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Preface

This book follows the same concept of the first two volumes and is based on the
ASME 2013 and 2012 Congress in the track of Dynamics Systems and Control,
Optimal Approaches in Nonlinear Dynamics, which were organized by the editors.
The nonlinear approaches and techniques have been developed since decades ago.
The research on nonlinear science and dynamics have brought new insights into our
modeling methods of natural and engineering phenomena. Although many of these
approaches and techniques have been brought into research and engineering prac-
tices, linearization and simplification are still the dominating approaches existing in
physics and engineering. Nature is nonlinear in general as the responses of physics
and engineering systems are nonlinear. Linearization ends up with simplification,
and it damages the original characteristics of the systems. Such simplifications
usually lead to inaccuracy, misunderstanding, or even incorrect conclusions. For
example, Hooke’s law including the generalized Hooke’s law is linear and it
composes the foundation of linear elasticity and dominates numerous solutions
of physical systems and mechanical designs. However, no material is perfectly
linear. Any material used in the real world can actually be a nonlinear and complex
system, not only due to its material or structure nonlinearity but also due to the
inhomogeneousness and anisotropy of the materials.

Another challenge facing the scientists and engineers in our time is the generation
of the solutions and characterization of the nonlinear systems modeled from the
physical systems in reality. It would be greatly beneficial in accurately evaluating the
behavior of nonlinear systems and revealing the actual nature of the systems, with
utilization of the existing mathematical tools and analytical means, if the analytical
solutions of nonlinear systems could be pursued. Due to the nonlinearity and
complexity of the nonlinear systems, unfortunately, it is very difficult or impossible
to derive the analytical and closed-loop solutions for the systems. In solving or
simulating the nonlinear systems, one may have to rely on approximate or numerical
methods, which may only provide approximate results for the systems while
errors are unavoidable during the processes of generating the approximate results.
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viii Preface

Approximation and inaccuracy are the inescapable shadows following the current
research and engineering practices involving nonlinearity or nonlinear systems.

In the role of the editors as well as the chapter contributors of this book, we have
tried to present a collection of chapters showing the theoretically and practically
sound nonlinear approaches and their engineering applications in various areas, in
hoping that this book may provide useful tools and comprehensible examples of
solving, modeling, and simulating the nonlinear systems existing in the real world.
The carefully selected chapters contained in the present book reflect recent advances
in nonlinear approaches and their engineering applications. The book intends to
feature in particular the fundamental concepts and approaches of nonlinear science
and their applications in engineering and physics fields. It is anticipated that this
book may help to promote the development of nonlinear science and nonlinear
dynamics in engineering, as well as to stimulate research and applications of
nonlinear science and nonlinear dynamics in physics and engineering practices. It
is also expected that the book will further enhance the comprehension of nonlinear
science and stimulate interactions among scientists and engineers who are interested
in nonlinear science and who find that nonlinearity and complexity of systems play
an important role in their respective fields.

With the theme of the book, nonlinear approaches and engineering applications:
Applied Mechanics, Vibration Control and Numerical Analysis, the book covers
interdisciplinary studies on theories and methods of nonlinear science and their
applications in complex systems such as those in nonlinear dynamics, vehicle
dynamics, rigid body, solid mechanics, safety, visco-elastic mechanics, control
engineering, ocean engineering, mechatronic engineering, acoustic engineering,
and material science. Examples include: steady-state dynamic analysis of vehicles;
rigid body dynamics and Razi acceleration discussion; a deep discussion about
piecewise linear vibration isolators and challenges in discovering its time and
steady-state determination; active vibration control for axially translation cables
to limit their vibrating reactions; a new numerical solution method for ordinary
differential equations where other methods fail; visco-elastic materials analysis
and determination of their loss tangent; investigation on the frontal human-vehicle
impact and re-designing the hood of the car to save pedestrians; a new treatment and
analysis of the post-bukling of thin tube structures; study in acoustics of exhaust
system to reduce their noise; parametric segmentation of nonlinear structures in
image data; prediction and analysis of sea level.

Level of the Book

This book aims at engineers, scientists, researchers, engineering and physics
students of graduate levels, together with the interested individuals in engineering,
physics, and mathematics. This chapter-book focuses on application of the nonlinear
approaches representing a wide spectrum of disciplines of engineering and science.
Throughout the book, great emphases are placed on engineering applications,
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physical meaning of the nonlinear systems, and methodologies of the approaches
in analyzing and solving for the systems. Topics that have been selected are of
high interest in engineering and physics. An attempt has been made to expose the
engineers and researchers to a broad range of practical topics and approaches. The
topics contained in the present book are of specific interest to engineers who are
seeking expertise in nonlinear analysis, mathematical modeling of complex systems,
optimization of nonlinear systems, non-classical engineering problems, and future
of engineering.

The primary audience of this book is the researchers, graduate students and
engineers in mechanical engineering, engineering mechanics, electrical engineer-
ing, civil engineering, aerospace engineering, ocean engineering, mathematics, and
science disciplines. In particular, the book can be used as a book for the graduate
students as well as senior undergraduate students to enhance their knowledge by
taking a graduate or advanced undergraduate course in the areas of nonlinear
science, dynamics and vibration of discrete and continuous system, structure
dynamics, and engineering applications of nonlinear science. It can also be utilized
as a guide to the readers’ fulfilment in practices. The covered topics are also of
interest to engineers who are seeking to expand their expertise in these areas.

Organization of the Book

The main structure of the book consists of two parts of analytical and practical
nonlinearity, including 12 chapters. Each of the chapters covers an independent
topic along the line of nonlinear approach and engineering applications of nonlinear
science. The main concepts in nonlinear science and engineering applications are
explained fully with necessary derivatives in detail. The book and each of the
chapters is intended to be organized as essentially self-contained. All necessary con-
cepts, proofs, mathematical background, solutions, methodologies and references
are supplied except for some fundamental knowledge well known in the general
fields of engineering and physics. The readers may therefore gain the main concepts
of each chapter with as less as possible the need to refer to the concepts of the other
chapters. Readers may hence start to read one or more chapters of the book for their
own interests.

Method of Presentation

The scope of each chapter is clearly outlined and the governing equations are derived
with an adequate explanation of the procedures. The covered topics are logically and
completely presented without unnecessary overemphasis. The topics are presented
in a book form rather than in the style of a handbook. Tables, charts, equations, and
references are used in abundance. Proofs and derivations are emphasized in such a
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way that they can be straightforwardly followed by the readers with fundamental
knowledge of engineering science and university physics. The physical model and
final results provided in the chapters are accompanied with necessary illustrations
and interpretations. Specific information that is required in carrying out the detailed
theoretical concepts and modeling processes has been stressed.

Prerequisites

The present book is primarily intended for researchers, engineers, and graduate
students, so the assumption is that the readers are familiar with the fundamentals
of dynamics, calculus, and differential equations associated with dynamics in engi-
neering and physics, as well as a basic knowledge of linear algebra and numerical
methods. The presented topics are given in a way to establish as conceptual
framework that enables the readers to pursue further advances in the field. Although
the governing equations and modeling methodologies will be derived with adequate
explanations of the procedures, it is assumed that the readers have a working
knowledge of dynamics, university mathematics and physics together with theory
of linear elasticity.
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Chapter 1
Steady-State Vehicle Dynamics

Hormoz Marzbani, Reza N. Jazar, and M. Fard

Keywords Vehicle dynamics ¢ Autodriver algorithm ¢ Autonomous vehicle
Steering dynamics

1.1 Dynamic Equations of Motion

The equations of motion of the planar bicycle car model, expressed in the principal
body coordinate frame B, are governed by the following set of nonlinear coupled
ordinary differential equations. In the equations, the steering angle § acts as the input
and the mass center forward velocity v,, lateral velocity v,, and yaw rate r act as
the outputs (Jazar 2014).

ve=—F,+rv, (1.1)
m
C C, C
b= —Ly, — (vx - —) r4+ =25 (1.2)
my, m m
. Dy D,  Dj
- o 2o 13
F Iszvy+]zr+Iz (?) (1.3)
where
JF,
¢ =2="Yc,+2c, (1.4)
ar Vi Vi
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Fig. 1.1 Kinematics of a

moving vehicle at

steady-state conditions
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(1.10)

The orthogonal body coordinate frame B is fixed to the vehicle at its mass center C
and is set such that the x-axis is longitudinal, y-axis is lateral, and z-axis is vertical
upward. The body coordinate and kinematics of the bicycle car model in a forward
motion on a positive turn is illustrated in Fig. 1.1.

The coefficients C,, Cg, Cs, D,, Dg, Ds in the equations of motion are slopes
of the curves for lateral force F, and yaw moment M, as a function of r, 8, and
8, respectively. The coefficients C, and D, are functions of v,, and the coefficients
Cg, Cs, Dg, Dj are constant for a given vehicle. The solution of the equations to a
given time dependent steer angle § (¢) would be

Ve = Vi (1)

(1.11)
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vy =, (1) (1.12)
r=rt) (1.13)

The equations of motion are not analytically solvable, however, researchers
traditionally assume that the forward velocity v, is constant to reduce the equation
to the following linear set.

Generally, this happens when the forward velocity is known and there is no need
for calculating v,.

Fy = —mrv, (1.14)
Cﬂ C, Cs
. — =y —
Yyl = | mys om vy "ol s 1.15
|: 7 i| Dﬁ & |: r ] + & (t) (1.15)
Ivy I I,

When v, remains constant or in more general cases is known, Eq. (1.15) become
independent from (1.14). The set of Eq. (1.15) can then be written in the form

q=[Alq+u (1.16)

in which [A] is a constant coefficient matrix, q is the vector of control variables, and
u is the vector of inputs.

B Cﬁ C,
=Py
4=\ "b; ",
L 1v, I,
i _Caf + Cor _alcaf + arCor .
_ my my X
| aiCy —a,Coy a%Ca; + a3Cqr (.17
L A I,
s
= 1.18
q K } (1.18)
[ Cor Cs
m m
= 5(t) = S (¢ 1.19
w=| e, |30=|p, [P0 (119
IE I
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1.2 Steady-State Responses

When the vehicle is turning at a steady-state condition, its behavior is governed by

the following equations:

F, :—%vxvy
1
cﬁﬂ+(crvx—mv§)§ =—Cs$

1
Dﬁﬂ"‘Derﬁ =—Dsé

from which, we can define a set of steady-state responses (Jazar 2013):

1. Curvature response, S,

S _K_ 1 _ Cngg—CﬂDg
T8 RS v (D,Cﬂ —C, Dg —i—mvxD,g)

2. Sideslip response, Sg

B _ Ds (C, —mvy) — D, Cs
8

Sp = 2 —
P DrCﬂ —CrDﬂ —i—mvxD/g

3. Yaw rate response, S,

CsDy — CgD
vy = Sevy = e e

K
Sy =1t =5
1 DrCﬁ - Cng + vaDﬂ

r
8
4. Centripetal acceleration response, S,

2/R CsDy — CyD
_R/R ko oo (GiDp = CpDs) v

Sa =
8 5 . DrCﬂ—CrDﬁ —i—vaD/g

5. Lateral velocity response, S,

S _ Wy Sy — Ds (C, —mv,) — D,Cg )
’ P = D, Cs—C.Dg + mvy Dy

§

(1.20)

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)

(1.27)

Figure 1.2 illustrates a sample of steady-state responses with respect to v, for a

car with the following characteristics.

Cur = 50,000N/rad  C, = 50,000N / rad
m = 1,000kg I. = 1,650 kg m?

ay=10m a,=15m

(1.28)
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Fig. 1.2 The steady-state responses as functions of the velocity v,

0 10 20 30 40
v [m/s]

Fig. 1.3 The steady-state values of R, 8, and r, as functions of forward velocities

The vehicle is understeer because of a positive stability parameter K.

m ([ ap a
= — — =0.0016 > 0 1.29
& (caf cm) ” (129

Employing the steady-state responses, we can determine the variation of the
kinematics of motion as functions of forward velocity v,. Figure 1.3 depicts the
steady-state radius of rotation R of the mass center of the car, vehicle side slip angle
B, and yaw rate r, at different forward velocities.
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1.3 Rotation Center

Having the steady-state responses Sy = 1/R/8 and Sg = B/, we are able to
determine the steady-state position of the rotation center (xp, yo) of a vehicle in
the vehicle body coordinate frame as illustrated in Fig. 1.1.

1
Xo = —Rsinf§ = ———sin (S,gS) (1.30)
Sid

1
yo = Rcos = — cos (Spé) (1.31)
Sié

At steady-state conditions the radius of rotation R can be found from the curvature
response S, and the vehicle sideslip angle 8 from the sideslip response Sg.

1 Wy (D,C,g — CrDﬂ + mvxDﬂ)
8Se (CsDg — CgDy) §
D5 (Cr — mvx) — DrC5

=685 = 8 1.33
ﬂ b DrC'B—CrDﬂ —I—mvxDﬁ ( )

(1.32)

Therefore, the steady-state position of the dynamic center of rotation O in the body
coordinate frame B, about which the vehicle will actually turn, is at

vy (D,Cp— C.Dg + mvxDﬂ) . ( Ds (C, —mvy) — D, Cs 5)

Xo = —
0 (CgDﬂ —CﬂDg)S D,Cg—C.Dg +mvDg
(1.34)
o = Vi (DrCﬂ —CDg+ mvxD,g) ( Ds (C, —mvy) — D, Cs 5)
(CgD,g —CﬂDg)S D,Cg—C,Dg+mv,Dg
(1.35)

Figure 1.4 illustrates the coordinates xp and yo of the vehicle for 0 < v, <
40 m/s at a constant steer angle § = 0.1 rad. At a constant steer angle, the dynamic
rotation center of the understeer vehicle moves away and forward by increasing the
forward velocity. The rate of the displacement of the rotation center increases by
speed. The figure also depicts the critical speed vy, = (C,Ds— D,Cs) /m/Ds =
13.693 m/s at which the velocity vector of the vehicle at its mass center is in the
x-direction v = v,I. At the critical speed, we have § = 0 and the dynamic rotation
center is on the y-axis. Figure 1.5 illustrates the location of the steady-state rotation
center for 0 < v, < 40m/s, relative to the vehicle.
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Fig. 1.4 The coordinate (x¢, yo) of the dynamic rotation center of the vehicle for 0 < v, <
40m /s and its critical speed

x [m]

Loci of / 3 -10

rotation center 2o g
Critical speed

Fig. 1.5 The location of the steady-state rotation center for 0 < v, < 40m /s

1.4 Effect of Changing Steering Angle on Transient
and Steady-State Responses

In the following, we calculate the transition response of an understeer passenger
car that is moving at a constant forward velocity, under variable steering angle. The
transition behavior of the car will be determined by solving the equations of motion.
The same transition behavior will be determined using steady-state responses to
examine the proximity of the two analyses. It will be shown that steady-state
response equations are good enough to predict the transition behavior of the car.
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0‘1 S
0.08
0.06
8[rad |
0.04

0.02

Fig. 1.6 A realistic step change of steer angle

The results of this investigation will be useful in speeding the online calculation
of autodriver algorithm, as well as obtaining data to determine the steady-state
behavior of vehicles (Tahami et al. 2003). The maneuvers can be considered
as the steady state circular path which is a classical vehicle dynamic parameter
determination test. The steady-state circular test is an open-loop test in which either
the circular track radius or the steering angle or the vehicle’s forward velocity must
be kept constant (ISO4138 2012).

A realistic step change of steer angle can be expressed by

§ =8 (H (t — to) + sin’ (ﬁ) H (o — z)) (1.36)

as illustrated in Fig. 1.6 for £y = 1s, where H (¢ — tj) is the Heaviside function

01rt<t
H(t —1) = 1.37
(r —10) { 11> 1 (1.37)
and 1y is the response time and &, is the maximum constant steer angle.
We determine the reaction of the vehicle for
8o =0.1rad to=1s vy = 20m/s (1.38)

and determine the solution of the equations of motion.

r=H(t —t5) e**2171 (0.0588 sin 3.7687(t — 1) — 0.01048 cos 3.7687(¢ — 1))
+ H (t — 1) (0.233 cos(xrt) 4+ 0.0869 sin(rrt) + 0.2439)
+ 7921 (0.0588 sin(7r1) — 0.01048 cos (1))
—0.233 cos(rt) — 0.0869sin(rrt) + 0.2439 (1.39)



1 Steady-State Vehicle Dynamics 11

1
0.8 R/100 [m]
0.6
0.4
0.2

0

-0.2
-0.4
-0.6
-0.8

-1+

r [rad/s]

Fig. 1.7 The instantaneous time history of r, v, and R for a step steering change

vy = H (t —t5) e**2079(0.04925in3.7687(t — 1) + 0.2924 c0s 3.7687(t — 1))
— H (t —t9) (0.1222 cos(rt) + 0.4028 sin(rrt) + 0.4146341465)
+ 79921 (0.2924 cos(3.7687t) + 0.0492sin(3.76871))
4 0.1222 cos(rt) 4 0.4028 sin(rrt) — 0.414 (1.40)

R=1"x (1.41)
r

Let us call the dynamic variables that are calculated by solving the equations
of motion (1.1)—(1.3) instantaneous variable and instantaneous vehicle, and the
variables that are calculated based on responses (1.14)—(1.15) the steady-state
variable and steady-state vehicle. Figure 1.7 depicts the instantaneous time history
of r, vy, and R, during and after steering change. The steer angle is variable for
0 <t < 1sandis fixed at §o = 0.1rad for t > 0. It takes less than one second for
the vehicle to achieve the final steady-state conditions, while their states are not too
far from the steady-states.

The steady-state expressions of r, v,, and R as functions of time for the step
change of steer angle are:

t
ry = 0.4878 sin2 (7) H(l—1t)+04878 H(t — 1) (1.42)
T
t
vy, = —0.829sin> (7) H(l—1)—0.8292 H(t — 1) (1.43)
T
4.1
R, = (1.44)

0.1 sin? (2/%1) H(1—1)+0.1H( — 1)

which are shown in Fig. 1.8.
The difference between the instantaneous and steady-state values of r, v, and R
is shown in Figs. 1.9, 1.10, 1.11. The maximum difference of r — r; happens around
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Fig. 1.8 The steady-state time history of r, v,, and R for a step steering change
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Fig. 1.9 The difference between the instantaneous and steady-state values of r during a step
steering input
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Fig. 1.10 The difference between the instantaneous and steady-state values of v, during a step
steering input

middle of the steering change atz ~ 0.56s and is r —ry; & —0.083913 rad/s which
is 17.2 % of the steady-state value of 0.4878 rad/s. As r < ry during t < ¢, the
instantaneous yaw rate of the vehicle is higher than the steady-state, and therefore,
the instantaneous vehicle is turning faster than the steady-state vehicle. This yields
that the angular position of the steady-state vehicle has a constant lag.
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Fig. 1.11 The difference between the instantaneous and steady-state values of R during a step
steering input
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Fig. 1.12 The difference between the instantaneous and steady-state values of ¥ during a step
steering input

The angular orientation of the body coordinate frame B (xyz) with respect to the
global frame G (XY Z) is indicated by the angle 1 between axes X and x measured
about the Z-axis. Figure 1.12 depicts ¥, ¥, and ¥ — 15 indicating that steady-state
vehicle is a few degrees behind the instantaneous vehicle.

t
Y =f r(t)dt (1.45)
0
= H (t — to) (—e**?171 (0.00435 cos 3.769(t — 1) — 0.0085sin 3.769(t — 1))
+ H (t —ty) (—0.0277 cos(mrt) + 0.074sin(rt) — 0.267)) + 0.244¢

— ¢*9207D (0.004356 cos 3.769(t — 1) — 0.0085 sin 3.769(r — 1))
+ 0.0277 cos(rt) — 0.0743 sin(rt) 4 0.2441 — 0.02332 (1.46)



14 H. Marzbani et al.

The global frame G is fixed on the ground, and B coincides with G at the start of
maneuvers. The B-frame moves with the vehicle while the axes z and Z are always
parallel. Therefore, the velocity vector of the vehicle in the global frame is

Gy— GR.By— cos Y —sinyr Vy
B v,

sinyy cosy
_ | vxcos¥y —vysiny | vy (1.47)
~ Lvycosy +vysing | [ vy .

where ¢ Rp is the transformation between B and G and the velocity vector of the
vehicle in the body frame is

By — [VX} (1.48)
Vy
Therefore, the global coordinates of the mass center of the vehicle would be
t t
X =/ vy dt =/ (vxcosy — vy siny) dt (1.49)
0 0
t t
Y =/ vy dt =/ (vy cosy + vy sinyr) dt (1.50)
0 0

When the steer angle is kept constant, the vehicle will eventually be turning on a
constant circular path. The position of the steady-state rotation center of the vehicle
in the B-frame is at

Xo = —Rsin 8 = 1.6994m (L.51)
yo = Rcos B = 40.965m (1.52)
because
lim R =41m (1.53)
—>00
lim 8 = —0.04146rad (1.54)
—>00

The global coordinates of the steady-state rotation center is

Xol o o [xo 13.617m
_ R _ 1.55
[YO} ¢fe + "Ry |:y0:| |:41.388m} (1.55)

where (G;r g 1s the G-expression of the position vector of the origin of the B-frame
with respect to the origin of the G-frame at any point on the steady-state conditions
(Jazar 2011). In this example, we used the calculated data at # = 2s when we have
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3 25 2 1.5 I 0.5 0
Y [m]

Fig. 1.13 The instantaneous path of motion of the vehicle and the steady-state rotation center

X0 [1.6994 m
= 1.56
|:y0i| _40.965m] (1.56)
¥ = 0.6851 rad (1.57)
G [38.2226m
= 1.58
65 = | 8.5916m (1:58)

Figure 1.13 illustrates the instantaneous path of motion of the vehicle in global
frame and its final steady-state rotation center. The magnification of the transient
stage depicts how the vehicle approaches its steady-state circular path.

To compare the instantaneous and steady-state, or in other words, the exact and
approximate maneuvers, we substitute v, from (1.19) in (1.47) and calculate the
steady-state velocity components of the vehicle in G-frame.
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Fig. 1.14 The instantaneous and steady-state global velocity components of the vehicle and their
differences

GVs = GRB BVs = |:Vx cos ws Bel Slnws:| = [VXKi| (159)

Vy, COS Ys + vy sin g vy,

Figure 1.14 depicts the instantaneous and steady-state global velocity components
of the vehicle and their differences.

Integration of vy, and vy, provides us with the path of motion based on steady-
state calculation. Figure 1.15 illustrates the instantaneous and steady-state paths
of motion of the vehicle in the global frame. The magnification of the transient
stage depicts how different the paths are. Figure 1.16 depicts X, X, Y, Y, as
functions of ¢, and Fig. 1.17 depicts X — X, Y — Y;. The maximum error of
X — X is 3.808 m which is less than 6.89 % of the maximum X of 54.522 m. The
maximum error of Y — Y is also 2.116 m which is less than 2.59 % of the maximum
Y of 82.468 m. The errors in the local coordinate are much less, as are shown in
Figs. 1.18 and 1.19.

The difference between instantaneous and steady-state calculation decreases
exponentially by increasing fy. When fy = 2s the maximum error of X — X is
3.796 m which is less than 5.89 % of the maximum X of 64.45 m and the maximum
error of Y — Y is also 2.114 m which is less than 2.55 % of the maximum Y of
83.154m. When ¢y, = 10s the maximum error of X — X is 3.188 m which is less
than 2.33 % of the maximum X of 136.886 m and the maximum error of Y — Y; is
also 0.0002 m which is less than 0.00025 % of the maximum Y of 90.161 m.

1.5 Steady-State Dynamic Steering

According to the findings of the previous section the steady-state responses of a
vehicle are in a good approximation range compared with the results of solving
the dynamic equations of motion of the vehicle. This concept, initiated the idea of
finding the steering angles required to keep a vehicle on a specific road by using
the steady-state responses instead of the dynamic equations. The mentioned idea is
tested in this section and is called the Steady-State Dynamic Steering (SSDS).
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Fig. 1.15 The instantaneous and steady-state paths of motion of the vehicle
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Fig. 1.16 Plotof X, X;, Y, Y;, as functions of ¢
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After examining the output—input relationships of the steady-state responses it
was found that the curvature response of the vehicle could be used to find the

steering angles of the vehicle.
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Fig. 1.17 Plotof X — X, Y — Y, as functions of ¢
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Fig. 1.18 Plot of x — x4, as functions of ¢
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Fig. 1.19 Plot of y — y;, as functions of ¢

k 1
Sk 5= RS (1.60)
1

5 is the curvature, and § is the

where R is the radius of curvature of the road, k =
steady-state steering angle of the vehicle.
To determine the road curvature center, it is necessary to find the radius of

curvature of the road at any time during the travel. Now, consider having the
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0 5 10 15 20 25

Fig. 1.20 Cycloidal Motion lane change maneuver-moving 3 m from one lane to the adjacent lane

equation of a road which could be used to find the radius of curvature of the road. By
replacing the radius of curvature found from the equation of the road in Eq. (1.60)
we can find the steady-state steering angle of the vehicle and validate the findings
by solving the equations of motion of the vehicle using the resulted steering angles.
The equation for lane change maneuvering which will be examined is the following:

¥() = d(Ex(t) — 3 sin(ax(1)))
2(6) = ot 2 (1.61)

where d is the scaling factor and « is

2a,,
=4/ — 1.62
o 7 (1.62)

where a,, is the maximum acceleration.

Equation (1.61) indicates a Cycloid motion. This produces a sine acceleration
curve. The only problem with such a curve is the existence of jerk in the start of the
motion, but the acceleration and velocity start and end at zero. Figure 1.20 shows
the mentioned curve drawn using the following values:

a, =0.02m/s> d=3m v, =lm/s (1.63)

As mentioned above the equation for the steering angles can be easily calculated by
the use of the curvature response, but in order to check the differences we’ll solve
the equations for both kinematic and steady-state situations.

The forward velocity has been adjusted on 1m/s to start with. This will be
changed to higher velocities to check the effect of the speed change as well.

The first step is to find the center of rotation of the road, and radius of curvature.

\/ (v2 4 0.45dv2a,, (1 — cos(2.82v,1 [ 42))2)3

yx—Xxy sin(2.82 /% tv.)
(1.64)
Radius of curvature from Eq. (1.64) is shown in Fig. 1.21.
Center of curvature of the road can be found using the radius of curvature and
the unit normal vectors. The center of curvature of the road is shown in Fig. 1.22.
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200

t[s]

Fig. 1.21 Radius of curvature for Cycloidal Motion Lane Change Maneuver Road

Fig. 1.22 Radius of
curvature for Cycloidal
Motion Lane Change
Maneuver Road

From Fig. 1.22 it can be seen that for the start of the motion the car is on a straight
line which has the center of rotation in the positive side towards infinity. Then the
radius of curvature gets closer to the road and starts getting far from the road again
as the car gets closer to the center of the road. Right at the center the radius of
curvature moves toward infinity once again and as soon as the side of the road curve
changes it repeats the same motion backwards but this time on the negative side.

The steering angles of a front-wheel-steering vehicle can be found using the
following two equations:

I
— - 1.
8; = arctan( R =) (1.65)

1= 3
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Fig. 1.23 A front wheel
steering vehicle in a right turn

Fig. 1.24 Tllustration of a car
which is moving on a road at
a point that C, is the center of
curvature

8, = arctan(

) (1.66)

R+ 7%

where §; is the angle for the wheel in the inside of the turn, §, is the angle for the
wheel in the outside of the turn, w is the width of the front of the car, and R, is the
vertical distance of the center of mass of the vehicle from the center of rotation of
the car. These are illustrated in Fig. 1.23.

There is a global coordinate frame G attached to the ground, and a vehicle
coordinate frame B attached to the car at its mass center C, as shown in Fig. 1.24.
The z and Z axes are assumed to be parallel and the angle ¥ indicates the orientation
of B in G. ¥ is the angle between x and X axes, and is called the heading angle
of the car. If (X,, Y, ) indicates the coordinates of the road curvature center ¢, in the
global coordinate frame G, then the coordinate of ¢, in B would be
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Fig. 1.25 The kinematic
steering angles—Black: §;
and Red: 6,

Bre = Ry (®re — d) (1.67)
Xe [ cosy siny 0 X. X
Ye | = | —siny cosy 0 Y. |- |Y
0 | 0 0 1 0 0
(1.68)

(X, — X)cosy + (Y, —Y)siny
=| X, —Y)cosy — (X, — X)siny
0

When the equation of the road is given, Eq. (1.68) determines the point that
the car should turn about. We use Eq. (1.68) to calculate the position of the
curvature center and set the steer angles to have the same point as the turning center
of the car. Having the coordinates of the road curvature center c. in the vehicle
coordinate frame is enough to determine the kinematic characteristic R;.

Ri=y.={.—Y)cosy — (X, — X)siny (1.69)

Figure 1.25 illustrates the outer and inner wheel’s kinematic steering angle in
order for the car to be kept on the road shown in Fig. 1.20. These are calculated
using nominal values 1.5m and 3m for the width and total length of the vehicle,
respectively.

Recalling from introduction, we can use the following equations of motion of the
vehicle, and the kinematic steering angles found above to find out the actual road
resulted from applying these steering angles, which we will call the kinematic road
from now on.

1
by = —F¢ +rv, (1.70)
m
C C, Cs
by = —2 vy—(vx——)r—i——bz?(t) (1.71)
mv, m m
D D, D
F=ty 4+ 2 25 (1.72)

Ly, I, I
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where
oF, a a
C, = 8_y —_“ o + _ZCM (1.73)
r Vy Vy
oF,
Cp = % = —Cyr — Cor (1.74)
oF
=52 =Cy (175)
BM 2 2
D=5 = Yoy -2, (1.76)
r Vy Vx
oM,
Dg = o = a,Cqr —a1Cyr (1.77)
oM.
Ds = 371 = a;Cyy (1.78)
%
B = v_y (1.79)
X

The solution of the equations to a given time dependent steer angle § (¢) would be

vy = vy (1) (1.80)
vy = v, (1) (1.81)
r=r(t) (1.82)

Equations of motion of the vehicle are calculated using the following nominal
values:

100,000  C, = 100,000  m = 1,000kg
1.2m a, =1.8m I. = 1,650 kg m? (1.83)

Coy

a

and §(¢) can be calculated by getting the average of §; and §, according to the
following equation:

(1.84)

2 tan §; tan 8,
8(t)=arctan( ano; tan )

tan§; + tan g,

8(¢) is illustrated in Fig. 1.26.

The equations of motion will be solved for §(¢) from Eq. (1.84) to find out what
will be the final path taken by the vehicle having these steering angles. By solving
the equations we will get to see the kinematic answers for v, which indicates the
lateral velocity, and r which is the rate of change of heading angle of the vehicle.
These can be seen in Figs. 1.27, 1.28, 1.29, 1.30, 1.31, 1.32, 1.33.
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Fig. 1.26 The average of the kinematic steering angles
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Fig. 1.27 The side slip velocity v, of the vehicle for the kinematic steering case

The resulted road from using the kinematic steering angles is shown in Fig. 1.34.

Now the problem will be solved using the new method based on the steady-state
responses of the vehicle as mentioned above. More specifically the response used
here is the curvature response of the vehicle.

The curvature response s; of the vehicle may be calculated using Eq. (1.85) and
nominal values (1.83)

_ CaDy — CyDy _
B Vx(Der —-C.Dy +mVxDb) B Rsleady(s(t)

Sk = 0.3331112592  (1.85)

where Rgeqqy is the radius of curvature using steady-state conditions, and §(¢) is
the new steering angle which will be found by putting the steady-state curvature
radius equal to the radius of curvature of the road. This will result in the following
equations:
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Fig. 1.28 The rate of change of the heading angle r(z) of the vehicle for the kinematic steering
case
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Fig. 1.29 The x-component of the resulted motion expressed in body frame for the kinematic case
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Fig. 1.30 The y-component of the resulted motion expressed in body frame for the kinematic case
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Fig. 1.31 Resulted road as seen in the body frame for the kinematic case
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Fig. 1.32 The X-component of velocity in the global frame for the kinematic case
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Fig. 1.33 The Y -component of velocity in the global frame for the kinematic case

Fig. 1.34 Kinematic steering road
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0 5 10 15 20 25 3p

Fig. 1.35 The kinematic steering angles vs. steady-state steering angles, red: kinematic—green:
steady-state
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Fig. 1.36 The difference between kinematic and steady-state steering angles

Fig. 1.37 The resulted road in the global frame
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Fig. 1.38 Actual road (red) vs. kinematic steering road (black)
3.002
R = — 1.86
steady F; ( l) ( )

B 0.7644530225 sin(0.2309401076¢)
V(' + (0.1102657791 — 0.110265779 cos(0.23094010761))?)>

8(t) (1.87)

The equation for the steering angles has been found and illustrated in comparison
with the kinematic steering angles in Fig. 1.35.

As it can be seen in both Figs. 1.35 and 1.36, the difference between the two
is very small in case of a slow forward velocity (v, = 1), and it happens mostly
while returning to the straight section of the road. In order to validate the new
method and the steering angles found using this method, the equation of motion
of the vehicle was solved once again and this time by substituting the new steering
angles found using the steady-state responses of the vehicle. The road resulted using
the steady-state dynamic angles is shown in Fig. 1.37. The figure proves to be very
similar to the actual road but new plots will show how accurate the two methods are.

It can be seen from Figs. 1.38 and 1.39 that the road resulted from using the
steady-state steering angles is generating less error and matches the actual road
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Fig. 1.39 Actual road (red) vs. steady-state road (green)
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Fig. 1.40 The difference between the steady-state and kinematic angles—high speed maneuver

4 1

Fig. 1.42 Actual road (red) vs. steady-state road (green)—high speed manoeuvre

much better than the kinematic steering case. In order to take the testing of the new
method further, same maneuvers will be repeated with a higher forward velocity
equal to 10 m/s this time. The results are shown in Figs. 1.40 and 1.41.

Comparing the difference between the angles in this case with the previous
case proves that the deviation is much more than before in the case of high speed
maneuvers.

Figures 1.40 and 1.41 show that the major source of the bigger difference in the
steering angles as a result of increasing the speed is the kinematic steering angles
calculations. As seen in Fig. 1.42 the steering angles calculated using the steady-
state dynamics are consistent after the change of speed but the deviation from the
road gets much bigger for the kinematic steering case.

To have a closer look, the final position of the actual road will be compared
with the final position of the vehicles traveling on the road using the two different
methods which are being investigated. Although this might not be the place on
which the maximum deviation happens at, it gives a good understanding of the
results. On the other hand, from the figures it is obvious that all of these maneuvers
will take the car in the desired direction but the main difference happens at the end
of the road. The values of the end point of the actual road can be easily found by
substituting the time at which the traveling ends which is equal to 7' = 2.72 s in the
case with the higher forward velocity case.
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The position of the end point of the road is at (x,y) = (27.2,3) m. This is
shown in figures of the road. The car travels 27.2 m horizontally and this results in
a 27.36 m total travel.

The final point of travel for the case of the kinematic steering angles is (x, y) =
(26.98,2.66) m which is a total travel of about 27.1 m. This point for the case of
steady state steering angles is at (x, y) = (26.95, 2.94) m which is again 27.1 m of
travel.

Looking back at the main purpose of the maneuver, which was changing the lane
that the vehicle is moving in to the adjacent lane with 3 m of vertical displacement,
one can come to the conclusion that the steady-state steering angles is providing a
much more accurate and faster response. The displacement in the vertical direction
in the steady-state case is only deviating about 1.6 % from the actual road which is
very accurate. The amount of deviation in the other case, however, is about 11.3 %
from the actual road.

1.6 Conclusion

The proximity of the transient and steady-state responses has been checked and
validated by applying a step change input to the steering angle of a vehicle with
constant velocity. This proved that if using the steady-state responses could help
to solve any problem, they are close enough to be used instead of the transient
responses of the vehicle. A unique method for finding steering angles for the use of
the autodriver algorithm was introduced using the curvature response of the vehicle.
This method which is called Steady-State Dynamic Steering (S SD.S) helps to find
the angles which are accurate enough compared to the dynamic steering angles, with
short calculations and for every kind of road equations. The angles found using the
S SDS method were applied on different scenarios, which proved its high accuracy,
less complication, and consistency in the resulted road. The use of this method
will result in much shorter calculation times, less complicated and smaller steering
angles equations, and a much smaller work load on the control feedback system
as a result. Besides, the S SDS method proves to be consistent even in the case of
completed road edition which made it impossible to solve the problem dynamically
(Marzbani 2012; Jazar 2010; Pacejka 1973).

1.7 Key Symbols

Translation scalar
Translation vector
Element i of d
Homogeneous translation matrix
g Homogeneous translation matrix from B-frame to A-frame
Total illumination

Ay e
mwbm
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E, Distance-dependent illuminance

E, Incident angle-dependent illuminance

1, I; Light intensity

n Normal unit vector to the collector

0] Origin point of a coordinate frame

r Distance between target and source of light, position scalar

r Position vector

ri Element i of r

rij Element of row i and column j of matrix R

Ap Vector r expressed in A-frame

r Direction of light ray with respect to the collector

r,0,¢ Local spherical coordinates

R Rotation transformation matrix

ARp Rotation transformation matrix from B-frame to A-frame

Ry o Rotation transformation about x-axis with o angle

S Sun vector

T Homogeneous transformation matrix

ATy Homogeneous transformation matrix from B-frame to A -frame
X,V.2 Local coordinate axes

X.,Y.,Z Global coordinate axes

o Yaw angle

B Pitch angle

y Orientation of the vehicle body-frame in the global frame
0 Azimuth angle

1) Elevation angle

0 Angle of incidence
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Chapter 2
On the Razi Acceleration

A. Salahuddin M. Harithuddin, Pavel M. Trivailo, and Reza N. Jazar

Keywords Razi acceleration ¢ Rigid body kinematics ¢ Multiple coordinate
system kinematics * Coordinate transformation

2.1 Introduction

Jazar presented a revised method of calculating vector derivatives in multiple
coordinate frames using the extended variation of the Euler derivative transfor-
mation formula (Jazar 2012). The paper derives the general expression for vector
derivatives for a system of three relatively rotating coordinate frames called the
mixed derivative transformation formula. The formula is demonstrated as follows:
Let A, B, and C be three arbitrary, relatively rotating coordinate frames sharing an
origin as shown in Fig. 2.1. Let [0 be a generic vector expressed in the frame B,
4@ p be the angular velocity of the frame B with respect to the frame 4, and c® 5 be
the angular velocity of the frame B with respect to the frame C. The time-derivative
of the B-vector as seen from the A frame can be expressed as

d “dyg B B B

—0=—"0+4(jwp —cwp)x"0O 2.1

dt dt (A B C B) ( )
where the left superscript indicates the frame in which the vector is expressed.
The formula relates the A-derivative of a B-vector to the C-derivative of the
same B-vector by means of the angular velocity differences between the three
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Fig. 2.1 Three coordinate
frames system

Ye

Xc
X4

coordinate frames. The formula presents a more general expression of the classical
derivative transformation formula between two relatively rotating frames

4d Bd B B
—"0=—"0 O 2.2
o 7 + jwp X (2.2)

where the frame C is assumed to coincide with B (C = B), thus gw g = 0. One
advantage of the general mixed derivative transformation formula is that it leaves
the need to compute the derivative of #d 20 /dt in its local coordinate frame.

An interesting result appears from the application of a reference frame system
with three coordinate frames. A new acceleration term, given the name the Razi
acceleration (Jazar 2011), is shown to appear when the derivatives of an acceleration
vector are taken from two different coordinate frames. Such differentiation, which
resulting expression is called mixed acceleration, contains the Razi term, (4@¢ X
pwc) X r. To demonstrate the Razi acceleration term, let there be three relatively
rotating coordinate frames A, B, and C, shown in Fig. 2.1. Assume a position vector
r is expressed in its local frame which is C. Taking the first derivative of r in C from
B using the vector derivative transformation formula Eq. (2.2) yields

Bg d
Ecrz Ecr—i—gwc x Cr (2.3)

Taking the derivative of l;—‘fcr again, but from the frame A yields:

AdBdC c

——%r= ,3a
dr di AB
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=cfa+Swe xev+ cgac xr+ (oe x Goc) x r

+Goc x &v+ Goc x (Gwc x “r) (2.4)
where
Ca= %C
ccC dt
Cd
Cy=_—-¢ (2.5)
V=
CdC

c., _
cB%Cc = dar B@cC

and the left superscripts in (2.4) show that every vector is expressed in the frame C.
The term (¢ x Gwc) x Cr is a new term in the acceleration expression called
the Razi acceleration.

For comparison, let us assume that the frame B is not rotating and coincides
with the frame A, making B = A. Equation (2.4) is now reduced to the classical
expression of acceleration between two relatively rotating frames B and C

Bd2
—r=pfa= fa+25wc xEv+ fac xCr
dt?

+§wc x (§we x Cr) (2.6)

Equation (2.6) shows that there are three supplementary terms to the absolute
acceleration of a point in local frame C: The Coriolis acceleration 2§wc X gv,
the tangential acceleration ., ¢ x €r, and the centripetal acceleration {wc x
(G@c x Cr). The difference between the expressions in Eqs. (2.4) and (2.6) is the
Razi term which has the form of a vector product between a product of two angular
velocities and a position. This shows that adding another rotating coordinate frame
and differentiating a displacement vector from two different frames reveals a new
acceleration term.

It is shown in the published work of Jazar that the Razi acceleration is a novel
finding in classical mechanics. In its current status, however, the Razi acceleration
has only found a limited application in relative kinematics. This paper seeks to
reveal the aspect of the Razi acceleration in mechanics of relative rigid body motion
specifically in the multiple coordinate system kinematics. We show the inclusion
of the new Razi term in the equation of motion of a rigid body described in
non-inertial rotating coordinate frames. To do this, we redefine and extend the
Euler derivative transformation formula to be applied in a system with arbitrary
number of coordinate frames. We provide an illustrative example of a rigid body in
compound rotation motion about a fixed point to show the appearance of the Razi
acceleration. We compare the magnitudes of the Razi acceleration with the classical
centripetal acceleration to show that in the case of complex rotating motion, the Razi
acceleration may appear as a result of rotational inertia.
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2.2 Time-Derivative and Coordinate Frame

The time-derivative of a vector depends on the coordinate frame in which it is
differentiated. In a multiple coordinate frames environment, it is important to know
from which coordinate the derivative vectors, e.g. velocity and acceleration, are
calculated and to which coordinate frame it is related. In this section we introduce
the derivative transformation formula and expand it to include more than two
reference frames.

2.2.1 Euler Derivative Transformation Formula

Any vector r in a coordinate frame can be represented by its components using the
basis vectors of the frame. Let B(O1 jk) be an arbitrary coordinate frame in which
r is expressed. The vector is written using the basis vectors of B as

r=xi+yj+zk 2.7

For r, a vector function of time, its components x, y, and z are scalar functions of
time. The time-derivative of the vector r is

d A A o R X A
Erzxz—l—y]—kzk—i—xz—i—y]—kzk (2.8)
Since the basis vector is constant with respect to its own frame, the time-derivative
of a vector expressed in B differentiated from its own frame B is

B d n
Pi=—CPr=xi+yj+zk (2.9)
dt
This is called a local or simple derivative since the vector derivative is taken from
the coordinate frame in which it is also expressed. The result is a simple derivative
of its scalar components.

Now consider global-fixed coordinate frame G(OIJ K) and a rotating body-
fixed coordinate frame B(O1 jk) as shown in Fig. 2.2. Due to the relative motion of
the coordinate frames, the basis vectors of one frame are not constant in relation to
the other frame. The time-derivative of a vector expressed in B differentiated from
frame G is expressed as

3 G4 3 R G G Gd ~
r=—"r=xi+yj+zk+x—I+y—]+z—k 2.10
“ T dr Y dr' TV T (2-10)
Similarly, the time-derivative of a vector expressed in G differentiated from frame
B is expressed as
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Fig. 2.2 Binary coordinate
frames system—a

global-fixed frame G and a % a
rotating body frame B A
k
r(
>
7
J
I
B B B B
§f=—dGr=Xf+Yf+Z'I€+X—df+Y—df+Z—d1€ 2.11)
dt dt dt dt

An angular velocity vector can be defined in terms of a time-derivative of basis
vectors coordinate frame in relation to another coordinate frame. The angular
velocity of a rotating frame B in coordinate frame G, g p, expressed using the
B-coordinates, is written as

. Gdj Gdk Gdr\ ~
B — _J 7 Te—17 T —
ng—( dt)l+(l dt>]+(] dt)k (2.12)

And the angular velocity of a rotating frame G in coordinate frame B, pwg,
expressed using the G-coordinates, is written as

. B4\ . . BdK\ . . BdT\ .
Swe=|K- I I- J J-—|K 2.13
BOG ( dt ) + dt + dt (2.13)

Equations (2.10) and (2.11) can be represented as

B GdB BdB B B

Gr:% r:E r+Ga)BX r (214)
Bd Gd

gi- = EGr = EGr—{—ng x Or (2.15)

An alternate proof of Eqs. (2.14) and (2.15) is given in Appendix 1.
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The resulting equations show the method of calculating and transforming the
derivative of a vector expressed in one frame to another. This results in the most
fundamental result of kinematics: Let A and B be two arbitrary frames which
motion is related by the angular velocity @, for every vector O expressed in B,
its time derivative with respect to A is given by

AdBD—BdBD B 50 2.1

I =7 + 4wp X (2.16)
This formula is called the Euler derivative transformation formula. It relates the
first time-derivative of a vector with respect to another coordinate frame by means
of angular velocity.

Despite its importance and ubiquitous application in classical mechanics, there
is no universally accepted name for the Euler derivative transformation formula in
Eq. (2.16). Several terminologies are used: kinematic theorem (Kane et al. 1983),
transport theorem (Rao 2006), and transport equation (Kasdin and Paley 2011).
These terms, although terminologically correct, are more prevalent in the subject
of fluid mechanics to refer to entirely different concepts. We use Zipfel’s (Zipfel
2000) and Jazar’s (Jazar 2011) terminology, which we opine as more descriptive
and unique to the subject of derivative kinematics. The name also is a homage
to Leonard Euler who first used the technique of coordinate transformation in his
works on rigid body dynamics (Koetsier 2007; Tenenbaum 2004; Baruh 1999; Van
Der Ha and Shuster 2009).

2.2.2 Second Derivative

One of the most important applications resulting from the vector derivative transfor-
mation method is the development of inertial accelerations. Inertial accelerations,
or sometimes called d’Alembert accelerations or, misnomerly, “fictitious” accel-
erations, are the acceleration terms that appear when the double-derivatives of a
position vector are transformed from a rotating frame to an inertial frame or vice
versa.

To demonstrate this, let G be an inertial coordinate frame and B a non-inertial
coordinate frame rotating with respect to G with an angular velocityg® . Using the
Euler derivative transformation formula, the first derivative of a vector Zr as seen
from G is

Gd Bd
EB :gr: EBrd}_ng XBI' (217)

Using the formula again to get the second derivative of the vector ®r from G yields



2 On the Razi Acceleration 37

GdG_dB _Gd(BdB B B)

Edt r—z E r+wpxX°r
:Z—f(Z—fBr+§waBr)+ngx(];—[jBr—kngxBr)
=E3r+3a3x3r+23w3xB—dBr+Ba)Bx(BwaBr)

dr? ¢ ¢ dt ¢ ¢
= B§a+ga3x3r+22w3xgv
+8wp x (gwg X Br) (2.18)

Equation (2.18) is the classical expression for the acceleration of a point in a
rotating frame as seen from an inertial frame. The term 4 BB ais the local acceleration
of a point in B with respect to the frame itself regardless of the rotation of B in G.
The second term goc p x Br is called the tangential acceleration as its direction is
always tangential to the rotation path. Tangential acceleration term is represented
by a vector product of an angular acceleration and a position vector. The third term
Zgw B X gv is an acceleration term traditionally named after Coriolis. The Coriolis
acceleration term appears from the two different sources: half of the term comes
from a local differentiation of go) g % Br, and the other half is from the product of
angular velocity and the local linear velocity vector. The Coriolis acceleration in
the classical second derivative between two frames is written as twice the vector
product of an angular velocity and a linear velocity. The final term in the expression
gw B X (ga) B X Br) is called the centripetal acceleration as its direction is towards
the center of rotation. The centripetal acceleration has the form of a vector product
of an angular velocity with another vector product of an angular velocity and a

position vector.

2.2.3 Derivative Transformation Formula in Three
Coordinate Frames

The Euler derivative transformation formula is now extended to include a third
coordinate frame. Let A, B, and C be three relatively-rotating coordinate frames
sharing a same origin as shown in Fig. 2.3.

The first time-derivative of a B-vector in relative to the A-frame is written as

Bv="2v+Bwp xPr (2.19)

And the first time derivative of the same B-vector in relative to the C-frame is
written as

bv="bv+Lwpx®r (2.20)
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Fig. 2.3 Three relatively
rotating coordinate frames

Zc Zg
BI‘

Yc
> V4

X VB

X4 Xc
Combining Egs. (2.19) and (2.20) yields

Av="0v+ (o —fwp) xPr 2.21)

The resulting equation relates the A-derivative of a B-vector (2.19) and the C-
derivative of the same B-vector (2.20) by means of the angular velocity differences
between the three coordinate frames. This result also shows that if the relative
velocities and angular velocities with respect to one of the three coordinate frames
are known, the simple derivative in local frame can be neglected. In another
perspective, by introducing an auxiliary coordinate frame, one can forgo altogether
the calculation of the vector derivatives in the local coordinate frame.

The extended Euler derivative transformation in three coordinate frames can be
generalized as

PFO0=80+ (o —Ewp) x PO (2.22)
where [J can be only generic vector.
This formula is called the mixed derivative transformation formula (Jazar 2012).

It can be used to relate vector derivatives in three frames by means of angular
velocities difference between the three coordinate frames.

2.2.4 Kinematic Chain Rule

To extend the Euler derivative transformation to account for arbitrary number of
moving coordinate frames, we derive the general formula for the composition of
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Fig. 2.4 Multiple coordinate frames system with frame O as the inertial frame

multiple angular velocity vectors. This is useful for, but not limited to, a system with
a chain of coordinate frames where the motion of one frame is subject to another.
One example of such system is depicted in Fig. 2.4.

Consider now n angular velocities representing a set of n (n = 1,2, ..., n) non-
inertial rotating coordinate frames in an inertial frame indicated by n = 0. Their
relative angular velocities satisfy the relation

8w,, = 80)1 + ?wz + 8w3 +--+ n_?wn = Zi—lowi (2.23)

i=1

if and only if they all are expressed in the same coordinate frame, which in this
case frame 0. Using the rule, the composition of the angular velocityow, can be
represented in any coordinate frame f in the set.
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n
qon="Rjw, =Y, [ (2.24)

i=1

Equation (2.24) represents the additional rule of the composition of multiple angular
velocity vectors. Any equation of angular velocities that has no indication of the
coordinate frame in which they are expressed is incomplete and generally incorrect.

oW, F oW + 1w +2w3 4+ -+ 1w, (2.25)

Angular acceleration is the first time-derivative of an angular velocity vector. For
an angular velocity vector of B with respect to G, for example,

Bop=wd+w,]+wk (2.26)
the angular acceleration is defined as

Bd "
Sap = ngg = o0 + dy ] + &k (2.27)

Suppose there are n angular velocity vectors representing a set of n coordinate
frames expressed in an arbitrary frame f.

({w”=({w1~|—{w2+'2fw3+---+”_lfa)n (2.28)

To differentiate the composition of angular velocities, which are expressed in f,
from an arbitrary frame g in the set, one has to apply the Euler derivative
transformation formula in Eq. (2.16).

gd n gd
f f
- i @i | = S og®n
dt (;“1 ) dt?®
gd /. : )
= (oot fo)
=(({Oll-i-gwlX({wl)-i-(]fdz-i-ngx{wz)—i--“

4 (n_lfoz,, +gwn X n_'lfa)”)

= Zi—lfai + fwi X . lf(z)l‘ (2.29)

where o is defined as the differentiation of w in its own frame /d /@ /dt. The
formula provides a method to express the first derivative of a composition of angular
velocity vectors.
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As an example, let the number of rotating coordinate frames be n = 3. The
angular velocity of frame 3 with respect to the inertial frame O is written as a
composition of three angular velocities, expressed in frame 3.

j03 =30 +iwr + 303 (2.30)

Applying differentiation from frame 0, using the formula in Eq. (2.29), one obtains

0d
ng:; = (80(1 + 8(1)1 X 80)1) + (?Olz + 80)2 X ?(1)2)
+ (303 + j3 x 303)

= 80[1 + Gaz + (3)(4)2 X ?wz) + GOC3 + (3)(03 X gw3) (2.31)

Looking at the third term in the right-hand side, 3ec5 is the rate of magnitudinal
change of jw3 in frame 3, and jw; X @3 is the convective rate of change of 3w
due to its angular velocity of frame 3 with respect to the frame it is differentiated,
d@3. The second right-hand side term can be interpreted similarly. The total angular
acceleration of frame 1 with respect to frame 0 is only jer; as the direction of the
angular velocity of frame 1 with respect to frame 0 gwl does not change in frame
from which it is differentiated as jw; x j@1 = 0

Therefore, any equation of angular acceleration that has no indication of in which
coordinate frame they are expressed, or without the convective rate of change term

n
> { ®; X l._lf w; is incomplete and generally incorrect.
i=1

00y 7 o0ty + 102 + o203 + - 4 1@y, (2.32)

n
_(Zi—1f“’i) 7’5({“1+{a2+{a3+-~-+;{_1an (2.33)

i=

2.3 The Razi Acceleration

Jazar (2012) showed that the Razi term appears as a relative acceleration due to
transforming vector derivative in multiple reference frames. Here, we show that the
Razi term can be exhibited by the same method that the inertial accelerations in a
fixed-axis rotation motion are calculated, such as the Coriolis and the centripetal
acceleration. We examine the system of three nested coordinate frames—a body-
fixed coordinate frame C is rotating in another coordinate frame B, which in
turn is rotating in a globally fixed, inertial frame A, with all coordinate frames
sharing a common origin. The position vector of a body point Cr is expressed in
the body frame C and its double derivative, hence the acceleration of the body
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point, is taken from the inertial frame A. Any resulting acceleration term, apart
from the local absolute acceleration . a, that appears from the transformation
of the vector derivatives is defined as an inertial acceleration. The derivative
transformation between two coordinate frames produces inertial accelerations such
as centripetal, Coriolis, and tangential acceleration as shown in Eq. (2.18). We
show that nested rotations involving more than two coordinate frames produce more
inertial accelerations terms, in which one of them is the Razi acceleration.

2.3.1 Razi Acceleration in Mixed Acceleration Expression

We reproduce the derivation of the Razi acceleration as shown in Jazar (2011, 2012)
as a review. Consider three relatively rotating coordinate frames A, B, and C, where
the frame A is considered as a global-fixed frame, while the frame B is rotating
in A, and a body frame C is rotating in B. This motion is called compound or
nested rotation since the rotation of C is inside the frame B, which in turn is also
rotating inside another frame, 4. Assume a position vector Cr is expressed in its
local frame C. Taking the first derivative of “r from the B-frame using the vector
derivative transformation formula yields

Bd Cd
Ecr = ECI’ + ng X Cr (234)
Taking the derivative of Z—‘fcr from the A-frame now yields
¢, tdid,
ABS T dr dt
4d (€d
= E (Ecr + gwc X Cl‘)
Cd

Cdc C C c Cdc C c
:E(E r+ pwc X r)—l—chx(E r+ pwce X r)

C,.C c Co.C
=céa+Gac xr+ Gwe x v+ Soe xEv

+ (Goc xGwc) x ‘r+ Gwe x (Gwe x “r) (2.35)

From the expression, the mixed acceleration expression contains the local

acceleration term CCCa; two acceleration terms that have the Coriolis form of a

product of an angular velocity and a linear velocity, which are (A;a)c X gv and

gwc X gv; the tangential acceleration term gac x €r; and a mixed centripetal

acceleration term ga)c X (iwc X Cr).
The term (gwc X gwc) x Cr is the Razi acceleration. Note the difference

between the Razi acceleration and the mixed centripetal acceleration is the order
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of cross product. This indicates that when a coordinate body frame is rotating
relative to other two rotating coordinate frame, the mixed double derivative of Cr
contains these inertial acceleration terms: mixed Coriolis acceleration, tangential
acceleration, mixed centripetal acceleration, and the Razi acceleration. An applica-
tion example of mixed derivative transformation formula with this Razi acceleration
is illustrated on Jazar (2012, pp. 858—864).

However, the dynamical interpretation of the mixed acceleration is not clear.
In practice, the double derivative of a position vector is usually directly trans-
formed from the local frame to the inertial frame without undergoing a mid-frame
differentiation. The reason is that a double-differentiation of a point position in
a rotating frame from the inertial frame gives the additional acceleration terms,
which contribute to inertial effect such as centrifugal and Coriolis forces. In mixed
acceleration, in contrast, the differentiation is taken from two different frames. The
mixed acceleration ,,“a = /;—‘fgv can be used to complement the acceleration of a
point in C from B using the mixed derivative transformation formula in Eq. (2.22).

bd ¢ Ad ¢ C C C

— V= —pVv+ (zowc — @c) X zVv 2.36

dr B dr B (B C —a%@cC ) B ( )
Next, we show that if there are more than one nested rotation, the Razi

acceleration would appear even when the vector derivative is transformed directly

from the local frame to the inertial frame without using the mixed acceleration

technique.

2.3.2 Razi Acceleration as an Inertial Acceleration

The derivation of the Razi acceleration here uses the Euler derivative transformation
formula in conjunction with the kinematic chain rule. It differs from the mixed
acceleration method in such a way that the both derivatives of a body point in a
local coordinate frame are taken from the inertial frame, the same way the Coriolis,
centripetal, and tangential accelerations are derived. To demonstrate, consider a two
coordinate frames system with G as the global-fixed inertial frame and B as the
rotating body-fixed frame. Since the relative rotation between the two frames can
be represented by one angular velocity gw p, we can use Eq. (2.16) twice to find
the double derivative of a body-fixed position vector ®r from the inertial frame G.
Looking at the resulting expression of the acceleration in two frames, shown in
Eq. (2.18), one can separate the acceleration terms as follows
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s5a = local acceleration in B

B

got p X °r = tangential acceleration

5 5 o ) (2.37)
24w p X pv = Coriolis acceleration

Bwp x (Bwp x Br) = centripetal acceleration

Now, consider a slightly complex case of nested rotations. Consider three
relatively rotating frames A, B, and C where the A-frame is treated as the inertial
frame, the B-frame is rotating in A, and the C-frame, which is the body-fixed
frame, is rotating in B. The motion of a rigid body which is spinning in one or
more rotating coordinate frames is called compound rotation or nested rotation.
Compound rotation is usually seen in the gyroscopic motion, or the precession and
nutation of a rigid body. To express the velocity of a point in C as seen from the
inertial frame, the Euler derivative transformation formula in (2.16) is invoked to
transform the velocity from the local frame C to the inertial frame A

Ad
L =S =Ci+Swe x Cr (2.38)

Since, the frame C is in B, and the frame B is in A, the angular velocity ga)c can
be expanded using the angular velocity addition rule from Eq. (2.24).

gwc = in + gwc (2.39)

The expression of the acceleration of a point in C from the inertial frame can be
expressed as

Ad Ad Ad
EECI‘ =Ca+ Eiwc xr+2we x v+ Soc x (Goc x ) (2.40)

. LA . .
The angular velocity derivative d—‘fﬁwc can be expanded using the rule of addition

for angular acceleration in (2.29) withn = 2

Ad Ad
ES(DC = E ((A;wB + ga)c)

C C C C C C
= 40 + 4w X jwp + gc + 40c X pOC
= Cap + Sac + Soc x Goc (2.41)

The expanded expression of the acceleration of a point in C from the inertial frame
now becomes
A7 A
fd7de
dt dt

r=céa+ Gapxr+ (oc x Goc) x r+ §ac xr

+2(A;wc x Cv + Sa)c X (Sa)c x Cr) (2.42)
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One can now list the acceleration terms expressed in local frame C and include the
Razi term

c&a = local acceleration in C

Cac x “r = tangential acceleration
Zgwc X gv = Coriolis acceleration (2.43)

Coc x (Gowc x °r) = centripetal acceleration

c c Co : :
(ch X Ba)c) X ~r = Razi acceleration

The Razi acceleration ({oc x Gwg) x €r comes from differentiating the composi-

tion of angular velocity vectors from a different frame as shown in Eq. (2.41). Next,
we show that for the case of n > 2 nested rotating frames, Razi acceleration terms
appear in the equation of motion.

It is important to note that the Razi acceleration can only appear in compound
rotation motion. A rigid body in a rotation about a fixed axis does not experience
an inertial force caused by the Razi acceleration. This is because a rotation about
a fixed axis can always be simplified to a two coordinate frames system. In such
case the Razi acceleration vanishes as there is only one angular velocity, making
Awp X 40 = 0.

2.3.3 Acceleration Transformation in Multiple Coordinate
Frames with a Common Origin

Given a set of n non-inertial rotating coordinate frames in nested rotations with
i—1®; representing the angular velocity of i -th coordinate frame with respect to the
preceding coordinate frame, we present the general expression for the acceleration
(the double derivative of a vector) of the n-th coordinate frame as seen from the
inertial coordinate frame 0.

042 n n
Ny _ Ny _ 1 n,. n n, .. no_. n
g2 T Twd= At > e x Ty (fwi X w) x

i=l i=1

n n n
2) twi xavE > e x [ Y jwi x"r (2.44)

i=1 i=1 i=1
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where

n —
I‘”‘la

local acceleration

n
E ;Mo x 'r = tangential acceleration

i=1

n
2 Z o@; x v = Coriolis acceleration
= (2.45)

n n
Zgw i X Z o@; x"r | = centripetal acceleration
i=1 i=1
n
Z (j@: x ;_{'®;) x "r = Razi acceleration

i=1

The general expressions for acceleration when a position vector in a local frame
is differentiated twice from the inertial frame are shown in Table 2.1. Examples are
given for up to a five coordinate frames system. The frame A is dedicated to the
inertial frame and the successive relatively rotating frames are named B, C, and so
on, with the last letter indicates the local coordinate frame. For example, in a system
of three coordinate frames, A is the inertial frame, B is the intermediate frame, and
C is the local frame. All vectors are expressed in the local coordinate frame as
indicated by the left superscript on each vector. Addition of angular acceleration

n
vectors is simplified as ja, = ) fa;.

The resulting acceleration Iex;)ression in Table 2.1 shows that if a rigid body
moves linearly with respect to an inertial space, its motion can be sufficiently
described by a linear acceleration vector “a. When a rotating reference frame is
introduced and the motion is described in this frame, the additional acceleration
terms—centripetal, Coriolis, and tangential accelerations—act as “supplementary”
accelerations to describe the motion in a rotating reference frame. When another
rotating frame is introduced in the existing rotating frame making a three coordinate
frames system, the expression adds another acceleration term: the Razi acceler-
ations. As more coordinate frames are introduced in the nested rotating frames
system, the acceleration expressions becomes more complex to accommodate the
relative motion between the coordinate frames. In general, Eq. (2.44) includes all
of the relative accelerations acting on a rigid body in compound motion which
are otherwise unobservable with the classical derivative kinematics method and not
intuitive to the analyst.
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Table 2.1 Inertial acceleration terms for describing rigid body in multiple

frames system

No. of frames

Acceleration terms

Enclosed system

Inertial frame

(n=0)

Inertial frame +

(n=1)

1 rotating frame

Ba

+8wp x (Jus x Br)
+28wp x By

+5ap x Or

s [:]
Inertial frame + &
") n n
. +8wp x (Jws x 'r)
1 rotating frame - o
+2qwe X °v
(n=1) +Bap x Pr
Dﬂ

Inertial frame +
3 rotating frames

(n=23)

+4wp x (fup x Or)
+25wp x Pv
+E(|D x Pp

+ (Jwe x fuwe) x “r

+ (Jwo x Pwp) x r

Inertial frame +
4 rotating frames

(n=1)

sa

+hwe % (Swe x Fr)
+25wg x Bv

+h0e x Fr

+ (fwe % fwe) x Fr
+ (fwp x Ewp) x Fr

+ (Bwe x ?1..4.] x Ep

47
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2.4 Mechanical Interpretation of the Razi Acceleration

Classical dynamics asserts that there exists a rigid frame of reference in which
Newton’s second law of motion is valid. Assuming the mass is constant at all times,
the law of motion is written as

F = ma (2.46)

where m indicates a mass scalar and a represents the acceleration vector. The
reference frame in which this relationship is valid is called an inertial frame. An
inertial frame is fixed in space, or at most, moves in relation to fixed points in space
with a constant velocity. On the other hand, a non-inertial reference frame can be
defined as a frame which accelerates with respect to the inertially fixed points. The
calculation of motion observed from a non-inertial reference frame does not follow
Newton’s second law due to the relative acceleration between the observer’s frame
and the inertial frame.

Starting from an inertial frame, the method of derivative kinematics is used
to calculate and transform the vector derivatives to the non-inertial observer.
Such transformation produces additional acceleration terms to the Newton’s law
in Eq. (2.46). For the classical case of one stationary inertial frame and a body
frame which rotates about a fixed axis, these additional acceleration terms are
generally divided into tangential acceleration, Coriolis acceleration, and centripetal
acceleration, as shown in the expression in Eq. (2.18).

F=m (a + Auangential - Acoriolis 1 acemn‘peml) (2.47)

Multiplying the acceleration terms with mass gives the expression of the forces that
is acting on a point mass in the rotating coordinate frame.

In the case of multiple nested coordinate frames, the classical method of
transforming derivative between two frames is limiting. This method is sufficient for
any motion consideration in two-dimensional space, due to the assumption that the
direction of a rigid body’s angular velocity is fixed with respect to the inertial frame
at all time. However, a general formula for a three-dimensional space is needed to
account for the subtle accelerations due to a non-constant angular velocity.

The derivative transformation method can be extended to include the effects of
moving angular velocities. To do this, the complex rotation caused by the non-
constant angular velocity vector is decomposed into several simpler coordinate
frame representation such that each coordinate frame then will have a fixed-axis
angular velocity vector. Such technique results on multiple coordinate frames in
nested rotations. To analyze such system, we incorporate the extended derivative
transformation formula and the kinematic chain rule, which method reveals new
results and application.

For the case of three coordinate frames system (two nested rotating frames
in an inertial frame), we have seen that the acceleration expression includes



2 On the Razi Acceleration 49

a new rotational inertia called which is the Razi acceleration. We also have
shown the general expression for all four inertial acceleration—tangential, Coriolis,
centripetal, and Razi—for an arbitrary number of nested rotating frames.

F=m (a + Qrangential + Acoriolis + QAcentripetal + aRazi) (24’8)

Extending the derivative transformation formula and incorporating the kinematic
chain rule reveal several new results and applications. The Razi acceleration is given
a focus due to its appearance as one of the additional acceleration terms in the system
of more than two coordinate frames.

We take the simplest case of the Razi acceleration where there are three nested
coordinate frames—A, B, and C—sharing an origin with the body coordinate frame
C being the “innermost” frame. Such system can be better illustrated by a flat disc
in compound rotation motion, as shown in Fig. 2.5. We fix the C coordinate frame
in the disc, which is spinning on its own axis with an angular speed 6 and tilted on
a turning shaft by ¥ degrees. We fix the B coordinate frame on the shaft, which
is turning with respect to the global-fixed frame with an angular speed ¢ The two
angular velocities can be written as pwc = 67 and 4@ B = gb J.

The total acceleration acting on a point r on the disc, as seen from the inertial
frame, can be expressed by Eq. (2.42). Decomposing the expression into multiple
terms, the Razi acceleration, if expressed in the local body coordinates of C, is
written as

e = (o x Gwc) x r (2.49)
The cross product of two angular velocities iwc x Swc is the convective rate
of change of ¢ due to the angular velocity of C in A, 4@ ¢. Therefore, the Razi
acceleration can be described as an inertial effect caused by the change of the local
angular velocity vector direction. This is separable from the tangential direction
which is due to the change of an angular velocity magnitude, hence producing
acceleration in the direction which is tangent to the rotation curve.
To examine the direction of action of the Razi acceleration, we visualize the
resulting vectors in Fig. 2.6. Assuming the position vector of the point of interest r
is constant in C. Since the angular velocity of C in A can be decomposed using the

addition rule, i.e. iwc = iw B+ gwc, the Razi acceleration is written as

e = (@ x Goc) x °r (2.50)
The total acceleration, thus, can be expressed as

Adid. o c o ¢ . .
dt dt “r= (§op x joc) x T+ {ec x (Goc x 1) (2.51)

In Fig. 2.6, the total acceleration vector of a body point in C is decomposed into the
centripetal acceleration vector ¢ x ({@¢ x €r) and the Razi acceleration vector
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Body coordinate frame C spinning in shaft
coordinate frame B. The B-frame, in turn, is
rotating in inertial frame 4.

C-frame rotating in B-frame with B-frame rotating in A-frame with

C 0 B .
B(I)C—el 4 Op =i

Fig. 2.5 Describing compound rotation motion using three coordinate frames system

(g wp X ga)c) x €r. Using the disc to represent the plane of rotation of the C -frame,
we can see the resultant vector of the Razi acceleration is always in the out-of-plane
direction. This can be tested by finding the direction of the cross products in the
Razi term using the right-hand rule.

Apart from the magnitudes of wp, Gwc, and Cr, the magnitude of the
Razi acceleration vector depends on the angle between the two angular velocity
vectors, . Figures 2.7, 2.8, 2.9, 2.10, 2.11, 2.12 show the magnitudes of Razi
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instantaneous
axis of rotation

49¢

BOC

az‘entripetal = AmC ( AmC x r)
apyzi =(40p XgOc) X1

Fig. 2.6 Razi acceleration vector
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accntripcta]
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Fig. 2.7 Zowp = é = 5rad/s; Coc = 6= 1rad/s
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and centripetal acceleration experienced by the body point r in the example. The
plots show the effect of v to the magnitude of Razi acceleration for different
combinations of angular velocities. Since most readers are more familiar with
the centripetal acceleration effect and its influence on bodies under rotation, we

compare its magnitude with the magnitude of Razi acceleration.
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Fig. 2.8 Zwp = é = 4rad/s; Coc = 6 = 2rad/s
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Fig. 29 Swp = ¢ = 3rad/s; Goc = 6= 3rad/s

2.5 Conclusion

By revising and extending the classical Euler vector derivative transformation
formula, we update the interpretation of the Razi acceleration and reveal its
application in rigid body motion. The Razi acceleration is revealed as one of
the inertial effects, apart from the classical Coriolis, centripetal, and tangential
accelerations, affecting rigid bodies in compound rotation motion. It is shown to
appear as a result of the convective rate of change of a body-frame’s angular velocity

n
in nested rotation. Razi’s mathematical expression, Y (gw,- X i_l”wi) x"r, can only
i=1
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Fig. 210 2wy = ¢ = 2rad/s; Gwc = 6= 4rad/s
30 T T T T T
Acentripetal
20 + E
(\l"’)
=2
10 | E
ARazi
0 1 1 1 1 1
0 30 60 90 120 150 180

v (deg)

Fig. 2.11 Zowp = ¢ = 1rad/s; Cwc = 6 = Srad/s

be discovered by using multiple coordinate frames in analyzing the kinematics of
complexly rotating bodies. A practical example is illustrated to show the typical
direction of action of Razi acceleration. Its magnitude is compared to the more
widely acknowledged centripetal acceleration to show that the Razi acceleration
can have a significant impact to the structures of a body in compound rotation.
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Fig. 212 2wy = ¢ = 5rad/s; Gwc = 6= Orad/s

Appendix 1: Alternative Proof of Derivative Transformation
Formula

Angular velocity can be defined in terms of time-derivative of rotation matrix.
Consider the two coordinate frames system as shown in Fig. 2.2. The angular
velocity of B in relative to G, gw p is written as follows

gwg = GRB GRg if expressed in G
R TG ) ) (2.52)
c@®B = Rp"Rp if expressed in B

To prove Eq. (2.52), we start with the relation between a vector expressed in two
arbitrary coordinate frames G and B.

Gr =C%Rp Br (2.53)
Finding the derivative of the G-vector from G, we get
St =R Pr=CRpRLr = Swp x r (2.54)

Here, it is assumed that the vector ®r is constant in B. If it is not constant, we have
to include the simple derivative of the vector in B and rotate it to G

S =CRpPr+ORpBi=Cwp xOr+ G (2.55)

The angular velocities between two arbitrary frames are equal and oppositely
directed given that both are expressed in the same frame

GWB = —BWgG (2.56)
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Using this angular velocity property, rearranging Eq. (2.54) gives

=G+ Swe xOr (2.57)

Appendix 2: Proof of the Kinematic Chain Rule
for Angular Acceleration Vectors

To prove Eq. (2.29), we start with a composition of # angular velocity vectors which
are all expressed in an arbitrary frame g.

n
g _ g _ g g g
0@n = § :i—l @ = 0]+ @2+ -+, [0,

i=1

=S8Ry j@i + 5 Ryjwy+ -+ 5R, (/) @, (2.58)

We use the technique of differentiating from another frame in Appendix 1.
Differentiating the angular velocities from an arbitrary frame g gives

% Zi—lgwi = % (gRl 0@1 + 5 Ryjwy + -+ °R, (,,_”l)w,,)
i=l1

= ¥Ry j@1 + R jo1) + C R + fRyjwr) + -+
ot Ry o + SR, (-1 @n)

= (*Ri a1 +*Ri*R] {01) + CRyTar + Ry *R] fwr) + -+
ot CRy S, + SR SRS @)

= oy + fw % Sw1) + (foa) + Swy x Swy) + -+
o (e @ x (5 @) (2.59)

The whole expression can be transformed to any arbitrary frame f by applying the
rotation matrix from g to f, IR o

8d (& fd N,

i=1

/ Twix. o (2.60)

I
I

g
_|._
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Notations

In this article, the following symbols and notations are being used. Lowercase bold
letters are used to indicate a vector. Dot accents on a vector indicate that is a time-
derivative of the vector.

e r,v (orr), and a (or I) are the position, velocity, and acceleration vectors
* w and & (or w) are angular velocity and angular acceleration vectors.

Capital letter A, B, C, and G are used to denote a reference frame. In examples
where only B and G are used, the former indicates a rotating, body coordinate frame
and the latter indicates the global-fixed, inertial body frame. When a reference frame
is introduced, its origin point and three basis vectors are indicated. For example:

A(Oajama;) G(OXYZ) B(oijk)
Capital letters R is reserved for rotation matrix and transformation matrix. The
right subscript on a rotation matrix indicates its departure frame, and the left
superscript indicates its destination frame. For example:

B R, = rotation matrix from frame A to frame B

Left superscript is used to denote the coordinate frame in which the vector is
expressed. For example, if a vector r is expressed in an arbitrary coordinate frame
A which has the basis vector (7, , k), it is written as

Ar=r1f+r2f+r3k

= vector r expressed in frame A

Left subscript is used to denote the coordinate frame from which the vector is
differentiated. For example,

v
AI', — _dA
BY T dr
= vector r expressed in frame A and differentiated in frame B
B B
A'I'. — _d _dA
BB dt dt

= vector r expressed in frame A and differentiated twice in frame B
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A'I; — C_dB_dA
cB dr dt

= vector r expressed in frame A and differentiated in frame B
and differentiated again in frame C
Right subscript is used to denote the coordinate frame to which the vector is referred,
and left subscript is the coordinate frame to which it is related. For example, the
angular velocity of frame A with respect to frame B is written as
pw 4 = angular velocity vector of A with respect to B

If the coordinate frame in which the angular velocity is expressed is specified

gw 4 = angular velocity vector of A with respect to B

expressed in C

2.6 Key Symbols

a=r Acceleration vector

vV =r Velocity vector

r Displacement vector

o Angular acceleration vector

w Angular velocity vector

F Force vector

m Mass scalar

n Number of elements in the set of noninertial coordinate frames

i ith element in a set

Elements in the set of noninertial coordinate frames

, K Orthonormal unit vectors of an inertial frame

Orthonormal unit vectors of a noninertial frame

Origin point of a coordinate frame

Angular speed of body (spin)

Angular speed of body (precession)

Nutation angle, angle between spin vector and precession vector
Rotation transformation matrix

Arbitrary vector

Vector r expressed in A-frame

Vector 1 expressed in A-frame and differentiated in B-frame

~>
~>
byl

O® <SS >0

-

[ NN
-
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Cgi‘ Vector ¥ expressed in A-frame, first-differentiated in B-frame, and
second-differentiated from C -frame

ARp Rotation transformation matrix from B-frame to A-frame
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Chapter 3
Challenges in Exact Response of Piecewise
Linear Vibration Isolator

Oleksandr Pogorilyi, Reza N. Jazar, and Pavel M. Trivailo

Keywords Piecewise linear systems ¢ Nonlinear vibration isolator * Frequency
response * Exact methods * Numerical methods

3.1 Introduction

Piecewise linear vibration isolator is a vibration isolator whose system has nonlinear
geometric characteristics of stiffness and damping, where nonlinearity is a result of
moving among finite number of linear segments.

The scientific story of piecewise linear vibration isolator starts with the work
of Den Hartog who analyzed an undamped bilinear stiffness system as is shown
in Fig. 3.1 (Den Hartog and Mikina 1932). He showed that the exact solution
for the frequency response of the system can be obtained by solving two tran-
scendental equations. Solving those equations, Den Hartog presented a set of
frequency response plots for a few different values of stiffness. His calculations
were confirmed by experimental results of Jacobsen and Jaspersen (1935) who
explored the bilinear stiffness system and received results close to the Den Hartog
mathematical results.

The next step in study of piecewise linear vibration isolator was analysis of a
single degree of freedom system with clearance in the viscous damping as shown in
Fig. 3.2. Gurtin presented an approximate method for solving of the system (Gurtin
1961). The method is based on finding an equivalent viscous damper.

The mathematical modeling and analysis of piecewise linear systems have been
grown in parallel to their application. Aizerman tried to ground the mathematical
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stiffness
A

— —

> U

damping

Fig. 3.2 A vibrating system with gap-damper engagement

foundation for the piecewise linear systems (Aizerman and Gantmakher 1957, 1958;
Aizerman and Lur’e 1963) and developed a number of methods to deal with these
systems. Also, Fleishman (1965) analyzed a system of coupled piecewise linear
equations from a control viewpoint and described the required conditions for a
periodic response.

The simplicity of the piecewise linear vibrating systems helped scientists to
perform many experiments. They not only discovered validation of the mathematical
predictions, but they also found several unexpected behaviors that were not pre-
dictable by the simple mathematical models. Hayashi (1964) did a notable work in
application direction. His results show that great complication is to be expected even
in simple modeling cases. Masri (1965, 1978), Masri and Stott (1978) used a general
one DOF vibrating system to explain the difficulties that introduce in formulation of
the steady state motion. Marsi used an experimental device to analyze the sensitivity
of the physical system for some of the parameters involved. Watabene (1978) used
the method of Den Hartog to plot the frequency response of an equivalent bilinear
mass-spring vibrator to a base excited cantilever beam with clearance. He examined
the effect of the amplitude of harmonic excitation in his plots.
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Iwan (1973) tried to use approximation methods using averaged periodic
solutions. Nguyen et al. (1986a,b) used numerical integration methods and
described the time domain behavior of the system.

Rosenberg (1966) developed the mathematical foundations for the existence of
steady state solution for equation X + f(x) = p-g(t) = p-g( + T), where
g(t) is a cosine-like periodic function. He showed that the necessary condition
for the existence of steady state periodic solution of the equation is that f(x) be
everywhere analytic, odd, monotonically increasing function x f(x) > 0 for x = 0.
The piecewise linear system without damping is of this type.

Natsiavas (1989), Natsiavas and Gonzalez (1992) developed a stability analysis
for asymmetric piecewise linear force excited system using methodology that was
firstly found by Den Hartog and received system of transcendental equations that
can be used to calculate amplitudes of relative displacement analytically. Narimani
et al. (2004a) predicted the frequency response of piecewise linear system using
perturbation methods. They experimentally verified the perturbation results and
discovered a new phenomenon called the frequency island (Narimani et al. 2004b).
Deshpande et al. (2006) optimized the secondary isolator employing the RMS
method (Jazar et al. 2003; Alkhatib et al. 2004; Christopherson and Jazar 2005; Jazar
et al. 2006a). Jump avoidance conditions of the system were investigated by Jazar
et al. (2006b, 2007). The importance and application of the system were reviewed
by several investigators (Jazar and Golnaraghi 2002; Marzbani et al. 2012, 2013).

Schulman (1983) is the first scientist who discovered chaos in piecewise linear
systems. Later this phenomenon was analyzed in vast systems of this type.

The simplest practical model of a piecewise linear vibration isolator is a system
with bilinear stiffness and dumping characteristics as is shown in Fig. 3.3. The first
spring and damper that are directly attached to m is called “Primary suspension”
and the second stage, which is effective beyond the clearance amplitude A, is
called “Secondary suspension.” The clearance A generates a switch to engage the
secondary suspension. This represents a sudden change in the system properties

damping
N ¢+ 6
€1
> u
A
stiffness
A ——ktk
k;
> u
-A A

Fig. 3.3 Mechanical model of the piecewise linear system with symmetric constraints
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which provides a hard nonlinearity of the piecewise linear system. In this article the
examined system is subjected to a periodic base excitation y(¢) with period T > 0.
The equations governing the motion of the system could be written as

mi + g1(x,X) = fi(y,y) (3.D

where gi(x,x) and fi(y,y) are piecewise linear functions presenting sudden
changing characteristics of the system and sudden changing excitation, respectively:

(cir+c)x+ (ki +k)x —kaA x—y>A
g1(x, %) = {erx + kyx Ix —y| < A (3.2)
(C| +C2)x+(k1 + ky)x + koA xX—y<-A

cr+c)y+ ki +k)y x—y>A
H(B.Y) = ey +kiy Ix—y| <A (3.3)
(c14+c)y+ ki +ky)y x—y<-A

The equation of motion for the system shown in Fig. 3.3 may also be written in a
nondimensional form:

7+ 26w7 + w3z = wwsin(wf — @) + 0 z> 1

7+ 281012 + wiz = wo? sin (o — @) lz| <1 (3.4)

i+ 25wi + wiz = wolsin(wf —¢) —w] z< -1

where
u Y
= — = — = X —
z A w A u y

k k k

w? =" W2 = ST (3.5)
m m

£ = C1 1+ ¢

N 2/ + ky)m

We seek the frequency response of the system (3.4) by developing and detecting its
exact steady state time response.
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3.2 Exact Solution

As long as the relative displacement of m is less than A, the system is a one degree-
of-freedom base exciting system with well-known time and frequency responses
(Jazar 2013, 2014). However, there is no general closed form solution for the system
when the relative displacement exceeds A. In order to determine the frequency
response of the system, we search for possible steady state time response of the
system and detect its maximum amplitude. Repeating this method ends up with a
series of amplitudes for different values of excitation frequencies.

A steady state periodic response of the system should look like Fig. 3.4. To
ensure that the secondary suspension is engaged, we seek a periodic solution of
the system (3.4) with the following initial conditions:

20)=1 20)>0 (3.6)

To set the time axis to begin at this condition, we introduce a phase lag ¢ in the
excitation function y.

y = Y sin (ot — ¢) (3.7)

Furthermore, we assume that there is a steady state periodic response with exactly
the same frequency w as the excitation frequency. We also assume that in the first
half of the period, the response passes through z = 1 with z(0) < O atatime t = ¢,
0<t <2n/w.

Due to these assumptions, the solution will be |z(t)] = 1 at¢t = 0,1 = 1,
t =n/w,t = nw/w+t,and t = 27 /w in the period starting at ¢ = 0. Let us call
the solution in domain z > 1 as z,(¢) and the solution in domain |z| < 1 as z;(¢)
(see Fig. 3.4). The continuity and compatibility of z;(z) and z,(¢) would be satisfied
by imposing the following conditions:

22

Z;

ela

Fig. 3.4 A steady state periodic response of the system
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22(0) =1 2(0) = () =1 2(t) =
. b4 . T
at) =1 Z@)=vi  a()=-1  a(=)=-n (3.8)
1) 1)
There is no however a one-to-one relationship between the input amplitude ¥ and
the output response z. For some values of Y there may be no such solutions, while
for the other values of Y there may be several.
The underdamped solutions z,(¢) and z; (¢) are:
2(t) = e 1 (Ay sin(wq, 1) + By cos(wq,1))
+C sin(wt) + D cos(wt) (3.9)

2(t) = e 829 (Ay sin(wg,t) + Ba cos(wg,t))

2
+C; sin(wt) + D, cos(wt) + a)_32 (3.10)
)

and therefore,

21(t) = —E1w1e " (A sin(wq, 1) + By cos(wy, 1))
+wdle_glwlt(Al cos(wdlt) - B Sin(wdlt))

+w(C; cos(wt) — Dy sin(wt)) (3.11)

2(t) = =& 2% (A sin(wgy) + Bz cos(wg,1))
+wg,e 2 (A cos(wg,t) — By sin(wy,?))

4+w(C; cos(wt) — Dy sin(wt)) (3.12)

where

wa, = wy/1 — &3 wg, = wi/1 — & (3.13)

The coefficients A;, By, A, B, will be found by imposing the initial and
compatibility conditions (3.8). The coefficients C;, D, C;, D, depend on the
forcing function and will be found by collecting the coefficients of sin(w?) and
cos(wt) in z;(¢) and z,(¢)

Ci = Qicosp — Qysing (3.14)
D, =—Qscosp — Q;sing (3.15)
Cy = Qzcosp — Qysing (3.16)

Dy =—Q4cosp — Q3sing (3.17)
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where
(0} — 0H)w?
P Ty
0, = 2803w, "
(0} — 0?)? + Qe 1ww)?
(0} — M)
0= o + Gy
0, = 2603wy

(@2 — ) + 2brwwn)?
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(3.18)

(3.19)

(3.20)

(3.21)

Imposing the eight boundary conditions (3.8) on Egs. (3.9)—(3.12), produces eight
transcendental equations with eight unknowns A,, B;, A;, By, t1, vi, v2, and @:

2

1)
By+Dy+ =3 =1

w5

—&wr, By + wd2A2 + Chowo = v,

Pl (A sin(wg,t1) + Bz cos(wg,tr))

2
w

+C; sin(wt)) + D, cos(wty) + —; =1
W,

—Eza)ze_gz‘“”‘ (Az sin(wg,t1) + By sin(wg,t))
+wa,e 2 (A cos(wa,ty) — By sin(wg,t1))

4+w(C; cos(wt) — Dy sin(wt))) = v

e frenfi(g, sin(wg, 1) + By cos(wg, 1))

+C sin(wty) + Dy cos(wty) = 1

—Sla)]e_s”‘"” (A sin(wg, t1) + B) cos(wg, t1))
+a)dle_5"””‘ (A cos(wg, 1) — By sin(wg, 11))

+w(Cj cos(wty) — Dy sin(wty)) = v

e—élwlﬁ(Al sin(wyg, g) + Bj cos(wy, g)) —D=-1

x , P P
— Ejw1e™N19M0 (A4 sin(wy, 5) + B cos(wy, 5))

x V4 . b/
+wg e (A cos(wag, —) — By sin(wg, —))
w w

—Cio = —v

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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The parameters B, and A, may be found from the Eqgs. (3.22) and (3.23),

2
By=1-D,— 2 (3.30)
)
V2 + &0 By — G & w?
A — = — _— 3.31
2 on 0s 0 0, (3.31)

and the parameters B and 4, from the Eqgs. (3.28) and (3.29)

B = (—Q6sin (‘“‘“”) + (D) — 1) cos (“’2”)) (3.32)

w
_ 510:)1” wq, T _ . wyq, T
A =e (Q6cos( “ )+ (D, 1)s1n( . )) (3.33)
where
D, —1 Crw —
05 = &0 (D2 — 1) + Gy — (3:34)
Wd,
Dy—1 Ciw —
06 = §lw1 (D1 —1) + Cio — (3.35)
Wy,

Now, substitution of A, By, Ay, and B, in (3.24)—(3.27) produces four equations
for vy, v, t1, and ¢

Q7sin(wg,t1) + Qs cos(wy, 1)
2

Gy sin(why) + Ds cos(wty) + % -1 (3.36)
2

—Qgsin(wg, 1) + Q19 cos(wy,t1)

4w (C; cos(wty) — Dy sin(wty)) = vy (3.37)

Q11 sin (wg,11) + Q12 cos (wg, 11)
+Csin(wty) + Dy cos(wt)) =1 (3.38)

— Q13 sin(wg, 1) + Q14 cos(wa,t1)
4w (C; cos(wty) — Dy sin(wty)) = vy (3.39)



3 Challenges in Exact Response of Piecewise Linear Vibration Isolator 67

where
07 = Are @ Qg = Bye 02 (3.40)
Q9 = ™51 (£30y A3 + wa, B2) (3.41)
Q10 = e 2" (wy, Ay — &0 B)) (3.42)
Q]] = A]é‘_glwm Q12 = Ble—élwlfl (343)
013 = e 51 (£ w1 Ay + wg, By) (3.44)
Q14 = e 8" (w4, Ay + E101 By) (3.45)

Eliminating v; between Eqgs. (3.37) and (3.39) reduces the number of equations to
three to find v, ¢, and ¢.

Q7 sin(wa,t1) + Qg cos(wa,t1)
0)2

+Cysin(wty) 4+ Dy cos(why) + — =1 (3.46)
w;

— Qgsin(wg,t1) + Q1ocos(wg,t1) + Q13 sin(wg, t1) — Q14 cos(wg, )
4w ((C, — Cy) cos(wty) — (D, — Dy) sin(wty)) =0 (3.47)

Q11 8in (wg,11) + Q12 cos (wg, 11)
+C; sin(wty) + Dy cos(wty) = 1 (3.48)
The parameter v, is embedded in A,, Bj, and A;. Therefore, Qs to Q7 and Qg to

Q14 are functions of v,. Substituting Q; and Qi, in Eq. (3.48) produces a linear
equation of Qg

Q1506 + Q16 = Q17 (3.49)
where
Oi5 = —esw‘(%ﬂl) sin (71 _wwtl wdl) (3.50)
Q16 = e 5191 (Cy sin(wty) + D cos(wty))
481 (5) (D) — 1) cos (” _w“’“ a)dl) (3.51)
z510)1

Q17 = Diew (3.52)
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Qg is solvable for v,
vy = wCi + (Dy — 1) §101 — Qswy, (3.53)

and therefore, eliminating v, in Egs. (3.46) and (3.47) reduces the number of
transcendental equations to two to determine #; and ¢ for a set of given system
and excitation.

3.3 Time Response

If we were able to solve Egs. (3.46)—(3.48) analytically, then we could complete the
solution z5(¢) and z; (¢). In that case the maximum value of z, () would be the steady
state amplitude. To determine the steady state response of the system, we need to
numerically determine the parameters.

The primary suspension’s frequency response is

2
Zy=,/C?+ D? = @ W (3.54)

@ =02 + Qaom)?

and shows in Fig. 3.5 for w = 1. The area above the line Z = 1 indicates the
engagement of the secondary suspension. The curves will approach the line Z =
w asymptotically. If w < 1, then there would be a frequency span in which the
secondary will engage, and there would be no engagement outside the span. If w >
1, then the engagement will begin at a frequency and never let go. As a result, the
curves above Z = 1 will change because of the sudden change of stuffiness and
damping.

Line of
maxima

0.5

Fig. 3.5 The frequency 0y s : a7 E) s

response for Z = N olw,
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Fig. 3.6 The frequency response curve of the primary forw; = 1,6 = 1, § = 0.1

Without losing generality we may assume
o =1 (3.55)
and set
w=0.5<1 & =0.1 (3.56)
and plot the associated frequency response curve of the primary in Fig. 3.6. The
amplitude of the primary will be greater than Z; = 1 when the excitation frequency
is in the following range.

0.8337115427 < w < 1.385012057 (3.57)

To express the method and determine a sample of steady state time response, let us
set the secondary suspension parameters as

w=+v2 £&=0.1 (3.58)
Substituting the system characteristics we should solve the two equations of (3.46)
and (3.47) t; and ¢. Figure 3.7 illustrates the implicit plot of the equations, with a
unique solution at
¢ = —1.472642330 t; = 1.688156972 (3.59)
Employing #; and ¢ we calculate

v; = —1.154853554 v, = 1.218400685

and determine z,(¢) and z;(¢) to plot the steady state solution as shown in Fig. 3.8.
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Fig. 3.7 The implicit plot of the two transcendental equations (3.46) and (3.47) as functions of ¢,
and g forw, = +/2,6 =0.1, 0, = 1,w=0.5,§ = 0.1

1.5
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Fig. 3.8 A sample of the steady response of the system for w, = «/i & =01,w =1,w=0.5,
El =0.1

3.4 Challenges and Unsolved Problems

Regardless of the simple configuration and arrangement of the piecewise linear
vibration isolator, determination of the frequency and steady state time responses
of the system is not completely covered to date. There are several challenges and
unsolved problems that we review in this section.

3.4.1 Multiple Solutions

The eight conditions (3.8) are not enough to guarantee a single solution. Depending
on the parameters, we may get multiple possible steady state responses. This
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multiplicity is different than the existence of multiple solutions for some values of
frequency in the frequency response of nonlinear vibrating systems. As an example,
let us consider a system with the following characteristics

w] = 1 i:l = 0.1 wy = vV 17 5:2 =0.1 (360)
and the excitation with
w=1 w=23 3.61)

Figure 3.9 illustrates the intersection of Egs. (3.46) and (3.47) for the possible
solutions of #; and ¢.
The intersections provide us with two sets of solutions:

¢ = —1.248353815 t;1 = 0.9049692487 (3.62)
¢ = —1.314128509 1 = 2.229699384 (3.63)
The steady response of the system for solution (3.62) is illustrated in Fig. 3.10, and
for solution (3.63) illustrated in Fig. 3.11.
Considering

o=1  &=01  w=+v2 §&=01 (3.64)

we find the illustration of Eqgs. (3.46) and (3.47) as shown in Fig. 3.12, with a unique
solution for the #; and ¢.

¢ = —0.6226982402 1) = 2.620975511

3
2.5
1.5:
Ui
1
0.5
ol . , _ S
-1.5 -1 -0.5 0 05 1 1.5
P
Fig. 3.9 The implicit plot of the Egs. (3.46) and (3.47) forw = l,w =3 andw; = 1, § = 0.1,

wy = «/17,%2 =0.1
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Fig. 3.10 The steady response of the system for ¢ = —1.248353815, #; = .9049692487
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Fig. 3.11 The steady response of the system for ¢ = —1.314128509, t; = 2.229699384

The associated steady state response of the system is shown in Fig. 3.13.

Comparison of Figs. 3.13 and 3.10, 3.11 suggests some open problems to
be solved in the future. It indicates that there would be a periodic bifurcation
point in the interval V2 < w < 17 for o, = 1, & = 01,& = 0.1,
w = 3, o = 1. Any other combination may have the same feature as well.
Double hitting or multiple hitting may also happen without violating the imposed
boundary conditions. Searching only for the responses with single hitting needs
more conditions to be introduced. In case of multiple hitting, such as the one in
Fig. 3.11, it must be discussed to clarify if the first or the highest amplitude should
be recorded.

Furthermore, when plot of Egs. (3.46) and (3.47) show two intersections, one of
them must be associated with a stable and the other one associated with an unstable
solution. Based on the nonlinear vibration understanding, the solution with higher
amplitude must be the stable solution, and the lower amplitude be associated with
unstable solution. In case of three possible amplitudes, the middle one is unstable.
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Fig. 3.12 The implicit plot of the Egs. (3.46) and (3.47) forw = I,w =3 andw; = 1, & = 0.1,
w =25 =0.1
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Fig. 3.13 The steady response of the system forw = 1,w =3 andw; = 1,§ = 0.1, 0, = «/E

£ =0.1

However, the stability of the solutions cannot be determined by analyzing one period
of the steady state solutions. It must be done by a stability analysis.

3.4.2 Range of Nonlinearity

Although the system is piecewise linear, it shows the behavior of nonlinear systems
because of the sudden change in stiffness and damping. One of the common features
of nonlinear vibrating systems is the jump phenomenon. The jump is in general a
harmful phenomenon in real systems. It is the reason why jump avoidance design
must be taken (Jazar et al. 2006a). In the piecewise linear vibrating system, the jump
may appear when the secondary suspension is still engaged while the excitation
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frequency is beyond the upper limit of the frequency interval of the line Z; =
1 intersecting the frequency response of the primary. As an example, consider a
system with

and the excitation with
w=14 w=3 (3.66)

The excitation frequency is higher than upper limit of (3.57). Therefore, the system
should not ever engage with the secondary suspension. We expect that if such
an engagement happens, the system let the secondary go and settle down on a
steady state vibration supported only by the primary suspension. However, Fig. 3.14
indicates that there is a possible solution for system to vibrate on a steady state
condition while the secondary suspension engages. The response is depicted in
Fig. 3.15.

Theoretically, variation of @ with some small step and solution of Eqgs. (3.46)—
(3.48) allow us to calculate the steady state amplitude of the system. In the case
of nonlinear systems the highest value of the frequency for which a steady state
response happens cannot be predicted exactly. The current practical way is to
increase the excitation frequency o little by little until no solution can be achieved
from Eqs. (3.46) and (3.47). Additionally, we should monitor the tangent slope of

dZ, 7y, — 7,

— ~ 3.67
dw Wy — Wy—1 ( )

The point where the slope of the tangent to the response curve is almost vertical the
jump will occur. However, when the slope gets close to vertical, the sensitivity of
the solution to the variation of @ becomes higher. Therefore, the step size of v must
become finer. One set of solution of Egs. (3.46) and (3.47) for different values of

1.6-
1.4
1.2

0.8
0.6

0.4-
0.2 /
0 :
s 1 05 0 05 i 1’5
@

Fig. 3.14 The implicit plot of the Egs. (3.46) and (3.47) forw = 1.4, w = 3 and w; = 1,
f] — 0.1, wy = A/ 17, Ez = 0.1
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Fig. 3.15 The steady response of the system forw = 1,w = 3 and w; = 1.4, § = 0.1,
W =/2,5=0.1

1.0
17 0.9 %
®=08—_ "z
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0.2
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P

Fig. 3.16 One set of solution of Egs. (3.46) and (3.47) forw =3 w; = 1,& = 0.1, 0, = +/17,
& = 0.1 and varying

 is shown in Fig. 3.16. No solution for < 0.8 or @ > 4.8 could be found. At
w = 4.8 the slope of the frequency response curve is close to vertical.

dZ, N 6.21014567 — 7.928497661
do — 0.1
arctan (—17.184) >~ —1.5127rad ~ —86.673 deg (3.69)

= —17.184  (3.68)

¢

3.4.3 Asymmetric Systems

The symmetric piecewise linear vibration isolator is a limited portion of the
piecewise linear isolators. The system may easily become asymmetric in practice.
Any change of mass will make the positive and negative gap sizes unequal. The
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damping

Fig. 3.17 The mathematical model of an asymmetric piecewise linear vibration isolator

spring may behave different in compression and extension. Similarly, real dampers
resist differently in bound and rebound.

Figure 3.17 illustrates the mathematical model of an asymmetric piecewise linear
vibration isolator. Determination of the frequency and steady state time responses
of the system is more complicated, as the number of boundary conditions and
transcendental equations increases.

The equations governing the motion of the system could be written as

mi + gi1(x, %) = fi(y.y) (3.70)

where g1(x,x) and fi(y,y) are piecewise linear functions presenting nonlinear
characteristics of the system and nonlinear excitation, respectively:

(c+cep)x+k+k)x—k,Ay, x—y>A,
gi(x,%) = Jex + kx A, <|x—yl<A, (BT1)
(c+e)x+k+k)x+k,Ay x—y<—=A,

(c+cep)y+(k+ky)y x—y>A4A),
fiy, ) = ey +ky A, <lx—y| <A, (3.72)
(c+c)y+(k+ky)y x—y<-=4A,
In an extreme case of the asymmetric system, the secondary suspension might

be engaged only in one direction. Figure 3.18 illustrates the mathematical model of
such system.
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Fig. 3.18 The mathematical model of a one-sided piecewise linear vibration isolator

3.5 Conclusion

In this chapter we have shown that obtaining exact frequency response of piecewise
linear vibration isolator associates with a few numerical problems. It has been
shown in the past that the exact solution of the system depends on a set of
transcendental equations. For the first time, in this study the number of independent
transcendental equations has been reduced to two. This reduction simplifies many
of the numerical problems. However, not all of the problems can be resolved at
the moment. The main remained challenges were discussed in this chapter. Among
them are: difficulties in determining range of nonlinearity, multiple solutions and
transition from one amplitude/frequency curve to the other (from stable solution to
unstable and vice versa). It is still unclear how to designate the nonlinearity range,
to calculate the maximum value of frequency for double engagement. The other
challenges are solved and discussed in detail in this paper.

3.6 Key Symbols

; sin coefficient in z; (¢)
cos coefficient in z; (¢)
Damping coefficient [N's / m]
Damping coefficient of the primary suspension [N's / m]
Damping of the system when secondary engages [N's / m]
Damping sine coefficient in z; ()
;  Damping cosine coefficient in z; (¢)
Stiffness [N / m]
ki  Stiffness of the primary suspension [N / m]
k,  Stiffness of the system when secondary engages [N / m]

ng

¥oas st
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m  Mass [kg]
Q; Short notation of mathematical expression
Time [s]
Time when z; = z; = +1 [s]
Relative displacement [m]
Dimensionless base excitation amplitude
Absolute displacement [m]
Base excitation function [m]
Base excitation amplitude [m]
Dimensionless relative displacement
Amplitude of relative displacement
1 Amplitude of relative displacement of primary suspension
> Amplitude of relative displacement of secondary suspension
Gap distance
vy Velocity in #;
v, Velocity in z5(¢) = 0
&  Damping ratio
& Damping ratio of the primary suspension
&  Damping ratio of the system when secondary engages
¢  Phase lag
o  Excitation frequency [1/ s]
w; Natural frequency of the primary suspension
w, Natural frequency of the system when secondary engages
g,  Damped natural frequency

SNNNS << = I s>
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Chapter 4
Active Vibration Control for Nonlinear Axially
Translating Cable Systems of Multi-Dimensions

L. Dai and L. Sun

Keywords Active vibration control ¢ Nonlinear behaviors * Chaos ¢ Axially
translating cable * Dynamic systems of multi-dimensions

4.1 Introduction

Axially translating systems, such as cables, strings, belts, blades, and beams, have
been wildly studied for their important applications in the fields of civil, mechanical,
architecture, and industrial engineering. The research on the dynamical responses
and vibration controls of the systems, usually highly flexible and nonlinear, has
attracted the attentions of the researchers and engineers in the fields and significant
contributions have been made toward theoretical development and engineering
applications. Regardless the research contributions in the fields, systematical and
thorough investigations on the behavior of the axially translating systems and the
control of the nonlinear behavior of the systems are still in demanding. It is the
effective and reliable control of such nonlinear systems that has great significances
in engineering applications.

Among the research works on the axially translating structures, a significant
majority of the research is on axially translating beams, plates, and blades to which
the modeling and analysis approaches of axially translating cables are similar. An
axially traveling plate, with a constant length along the traveling direction, was
studied (Luo and Hamidzadeh 2004) in designing the aerospace and aeronautical
structures. In the study, the analytical solutions of high-speed traveling plates, as
well as the buckling stability, were derived. In analyzing the axially translating
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beams, the shear deformation of the beam plays an important rule (Carrera and
Giunta 2011). An axially moving Timoshenko beam was introduced in (Ghayesh
and Amabili 2013) with the considerations of the shear deformations. In this study,
a 20-dimension nonlinear dynamic system of Timoshenko beams with invariant
length was modeled to study the bifurcations as well as chaos of the system.

The class of the axially moving structures with varying length has also been
investigated wildly for its various applications in the areas of engineering. Coming
from the dynamics of spacecraft antenna, of which the length is varying with time,
the equation of motion of a cantilevered beam was established (Tabarrok et al. 1974).
In the study, a 16-dimension system of the beam has been derived, and a decreasing
frequency has been discovered with respect to the increasing length of the beam.
In (Fung et al. 1998), the four nonlinear axially moving cantilevered beam models,
including Timoshenko, Euler, simple-flexible, and rigid-body beam models were
established in considering a tip mass. In analyzing the hydraulic and motor driven
systems, the authors pointed out that the rigid-body motion and the flexible vibration
of the beam could be nonlinearly coupled and there existed Coriolis forces in the
systems.

When cables and highly flexible structures are considered, the dynamic system
modeling is an important part for studying the systems’ dynamic behavior and
stabilities which are critical to the control of the systems. With the interests in
self-spinning tethered satellites, an Euler—Bernoulli beam was adopted to represent
a tether with varying length (Tang et al. 2011). The deployment process of two-
self-spinning tethered satellite systems was successfully simulated through a newly
proposed hybrid Eulerian and Lagrangian frame work. A beam model together with
a cable model was established by Zhu and Ni (2000) in order to investigate the
dynamics of the flexible robot arms and elevator hoist cables considered in their
study. The energetics and stability of translating media of the systems considered
were investigated by the authors. The rates of energy changes of the established
models were studies in both the extension and retraction processes of the systems
considered. It is interesting to notice that a linear five-dimensional dynamic system
was derived to ensure the reliability of the conducted study, as shown in their
numerical simulation of a specified elevator hoist cable.

In the dynamic analysis of some mechanical axially traveling systems, such as
saw blades and magnetics, the nonlinear vibration of a traveling tensioned beam
was modeled and studied by Wickert (1992). The reported results showed that
the inclusion of the nonlinearity in the proposed system was most important at
near-critical speeds, where the modal stiffness was small and dominated by a
nonlinear extensional stiffness. Based on the results regarding the supercritical
stability characteristics, it was pointed out by the authors that the investigation
needed to be improved in the case of higher-order equilibria of the translating beam.

With the models established for the axially traveling systems, the control of the
dynamic motion of the systems can be analyzed, simulated, and applied. In the
study by Zhu (2002), the equations of motion of translating media were derived
via the Eulerian frame of reference, and then the rate of energy change of translating
media was distinguished with control volume. Therefore, translating media could be
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divided into two classes: the translating media with invariant control volume, and
those with variable control volume. The rate of energy change was emphasized in
characterizing the dynamic stability of translating media and stationary media with
moving boundaries.

The control volume of an axially translating beam, which is located in between
two spatially fixed supports, was discussed in the study of Humer (2013). As
demonstrated in the study, this type of problems, in which kinematic constraints and
loads were inherently non-material, could be found in many industrial processes
such as belt drives for power transmission. In this study, the free vibration of an
extended beam was investigated, and the length of the protruding part showed
significant influence on the behavior of the structure.

An energy-based control scheme was proposed by Yang et al. (2005). In this
study, the applications of an axially translating beam were restricted in high-speed
and precision systems, due to the unwanted vibrations of moving continua. In
the application of the control scheme, as shown in the study, the vibration of the
translating beam could be suppressed.

For theoretically and numerically analyzing the vibrations of the axially trans-
lating systems and simulating the control of the vibrations, almost all the studies
available in the archived literature are based on discretizing the governing equations
of the systems modeled via the Galerkin method. On the basis of the discretized
system, some of the control strategies were developed. A typical such approach
can be seen in Yang et al. (2005), in which large-amplitude of the vibrations of
axially translating beams was considered and an energy-based control strategy was
developed. It should be noticed that, as indicated in the works (Zhu and Ni 2000;
Wickert 1992), a multi-dimensional dynamic system will be favored in order to
derive reliable results.

In engineering applications, corresponding to the nonlinear vibrations discovered
in cables, strings, beams, and plates, several control schemes have been developed
in the last several decades. Utkin (1992) proposed a control scheme in 1992,
named sliding mode control (SMC) strategy, the SMC strategy has been applied
in controlling the vibrations of nonlinear engineering structures, and this control
strategy has gradually shown its applicability and efficiency in the works following
Utkin’s work.

Corresponding to the nonlinear dynamic systems with uncertain external distur-
bance, the fuzzy sliding mode control (FSMC) strategy was developed, in which the
fuzzy logic rule was introduced into the original SMC strategy. The FSMC strategy
showed its effectiveness in controlling nonlinear and chaotic motions discovered
in the nonlinear dynamics systems (Yau and Kuo 2006; Kuo and Shieh 2007; Yau
et al. 2010). In the study by Haghighi and Markazi (2009), for example, both the
geometric nonlinearity and the nonlinear electrostatic force are considered, and a
chaotic motion was found and controlled by applying the FSMC control strategy.
The authors showed the elimination of the chaotic motion and stabilization of the
nonlinear system with the control strategy.

In the studies (Yau and Kuo 2006; Kuo and Shieh 2007; Yau et al. 2010;
Haghighi and Markazi 2009), although the effectiveness of the FSMC strategy
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has been demonstrated in controlling the nonlinear vibrations, it can be found
that the application of FSMC strategy is restricted on one-dimensional nonlin-
ear dynamics systems. Corresponding to the vibrations of the multi-dimensional
dynamic system, there is currently no control strategy available in the literature.
Therefore, for controlling the nonlinear vibrations of multi-dimensional systems, the
FSMC control strategy currently used needs to be modified. The multi-dimensional
systems, developed through the Galerkin method, can be used to provide more
accurate and reliable results through numerical simulations in comparing with that
of single-dimensional system. The higher the order of the multi-dimensional system,
theoretically, the more accurate will be the simulations of the nonlinear axially
translating systems. This has been recognized by the researchers in this field (Zhu
and Ni 2000; Wickert 1992).

With the considerations described above, this chapter intends to introduce a
newly developed approach for quantitatively controlling the vibrations of nonlinear
axially translating cable systems. This includes a development of an active control
strategy and the application of the control strategy in controlling the nonlinear
cable systems. For developing such a control strategy, a cable system model
consisting of the equations of motion is to be established based on von Karman-
type equations. In developing for the solutions of the cable system and for the sake
of applying the strategy in the nonlinear vibration control, the governing equations
in the forms of partial differential equations will be non-dimensionalized and then
transformed into three ordinary differential equations via a third-order Galerkin
method. Corresponding to the derived multi-dimensional dynamic system, an active
control strategy is developed based on the FSMC strategy. The applicability of the
control strategy developed will be demonstrated in some numerical simulations
based on the model established. A few cases of chaotic vibrations of the cable
system are considered for applying the control strategy. The suppression and
stabilization of the chaotic vibrations are to be demonstrated graphically to show the
application and efficiency of the active control strategy in controlling the nonlinear
axially translating cable systems.

4.2 Equations of Motion

The axially translating cable considered in this research is sketched in Fig. 4.1. The
equations of motion of the cable are to be derived based on Hamilton’s principle
and von Karman-type equations. As can be seen from Fig. 4.1, the translating cable
with pinned—pinned boundaries is allowed to move axially at a constant rate vy, and
the length of the cable is given as [. The displacement of any point of the cable along
the x- and z- axes is designated as u and w.

Starting from the origin at the left support of the cable, a position vector, r, of
any point x(¢) of the translating beam without deformation is given as
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Fig. 4.1 The model of the z A
axially translating cable [Ty Vo — Ty N
J o I" 2
EYY [Ty
2 l, s
r = x(¢)i + Ok, 4.1)

where i and k are the unit vectors of the fixed Cartesian coordinate shown in the
figure.
Thus, the displacement field of the axially translating cable can be derived as

R = (x(£) + uo (x(£), )i + wo (x(2), ) k, 4.2)

where u(x(7), t) and wo(x(7), ¢) are the displacement components along the x- and z-
directions respectively, of a point of the cable.
Taking full differentiation of R with respect to time #, one may obtain

AR (dx(t)  dug(x(t).0)\, dwo(x(t).1)
E_( a T4 )l+ a e

(4.3)

where the derivative of x(¢) with respect to time is equal to the translating rate of the
cable, and the full derivative of wy is

dwg (x(t),1) _ awg (x(1),1) n owg (x(t),1)

dt ot T (44-2)
d?wo (x(1).1)  *wo (x(1).1) dwo (x(2).1) | ,8wo (x(2).1)
az - e T Wy 4D

Hence, the kinetic energy of the translating cable over a volume V of the cable is

expressible as
r_ /’ I (,dRdRY “5)
=), 2\Parar )0 ’

where p denotes the mass per unit length.

The von Karman-type equations of strains of large deflection associated with the
displacement field, normal to the cross section of the cable along the x direction, in
Eq. (4.2) can thus be given by

2
. duo (x (1), 1) N l(awO (x(z),t)) ‘ (4.6)

ax (1) 2 ax (1)
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Therefore, the total strain energy of the cable can be given by

I
1
U= Q11/ 3 (e11611) dx, 4.7
0

where Q) represents the elastic coefficient in the same direction with ;.
The virtual work done by the force is 0,

W =0, (4.8)

In the following analysis, the Hamilton’s principle will be employed to obtain the
nonlinear equations of motion for the axially translating cable. The mathematical
statement of the Hamilton’s principle is given by

5]
/ (6L +8W) dt =0, 4.9)
1

where the total Lagrangian function L is given by
L=T-E. (4.10)

For the sake of clarity, hereafter, use x, ug, wo to replace x(¢), uo(x(),t), and
wo(x(?), 1) respectively. Substitute Egs. (4.5)—(4.8) into Eq. (4.10), and the first term
in Eq. (4.9) can be developed as below,

2éSLdt: 25(T—U)a’t
o=
= /I:ZS /01 [p (62—?2—1:) - 0n (811811)]} dt
_[" : o dR dOR dt — [Q11(8115811)]df
/ / dr dr
—0- //,1 ( )SRdth flzvalle:llSsndth
/ /;)S(X—I—uo)(d2 )d xdt
//pSwo = 0 axdt
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//Q”é(auo —(M))e”dxdt

=L+ L,+ Ls

where

/ /pS(x+uo)(d2 dtz)d xdt,
/ / p8w0 dxdt
/ / Q115<8M0 —(aWO) )eudxdt.

Since the cable is moving axially at a constant velocity (
Eq. (4.11-a), it can be derived

[ [ 08 (x + up) (d > )dxdt
t ! d2M0
=— 04§ 0+ — )dxd
/tI/op””‘))(*er)“
/ / 8u0dxdt

From Eq. (4.11-c), it can be derived in as follows
ool dup 1w\’
— S| —+ = — dxdt
/l] [0 On (8x+2(8x) enax
ol Buy 1 (dw’
— — + =5 — dxdt
/; /(; Q“(&x +2 (Bx) fnax

d?vg
dt?

ool dsu ool dwg ISw
= —/ / Q118118—0dXdl —/ / 0161~ ——
1 Jo X 1 Jo ox 0x

123 1
= —/ |:(Q118115M0)|£) —/ Q113M0d811i|dl
151 0
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(4.11-a)

(4.11-b)

(4.11-c)

= 0), from

(4.12-a)

dxdt
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ol 9 9
—[ (QIISII%(SWO) / Qr1e118wod W0j|d
1
t /
:—/ 0—/ Q118u0d811)d[
11 0
153 !
—/ 0—/ Q118W0d (811%))61!
1 0 3x
15 ! 15 2
=—/ / Q”@(guodx)dt / ( / Q]]S]]a (SWOdX)d
1 1]
5]
_/ /Q“ag“ 8w0 de)dt
3}
15}
:_/ / Qg (8u0 (aw") )Suodx)dt
f ax
5] 2
—/ / On (8140 (88W0) ) 0w 8wodx>dt
31 X 8
5]
—/ /Qll (auo Bwo )Méwodx)dt
31
f 82u0 8W08W0
= — Supd x |d
/ ([ 0u (28 + 51 ) |
2 8M0 82W0 1 8w0 8W()
+/,1 (/ Q“(ax e +§(ax) Tz | Swodx )dt
2 ! 321/10 aWO 82w0 BW() 2
— 4.12-
+/” (f Qu(x2 ax+ax2(ax) Swodx |t (4.12:b)

From Egs. (4.12-a), (4.12-b), and (4.11-b), the nonlinear governing equation of
an axially translating cable can be derived in the following,

d2u0 82u0 8w0 82W0
— - = 4.13-
P +Q11(82+ax 8x2) (4.13-a)
d 2w0 0%up BWO dug 82w0 8w0 292w
—P + 0+ 2 ox Q11 a2 —Q11 2 =0, (4.13-b)
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Associated with the nonlinear dynamic equations and the boundary conditions
(Nayfeh and Mook 1979; Abou-Rayan et al. 1993), the strain can be obtained as

8u0_ dwg dIwo
o= (5) o) () e @

Then, substitute Eq. (4.14) into Eq. (4.13-b), and the nonlinear differential
governing equation of the axially translating cable in z direction is derived as

d2 1 2 2
et / — 0y (aw") dx 2" o, (4.15)
0

dt? 0x2

4.3 Non-dimensionalization

To validate the governing equation Eq. (4.15) and facilitate the numerical sim-
ulations in the consequent sections, the following non-dimensional variables are

introduced,
7= ‘/@zzn,xzf, (4.16)
o /
and
dw 1d d*w 1 d?
W= Mo _ AW 2 W _ - £ Wo 4.17)

[ dt 7l dt g7 2] dr?

With the non-dimensional variables shown in Eqgs. (4.16) and (4.17) introduced
into Eq. (4.14), the non-dimensional governing equation of the axially translating
cable can be expressed as

d*w Y rawo\? 9%
dr n/o ( X ) x> (19
where
11 1
= ETanlrz'
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4.4 Series Solutions

Based on the Galerkin method of discretization, the transverse displacement wy is
expanded in a series form, in terms of a set of comparison functions as,

oo
Wo = Y @n (¥) Wy (7). (4.18)
n=1
Corresponding to the pinned—pinned boundaries of the axially translating string,
@, (X) can be given as follows,
¢y (X) = sin (nXx). (4.19)

Substitute the series solution of Eq. (4.19) into Eq. (4.17), and to assist
. .. N _
presentation, replace @,, w,, Wy, Wy, v, and ¢ for @, (X), w, (t), d;t" , 4 d;;" , Vo, and ¢

respectively. With the application of the Galerkin method at n = 3, and

Wi = Wi, Wa=Wyi, W3=Wwsy,
Wil = WiaWa 1 = Wao, W31 = W3).

The discretized governing equations of the axially translating cable with the
pinned—pinned boundaries can be obtained as the following.

Wi = w2
wia =201+ né1)
Wo 1 = Wap
G (420)
W =2 (x2 + 1)
W31 = W3o
Wiz = 2(x3 + n&3)

where,
8 1
X1 = ngz.l + 5V2ﬂ2W1.1,
24 2 2
X2 = VWi — oW+ 2V wa g,
5 3
24 n 9, ,
= ——wvw —VITTws g,
X3 5 3.1 5 3,1

1 9
4.3 4 2 4 2
G = (—Z’I” Wi1— Z’I” WiiW3 | — N Wiaws )
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4 2 4 2 4.3
b= (_77” W iWi 1 — I Wo W31 — dnr W2Y1) )

9 81
{3 = (—ZUTT4W3.1W%‘1 - T’Iﬂ4W§,1 - 977774W3,1W§,1) ,

4.5 Control Strategy Development

With the developed governing equations, boundary conditions, and the solutions
of the governing equations, an active vibration control strategy can be developed.
Based on the previous works (Utkin 1992; Haghighi and Markazi 2009; Kuo and
Shieh 2007), the proposed active control strategy is developed for the vibration
control of a multi-dimensional nonlinear dynamic system shown in Eq. (4.20).

For a nonlinear governing equation in the following general form

W= ® (w,,1). @.21)

denote U as the control input and AP (w,w) the unknown external disturbance
applying on the beam, the governing equation Eq. (4.21) for the beam with the
control input and the external disturbance can be given by

W=®w.w.1)+ U+ AP (w ). (4.22)

With application of the control, it is expected that the vibration of the beam can
be controlled

If the nth Galerkin method is applied in the discretization of the governing
equation given in Eq. (4.22), a series of second order ordinary differential equations
considering the control input U and the unknown external disturbance will be
derived as follows,

Wi = Wi
Wwia = ¢ (W, 1) +up + Afi (W, 1)
Wz,l = w22

Wao = ¢ (W, 1) +ur + Afo (W, 1)

. , (4.23)
Wil = Wi2

Wiz =¢; (W, 1) +u; + Afi (W,1)

Wnil1 = Wnp2

wn,Z = ¢, (WJ) +u, + Afi (th)
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where ¢;(W, 1), u;, and Af;(W,t) represent the expressions of ® (w,w,t), U, and
AP (w,w) after the application of the Galerkin discretization. With the Galerkin
discretization, the column vector W in Eq. (4.23) is given below,

T
W = [wi1 wiawai Wap s++ Wil Win ==r Wp1 Wnol .

Considering the response of a point of the axially translating cable along the x
direction, based on Eq. (4.23) and the expression in Eq. (4.18), the non-dimensional
response of the selected point w, can be given as

wy =Y ou (xp) wal0), (4.24)
n=1

where x, denotes the location of the selected point.
For a desired vibration or reference vibration expressed as

w, = A, sin (w,1), (4.25)

where, A, and w, are the amplitude and frequency of the reference signal.
The control input U can be given as,

U=U,—-U, (4.26)

where U,, and U, are expressed as below,
Uy = — ((Wp = V) +k (wp = W)), U, = kyUy,. 4.27)
In Eq. (4.27), k designates the control parameters governing the sliding surface,

kg is given as |AF (w,w)| < ks € R™, and the value of Uy depends on the fuzzy
rule shown in the table below.

The fuzzy rule of Uy
Us Ue,
1 23 (13 o [-13 -25 -1
Do Ty =1 =1 =1 =1 [=23 -1 |0
23 -1 -1 -1 =23 |-1 [0 |13
3 -1 -1 =23 -1 0 |13 |23
0 -1 =23 -1 o 13 |23 |1
—13 =23 =1 0 13 |23 1 |1
-3 -1 0o 13 23 [t 1 |1
-1 0o w3 23 1 [t 1 1



4 Active Vibration Control for Nonlinear Axially Translating Cable Systems. . . 93

With the control strategy demonstrated in Eqgs. (4.22)—(4.27), the control of an
axially translating cable governed with the general governing equation Eq. (4.21)
can be realized.

Take the axially translating beam governed by Eq. (4.17) as an example. Use the
control strategy developed and apply the control input as shown in Eq. (4.27), the
governing equation with the control input for the cable can be given by the following
expression.

L/ awn\ 2 92w
o = n[ ) xR 4 U + AF (w,), (4.28)
0 8x ox
With the application of the third-order Galerkin discretization, Eq. (4.29) may
have the following form:

Wl,l = WwWi2
Wio =201 +1n8) +u +AfiH (W, 1)
Wa1 = Wap
. ’ ’ , 4.29)
Wao =2(x2+ 1) +us + Afa (W, 1)
W31 = W32
W3z = 2(x3 +n&3) +us + Afs (W, 1)

where uy, up, us, ua, us, and ug are derived as follows through the third-order
Galerkin method,

2 2
u = —U,Mz = O'U,I/t3 = —U.

b4 K¥4
It should be noticed that due to the pinned—pinned boundaries of the axially
translating cable, the application of the Galerkin method based on Eq. (4.19) makes
the coefficients of u, equal to zero. In the next section, it will be demonstrated in
the numerical simulation that the actual response of the axially translating cable at
a selected point can be well synchronized with a desired reference signal in the case

that the coefficients of u, equals to zero.

4.6 Vibration Control

To demonstrate the applicability and effectiveness of the control strategy developed
in the previous section, numerical simulations are conducted for controlling an
axially translating cable governed with Eq. (4.17). The nonlinear responses of the
cable are emphasized in this research. With the numerical simulations performed,
a chaotic motion is found when the cable is translating at certain rates. The
proposed active control strategy is found not only effectively reduces the amplitude
of the chaotic motion, but also stabilizes the motion so that the response of
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the translating cable is controlled to a desired periodic motion. To facilitate the
numerical simulation, the fourth-order P-T method by Dai (2008) is implemented.

The parameters used for the simulations for the responses of the axially
translating cable are given as follows,

011 =29x10*°N, 1 =0.5m, p=1.00kg/m,
and the constant axially translating rate is given as below,
vo = 2m/s.

The non-dimensionalized initial conditions, corresponding to the displacements
described by Eqgs. (4.29) after the implementation of the third-order Galerkin
method, are taken as

WL](O) = 0.001, W1’2(0) = 0.005,
Wzyl(O) = 0.000], WZ’Q(O) = 0.0025,
w3.1(0) = 0.00005, w3, (0) = 0.00125.

If the response of a point at 0.3125m along the x-axis of the cable is selected,
based on Eqgs. (4.18) and (4.29) the non-dimensional response of the selected point
w), can be derived as,

6
Wy =Y @uwn1 = 0.92388w;; — 0.7071 1wy, + 0.38268w3 ;. (4.30)

n=1

4.6.1 Chaotic Motion

The response of the cable translating at the speed vy = 2m/s is shown in Fig. 4.2,
corresponding to the non-dimensional time from =0 to = 15,000. During this
period of time, one may notice: in Fig. 4.2, it is a chaotic motion discovered; the
maximum amplitude of the vibration of the cable can exceed 0.15. In considering
that the displacement shown in the figure is non-dimensional, the amplitude is very
large. Thus, reduction and stabilization of the chaotic motion may improve the
operation of the beam.

Besides, from Fig. 4.3a—c, it can be learned that although the contribution of
the first vibration mode in Fig. 4.3a is larger than those of the other two vibration
modes as shown in Fig. 4.3b, c, the contributions of the other two vibration modes
are obviously not negligible. Actually it can be learned that the other two vibration
modes also significantly contributes to the actual response of the selected point.
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Fig. 4.2 The wave diagram of w), without the application of the control strategy

Thus, the development of a multi-dimensional dynamic system is necessary for the
accurate prediction of the dynamics of the extending nonlinear elastic cable.

4.6.2 Amplitude Synchronization

The control strategy will be applied to show its effectiveness and efficiency in the
amplitude synchronization. Three different desired amplitudes will be specified as
the amplitude of the reference signal.

A, =0.045

In the application of the control strategy, the desired amplitude of the reference is
set as

w, = 0.045 sin(0.0369¢).

and other the control parameters and the unknown external disturbance take the
following values:

k =3.5ks =0.01,AF (w,w) = 0.001 sin (wp) .

As shown in Fig. 4.4, the proposed control strategy is applied at t = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vy = 2m/s are shown in Figs. 4.4 and 4.5.

In Fig. 4.4 the responses of the selected point, w,, is shown, for the period of
time from ¢ = 7,200 to r = 15,000. It can be seen from Fig. 4.4 that a short period of
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Fig. 4.3 (a) The contribution of the first vibration mode to w, without the application of the
control strategy. (b) The contribution of the second vibration mode to w;, without the application
of the control strategy. (¢) The wave diagram of w3 without the application of the control strategy
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Fig. 4.4 The wave diagram of w, with the application of the control strategy

time is needed for stabilizing the beam after the application of the control strategy.
After the short period, the chaotic motion will then become a periodic one, of which
the amplitude is 0.045.

From Fig. 4.5a—c, the displacements are shown in terms of wy, wy, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.

Figure 4.6 shows the comparison between the actual response of the beam w),
and the reference signal w, applied. One may notice that the reference signal w, is
well periodic with respect to time z. One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable
with the application of the control strategy. As shown in the figure, the maximum
amplitude of the cable is very close to that of the reference signal.

Figure 4.7 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.

A, =0.015

In the application of the control strategy, the desired amplitude of the reference is
set as

w, = 0.015sin(0.0369¢).

and other the control parameters and the unknown external disturbance take the
following values:

K =2,kgpy =0.01, AF (w, ) = 0.001sin (w,).
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0 5000 t 10000 15000

Fig. 4.5 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w, with the application
of the control strategy. (¢) The contribution of the third vibration mode to w, with the application
of the control strategy

As shown in Fig. 4.8, the proposed control strategy is applied at = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vy = 2m/s are shown in Figs. 4.8 and 4.9.



4 Active Vibration Control for Nonlinear Axially Translating Cable Systems. . . 99

0.15, . : = : = .
0.1
_50.05 v_n,ml,\mpﬁpfpfMnluﬁmﬁ\npr M‘ A“M H,-ppu
£ 0 |'||| | 1|'f_.' | i it e i
Pl L VIV \
5-0,1
015
. 0.8 08 1 1.1 12 13 14 15
t x 10

Fig. 4.6 The wave diagram of w), (the blue continuous line) and the reference signal w, (the green
dash line)
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Fig. 4.7 The control input
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Fig. 4.8 The wave diagram of w), with the application of the control strategy
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Fig. 4.9 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w, with the application
of the control strategy. (¢) The contribution of the third vibration mode to w), with the application
of the control strategy

In Fig. 4.8 the responses of the selected point, w,, is shown, for the period of
time from 7 =7,200 to t = 15,000. It can be seen from Fig. 4.8, a short period of
time is needed for stabilizing the beam after the application of the control strategy.
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Fig. 4.10 The wave diagram of w, (the blue continuous line) and the reference signal w, (the
green dash line)

After the short period, the chaotic motion will then become a periodic one, of which
the amplitude is 0.015.

From Fig. 4.9a—c, the displacements are shown in terms of wy, wy, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.

Figure 4.10 shows the comparison between the actual response of the beam w),
and the reference signal w, applied. One may notice that the reference signal w, is
well periodic with respect to time ¢. One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable
with the application of the control strategy. As shown in the figure, the maximum
amplitude of the cable is very close to that of the reference signal.

Figure 4.11 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.

A, =0.005

In the application of the control strategy, the desired amplitude of the reference is
set as

w, = 0.005 sin(0.0369¢).

and other the control parameters and the unknown external disturbance take the
following values:
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Fig. 4.11 The control input
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Fig. 4.12 The wave diagram of w, with the application of the control strategy

Kk =2,ks =0.01,AF (w, W) = 0.001 sin (w,).

As shown in Fig. 4.12, the proposed control strategy is applied at = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vy = 2m/s are shown in Figs. 4.12 and 4.13.

In Fig. 4.12 the responses of the selected point, w),, is shown, for the period of
time from ¢t = 7,200 to ¢ = 15,000. It can be seen from Fig. 4.12, a short period of
time is needed for stabilizing the beam after the application of the control strategy.
After the short period, the chaotic motion will then become a periodic one, of which
the amplitude is 0.005.

From Fig. 4.13a—c, the displacements are shown in terms of wy, wp, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.

Figure 4.14 shows the comparison between the actual response of the beam w),
and the reference signal w, applied. One may notice that the reference signal w, is
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Fig. 4.13 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w, with the application
of the control strategy. (¢) The contribution of the third vibration mode to w, with the application
of the control strategy
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Fig. 4.14 The wave diagram of w), (the blue continuous line) and the reference signal w, (the
green dash line)
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Fig. 4.15 The control input

well periodic with respect to time ¢. One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable
with the application of the control strategy. As shown in the figure, the maximum
amplitude of the cable is very close to that of the reference signal.

Figure 4.15 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.
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Fig. 4.16 The wave diagram of w, with the application of the control strategy

4.6.3 Frequency Synchronization

The control strategy will be applied to show its effectiveness and efficiency in the
frequency synchronization. Three different desired frequencies will be specified as
the amplitude of the reference signal.

®,=0.0277

In the application of the control strategy, the desired frequency of the reference is
set as

w, = 0.03sin(0.02771).

and other the control parameters and the unknown external disturbance take the
following values:

K =3,kz =001, AF (w,w) = 0.001 sin (w,,) .

As shown in Fig. 4.16, the proposed control strategy is applied at = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vy = 2m/s are shown in Figs. 4.16 and 4.17.

In Fig. 4.16 the responses of the selected point, w),, is shown, for the period of
time from ¢t = 7,200 to ¢t = 15,000. It can be seen from Fig. 4.16, a short period of
time is needed for stabilizing the beam after the application of the control strategy.
After the short period, the chaotic motion will then become a periodic one, of which
the frequency is 0.0277.

From Fig. 4.17a—c, the displacements are shown in terms of w;, wp, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.



106 L. Dai and L. Sun

0.2, . :

-0.08, 5000 10000 15000

0.04

0.02

-0.02

-0.04

e 5000 10000 15000
t
Fig. 4.17 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w, with the application
of the control strategy. (c) The contribution of the third vibration mode to w, with the application
of the control strategy
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Fig. 4.18 The wave diagram of w,, (the blue continuous line) and the reference signal w, (the
green dash line)
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Fig. 4.19 The control input

Figure 4.18 shows the comparison between the actual response of the beam w,
and the reference signal w, applied. One may notice that the reference signal w, is
well periodic with respect to time . One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable
with the application of the control strategy. As shown in the figure, the frequency of
the cable is very close to that of the reference signal.

Figure 4.19 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.
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Fig. 4.20 The wave diagram of w), with the application of the control strategy

®,=0.0092

In the application of the control strategy, the desired frequency of the reference is
set as

w, = 0.035in(0.0092¢).

and other the control parameters and the unknown external disturbance take the
following values:

k =3,ks =0.01, AF (w,w) = 0.001 sin (w,,).

As shown in Fig. 4.20, the proposed control strategy is applied at r = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vo = 2m/s are shown in Figs. 4.20 and 4.21.

In Fig. 4.20 the responses of the selected point, w), is shown, for the period of
time from = 7,200 to = 1,500. It can be seen from Fig. 4.20, a short period of
time is needed for stabilizing the beam after the application of the control strategy.
After the short period, the chaotic motion will then become a periodic one, of which
the frequency is 0.0092.

From Fig. 4.21a—c, the displacements are shown in terms of w;, wy, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.

Figure 4.22 shows the comparison between the actual response of the beam w),
and the reference signal w, applied. One may notice that the reference signal w, is
well periodic with respect to time . One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable
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Fig. 4.21 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w;, with the application
of the control strategy. (c) The contribution of the third vibration mode to w, with the application
of the control strategy
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Fig. 4.22 The wave diagram of w), (the blue continuous line) and the reference signal w, (the
green dash line)
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Fig. 4.23 The control input

with the application of the control strategy. As shown in the figure, the frequency of
the cable is very close to that of the reference signal.

Figure 4.23 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.
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Fig. 4.24 The wave diagram of w), with the application of the control strategy

®,=0.0031

In the application of the control strategy, the desired frequency of the reference is
set as

w, = 0.03 sin(0.00317).

and other the control parameters and the unknown external disturbance take the
following values:

k =3,ks =0.01, AF (w,w) = 0.001 sin (w,,).

As shown in Fig. 4.24, the proposed control strategy is applied at r = 7,200. After
the application of the control strategy, the responses of the cable at the translating
speed vo = 2m/s are shown in Figs. 4.24 and 4.25.

In Fig. 4.24 the responses of the selected point, w,, is shown, for the period of
time from ¢ = 7,200 to t = 15,000. It can be seen from Fig. 4.24, a short period of
time is needed for stabilizing the beam after the application of the control strategy.
After the short period, the chaotic motion will then become a periodic one, of which
the frequency is 0.0031.

From Fig. 4.25a—c, the displacements are shown in terms of w;, wy, and ws.
Based on these figures, through the application of the control strategy, each of the
displacements of the axially translating cable is gradually stabilized from a chaotic
motion into a periodic one.

Figure 4.26 shows the comparison between the actual response of the beam w),
and the reference signal w, applied. One may notice that the reference signal w, is
well periodic with respect to time . One may also see from the figure, the maximum
amplitude of the cable’s response slightly varies after the stabilization of the cable



112 L. Dai and L. Sun

0.2,

0% 5000 10000 15000

008 5000 10000 1500C
t
Fig. 4.25 (a) The contribution of the first vibration mode to w, with the application of the
control strategy. (b) The contribution of the second vibration mode to w;, with the application
of the control strategy. (c) The contribution of the third vibration mode to w, with the application
of the control strategy
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Fig. 4.26 The wave diagram of w), (the blue continuous line) and the reference signal w, (the
green dash line)

0.4

3
-0.1
-0.2
-0.3

-0.4]

05 0.8 09 1 11 12 13 14 15

Fig. 4.27 The control input

with the application of the control strategy. As shown in the figure, the frequency of
the cable is very close to that of the reference signal.

Figure 4.27 shows the control input U. Initially, the control input reaches a
peak very quickly after the application of the control strategy. Once the system
is stabilized, the control input displays a periodic wave diagram as shown in the
figure and the maximum value of the control input is significantly decreased to a
very small value.
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Key Symbols

Vo The constant rate that the cable is axially moving at

l The length of the cable

uo(x(1),1) The displacement along the horizontal axis

wo(x(2), 1) The displacement along the vertical axis

t The dimensional time

x(7) The position of any point of the translating cable

i The unit vector of the fixed Cartesian coordinate along the horizontal
axis

k The unit vector of the fixed Cartesian coordinate along the vertical
axis

r The position vector of any point of the translating cable without
deformation

R The displacement field of the axially translating cable

Vv The volume of the cable

T The kinetic energy of the cable

0 The mass of the cable per unit length

&1l The strain along the horizontal axis

U The total strain energy of the cable

On The elastic coefficient along the direction of &1,

w The virtual work done by force

L The Lagrangian function

7 The non-dimensional time

T The non-dimensional coefficients corresponding to time

X The non-dimensional position of any point of the translating cable

Vo The non-dimensional rate the cable is moving at

Wo The non-dimensional displacement along the vertical axis

n The non-dimensional coefficients corresponding to the geometric
nonlinearity

on (X) The comparison function

Wi (7) The nth vibration mode

o The general form of a nonlinear governing equation

U The total control input

AP (w,w)  The unknown external disturbance

¢:«(W,1) The corresponding expression of ® (w, w, ¢) via the Galerkin method

u; The corresponding expression of U via the Galerkin method

Afi(W, 1) The corresponding expression of AP (w,w) via the Galerkin method

Wp The non-dimensional response of a selected point of the cable

Xp The non-dimensional location of a selected point of the cable

Wy The reference signal

Wy The amplitude of the reference signal

oy The frequency of the reference signal

Uy

A part of the control input
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U, A part of the control input

Uy, The control variable via fuzzy rule

K The control parameters governing the sliding surface
kg The control parameter corresponding to AP (w, w)
R* The positive real number
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Chapter 5
Nonlinear Initial Value Ordinary Differential
Equations

Mohammad M. Aghdam, Ali Fallah, and Poorya Haghi

Keywords Multi-step method ¢ Nonlinear differential equation e Initial value
problem ¢ Error analysis

5.1 Introduction

Ordinary differential equations (ODEs) present the mathematical models of many
physical problems in different fields of science, engineering, and economy. ODEs
are categorized into initial value problems (IVP) and boundary value problem
(BVP). BVPs usually explain the equilibrium state of the systems such as steady
state heat or mass transfer while IVPs present the dynamic behavior of the system
such as motion of system particles subjected to external load or transient heat/mass
transfer. In this chapter, IVPs are considered. An initial value ODE in the general
case is in the form of:

d
=Sy, xelabl. y@ =y 5.1)
X

where f(x, y) can be linear or nonlinear function of x and y, and yy is initial condition.
It is worth mentioning that, higher order ODEs and systems of ODEs can also be
shown in the form of Eq. (5.1). Thus, the presented method is applicable to systems
of ODEs of any order.
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Except in some special cases such as constant coefficient linear ODEs, analytical
solutions for ODEs are generally not available. Therefore, various numerical
methods are proposed for the solution of initial value ODEs such as methods based
on Taylor series, one-step methods such as Euler method, multi-stage single-step
methods such as Runge—Kutta methods and linear multi-step methods. Single-step
methods only require information about the solution at one previous point such as
X =X, to compute the solution at an advanced point such as x = x,,. For instance,
Euler method is a single-step formula for the solution of IVPs that predicts the
solution of the problem at x = x,,, only from slope of the y(x) at x =x, — (Siili and
Mayers 2003):

vy = % =f @t u) = forr > Y=Y +hfir (52)

where h is the step size,i.e. h=x, —x,—1and y,— 1 = y(xXn— 1), fo=1 =f(Xn=1,Yn—1)-
Equation (5.2) is called explicit formula because the right hand side of (5.2) can be
explicitly computed from known values of y,—;. In spite of the simplicity of the
Euler method, (5.2), it is not generally employed in applied cases. There are two
main reasons why Euler’s method is not generally used in scientific computing.
Firstly, the truncation error per step associated with this method is far larger
than those associated with other, more advanced methods for a given value of A.
Secondly, Euler’s method is too prone to numerical instabilities. The main reason
that Euler’s method has such large truncation errors per step is that the method only
evaluates derivatives at the beginning of the interval: i.e., at x,,—; to compute the
solution from x, _ to x,,. Therefore, the method is very asymmetric with respect to
the beginning and the end of the interval.

Multi-stage methods such as Runge—Kutta were developed to overcome this
shortcoming. In multi-stage methods, more symmetric integration is employed by
evaluating the derivatives in some intermediate points in the considered interval.
For instance, in the second-order Runge—Kutta method, derivatives are evaluated
by using an Euler-like trial stage to the midpoint of the interval and then using the
values of both x and y at the midpoint to make the actual step across the interval, see
Fig. 5.1. The second-order Runge—Kutta formula is (Siili and Mayers 2003):

k) = hfn—l
ko = hf (%01 + s + ) (53)
Yn = Yn—1 + k2

Therefore, the Euler’s method is equivalent to a first-order Runge—Kutta method.
Obviously, there is no need to stop at a second-order method and it is possible
to achieve higher order of accuracy using more trial stages per interval. The most
common Runge—Kutta method is the fourth-order Runge—Kutta (RK4). It is worth
mentioning that multi-stage methods such as Runge—Kutta methods are still single-
step methods because only the information of the previous point is used to obtain the
current point value. In spite of higher order of accuracy of the multi-stage methods
with respect to simple single-step methods, they need many derivative calculations
in each step.
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Fig. 5.2 Domain of k-step method

Multi-step methods use previous point information to increase the accuracy of
the results instead of using trial stages in each interval, see Fig. 5.2.

Consider the general linear or nonlinear first-order ordinary differential equation
(5.1). The integral form of (5.1) can be expressed as:

ﬂﬂ=m+/fwywx (5.4)

In multi-step techniques, numerical solution is obtained by using a discretized
version of (5.4) as:

Xn+41

MH=M+/owW (5.5)
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Various multi-step methods use different ways to approximate the integral term
in (5.5). For instance, Adams—Moulton method, one of the most common multi-
step methods, employs an approximation of f(x,y) in (5.5) by using the Newton
backward difference method to obtain a multi-step formulation.

Although the existing multi-step methods such as Adams—Moulton method are
accurate and useful, they also have their own limitations in terms of accuracy
and stability at large step sizes and weak performance in the case of stiff ODE:s.
Therefore, providing more accurate and/or stable predictions while increasing step
size to reduce computational cost would be interesting for relevant researchers.
In order to achieve this goal, in the present work, the well-known Bernstein
polynomials as the basis for Bézier curves are employed. Bernstein polynomials
(special case of B-spline) are piecewise polynomials that represent a great variety of
functions. They can be differentiated and integrated without difficulty and construct
spline curves to approximate functions with desired accuracy. There has been
widespread interest in the use of these polynomials to obtain solutions for various
types of differential equations (Caglar and Caglar 2006; Jator and Sinkala 2007;
Khalifa et al. 2008; Caglar et al. 2008; Zerarka and Nine 2008; Bhattia and Brackenb
2007). In these studies, the solution is expanded in terms of a set of continuous
Bernstein or B-spline polynomials over a closed interval and then by employing
the weighted residual methods such as Galerkin or collocation to determine the
expansion coefficients to construct a solution. However, in the current work, the
Bernstein polynomials and Bézier curve are used to evaluate the integral in (5.5) by
providing a general k-step formula.

Results of the presented formula show improved stability in comparison with
Adams—Moulton method for the same step size. This leads to significant reduction
of computational time. In addition, stability and convergence of the presented
formula are discussed through common stability and error analysis of multi-step
methods.

5.2 Bézier Curves

Before computer graphics ever existed, engineers designed aircraft wings and
automobile bodies using splines. A spline is a long flexible piece of wood or
plastic with a rectangular cross section held in place at various positions by heavy
lead weights with a protrusion called duck, where the duck holds the spline in a
fixed position against the drawing board (Beach 1991). The spline then conforms
to a natural shape between the ducks. By moving the ducks around, the designer
can change the shape of the spline. The drawbacks are obvious. Recording duck
positions and maintaining the drafting equipment necessary for many complex parts
will take up square footage in a storage facility, costs that would be absorbed by a
consumer. A not so obvious drawback is that when analyzed mathematically, there
is no closed form solution (Buss 2003).
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In order to overcome these shortages, in the 1960s a mathematician and engineer
named Pierre Bézier introduced a family of smooth curves based on the Bernstein
basis polynomials. Bézier used the curves mainly to design various parts of
automobile bodies such as exterior car panels for his work at Renault in the 1960s.

The advent of Bézier curves revolutionized the design process and helped the
designers draw smooth looking curves on a computer screen, and use less physical
storage space for design materials. Bézier’s contribution to computer graphics has
opened the road for computer-aided design (CAD) software like Maya, Blender, 3D
Max, and Corel (Gerald et al. 1999; Lorentz et al. 1986; Farin 2002).

The nth-degree Bézier curve for (n+ 1) given points Py, Py, ..., P, can be
written as:
n
Bu) =Y Bi,wP;, uecl0.1] (5.6)
i =0

where the points P; are called control points for the Bézier curves and B;,, are known
as Bernstein basis polynomials of degree n defined as:

Bi,(u) = (’Il) A—w)""W, i=01,....n (5.7)

It is worth mentioning here that quadratic and cubic Bézier curves are the most com-
mon types of Bézier curves since higher degree curves are more computationally
expensive to evaluate. Figure 5.3 and Table 5.1 show quadratic and cubic Bernstein
basis polynomials.

The location of control points in the 2D Cartesian coordinate system is:

P = { i } (58)

Using (5.8), one can rewrite (5.6) in the parametric form of:

x() = Bia(u)x; (5.9.1)
i=0

y) =Y By (5.9.2)
i=0

Bézier curves are widely used in computer graphics and computer-aided design,
mainly to provide smooth curves. It should be noted that similar to the least-square
curves, Bézier curves are not really interpolating curves, as they do not normally
pass through all of the control points. However, they have the important property
of staying within the polygon determined by the given points as shown in Fig. 5.4.
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Fig. 5.3 Bernstein polynomials (a) quadratic n =2, (b) cubicn=23

Table 5.1 Linear, quadratic, and cubic Bernstein polynomials

Bi,n(u)

Boj(w)=1—u, B (w)=u

Boo(u) = (1 —u)?, Bio(u) =2u(1 —u), Byp(u) = u?

W= 3

Bos(u) = (1 —u)*, Bya(u) =3u(l —uw)?, Br3(u) = 3u*(1 —u), B33(u) = u’
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Fig. 5.4 Comparing Newton interpolation with Bézier curves and Convex hull property

More details of Bézier curves and their properties can be found elsewhere (Gerald
et al. 1999; Lorentz et al. 1986; Farin 2002).

5.3 Technique

In the present study, Bézier curves of any order are used to develop a general k-step
formula that becomes unstable at larger step sizes compared to the existing multi-
step methods. To this end, in the integral of (5.5) is approximated by mth-degree
Bézier curves using control points which are defined as:

Xp— i X, — jh .
P,_i = ’}:{ }, =n—-m...n (5.10)
! %fn—j I (xa—js yu—j) /

Using Eqgs. (9) and (5.10), one can write the new parametric form of mth-degree
Bézier curves as:

X(u) = ) Bio (W) Xn-mti = D) (5.11.1)
i=0
) =) Bim(W) frmti = ¢(u) (5.11.2)

i=0
Finally, after approximation of the integral term in (5.5), one may rewrite (5.5) as:

Xn41 Q_l(xn+1)
Yn+1 = Yn + f(x,y)dx =y, +/ o) (u)du (5.12)

Xn Z71()5;1)

Using general formula (5.12) together with various orders of Bézier curves in (5.6)
leads to different multi-step formulas. For instance, assuming quadratic Bézier
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curve leads to three-step formula. Different degrees of Bézier curves correspond
to different step formulas that are:
Two-step formula:

h
Yn+1 = Yn + 2 Bfn — Ju—1) (5.13)
Three-step formula:
h
Yn+1 = Yn + E (19fn - 8f;1—1 + fn—Z) (5.14)
Four-step formula:
h
Yn+1 = Vn + ﬁ (175fn - 81fn—1 + 15fn—2 - fn—3) (515)

and general m 4 1-step formula:

m m+1
Yn+1 = Vn + hZ (m[ (m) (1 - u)m_iuidu> fn—m—}—i (516)
1 l

i=0

5.4 Consistency, Stability, and Convergence Analyses

The main concepts in the analysis of multi-step methods, and indeed any numerical
method for differential equations, are consistency, stability, and convergence. The
basic theory for analysis of multi-step methods has been developed by Dahlquist
(1963) and is presented in the classical book of Henrici (1962).

It is useful to employ a general framework for the presentation of general m + 1-
step methods as:

Am+1Yn+1 + AmYn + -+ A0Yn—(m+1) = h [bm+1fn+l +- bOfn—(m+l)]
(5.17)

Associated with (5.17) are also two characteristics polynomials of the m + 1-step
formula (5.17) as:

P@) = ap1 "+ an?" + -+ aiz+ao (5.18)

q(@) = by 2"+ bpd" 4+ biz+ by (5.19)
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A multi-step formula is in the implicit form if b, ;70 and is in explicit
configuration if b,, 1 | = 0. Thus, all presented multi-step formulas in (5.13) through
(5.16) are in explicit form.

Definition 1 For a given m + 1-step formula Eq. (5.17) the polynomials

m+1
@ =) af
=0

(5.20)
m+1

q() = ZbiZi
i=0

are called first and second characteristic polynomials, respectively.

A multi-step method is called consistent, if it reproduces the exact solution for
the differential equation y’ = 1, when exact starting approximations are used.

Definition 2 (Siili and Mayers 2003) The multi-step formula (5.17) is consistent
if p(1)=0and p/'(1) = g(1).

Theorem 1 General m + 1-step formula (5.16) is consistent.

Proof From (5.16) and (5.18), it is clear that for the m + 1-step formula
pR) =" =" (5.21)

Using (5.21) to determine p(1) and p/(1), one can easily conclude for the m + 1-step
formula (5.16) that

]f)”,((i; _ (1) (5.22)

Therefore, in order for m + 1-step formula (5.16) to be consistent, the value of
¢(1) must be equal to one. Using general m + 1-step formula (5.16) in conjunction
with (5.20), one can determine coefficients ofg(z) in (5.20) as:

m

+1
m m—i iy (M —(m—i _1)/ m
bi=m[ (i)(l—u) udu—(l,) jgo( ].)( l)j(i+j+1)
i+j+1
[(’”_“) ' _1}), i=0..m (5.23)
m
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Substitution of (5.23) in (5.20), one can derive g(1) as:

=S () (BT () [ )

After some mathematical simplification, (5.24) can be rewritten as:

ib,‘ = ici (525)
i=0 i=0

where

m+1—i
= (o) )5 osor

(5.26)

It can easily be shown that the last term in (5.26) is zero for i=0... m—1.

However, for i =m the value of ¢; in (5.26) becomes one. Therefore, considering
(5.24) and (5.26) results in:

gy =Y b= ci=cn=1 (5.27)
i=0 i=0

Consequently, comparing (5.22) and (5.27) with Definition 2, it can be concluded
that the general m 4 1-step formula (5.16) is consistent.

The numerical solution of a single-step method depends on the initial condition,
yo while numerical solution of a k-step method depends on all the & starting values
Y1,¥2s - -+, Yk Thus, it is important to know whether the numerical solution is stable
with respect to perturbations in the starting values or not. A multi-step formula
is stable (zero-stable) for a certain differential equation on a given step size, A, if
a perturbation in the starting values of size & causes numerical solution over that
interval to change by no more than oe for some value of o which does not depend
on the step size A. This is called “zero-stability” because it is enough to check the
condition for the differential equation y’ = 0 (Siili and Mayers 2003).

Definition 3 (Siili and Mayers 2003) The multi-step formula in general form of
(5.17) is stable (zero-stable) if all roots of p(z) lie in the disk |z| < 1 and if each root
of modulus one is simple.

Theorem 2 General m + 1-step formula (5.16) is zero-stable.

Proof Considering (5.21), roots of the first characteristic polynomial of general
m + 1-step formula (5.16) are:
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0 i=1...m
o 528
Y711 i=mei (5.28)

Using Definition 3, one may conclude that the m + 1-step formula (5.16) is zero-
stable.

Accuracy of results of the multi-step methods depends on the starting point
values and the value of step size. It is important to be assured that as the step size
value decreases, difference between the results of the multi-step formula and the
exact solution also decreases, and prediction tends to the exact solution. Consider
multi-step formula (5.17) is employed for the solution of IVP (5.1) in domain
a<x<b and the sequence of meshes as {a=xy<x; <x; ... <x, =b}. As the
number of intervals increased, i.e., n— oo the step size tends to zeros, h— 0.
The multi-step method is said to be convergent if as &2 — 0 the y, — y(t,). Swedish
mathematician Dahlquist (1963) proved the relation between the concepts of zero-
stability, consistency, and convergence of a multi-step method by the theorem named
after him as Dahlquist’s equivalence theorem.

Theorem 3 (Dahlquist’s Equivalence Theorem) (Dahlquist 1963) For the multi-
step formula (5.17) to be convergent, it is necessary and sufficient that the formula
(5.17) to be zero-stable and consistent.

Proof Proof of this theorem is beyond of scope of the presented chapter as details
can be found in Dahlquist (1963), Henrici (1962), and Gautschi (1997).

Theorem 4 General m + 1-step formula (5.16) is convergent.

Proof Since the general m + 1-step formula (5.16) is both zero-stable and con-
sistent, based on Dahlquist’s equivalence theorem the general m + 1-step formula
(5.16) is also convergent.

Definition 4 (Siili and Mayers 2003) A convergent multi-step formula (5.17)
is said to be strongly stable if z=1 is the only root of modulus 1 of its first
characteristic polynomial. If there is more than one such root, it is said to be
relatively stable.

Theorem 5 General m + 1-step formula (5.16) is strongly stable.

Proof According to (5.28), p(z) have m zero roots while the only one nonzero root
is z =1, thus the general m + 1-step formula (5.16) is strongly stable.

5.5 Numerical Results and Discussions

In this section, efficiency of the presented multi-step method in terms of accu-
racy, convergence, and computational cost is investigated using various numerical
examples. It should be noted that all considered examples are nonlinear ODEs
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and therefore, analytical solutions are not available. Predictions of the present
work with four-step formula (5.15) are compared with numerical results of ODE45
MATLAB. ODEA45 is a single-step solver based on an explicit fourth- or fifth-
order Runge—Kutta formula for the solution of ordinary differential equations in
MATLAB software (Guide et al. 2004). Furthermore, results of the well-known
four-step Adams—Moulton method are also included mainly to compare stability
of the presented method.

In examples, three different levels of the step size & are chosen. These step sizes
are carefully selected to show three different stages. At the first stage, both presented
and Adams—Moulton numeric methods are stable and accurate while in the second
stage, instability initiates in the Adams—Moulton technique and finally at the third
stage unstable behavior can be observed in the presented method. Furthermore,
in order to examine accuracy of the method, error for both numeric techniques is
reported in some examples.

In both methods, four-step formula is employed which indeed information of the
first four points is needed to start solution procedure. Since y, is the only known
initial condition, the ODE45 results are used to obtain the first three points, i.e.,
¥1,¥2,y3 for both presented and the Adams—Moulton method.

5.5.1 Example 1

As first example, a nonlinear mass—spring—damper system as shown in Fig. 5.5 is
considered. Governing equation of such system is the well-known Duffing equation
(Nayfeh et al. 2007):

d’y | dy
— +c—+K Kyry* =0 5.29
m—g +e+ Ky + Ky (5.29)
where m, ¢, Ky, and Ky, are mass, damping coefficient, linear, and nonlinear spring
stiffnesses, respectively.
Introducing new variables y; =y and y, = %, the second-order governing
nonlinear ODE (5.29) can be converted to a first order system of nonlinear ODE as:

NN

¢ [==] L

Fig. 5.5 Nonlinear T
y

mass—spring—damper system
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dyr __
7 o = )2 (5.30)
% =—L(cy2+ Kry1 + Kny})

Figure 5.6 shows predictions of presented and Adams—Moulton methods together
with numerical solution obtained by ODE45 for different values of step sizes in
the case of nonlinear mass—spring system with damping. Numerical results are
obtained for m =1, ¢ =0.5, K; = Ky, = 1 and initial condition y(0) =1, y'(0) = 0.
In each case, errors of the Adams—Moulton (Yagums — Yopeas) and presented method
(VBezier — YopE4s) predictions are provided in the figures. Results show that for small
values of step size (h =0.1), both methods are accurate and stable while for higher
step size (h=0.3), error of the Adams—Moulton grows rapidly. For step sizes
greater than 2 = 0.3, the Adams—Moulton becomes unstable whereas the presented
method is still stable with reasonable level of accuracy for 7 =0.5.

5.5.2 Example 2

In the second example, the Lotka—Volterra equation, which is, also known as the
predator—prey equation is considered. This equation describes the dynamics of
biological systems in which two species interact, one as a predator and the other
as prey. The populations change through time according to the pair of equations
(Berryman 1992):

dx

G =ax —bxy

(5.31)

% = —cy +dxy

where x(f) and y(¢) denote population of the prey and predator species, respectively
and a, b, ¢, and d are positive constants.

Solution of predator—prey equation with a =1, b =0.03, c = 0.4, d = 0.01 using
presented and Adams—Moulton methods is shown in Fig. 5.7. For h = 0.1, results for
both methods are accurate and stable. As the step size growth to 2 = 0.3, Adams—
Moulton shows instability while the presented method become unstable in larger
step size of h =0.5.

5.5.3 Example 3

Consider a Van der Pol oscillator, which is a non-conservative oscillator with
nonlinear damping and governing equation of motion as (Nayfeh et al. 2007):

d? d
d_tf_u(l_ﬁ)d—iﬂ:o (5.32)



130 M.M. Aghdam et al.

a
1 . . —————
t — ODEA45 H
0.5+ ----- Adams-Moulton {
r ---- Bézier i
> O0OFf
0.5+ g
71“‘“““1““““‘1““““‘<
0 5 10 15
t
0.01
0.005
= L
19
= 0
[8a] L
-0.005
-0.01
b
1 T T — =
— ODE45
05F Adams-Moulton4
o S Bézier
- Or
0.5
[ S—
0
0.4
0.2
= —
g
-0.2F
L L L L L L L L L 1 L L L L L L L L L 1 L L L L L L L L L
4)'40 5 10 15
t
¢
0.5F b
> 0F \\\_ __

ODEA45 | ]
0.5F - Bézier | ]
S S S S SR

0 5 ¢ 10 15

0.2 T T

0.1+ SN e T
55 L // . // *\\ _________ i
ot 0 pmmmmmmmemm d \\ e oo e =
m L \ s ST ]
0.1+ S ----- Adams-Moulton |
t T ---- Bézier 4

0 5 10 15

t

Fig. 5.6 Solution of nonlinear mass—spring system with damping for (a) #=0.1, (b) h=0.3,
(©)h=0.5



5 Nonlinear Initial Value Ordinary Differential Equations 131

a
100 ——————— — -
80 —— ODE45
Adams-Moulton| 4
= oor --—- Bézier -
X ok
20
0 n i n i i n i n i n
0 2 4 10 12 14
t(s)
60 .
50
= 4or
=
s ——ODE45
20 -Adams-Moulton
-—---Bézier |
10 L I L I I L I L I L 1 s 1 L
0 2 4 10 12 14 16 18 20
t(s)
b 150 :
— ODE45
PR —-=-- Adams-Moulton| |
= 190 - N, |-—-- Bézier
< 3
i(s)
80 T T T T T T T
—— ODE45 — ,
60 | =-=-- Adams-Moulton "~ B
----Bézier ]
= 40 |
; .
20 -
0 L i L i i L i L i L i L i L
0 2 4 10 12 14 16 18 20
t(s)
Cc
150
——ODE45
100~ _.=7>\ |- Adams-Moulton
“..| =~~~ Bézier
g 50
or - \\,/', \,”
_ | | | | | | |
% 2 4 10 12 14 16 18 20
t(s)
=
or —— ODE45 5
--=-- Adams-Moulton| |
i | | \ \ ---- Bézier
50 2 4 10 12 14 16 18 20
i(s)
Fig. 5.7 Solution of Lotka—Volterra equation for (a) 7 =0.1, (b) h=0.3, (¢) h=0.5



132 M.M. Aghdam et al.

where (1 is a scalar parameter indicating the nonlinearity and the strength of the
damping. In the case of w =0, Eq. (5.32) reduces to % + y = 0 which has the
solution y = ¢ sin(¥) + ¢, cos(?). For small values of y, one obtain weekly nonlinear
oscillation, i.e., oscillation which slightly differ from simple harmonic motion. On
the other hand, however, for high values of u relaxation oscillation can be observed
which shows strongly nonlinear oscillations exhibiting sharp periodic jumps. In the
case of high damping, the Van der Pol equation becomes stiff. Most techniques show
weak performance for solution of stiff ODEs. Here the performance of the presented
and Adams—Moulton methods in two different conditions of low and high damping
is investigated.

Introducing new variables y; =y and y, = %’ the second order governing
nonlinear ODE is converted to the following first order system of nonlinear ODE:

D= 2
i = (5.33)
D2 = p (1= y?) y2+ 1

Solution of the Van der Pol equation in the case of £ =0.5 and © =35 using
presented multi-step method and Adams—Moulton is presented in Figs. 5.8 and 5.9,
respectively. Included in the figures are also results of the ODE45 for comparison.
In the case of lower damping, i.e., u =0.5, predictions of both presented and
Adams—Moulton for 7 =0.1 are stable and accurate. As the step size increases
to h=0.2, Adams—Moulton results become unstable while the presented method
shows unstable behavior at 7 = 0.4.

Furthermore, for higher damping of p =35, smaller step size is used. For
h=0.001, both methods are accurate and stable. As the step size growth to
h = 0.005, instability initiates in the results of Adams—Moulton while the presented
method becomes unstable at step sizes ten times greater, i.e., # = 0.05. Results show
that even in the case of stiff ODEs, the presented multi-step method is more accurate
and stable in comparison with the well-known Adams—Moulton method.

5.6 Conclusion

Multi-step methods such as Adams—Moulton are common techniques for solution
of initial value ODEs. Besides their accuracy and stability, they also have their own
limitations such instability in large step sizes or in the case of stiff differential
equation. Thus, multi-step methods with better performance in terms of accuracy
and convergence particularly in the case of stiff equations are appealing.

In the present study, a new general multi-step formula developed based on the
Bézier curves. The consistency, stability, and convergence of the presented formula
are proved by using the common stability and error analysis theorems of multi-step
methods. The other advantage of the method is the presentation of a closed form
general m + 1-step formula.
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Effects of the step size on the accuracy and stability of the presented method are
examined through numerical results of various nonlinear and stiff systems. Results
revealed that the presented method shows improved stability behavior in comparison
with the well-known Adams—Moulton method, which yields to significant reduction
of computational cost. Due to simplicity, minimum computational efforts, and
accuracy, the presented multi-step method is expected to be used in nonlinear
problems in various science and engineering applications.

Key Symbols

B;,(u)  The ith Bernstein basis polynomials of degree n

P; Bézier curve control point

p(2) First characteristic polynomials of multi-step formula
q(2) Second characteristic polynomials of multi-step formula
fa Value of f(x, y) at point (x,, y,)

h Step size

Xn The nth discretized point x coordinate

Vn The nth discretized point y coordinate and value of y (x) at point (x;,)
X0 x coordinate of the first point

Yo Initial condition
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Chapter 6
The Loss Tangent of Visco-Elastic Models

Franz Konstantin Fuss

Keywords Visco-elasticity ¢ Elasticity * Viscosity * Loss tangent ¢ Standard
linear solid ¢ Power model ¢ Log model ¢ Stress strain * Transient part * Steady
state * Laplace transform e Inverse Laplace transform ¢ Convolution integral

6.1 Introduction

Visco-elastic models are characterised by phenomena such as

— Velocity dependency: increase of stiffness with strain rate,

— Stress relaxation: decay of stress with time at constant strain,

— Creep: increase of strain with time at constant stress, and

— Loss of stored (elastic) energy due to inner friction resulting in unequal loading
and unloading stress—strain curves, the area between the two curves correspond-
ing to the dissipated energy (hysteresis).

Visco-elastic models can be classified in various ways, e.g.
(1) Linear or non-linear models

— Linear models with at least one elastic and one viscous element in parallel
or in series;
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— QLV/quasi-linear “viscous” models such as Prony series (Wiechert model;
Wiechert 1889, 1893);
— Non-linear models such as logarithmic and power law models.

or
(2) According to the decay function of stress relaxation, which can be

— Exponential: linear three-element model (standard linear solid),
— Power: non-linear power law model, or
— Logarithmic: non-linear logarithmic law model

Examples for the latter two non-linear models are:

— Power law model: biological tissues such as ligaments (Provenzano et al. 2001),
foams with non-negative stiffness (Fuss 2009), cork in cricket balls (Fuss 2008a,
2012);

— Logarithmic law model: solid polymers (Findley et al. 1989), polymer golf balls
(Fuss 2008b, 2012).

The loss tangent, tan §, is defined as the tangent of the phase angle §, which, in
turn, is the ratio of loss modulus E” to storage modulus E’.

4

tan§ = 7 6.1)
where
E =2 coss (6.2)
&0
E" = Xinsg 6.3)
€0

and 0 and g are the peak amplitudes of stress o and strain ¢, respectively.
The complex modulus E* is defined as

E* = 208 = 2 (cos§ + i sind) = E' + iE" = |E*| 6.4)
€0 €0

where i = +/—1, and |E"| is the dynamic modulus, the magnitude of E”, i.e. the
resultant of loss modulus E” and storage modulus E’

E*| =2 6.5)
&0

The loss tangent, tan §, is usually determined by subjecting a material or structure
to sinusoidal strain &

& =¢gosin 2y ft) (6.6)
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Fig. 6.1 Sinusoidal strain 5o
curve (blue) imposed on a
visco-elastic material and
resulting stress curve (pink);
0p: stress amplitude, maximal
stress; €o: strain amplitude,
maximal strain; §: phase shift

stress,

time

where f is the cyclic frequency (angular frequency w = 2yf). The resulting reaction
stress o is equally sinusoidal, but out of phase with respect to the strain by the phase
angle §

o =opsin QY ft + 6) (6.7)

A positive phase angle § causes the stress peak to occur earlier than the strain peak
(Fig. 6.1), resulting in the typical hysteresis effect of visco-elastic materials when
plotting stress against strain (Fig. 6.2). The area of the hysteresis loop corresponds
to the energy dissipated into the material as thermal energy.

When subjecting a material to cyclic (sinusoidal) strain, the peak stress, oy,
increases during the first cycles (transient part) until it reaches an equilibrium or
steady state (Fig. 6.3). The phase angle § is measured once the steady state has
set in.

It is evident, that the energy dissipated by inner friction depends on the viscosity
parameter 1. However, as the loss tangent is the ratio of loss to storage modulus,
the strain rate independent elasticity parameter E is expected to influence the loss
tangent too. Lastly, as the modulus (Young’s and tangent) increases with strain rate
and thus with frequency f, the latter could contribute to the loss tangent as well.

The objective of this Book Chapter is to explore in how far the viscosity
parameter 7, the strain rate independent elasticity parameter E and the strain
frequency f affect the loss tangent. The aim is to derive the loss tangent at steady
state of the three visco-elastic models mentioned above, in order to understand the
interaction between elasticity, viscosity and frequency and their effect on energy
loss. The function of stress relaxation with time is not the only difference between
the three models mentioned above. A further objective of this paper is to analyse
the basic differences of these models and to understand their applicability and
constraints.
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Stress

0 %o

strain

Fig. 6.2 Hysteresis loop of stress—strain ellipse; 0o: maximal stress; gp: maximal strain; §: phase

angle

transient part steady state
>«

stress

time

Fig. 6.3 Stress—time curve (red) during the first load cycles; blue curve: transient component;
green curve: steadys state component; the stress—time curve (red) is the sum of transient and steady

state components
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6.2 Analysis

6.2.1 The Standard Linear Solid (Zener Model)

The standard linear solid (SLS of Voight form) consists of two Hookean springs and
a viscous damper, where the spring with the modulus E| is connected in series with
a Kelvin—Voight model, with spring of modulus E; and damper of viscosity constant
n connected in parallel (Fig. 6.2).

From Fig. 6.4
e=¢g + & (6.8)
o=¢kE (6.9)
o =¢gkFE;+ én (6.10)

Taking the Laplace transform of Egs. (6.8)—(6.10), eliminating &; and &, by
substitution, and solving for & yields the constitutive equation of the standard linear
solid

E\E; +snE;

po1Z2 TN 6.11)
Ei+E;+sn

o=

where the caret (") denotes the transformed parameter.
The equation for stress relaxation results from applying a constant strain &, to the
model through a Heaviside function H(¢)

e =¢e.H() (6.12)

Fig. 6.4 Standard linear
solid of Voight form;o: ... L]
stress; &: strain; 7): viscosity
constant; E;: modulus of
series spring; E,: modulus of
parallel spring; &;: strainof =T Vg
series spring; &;: strain of
Kelvin—Voight model
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the Laplace transform of which is

7=t (6.13)
S

By substituting Eq. (6.13) into Eq. (6.11), we obtain

E1E2 + ST]E]

C=g—m————
Cs(E1 + E; 4+ s1)

(6.14)

the inverse Laplace transform of which yields the function of stress relaxation

B+ Ere™ (E1+E>)

o e n

22T (6.15)
Ec El + E2

where the stress o is normalised to the constant strain .. Equation (6.15) proves the
exponential decay of stress with time, as mentioned above in the Introduction.

The loss tangent results from applying the sinusoidal strain of Eq. (6.6) to the
constitutive Eq. (6.11). The Laplace transform of Eq. (6.6) is

2
P - (6.16)
s+ @y f)
where g is the peak amplitude of the strain.
By substituting Eq. (6.16) into the constitutive Eq. (6.11), we obtain
2 E\E E
8280( v 2)( 152 + 579 1) 6.17)
A E\+ Ey, + 51
After rearranging
~ E,+s
0 =2y fE, 2 2 : 277 2 2
S+ 7B+ 2 Ey +snQyf)” + E\QYS)T + E2Q2y f)
(6.18)

the inverse Laplace transform of Eq. (6.18) yields

+E

—Emyfe’ o + Eim2y fcos Ry ft) + (E1E2 + B + n2(21//f)2) sin (29 f1)
E>+2E Ey + B2 4 22y f)?

o = SUEI
(6.19)

The numerator of Eq. (6.19) comprises of a transient part (exponential function)
and the steady state part (sine and cosine functions). At large times, if t — oo, the
transient part, i.e. the exponential term of the numerator, vanishes and the steady
state sets in:
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o= g0 Eq
(E1 + E2)* + 22y f)?

[Evn2us cos @uro) + (EvEs + Eo + 2@y f)?) sin @y f1)]
(6.20)

In order to obtain the loss tangent and the peak stress o, we apply the addition rules
to Eq. (6.7)
0 = 0psin (8) cos 2y ft) + op cos (8) sin 2y f1) (6.21)

where the unknowns are the two components of the peak stress a: 0 sin § and o
cos §.
The loss tangent thus results from the ratio of the two components

in §
tan§ = 2010 (6.22)
00 CoS§

and the resultant of the peak stress o is obtained from

0y = \/(00 sin 8)* + (0 cos §)* (6.23)
From Eq. (6.20) it follows that

80E1
(E1 + E2)* + 22y f)?

(o) sind = E1772¢f (624)

and

g0k
(E\ + E2)* + 22y f)?

G0 c0s 8 = <E1E2 +E2 4 Py f)z) (6.25)

The loss tangent thus is

En2y f

tand = 3 5
E\E, + Ex* + 1?2y f)

(6.26)

and the peak stress o results from

_ eoE)
(E\ + E2)* + 2y f)?

0o

2.2 2 2 2 2 2
Er 2y f)” + (E1E2+E2 +n (21/ff))
(6.27)

In both Egs. (6.26) and (6.27) f and 7 are linked together and always occur as the
product 7.

As the maximal strain rate &) of a sinusoidal strain function equals £92y/f, the
strain rate dependency of o is given by
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€0

2
E . 2 . 2
0o = fo21 Ei*n? gl + | E\E> + E* + %
5 N2 £ £
(E1+ E))" + 772(8—0)
(6.28)

The peak stress o increases with f and n. If f or n — oo, 0 asymptotes to goE;. If f
or n—0, 09— &y(E;™" + E>7')"!. The limits of o are evident when considering
that the peak strain rate changes with f. Thus, at zero strain rate or zero 7, the
standard linear solid reduces to two springs in series and the effective modulus of
the model becomes (E;~! + E,™")~!. At infinite strain rate or infinite 7, the damper
becomes rigid and the effective modulus of the model is just E;.

The peak stress o increases with E;. If f or n — oo and E; — 0 or oo, both the
effective modulus and oy become equally 0 or oo, respectively. If f or n — 0 and
E; — 0 or oo, the effective modulus and o become zero in the former case, and E,
and gy E, in the latter.

If E; — 0, the standard linear solid reduces to a Maxwell model (with a spring
and a damper in series), the modulus of which is (1) co or (2) E; or (3) 0, if (1) E},
and n or f, are oo or (2) n or f are oo or (3) Ey, and n or f are 0, respectively.

Atn>0andf < oo, and E, — 0, the peak stress reaches

o = 2T EEm (6.29)

VE? +PQyf)

If E; — oo, the modulus of the standard linear solid reduces to E;. oy shows a local
minimum at a certain E20 (Fig. 6.5)

VE+4RQuf) - Ey

Es, 5

(6.30)

resulting from equating the first E; derivative of Eq. (6.27) with zero and solving for
E,. Equation (6.30) is the only positive and real result of the fourth order polynomial
nature of the first E; derivative of Eq. (6.27).

The loss tangent, Eq. (6.26), reveals that the phase angle § depends on all four
parameters, Ey, E;, n, and f, where the latter two always occur as the product f7.

If the frequency f — oo or 0, the phase angle § — 0 in both cases. Thus, we expect
a local maximum of § at a certain frequency f; (actually shown by Findley et al.
1989). Taking the first derivative of tan § with respect to f in Eq. (6.26), equating it
with zero and solving for f provides

/ 2
Jo= % 6.31)
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Fig. 6.5 Maximal stress oo against modulus E, of parallel spring; f: frequency; n: viscosity
constant; Ezo: E> at which a local minimum of o is found

Replacing f by fj in Eq. (6.26),

E

2V E\E; + Ey?

and equating its denominator with zero yields the scenario at which § = 0.5 v, which
is Ey =-F, and E; = 0. In both cases, however, fy = 0, which means that a standard
linear solid can never reach § = 0.5 or an infinite loss tangent.

Rearranging Eqs. (6.31) and (6.32) shows that f; depends on two ratios, R; and
R,, whereas tan § at fy (but also any other f at the same R;) depends only on R,
(Fig. 6.6)

(tand) 5 = (6.32)

— Rl
=%

R
214+ Ry

Jo (6.33)

(tand) 5 = (6.34)

where

E;JTT R
R, = ZT“ (6.35)
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Fig. 6.6 Phase angle § against frequency f; n: viscosity constant; E; and E,: moduli of series and
parallel spring; fo: f at which a local maximum of § is found

and

E;

Ry = —*
2 E2

(6.36)

Equation (6.34) shows that tan § at f; is a constant and independent of f; (Fig. 6.6).
Changing n has the same effect as changing f has. If n — oo or 0, the phase angle
8 — 0 in both cases and we obtain a local maximum of § at a certain 1o

VE\E; + E)?
2y f
Equation (6.37) is similar to Eq. (6.31) and the same principles apply.

The phase angle § and tan § increase with E;. If E; — 0, tan § — 0. If E; — o0,
tan § asymptotes to

no = (6.37)
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lim (tand) = 22/ (6.38)

E|j—o0 2

The phase angle § and tan § decrease with increasing E,, asymptoting to O if
E» — co. If E; — 0, tan § reaches a limit of

E,

n2y.f

Lakes (2009) derived the loss tangent of the SLS of Maxwell form (with a spring
connected in parallel with a Maxell model).

lim (tand) = (6.39)
Ey,—0

6.2.2 The Power Law Model

The power law model is characterised by a power decay of stress o with time ¢:
o —
— =E™" (6.40)
&c

Stress o is normalised to the constant strain ¢, applied by the Heaviside function
H(?) of Eq. (6.12).
Taking Laplace transform of Eq. (6.40) yields

F'(=n+1)

o=¢kFE P

(6.41)

where I" denotes the Gamma function (Fuss 2008a, 2012).
By substituting Eq. (6.13) into Eq. (6.41), we obtain the constitutive equation of
the power law of non-linear visco-elasticity (Fuss 2008a, 2012):

6 =s"TET (—n+1) (6.42)

By substituting the sinusoidal strain of Eq. (6.16) into the constitutive Eq. (6.42),
we obtain

29 f
s2+ QY f)?

Taking the inverse Laplace transform of Eq. (6.43), we obtain a general fractional
derivative of the sine function

G =eET (= + 1)s" (6.43)

1
o0 =¢gET (—n+1) ;7 sin 2y f1) (6.44)
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where o is the nth time derivative of the strain function of Eq. (6.6) times a constant.

The generalised solution of (;17",7 sin(¢) results from applying the inverse operation

of the Riemann-Liouville fractional integration (with lower limit = 0),

ar , m T 137
- sin(1) = sin (z n '72) n [r e R } : (6.45)
i.e. Eq. 6.10.3 of Oldham and Spanier (1974)
consisting of steady state (sine function) and transient parts (Maclaurin series in
square brackets). If  — 0 or 1, the denominators of the transient part approach =+ oo
(Gamma function of negative integers), the transient part reduces to 0, and a sine or
cosine function, respectively, remains.

By replacing the lower limit of the inverse operation of the Riemann—Liouville
fractional integration by —oo, which equals the inverse operation of the Weyl integral
(Weyl 1917), we obtain the steady state part of the fractional derivative of Eq. (6.44)

0 =¢gET (—n+ 1) 2y f)"sin (21//ft + n%) (6.46)
Comparing Eq. (6.7) with the steady state Eq. (6.46), it becomes evident that the

phase angle § is

v
§=n—= 6.47
15 (6.47)
the loss tangent is
_ 14
tan§ = tan (97 2) (6.48)
and the peak stress o is
oo =& ET (—n+1) 2y f)’ (6.49)

The loss tangent depends solely on 7, independent of E and f. If n — 1, both tan §
and oy — 00, as both tan(0.5y) and I'(0) are infinite. Thus, 0 <n < 1.

The peak stress 0 increases non-linearly with f and linearly with E and f ". The
peak stress oy decreases non-linearly with 7, reaching a limit of ¢yFE, i.e. a Hookean
spring, if n — 0. If n — 1, o reaches infinity.

As the maximal strain rate &, of a sinusoidal strain function equals &92y/f, the
strain rate dependency of o of Eq. (6.49) is given by

— — 1—
ELCnED oy pyiay )= = gy EL 0 Deo

@y e = &ET (—=n+ D' ™7 (6.50)

ap = &9
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In contrast to the fractional derivative approach shown above, Lakes (2009)
solved the loss tangent of the power model from the ratio of the constitutive
equations of loss to storage modulus.

6.2.3 The Logarithmic Law Model

The logarithmic law model is characterised by a logarithmic decay of stress o with
time #:

o
— = E —nlog(?) (6.51)
&
where “log” denotes the natural logarithm. Stress o is normalised to the constant
strain &, applied by the Heaviside function H(?) of Eq. (6.12).

Taking Laplace transform of Eq. (6.51) yields

E 1
6 =6 —eun (—X - E) (6.52)
S

where y denotes the Euler—Mascheroni constant, i.e. 0.577215665 ... (Fuss 2008b,
2012).

By substituting Eq. (6.13) into Eq. (6.52), we obtain the constitutive equation of
the logarithmic law of non-linear visco-elasticity (Fuss 2008b, 2012):

0 =%CE +en(y +logs) (6.53)

By substituting the sinusoidal strain of Eq. (6.16) into the constitutive Eq. (6.53),
we obtain

6= %(Ewwrnlogs) (6.54)
after rearranging
= 80E_s2 +27(721;f)2 e (_1_/ 3 lo;;s) (s2 j_z(gif)z) (6.55)
and taking inverse Laplace transform, we obtain
0 = &oE sin Qu ft) — gon2n f [logt]* [cos Qm f1)] (6.56)

where * denotes a convolution.
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Applying the convolution integral, the convolution log () * cos (wt), where
o =2, is solved accordingly:

t

[logt] * [cos (wt)] = / log (t) cos [w (t — 7)]dt (6.57)
0

where 7 is the dummy variable of the convolution integral.

Decomposition of cos(w?—wt) according to the addition rules and subsequent
partial integration yields:
[log t]* [cos (w1)]=w ' [Ci (w7) sin (wt) —Si (w7) cos (wt) —log () sin (wt—wT)],
(6.58)

where Ci and Si denote cosine and sine integrals respectively (definition of Ci and
Si according to Abramowitz and Stegun 1972).
Solving Eq. (6.58) from O to #:

[logt]* [cos (wt)] = w™! [Ci (wt) sin (wt) — Si (wt) cos (wt) — log(t) sin(0)—
Ci (w0) sin (wt) + Si (w0) cos (wt) + log(0) sin (wt) ]
(6.59)

Apparently, Eq. (6.59) contains an indeterminate form, as both log(0) and Ci(0) are
—00, and thus the term log(0) sin(wf) — Ci(w0) sin(wt), or sin(w?) [log(0)— Ci(0)],
delivers sin(wt) (c0—00).

However,

Cin(z) =y + log(t) — Ci(z) (6.60)
where Cin denotes an alternative cosine integral (definition of Cin according to
Schelkunoff 1944). As Cin(0) = 0, log(0)— Ci(0) = —y.

Yet, the argument of the cosine integral in Eq. (6.58) is wt, in contrast to the one
of the natural logarithm, which is just . Thus we have to consider the multiplier w.
This multiplier leads to a convergence constant other than simply —y, if t — 0.
Ci(wt) =y + log (wt) — Cin (wt) =y + log(?) + log (w) — Cin (w?) (6.61)
As Cin(0) =0,
log(0) — Ci(0) = —y — log (w) (6.62)
Thus,

[li_r:g) [log(t) — Ci(wt)] = —log (w) —y (6.63)
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Equation (6.59) can now be solved, considering that Si(0) =0

[log t]*[cos (wt)] =w ™! {Ci (wt) sin (wt) —Si (wt) cos (wt) — sin (wt) [log (w)+y]}
(6.64)
The solution of Eq. (6.56) after taking inverse Laplace follows

o=¢gyE sin (wt) —gon {Ci (wt) sin (wt) —Si (wt) cos (wt) — sin (w?) [(log (@) +V)]}
(6.65)

The steady state of Eq. (6.65) sets in at large times, or ¢t — co. The transient part of
Egs. (6.64) and (6.65) comprises of the cosine and sine integrals. When considering

the values at infinity of cosine and sine integrals, which are 0 and 0.5 v respectively,
the convolution of Egs. (6.64) and (6.65) yields at large times (steady state equation)

,1_15& [log(t) * cos (wt)] = w™! {—% cos (wt) — sin (wt) [log (w) + y]} (6.66)
and
o = goE sin (wt) + 80r/% cos (wt) + gon sin (wt) [log (w) + y] (6.67)

respectively.
After rearranging according to the procedure applied for determining the loss
tangent of the standard linear solid, we obtain

_(m .
wnd = (3) T3 Toe Gy 171 e

and

00 = & \/0.25772712 + [E + nlog @nf) + ny)? (6.69)

As the maximal strain rate &, of a sinusoidal strain function equals £¢2f, the strain
rate dependency of o after rearranging Eq. (6.69) is given by

. 2
o = 8o \/ 0.257272 + [E +nlog (2_2) + ny} (6.70)

The stress amplitude o increases with E, 1, and f. This fact is obvious, as E
is the strain rate independent elasticity parameter, i.e. the modulus or stiffness;
the viscosity parameter 7 is linked to the strain rate, i.e. at a given strain rate,
o increases with n; and the frequency f is linearly proportional to the strain rate
applied periodically to the model, i.e. at a given 1, o increases with f.

If n — 0, 00 — &oE, the stress equation of a Hookean spring. If n — 0o, o9 — 0.
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Fig. 6.7 Peak stress oy against frequency f; m: viscosity constant; E: velocity independent
elasticity parameter

If f — 0 or oo, 09 — oo. This means that o has a local minimum at a certain
frequency fy (Fig. 6.7). As the first frequency derivative of Eq. (6.69) contains the
arguments £, log(2yf), and log?(2ysf), there is no closed-form analytical solution,
and the frequency, at which o is at a minimum, can only be obtained numerically.
Figure 6.7 shows that 0 increases with 71, and f; increases with the ratio n/E. The
ratio n/E is identical to the viscosity of a log law model, not to be confused with the
viscosity constant 7.

The peak stress o increases almost linearly with E.

If E— o0, 09 — 00. If E— 0 (purely viscous material)

limoy = son\/0.257r2 + [log 27 f) + y)? (6.71)
E—0

and o increases with 7 and f.

The loss tangent, Eq. (6.68), reveals that the phase angle § depends on E, 1, and f.

Increasing the elasticity parameter E reduces the phase angle §, thereby asymp-
toting to 0, when E approaches infinity. This result is evident, as a perfectly rigid
solid (E = co) does not deform and thus there are no losses (5 = 0).

Reducing E increases tan §. If E approaches zero (purely viscous material), tan &
reaches a limit of
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. b4 1

a constant, which is a function of f but independent of 1. The magnitude of the
viscosity 1 does not matter in this case, as the material is anyway purely viscous.
The phase angle 6 becomes 0.5  if

f_l

2 eY

(6.73)

Thus, if E =0 and the loss tangent is positive, f must be >0.08936. .. Hz.

If f <0.08936...Hz, § > 0.5 ¥, and E’ (storage modulus) and tan § are negative,
which is impossible, as the stored energy is zero (as E=0), and the energy
dissipated cannot be negative.

If the frequency f — oo or 0, the loss tangent — 0 in both cases, and the phase
angle § — 0 or , respectively. Thus, § crosses ¥/2 at a certain frequency fj.
Equating the denominator of Eq. (3.20) with zero yields f; at which § = 0.5

_E_
0 Y

€

Jo= (6.74)

2

The ratio E/n in Eq. (6.68) equals the reciprocal value of the viscosity of a log law
model. The higher the viscosity, the smaller is the ratio E/5. Figure 6.8 shows E/n
against the frequency, the fy curve at which § =0.5 v, and the E/n and frequency
ranges at which § is < or > 0.5 . If E/n — 0, f; approaches the value of Eq. (6.73),
which is fop =0.089359 Hz, i.e. a cycle period of 11.2 s. From Fig. 6.8, the loss
tangent, and this the storage modulus, is negative at small E/n (high viscosity) and
small frequencies (large cycle periods with small strain rates). This is in accordance
with a negative (elastic) modulus of the log law model at very small strain rates
(Eq. 5.73 of Fuss 2012).
The reciprocal of Eq. (6.68)

cotd = (%) (% +log2nf) + y) (6.75)

shows that the higher E/n, the higher is cot §. Thus, the higher n/E, the higher is
tan §. This explains that the viscosity of a log law model corresponds to the ratio
n/E, and not to the viscosity constant 7. Figure 6.9 shows that the higher n/E, the
higher is the phase angle §. The viscosity constant 1 alone has no influence on §.
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Fig. 6.8 Ratio of E/n against frequency f; n: viscosity constant; E: velocity independent elasticity
parameter; tan 8: loss tangent; fy: frequency at which tan § = /2
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Fig. 6.9 Phase angle § against log frequency; n: viscosity constant; E: velocity independent
elasticity parameter
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6.3 Summary

Material models are always simplified descriptions to assist calculations and assess-
ment of mechanical behaviour. This means that a material does not necessarily have
to follow the behaviour of its model. For example, the negative storage modulus of
a log law model at small E/n and small frequencies may well be a mathematical
phenomenon but does not necessarily exist in reality. The standard linear solid is
certainly oversimplified with three elements (2 springs, 1 damper) and is usually
expanded to more elements for better linear material characterisation (Prony series;
Wiechert model; Wiechert 1889, 1893; Fuss 2012).

6.3.1 Loss Tangent and Viscosity

SLS: tan 6 and § depend on E, 1, and f; but at the same f, tan § and § at the same R
depend only on R, (Eqgs. 6.35 and 6.36), i.e. the ratio of moduli of series to parallel
spring, but not on the viscosity constant 7.

Power law model: tan § and § depend on 5 only; 0 <n < 1.

Log law model: tan § and § depend on E, 7, and f; but at the same f, larger E/n
have larger tan § and §.

6.3.2 Relationship Between Frequency and Viscosity Constant

SLS: f and n are linked together and always appear as the product f. Equations
(6.26) and (6.27).

Power law model: 7 has no relationship with f in tan § (as f does not influence
tan &), whereas for o, 1 appears in the gamma function, and is the exponent of f,
ie. f1.

Log law model: the viscosity constant appears as a stand alone 7, and as the
product of n and log 2.

6.3.3 Transient and Steady State Parts

SLS: transient part: exponential function; steady state part: sine and cosine
functions.

Power law model: transient part: Maclaurin series; steady state part: sine function
with /2 phase shift (resulting in sine and cosine functions after applying addition
rules).
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Log law model: transient part: cosine and sine integrals; steady state part: sine
and cosine functions.

6.3.4 Negative Storage Modulus if tan § > /2

SLS: tan § < /2

Power law model: tan § < y/2

Log law model: tan § can be > /2 at small E/n (high viscosity) and small
frequencies (large cycle periods with small strain rates).

Key Symbols

Ci Cosine integral function

Cin Alternative cosine integral function

cos Cosine function

cot Cotangent function

d Differential operator

E Modulus (velocity independent elasticity parameter)
Ey, E, Moduli of springs of a standard linear solid
E' Storage modulus

E" Loss modulus

E* Complex modulus

|E*| Dynamic modulus

e Exponential function

f Frequency

H Heaviside (unit step) function

i VA

lim Limit

log Natural logarithm

R;, R, Parameter ratios of a standard linear solid
s Complex variable of transformed functions
Si Sine integral function

sin Sine function

t Time

tan Tangent function

tan § Loss tangent

r Gamma function

y Euler—-Mascheroni constant (0.577215665)
) Phase shift angle

€ Strain

& Constant strain
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€0 Amplitude of strain, peak strain
G Transformed strain

&o Peak strain rate

n Viscosity constant

) pi(3.14159...)

o Stress

o Transformed stress

o Amplitude of stress, peak stress
T Dummy variable of convolution integral
w Angular frequency o = 2yf

* Convolution operator

00 Infinity
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Chapter 7
Optimization of Hood Design to Minimise
Pedestrian Head Injury in Impact

Revathi Krishnamoorthy, Monir Takla, Aleksandar Subic, and Derek Scott

Keywords Pedestrian protection * Head impact ¢ Finite element analysis * Hood
panels ¢ Crash safety

7.1 Introduction

The term pedestrian generally refers to a person walking, running, skating, skate-
boarding and commuting using similar devices.

There is a recent trend for urban design to provide for more walkable com-
munities. Present-day awareness of health, fitness and greenhouse gas emissions
has increased the popularity of cycling and walking in urban areas. Therefore, the
probability of pedestrian accidents has also increased.

Automobiles have evolved to be a successful medium for transportation due to
substantial inventions and developments in various countries. The concept of large-
scale production-line manufacturing enabled the affordable pricing of automobiles,
which has increased the demand for them globally.

In 1900, the United States of America was the only country manufacturing cars
and built only 4,192 passenger cars (Elert 2001). There were no buses or trucks at
that time. As of 2010, there are more than 600 million passenger cars worldwide
(Worldometers 2010). These numbers are increasing rapidly. It is estimated that, if
the present trends continue, the number of cars in the world will double by 2030.

As the demand for automobiles has increased, automotive design is improving
every day in many aspects of comfort, technology, efficiency, performance and
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Fig. 7.1 Unsafe conditions for pedestrians (World Health Organization 2011)

safety. However, as many countries and manufacturers have been participating in
the manufacture of cars, there are significant differences in the quality and safety
performances offered by the vehicles.

The World Health Organization photograph (Fig. 7.1) portrays the unsafe
conditions for pedestrians, who risk their lives in order to fulfil their day-to-day
responsibilities.

In 1965, Ryan and McLean (1965) described the sequence of events when a
passenger car collides with an adult pedestrian standing erect.

Those sequences are as follows:

* Contact between the bumper and the lower legs of the pedestrian

* Contact between the leading edge of the hood and upper legs/pelvis of the
pedestrian

* Contact between the pedestrian’s head/upper torso and the top surface of the
hood/windscreen/windscreen frame (Fig. 7.2)

* Contact between the pedestrian and the ground.

They also speculated that it would be possible to minimise injuries in a
Pedestrian—Passenger Car Front—end Collision (PPCFC) by changing the frontal
shape of a car. Their study however did not suggest any design solutions, as they did
not have enough data.

In those days, the belief was that the only way to reduce pedestrian fatalities and
injuries was to prevent pedestrian—vehicle collisions. Consideration of modification
of vehicle design for pedestrian protection was not an option at that time. From this
sequence of events, it can be stated that typically the colliding vehicle runs under
the pedestrian and the severity of injuries vastly depend on the vehicle shape and
certain characteristics such as energy absorption.
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Fig. 7.2 Kinematics of a pedestrian in PPCFC (Synaptic analysis consulting group inc)

7.2 Background Research and Benchmarking

A collision between a pedestrian and a passenger car causes injuries to the whole
body. Recovery from head injuries however takes substantial time and these injuries
are more likely to be fatal. In 2003, Iskander Farooq and his team compiled the
data from the International Road Traffic and Accident Database (IRTAD) and the
German In-Depth Accident Study (GIDAS). They found that 62 % of pedestrian
fatalities occur due to head injuries.

The statistics show that about 92 % of pedestrian fatalities in the US are due to
the impact with the front-end of a car (National highway traffic safety administration
2009) as presented in Fig. 7.3. The pedestrian’s head contact with the vehicle front-
end or the ground could cause significant head injuries. However, studies show that
head impact with the vehicle front-end is likely to cause more damage than head
impact with the ground.

Other studies on injuries in children pedestrians show that the injuries to different
regions of the body vary based on a child’s age. Head and chest impacts are the
sources of fatal injuries for younger children. Contact between the pelvis and the
abdomen with the leading edge of the hood can cause fatal injuries for an older age
group.
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Fig. 7.3 Direction of impact for pedestrian fatalities due to collision with a passenger car in the
US (National highway traffic safety administration 2009)

Table 7.1 Distribution of pedestrian injury AIS 2—-6 (Mizuno 2003)

Body region | USA (%) | Germany (%) |Japan (%) | Australia (%) | Total (%)
Head 32.7 29.9 28.9 39.3 31.4
Face 3.7 5.2 2.2 3.7 4.2
Neck 0.0 1.7 4.7 3.1 1.4
Chest 9.4 11.7 8.6 10.4 10.3
Abdomen 7.7 3.4 4.7 4.9 5.4
Pelvis 5.3 7.9 4.4 4.9 6.3
Arms 7.9 8.2 9.2 8.0 8.2
Legs 333 31.6 37.2 25.8 32.6
Unknown 0.0 0.4 0.0 0.0 0.2
Total 100 100 100 100 100

According to the International Harm Reduction Association (IHRA) accident
data, head and leg injuries account for two thirds of pedestrian injuries. Approxi-
mately 84 % of AIS 2-6 injuries are caused by pedestrian contact with the vehicle
front-end. In Australia (Table 7.1), 39.3 % of AIS 2—6 injuries occur due to head
impact.

Head impact is the most prominent factor in pedestrian fatalities and injuries.
Thus, it represents a key hurdle in the pedestrian protection assessment criteria. Due
to these two critical features, it was decided to focus on improving vehicle design
to reduce head injuries and to develop a methodology for optimising hood panels
of passenger cars to ensure that the pedestrian Head Injury Criterion (HIC) falls
below the threshold values specified by both the GTR-9 and the consumer metric,
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the Australasian New Car Assessment Program (ANCAP). This chapter presents the
development of a hood configuration that provides robust and homogeneous HIC for
different impact positions in the central area of the hood of a large sedan, taking into
consideration of the limited space available for deformation.

7.3 Vehicle Design Requirements

7.3.1 Regulatory Vehicle Design Requirement for Pedestrian
Protection

The GTR-9 has adopted the test procedures developed by the IHRA. Active and
passive components are included so as to ensure the same level of pedestrian
protection as 2003/102/EC-Phase II. The active component mandates fitting of
Brake Assist, a system designed to sense an emergency braking situation and
assist the driver in achieving the maximum possible deceleration in the prevailing
conditions, thus reducing the braking distance. The passive Component includes
a series of subsystem tests where the resulting injury levels must be below the
prescribed limits. This component of GTR-9 requires a careful vehicle design that
reduces the probability of severe head and lower leg injury to pedestrians in a
collision with the car.

Europe, Japan, China, United States of America, India, Korea and Australia are
the few among the many countries plan to adopt these regulations as vehicle design
regulatory requirements for pedestrian protection. Negotiations are in progress with
automakers and governments globally regarding the timing for enforcing GTR-9.

The GTR-9 test protocol required four subsystem tests to evaluate the vehicle
design for protection of pedestrians in a collision with a passenger car. They are:

* Lower leg form fired at 40 km h to bumper system

* Upper leg form fired at 20-40 km h (depending on vehicle shape) to the hood
leading edge

¢ Child head form fired at 35 km h to the hood top, at an angle of 50° to the
horizontal plane

¢ Adult head form fired onto the hood top at an angle of 65° to the horizontal plane,
at 35 km h.

Head Impact

The total head impact area is determined in a similar manner to the European
Commission Directive. Two thirds of the total impact area zoned as ‘HIC1000’ and
one-third zoned as ‘HIC1700’. The HIC1000 zone must contain at least half of the
child impact area. This regulation tests the protection offered to both the child and
adult head in this impact area. The impact area for the child head is between 1000
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WAD and 1700 WAD. The adult head impact area is between 1700 WAD and 2100
WAD. The impact area does not include the windscreen.

Lower Leg Impact

The bottom face of the lower leg impactor is positioned 25 mm above the ground
level. The area between the two bumper corners is the lower leg impact area. The
resulting injury values for the lower leg within the lower leg impact area must be
below a set of prescribed limits in the evaluation of vehicle design. The bounds for
the injury values are:

* Tibia acceleration is less than or equal to 170 g
* Knee-bending angle is less than or equal to 19°
¢ Kbnee shear displacement is less than or equal to 6 mm.

Upper Leg Impact

The upper leg impact is a guided impact and the impact energy, impact angle and
impact velocity are calculated based on the Hood Leading Edge and Upper Bumper
Reference Line positions. Currently, there are no legal limits for this test and it is
conducted for monitoring purposes only.

7.3.2 Consumer Metric Vehicle Design Requirement
Jor Pedestrian Protection

The various new car assessment programs, usually made up of a consortium
of government and non-government safety organisations, have established testing
programs in many countries to evaluate new passenger vehicles for safety perfor-
mance, including pedestrian protection performance, and published the results for
consumers.

The pedestrian protection performance rating reported by Euro NCAP is one of
the most influential consumer metrics in the European market. The EEVC WG17
pedestrian protection test procedures serve as a base for these test and assessment
procedures. The Euro NCAP protocol version 5.3.1, adopted from February 2010,
has harmonised the test procedures with the GTR-9. Euro NCAP also proposes four
tests through vehicle subsystems (Fig. 7.4) similar to those of the GTR-9.



7 Optimization of Hood Design to Minimise Pedestrian Head Injury in Impact 167

Euro NCAP
I1SO I1SO
Child head Adult head
v =40 km/ih v =40 kmih
EEVC m =3,5kg m =4,5kg
Upper leg
v =20.40 kmih o Limit Lirnit
o HIC £ 1000 HIC £ 1000
Limits
F £5kN
Ay £ 300NmM @
\' @ 65'{
EEVC S0y non.&; BRRL
Lowerleg 1000mm WAD
v =40km<h m——
Limits
a <150 g
e =£15°
s L6 mm

Fig. 7.4 Pedestrian protection technical requirements (Euro NCAP 2010)

7.4 Evaluating Pedestrian Protection Offered by a Vehicle

In 1989, EEVC WGI10 (Hardy et al. 2007) proposed the impactor test method for
vehicle pedestrian impacts. They developed four different types of subsystem test.

As stated earlier, so far all the regulatory requirements and consumer metrics
tests that evaluate pedestrian protection use this subsystem test only (Fig. 7.5).

The Institut National de Recherche sur les Transports et leur Sécurité (INRETS)
created the original leg form impactor (Hardy et al. 2007). However, EEVC WG
10 and EEVC WG 17 accepted the lower leg impactor developed by Transport
Research Laboratory (TRL) (Transport Research Laboratory 2012) to be used in
EEVC pedestrian protection testing, due to its high level of performance and
repeatability. These TRL-PLI impactors represent the 50th percentile male leg
designed for right side impact testing. Accelerometers and potentiometer in the leg
form impactor collect the acceleration and the relative rotation to assess the severity
of injuries. The TRL-PLI has a rigid femur and tibia covered with foam to represent
soft tissues and skin (Fig. 7.6).

In 2000, to improve the accuracy of the leg form, JAMA and the Japan
Automobile Research Institute (JARI) initiated the development of a Biofidelic
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Fig. 7.5 Subsystem test method (Hardy et al. 2007)
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Fig. 7.6 Comparison between TRL-PLI and Flex-PLI (World Health Organization 2010)
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Fig. 7.8 Leg impact and head impact test machines (Centre of automotive safety research 2007)

Flexible Pedestrian Leg form Impactor, Flex-PLI (Fig. 7.7). This impactor uses four
femur joints and five tibia joints to improve the dynamic response.

Flex-TEG, a technical evaluation group consisting of government and industry
members, is evaluating the possibility of using the Flex-PLI impactor for theGTR-9.
The linear guidance propulsion system launches the lower leg impactor in a free
flight mode when it has attained steady desirable velocity. This test simulates the
human lower leg (tibia, knee joint and femur) in a passenger car front-end impact
with a pedestrian.

In 1995, Germany’s federal highway research institute (BASt) conducted upper
leg form tests. Later TRL improved this upper leg form impactor. The EEVC
accepted this upper leg form impactor in its tests, even though JARI reported that
the measured forces are still lower than the inertia forces. During the test, a linear
guided launcher fires the upper leg impactor onto a static vehicle (Fig. 7.8). This
test simulates the upper leg covered with foam to replicate flesh and skin and rotates
around a friction-loaded pivot to mimic femur and pelvis fractures.

Originally, production of the head form impactors used a plastic sphere covered
by a rubber skin. EEVC WGI17 updated the head form specifications to an
aluminium sphere covered with a 12 mm PVC skin without changing the outer
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diameter and mass for continuity of measurement. The head impactor is launched
in the same manner as the lower leg impactor. The head form contains a tri-axial
accelerometer that is used to measure the resultant acceleration throughout the
impact. The HIC value is calculated using the measured resultant acceleration.

In 2005, a team from the University of Virginia and General Motors Corporation
(Kam et al. 2005) conducted a study to develop full-scale pedestrian impact tests
using Post Mortem Human Surrogates (PMHS). This study was conducted utilising
existing test procedures, real-world data and MADYMO simulations to create an
experimental test system with full-scale pedestrians. In this study, the PMHS was
positioned laterally in mid-gait stance with the struck leg extended to the rear and
both hands extended to the front. The PMHS was attached to an electromagnetic
release mechanism, which was triggered to release the PMHS just before impact.
After the impact, a catcher mechanism would absorb the kinetic energy from the
PMHS to avoid any secondary injuries because of contact with the ground. This
study did not lead to the development of a full-scale pedestrian dummy.

In contrast, Honda developed a crash test dummy to understand the kinematics
of vehicle pedestrian impacts in 1998 with a second-generation released in 2000,
the POLAR II. This dummy gathers measurements from the head, cervical spine,
thorax, abdomen, pelvis, femur, knee and tibia. In 2008, Honda introduced the third-
generation pedestrian dummy, POLAR III (Fig. 7.9). This dummy has an improved
ability to evaluate bone fractures in the lower back and upper leg compared to the
POLAR 1II. Lower back and upper leg injuries are common in pedestrian impact
with higher vehicles like SUVs.

At present, both NCAP and regulatory tests use subsystem testing due to their
simplicity, repeatability and the ability to predict injury values accurate enough
for pedestrian protection. Since the number of tests required to assess pedestrian
protection is large, testing with full-scale pedestrian dummies would be expensive
and time consuming. The author is not aware of any current plans to examine
pedestrian kinematics using full-scale pedestrian impact tests.

7.5 Problem Identification

7.5.1 Peak Acceleration

Numerical tests were conducted in this work to obtain accelerations, time histories
and impactor displacements in x, y and z directions. The resultant accelerations
calculated from these numerical tests were used in calculating the HIC values. As
explained by Krishnamoorthy et al. (2013) in Advanced Materials Research, the
HIC calculation involves an exponent of 2.5 applied to the average head acceleration
measured over a window of 15 ms. The result of this formulation is that small
changes in the average acceleration can lead to large changes in the final HIC value.
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Fig. 7.9 POLAR III pedestrian dummy (Honda Worldwide 2008)

The average acceleration of any given head acceleration curve can be
increased by:

* Simply increasing the magnitude of a single peak acceleration

* Increasing the duration or width of a single peak

* Increasing the time difference between the first and an adjacent peak

¢ Increasing the magnitude of the acceleration of the first peak and the adjacent
peaks.

The accelerations calculated from the numerical tests conducted in this work
are shown in Figs. 7.10 and 7.11. It is evident from the curves that the HIC
value increases with the magnitude of resultant acceleration and increases with
the recording period for similar peak acceleration. Therefore, a low magnitude and
small duration of peak acceleration are required to keep the severity of head injuries
less than the limits specified by the GTR-9 and ANCAP.

Decreasing the structural stiffness of the hood panels decreases the magnitude
of acceleration and in turn increases the intrusion of the hood panels, otherwise
known as the deformation space. It is this interplay between the measured average
acceleration (and hence HIC) and the structural characteristics of the hood that
requires careful development if we are to minimise our requirement for the highly
valuable deformation space. Thus, optimisation of the structural stiffness of the hood
panels is essential to meet the requirements for head impact regulations.



172 R. Krishnamoorthy et al.

= High peak acceleration
sssass Low peak acceleration

®),

Acceleration

GO 5 10 15 20 25 30
Time (ms)

Fig. 7.10 Comparison of peak acceleration magnitude

=sss2s Duration of peak acceleration 01
e Duration of peak acceleration 02

®,
8

g
gsor§ HIC: 818.108
<100 %
50
0
0 5 10 15 20 25 30

Time (ms)
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7.5.2 Deformation Space

Pedestrian protection requires a soft, energy-absorbing hood assembly, whereas
durability, noise and vibration require a hood assembly with higher structural
stiffness. The properties of the direct and indirect contact surfaces of the head in
a crash influence the severity of head injuries. The indirect contact surfaces are the
surfaces under the hood. The three important parameters that influence the severity
of pedestrian head impact injuries are the available deformation space, structural
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stiffness and structural inertia. In this instance, the structural inertia is the resistance
given by the hood panel to changing its state to the changes in velocity and is
proportional to its mass.

Among these parameters, the available deformation space between the hood
assembly and the hard components within the engine bay is critical. The intensity
of the contact between the hood assembly and the under hood components with
high structural stiffness (secondary impact) increases the severity of pedestrian head
injuries. The deformation space required to absorb the energy varies with the head
impact mass, impact speed and impact angle. Intensity of the secondary impact can
be reduced either by increasing the structural stiffness and structural inertia of the
inner and outer hood panels or by increasing the deformation space.

Increasing the structural stiffness of the hood increases the magnitude of accel-
eration during impact due to reducing the hood deformation. Therefore, excessive
stiffness of the hood causes severe acceleration, which in turn increases the severity
of head injuries. Accordingly, increasing the structural stiffness to reduce the
intensity of the secondary impact is only possible up to a point, beyond which the
severity of injuries due to the contact between the hood assembly and the head
impactor (primary impact) becomes excessive. The simulations from the numerical
tests conducted in this work with increased structural stiffness for the inner and
outer hood panels are shown in Fig. 7.12. It shows that the deformation of the hood
panels is reduced whereas; the structural inertia of the panels has increased.

The resultant acceleration calculated for the simulation shown in Fig. 7.12 is
presented in Fig. 7.13, which exhibits a dominant initial peak resulting from high
inertial loading due to the structural inertia of the inner and outer hood panels.

Similarly, the simulation and resultant acceleration from the numerical tests
conducted in this work with the lack of deformation space are presented in Figs. 7.14
and 7.15. These figures show that the lack of deformation space leads to direct
contact of the head form with the hard components approximately 12 ms from the
start of the impact. This causes severe acceleration, hence increasing the risk of head
injury.

Plane to define hard
components within engine bay

Fig. 7.12 Primary impact of head with hood panels with excessive stiffness
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Fig. 7.15 Waveform with secondary impact

While increasing the deformation space improves pedestrian protection, it may
conflict with other vehicle design requirements. For example, the positioning of
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the hard components, such as the engine and the suspension, should meet ground
clearance requirements. In addition, the relative height difference between the hood
and the driver has to meet visibility requirements. Therefore, when the hood is
elevated to meet the deformation space requirements for pedestrian protection,
the driver also needs to be elevated to meet the visibility requirements. Thus,
vehicle manufacturers need to increase the height of the car for occupant comfort,
ergonomics and safety, which will compromise aerodynamics, vehicle stability and
fuel economy. It might also have adverse effects on vehicle styling.

Therefore, in order to reduce the pedestrian head injury risk, it is important
to optimise the hood assembly by balancing its structural stiffness for minimal
deformation or risk a series of far reaching flow on effects into a whole range of
areas such as engine bay packaging, occupant comfort and visibility, styling and
even aerodynamics.

7.5.3 Optimal Waveform

A waveform in this study is the shape of a curve describing the relationship between
the resultant acceleration and time. Meeting the requirements of the HIC value with
the lowest deformation space requires balancing hood stiffness and deformation
space. The parameters that affect the HIC value are impact velocity, available
deformation space, magnitude of peak acceleration and pulse duration. The resultant
acceleration and pulse duration are the key factors that affect the HIC value. These
factors are influenced by the impact velocity and the available deformation space.
In regulatory and consumer metrics tests, the impact velocity is given as a constant.
Therefore, the main factors that affect the HIC value, which is calculated from the
wave form, are the structural stiffness and the deformation space.

In 1995, Lim et al. explored options to develop a methodology for estimating
the minimum deformation space required in an impact to a pedestrian head. They
used generic waveforms and idealised waveforms of square waves, sine waves and
half-sine waves in formulating equations for deformation space requirements.

They used the ‘area ratio’ method to determine the waveform efficiency. In
this method, the ratios of areas under the acceleration—intrusion curves, shown
in Fig. 7.16, are used to determine the efficiency of the waveform, as shown in
Eq. (7.1).

-4 (7.1)

n

In which n = efficiency, A| = area enclosed by the acceleration—displacement curve
of the given waveform and the horizontal plane, A, =area of the shape that
encloses the geometrical shape of the acceleration—displacement curve of the given
waveform.
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Fig. 7.16 Waveform efficiency (1)) of a half-sine waveform (Lim et al. 1995)

With this method, the square waveform was determined as the most efficient
waveform, with 100 % efficiency (Fig. 7.16). Lim and his team calculated the
efficiency of the other waveforms by benchmarking against the square waveform.
Thus, the waveform efficiency of a sine waveform was determined as 63.66 % and
of a half-sine waveform as 50 %.

In 2007, Wu and Beaudet (2007) challenged the optimality of aiming at the
square waveform to achieve the minimal deformation space required to obtain a
given HIC value. They derived a realistic optimal waveform that is more practical
based on the theoretical optimal waveform, which is WSTC.

As shown in Eq. (7.2) below, HIC value calculation is the average of head
acceleration a(t) over an interval t; to t,, followed by a(t) is raised to the 2.5th power
and multiplied by the interval. The condition for selection of the interval is that it
should provide the maximum result within the 15 ms window:

,2 25

/(l(l)dl (t—11) (7.2)

1

HIC = max

Hh—1

To achieve the maximum result for HIC value for a given magnitude of peak
acceleration, the acceleration between t; and t, should be equal, which produces
a square waveform. Therefore, assuming a(t;) = a(t;), Wu and Beaudet derived the
formula to calculate the maximum intrusion of the hood, which produces a square
waveform in a pedestrian head impact as shown in Eq. (7.3):

8
Vo3

d=11.12x 107" .
HICS

(7.3)

Where d = maximum intrusion in metres, vo = impact velocity in m/s.
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Table 7.2 Comparison of deformation space requirements for various

waveforms
Waveform Deformation space in impact direction (mm)
Optimal 50.50
Square 67.32
Sine 79.49
Half-sine 96.38
Isosceles triangle 83.97

Ramp-up triangle 111.94
Ramp-down triangle | 55.98

Wu and Beaudet stated that numerous other waveforms show same HIC value
with smaller deformation space requirements. They concluded that the square
waveform is ideal when the criterion is either maximum head acceleration or force.
Since HIC is the criterion for head impact, the function derived is directly related to
WSTC, which proposes that the head can tolerate large head acceleration for a very
short duration and smaller head acceleration for a longer duration. Therefore, they
considered WSTC as the optimal waveform and derived the equation for calculating
the head travel or deformation space as stated in Eq. (7.4):

8

Vo3
HIC?

d = /v x dt = 8.342 x 1073 x (7.4)

Comparison of the deformation space requirement for a HIC value of 1000 at
40 km/h impact velocity of the optimal waveform and other waveforms reveals
that the optimal waveform requires the least amount of deformation space and the
second best is the ramp-down triangle waveform. Ramp-up triangle waveform in
Table 7.2 refers to a triangular waveform with late peak in which the resultant
acceleration gradually increases over time and drops down over a short period.
Ramp-down triangle waveform is the triangular waveform with early peak in which
the resultant acceleration increases from zero to peak within a short period and
decreases gradually. Wu and Beaudet did not consider rebound in their calculations.

The optimal waveform (WSTC) suggests that head acceleration could be infinite
at time zero, but in reality, this is impossible. Therefore, Wu and Beaudet considered
the optimal waveform as the theoretically optimal waveform. When ¢, equal
a 2 ms, delay is applied to obtain peak acceleration, the theoretically optimal
waveform becomes realistic and efficient, thus realistic optimal waveform as shown
in Fig. 7.17.

With the realistic optimal waveform, they stated that as design guidance, the
deformation space required to obtain a HIC value less than or equal to 1000 is
60 mm for a child head at 40 km/h impact velocity. For adult head impact, they
suggested that the required deformation space is 12 % more than that required for
child head impact, due to the steeper impact angle.
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Fig. 7.17 Realistic optimal a(l) A A
waveform for pedestrian head
impact (Wu and Beaudet
2007)
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In the research presented in this chapter, the impact performance offered by a
vehicle to the child head has been tested with 60 mm of deformation space as a
starting point. Wu and Beaudet derived the value of the required deformation space
using theoretical calculations ignoring rebound and other parameters that could
influence the head impact performance. In practice, the value of the deformation
space required to meet the compliance threshold homogeneously will be higher than
60 mm.

7.5.4 Influence of Hood Design

The structure and stiffness of the components in a hood assembly (Fig. 7.18) of
a car generally influence the severity of head injury in a pedestrian hood impact.
To reduce the severity of head injuries closer to the edges of the hood, the hood
assembly has to be weaker in this area. This will increase the deflection of the hood
assembly in the middle, thus increasing the severity of head injury closer to the
edges of the hood. The size of the hood also has an effect on the probability of
severe head injury because, as the hood size is increased, the deflection in the middle
of the hood also increases. Thus, more deformation space is required to reduce the
intensity of the secondary impact.

The challenge of reducing the severity of head impact near the fender can
be addressed by changing the hood design from an inlaid hood (Fig. 7.19) to a
wraparound hood (Fig. 7.20). However, the wraparound hood design raises issues
related to repair costs in low-speed impacts because it is more exposed to damage.

The length of the hood also plays a vital role in pedestrian protection in a
passenger car front-end collision with a pedestrian. In the case of a shorter hood
length, the pedestrian is likely to come into contact with the A-pillar, generally
an area of very high stiffness, resulting in increased risk of head injury. As the
length of the hood increases, the challenge to meet the durability, noise and vibration
guidelines become more difficult.



7 Optimization of Hood Design to Minimise Pedestrian Head Injury in Impact 179

Description Part Name

1 Hood Outer Panel
Hood Inner Panel
Hood Sealer
Hood Hinge Assembly
Hood Strut Assembly
Hood Striker Assembly

= T T

Fig. 7.18 Underside view of a hood assembly

Fig. 7.19 Inlaid hood (A2Mac1 2010)

The choice of material and thickness of the outer hood panel is important in
reducing the probability of severe head injuries. A combination of material and
thickness with better energy absorption is favourable for pedestrian protection.
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Fig. 7.20 Wraparound hood (A2Mac1 2010)

The preferred material for pedestrian protection should also satisfy quality, durabil-
ity, noise and vibration requirements. At present, the materials generally considered
for the outer hood panel include steel, aluminium, plastic, carbon fibre and
fibreglass.

The inner hood panel acts as an energy absorber and provides torsional and
bending stiffness to the hood assembly. Therefore, the choice of structure, material
and thickness for this component also plays a vital role in reducing the severity of
head impact.

Many concepts for the structure of the inner hood panel have been considered
by automakers around the world such as multi-cone, multi X pattern, frame, single
skin, double skin etc.

The choice of glue that is used between the inner and outer hood panels also has
an important role in reducing the severity of head injuries. The stiffness of the hood
assembly also increases with the number of gluing points and glue length between
the inner and outer hood panels.

Therefore, optimising the central area of a large hood poses several challenges.
This work includes developing a hood configuration that provides a robust and
homogeneous head impact performance for different impact positions in the central
area of the hood of a large passenger car while minimising the deformation space
required.
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7.6 Methodology

7.6.1 Parametric Geometric Model Creation

In this research, the designs of the hood assembly were created as three-dimensional
parametric geometric models using the chunky solid method in Unigraphics NX5
CAD software. The design boundaries were set up using datum planes at set
coordinates. This methodology enables faster design modifications in the hood
assembly.

Once a design alternative was developed, checking for fitment and clearance was
carried out by virtually assembling the hood to the original donor vehicle. The
mid-surface was extracted from these geometric models to enable the FE model
development to assess the head impact performance.

7.6.2 Finite Element Model Creation

The FE models were developed using ANSA V13 with the mid-surfaces extracted
from the geometric models. PRIMER was utilised to replicate the hood interface
conditions by assembling these FE models to the donor vehicle. The section,
material properties, joints and constraints to the components of the hood assembly
to the replicated design solution intensions were assigned using PRIMER as shown
in Fig. 7.21. The FE model of the head impactor was positioned at the intended
impact position and angle as shown in Fig. 7.22. The head impact condition of
the pedestrian was simulated using LS-DYNA-3D Computer Aided Engineering
(CAE) software as exhibited in Fig. 7.23. It shows different orientations of the
head impactor at 5 ms intervals for one data point. The HYPERGRAPH and
HYPERVIEW programs were used to post-process the results which are shown in
Figs. 7.24,7.25, and 7.26.

The energy data from the finite element analysis is presented in Fig. 7.27. In
general, the energy absorption data is used as a quality check for the finite element
model. In the finite element model constructed and utilised in this work, the energy
input is from the mass and velocity of the impactor. There are no other components
such as airbag is included in the model that can influence change in total energy
within the duration of the analysis. Therefore, the total energy remains constant for
the duration of the head impact analysis as shown in Fig. 7.27. The kinetic and
internal energy plots demonstrate that the major portion of the kinetic energy is
converted into internal energy. Thus, it can be stated that the finite element model
does not contain errors either in contact definition or in constraints, which can
influence energy fluctuations.
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Fig. 7.21 FEA model for optimisation

Fig. 7.22 FEA model with head impactor for optimisation

Fig. 7.23 FEA model simulation using LS-DYNA for optimisation
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Fig. 7.24 Contour plot of hood displacement using HYPERVIEW
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Fig. 7.25 Plot of hood displacement vs. time using HYPERGRAPH

7.6.3 Head Impact Model

Currently, finite element models of head impactors, complete anthropomorphic test
dummies and complete human body models are being used for head impact analysis
in the safety community. In this research, only the child head impactor considered
as this is the impactor used in the GTR-9 and NCAP tests to assess the protection
offered by a vehicle in a child head impact.

The FE model for simulating the head impact contains the hood assembly and the
interfacing components to constrain the hood assembly. It contains a validated head
impactor model and the prescribed requirements for the impactor such as mass,
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Fig. 7.26 Plot of resultant acceleration vs. time using HYPERGRAPH
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Fig. 7.27 Energy plot from the finite element model

diameter, angle, position and initial velocity of the impact to match the ANCAP
pedestrian protection testing protocol.

To minimise the CPU time for solving the FE model, the FE model was
developed for only the hood assembly and the front tie bar assembly. The front
tie bar assembly has been clipped, as shown in Fig. 7.28. The interface between the
modelled parts and the rest of the car body has been modelled by attaching it to the
ground through applying appropriate boundary conditions.

The deforming components have been modelled accurately with the necessary
mesh quality. This requires checking of the element length, aspect ratio, warpage
and angles of the mesh in the FE model. The position and properties of the
connections between the components such as the welds, joints, clinches and
adhesives have been matched to the physical vehicle build. Validated material
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Fig. 7.28 Pedestrian head impact finite element model

models have been used to assign the material properties of various components used
in this research. Stress—strain curves at specific strain rates have been included for
the deforming components to improve the predictive accuracy of the model.

The interaction between the vehicle and impactor has been defined using the
contact definitions in LS-DYNA. The coefficient of friction has been assigned to
define the friction between the vehicle components and the impactor components as
well as the friction between the vehicle and the impactor.

7.6.4 Correlating Finite Element Simulations
with Experimental Results

The experimental results of a large sedan already in the market and tested by
ANCAP for pedestrian protection have been utilised for correlation. ANCAP tested
this vehicle to assess the level of pedestrian protection offered using the Euro
NCAP pedestrian subsystem testing protocol version 5.3. The pedestrian protection
experimental tests were conducted at the Centre of Automotive Safety Research,
Adelaide.

Figures 7.29 and 7.30 show good correlation between experimental test results
and CAE simulations in both measured head acceleration and the deformation
pattern of the hood outer surface.

The correlation was used to calibrate the FE models to obtain good predictive
accuracy in the numerical tests for the optimal hood design solution.
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Fig. 7.30 Correlation of hood deformation between ANCAP test and FE simulation

7.6.5 Computation of Hood Intrusion

The accelerometer, which measures the acceleration in three directions, is located
at the mass centre of the impactor. In the FE model, a node has been placed at
this location to represent the accelerometer and enable computation of the impactor
displacement in both local and global coordinates, as shown in Fig. 7.31.

When the displacement is determined in the impact axis using the node on the
accelerometer, the displacement (Intrusion A) is more than the calculated intrusion
in impact direction (Intrusion T), as shown Fig. 7.32.

This is due to the rotation of the accelerometer axis along with the impactor
rotation in rebound as shown in Fig. 7.33. Therefore, the impactor intrusion in the
vertical axis, which is the Z direction, was computed in global coordinates.
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= Global coordinate

= Accelerometer coordinate

Accelerometer

Fig. 7.31 Coordinates for intrusion computation

The intrusion computed in the Z direction was multiplied by 1/sin(6), which
was calculated using trigonometry, to derive the intrusion in the impact direction
(Intrusion T) as exhibited in Fig. 7.34.

Although ‘Intrusion T’ was calculated from the displacement of the centre of
the head impactor in the global Z direction, there could be a variation between the
actual intrusion and ‘Intrusion T’ if the first point of contact or impact point is
different to the measured point. In addition, an assumption has been made that there
is no compression of the head form in the impact. In this research, the ‘Intrusion T’
measurement has been utilised as the actual deformation space required in all the
calculations and comparisons.
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Fig. 7.33 Accelerometer rotation due to impactor rebound

7.7 Vehicle Design for Pedestrian Head Impact Protection

7.7.1 Design Space Definition

The design space is the available space into which the hood assembly should fit
without affecting the down vision plane, according to the regulatory requirement
ECE-R125 and positioning of the components within the engine bay.

Figure 7.35 illustrates the available packaging space for inner and outer hood
panels. The inner and outer hood panels are the two main components in the hood
assembly that affect pedestrian protection performance.

Therefore, the scope of this research is to optimise the inner and outer hood
panels to meet the HIC value requirements with minimal deformation, as shown in
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Fig. 7.34 ‘Intrusion T’ calculation method

Fig. 7.35 Design space for Down vision plane
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Fig. 7.36. However, modifications that may be required in interfacing components
to improve the pedestrian safety performance offered by the vehicle are not included
in the scope of this research.

7.7.2 Impact Area Definition

The head impact area on the hood was defined as per the GTR-9 test area definition.
The Hood Leading Edge (HLE—Fig. 7.37) or 1000 Wrap Around Distance (WAD),
Hood Rear Reference Line (HRRL—Fig. 7.38) and Side Reference Lines (Fig. 7.39)
determine the boundaries for head impact area. WAD divides the head impact area
into adult and child head impact zones. WAD is the distance measured from the
ground using a flexible tape held taut on the outer surface of the vehicle front
structure in a vertical longitudinal plane.
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Fig. 7.37 Hood leading edge (United Nations Economic Commission for Europe 1998)

In the GTR-9 protocol, the accident data and technical feasibility of regulating
within the test area are the basis for WAD boundaries. The child impact area is
defined from 1000 WAD or HLE to 1700 WAD and the adult head impact area are
defined from 1700 WAD to HRRL or 2100 WAD. The resulting test area is as shown
in Fig. 7.40.

A range of impact points has also been selected for the numerical simulations,
varying in fore—aft as well as in cross-car directions of the vehicle at regular intervals
in order to analyse the central area of the hood, as shown in Fig. 7.41. These impact
positions are within the child head impact zone. This area has been selected because
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Hood Rear Reference Line

Fig. 7.38 Hood rear reference line (United Nations Economic Commission for Europe 1998)
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Fig. 7.39 Hood side reference line (United Nations Economic Commission for Europe 1998)

high hood intrusions occur in the central area of the hood and the interfaces around
the edges prevent deformation.

The impactor speed has been set to the ANCAP requirement, 40 km/h that is
higher than the GTR-9 test speed, which is 35 km/h, to analyse the most severe load
case.
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Fig. 7.40 Head impact test
area on hood
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Fig. 7.41 Impact positions
considered for optimisation
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Fig. 7.42 Concepts for improving pedestrian protection performance

7.8 Parameters for Improving Pedestrian Protection

7.8.1 Concepts Generation

Various concepts for the inner hood structure were considered. The selection of
concepts was done referring to literature and the hoods available in the market that
could be considered in the hood design for a large sedan as shown in Fig. 7.42. The
inner hood structures considered for improving pedestrian protection performance
are the beam, cut-out, skeleton, grid and multi-cone patterns. The beam pattern has
beams positioned in the fore—aft direction of the vehicle, which provides structural
stiffness to the hood assembly. The cut-out pattern is a mass-saving and cost-
saving option in which the centre portion of the inner hood has a large opening.
The skeleton pattern is beams nested in an A-shape. This pattern allows improving
the structural stiffness of the hood in the centre, but outboard openings reduce the
mass and structural stiffness. The multi-cone pattern is cone shaped forms nested at
constant distances. This design provides homogeneous structural stiffness. The grid
pattern consists of longitudinal and lateral beams arranged at regular intervals. Thus,
this pattern also should provide homogeneous structural stiffness and the cut-outs
enable mass reduction.

Aluminium and steel were considered in the analysis for the inner and outer
hood material because they generally meet the requirements for noise and vibration,
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Fig. 7.44 Inner hood geometries chosen for developing an optimal solution

durability and high-speed crash performances. A thickness range of 0.4—1.5 mm
was considered for the inner and outer hood thickness, values less than 0.4 mm will
not meet the durability and forming requirements while those above 1.5 mm will
result in high structural stiffness and structural inertia as well as increased mass.

7.8.2 Concepts Evaluation

The concepts mentioned in the previous section were analysed through the Pugh
matrix as shown in the previous page in Fig. 7.43. The comparison of the concepts
to various performance criteria, multi-cone, skeleton and grid patterns for inner hood
structure (Fig. 7.44) ended up with the same merits, as well as aluminium and steel
for the material. Therefore, these configurations were chosen for further evaluation.
The hood attachment and boundary strategies, though may improve pedestrian
protection performance, were not been taken into consideration throughout the
analysis.
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Fig. 7.45 Control factors in scope for refinement

Table 7.3 Variables considered for refinement

Variable Values of variable Type of variable
Inner hood geometry Skeleton pattern, multi-cone pattern grid pattern | Discrete
Inner/outer hood material | Aluminium steel Discrete

Inner hood gauge 0.4-1.5 mm Continuous
Outer hood gauge 0.4-1.5 mm Continuous
Impact position 1-8 Discrete

7.8.3 Control Factors in Scope

Design parameters such as thickness and material for the inner and outer hood
panels as well as inner hood structure were considered for improving the pedestrian
protection performance. Figure 7.45 shows the list of control factors that are in scope
to modify the concepts selected through the Pugh matrix.

The variables considered in this study have been summarised in Table 7.3;
tolerances otherwise known as noise factors that might have some influence on the
resulting HIC value and the deformation of hood panels have not been considered
in this research work for simplicity purposes.
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7.8.4 Concepts Refinement

The parameter diagram as shown below in Fig. 7.46 clearly outlines the relationship
between the input and output parameters.

7.9 Optimisation of Hood Panels

7.9.1 Methodology

Strength-two orthogonal array design of experiments was used in this work to create
a matrix with the variables mentioned in Table 7.3. This matrix was utilised to create
a multitude of hood designs by varying the values of these design parameters. Non-
linear LS DYNA models were created to replicate pedestrian protection head impact
physical testing for all the configurations as per the Design of Experiments (DOE)
matrix. The accelerometer time histories were gathered as output for all numerical
tests, and from that, the HIC values were calculated using Eq. (7.2). The vertical
intrusion of the head impactor from the node displacement was also collected to
calculate the intrusion in impact direction. Accordingly, the efficiency was derived
for all hood configurations. Finally, the mean value of efficiency (umn), the mean
value of HIC (WHIC) and the standard deviation of HIC (cHIC) were derived for all
the hood configurations while considering all impact positions.

The v provides average efficiency between the impact positions for a given
configuration of the hood assembly. Similarly, cHIC from the calculated mean
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value for a given configuration of the hood assembly between the impact positions
was utilised to quantify the homogeneous behaviour of the hood assembly. The
WHIC provides the average HIC value between all the impact positions for a given
configuration of the hood assembly. The aim was to obtain the lowest value of cHIC
thus achieving better homogeneous head impact performance with the highest value
of wn for HIC values less than 1000.

The Kriging response surface based approach was used as an interpolation
method to predict the values for the variables considered in the improvement of
pedestrian protection. The Kriging interpolation method was named after a South
African mining engineer DG Krige and it has been used as a fundamental tool in the
field of mining (Bohling 2005). In recent times, this method has been successfully
implemented in a variety of applications. In the Kriging approach, the response
surface is mapped with limited sample data in the design space followed by utilising
this surface to estimate the values of variables at locations where the sample data
is unavailable. In this research, response surfaces were mapped with the numerical
results for pr, WHIC and oHIC.

Figure 7.47 shows the predictive accuracy of the wHIC response surface. The
analysis of variance (ANOVA) technique was used to assess the relationship
between the inputs and outputs as well as to identify the important variables in this
study (Gelman 2004). The ANOVA charts showed that the material, thickness of
the inner hood panel, thickness of the outer hood panel and the hood inner structure
contribute a substantial percentage in determining the v, wHIC and oHIC values.
The ANOVA graph for the WwHIC was presented in Fig. 7.48.

In Fig. 7.48, HOODMATL is the hood panel material, OTRGAUGE is the
thickness assigned for the outer hood panel, INRGAUGE is the thickness assigned
for the inner hood panel and INRGEOM is the type of structure of the inner hood.

The Monte Carlo method, which is a mathematical technique for statistical
sampling was utilised to check whether any other configuration might provide a
better output than the ones considered in the sample. This method generates a cloud
of input variables that obey the defined properties for which the output was predicted
from the existing response surfaces.
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Fig. 7.48 ANOVA chart for Percent Contribution to HIC value
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The sum of the mean value of HIC and its standard deviation (WHIC + cHIC)
provides 67 % confidence to this research, assuming normal distribution
(Narasimhan 1996). The aim of this study is to obtain 95 % confidence by setting the
HIC threshold condition to the sum of the mean value of HIC and twice its standard
deviation (WHIC + 20HIC) to be less than or equal to 1000. Aiming for 99 %,
robustness requires the HIC threshold condition to be the sum of the mean value
of HIC and three times its standard deviation (WHIC + 30HIC). For a production
representative hood, it would be necessary to achieve all the impact positions less
than the HIC value of 1000. This would be achieved through the detailed design
work on a specific hood design and its interfacing conditions. Since this research
focuses on a more general study looking at material, thickness and construction of
hood panels, the 95 % confidence limit is used.

The severity of pedestrian head injuries could be influenced either by the primary
impact or by the secondary impact. These concepts were refined in two stages. The
first step was the selection of the type of the inner hood structure and inner and outer
hood material first by considering only primary impact followed by considering both
the primary and secondary impacts. The second step was the selection of the outer
hood panel thickness and the inner hood panel thickness and structure. The two-
stage optimisation approach was utilised in this research to reduce the number of
simulations and modelling complexity.

7.9.2 Selection of Hood Structure and Material

The components within the engine bay were not considered in this analysis model;
thus, only primary impact has been taken into consideration.

In this research, the efficiency of a hood design was calculated as the ratio of the
actual deformation of hood assembly (‘Intrusion T*) and the optimal deformation
calculated from the HIC value of the corresponding analytical test. The optimal
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Fig. 7.49 Evaluation of efficiency

deformation is the theoretical minimum deformation needed for a given HIC value
and it was calculated using Eq. (7.5) (Wu and Beaudet 2007) as shown below:

wloo

Vo

d=28342x 107> —
HIC3

(7.5)

Where, d is the deformation and vy is the impact velocity.

In numerical testing, the actual deformation was computed in the Z direction and
used to derive the ‘Intrusion T’ as discussed earlier. The equation to calculate the
efficiency (n) of the hood assembly is:

_ Optimal deformation

- (7.6)
Intrusion T

Thus, a hood configuration with maximum efficiency for an impact had minimum
‘Intrusion T’ for a given HIC value.

Figure 7.49 shows the wn against respective cHIC. Among these configurations,
the optimal hood configuration that provides the highest wn was identified. The
numerical tests conducted to check the predictive accuracy of this optimal solution
show that the results are comparable. This showed that the deviation between the
predicted and numerical values is within 0.01 and therefore it could be stated that
accurate predictions can be made from the response surfaces.
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Fig. 7.50 HIC value, effective plastic strain, displacement of the impactor and hood with
consideration to primary impact only for point A
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Fig. 7.51 HIC value, effective plastic strain, displacement of the impactor and hood with
consideration to primary impact only for point B

Numerical tests were conducted for eight impact locations (A—H) as shown in
Fig. 7.41 to derive the values for this data point and the details of the results from
the numerical tests are shown in figures ranging from Figs. 7.50, 7.51, 7.52, 7.53,
7.54,7.55,7.56, and 7.57. The details included in these figures are,

* Plot of resultant acceleration against time

* Plot of the displacement of the impactor in global Z direction against time
» Contour plot of the effective plastic strain

* Contour plot of the magnitude of the deformation of the hood panels.
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Fig. 7.53 HIC value, effective plastic strain, displacement of the impactor and hood with
consideration to primary impact only for point D

The results exhibited in figures ranging from Figs. 7.50, 7.51, 7.52, 7.53, 7.54,
7.55, 7.56, and 7.57 show that the deformation of the hood panels is not excessive,
even while secondary impact is not considered, due to the optimisation of the
structural stiffness of the hood panels.

HIC values less than the threshold value (1000) are feasible with various
combinations of inner and outer hood thicknesses. The efficiency variation is only
3 % for various combinations of the inner and outer hood thickness between 0.5 and
1.4 mm.
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Fig. 7.54 HIC value, effective plastic strain, displacement of the impactor and hood with
consideration to primary impact only for point E
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Fig. 7.55 HIC value, effective plastic strain, displacement of the impactor and hood with
consideration to primary impact only for point F

Thus, thinner inner and thicker outer hood thicknesses could be chosen within
this range taking into consideration the torsional and bending stiffness, durability,
noise and vibration performances.

Figure 7.58 shows the mean value of efficiency plotted against the combined
inner and outer hood panel thickness. Although it could be concluded that similar
efficiency is possible with various combinations of inner and outer hood thicknesses,
efficiency varies with the combined thickness of inner and outer hood, as shown in
Fig. 7.58. The optimal efficiency is achievable with a combined thickness of about
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Fig. 7.56 HIC value, effective plastic strain, displacement of the impactor and hood with

consideration to primary impact only for point G
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Fig. 7.57 HIC value, effective plastic strain, displacement of the impactor and hood with

consideration to primary impact only for point H

1.76 mm. A trend line in this plot will show that the efficiency continues to increase
with higher gauges but the HIC values will exceed the required limit.

The Eq. (7.5) that was utilised to derive the optimal deformation was derived
from the theoretical optimal waveform, which is the WSTC where the resultant
acceleration is infinite at zero millisecond and is impractical to obtain. In practice,
it takes a minimum of 1-2 ms to reach the peak acceleration in a pedestrian head
impact. Therefore, it could be concluded that in practice it is impossible to achieve

100 % efficiency with any hood configuration.
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Fig. 7.58 Efficiency and combined hood panel thickness relationship

From the optimal acceleration curve, the calculated optimal deformation space
required for HIC value that is less than 1000 is 50.5 mm. The results presented
in Fig. 7.58 show that 84 % efficiency is possible with a steel multi-cone hood
structure with a combined thickness of 1.76 mm for inner and outer hood panels.
The deformation space required for a hood assembly with 84 % efficiency has been
found to be approximately 60 mm. This is in agreement with suggestions given by
Wu and Beaudet, who also derived equations to calculate the optimal deformation
space as shown Eq. (7.5). Thus, a hood configuration with 84 % efficiency could be
considered as the practical limit of efficiency as well as optimal hood configuration.

To check the effect of allowing 70 mm deformation space, impact has been
simulated with different values of deformation space within the range from 60
to 74 mm. Same variables and qualifiers such as the mean value of HIC and its
standard deviation have been used in the analysis. Comparison of WHIC + 26HIC
for various deformation space as shown in Fig. 7.59 indicates that a minimum of
about 69 mm deformation space is required to obtain robust and homogeneous head
impact performance when considering both primary and secondary impacts.

Therefore, it can be stated that a multi-cone hood inner structure made of steel
with approximately 1.6 mm of combined thickness of thinner inner and thicker outer
hood panels requires a deformation space of about 69 mm to obtain robust and
homogeneous head impact performance.

7.9.3 Optimisation of Panel Thickness for Aluminium Material

From the previous optimisation steps, it was identified that multi-cone structure
for inner hood gave optimal head impact performance for steel and aluminium
hood panels. However, it was also noticed that a 70 mm deformation space was
not enough to obtain the HIC value less than 1000 when hood panels are made of
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Fig. 7.59 Influence of deformation space on HIC value (steel)

aluminium. Thus, another study was conducted with deformation space of 80 mm
for aluminium hood panels with multi-cone inner hood structure.

Figure 7.60 shows the mean value of HIC plotted against its standard deviation.
The head impact performance results from this study shows that 80 mm is enough
to obtain the mean value of HIC less than 1000, although it is not enough to provide
robust head impact performance.

Therefore, analysis was carried out by increasing the deformation space from
80 to 85 mm. The plot of inner and outer hood panel thickness against the
WHIC + 20HIC in Fig. 7.61 shows that it is possible to obtain robust head impact
performance with HIC value less than the compliance threshold with a 85 mm
deformation space. Inner hood thickness of 0.58 mm and outer hood thickness of
1.5 mm show optimal head impact performance with aluminium hood panels.

Figure 7.62 shows that the HIC value increases rapidly when the combined
thickness of hood panels is below the optimal panel thickness, due to the intensity of
the secondary impact. The HIC value slowly ramps up when the combined thickness
is higher than the optimal thickness.

Figure 7.63 presents a close-up view of the optimal performance from Fig. 7.62.
From this graph, it could be stated that combined hood panel thickness of 2.1 mm
with aluminium material shows optimal head impact performance. Figure 7.64
presents the combined inner and outer hood panel thickness used in various vehicle
models. As mentioned earlier, vehicle manufacturers balance the deformation space,
mass, noise, vibration, durability and pedestrian protection requirements when
selecting the inner and outer hood panel thicknesse