

Fig. 2 Aggregation operation in tri-temporal time model

a selection before other operators does not change query’s result. Moreover, it opti-
mizes query by reducing number of tuples by eliminating those which do not satisfy
selection operator’s predicate. Thus, tuples will be discarded on the very beginning of
their path through the graph. The major rule of the query optimizer is that operators
that have the smallest selectivity in time (i.e., the difference between the number of
input and output tuples divided by the operator life time), should be considered as
candidates to transferring to the beginning of the graph.

The other feature of the THSPS system is existence of joined tuple decorating
mechanism. Its principle is to create a tuple decorator, i.e., an object which has the
same interface as a regular tuple, but holds inside two physical tuples that have
been joined. Such concept was designed to reduce total number of tuples currently
stored in the system, as well as to increase the speed of producing results in join
operator—due to decreasing memory allocation and attribute copying operations.



A Survey of Data Stream Processing Tools 301

3.3 AGKPStream

After collecting experiences from both previously created systems in the AGKP-
Stream system [13] temporal time model was chosen as well as following stream
operators: selection, projection, union, and join (in three variants: cross-join, equi-
join and theta-join). Each operator defines two basic transformations aiming at
schema or attribute modifications and reformations.

In the AGKPStream system, the temporal time model was selected. Each tuple
denotes a time-lasting event that is represented by the time interval called tuple
life time and is described by two border timestamps: beginning and end. While the
tuple is valid (the current system time lays between these two timestamps) it can be
processed.

All operators in the AGKPStream system form and DAG likewise in the Aurora
system, each representing a single continuous query. The work of every processing
primitive is managed by the scheduler, which can work in one of following modes:
query or global level.

Global scheduler chooses one query each time and calls it to work, by activating
its local scheduler. Query’s schedulers manages operators by pointing which should
work in a particular moment in time, basing on various factors.

Similarly to the THSPS system, the AGKPStream system uses joined tuple deco-
rator mechanism. In both solutions, such mechanism enables the system to join only
two tuples. However, in some special cases, e.g., when multiple join operators are
connected in cascade, resulting joined tuples (when using decorating mechanism)
are also formed in the same manner—subsequent decorating objects points other
decorators etc.

4 Evaluation of Data Stream Processing Systems

While conducting presented research we have examined tools supportable over data
stream processing paradigm. Three out of eight were created by our team during past
years, while remaining five were taken as a reference point. Each system was exam-
ined in terms of requirements as follows: in-stream processing (1), stream language
(2), handling stream imperfections (3), predictable outcomes (4), data safety and
availability (5), integration of stored and stream data (6), distribution and scalability
(7), and instantaneous outcome (8).

Table1 presents eight requirements listed in the introduction versus their coverage
in aforementioned systems, where each entry has one of five values:

• yes. System natively provides this capability,
• no. System does not support this feature,
• possible. This challenge was not solved in the system yet, but it is possible to do
so,



302 M. Gorawski et al.

• hard. Theoretically adaptation to this requirement is possible, but it would require
substantial changes in the system,

• ? Lack of information.

Table 1 Comparison of described systems with emphasis to the eight requirements

System Req.1 Req.2 Req.3 Req.4 Req.5 Req.6 Req.7 Req.8

Borealis Yes No Yes Yes Yes Yes Yes Yes

Apache Storm Yes No Yes Yes ? Yes Yes Yes

Apache Samza Yes No Yes Yes Possible Yes Yes Yes

StreamInsight Yes No Yes Yes ? Yes Yes Yes

StreamGlobe Yes ? Possible Yes ? ? Yes Yes

StreamAPAS Yes Yes Yes Yes Hard Yes Yes Yes

THSPS Yes Possible Hard Hard Hard Possible No Yes

AGKPStream Yes Possible Yes Yes Hard Possible Yes Yes

As Table1 shows, all tested systems fulfilled condition to yield responses in a
timely manner with emphasis to processing data in the ’straight-through’ model.
Another fundamental rules from 3 and 4 were satisfied by most of the systems, while
integrating historical with real-time data and possession of native stream querying
language were arised as the most problematic requirements.

5 Concluding Remarks

The aim of this paper was to supply with a selective survey of tools enabling data
stream processing. Created comparative review was based on assumption that men-
tioned eight requirements present data streamprocessingmodel’s characteristics ade-
quately. In previous sections we have supplied tabular results of conducted research
where goal was to provide user with an upfront knowledge what types of systems
are available on the market and how they rise to streaming challenges.

Unfortunately, Aurora, Borealis, and Stream [6] projects are no longer active but
it is not an indication of meaninglessness of research continuation. On the contrary,
there are still numerous of new and subtle problems unsolved thereby our ongo-
ing work on the topic is even more valuable. We are not only pursuing evolution
of data stream processing systems, but also joining its most important objectives
with other areas of our domain expertise, i.e., databases and data warehouses. With
this combination first attempts to create a Stream Data Warehouse were made [12].
Moreover, many researches all over the world focus their efforts on adapting data
stream processing model and big data to create new solution in presented domain,
like StreamGlobe, PIPES [8], Apache Samza, and Storm, among with many other
attempts.



A Survey of Data Stream Processing Tools 303

References

1. Apache Samza official website. http://samza.incubator.apache.org/
2. Apache Storm official website. http://storm.incubator.apache.org/
3. D.J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J.-H. Hwang,W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S.B. Zdonik. The design of the borealis
stream processing engine. in: CIDR, pp. 277–289, 2005

4. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, S. Zdonik, Aurora: a new model and architecture for data stream management.
VLDB J. 12(2), 120–139 (2003)

5. M. Ali, B. Chandramouli, J. Goldstein, and R. Schindlauer. The extensibility framework in
microsoft streaminsight. in: Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering, ICDE ’11, IEEE Computer Society, pp. 1242–1253. 2011

6. A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,
J. Widom, Stream: the stanford stream data manager. Technical Report 2003–21, Stanford
InfoLab, 2003

7. R.S. Barga, J. Goldstein, M.H. Ali, M. Hong. Consistent streaming through time: a vision for
event stream processing. in: CIDR, pp. 363–374. www.cidrdb.org

8. M. Cammert, C. Heinz, J. Krmer, A. Markowetz, B. Seeger, Pipes: a multi-threaded publish-
subscribe architecture for continuous queries over streaming data sources. Technical report,
2003

9. T.M. Ghanem, M.A. Hammad, M.F. Mokbel, W.G. Aref, A.K. Elmagarmid, Incremental eval-
uation of sliding-window queries over data streams. IEEE Trans. Knowl. Data Eng. 19(1),
57–72 (2007)

10. M. Gorawski, A. Chrószcz, Query processing using negative and temporal tuples in stream
query engines. in: Advances in Software Engineering Techniques—4th IFIP TC 2 Central
and East European Conference on Software Engineering Techniques, CEE-SET 2009, Revised
Selected Papers, volume 7054 of Lecture Notes in Computer Science, (Springer, 2009) pp.
70–83

11. M. Gorawski, A. Chrószcz, StreamAPAS: query language and data model. in: 2009 Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2009, IEEE
Computer Society, pp. 75–82, 2009

12. M. Gorawski, A. Gorawska, Research on the Stream ETL Process. in: Beyond Databases,
Architectures, and Structures, volume 424 of Communications in Computer and Information
Science, (Springer, 2014) pp. 61–71

13. M. Gorawski, A. Gorawska, K. Pasterak, Evaluation and development perspectives of stream
data processing systems, in:Computer Networks, vol. 370 (Springer, Berlin, 2013), pp. 300–311

14. R. Kuntschke, B. Stegmaier, A. Kemper, A. Reiser, Streamglobe: processing and sharing data
streams in grid-based p2p infrastructures. in: Proceedings of the 31st International Conference
on Very Large Data Bases, VLDB, pp. 1259–1262. ACM, 2005

15. M. Stonebraker, U. Çetintemel, S. Zdonik, The 8 requirements of real-time stream processing.
SIGMOD Rec. 34(4), 42–47 (2005)

http://samza.incubator.apache.org/
http://storm.incubator.apache.org/
www.cidrdb.org

	31 A Survey of Data Stream Processing Tools
	1 Introduction
	1.1 Research Criterions

	2 Selective Overview of Stream-Based Processing Systems
	2.1 Aurora and Borealis
	2.2 Apache Storm
	2.3 Apache Samza
	2.4 Microsoft StreamInsight
	2.5 StreamGlobe

	3 Our Contribution to Data Stream Processing
	3.1 StreamAPAS
	3.2 THSPS
	3.3 AGKPStream

	4 Evaluation of Data Stream Processing Systems
	5 Concluding Remarks
	References


