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Programming Interfaces for the TPM
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Johannes Winter, and Michael Gissing

Abstract The paradigm of Trusted Computing promises a new approach to
improve the security of embedded and mobile systems. The core functionality,
based on a hardware component known as Trusted Platform Module (TPM),
is widely available. However, integration and application in embedded systems
remains limited at present, simply because of the extremely steep learning curve
involved in using the programmer-facing interfaces. In this chapter, we describe the
current state of the Trusted Computing Group’s software architecture and present
previous approaches to improve usability. We report on a novel design of a high-
level API for Trusted Computing for Java which has been optimized for ease-of-use
and clear abstraction of Trusted Computing concepts. We derive requirements and
design goals and outline the API design. Finally, we show the application and
benchmarks in embedded systems. The result of this effort has been standardized
as Java Specification Request 321.

1.1 Introduction

Embedded Systems take many forms, such as mobile phones, industrial control sys-
tems, network devices, sensor nodes, and smart cards. Having become nearly ubiq-
uitous, the world Embedded Systems market exceeds 100 billion USD [18]. Often,
sensitive information is created, accessed, manipulated, stored, and communicated
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on such Embedded Systems. Thus, security needs to be considered throughout
the design process [50], including hardware design and software development.
Specifically, in the Trusted Computing approach, security is bootstrapped from a
small dedicated piece of secure hardware, the Trusted Platform Module (TPM).

While most the major computer manufacturers are shipping servers, desktop and
notebook computers containing TPMs with several hundreds of million of machines
can be assumed to provide this hardware device [58], its application to Embedded
Systems has only been limited. Major obstacles to the development of Trusted
Computing enabled software have been the high complexity of the specification
of the software stack that is used to manage the TPM and limited support for
programming languages that support different hardware platforms [57, 60].

In particular, there has been insufficient support for platform-independent run-
time environments like .NET [40], Android or Java. Such environments are
particularly useful for implementing modern security solutions on heterogeneous
platforms. For instance, several billions of devices support Java, and Oracle claims
[43] that the Java developer community, with nine million members, is the largest of
its kind. It is of little surprise that there have been a number of attempts to provide
TPM libraries that target such a programming languages. Yet there was a lack of an
established, generally-accepted Application Programming Interface (API) for TPM
access.

In this chapter, which extends on [71], we describe the design of a high-level Java
API for Trusted Computing, which has been published as an official Java standard
[68]. Our goal in designing this API is to provide a simpler, high-level interface to
the TPM while still adhering to the concepts and standards defined by the Trusted
Computing Group. Benchmark results show the suitability in Embedded Systems
using the TPM.

1.2 Trusted Computing in the Java Environment

1.2.1 Java for Embedded Systems

At the application layer, the Java programming environment has seen a broad
adoption ranging from large-scale business applications hosted in dedicated data
centers to resource constrained environments as found in mobile phones or Personal
Digital Assistants (PDAs), set-top boxes, industrial control and even smart cards.
Java program code [21] is not compiled to native machine code but to a special
form of intermediate code, called byte code. This byte code is then executed by a
virtual machine (VM) [35] called the Java VM. This characteristic makes Java an
excellent choice for development aiming at heterogeneous environments. In contrast
to conventional programming languages such as C or CCC, Java is equipped with
inherent security features supporting the development of more secure software.
Among those features are automatic array-bounds checking, garbage collection and
access control mechanisms. Additional aspects that distinguish Java from other
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environments are code-signing mechanisms and the verification of byte code when
it is loaded. The class-loading mechanism separates privileged code and creates a
sandbox for remotely fetched classes [19].

For Embedded Systems development, Java offers a number of advantages
[65]. Its hardware-independent architecture hides specifics of the hardware and
operating system, as it is abstracted through the platform-specific, often optimized
implementation of the Java VM. The rich libraries of the Java Runtime Environment
(JRE) offer much more features than operating system APIs. Java also eases the
creation of network inter-operable embedded systems and simplifies the software
development. For very small systems, Java ME offers small-footprint configurations
of Java, albeit with limited functionality. The full-featured Java SE is found on PCs
and medium-to-large (i.e. 32 MB of RAM or more) Embedded Systems.

With Java being a key component, Android [20] is now the first choice for
mobile smart-phones. Based on a Linux kernel, it offers a broad application library
framework and the Dalvik virtual machine with just-in-time compilation which is
optimized for resource-restrained devices. In addition, Android is fully source-code
compatible with Java. As of 2013, Android is the most widely used, off-the-shelf
operating system in Embedded Systems [77].

Here also, Trusted Computing is very promising to further improve security.
While generic cryptography is well supported with the Java Security Architecture,
there is currently no established standard API for Trusted Computing available.
Still, a large number of Java-based use cases have been demonstrated for Trusted
Computing, using several existing approaches for Trusted Computing integration
in Java.

1.3 TCG Software Architecture

1.3.1 The TCG Software Stack

The TPM design is intended to allow for cost effective implementations on hardware
architectures with restricted resources, such as smart card platforms. Consequently,
the functionality of the TPM is restricted to what is offered by its API. The TPM
is not able to execute custom code, and even most of the features offered require
auxiliary functionality implemented in software.

Of the TCG standards, the TCG Software Stack (TSS) [73] is responsible
to access and manage the TPM and also to provide a programming interface
for TC applications. The standard document is accompanied with C header and
Web Services Description Language (WSDL) interface definition files. The target
language for the standard is the C programming language [26].

The TSS offers a set of function calls that help perform a number of operations.
These functionalities cover the setup and administration of the TPM, such as taking
ownership, the setting of configurations or the querying of properties. With regards
to the chain of trust, it is the task of the TSS to record a Stored Measurement Log
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(SML) for tracing the measurements that led to the current PCR values. The life
cycle of cryptographic keys is also controlled through the TSS, starting with the
creation of public-private key-pairs. The limited resources of the TPM necessitate
external, encrypted storage of the cryptographic material, either at run-time by
swapping out keys from limited hardware key slots into main memory or filing in
persistent storage on the hard disk. The TSS also supports different mechanisms of
key certification and the backup to other TPMs in a protocol called migration.

The TSS is also specified to enable Identity Management. To prevent privacy
issues by correlation of the reuse of the same unique key pair for different services,
the unique Endorsement Key cannot be used directly. Instead, Attestation Identity
Keys (AIKs) are created in a process that involves the TPM and a trusted third party
called a PrivacyCA. The TSS is the entity that collects all required information
and certificates to assemble the appropriate data structures for communication
between the local TPM chip and the remote PrivacyCA service. In [46], we
outline this protocol in more detail. The alternative protocol of Direct Anonymous
Attestation [9], is based on group signatures. This protocol allows a TPM to proof
that it is within a group of TCG-compliant TPMs without revealing which member
it is. However, the scheme described through the TPM and TSS specifications has
been found to be complex to use and very slow in practical implementations [14].

Data can be encrypted by the TPM mainly using two mechanisms, binding and
sealing. Binding, which is done in software, potentially even on a remote host, is
the encryption of a limited amount of data with a public RSA key using either
PKCS #1 version 1.5 [30] or OAEP [6] paddings. If the corresponding private key
is unique and held by a TPM this implies that only this TPM can decrypt the data.
In an even stronger mechanism called sealing, the encryption is performed on-chip
incorporating a unique secret and a set of PCRs. Sealed data can only be unsealed
by precisely the same TPM in the desired PCR configuration.

The TSS also provides interfaces to sign user data using TPM-protected keys,
which were generated with type information that allows them to perform RSA-
signature operations. AIKs are even more restricted and can only be used to sign
TPM internal data structures. The most prominent example is the Quote operation
where a set of PCRs is signed to report the current platform state. Further useful
interfaces of the TSS provide access to the random number generator, a tick
counter that can potentially be correlated with real-time and a monotonic counter
mechanism.

From a software engineering perspective, the TSS specification follows a layered
architecture shown in Fig. 1.1. Just below the TSS, and not part of it, is the TPM
driver. The TPM driver can be either vendor specific or follow the TPM Interface
Specification (TIS) standard [74]. It is the task of the lowest layer of the TSS to
abstract this driver and expose an OS and vendor independent set of functions that
allows basic interaction with the TPM. This lowest layer is called the Trusted Device
Driver Library (TDDL). The TDDL serves as a single-instance, single-threaded
component and allows for sending commands as byte streams to the TPM and
receiving the responses.

The next layer, the TSS Core Services (TCS), should be implemented as a
singleton system service or daemon. It is the single instance that manages the
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Fig. 1.1 The TCG software stack (TSS) architecture consists of several software layers within a
trusted platform

TPM’s resources and accesses it. It generates synchronized command streams from
concurrent API commands to be transferred through the TDDL. The TCS takes
care of the management of TPM key slots as well as permanent storage of TPM
key material. Keys are assigned a Universally Unique Identifier (UUID) [34] that is
used to identify stored keys. The TCS also maintains the SML where all PCR extend
operations are recorded.

The upper layers of the software stack may access the TCS via inter-process
communications according to the platform-independent Simple Object Access
Protocol (SOAP) [78] interface.

The highest layer, the TSS Service Provider (TSP) provides Trusted Computing
services to applications in the form a shared library. The TSP interface is defined as
grouped function signatures and data structures in the C programming language.
The TSS was also designed to allow partial integration with existing high-level
APIs, such as PKCS #11 [52]. This enables the use of the cryptographic primitives
provided by the TPM by legacy software. A limitation of this approach is that
these legacy cryptographic APIs do not account for advanced Trusted Computing
concepts such as sealing. Also the TCG’s key typing and padding policies need to
be considered [12] and might not match all application areas.

1.3.1.1 TSS in Embedded Systems

On Desktop systems, recent years have seen successful integration of generic TPM
1.2 hardware drivers into major operating systems, i.e. not only Windows, but also
Unix derivatives and Linux. Several implementations of TSS exist. One noteworthy
open source implementation by IBM is TrouSerS [25].
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As we will discuss later in Sect. 1.6.2, there are different sizes and classes
of embedded systems. Typically, however, only selected components of the TSS
architecture are used. For instance on the TDDL level, drivers are usually derivatives
of the Linux implementations. Which driver to use depends on the hardware
interface of the TPM.

When drivers have established basic connectivity, higher layers may access the
TPM. In many specific use cases, it is sufficient to implement only a small number of
instructions, such as writing into a PCR register. This can be achieved by assembling
the appropriate instruction byte arrays manually in programs [32] or by including
command line tools. This keeps the software overhead on embedded platforms
small; however, more complex instructions, for instance creating or certifying fresh
keys are a tedious task to write, and most implementors will need a full-scale TSS to
achieve such functionality. Very small platforms will note able to support this. One
possibly solution can be to perform complex initialization and commissioning tasks
on the TPM chip at manufacturing time, before even soldering it onto the target
platform [79].

On medium-sized embedded systems, running a full TSS becomes feasibly,
although the required XML and cryptographic features require a certain amount
of system resources.

1.3.2 Review of Existing Java Libraries

This section presents an overview of existing libraries and APIs that provide
first, experimental support for Trusted Computing to Java developers. Additionally,
strengths and weaknesses of the individual approaches are discussed.

1.3.2.1 Trusted Computing for the Java Platform and jTSS

The central component of the open source “Trusted Computing for the Java
Platform” project is an implementation of the Trusted Software Stack (TSS) for
Java programs called jTSS [47]. It is a large library that provides Java programs
with the TSS functionality that C programs currently enjoy.

Overall, the project offers two flavors of TSS implementations.

jTSS Wrapper Provides Java programs access to C-based stacks through an object-
oriented API, which forwards calls to the native TSS. A thin C-back-end
integrates the TSP system library. The Java Native Interface (JNI) maps the
functions of the C based TSP into a Java front-end. There, several aspects of the
underlying library, such as memory management, the conversion of error codes
to exceptions and data-type abstractions, are handled. This wrapping approach
results in complex component interactions. Unfortunately, debugging across
language barriers is a challenging task. Another drawback is that implementation
errors in the C-based components may seriously affect JVM stability.
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jTSS Is a native implementation of the TCG Software Stack written completely in
the Java language. It offers seamless support for Linux operating systems and
all Windows versions starting with Vista, demonstrating platform independence.
The Java TCS also synchronizes access from multiple Java applications. Such
a full Java TSS implementation clearly reduces the number of involved compo-
nents and dependencies. Consequently, this approach results in fewer side-effects
from incompatible TSS implementations or different interpretations of the TSS
specification. Moreover, a pure Java stack can easily be ported to other operating
systems and platforms.

The API exposed by both variants is the same, enabling Java application
programmers to switch between the two seamlessly, with the choice of the back-
end implementation depending on the surrounding platform. It defines data types,
exceptions and abstract methods – we refer to it as the jTSS API [72]. It closely
follows the original TSS C interface, permitting the user to stay close to the
originally-intended command flows and providing the complete feature set of the
underlying library. jTSS covers almost all of the functions specified by the TCG for
communicating with the TPM at the fine granularity of TSS commands. As with
every TSS, a complex sequence of commands is required to achieve functionality
such as sealing, binding, attestation and key generation for application software.
The project also providesjTpmTools (jTT), which is a collection of useful sample
programs. They are implemented using jTSS API and demonstrate its usage.

The libraries were first created in the course of the Open_TC [42] research
project. The first release was authored by Winkler, while the subsequent releases,
maintenance and support activities have been done by Toegl. jTSS has since
become a popular choice for Trusted Computing related research activities
[2–5,7,8,11,13,15–17,22,24,27,29,31,33,37,38,44–46,55,59,63,66,67,69,70,81–
84] and even found (quite) limited industrial use. It is one of the most widely used,
supported and regularly updated TSSes available today.

While jTSS does allow the use of the TPM from Java, it still involves a significant
learning curve for the average Java programmer, who may not be familiar with the
procedural programming style that stems from the C-based TSS legacy. Overall, it is
still a complicated API that requires a large amount of training and cross-language
experience before it can be used in real-world projects.

1.3.2.2 TPM/J

Sarmenta et al. presented TPM/J [53,54], a high-level API that allows Java applica-
tions to communicate with the TPM. It is compatible with the Linux, Windows XP
and Windows Vista and Mac OS X1 operating systems thus living up to the promise
of platform independence.

1At the time of writing, the inclusion of TPMs in Mac OS X compatible platforms has been
discontinued.
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Strictly speaking, TPM/J is not a TSS since it intentionally deviates from the
specifications of TCG’s TSS, which seems natural since the TSS specifications
provide details specific to the structural programming paradigm and cannot be
ported to the object-oriented perspective without major changes to the specifica-
tions. A drawback is that the library does not feature a split design as the TSS.
Therefore, the JVM must run with elevated privileges to access the TPM hardware
resource. Moreover, a major concern for users of TPM/J is that it is not regularly
maintained, thus making it unsuitable for large-scale adoption in the community.
It has however been used to study monotonic counters [53], and an attack on the
TPM [1].

1.3.2.3 TPM4JAVA

TPM4JAVA [23] is a Java library that provides an easy-to-use API to Java
programmers for communicating with the TPM. Its design is based on three levels
of abstractions:

1. High-level: It provides developers with conveniently usable functionality to
execute selected commands such as taking ownership, computing hashes and
generate random numbers.

2. Low-level: This is a less user-friendly approach that allows programmers to
execute any of the commands supported by the TPM.

3. Back-end: It is used internally for communicating with the TPM device driver
library.

While the high-level API makes several functions easily accessible, some
operations, such as performing a quote during attestation, require several lines of
code and a low-level understanding of the actual functioning of the TPM. This
makes ‘high-level’ a misnomer. The project has not been maintained for several
years. Finally, TPM4JAVA shares the limitation of the other approaches of not
adhering to the TCG’s specifications.

1.3.3 Other Proposed Higher Level Interfaces

From a developer’s point of view, the highly complex TSS design suffers from
several drawbacks. It is challenging to develop applications with it, as even
straightforward mechanisms of the TPM correspond to complicated instruction
flows in the TSS API. Implementations of the various TSS layers themselves are
often difficult to maintain and suffer from a high risk of introducing security-critical
errors. A lot of functionality specified in the API is not relevant for many typical use
cases of Trusted Computing. This is especially true for heterogeneous environments
or embedded platforms. Based on these insights, individual proposals for higher
level interfaces have recently been made for non-Java environments.
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Stüble and Zaerin [60] propose a simplified trusted software stack (�TSS) for
the CCC language. It mimics the TCG layered architecture (in the form of
object-oriented oTDDL, oTCS and oTSP layers), with oTSP providing high level
abstractions of selected functionality. It is noteworthy that oTCS offers access to all
TPM instructions. Currently, �TSS does not separate user and system processes
for device access and does not offer automatic TPM resource management to
applications.

Also for CCC, Cabbidu et al. [10] present the Trusted Platform Agent, a
library that aggregates TSS functions into a higher-level API and also integrates
other features missing in the language’s standard library like cryptography and
network communications. It therefore provides selected building blocks for trusted
applications that can be applied with a low learning curve.

Reiter et al. [51] describe an alternative stack design that integrates in an open
source cryptography API for Microsoft .NET.

Beneath the TCS layer of the TSS, the TPM Base Services (TBS) [39] in
Windows Vista or later, virtualize the TPM for concurrent access and also offer
a small set of management features to scripting languages.

1.3.4 Findings

While the aforementioned APIs all share the common goal of providing Trusted
Computing functionality to Java developers, to date none of them has seen
widespread adoption beyond research and academia.

One of the main reasons is that the interfaces exposed by the libraries often are
difficult to learn and understand. This stems from several facts:

1. Trusted Computing by itself is a complex technology. The specifications defining
the two major components – the TPM and the TSS [73, 75] – together consist of
about 1,500 pages. The concepts are often not well presented for novice users
and details have to be looked up in several different places. So it comes as
little surprise that very few actual software products make use of the original
C-based TSS to access the TPM. Indeed, a 2008 study [57] on the TSS concludes,
that, “it is apparent that, until now, no application exists that makes use of this
technology. Even the simplest applications [. . . ] have not been applied yet.”

2. Implementations like jTSS try to mimic the interface defined by the TSS spec-
ification. This interface, however, was developed for procedural programming
languages like C. Even though jTSS tries to map the TSS concepts to an
object oriented API, it still does not fit well into the Java ecosystem and feels
unnatural to developers familiar with other Java APIs. Furthermore, large and
complex amounts of code are required to set up and perform basic Trusted
Computing functions. This stems from the fact that in the original C-based
TSS API, functions take long lists of parameters with many potentially illegal
combinations. This makes the API error prone and complex to use for developers
without detailed Trusted Computing knowledge.
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3. Implementations like TPM/J and TPM4JAVA provide alternative interfaces to
Trusted Computing functionality. While in the first case, the interface is at a
very low level, the second one offers some higher level abstraction, but is neither
consistent nor complete.

4. A full-fledged TSS is a very flexible and powerful library, but practical expe-
rience has shown that its full capabilities are not actually required for the vast
majority of typical Trusted Computing applications. From our long experience
of maintaining jTSS and supporting its users stems the insight that most adopters
only follow existing code examples and test code. Few experiments create
previously-not-demonstrated functionality, which requires a very steep learning
curve.

Therefore, a novel design is needed that improves on the identified shortcomings
and provides a programming interface suitable for Java developers while consider-
ing the specifics of trusted hardware platforms, legacy software architectures, and,
obviously, the Java environment in different deployment scenarios, conventional or
embedded.

1.4 API Design

We can now move on to describe the major influences on our specification and our
resulting design decisions. Based on defined goals and clear assumptions on the
developers that we target, we consider the restrictions imposed by the surrounding
environment and discuss how the standardization process has influenced our pro-
posal. From these constrains, we have implemented an agile specification process
which enables us to derive the design of the JSR 321 API.

The Java Community Process (JCP) [28] aims to produce specifications using
an inclusive, consensus-based approach. The specifications are, throughout their
creation and also after release called “Java Specification Request” and assigned a
running number. It is controlled by an elected Executive Committee (EC), which
represents most major players in the Java industry. The central element of the
process is to gather a group of industry experts who have a deep understanding
of the technology in question and then have a technical lead work with that group
to create a first draft. Consensus on the form and content of the draft is then built
using an iterative review process that allows an ever-widening audience to review
and comment on the document. While the JCP provides a formal framework with
different phases and deliverables, an Expert Group (EG) may freely decide on its
working style.

There are a number of phases in the process. At first, a new specification is
initiated by a community member and approved for development by the EC of
the JCP. Then, a group of experts is formed to develop a preliminary draft of the
specification. Feedback from early reviews is used to revise and refine the draft.
Once considered complete, the draft goes out again for public review. Now, the
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EC decides if the draft should proceed. If approved by the EC, a proposed final
draft of the specification is published and the leader of the expert group sees that
the reference implementation and its associated technology compatibility kit are
completed. Then the EC will decide on its final approval. Completed specifications
will be maintained and updated.

The process also requires a reference implementation (RI). Its purpose is to show
that the specified API can be implemented and is indeed viable. With the Technology
Compatibility Kit (TCK) a suite of tests, tools, and documentation that is used to test
implementations for compliance with the specification has to be provided as well.

1.4.1 Goals for a Novel API

From the previously outlined study of different existing Trusted Computing libraries
we conclude that none of the proposals fulfills the desirable features an industry
specification for applied usage also outside of the academic niche should have.
We therefore propose a new API and present a set of goals the Expert Group has
decided on.

Integration with Trusted Computing Platforms: As a software interface, the API
should be oblivious to the actual hardware it is running on and should not
introduce additional limitations on hardware resources. To the OS, the Java
Virtual Machine appears just as an ordinary application. Therefore, the TPM
access mechanisms need to integrate [69] with the surrounding environment of
the OS, be it virtualized or not, and management services.

User-Centric Design. An Application Programming Interface is directed towards
the programmer. An Trusted Computing API should therefore be designed to
aid developers in writing security applications under the assumption of defined
knowledge in the field of application.

Simplified Interface. To make the new API fit into the Java ecosystem, a completely
new and fully object-oriented interface is to be designed. For instance, generic
entities (e.g., cryptographic keys) in the TSS should be replaced with specific
classes that represent the different types (e.g., a dedicated class for each type
of key). This allows the set of offered operations to be limited to those actually
applicable for a certain object type, thus enhancing usability and reducing the
risk of errors.

Reduced Overhead. The TSS API requires a substantial amount of boilerplate code
for routine tasks, such as key creation, data encryption or password management.
The proposed API should attempt to replace these lengthy code fragments with
simple calls using sensible default parameters where required.

Conceptual Consistency. Names in the API should be consistent not only within the
API but also with the nomenclature used by the TCG and in Trusted Computing
literature. This will allow users to easily switch from other environments to the
proposed API. Still, naming conventions of Java must be adhered to.
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Testable and Implementable Specifications. The API design should target a small
core set of functionality, based on the essential use cases of Trusted Com-
puting. This restriction in size will allow for complete implementations and
functional testing thereof. Also, limitations of scope make it possible for all
implementations to cover the full proposed API, a key requisite for true platform
independence.

Extendibility. The API should allow implementers and vendors to add functionality
which is optional or dependent on the capabilities of the surrounding platform.

Standards Compliance. Having an industry-wide standard of accessing the TPM
from software is indispensable for widespread use and for enabling code
mobility. As the TSS API has shown itself to be unfit for Java environments,
the newly proposed API should itself be based on a novel, independent industry
standard.

1.4.2 Expected Developer Knowledge

A major goal of the proposed JSR 321 API is to simplify Trusted Computing and
make it accessible to a larger group of software developers. To achieve this, it is
essential to understand our target audience and their skills before we can move on
to create a programming interface for them. In the following we define which skills
and knowledge we expect of a developer in order to make full use of the API.

In general, a developer using JSR 321 should be familiar with the cryptographic
mechanisms provided in the Java Security Architecture [19, 36]. The concepts
of data encryption, decryption and the creation of message digests using hash
algorithms should be familiar. The algorithms in particular include SHA-1 and RSA
as used by current TPM implementations. Moreover, a general understanding of
Trusted Computing concepts and the functionality provided by a TPM is required.
This at least should include knowledge about the following topics:

TPM Life-cycle. Starting with its manufacture, a TPM goes through a number
of different states. A developer must understand this life-cycle, for instance
that the TPM is shipped in an unowned state and its owner must explicitly
take ownership, activate, and enable it. When the machine containing the TPM
reaches its end of life, the TPM may be cleared to ensure that any TPM protected
data can no longer be accessed. To avoid data loss, appropriate mechanisms like
key backup or migration must be executed beforehand. Also the implications of
a transfer of ownership of a platform need to be considered.

TPM Key Management. A TPM supports a range of different key types, including
storage, binding and signature keys. The developer is responsible for building
and maintaining a consistent hierarchy. For instance, if certain keys are created
as non-migratable this may rule out any backup of them.
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Root and Chain of Trust. Ideally a consistent chain of trust would be established
by the operating system. However, today’s mainstream platforms fail to do so.
Developers need to take extra care to consider the security level represented by
the PCR values.

Trusted Storage. Care must be taken when the binding and especially sealing
mechanisms are applied to data or user supplied key material. Again, the problem
of backup arises, especially considering state changes which can render sealed
data permanently unaccessible.

Attestation. A number of different protocols have been proposed to perform
attestation to a remote verifier [62]. This API supplies the means to create
TPM quotes. Since there is no general standard for attestation and public key
infrastructures remain limited, we leave the full specification and implementation
of communication protocols to the application developer.

1.4.3 API Scope Considerations

JSR 321 aims to be a simplified, compact and user-friendly API, that should
integrate in the complex ecosystem of today’s Trusted Computing infrastructures.
It it therefore imperative to clearly focus the functions offered by the interface so
that the resulting design is consistent and viable.

A natural starting point would be to derive a Trusted Computing API from the
complete TSS specifications. However, JSR 321 is not planned to fully replace the
TSS in all its tasks. Instead, and as required by the nature of the JVM as a user
process, it builds on and extends the TSS services offered by the operating system
environment.

As a deliberate design decision, JSR 321 will provide functionality focused on
applications and middle-ware, rather than providing support for the low level BIOS
or OS features of the TPM. This restriction matches the field of use of Java and
permits a significant reduction in complexity. JSR 321 will not duplicate elements of
the Java Cryptography Architecture, thus fitting into the existing library framework.

Finally, many TSS-specified functions are simply not needed in Java APIs.
Management of memory and other resources can and should be hidden from
application developers. Object initialization and destruction are natural features of
object-oriented languages. Cryptographic primitives like hash functions are already
well-supported in the Java Cryptography Extension.

To derive the functional scope of the API, the commented complete list of TCG-
specified TSP functions [12] was considered. Based on the criteria and principles
laid out previously, those features were selected that are required for core use cases
that have high importance for practical applications.

In summary, the design focuses on the most important core concepts of Trusted
Computing. The second main goal is to provide high usability. At the same
time, the API is designed to remain modular enough to be extensible with future
developments.
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1.5 Outline of the API

The unique name-space officially assigned to the JSR 321 API is javax.trusted
computing. Within this name-space, a number of packages has been specified,
each representing a well defined set of functionality in several classes. The
relationship between the packages and classes is outlined in Fig. 1.2. These packages
comprise the API:

javax.trustedcomputing.tpm This package contains all relevant func-
tionality for connecting to a TPM. Within the TPM hardware chip, the concept
of a context allows the separation of objects such as keys between different users
and different connection sessions. In JSR 321, a TPM connection is represented
by the central TPMContext object that acts as a factory for other objects
specified by the API such as the KeyManager or the Sealer. The TPM
interface is also defined in this package, which provides general TPM related
information such as its version and manufacturer. Additionally, it allows PCR
registers to be read and extended, as well as providing the Quote operation
required for platform attestation.

Keys
KeyManagerTPMRSAKey

BindingKeyIdentityKey SigningKey

StorageRootKey

StorageKey

Tools & Remote Tools

Binder

Sealer

Attestor

…

Structures

DigestPCREvent
Validation

Data PCRInfo Secret

TPM

TPMContext TPM

Fig. 1.2 Illustration of the relationship between the core components, including the TPMContext,
KeyManager, and Key classes and the Tools
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javax.trustedcomputing.tpm.keys Contrary to the TSS specification,
JSR 321 introduces specific interfaces for the individual key types supported
by the TPM. This includes interfaces for storage, sealing and binding keys.
Compared to having one generic key object, this approach reduces ambiguities
in the API and allows appropriate key usage to be enforced at the interface level.
Using strong key types also relates well to results in formal API design and
analysis research.

javax.trustedcomputing.tpm.structures This package holds data
structures required for certain TPM operations. They include the PCREvent
structure required for operations on the measurement log, PCRInfo used as part
of platform attestation and ValidationData as returned by the TPM quote
operation.

javax.trustedcomputing.tpm.tools In this package, there are interface
definitions for helpers classes to perform TPM operations such as binding,
sealing, signing and time stamping. The javax.trustedcomputing.tpm.
tools.remote sub-package offers abstract classes that allow a remote host
without TPM to participate in Trusted Computing protocols. It provides the
functionality to validate and verify signatures on TC data types.

For error handling, a single TrustedComputingException covers all
lower layers. It offers the original TPM/TSS error codes, but also a human readable
text representation, which is a great step forward in terms of usability. Despite using
only a single exception class, implementations of the API should forward as much
error information as possible. For illegal inputs to the JSR 321 API, default Java
run-time exceptions are used. Finally, functions offering bit-wise access to status
and capability flags are replaced by specific boolean methods that allow access to
application relevant flags.

In JSR 321, the KeyManager interface defines methods for creating new TPM
keys. Upon creation, a secret for key usage and an optional secret for key migration
have to be specified. After a key is created, the KeyManager allows the key,
encrypted by its parent, to be stored in non-volatile storage. As required, the
KeyManager allows keys to be reloaded into the TPM, provided that the key
chain up to the storage root key has been established (i.e., each parent key is already
loaded into the TPM). Every time a new key is created or loaded from permanent
storage, a usage secret has to be provided. This secret is represented by an instance
of a dedicated class Secret that is attached to the key object upon construction.
Secret also encapsulates and handles details such as string encoding, which are
often a source of incompatibility between different TPM-based applications.

The extendable tools package implements various core concepts of Trusted
Computing. As each tool that accesses the TPM is already linked to a TPMContext
at creation, there are few or no configuration settings required before using the tool.
Each tool provides a small group of methods that offer closed functionality. For
example, a Binder allows the caller to bind data under a BindingKey and a
Secret, and returns the encrypted byte array. Usage complexity is minimal as
no further parameters need to be configured and the call to unbind encrypted



18 R. Toegl et al.

Fig. 1.3 Example of JSR 321 code that performs binding of data

data is completely symmetric. Besides the core set of tools (Signer, Binder,
Sealer, Attestor, Certifier, Signer), implementers of JSR 321 may add
further sets of functionality. An example might be the tool Initializer which
manages TPM ownership, if the Java library is implemented on an OS without tools
for doing so.

In Fig. 1.3 we list source code that demonstrates the API. The example shows
Java code that first opens a TPM context session, creates a non-migratable crypto-
graphic key with the following key policy: the key is a child of the Storage Root
Key, its usage authenticated with keyUsageSecret; there is no migration secret set
as the key is non-migratable; it’s volatile, requires authentication, is a 2,048 bit RSA
key and is not restricted to a PCR configuration. Finally, the program binds data
to the platform where the code is executed. This example also allows us to evaluate
the expressiveness and complexity of writing code. In [61], Stüble and Zaerin
use the number of Lines of Code (LOC) of code examples as measure to compare
different Trusted Computing APIs. They compare implementations of the identical
binding use case. According to them, achieving the same functionality requires
146 LOC with TSS, 30 with jTSS and 18 using �TSS. The JSR 321 program we
present takes only 15 LOC. Besides this obvious reduction of code size, the naming
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conventions used throughout the API allow the effective use of code-completion
mechanisms found in modern Integrated Development Environments (IDE) such as
Eclipse. In many cases, the IDE will automatically suggest a suitable parameter for
method calls, thus considerably speeding up the development of trusted computing
applications.

1.6 Experience and Outlook

1.6.1 Third Party Implementation and Teaching Experience

Our API design has already been adopted by a third party, indicating the viability
of the JSR 321 approach. To improve the security of smart power meters, the
TECOM research project [64] has independently created a JSR 321 implementation
based on the Early Draft version of the specification in order to satisfy their need
for a high-level Trusted Computing API for Java-based embedded systems. Their
implementation was built on top of the previously described ţ TSS in CCC and Java.
The feedback [56] from this external implementation effort has been very positive
and helpful. Aside from minor ambiguities in the specification and small feature
requests, no major difficulties were reported. TECOM concluded that JSR 321
“provides most functionality that the majority of users would probably need” and
that the single interface layer and low level of background knowledge required gave
it an advantage over other APIs.

In summer 2010, JSR 321 was used for teaching the 5th European Trusted
Infrastructure Summer School (ETISS), at Royal Holloway, University of London.
In the 90-min “TPM Lab” we provided an introduction to the central component
of Trusted Computing, the Trusted Platform Module (TPM). The lab explained
TPM activation control, basic operations, and high-level programming of the
TPM with JSR321. The concept of the chain-of-trust was explored in a practical
sealing experiment. On the available HP desktop machines with Infineon TPMs we
provided pre-configured USB-memory sticks running Ubuntu Linux and Eclipse
as development environment. Although many of the participants had either no
experience with TPMs or with Java, about two thirds of them were able to complete
the implementation of an unsealing program within less than 1 h. This clearly
underlines the low initial threshold for using the JSR 321 API. JSR 321 was also
used in two practicals for courses taught at Graz University of Technology. In the
third year bachelor-class “Security Aspects in Software Development” of 2011,
students were given the choice of implementing the signature component of a
CA service either through JavaCard or TPM interfaces. The groups that chose
JSR 321 did not require more supervision or advise than those choosing the more
conventional technology. In the master-level “Selected Topics IT Security 1” class,
in the summer term 2012 students were, among others, given the task to demonstrate
remote attestation of an Android environment. To this end, they employed a software
emulated TPM and accessed it through JSR231. As the Android environment is
source compatible with Java, this caused no additional complexity.
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Thus, JSR 321 has proven to be fit for implementation by third parties not
involved in the specification. Also, the API can be used in academic teaching and
Embedded Systems much like other existing security technologies.

1.6.2 Application in Embedded Systems

In this section we study whether it is (performance-wise) feasible to use Java as
a runtime environment for Trusted Computing related applications in Embedded
Systems. This section briefly describes the used platforms and the corresponding
software configurations.

When considering trusted embedded platforms we have to distinguish two classes
of platforms: first, PC like platforms including many “industrial PC” motherboards,
typically based on �86 compatible processors. They have a PC-style Southbridge
controller which exposes an LPC bus interface. On this class of trusted embedded
platforms the TPM is connected to the system using the standard LPC bus interface.
Trusted embedded platforms in this category can be treated exactly in the same
manner as desktop PC platforms without any loss of generality. The following
sections focus on a second class of trusted embedded platforms, which do not
provide a standard LPC bus interface and thus have to resort to alternative methods
for connecting to a TPM. We concentrate our discussion on TPMs connected via
an I2C bus. This bus is supported by virtually any embedded microprocessor or
micro-controller of interest, either through dedicated hardware blocks or through
software-emulation using general purpose input/output pins.

The inter-IC (I2C) bus [41, 80] was introduced by Phillips Semiconductors
(now NXP Semiconductors) in 1982 to provide simple bidirectional 2-wire bus for
communication between micro-controllers and other integrated circuits (ICs). Data
transfers are 8-bit oriented and can reach speeds of up to 100 kbit/s in standard mode
or 400 kbit/s in fast mode. Higher transfer speeds up to 5 Mbit/s can be achieved
given that certain hardware constraints are met.

Currently no approved publicly available TCG standard for TPMs with I2C
interface exists, although several vendors have recently started shipping I2C-enabled
TPMs. The TCG’s Embedded Systems Working Group has started work on a,
currently unreleased, draft for a I2C TPM interface specification based on the
existing PC-centric TPM TIS [74] specification. At the time of this writing no final
standard has been publicly available yet.

1.6.2.1 Benchmark Platforms

We chose three different systems to evaluate the performance of Java-implemented
Trusted Computing libraries. At the time of performing the analysis, available TPMs
were designed for the PC platform only and thus used the Low Pin Count (LPC) bus
as an interface. To enable Embedded Computing scenarios, we created our own
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Fig. 1.4 Raspberry Pi with IAIK LPC-over-USB-TPM

adapter board which enables us to connect a LPC TPM to embedded systems. The
board is described in more detail in [48] and can be seen in Fig. 1.4. Basically it
tunnels LPC packets over an USB interface. In addition two kernel modules are built
and loaded. They provide a /dev/tpm0 device by accessing our LPC-over-USB
adapter board. The used TPM is an Infineon TPM version 1.2 with firmware 3.17.
This adapter in combination with the PC-TPM is used as substitute since TPMs with
I2C interface were not available at the time of the experiments.

To give a hint on how our adapter performs, a simple method was used. We
measured the time the kernel module needs to obtain the content of all PCRs. The
used command was time cat /sys/class/misc/tpm0/device/pcrs.
On the HP dc7900 platform it takes 0:402 s with the built-in TPM and the tpm_tis
kernel module. With the IAIK LPC-over-USB TPM and our kernel modules the
command took 1:399 s. On a Raspberry Pi it finished after 1:520 s.

HP dc7900 We use an HP dc7900 desktop PC as a reference platform. It runs
Ubuntu 12.04 x86_64 with OpenJDK 64-Bit Server VM,version 1.6.0_24, as
provided by Ubuntu package repositories. The CPU is an Intel Pentium Dual-
Core E5200. Together with 4 GB RAM this is not the newest generation of
desktop PCs but provides a solid base for comparisons.

Freescale i.MX51 EVK The i.MX51 EVK is an evaluation kit for Freescale’s
i.MX51 system on a chip (SoC). The main component of the SoC is an 800 MHz
ARM Cortex A8 CPU core. The platform has 512 MB of RAM, whereof about
400 MB are available for the operating system. The used OS is an Ubuntu 10.04
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with a self compiled Linux kernel version 2.6.35. The sources and patches for the
kernel are provided by Freescale. The Java environment is provided by several
different Java Virtual Machines (JVMs):

• OpenJDK Zero VM, version 1.6.0_18, is the standard Java VM of Ubuntu
10.04. It comes without an JIT compiler, so the Java bytecode is just
interpreted.

• Java HotSpot™ Embedded Client VM, version 1.6.0_32. This is a original
binary release by Oracle, providing a Java SE 6 runtime environment for ARM
6 and 7 platforms. The JIT compiler is of the ‘client’ flavor.

• Java HotSpot™ Embedded Client VM, version 1.7.0_04, is an updated release
based on the Java SE 7 specifications.

• Java HotSpot™ Embedded Server VM 1.7.0, version 1.7.0_04, offers a
‘server’ flavor (especially with regards to JIT compilation) VM for ARM
platforms. In contrast to the ‘client’ VMs it is only available for ARMv7
processors.

• CACAO, version 1.6.0_25, this version was built from source to examine the
performance of an open source VM with an included JIT compiler.

Raspberry Pi The Raspberry Pi is a very affordable computer targeting education
and research. It is powered by an 700 MHz ARMv6 core in a Broadcom BCM283
SoC. On top of the SoC are 256 or 512 MB RAM2 as package on package. Since
the board is very popular and a broad user community has built up, there are
many available operating system images available. For this survey the following
three where used:

• Raspbian 2012-07-15
• Arch Linux 2012-06-13
• Debian 2012-06-18

While Raspbian is a Debian clone optimized for the Raspberry Pi, it is not binary
compatible with Oracle’s optimized JVMs. An overview of the available and
considered JVMs follows here:

• OpenJDK Zero VM on Raspbian, version 1.6.0_24.
• OpenJDK Zero VM on Arch, version 1.6.0_22.
• OpenJDK Zero VM on Debian, version 1.6.0_24.
• Java HotSpot™ Embedded Client VM 1.6.0 This is the same JVM as on

i.MX51 EVK.
• Java HotSpot™ Embedded Client VM 1.7.0 This is the same JVM as on

i.MX51 EVK.

2The 256 MB version was used for benchmarking.
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Table 1.1 Results for
SciMark benchmark. Higher
values are better. The
-large command line
option runs the test with
larger matrices

Default -large

Platform JVM � MFlops � MFlops

dc7900 OpenJDK 845.45 500.32

i.MX51 OpenJDK 10.21 8.77

Java6 30.34 21.02

Java7client 30.05 21.13

Java7server 31.35 24.78

CACAO 24.83 17.53

Raspbian OpenJDK 2.87 2.45

Arch Pi OpenJDK 1.52 1.50

Java6 21.66 14.41

Java7client 21.23 14.13

Debian Pi OpenJDK 2.86 2.43

Java6 21.94 14.33

Java7client 21.79 14.15

1.6.2.2 Benchmarks and Results

To initially assess the performance of generic Java software on the presented
platforms, we used the SciMark benchmark suite. SciMark[49] is a rather simple
benchmark examining the Java performance for scientific computations. It is
provided by NIST and is chosen because its run time is not very long and it gives a
brief insight in computational power of a Java environment. We use version 2.0a of
the benchmark. The results for the SciMark benchmark are shown in Table 1.1.

The second benchmark was created to obtain performance data specifically
relevant for Trusted Computing applications. As a base for the benchmark
jTpmToolswas used. The tasks performed in the benchmark are the following:

• tpm_version
Query the TPM’s version information

• tpm_flags
Query the TPM’s flag settings

• pcr_read
Read the content of all PCRs

• pcr_extend
Extend a small chunk of data to a PCR (20 byte)

• pcr_extend_big
Extend a huge chunk of data to a PCR (40 MB)

• Sealing
Seal and unseal 512 bit of zeros. This test consists of three tasks:

– create_key
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Create the needed key
– seal

Seal the data
– unseal

Unseal the data

• Quoting
Obtain a quote from the TPM. This test consists of two tasks:

– create_key_legacy
Create the needed key

– quote
Obtain quote

• stress_block_1 to stress_block_10
Each block queries the TPM’s flags 200 times, totaling in a count of 2,000
queries.

The resulting measurements are given in Table 1.2 and Fig. 1.5.

Table 1.2 Selected results of
the Java-based tools
benchmark. All values are
ms, obtained with local
bindings and file system
storage. On dc7900 platform
OpenJDK is used, on i.MX51
Java6 and on Raspberry Pi
Java7client

Benchmark dc7900 i.MX51 Raspberry Pi

tpm_version 143 161 158

tpm_flags 203 221 220

pcr_read 1,283 1,592 1,591

pcr_extend 278 284 555

pcr_extend_big 1,018 9,070 19,715

create_key 45,818 15,638 2,626

Seal 4,800 4,509 4,604

Unseal 3,239 2,389 2,418

create_key_legacy 18,170 15,135 2,243

Quote 6,000 5,829 6,000

stress_block_1 13,779 13,020 13,020

stress_block_2 13,511 13,019 13,058

stress_block_3 13,503 13,019 13,018

stress_block_4 13,547 13,019 13,028

stress_block_5 13,443 12,999 13,018

stress_block_6 13,695 13,019 13,048

stress_block_7 13,511 14,439 13,228

stress_block_8 13,635 14,999 13,028

stress_block_9 13,439 14,999 13,538

stress_block_10 13,587 14,999 13,898
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Fig. 1.5 Visualization of results presented in Table 1.2. stress_block_avg is the mean value
of the 10 runs

1.6.2.3 Performance Discussion

The computational power of the investigated systems is by magnitudes lower than
that of standard desktop PCs. Yet, the main insight is that it is possible to use a
Java based trusted software stack also on limited platforms such as the i.MX51
EVK board and the Raspberry Pi. The results presented show that the performance
difference between a desktop PC platform and embedded systems is minimal for
Trusted Computing related tasks. This is due to the fact that TPMs are rather slow
devices, so that even the medium-sized Embedded Systems we considered for our
benchmarks need to wait for the results of the hardware security component.

Note that the values for create_key and create_key_legacy might be
misleading. The creation of keys depends on entropy generated inside the TPM. The
true random number generator’s entropy pool is depleted after a few generated keys
so any further creation has to wait for new randomness to be available. This leads to
high deviations of the values. We show the minimum runtimes measured.

1.6.3 Compatibility with Next Generation TPMs

Throughout the standardization process, 1.2 was the latest version of the TPM
specifications [75] officially released and therefore was used as basis for the design
of JSR 321. We believe that our basic approach of providing a high-level abstraction
of core concepts of Trusted Computing will remain valid for future versions of the
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specification. Any necessary changes to the API, which could become opportune by
the design of the TPM 2.0, which has recently been made available in a preliminary
version [76], can be supported by releasing a new revision through the Maintenance
phase of the Java Community Process. In addition, we believe that the results of the
JSR 321 specification could itself serve to help guide the specification of the next
generation of TSS. The authors have received encouraging feedback from the TCG
that a high-level Trusted Computing API approach as pioneered in the presented
work would be highly desirable for specifications in other languages such as C.

Summary
In this chapter we outlined the current status of software libraries for TPM
access and application-level integration of Trusted Computing. To date,
several commercial and some free implementations of the TCG Software
Stack have been published with varying levels of completeness and standard
compliance.

As a basis for the work presented in this chapter, we reviewed and
discussed the state of the art of available Trusted Computing software
libraries. For native applications, there are ongoing projects which aim to fully
implement the TSS standard, and alternative approaches which intentionally
provide a reduced and simplified interface.

In managed run-time environments, Java currently is the primary choice for
the implementation of Trusted Computing applications. This is emphasized
by the existence of several different libraries and frameworks that have been
proposed or prototyped for this language. Our review of existing approaches
has uncovered a number of drawbacks including high complexity, inconsistent
APIs, limited object-orientation or lack of features.

Despite the availability of libraries and tools, Trusted Computing is not
yet widely used and has not found its way into commercial applications [57].
We and other designers of TC APIs [60] attribute this fact primarily to the
high complexity of and developer expertise required by existing standards
and APIs. We believe that a lower learning curve for the software interfaces
can attribute to a more widespread use in the future.

Based on these findings, we specify goals for a novel high-level Java API
that aims to overcome these limitations. Specifically, we focus on a simple
interface for access to commonly used TPM functionality and define the
technical knowledge expected of programmers using it. In contrast to the
original TSS design, we propose a fully object-oriented approach that hides
low-level details and provides additional guidance for developers by provid-
ing solid default configurations. Results from the reference implementations
are encouraging and demonstrate the feasibility of the proposed approach.

(continued)
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Performance evaluations on Embedded Systems underline the applicability of
our approach in different usage scenarios, that need not be restricted to the
Desktop and Server world.

The aim of our API design was the release as the official Java standard
API for Trusted Computing. Therefore, we have adopted an agile and
transparent working style within the Java Community Process. The desirable
set of API features has been selected based on open discussions. Feedback
received from external reviewers and independent implementers has helped
to adapt and extend the design. After two publicly announced reviews
and several votes within the Java Community Process, the standard was
published [68]. The Reference Implementation, the Technology Compatibility
Kit and documentation is available under an open-source license from
https://jsr321.java.net/.

We believe that this effort towards an open, simple and consistent program-
ming interface can considerably contribute to the future adoption of Trusted
Computing. Even thought the proposed JSR 321 API is designed for the Java
programming language, we anticipate that the contribution of this work will
not be limited to Java. Due to the clear and lightweight design of the API,
implementations in other object-oriented programming languages should be
possible with only minor adaptations.
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