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6.1 Introduction

Visco-elastic models are characterised by phenomena such as

– Velocity dependency: increase of stiffness with strain rate,
– Stress relaxation: decay of stress with time at constant strain,
– Creep: increase of strain with time at constant stress, and
– Loss of stored (elastic) energy due to inner friction resulting in unequal loading

and unloading stress–strain curves, the area between the two curves correspond-
ing to the dissipated energy (hysteresis).

Visco-elastic models can be classified in various ways, e.g.

(1) Linear or non-linear models

– Linear models with at least one elastic and one viscous element in parallel
or in series;
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– QLV/quasi-linear “viscous” models such as Prony series (Wiechert model;
Wiechert 1889, 1893);

– Non-linear models such as logarithmic and power law models.

or

(2) According to the decay function of stress relaxation, which can be

– Exponential: linear three-element model (standard linear solid),
– Power: non-linear power law model, or
– Logarithmic: non-linear logarithmic law model

Examples for the latter two non-linear models are:

– Power law model: biological tissues such as ligaments (Provenzano et al. 2001),
foams with non-negative stiffness (Fuss 2009), cork in cricket balls (Fuss 2008a,
2012);

– Logarithmic law model: solid polymers (Findley et al. 1989), polymer golf balls
(Fuss 2008b, 2012).

The loss tangent, tan ı, is defined as the tangent of the phase angle ı, which, in
turn, is the ratio of loss modulus E00 to storage modulus E0.

tan ı D E 00

E 0 (6.1)

where

E 0 D �0

"0

cos ı (6.2)

E 00 D �0

"0

sin ı (6.3)

and �0 and "0 are the peak amplitudes of stress � and strain ", respectively.
The complex modulus E* is defined as

E� D �0

"0

eiı D �0

"0

.cos ı C i sin ı/ D E 0 C iE 00 D jE�j eiı (6.4)

where i D p�1, and jE*j is the dynamic modulus, the magnitude of E*, i.e. the
resultant of loss modulus E00 and storage modulus E0

jE�j D �0

"0

(6.5)

The loss tangent, tan ı, is usually determined by subjecting a material or structure
to sinusoidal strain "

" D "0 sin .2 f t/ (6.6)
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Fig. 6.1 Sinusoidal strain
curve (blue) imposed on a
visco-elastic material and
resulting stress curve (pink);
¢0: stress amplitude, maximal
stress; "0: strain amplitude,
maximal strain; •: phase shift
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where f is the cyclic frequency (angular frequency ! D 2 f ). The resulting reaction
stress � is equally sinusoidal, but out of phase with respect to the strain by the phase
angle ı

� D �0 sin .2 f t C ı/ (6.7)

A positive phase angle ı causes the stress peak to occur earlier than the strain peak
(Fig. 6.1), resulting in the typical hysteresis effect of visco-elastic materials when
plotting stress against strain (Fig. 6.2). The area of the hysteresis loop corresponds
to the energy dissipated into the material as thermal energy.

When subjecting a material to cyclic (sinusoidal) strain, the peak stress, �0,
increases during the first cycles (transient part) until it reaches an equilibrium or
steady state (Fig. 6.3). The phase angle ı is measured once the steady state has
set in.

It is evident, that the energy dissipated by inner friction depends on the viscosity
parameter �. However, as the loss tangent is the ratio of loss to storage modulus,
the strain rate independent elasticity parameter E is expected to influence the loss
tangent too. Lastly, as the modulus (Young’s and tangent) increases with strain rate
and thus with frequency f, the latter could contribute to the loss tangent as well.

The objective of this Book Chapter is to explore in how far the viscosity
parameter �, the strain rate independent elasticity parameter E and the strain
frequency f affect the loss tangent. The aim is to derive the loss tangent at steady
state of the three visco-elastic models mentioned above, in order to understand the
interaction between elasticity, viscosity and frequency and their effect on energy
loss. The function of stress relaxation with time is not the only difference between
the three models mentioned above. A further objective of this paper is to analyse
the basic differences of these models and to understand their applicability and
constraints.
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Fig. 6.2 Hysteresis loop of stress–strain ellipse; ¢0: maximal stress; "0: maximal strain; •: phase
angle
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Fig. 6.3 Stress–time curve (red) during the first load cycles; blue curve: transient component;
green curve: steadys state component; the stress–time curve (red) is the sum of transient and steady
state components
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6.2 Analysis

6.2.1 The Standard Linear Solid (Zener Model)

The standard linear solid (SLS of Voight form) consists of two Hookean springs and
a viscous damper, where the spring with the modulus E1 is connected in series with
a Kelvin–Voight model, with spring of modulus E2 and damper of viscosity constant
� connected in parallel (Fig. 6.2).

From Fig. 6.4

" D "1 C "2 (6.8)

� D "1E1 (6.9)

� D "2E2 C P"2� (6.10)

Taking the Laplace transform of Eqs. (6.8)–(6.10), eliminating "1 and "2 by
substitution, and solving for b� yields the constitutive equation of the standard linear
solid

b� Db"
E1E2 C s�E1

E1 C E2 C s�
(6.11)

where the caret (ˆ) denotes the transformed parameter.
The equation for stress relaxation results from applying a constant strain "c to the

model through a Heaviside function H(t)

" D "cH.t/ (6.12)

Fig. 6.4 Standard linear
solid of Voight form; � :
stress; ": strain; �: viscosity
constant; E1: modulus of
series spring; E2: modulus of
parallel spring; "1: strain of
series spring; "2: strain of
Kelvin–Voight model
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the Laplace transform of which is

b" D "c

s
(6.13)

By substituting Eq. (6.13) into Eq. (6.11), we obtain

b� D "c

E1E2 C s�E1

s.E1 C E2 C s�/
(6.14)

the inverse Laplace transform of which yields the function of stress relaxation

�

"c

D E1

E2 C E1e�t
.E1CE2/

�

E1 C E2

(6.15)

where the stress � is normalised to the constant strain "c. Equation (6.15) proves the
exponential decay of stress with time, as mentioned above in the Introduction.

The loss tangent results from applying the sinusoidal strain of Eq. (6.6) to the
constitutive Eq. (6.11). The Laplace transform of Eq. (6.6) is

b" D "0

2 f

s2 C .2 f /2
(6.16)

where "0 is the peak amplitude of the strain.
By substituting Eq. (6.16) into the constitutive Eq. (6.11), we obtain

b� D "0

�

2 f

s2 C .2 f /2

� �

E1E2 C s�E1

E1 C E2 C s�

�

(6.17)

After rearranging

b� D "02 fE1

E2 C s�

s3� C s2E1 C s2E2 C s�.2 f /2 C E1.2 f /2 C E2.2 f /2

(6.18)

the inverse Laplace transform of Eq. (6.18) yields

� D "0E1

�E1�2 f e�t
E1CE2

� C E1�2 f cos .2 f t/ C
�

E1E2 C E2
2 C �2.2 f /2

�

sin .2 f t/

E1
2 C 2E1E2 C E2

2 C �2.2 f /2

(6.19)

The numerator of Eq. (6.19) comprises of a transient part (exponential function)
and the steady state part (sine and cosine functions). At large times, if t ! 1, the
transient part, i.e. the exponential term of the numerator, vanishes and the steady
state sets in:
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� D "0E1

.E1 C E2/2 C �2.2 f /2

h

E1�2 f cos .2 f t/ C
�

E1E2 C E2
2 C �2.2 f /2

�

sin .2 f t/
i

(6.20)

In order to obtain the loss tangent and the peak stress �0, we apply the addition rules
to Eq. (6.7)

� D �0 sin .ı/ cos .2 f t/ C �0 cos .ı/ sin .2 f t/ (6.21)

where the unknowns are the two components of the peak stress �0: �0 sin ı and �0

cos ı.
The loss tangent thus results from the ratio of the two components

tan ı D �0 sin ı

�0 cos ı
(6.22)

and the resultant of the peak stress �0 is obtained from

�0 D
q

.�0 sin ı/2 C .�0 cos ı/2 (6.23)

From Eq. (6.20) it follows that

�0 sin ı D "0E1

.E1 C E2/2 C �2.2 f /2
E1�2 f (6.24)

and

�0 cos ı D "0E1

.E1 C E2/2 C �2.2 f /2

�

E1E2 C E2
2 C �2.2 f /2

�

(6.25)

The loss tangent thus is

tan ı D E1�2 f

E1E2 C E2
2 C �2.2 f /2

(6.26)

and the peak stress �0 results from

�0 D "0E1

.E1 C E2/2 C �2.2 f /2

r

E1
2�2.2 f /2 C

�

E1E2 C E2
2 C �2.2 f /2

�2

(6.27)

In both Eqs. (6.26) and (6.27) f and � are linked together and always occur as the
product f�.

As the maximal strain rate P"0 of a sinusoidal strain function equals "02 f, the
strain rate dependency of �0 is given by
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�0 D "0E1

.E1 C E2/2 C �2

� P"0

"0

�2

v

u

u

tE1
2�2

� P"0

"0

�2

C
"

E1E2 C E2
2 C �2

� P"0

"0

�2
#2

(6.28)

The peak stress �0 increases with f and �. If f or � ! 1, �0 asymptotes to "0E1. If f
or � ! 0, �0 ! "0(E1

–1 C E2
–1)–1. The limits of �0 are evident when considering

that the peak strain rate changes with f. Thus, at zero strain rate or zero �, the
standard linear solid reduces to two springs in series and the effective modulus of
the model becomes (E1

–1 C E2
–1)–1. At infinite strain rate or infinite �, the damper

becomes rigid and the effective modulus of the model is just E1.
The peak stress �0 increases with E1. If f or � ! 1 and E1 ! 0 or 1, both the

effective modulus and �0 become equally 0 or 1, respectively. If f or � ! 0 and
E1 ! 0 or 1, the effective modulus and �0 become zero in the former case, and E2

and "0E2 in the latter.
If E2 ! 0, the standard linear solid reduces to a Maxwell model (with a spring

and a damper in series), the modulus of which is (1) 1 or (2) E1 or (3) 0, if (1) E1,
and � or f, are 1 or (2) � or f are 1 or (3) E1, and � or f are 0, respectively.

At � > 0 and f < 1, and E2 ! 0, the peak stress reaches

�0 D 2 f "0E1�
q

E1
2 C �2.2 f /2

(6.29)

If E2 ! 1, the modulus of the standard linear solid reduces to E1. �0 shows a local
minimum at a certain E2

0
(Fig. 6.5)

E20 D
q

E1
2 C 4�2.2 f /2 � E1

2
(6.30)

resulting from equating the first E2 derivative of Eq. (6.27) with zero and solving for
E2. Equation (6.30) is the only positive and real result of the fourth order polynomial
nature of the first E2 derivative of Eq. (6.27).

The loss tangent, Eq. (6.26), reveals that the phase angle ı depends on all four
parameters, E1, E2, �, and f, where the latter two always occur as the product f�.

If the frequency f ! 1 or 0, the phase angle ı ! 0 in both cases. Thus, we expect
a local maximum of ı at a certain frequency f0 (actually shown by Findley et al.
1989). Taking the first derivative of tan ı with respect to f in Eq. (6.26), equating it
with zero and solving for f provides

f0 D
p

E1E2 C E2
2

2 �
(6.31)
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Fig. 6.5 Maximal stress ¢0 against modulus E2 of parallel spring; f : frequency; ˜: viscosity
constant; E2

0
: E2 at which a local minimum of �0 is found

Replacing f by f0 in Eq. (6.26),

.tan ı/f0
D E1

2
p

E1E2 C E2
2

(6.32)

and equating its denominator with zero yields the scenario at which ı D 0.5  , which
is E1 D –E2 and E2 D 0. In both cases, however, f0 D 0, which means that a standard
linear solid can never reach ı D 0.5  or an infinite loss tangent.

Rearranging Eqs. (6.31) and (6.32) shows that f0 depends on two ratios, R1 and
R2, whereas tan ı at f0 (but also any other f at the same R1) depends only on R2

(Fig. 6.6)

f0 D R1

2 
(6.33)

.tan ı/f0
D R2

2
p

1 C R2

(6.34)

where

R1 D E2

p
1 C R2

�
(6.35)
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Fig. 6.6 Phase angle • against frequency f ; ˜: viscosity constant; E1 and E2: moduli of series and
parallel spring; f0: f at which a local maximum of ı is found

and

R2 D E1

E2

(6.36)

Equation (6.34) shows that tan ı at f0 is a constant and independent of f0 (Fig. 6.6).
Changing � has the same effect as changing f has. If � ! 1 or 0, the phase angle

ı ! 0 in both cases and we obtain a local maximum of ı at a certain �0

�0 D
p

E1E2 C E2
2

2 f
(6.37)

Equation (6.37) is similar to Eq. (6.31) and the same principles apply.
The phase angle ı and tan ı increase with E1. If E1 ! 0, tan ı ! 0. If E1 ! 1,

tan ı asymptotes to
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lim
E1!1 .tan ı/ D �2 f

E2

(6.38)

The phase angle ı and tan ı decrease with increasing E2, asymptoting to 0 if
E2 ! 1. If E2 ! 0, tan ı reaches a limit of

lim
E2!0

.tan ı/ D E1

�2 f
(6.39)

Lakes (2009) derived the loss tangent of the SLS of Maxwell form (with a spring
connected in parallel with a Maxell model).

6.2.2 The Power Law Model

The power law model is characterised by a power decay of stress � with time t:

�

"c

D Et�� (6.40)

Stress � is normalised to the constant strain "c applied by the Heaviside function
H(t) of Eq. (6.12).

Taking Laplace transform of Eq. (6.40) yields

b� D "cE
� .�� C 1/

s��C1
(6.41)

where � denotes the Gamma function (Fuss 2008a, 2012).
By substituting Eq. (6.13) into Eq. (6.41), we obtain the constitutive equation of

the power law of non-linear visco-elasticity (Fuss 2008a, 2012):

b� D s�
b"E� .�� C 1/ (6.42)

By substituting the sinusoidal strain of Eq. (6.16) into the constitutive Eq. (6.42),
we obtain

b� D "0E� .�� C 1/ s� 2 f

s2 C .2 f /2
(6.43)

Taking the inverse Laplace transform of Eq. (6.43), we obtain a general fractional
derivative of the sine function

� D "0E� .�� C 1/
d�

dt �
sin .2 f t/ (6.44)
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where � is the �th time derivative of the strain function of Eq. (6.6) times a constant.
The generalised solution of d�

dt� sin.t/ results from applying the inverse operation
of the Riemann–Liouville fractional integration (with lower limit D 0),

d�

dt �
sin.t/ D sin

�

t C �
�

2

�

C
�

t�1��

� .��/
� t�3��

� .�� � 2/
C : : :

�

; (6.45)

i.e. Eq. 6.10.3 of Oldham and Spanier (1974)
consisting of steady state (sine function) and transient parts (Maclaurin series in
square brackets). If � ! 0 or 1, the denominators of the transient part approach ˙ 1
(Gamma function of negative integers), the transient part reduces to 0, and a sine or
cosine function, respectively, remains.

By replacing the lower limit of the inverse operation of the Riemann–Liouville
fractional integration by –1, which equals the inverse operation of the Weyl integral
(Weyl 1917), we obtain the steady state part of the fractional derivative of Eq. (6.44)

� D "0E� .�� C 1/ .2 f /� sin
�

2 f t C �
 

2

�

(6.46)

Comparing Eq. (6.7) with the steady state Eq. (6.46), it becomes evident that the
phase angle ı is

ı D �
 

2
(6.47)

the loss tangent is

tan ı D tan
�

�
 

2

�

(6.48)

and the peak stress �0 is

�0 D "0E� .�� C 1/ .2 f /� (6.49)

The loss tangent depends solely on �, independent of E and f. If � ! 1, both tan ı

and �0 ! 1, as both tan(0.5 ) and �(0) are infinite. Thus, 0 � � < 1.
The peak stress �0 increases non-linearly with f and linearly with E and f �. The

peak stress �0 decreases non-linearly with �, reaching a limit of "0E, i.e. a Hookean
spring, if � ! 0. If � ! 1, �0 reaches infinity.

As the maximal strain rate P"0 of a sinusoidal strain function equals "02 f, the
strain rate dependency of �0 of Eq. (6.49) is given by

�0 D "0
E� .�� C 1/

.2 f /1��
.2 f /�.2 f /1�� D P"0

E� .�� C 1/ "0
1��

P"1��
0

D P"�
0E� .�� C 1/ "0

1�� (6.50)



6 The Loss Tangent of Visco-Elastic Models 149

In contrast to the fractional derivative approach shown above, Lakes (2009)
solved the loss tangent of the power model from the ratio of the constitutive
equations of loss to storage modulus.

6.2.3 The Logarithmic Law Model

The logarithmic law model is characterised by a logarithmic decay of stress � with
time t:

�

"c

D E � � log.t/ (6.51)

where “log” denotes the natural logarithm. Stress � is normalised to the constant
strain "c applied by the Heaviside function H(t) of Eq. (6.12).

Taking Laplace transform of Eq. (6.51) yields

b� D "c

E

s
� "c�

�

�”

s
� log s

s

�

(6.52)

where ” denotes the Euler–Mascheroni constant, i.e. 0.577215665 : : : (Fuss 2008b,
2012).

By substituting Eq. (6.13) into Eq. (6.52), we obtain the constitutive equation of
the logarithmic law of non-linear visco-elasticity (Fuss 2008b, 2012):

b� Db"E Cb"� .” C log s/ (6.53)

By substituting the sinusoidal strain of Eq. (6.16) into the constitutive Eq. (6.53),
we obtain

b� D 2"0�f

s2 C .2�f /2
.E C ”� C � log s/ (6.54)

after rearranging

b� D "0E
2�f

s2 C .2�f /2
� "0�

�

�”

s
� log s

s

� �

s2�f

s2 C .2�f /2

�

(6.55)

and taking inverse Laplace transform, we obtain

� D "0E sin .2�f t/ � "0�2�f Œlog t �� Œcos .2�f t/� (6.56)

where * denotes a convolution.
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Applying the convolution integral, the convolution log (t) * cos (!t), where
! D 2 f, is solved accordingly:

Œlog t � � Œcos .!t/� D
Z t

0

log .�/ cos Œ! .t � �/�d� (6.57)

where � is the dummy variable of the convolution integral.
Decomposition of cos(!t – !� ) according to the addition rules and subsequent

partial integration yields:

Œlog t �� Œcos .!t/�D!�1ŒCi .!�/ sin .!t/ �Si .!�/ cos .!t/ � log .�/ sin .!t�!�/�t0
(6.58)

where Ci and Si denote cosine and sine integrals respectively (definition of Ci and
Si according to Abramowitz and Stegun 1972).

Solving Eq. (6.58) from 0 to t:

Œlog t �� Œcos .!t/� D !�1
h

Ci .!t/ sin .!t/ � Si .!t/ cos .!t/ � log.t/ sin.0/�
Ci .!0/ sin .!t/ C Si .!0/ cos .!t/ C log.0/ sin .!t/

i

(6.59)

Apparently, Eq. (6.59) contains an indeterminate form, as both log(0) and Ci(0) are
�1, and thus the term log(0) sin(!t) – Ci(!0) sin(!t), or sin(!t) [log(0) – Ci(0)],
delivers sin(!t) (1–1).

However,

Cin.t/ D ” C log.t/ � Ci.t/ (6.60)

where Cin denotes an alternative cosine integral (definition of Cin according to
Schelkunoff 1944). As Cin(0) D 0, log(0) – Ci(0) D –”.

Yet, the argument of the cosine integral in Eq. (6.58) is !� , in contrast to the one
of the natural logarithm, which is just � . Thus we have to consider the multiplier !.
This multiplier leads to a convergence constant other than simply –”, if t ! 0.

Ci .!t/ D ” C log .!t/ � Cin .!t/ D ” C log.t/ C log .!/ � Cin .!t/ (6.61)

As Cin(0) D 0,

log.0/ � Ci.0/ D �” � log .!/ (6.62)

Thus,

lim
t!0

Œlog.t/ � Ci .!t/� D � log .!/ � ” (6.63)
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Equation (6.59) can now be solved, considering that Si(0) D 0

Œlog t ��Œcos .!t/� D!�1 fCi .!t/ sin .!t/ �Si .!t/ cos .!t/ � sin .!t/ Œlog .!/C”�g
(6.64)

The solution of Eq. (6.56) after taking inverse Laplace follows

�D"0E sin .!t/ �"0� fCi .!t/ sin .!t/ �Si .!t/ cos .!t/ � sin .!t/ Œ.log .!/ C”/�g
(6.65)

The steady state of Eq. (6.65) sets in at large times, or t ! 1. The transient part of
Eqs. (6.64) and (6.65) comprises of the cosine and sine integrals. When considering
the values at infinity of cosine and sine integrals, which are 0 and 0.5   respectively,
the convolution of Eqs. (6.64) and (6.65) yields at large times (steady state equation)

lim
t!1 Œlog.t/ � cos .!t/� D !�1

n

��

2
cos .!t/ � sin .!t/ Œlog .!/ C ”�

o

(6.66)

and

� D "0E sin .!t/ C "0�
�

2
cos .!t/ C "0� sin .!t/ Œlog .!/ C ”� (6.67)

respectively.
After rearranging according to the procedure applied for determining the loss

tangent of the standard linear solid, we obtain

tan ı D
��

2

� �

E C � Œlog .2�f / C ”�
(6.68)

and

�0 D "0

q

0:25�2�2 C ŒE C � log .2�f / C �”�2 (6.69)

As the maximal strain rate P"0 of a sinusoidal strain function equals "02 f, the strain
rate dependency of �0 after rearranging Eq. (6.69) is given by

�0 D "0

s

0:25�2�2 C
�

E C � log

� P"0

"0

�

C �”

�2

(6.70)

The stress amplitude �0 increases with E, �, and f. This fact is obvious, as E
is the strain rate independent elasticity parameter, i.e. the modulus or stiffness;
the viscosity parameter � is linked to the strain rate, i.e. at a given strain rate,
� increases with �; and the frequency f is linearly proportional to the strain rate
applied periodically to the model, i.e. at a given �, � increases with f.

If � ! 0, �0 ! "0E, the stress equation of a Hookean spring. If � ! 1, �0 ! 1.
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Fig. 6.7 Peak stress ¢0 against frequency f ; ˜: viscosity constant; E: velocity independent
elasticity parameter

If f ! 0 or 1, �0 ! 1. This means that �0 has a local minimum at a certain
frequency f0 (Fig. 6.7). As the first frequency derivative of Eq. (6.69) contains the
arguments f, log(2 f ), and log2(2 f ), there is no closed-form analytical solution,
and the frequency, at which �0 is at a minimum, can only be obtained numerically.
Figure 6.7 shows that �0 increases with �, and f0 increases with the ratio �/E. The
ratio �/E is identical to the viscosity of a log law model, not to be confused with the
viscosity constant �.

The peak stress �0 increases almost linearly with E.
If E ! 1, �0 ! 1. If E ! 0 (purely viscous material)

lim
E!0

�0 D "0�

q

0:25�2 C Œlog .2�f / C ”�2 (6.71)

and �0 increases with � and f.
The loss tangent, Eq. (6.68), reveals that the phase angle ı depends on E, �, and f.
Increasing the elasticity parameter E reduces the phase angle ı, thereby asymp-

toting to 0, when E approaches infinity. This result is evident, as a perfectly rigid
solid (E D 1) does not deform and thus there are no losses (ı D 0).

Reducing E increases tan ı. If E approaches zero (purely viscous material), tan ı

reaches a limit of
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lim
E!0

.tan ı/ D
��

2

� 1

log .2�f / C ”
(6.72)

a constant, which is a function of f but independent of �. The magnitude of the
viscosity � does not matter in this case, as the material is anyway purely viscous.
The phase angle ı becomes 0.5   if

f D 1

2� e”
(6.73)

Thus, if E D 0 and the loss tangent is positive, f must be � 0.08936 : : : Hz.
If f < 0.08936 : : : Hz, ı > 0.5  , and E0 (storage modulus) and tan ı are negative,

which is impossible, as the stored energy is zero (as E D 0), and the energy
dissipated cannot be negative.

If the frequency f ! 1 or 0, the loss tangent ! 0 in both cases, and the phase
angle ı ! 0 or  , respectively. Thus, ı crosses  /2 at a certain frequency f0.
Equating the denominator of Eq. (3.20) with zero yields f0 at which ı D 0.5  :

f0 D e� E
� �”

2�
(6.74)

The ratio E/� in Eq. (6.68) equals the reciprocal value of the viscosity of a log law
model. The higher the viscosity, the smaller is the ratio E/�. Figure 6.8 shows E/�
against the frequency, the f0 curve at which ı D 0.5  , and the E/� and frequency
ranges at which ı is < or > 0.5  . If E/� ! 0, f0 approaches the value of Eq. (6.73),
which is f0 D 0.089359 Hz, i.e. a cycle period of 11.2 s. From Fig. 6.8, the loss
tangent, and this the storage modulus, is negative at small E/� (high viscosity) and
small frequencies (large cycle periods with small strain rates). This is in accordance
with a negative (elastic) modulus of the log law model at very small strain rates
(Eq. 5.73 of Fuss 2012).

The reciprocal of Eq. (6.68)

cot ı D
�

2

�

� �

E

�
C log .2�f / C ”

�

(6.75)

shows that the higher E/�, the higher is cot ı. Thus, the higher �/E, the higher is
tan ı. This explains that the viscosity of a log law model corresponds to the ratio
�/E, and not to the viscosity constant �. Figure 6.9 shows that the higher �/E, the
higher is the phase angle ı. The viscosity constant � alone has no influence on ı.
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6.3 Summary

Material models are always simplified descriptions to assist calculations and assess-
ment of mechanical behaviour. This means that a material does not necessarily have
to follow the behaviour of its model. For example, the negative storage modulus of
a log law model at small E/� and small frequencies may well be a mathematical
phenomenon but does not necessarily exist in reality. The standard linear solid is
certainly oversimplified with three elements (2 springs, 1 damper) and is usually
expanded to more elements for better linear material characterisation (Prony series;
Wiechert model; Wiechert 1889, 1893; Fuss 2012).

6.3.1 Loss Tangent and Viscosity

SLS: tan ı and ı depend on E, �, and f ; but at the same f, tan ı and ı at the same R1

depend only on R2 (Eqs. 6.35 and 6.36), i.e. the ratio of moduli of series to parallel
spring, but not on the viscosity constant �.

Power law model: tan ı and ı depend on � only; 0 � � < 1.
Log law model: tan ı and ı depend on E, �, and f ; but at the same f, larger E/�

have larger tan ı and ı.

6.3.2 Relationship Between Frequency and Viscosity Constant

SLS: f and � are linked together and always appear as the product f�. Equations
(6.26) and (6.27).

Power law model: � has no relationship with f in tan ı (as f does not influence
tan ı), whereas for �0, � appears in the gamma function, and is the exponent of f,
i.e. f�.

Log law model: the viscosity constant appears as a stand alone �, and as the
product of � and log 2 f.

6.3.3 Transient and Steady State Parts

SLS: transient part: exponential function; steady state part: sine and cosine
functions.

Power law model: transient part: Maclaurin series; steady state part: sine function
with � /2 phase shift (resulting in sine and cosine functions after applying addition
rules).
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Log law model: transient part: cosine and sine integrals; steady state part: sine
and cosine functions.

6.3.4 Negative Storage Modulus if tan ı > �/2

SLS: tan ı <  /2
Power law model: tan ı <  /2
Log law model: tan ı can be >  /2 at small E/� (high viscosity) and small

frequencies (large cycle periods with small strain rates).

Key Symbols

Ci Cosine integral function
Cin Alternative cosine integral function
cos Cosine function
cot Cotangent function
d Differential operator
E Modulus (velocity independent elasticity parameter)
E1, E2 Moduli of springs of a standard linear solid
E0 Storage modulus
E00 Loss modulus
E* Complex modulus
jE*j Dynamic modulus
e Exponential function
f Frequency
H Heaviside (unit step) function
i

p�1

lim Limit
log Natural logarithm
R1, R2 Parameter ratios of a standard linear solid
s Complex variable of transformed functions
Si Sine integral function
sin Sine function
t Time
tan Tangent function
tan ı Loss tangent
� Gamma function
	 Euler–Mascheroni constant (0.577215665)
ı Phase shift angle
" Strain
"c Constant strain
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"0 Amplitude of strain, peak strain
b" Transformed strain
P"0 Peak strain rate
� Viscosity constant
  pi (3.14159 : : : )
� Stress
b� Transformed stress
�0 Amplitude of stress, peak stress
� Dummy variable of convolution integral
! Angular frequency ! D 2 f
* Convolution operator
1 Infinity
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