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Foreword

Semiconductors are a technology shaping our life in a transparent way. Every
day, we touch upon hundreds of semiconductor empowered objects and services
at home, at work, when travelling, when getting healthy or simply when having fun.
Semiconductors are to the knowledge-based society what steel and coal have been
to the industrial, and what grains have been to the agrarian society.

The unparalleled capability to reduce the unit cost (about one million times
in 25 years!) by miniaturisation and functional diversification requires, paradoxi-
cally, ever increasing upfront investments. Industrial companies, institutional and
academic researchers, but also public entities are engaged in an intense global
competition with strategic implications.

The ENIAC Joint Undertaking takes the European public-private partnerships to
the next level bringing together industrial, institutional and academic R&D actors
with the national public authorities and the European Commission in a coherent,
transparent way. The goal is to make a recognisable contribution towards a globally
successful and sustainable European nano-electronics industry by allocating the
approximate 3 billion Euros of the programme to the most impactful R&D topics.
The exceptionally high quality of our stakeholders and the strong commitment of
our dedicated team are the ingredients that will enable the ENIAC Joint Undertaking
to pursue its vision and reach its goals and objectives (Fig. 1).

The ENIAC Joint Undertaking contributes to the implementation of the Seventh
Framework Programme and the theme ‘Information and Communication Technolo-
gies’ of the Specific Programme ‘Cooperation’.

In particular:

• Defines and implements a Research Agenda for the development of key com-
petences for nano-electronics across different application areas in order to
strengthen European competitiveness and sustainability and to stimulate the
emergence of new markets and societal applications

• Awards funding to participants in selected projects following calls for competi-
tive proposals

v
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Fig. 1 ENIAC Joint Undertaking field of interest

Fig. 2 ENIAC joint undertaking main objectives

• Mobilizes and pools the European Union, national and private efforts increasing
overall R&D investments and fostering collaboration between the public and
private sectors

• Works towards achieving synergy and coordination of European R&D efforts
promotes the involvement of SMEs in its activities (Fig. 2)

The ENIAC Joint Undertaking addresses two main objectives:

• Enhancing the further integration and miniaturisation of devices
• Increasing their functionalities
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Fig. 3 The bodies of the
ENIAC joint undertaking

and its members are:

• The European Union, represented by the Commission
• Member States and associated countries subscribing to the objectives and

accepting the Statutes
• AENEAS, an association acting as the representative of companies and other

R&D actors operating in the field of nano-electronics in Europe

The following entities may also become Members of the ENIAC Joint Under-
taking upon subscribing to the objectives and assuming all obligations of member-
ship:

• Any third country pursuing R&D policies or programmes in the area of nano-
electronics

• Any other legal entity capable of making a substantial financial contribution to
the achievement of the objectives of the ENIAC Joint Undertaking

The bodies of the ENIAC Joint Undertaking are depicted in Fig. 3.

• Governing Board

– Approves Multi Annual Strategic Plan
– Approves Annual Implementation Plan
– Approves Rules of Procedure



viii Foreword

• Executive Director

– Daily operation
– Approves Annual Implementation Plan

• Public Authorities Board

– Approves Annual Work Plan, calls for proposals

• Industry and Research Committee

– Elaborates Multi Annual Strategic Plan

Regarding the financing model, SMEs, research institutes and universities may
have different funding thresholds for the national grants depending on the rules
applied by each State.

At the end of its life span, ENIAC Joint Undertaking selected for funding 64
projects with total eligible cost of 2.9 billion Euros, with 1,384 participants from 24
Member States and associated countries.

The ENIAC Joint Undertaking established itself as the leading mechanism
in implementing Key Enabling Technology policies, by launching 14 pilot line
projects that shifted the center of interest closer to the innovation with considerable
economic impact.

Brussels, Belgium Andreas Wild
June 2014



Preface

Computing systems have a tremendous impact on everyday life in all domains, from
the internet to consumer electronics, transportation to manufacturing, medicine,
energy, and scientific computing. Also, the traditional perspective of single-purpose
and single-core embedded systems and devices is rapidly changing as increased
computing performance and functionality is being added by industry leaders.
Convergence, both in hardware and software platforms, is rampant throughout the
industry with desktop processors and embedded processors merging together. These
hardware changes are also driven by application changes. Future applications and
everyday solutions, such as smart grids for electricity network, smart low energy
controlled home appliance, environmental or infrastructure sensor networks, com-
munication networks and wireless communications, will start to become dominant
the next years.

However, management of trusted components and a number of secure technolo-
gies need to be developed and put in place in order to make both hardware and
software solutions smarter and more secure. The interest is so big that industrial
companies have started to define, develop and validate trust hardware and firmware
mechanisms applicable to embedded devices and use them as security anchors
within related embedded platforms.

A project aimed at analyzing security problems and at suggesting solutions
for trusted embedded systems was the ENIAC project TOISE with participants
from seven European countries. The first objective of TOISE, with regards to the
objective energy efficiency, was to investigate and implement secure solutions for
the design of smart-grid applications and their deployment in large-scale networks
and systems. The second objective of TOISE, with regards to the security of
communications, was to investigate and implement secure wireless sensor networks,
to address secure authentication devices and to study and implement new generation
of trusted portable devices as well secure storage in memory. Last, the third objective
was to develop a new generation of tokens (based on several form factors) that will
demonstrate optimal cost through enforced privacy management and secure channel
establishment.

ix



x Preface

This book describes, but it is not limited to, the results of the TOISE project.
Therefore, the purpose of this book is threefold. Firstly, to be used as an under-
graduate or graduate level textbook for introduction to trusted embedded systems
providing students and practicing engineers with the fundamentals as well as details
in the many facets of security problems. Secondly, to be used as reference for
researchers in the field. Thirdly, to be used as a guide for professionals in analyzing
and designing state-of-the-art trusted embedded systems.

The book consists of three parts. The first is an introductory chapter presenting
information about the existing solutions and programming interfaces in trusted
domain. The second presents four real applications-use cases which depict the need
for designing trusted embedded systems. Last, based on the second part, the third
presents the building blocks on which the presented applications-use cases were
built. In other words, the third part shows and analyzes the core technologies used
in the use cases.

We would like to extend our gratitude to all members of the TOISE team for an
exciting project collaboration and many inspiring discussions. We want to thank the
authors for the contributions and the hard work on the chapters of this book making
it a concise and representative summary of three years of research and development.
Furthermore, we would like to express our appreciation to the project reviewer’s
comments and feedback that were always insightful and to the point, and that greatly
helped us to stay focused, to increase our efforts, and to keep our overall objectives
in mind. We would also like to thank our project officer (Fabrizio Martone) for his
professional and sensible handling of TOISE, and last but not least, we are very
grateful to the team of Springer who has enthusiastically supported this book from
the very beginning, very professionally transformed the material into a high quality
publication, and kept patience and support when the delivery of the material were
behind schedule. Most importantly we hope that you, the reader, enjoy reading this
book and that it triggers your inspiration and many new ideas.

Paris, France Bernard Candaele
Athens, Greece Dimitrios Soudris
June 2013 Iraklis Anagnostopoulos
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Chapter 1
Programming Interfaces for the TPM

Ronald Toegl, Thomas Winkler, Mohammad Nauman, Theodore W. Hong,
Johannes Winter, and Michael Gissing

Abstract The paradigm of Trusted Computing promises a new approach to
improve the security of embedded and mobile systems. The core functionality,
based on a hardware component known as Trusted Platform Module (TPM),
is widely available. However, integration and application in embedded systems
remains limited at present, simply because of the extremely steep learning curve
involved in using the programmer-facing interfaces. In this chapter, we describe the
current state of the Trusted Computing Group’s software architecture and present
previous approaches to improve usability. We report on a novel design of a high-
level API for Trusted Computing for Java which has been optimized for ease-of-use
and clear abstraction of Trusted Computing concepts. We derive requirements and
design goals and outline the API design. Finally, we show the application and
benchmarks in embedded systems. The result of this effort has been standardized
as Java Specification Request 321.

1.1 Introduction

Embedded Systems take many forms, such as mobile phones, industrial control sys-
tems, network devices, sensor nodes, and smart cards. Having become nearly ubiq-
uitous, the world Embedded Systems market exceeds 100 billion USD [18]. Often,
sensitive information is created, accessed, manipulated, stored, and communicated
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on such Embedded Systems. Thus, security needs to be considered throughout
the design process [50], including hardware design and software development.
Specifically, in the Trusted Computing approach, security is bootstrapped from a
small dedicated piece of secure hardware, the Trusted Platform Module (TPM).

While most the major computer manufacturers are shipping servers, desktop and
notebook computers containing TPMs with several hundreds of million of machines
can be assumed to provide this hardware device [58], its application to Embedded
Systems has only been limited. Major obstacles to the development of Trusted
Computing enabled software have been the high complexity of the specification
of the software stack that is used to manage the TPM and limited support for
programming languages that support different hardware platforms [57, 60].

In particular, there has been insufficient support for platform-independent run-
time environments like .NET [40], Android or Java. Such environments are
particularly useful for implementing modern security solutions on heterogeneous
platforms. For instance, several billions of devices support Java, and Oracle claims
[43] that the Java developer community, with nine million members, is the largest of
its kind. It is of little surprise that there have been a number of attempts to provide
TPM libraries that target such a programming languages. Yet there was a lack of an
established, generally-accepted Application Programming Interface (API) for TPM
access.

In this chapter, which extends on [71], we describe the design of a high-level Java
API for Trusted Computing, which has been published as an official Java standard
[68]. Our goal in designing this API is to provide a simpler, high-level interface to
the TPM while still adhering to the concepts and standards defined by the Trusted
Computing Group. Benchmark results show the suitability in Embedded Systems
using the TPM.

1.2 Trusted Computing in the Java Environment

1.2.1 Java for Embedded Systems

At the application layer, the Java programming environment has seen a broad
adoption ranging from large-scale business applications hosted in dedicated data
centers to resource constrained environments as found in mobile phones or Personal
Digital Assistants (PDAs), set-top boxes, industrial control and even smart cards.
Java program code [21] is not compiled to native machine code but to a special
form of intermediate code, called byte code. This byte code is then executed by a
virtual machine (VM) [35] called the Java VM. This characteristic makes Java an
excellent choice for development aiming at heterogeneous environments. In contrast
to conventional programming languages such as C or CCC, Java is equipped with
inherent security features supporting the development of more secure software.
Among those features are automatic array-bounds checking, garbage collection and
access control mechanisms. Additional aspects that distinguish Java from other
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environments are code-signing mechanisms and the verification of byte code when
it is loaded. The class-loading mechanism separates privileged code and creates a
sandbox for remotely fetched classes [19].

For Embedded Systems development, Java offers a number of advantages
[65]. Its hardware-independent architecture hides specifics of the hardware and
operating system, as it is abstracted through the platform-specific, often optimized
implementation of the Java VM. The rich libraries of the Java Runtime Environment
(JRE) offer much more features than operating system APIs. Java also eases the
creation of network inter-operable embedded systems and simplifies the software
development. For very small systems, Java ME offers small-footprint configurations
of Java, albeit with limited functionality. The full-featured Java SE is found on PCs
and medium-to-large (i.e. 32 MB of RAM or more) Embedded Systems.

With Java being a key component, Android [20] is now the first choice for
mobile smart-phones. Based on a Linux kernel, it offers a broad application library
framework and the Dalvik virtual machine with just-in-time compilation which is
optimized for resource-restrained devices. In addition, Android is fully source-code
compatible with Java. As of 2013, Android is the most widely used, off-the-shelf
operating system in Embedded Systems [77].

Here also, Trusted Computing is very promising to further improve security.
While generic cryptography is well supported with the Java Security Architecture,
there is currently no established standard API for Trusted Computing available.
Still, a large number of Java-based use cases have been demonstrated for Trusted
Computing, using several existing approaches for Trusted Computing integration
in Java.

1.3 TCG Software Architecture

1.3.1 The TCG Software Stack

The TPM design is intended to allow for cost effective implementations on hardware
architectures with restricted resources, such as smart card platforms. Consequently,
the functionality of the TPM is restricted to what is offered by its API. The TPM
is not able to execute custom code, and even most of the features offered require
auxiliary functionality implemented in software.

Of the TCG standards, the TCG Software Stack (TSS) [73] is responsible
to access and manage the TPM and also to provide a programming interface
for TC applications. The standard document is accompanied with C header and
Web Services Description Language (WSDL) interface definition files. The target
language for the standard is the C programming language [26].

The TSS offers a set of function calls that help perform a number of operations.
These functionalities cover the setup and administration of the TPM, such as taking
ownership, the setting of configurations or the querying of properties. With regards
to the chain of trust, it is the task of the TSS to record a Stored Measurement Log
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(SML) for tracing the measurements that led to the current PCR values. The life
cycle of cryptographic keys is also controlled through the TSS, starting with the
creation of public-private key-pairs. The limited resources of the TPM necessitate
external, encrypted storage of the cryptographic material, either at run-time by
swapping out keys from limited hardware key slots into main memory or filing in
persistent storage on the hard disk. The TSS also supports different mechanisms of
key certification and the backup to other TPMs in a protocol called migration.

The TSS is also specified to enable Identity Management. To prevent privacy
issues by correlation of the reuse of the same unique key pair for different services,
the unique Endorsement Key cannot be used directly. Instead, Attestation Identity
Keys (AIKs) are created in a process that involves the TPM and a trusted third party
called a PrivacyCA. The TSS is the entity that collects all required information
and certificates to assemble the appropriate data structures for communication
between the local TPM chip and the remote PrivacyCA service. In [46], we
outline this protocol in more detail. The alternative protocol of Direct Anonymous
Attestation [9], is based on group signatures. This protocol allows a TPM to proof
that it is within a group of TCG-compliant TPMs without revealing which member
it is. However, the scheme described through the TPM and TSS specifications has
been found to be complex to use and very slow in practical implementations [14].

Data can be encrypted by the TPM mainly using two mechanisms, binding and
sealing. Binding, which is done in software, potentially even on a remote host, is
the encryption of a limited amount of data with a public RSA key using either
PKCS #1 version 1.5 [30] or OAEP [6] paddings. If the corresponding private key
is unique and held by a TPM this implies that only this TPM can decrypt the data.
In an even stronger mechanism called sealing, the encryption is performed on-chip
incorporating a unique secret and a set of PCRs. Sealed data can only be unsealed
by precisely the same TPM in the desired PCR configuration.

The TSS also provides interfaces to sign user data using TPM-protected keys,
which were generated with type information that allows them to perform RSA-
signature operations. AIKs are even more restricted and can only be used to sign
TPM internal data structures. The most prominent example is the Quote operation
where a set of PCRs is signed to report the current platform state. Further useful
interfaces of the TSS provide access to the random number generator, a tick
counter that can potentially be correlated with real-time and a monotonic counter
mechanism.

From a software engineering perspective, the TSS specification follows a layered
architecture shown in Fig. 1.1. Just below the TSS, and not part of it, is the TPM
driver. The TPM driver can be either vendor specific or follow the TPM Interface
Specification (TIS) standard [74]. It is the task of the lowest layer of the TSS to
abstract this driver and expose an OS and vendor independent set of functions that
allows basic interaction with the TPM. This lowest layer is called the Trusted Device
Driver Library (TDDL). The TDDL serves as a single-instance, single-threaded
component and allows for sending commands as byte streams to the TPM and
receiving the responses.

The next layer, the TSS Core Services (TCS), should be implemented as a
singleton system service or daemon. It is the single instance that manages the
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Fig. 1.1 The TCG software stack (TSS) architecture consists of several software layers within a
trusted platform

TPM’s resources and accesses it. It generates synchronized command streams from
concurrent API commands to be transferred through the TDDL. The TCS takes
care of the management of TPM key slots as well as permanent storage of TPM
key material. Keys are assigned a Universally Unique Identifier (UUID) [34] that is
used to identify stored keys. The TCS also maintains the SML where all PCR extend
operations are recorded.

The upper layers of the software stack may access the TCS via inter-process
communications according to the platform-independent Simple Object Access
Protocol (SOAP) [78] interface.

The highest layer, the TSS Service Provider (TSP) provides Trusted Computing
services to applications in the form a shared library. The TSP interface is defined as
grouped function signatures and data structures in the C programming language.
The TSS was also designed to allow partial integration with existing high-level
APIs, such as PKCS #11 [52]. This enables the use of the cryptographic primitives
provided by the TPM by legacy software. A limitation of this approach is that
these legacy cryptographic APIs do not account for advanced Trusted Computing
concepts such as sealing. Also the TCG’s key typing and padding policies need to
be considered [12] and might not match all application areas.

1.3.1.1 TSS in Embedded Systems

On Desktop systems, recent years have seen successful integration of generic TPM
1.2 hardware drivers into major operating systems, i.e. not only Windows, but also
Unix derivatives and Linux. Several implementations of TSS exist. One noteworthy
open source implementation by IBM is TrouSerS [25].
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As we will discuss later in Sect. 1.6.2, there are different sizes and classes
of embedded systems. Typically, however, only selected components of the TSS
architecture are used. For instance on the TDDL level, drivers are usually derivatives
of the Linux implementations. Which driver to use depends on the hardware
interface of the TPM.

When drivers have established basic connectivity, higher layers may access the
TPM. In many specific use cases, it is sufficient to implement only a small number of
instructions, such as writing into a PCR register. This can be achieved by assembling
the appropriate instruction byte arrays manually in programs [32] or by including
command line tools. This keeps the software overhead on embedded platforms
small; however, more complex instructions, for instance creating or certifying fresh
keys are a tedious task to write, and most implementors will need a full-scale TSS to
achieve such functionality. Very small platforms will note able to support this. One
possibly solution can be to perform complex initialization and commissioning tasks
on the TPM chip at manufacturing time, before even soldering it onto the target
platform [79].

On medium-sized embedded systems, running a full TSS becomes feasibly,
although the required XML and cryptographic features require a certain amount
of system resources.

1.3.2 Review of Existing Java Libraries

This section presents an overview of existing libraries and APIs that provide
first, experimental support for Trusted Computing to Java developers. Additionally,
strengths and weaknesses of the individual approaches are discussed.

1.3.2.1 Trusted Computing for the Java Platform and jTSS

The central component of the open source “Trusted Computing for the Java
Platform” project is an implementation of the Trusted Software Stack (TSS) for
Java programs called jTSS [47]. It is a large library that provides Java programs
with the TSS functionality that C programs currently enjoy.

Overall, the project offers two flavors of TSS implementations.

jTSS Wrapper Provides Java programs access to C-based stacks through an object-
oriented API, which forwards calls to the native TSS. A thin C-back-end
integrates the TSP system library. The Java Native Interface (JNI) maps the
functions of the C based TSP into a Java front-end. There, several aspects of the
underlying library, such as memory management, the conversion of error codes
to exceptions and data-type abstractions, are handled. This wrapping approach
results in complex component interactions. Unfortunately, debugging across
language barriers is a challenging task. Another drawback is that implementation
errors in the C-based components may seriously affect JVM stability.



1 Programming Interfaces for the TPM 9

jTSS Is a native implementation of the TCG Software Stack written completely in
the Java language. It offers seamless support for Linux operating systems and
all Windows versions starting with Vista, demonstrating platform independence.
The Java TCS also synchronizes access from multiple Java applications. Such
a full Java TSS implementation clearly reduces the number of involved compo-
nents and dependencies. Consequently, this approach results in fewer side-effects
from incompatible TSS implementations or different interpretations of the TSS
specification. Moreover, a pure Java stack can easily be ported to other operating
systems and platforms.

The API exposed by both variants is the same, enabling Java application
programmers to switch between the two seamlessly, with the choice of the back-
end implementation depending on the surrounding platform. It defines data types,
exceptions and abstract methods – we refer to it as the jTSS API [72]. It closely
follows the original TSS C interface, permitting the user to stay close to the
originally-intended command flows and providing the complete feature set of the
underlying library. jTSS covers almost all of the functions specified by the TCG for
communicating with the TPM at the fine granularity of TSS commands. As with
every TSS, a complex sequence of commands is required to achieve functionality
such as sealing, binding, attestation and key generation for application software.
The project also providesjTpmTools (jTT), which is a collection of useful sample
programs. They are implemented using jTSS API and demonstrate its usage.

The libraries were first created in the course of the Open_TC [42] research
project. The first release was authored by Winkler, while the subsequent releases,
maintenance and support activities have been done by Toegl. jTSS has since
become a popular choice for Trusted Computing related research activities
[2–5,7,8,11,13,15–17,22,24,27,29,31,33,37,38,44–46,55,59,63,66,67,69,70,81–
84] and even found (quite) limited industrial use. It is one of the most widely used,
supported and regularly updated TSSes available today.

While jTSS does allow the use of the TPM from Java, it still involves a significant
learning curve for the average Java programmer, who may not be familiar with the
procedural programming style that stems from the C-based TSS legacy. Overall, it is
still a complicated API that requires a large amount of training and cross-language
experience before it can be used in real-world projects.

1.3.2.2 TPM/J

Sarmenta et al. presented TPM/J [53,54], a high-level API that allows Java applica-
tions to communicate with the TPM. It is compatible with the Linux, Windows XP
and Windows Vista and Mac OS X1 operating systems thus living up to the promise
of platform independence.

1At the time of writing, the inclusion of TPMs in Mac OS X compatible platforms has been
discontinued.
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Strictly speaking, TPM/J is not a TSS since it intentionally deviates from the
specifications of TCG’s TSS, which seems natural since the TSS specifications
provide details specific to the structural programming paradigm and cannot be
ported to the object-oriented perspective without major changes to the specifica-
tions. A drawback is that the library does not feature a split design as the TSS.
Therefore, the JVM must run with elevated privileges to access the TPM hardware
resource. Moreover, a major concern for users of TPM/J is that it is not regularly
maintained, thus making it unsuitable for large-scale adoption in the community.
It has however been used to study monotonic counters [53], and an attack on the
TPM [1].

1.3.2.3 TPM4JAVA

TPM4JAVA [23] is a Java library that provides an easy-to-use API to Java
programmers for communicating with the TPM. Its design is based on three levels
of abstractions:

1. High-level: It provides developers with conveniently usable functionality to
execute selected commands such as taking ownership, computing hashes and
generate random numbers.

2. Low-level: This is a less user-friendly approach that allows programmers to
execute any of the commands supported by the TPM.

3. Back-end: It is used internally for communicating with the TPM device driver
library.

While the high-level API makes several functions easily accessible, some
operations, such as performing a quote during attestation, require several lines of
code and a low-level understanding of the actual functioning of the TPM. This
makes ‘high-level’ a misnomer. The project has not been maintained for several
years. Finally, TPM4JAVA shares the limitation of the other approaches of not
adhering to the TCG’s specifications.

1.3.3 Other Proposed Higher Level Interfaces

From a developer’s point of view, the highly complex TSS design suffers from
several drawbacks. It is challenging to develop applications with it, as even
straightforward mechanisms of the TPM correspond to complicated instruction
flows in the TSS API. Implementations of the various TSS layers themselves are
often difficult to maintain and suffer from a high risk of introducing security-critical
errors. A lot of functionality specified in the API is not relevant for many typical use
cases of Trusted Computing. This is especially true for heterogeneous environments
or embedded platforms. Based on these insights, individual proposals for higher
level interfaces have recently been made for non-Java environments.
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Stüble and Zaerin [60] propose a simplified trusted software stack (�TSS) for
the CCC language. It mimics the TCG layered architecture (in the form of
object-oriented oTDDL, oTCS and oTSP layers), with oTSP providing high level
abstractions of selected functionality. It is noteworthy that oTCS offers access to all
TPM instructions. Currently, �TSS does not separate user and system processes
for device access and does not offer automatic TPM resource management to
applications.

Also for CCC, Cabbidu et al. [10] present the Trusted Platform Agent, a
library that aggregates TSS functions into a higher-level API and also integrates
other features missing in the language’s standard library like cryptography and
network communications. It therefore provides selected building blocks for trusted
applications that can be applied with a low learning curve.

Reiter et al. [51] describe an alternative stack design that integrates in an open
source cryptography API for Microsoft .NET.

Beneath the TCS layer of the TSS, the TPM Base Services (TBS) [39] in
Windows Vista or later, virtualize the TPM for concurrent access and also offer
a small set of management features to scripting languages.

1.3.4 Findings

While the aforementioned APIs all share the common goal of providing Trusted
Computing functionality to Java developers, to date none of them has seen
widespread adoption beyond research and academia.

One of the main reasons is that the interfaces exposed by the libraries often are
difficult to learn and understand. This stems from several facts:

1. Trusted Computing by itself is a complex technology. The specifications defining
the two major components – the TPM and the TSS [73, 75] – together consist of
about 1,500 pages. The concepts are often not well presented for novice users
and details have to be looked up in several different places. So it comes as
little surprise that very few actual software products make use of the original
C-based TSS to access the TPM. Indeed, a 2008 study [57] on the TSS concludes,
that, “it is apparent that, until now, no application exists that makes use of this
technology. Even the simplest applications [. . . ] have not been applied yet.”

2. Implementations like jTSS try to mimic the interface defined by the TSS spec-
ification. This interface, however, was developed for procedural programming
languages like C. Even though jTSS tries to map the TSS concepts to an
object oriented API, it still does not fit well into the Java ecosystem and feels
unnatural to developers familiar with other Java APIs. Furthermore, large and
complex amounts of code are required to set up and perform basic Trusted
Computing functions. This stems from the fact that in the original C-based
TSS API, functions take long lists of parameters with many potentially illegal
combinations. This makes the API error prone and complex to use for developers
without detailed Trusted Computing knowledge.
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3. Implementations like TPM/J and TPM4JAVA provide alternative interfaces to
Trusted Computing functionality. While in the first case, the interface is at a
very low level, the second one offers some higher level abstraction, but is neither
consistent nor complete.

4. A full-fledged TSS is a very flexible and powerful library, but practical expe-
rience has shown that its full capabilities are not actually required for the vast
majority of typical Trusted Computing applications. From our long experience
of maintaining jTSS and supporting its users stems the insight that most adopters
only follow existing code examples and test code. Few experiments create
previously-not-demonstrated functionality, which requires a very steep learning
curve.

Therefore, a novel design is needed that improves on the identified shortcomings
and provides a programming interface suitable for Java developers while consider-
ing the specifics of trusted hardware platforms, legacy software architectures, and,
obviously, the Java environment in different deployment scenarios, conventional or
embedded.

1.4 API Design

We can now move on to describe the major influences on our specification and our
resulting design decisions. Based on defined goals and clear assumptions on the
developers that we target, we consider the restrictions imposed by the surrounding
environment and discuss how the standardization process has influenced our pro-
posal. From these constrains, we have implemented an agile specification process
which enables us to derive the design of the JSR 321 API.

The Java Community Process (JCP) [28] aims to produce specifications using
an inclusive, consensus-based approach. The specifications are, throughout their
creation and also after release called “Java Specification Request” and assigned a
running number. It is controlled by an elected Executive Committee (EC), which
represents most major players in the Java industry. The central element of the
process is to gather a group of industry experts who have a deep understanding
of the technology in question and then have a technical lead work with that group
to create a first draft. Consensus on the form and content of the draft is then built
using an iterative review process that allows an ever-widening audience to review
and comment on the document. While the JCP provides a formal framework with
different phases and deliverables, an Expert Group (EG) may freely decide on its
working style.

There are a number of phases in the process. At first, a new specification is
initiated by a community member and approved for development by the EC of
the JCP. Then, a group of experts is formed to develop a preliminary draft of the
specification. Feedback from early reviews is used to revise and refine the draft.
Once considered complete, the draft goes out again for public review. Now, the



1 Programming Interfaces for the TPM 13

EC decides if the draft should proceed. If approved by the EC, a proposed final
draft of the specification is published and the leader of the expert group sees that
the reference implementation and its associated technology compatibility kit are
completed. Then the EC will decide on its final approval. Completed specifications
will be maintained and updated.

The process also requires a reference implementation (RI). Its purpose is to show
that the specified API can be implemented and is indeed viable. With the Technology
Compatibility Kit (TCK) a suite of tests, tools, and documentation that is used to test
implementations for compliance with the specification has to be provided as well.

1.4.1 Goals for a Novel API

From the previously outlined study of different existing Trusted Computing libraries
we conclude that none of the proposals fulfills the desirable features an industry
specification for applied usage also outside of the academic niche should have.
We therefore propose a new API and present a set of goals the Expert Group has
decided on.

Integration with Trusted Computing Platforms: As a software interface, the API
should be oblivious to the actual hardware it is running on and should not
introduce additional limitations on hardware resources. To the OS, the Java
Virtual Machine appears just as an ordinary application. Therefore, the TPM
access mechanisms need to integrate [69] with the surrounding environment of
the OS, be it virtualized or not, and management services.

User-Centric Design. An Application Programming Interface is directed towards
the programmer. An Trusted Computing API should therefore be designed to
aid developers in writing security applications under the assumption of defined
knowledge in the field of application.

Simplified Interface. To make the new API fit into the Java ecosystem, a completely
new and fully object-oriented interface is to be designed. For instance, generic
entities (e.g., cryptographic keys) in the TSS should be replaced with specific
classes that represent the different types (e.g., a dedicated class for each type
of key). This allows the set of offered operations to be limited to those actually
applicable for a certain object type, thus enhancing usability and reducing the
risk of errors.

Reduced Overhead. The TSS API requires a substantial amount of boilerplate code
for routine tasks, such as key creation, data encryption or password management.
The proposed API should attempt to replace these lengthy code fragments with
simple calls using sensible default parameters where required.

Conceptual Consistency. Names in the API should be consistent not only within the
API but also with the nomenclature used by the TCG and in Trusted Computing
literature. This will allow users to easily switch from other environments to the
proposed API. Still, naming conventions of Java must be adhered to.
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Testable and Implementable Specifications. The API design should target a small
core set of functionality, based on the essential use cases of Trusted Com-
puting. This restriction in size will allow for complete implementations and
functional testing thereof. Also, limitations of scope make it possible for all
implementations to cover the full proposed API, a key requisite for true platform
independence.

Extendibility. The API should allow implementers and vendors to add functionality
which is optional or dependent on the capabilities of the surrounding platform.

Standards Compliance. Having an industry-wide standard of accessing the TPM
from software is indispensable for widespread use and for enabling code
mobility. As the TSS API has shown itself to be unfit for Java environments,
the newly proposed API should itself be based on a novel, independent industry
standard.

1.4.2 Expected Developer Knowledge

A major goal of the proposed JSR 321 API is to simplify Trusted Computing and
make it accessible to a larger group of software developers. To achieve this, it is
essential to understand our target audience and their skills before we can move on
to create a programming interface for them. In the following we define which skills
and knowledge we expect of a developer in order to make full use of the API.

In general, a developer using JSR 321 should be familiar with the cryptographic
mechanisms provided in the Java Security Architecture [19, 36]. The concepts
of data encryption, decryption and the creation of message digests using hash
algorithms should be familiar. The algorithms in particular include SHA-1 and RSA
as used by current TPM implementations. Moreover, a general understanding of
Trusted Computing concepts and the functionality provided by a TPM is required.
This at least should include knowledge about the following topics:

TPM Life-cycle. Starting with its manufacture, a TPM goes through a number
of different states. A developer must understand this life-cycle, for instance
that the TPM is shipped in an unowned state and its owner must explicitly
take ownership, activate, and enable it. When the machine containing the TPM
reaches its end of life, the TPM may be cleared to ensure that any TPM protected
data can no longer be accessed. To avoid data loss, appropriate mechanisms like
key backup or migration must be executed beforehand. Also the implications of
a transfer of ownership of a platform need to be considered.

TPM Key Management. A TPM supports a range of different key types, including
storage, binding and signature keys. The developer is responsible for building
and maintaining a consistent hierarchy. For instance, if certain keys are created
as non-migratable this may rule out any backup of them.
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Root and Chain of Trust. Ideally a consistent chain of trust would be established
by the operating system. However, today’s mainstream platforms fail to do so.
Developers need to take extra care to consider the security level represented by
the PCR values.

Trusted Storage. Care must be taken when the binding and especially sealing
mechanisms are applied to data or user supplied key material. Again, the problem
of backup arises, especially considering state changes which can render sealed
data permanently unaccessible.

Attestation. A number of different protocols have been proposed to perform
attestation to a remote verifier [62]. This API supplies the means to create
TPM quotes. Since there is no general standard for attestation and public key
infrastructures remain limited, we leave the full specification and implementation
of communication protocols to the application developer.

1.4.3 API Scope Considerations

JSR 321 aims to be a simplified, compact and user-friendly API, that should
integrate in the complex ecosystem of today’s Trusted Computing infrastructures.
It it therefore imperative to clearly focus the functions offered by the interface so
that the resulting design is consistent and viable.

A natural starting point would be to derive a Trusted Computing API from the
complete TSS specifications. However, JSR 321 is not planned to fully replace the
TSS in all its tasks. Instead, and as required by the nature of the JVM as a user
process, it builds on and extends the TSS services offered by the operating system
environment.

As a deliberate design decision, JSR 321 will provide functionality focused on
applications and middle-ware, rather than providing support for the low level BIOS
or OS features of the TPM. This restriction matches the field of use of Java and
permits a significant reduction in complexity. JSR 321 will not duplicate elements of
the Java Cryptography Architecture, thus fitting into the existing library framework.

Finally, many TSS-specified functions are simply not needed in Java APIs.
Management of memory and other resources can and should be hidden from
application developers. Object initialization and destruction are natural features of
object-oriented languages. Cryptographic primitives like hash functions are already
well-supported in the Java Cryptography Extension.

To derive the functional scope of the API, the commented complete list of TCG-
specified TSP functions [12] was considered. Based on the criteria and principles
laid out previously, those features were selected that are required for core use cases
that have high importance for practical applications.

In summary, the design focuses on the most important core concepts of Trusted
Computing. The second main goal is to provide high usability. At the same
time, the API is designed to remain modular enough to be extensible with future
developments.
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1.5 Outline of the API

The unique name-space officially assigned to the JSR 321 API is javax.trusted
computing. Within this name-space, a number of packages has been specified,
each representing a well defined set of functionality in several classes. The
relationship between the packages and classes is outlined in Fig. 1.2. These packages
comprise the API:

javax.trustedcomputing.tpm This package contains all relevant func-
tionality for connecting to a TPM. Within the TPM hardware chip, the concept
of a context allows the separation of objects such as keys between different users
and different connection sessions. In JSR 321, a TPM connection is represented
by the central TPMContext object that acts as a factory for other objects
specified by the API such as the KeyManager or the Sealer. The TPM
interface is also defined in this package, which provides general TPM related
information such as its version and manufacturer. Additionally, it allows PCR
registers to be read and extended, as well as providing the Quote operation
required for platform attestation.

Keys
KeyManagerTPMRSAKey

BindingKeyIdentityKey SigningKey

StorageRootKey

StorageKey

Tools & Remote Tools

Binder

Sealer

Attestor

…

Structures

DigestPCREvent
Validation

Data PCRInfo Secret

TPM

TPMContext TPM

Fig. 1.2 Illustration of the relationship between the core components, including the TPMContext,
KeyManager, and Key classes and the Tools
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javax.trustedcomputing.tpm.keys Contrary to the TSS specification,
JSR 321 introduces specific interfaces for the individual key types supported
by the TPM. This includes interfaces for storage, sealing and binding keys.
Compared to having one generic key object, this approach reduces ambiguities
in the API and allows appropriate key usage to be enforced at the interface level.
Using strong key types also relates well to results in formal API design and
analysis research.

javax.trustedcomputing.tpm.structures This package holds data
structures required for certain TPM operations. They include the PCREvent
structure required for operations on the measurement log, PCRInfo used as part
of platform attestation and ValidationData as returned by the TPM quote
operation.

javax.trustedcomputing.tpm.tools In this package, there are interface
definitions for helpers classes to perform TPM operations such as binding,
sealing, signing and time stamping. The javax.trustedcomputing.tpm.
tools.remote sub-package offers abstract classes that allow a remote host
without TPM to participate in Trusted Computing protocols. It provides the
functionality to validate and verify signatures on TC data types.

For error handling, a single TrustedComputingException covers all
lower layers. It offers the original TPM/TSS error codes, but also a human readable
text representation, which is a great step forward in terms of usability. Despite using
only a single exception class, implementations of the API should forward as much
error information as possible. For illegal inputs to the JSR 321 API, default Java
run-time exceptions are used. Finally, functions offering bit-wise access to status
and capability flags are replaced by specific boolean methods that allow access to
application relevant flags.

In JSR 321, the KeyManager interface defines methods for creating new TPM
keys. Upon creation, a secret for key usage and an optional secret for key migration
have to be specified. After a key is created, the KeyManager allows the key,
encrypted by its parent, to be stored in non-volatile storage. As required, the
KeyManager allows keys to be reloaded into the TPM, provided that the key
chain up to the storage root key has been established (i.e., each parent key is already
loaded into the TPM). Every time a new key is created or loaded from permanent
storage, a usage secret has to be provided. This secret is represented by an instance
of a dedicated class Secret that is attached to the key object upon construction.
Secret also encapsulates and handles details such as string encoding, which are
often a source of incompatibility between different TPM-based applications.

The extendable tools package implements various core concepts of Trusted
Computing. As each tool that accesses the TPM is already linked to a TPMContext
at creation, there are few or no configuration settings required before using the tool.
Each tool provides a small group of methods that offer closed functionality. For
example, a Binder allows the caller to bind data under a BindingKey and a
Secret, and returns the encrypted byte array. Usage complexity is minimal as
no further parameters need to be configured and the call to unbind encrypted
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Fig. 1.3 Example of JSR 321 code that performs binding of data

data is completely symmetric. Besides the core set of tools (Signer, Binder,
Sealer, Attestor, Certifier, Signer), implementers of JSR 321 may add
further sets of functionality. An example might be the tool Initializer which
manages TPM ownership, if the Java library is implemented on an OS without tools
for doing so.

In Fig. 1.3 we list source code that demonstrates the API. The example shows
Java code that first opens a TPM context session, creates a non-migratable crypto-
graphic key with the following key policy: the key is a child of the Storage Root
Key, its usage authenticated with keyUsageSecret; there is no migration secret set
as the key is non-migratable; it’s volatile, requires authentication, is a 2,048 bit RSA
key and is not restricted to a PCR configuration. Finally, the program binds data
to the platform where the code is executed. This example also allows us to evaluate
the expressiveness and complexity of writing code. In [61], Stüble and Zaerin
use the number of Lines of Code (LOC) of code examples as measure to compare
different Trusted Computing APIs. They compare implementations of the identical
binding use case. According to them, achieving the same functionality requires
146 LOC with TSS, 30 with jTSS and 18 using �TSS. The JSR 321 program we
present takes only 15 LOC. Besides this obvious reduction of code size, the naming
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conventions used throughout the API allow the effective use of code-completion
mechanisms found in modern Integrated Development Environments (IDE) such as
Eclipse. In many cases, the IDE will automatically suggest a suitable parameter for
method calls, thus considerably speeding up the development of trusted computing
applications.

1.6 Experience and Outlook

1.6.1 Third Party Implementation and Teaching Experience

Our API design has already been adopted by a third party, indicating the viability
of the JSR 321 approach. To improve the security of smart power meters, the
TECOM research project [64] has independently created a JSR 321 implementation
based on the Early Draft version of the specification in order to satisfy their need
for a high-level Trusted Computing API for Java-based embedded systems. Their
implementation was built on top of the previously described ţ TSS in CCC and Java.
The feedback [56] from this external implementation effort has been very positive
and helpful. Aside from minor ambiguities in the specification and small feature
requests, no major difficulties were reported. TECOM concluded that JSR 321
“provides most functionality that the majority of users would probably need” and
that the single interface layer and low level of background knowledge required gave
it an advantage over other APIs.

In summer 2010, JSR 321 was used for teaching the 5th European Trusted
Infrastructure Summer School (ETISS), at Royal Holloway, University of London.
In the 90-min “TPM Lab” we provided an introduction to the central component
of Trusted Computing, the Trusted Platform Module (TPM). The lab explained
TPM activation control, basic operations, and high-level programming of the
TPM with JSR321. The concept of the chain-of-trust was explored in a practical
sealing experiment. On the available HP desktop machines with Infineon TPMs we
provided pre-configured USB-memory sticks running Ubuntu Linux and Eclipse
as development environment. Although many of the participants had either no
experience with TPMs or with Java, about two thirds of them were able to complete
the implementation of an unsealing program within less than 1 h. This clearly
underlines the low initial threshold for using the JSR 321 API. JSR 321 was also
used in two practicals for courses taught at Graz University of Technology. In the
third year bachelor-class “Security Aspects in Software Development” of 2011,
students were given the choice of implementing the signature component of a
CA service either through JavaCard or TPM interfaces. The groups that chose
JSR 321 did not require more supervision or advise than those choosing the more
conventional technology. In the master-level “Selected Topics IT Security 1” class,
in the summer term 2012 students were, among others, given the task to demonstrate
remote attestation of an Android environment. To this end, they employed a software
emulated TPM and accessed it through JSR231. As the Android environment is
source compatible with Java, this caused no additional complexity.
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Thus, JSR 321 has proven to be fit for implementation by third parties not
involved in the specification. Also, the API can be used in academic teaching and
Embedded Systems much like other existing security technologies.

1.6.2 Application in Embedded Systems

In this section we study whether it is (performance-wise) feasible to use Java as
a runtime environment for Trusted Computing related applications in Embedded
Systems. This section briefly describes the used platforms and the corresponding
software configurations.

When considering trusted embedded platforms we have to distinguish two classes
of platforms: first, PC like platforms including many “industrial PC” motherboards,
typically based on �86 compatible processors. They have a PC-style Southbridge
controller which exposes an LPC bus interface. On this class of trusted embedded
platforms the TPM is connected to the system using the standard LPC bus interface.
Trusted embedded platforms in this category can be treated exactly in the same
manner as desktop PC platforms without any loss of generality. The following
sections focus on a second class of trusted embedded platforms, which do not
provide a standard LPC bus interface and thus have to resort to alternative methods
for connecting to a TPM. We concentrate our discussion on TPMs connected via
an I2C bus. This bus is supported by virtually any embedded microprocessor or
micro-controller of interest, either through dedicated hardware blocks or through
software-emulation using general purpose input/output pins.

The inter-IC (I2C) bus [41, 80] was introduced by Phillips Semiconductors
(now NXP Semiconductors) in 1982 to provide simple bidirectional 2-wire bus for
communication between micro-controllers and other integrated circuits (ICs). Data
transfers are 8-bit oriented and can reach speeds of up to 100 kbit/s in standard mode
or 400 kbit/s in fast mode. Higher transfer speeds up to 5 Mbit/s can be achieved
given that certain hardware constraints are met.

Currently no approved publicly available TCG standard for TPMs with I2C
interface exists, although several vendors have recently started shipping I2C-enabled
TPMs. The TCG’s Embedded Systems Working Group has started work on a,
currently unreleased, draft for a I2C TPM interface specification based on the
existing PC-centric TPM TIS [74] specification. At the time of this writing no final
standard has been publicly available yet.

1.6.2.1 Benchmark Platforms

We chose three different systems to evaluate the performance of Java-implemented
Trusted Computing libraries. At the time of performing the analysis, available TPMs
were designed for the PC platform only and thus used the Low Pin Count (LPC) bus
as an interface. To enable Embedded Computing scenarios, we created our own
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Fig. 1.4 Raspberry Pi with IAIK LPC-over-USB-TPM

adapter board which enables us to connect a LPC TPM to embedded systems. The
board is described in more detail in [48] and can be seen in Fig. 1.4. Basically it
tunnels LPC packets over an USB interface. In addition two kernel modules are built
and loaded. They provide a /dev/tpm0 device by accessing our LPC-over-USB
adapter board. The used TPM is an Infineon TPM version 1.2 with firmware 3.17.
This adapter in combination with the PC-TPM is used as substitute since TPMs with
I2C interface were not available at the time of the experiments.

To give a hint on how our adapter performs, a simple method was used. We
measured the time the kernel module needs to obtain the content of all PCRs. The
used command was time cat /sys/class/misc/tpm0/device/pcrs.
On the HP dc7900 platform it takes 0:402 s with the built-in TPM and the tpm_tis
kernel module. With the IAIK LPC-over-USB TPM and our kernel modules the
command took 1:399 s. On a Raspberry Pi it finished after 1:520 s.

HP dc7900 We use an HP dc7900 desktop PC as a reference platform. It runs
Ubuntu 12.04 x86_64 with OpenJDK 64-Bit Server VM,version 1.6.0_24, as
provided by Ubuntu package repositories. The CPU is an Intel Pentium Dual-
Core E5200. Together with 4 GB RAM this is not the newest generation of
desktop PCs but provides a solid base for comparisons.

Freescale i.MX51 EVK The i.MX51 EVK is an evaluation kit for Freescale’s
i.MX51 system on a chip (SoC). The main component of the SoC is an 800 MHz
ARM Cortex A8 CPU core. The platform has 512 MB of RAM, whereof about
400 MB are available for the operating system. The used OS is an Ubuntu 10.04
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with a self compiled Linux kernel version 2.6.35. The sources and patches for the
kernel are provided by Freescale. The Java environment is provided by several
different Java Virtual Machines (JVMs):

• OpenJDK Zero VM, version 1.6.0_18, is the standard Java VM of Ubuntu
10.04. It comes without an JIT compiler, so the Java bytecode is just
interpreted.

• Java HotSpot™ Embedded Client VM, version 1.6.0_32. This is a original
binary release by Oracle, providing a Java SE 6 runtime environment for ARM
6 and 7 platforms. The JIT compiler is of the ‘client’ flavor.

• Java HotSpot™ Embedded Client VM, version 1.7.0_04, is an updated release
based on the Java SE 7 specifications.

• Java HotSpot™ Embedded Server VM 1.7.0, version 1.7.0_04, offers a
‘server’ flavor (especially with regards to JIT compilation) VM for ARM
platforms. In contrast to the ‘client’ VMs it is only available for ARMv7
processors.

• CACAO, version 1.6.0_25, this version was built from source to examine the
performance of an open source VM with an included JIT compiler.

Raspberry Pi The Raspberry Pi is a very affordable computer targeting education
and research. It is powered by an 700 MHz ARMv6 core in a Broadcom BCM283
SoC. On top of the SoC are 256 or 512 MB RAM2 as package on package. Since
the board is very popular and a broad user community has built up, there are
many available operating system images available. For this survey the following
three where used:

• Raspbian 2012-07-15
• Arch Linux 2012-06-13
• Debian 2012-06-18

While Raspbian is a Debian clone optimized for the Raspberry Pi, it is not binary
compatible with Oracle’s optimized JVMs. An overview of the available and
considered JVMs follows here:

• OpenJDK Zero VM on Raspbian, version 1.6.0_24.
• OpenJDK Zero VM on Arch, version 1.6.0_22.
• OpenJDK Zero VM on Debian, version 1.6.0_24.
• Java HotSpot™ Embedded Client VM 1.6.0 This is the same JVM as on

i.MX51 EVK.
• Java HotSpot™ Embedded Client VM 1.7.0 This is the same JVM as on

i.MX51 EVK.

2The 256 MB version was used for benchmarking.
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Table 1.1 Results for
SciMark benchmark. Higher
values are better. The
-large command line
option runs the test with
larger matrices

Default -large

Platform JVM � MFlops � MFlops

dc7900 OpenJDK 845.45 500.32

i.MX51 OpenJDK 10.21 8.77

Java6 30.34 21.02

Java7client 30.05 21.13

Java7server 31.35 24.78

CACAO 24.83 17.53

Raspbian OpenJDK 2.87 2.45

Arch Pi OpenJDK 1.52 1.50

Java6 21.66 14.41

Java7client 21.23 14.13

Debian Pi OpenJDK 2.86 2.43

Java6 21.94 14.33

Java7client 21.79 14.15

1.6.2.2 Benchmarks and Results

To initially assess the performance of generic Java software on the presented
platforms, we used the SciMark benchmark suite. SciMark[49] is a rather simple
benchmark examining the Java performance for scientific computations. It is
provided by NIST and is chosen because its run time is not very long and it gives a
brief insight in computational power of a Java environment. We use version 2.0a of
the benchmark. The results for the SciMark benchmark are shown in Table 1.1.

The second benchmark was created to obtain performance data specifically
relevant for Trusted Computing applications. As a base for the benchmark
jTpmToolswas used. The tasks performed in the benchmark are the following:

• tpm_version
Query the TPM’s version information

• tpm_flags
Query the TPM’s flag settings

• pcr_read
Read the content of all PCRs

• pcr_extend
Extend a small chunk of data to a PCR (20 byte)

• pcr_extend_big
Extend a huge chunk of data to a PCR (40 MB)

• Sealing
Seal and unseal 512 bit of zeros. This test consists of three tasks:

– create_key
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Create the needed key
– seal

Seal the data
– unseal

Unseal the data

• Quoting
Obtain a quote from the TPM. This test consists of two tasks:

– create_key_legacy
Create the needed key

– quote
Obtain quote

• stress_block_1 to stress_block_10
Each block queries the TPM’s flags 200 times, totaling in a count of 2,000
queries.

The resulting measurements are given in Table 1.2 and Fig. 1.5.

Table 1.2 Selected results of
the Java-based tools
benchmark. All values are
ms, obtained with local
bindings and file system
storage. On dc7900 platform
OpenJDK is used, on i.MX51
Java6 and on Raspberry Pi
Java7client

Benchmark dc7900 i.MX51 Raspberry Pi

tpm_version 143 161 158

tpm_flags 203 221 220

pcr_read 1,283 1,592 1,591

pcr_extend 278 284 555

pcr_extend_big 1,018 9,070 19,715

create_key 45,818 15,638 2,626

Seal 4,800 4,509 4,604

Unseal 3,239 2,389 2,418

create_key_legacy 18,170 15,135 2,243

Quote 6,000 5,829 6,000

stress_block_1 13,779 13,020 13,020

stress_block_2 13,511 13,019 13,058

stress_block_3 13,503 13,019 13,018

stress_block_4 13,547 13,019 13,028

stress_block_5 13,443 12,999 13,018

stress_block_6 13,695 13,019 13,048

stress_block_7 13,511 14,439 13,228

stress_block_8 13,635 14,999 13,028

stress_block_9 13,439 14,999 13,538

stress_block_10 13,587 14,999 13,898
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Fig. 1.5 Visualization of results presented in Table 1.2. stress_block_avg is the mean value
of the 10 runs

1.6.2.3 Performance Discussion

The computational power of the investigated systems is by magnitudes lower than
that of standard desktop PCs. Yet, the main insight is that it is possible to use a
Java based trusted software stack also on limited platforms such as the i.MX51
EVK board and the Raspberry Pi. The results presented show that the performance
difference between a desktop PC platform and embedded systems is minimal for
Trusted Computing related tasks. This is due to the fact that TPMs are rather slow
devices, so that even the medium-sized Embedded Systems we considered for our
benchmarks need to wait for the results of the hardware security component.

Note that the values for create_key and create_key_legacy might be
misleading. The creation of keys depends on entropy generated inside the TPM. The
true random number generator’s entropy pool is depleted after a few generated keys
so any further creation has to wait for new randomness to be available. This leads to
high deviations of the values. We show the minimum runtimes measured.

1.6.3 Compatibility with Next Generation TPMs

Throughout the standardization process, 1.2 was the latest version of the TPM
specifications [75] officially released and therefore was used as basis for the design
of JSR 321. We believe that our basic approach of providing a high-level abstraction
of core concepts of Trusted Computing will remain valid for future versions of the
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specification. Any necessary changes to the API, which could become opportune by
the design of the TPM 2.0, which has recently been made available in a preliminary
version [76], can be supported by releasing a new revision through the Maintenance
phase of the Java Community Process. In addition, we believe that the results of the
JSR 321 specification could itself serve to help guide the specification of the next
generation of TSS. The authors have received encouraging feedback from the TCG
that a high-level Trusted Computing API approach as pioneered in the presented
work would be highly desirable for specifications in other languages such as C.

Summary
In this chapter we outlined the current status of software libraries for TPM
access and application-level integration of Trusted Computing. To date,
several commercial and some free implementations of the TCG Software
Stack have been published with varying levels of completeness and standard
compliance.

As a basis for the work presented in this chapter, we reviewed and
discussed the state of the art of available Trusted Computing software
libraries. For native applications, there are ongoing projects which aim to fully
implement the TSS standard, and alternative approaches which intentionally
provide a reduced and simplified interface.

In managed run-time environments, Java currently is the primary choice for
the implementation of Trusted Computing applications. This is emphasized
by the existence of several different libraries and frameworks that have been
proposed or prototyped for this language. Our review of existing approaches
has uncovered a number of drawbacks including high complexity, inconsistent
APIs, limited object-orientation or lack of features.

Despite the availability of libraries and tools, Trusted Computing is not
yet widely used and has not found its way into commercial applications [57].
We and other designers of TC APIs [60] attribute this fact primarily to the
high complexity of and developer expertise required by existing standards
and APIs. We believe that a lower learning curve for the software interfaces
can attribute to a more widespread use in the future.

Based on these findings, we specify goals for a novel high-level Java API
that aims to overcome these limitations. Specifically, we focus on a simple
interface for access to commonly used TPM functionality and define the
technical knowledge expected of programmers using it. In contrast to the
original TSS design, we propose a fully object-oriented approach that hides
low-level details and provides additional guidance for developers by provid-
ing solid default configurations. Results from the reference implementations
are encouraging and demonstrate the feasibility of the proposed approach.

(continued)
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Performance evaluations on Embedded Systems underline the applicability of
our approach in different usage scenarios, that need not be restricted to the
Desktop and Server world.

The aim of our API design was the release as the official Java standard
API for Trusted Computing. Therefore, we have adopted an agile and
transparent working style within the Java Community Process. The desirable
set of API features has been selected based on open discussions. Feedback
received from external reviewers and independent implementers has helped
to adapt and extend the design. After two publicly announced reviews
and several votes within the Java Community Process, the standard was
published [68]. The Reference Implementation, the Technology Compatibility
Kit and documentation is available under an open-source license from
https://jsr321.java.net/.

We believe that this effort towards an open, simple and consistent program-
ming interface can considerably contribute to the future adoption of Trusted
Computing. Even thought the proposed JSR 321 API is designed for the Java
programming language, we anticipate that the contribution of this work will
not be limited to Java. Due to the clear and lightweight design of the API,
implementations in other object-oriented programming languages should be
possible with only minor adaptations.
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Chapter 2
ARM® TrustZone®

Jon Geater

Abstract Millions of mobile devices are built around processors and
systems-on-chip (SoCs) based on ARM® processor designs. The success of the
ARM architecture is due in no small part to the fact that ARM only designs and
licenses the base IP for SoCs: the company does not make or sell finished chips.
Device makers in search of SoCs for their designs generally benefit from this model
as they have a wide choice of products and vendors to choose from while enjoying
the efficiency and reliability of standardized tool chains, low-level compatibility and
a broad developer ecosystem. However in the area of security ARM-based devices
were not always consistent or compatible, so ARM created TrustZone to provide a
portable architecture-level security feature for the ARM community to build upon.

2.1 TrustZone Overview

TrustZone® is an architectural feature of the ARM® application processor architec-
ture1 that enables a single processor (or SoC) to run two quasi-independent software
stacks, one so-called ‘Normal World’ (NWd) and one ‘Secure World’2 (SWd). The
NWd runs the standard software stack that the user expects to see: Linux, Android
or the like. The SWd runs a separate and (typically) unseen operating system that

1‘Application processor’ as distinct from ‘real-time processor’ or ‘micro-controller’. TrustZone
as described in this text is only applicable on A class (recently referred to as Cortex-A) family
processors, and not -R or -M class designs. Cortex-A is the type typically used in smartphones,
tablets, smart TVs and the like, collectively referred to as ‘smart mobile devices’.
2TrustZone nomenclature has seen a number of refinements over the years and the ‘Secure World’
label has generally given way to ‘Trusted World’ in contemporary documents, partly to differentiate
from ‘Secure Elements’, and partly in recognition of the unattainable nature of full security and
better reflecting the combinatorial and subjective role TrustZone plays in the wider computer
system. Nonetheless architectural descriptions often retain the original ‘Secure World’ naming.
This usage is reinforced by the naming of various architectural features that support TrustZone.
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provides security services to applications running in the NWd and to the NWd
operating system itself. Although not technically enforced, by convention the SWd
stack is very compact and contains only the minimum code necessary to service
the security functions of the NWd software. The SWd therefore usually performs
a function similar to a programmable security module; a slave to the NWd, and is
often described in ARM materials as ‘a virtual second core’ or a ‘secure virtual
processor’.

Separation of the two software stacks is enforced in the processor hardware
and communication between worlds is strictly moderated making a properly
implemented TrustZone system highly resilient against software attacks even from
a rogue3 OS kernel. In addition TrustZone offers a highly integrated system security
solution and is more than simple memory partitioning. Bus devices and memory
regions can be shared by both words (either concurrently or switched) which
is intended to enable powerful security designs while retaining a natural user
experience and minimizing build costs [4].

With the knowledge that devices and memory can be shared it is important to
understand that separation of the SWd and NWd is not symmetrical and in this
special regard the virtual security processor analogy fails. As the lower security zone
the NWd cannot access SWd resources, but the SWd can access all NWd resources,
even those not explicitly identified for security functions. This behavior is logical
given the architecture but still needs to be borne in mind when designing systems.

ARM TrustZone technology was introduced in 2002 and first made available to
system builders in 2003 with the ARM 1176 processor [2].

2.2 Protection Target

TrustZone is intended to protect against software attacks. Various implementations
of SoC designs incorporating TrustZone also include protection against simple
hardware attacks (os ‘shack attacks’ [2]) but this quality of protection varies between
designs. Protection against direct software-borne attacks is the central aim.

Over the past decade or so the rise of devices with application download
capabilities, large data storage/manipulation capacity and high bandwidth internet
connections has made mobile devices much more open to remote, scalable software
attacks. While physical attacks remain a valid problem it is the likes of malware and
other remote-origin threats that present the greatest opportunity for growth in the
mobile device crime world.

3The notion of ‘roguishness’ is strictly subjective. For some, a user-built Linux kernel is the
ultimate security breach, while for others it is the only acceptable environment for their usage.
The design of TrustZone does not assume a particular semantic or detailed threat model in this
regard: it is simply assumes that the entire NWd is untrustworthy from the perspective of the SWd.
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To this end TrustZone attempts to solve that problem, preventing any software
down to the level of supervisor mode code (usually the OS kernel, or a successful
exploit of the same) from interfering with the device’s most highly valued assets.
In particular it aims to prevent the kind of mass, scalable attack that the Internet
enables so well.

While theoretically usable for almost any situation, TrustZone has historically
been used for a few common use cases. These are fairly simply split into two
categories: system use cases, where TrustZone supports some underlying feature of
the device and SWd operating system (e.g. firmware integrity, IMEI handling), and
application use cases where TrustZone provides a security extension for (possibly
downloaded) user software (e.g. Digital right management (DRM)). In all these
cases, and others, the primary goal must be to protect individual instances from
attack. Systems that rely on important shared class secrets are not a good fit for
TrustZone since the security economics of physically breaking a few devices to
compromise them all are quite attractive to the attacker, whereas the prospect of
having to break (or at least touch) every device is much less appealing.

2.3 Architecture

TrustZone is an SoC-wide feature, meaning that it not only provides memory and
process isolation but also enables trusted handling of AMBA 3 AXI bus4 peripheral
interrupts.

To achieve correct separation of SWd and NWd requires designed-in cooperation
between the processor, memory and bus systems of the SoC. The processor
implements the SWd and NWd as explicit operating modes (‘secure’ and ‘non-
secure’ respectively), and memory and bus access requests then indicate which
mode they belong to. This indication is given by the setting of the NS bit.

2.3.1 The NS Bit

The NS (or ‘Non-Secure’) bit is the central manifestation of TrustZone in the
ARM processor architecture. It is a control signal that accompanies all read and
write transactions to system bus masters, including memory devices. As the name
suggests, the NS bit must be set low in order to access SWd resources.

4AHB and APB devices are not directly compatible with TrustZone – the signals are only properly
preserved in AXI systems.
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The NS bit is sometimes thought of as an extra address bit5 that effectively
partitions the memory space into two parallel logical regions: 32-bit space plus
NS. This analogy makes TrustZone isolation and error behavior intuitive: attempts
from NWd to access SWd memory will fail, even if it knows the exact 32-bit
address, because the 33rd bit is different and so does not map to the desired memory
location. The use of a control signal in this way makes for a very simple and elegant
partitioning model since no special access control logic (which may be buggy, and
would require its own execution context) is required.

Integrity of the NS bit state is vital to the correct separation of SWd from NWd
so code making resource requests cannot set NS in the transaction directly: instead
it is set, maintained, and checked by processor registers and bus components. Bus
masters that are always deemed insecure should set NS = 1 in hardware to eliminate
the chance of later problems. All other masters have their state configured by trusted
firmware during system boot before any user code is able to execute.

2.3.2 The Monitor, World Switching and CP-15

Along with NWd and SWd, TrustZone introduced a third special execution context
called Monitor mode. Monitor mode executes a very small piece of software –
the Monitor – whose sole job6 is to catch transactions, exceptions and interrupts
that need to change between worlds and then handle that change robustly. The
Monitor code is part of the SoC firmware7 and may strictly do anything but in
general it should only perform the minimum operations necessary to safely switch
between NWd and SWd states. Given its ability to manipulate secure state and
intercept secure interrupts the code of the Monitor needs to be small and robust, and
ARM provides a sample to show the basics. Errors in the monitor can completely
undermine world separation.

When NWd software wishes to contact SWd it must issue a Secure Monitor
Call (SMC) instruction. This causes the processor to invoke the monitor which
sets the state of the NS bit in the Secure Configuration Register in the System
Control Processor (CP15) and banks sensitive registers to keep the system secure
and consistent.

5The ‘33rd address bit’ analogy (all TrustZone-supporting ARM systems were 32-bit when the
feature was introduced: the implication for 40- and 64-bit systems is obvious) is not uncontroversial
among those with intimate knowledge of processor and memory architectures, but it is close
enough as to be useful.
6Technically any code can run in any mode, but this should be the sole job of the Monitor. Adding
additional complexity to this powerful software can be extremely risky.
7The scope of ‘firmware’ is, of course, somewhat subjective. In practice the monitor is often
provided by the authors of the rest of the privileged SWd code.
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SMC calls are very simple: their single parameter is a 4-byte immediate value
that indicates to the software in the SWd what service is being requested. This
value is not interpreted by the processor in any way: it is simply passed through
the monitor call. It is therefore up to the design of the SWd software and its NWd
callers/drivers to agree conventional numbering and meanings for these values.

Although the analogy of the virtual security processor is appealing it must now
be extended if it is to remain useful. Specifically all transactions with the security
processor must be considered to be synchronous blocking transactions. This is clear
because there is only really one processor8 and it can only be in one mode at once,
so when SWd tasks are running the NWd stops. While tasks can be swapped and
interleaved this is not as simple as normal scheduled multi-tasking since it requires a
trip through the Monitor. System designers must pay careful attention to this fact as
spending large amounts of time in the SWd context can have serious adverse effects
on device usability. This is another strong reason for the recommended model of
SWd as a small-as-possible coprocessor and not a full stack.

2.3.3 Interrupt Handling

Interrupt handling is special in TrustZone-aware systems. The core of the processor
actually implements three complete separate exception vector tables: one each for
normal, secure and monitor contexts. This enables powerful and flexible routing of
interrupts to the correct security context without the risk of the wrong code trapping
a vital signal.

By convention TrustZone systems leave IRQ as an insecure (or ‘normal’, follow-
ing the naming scheme) interrupt source and use FIQ as the secure interrupt source.
This convention is not strictly required: it was simply a choice and recommendation
made by ARM to be the least disruptive to existing software [2]. Both are initially
trapped by the monitor which ensures the correct state is selected and restored before
letting the interrupt be consumed.

Although the FIQ-as-secure-interrupt convention is not absolutely required it
does have some architectural features behind it. CP15 includes a configuration
register that prevents NWd software from modifying the FIQ mask bit but provides
no such facility for protecting IRQs. This makes FIQ a much more reliable choice
for implementing sensitive secure sources such as a watchdog timer.

8TrustZone was invented in an era when ARM SoCs were generally single processor, single core,
and the design rationale reflects this. Modern SoCs have many cores, each of which has its own
NWd and SWd, and many different configurations and control designs are possible. However since
the complexity of shared resources, bus masters and power management control become much
more complex in this scenario only the simple single processor case is addressed in this text.
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2.3.4 Fabric Support

In order to successfully propagate the NS signal throughout the system there is
a minimum amount of support required in the fabric of the SoC in addition to
the basic processor. While system builders are able to add TrustZone support to
almost any component they desire, this minimum set must be implemented else
security integrity will be lost. ARM provides ready-built IP designs for each of
these components but it is possible for the chip designer to use their own parts so
long as the features are properly and coherently implemented.

As ever this list is incomplete for a variety of reasons, not least that chip designs
vary so widely and their fabric requirements with them (a functioning MMU is
required but absent from the list, for example). Three broad categories of fabric
device cover the bulk of the less obvious essentials.

2.3.4.1 Cache Controller

If the cache controller were not TrustZone-aware it would be effectively impossible
to implement shared/dual use memory areas: clearing the cache each time a call
is made would introduce a significant performance burden, and failing to clear the
cache would introduce severe risks of information leakage.

By having a cache controller that is aware of TrustZone it is possible to extend
the “33rd bit” model to cache look-ups as well, which continues to afford systems the
appearance of maintaining two separate address spaces for SWd and NWd. It also
provides intuitive error behavior when invalid requests are made.

2.3.4.2 Generic Interrupt Controller (GIC)

In order to handle and route secure interrupts the interrupt controller needs to be
able to directly choose which world (and so ultimately which OS and driver stack)
receives which interrupts. By combining a security-aware GIC with monitor code
it is possible to prevent NWd from interfering with sensitive SWd interrupt sources
(secure watchdog, for example) while at the same time minimizing latency for han-
dling other sources. Without this security awareness in the interrupt controlled the
system would be forced into serious compromises on security and/or performance.

2.3.4.3 Address Space Controller

While it may be desirable to try to implement all of SWd in secure on-SoC memory,9

it is often the case that the system will not have enough on-SoC dedicated memory

9This is sometimes achieved, and has a number of benefits: additional tamper resistance/evidence
on one hand, and additional isolation potential on another.
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to run the SWd OS and all its applications. An address space controller that is
TrustZone aware enables the partitioning of the large system DRAM into general
access regions (marking all transactions NS=1) and secure-only access regions
(NS=0, just like inside the processor core). Memory locations in secure regions are
only accessible by SWd code, meaning they are as strongly protected from software
attack as the on-chip components.10

2.4 Pitfalls

TrustZone is a very powerful feature and care must be taken when implementing
systems not to accidentally compromise security. As with all things there are almost
infinite opportunities for error but a few common errors catch most basic problems.

2.4.1 Leaving Debug Features Enabled

ARM defines separate debug enable software signals for the NWd and SWd so
that they can be configured and tested separately and safely. Leaving debugging
features enabled and accessible in released designs (for example through JTAG, or a
maintenance mode boot path without proper protections) potentially leaves the door
open for attackers to take over the system.

2.4.2 Incorrect Management of the Memory System

Especially in the case of systems that use an address space controller to create secure
regions of system DRAM it is important to ensure that the contents and access
properties of potentially shared physical memory locations are properly managed.
With dynamic memory systems much care must be taken to avoid secure memory
from becoming readable or insecure information finding its way into the secure
working memory.

It is also extremely important to ensure that when calls from the NWd to the SWd
include memory addresses (e.g. for the shared command buffer) that these memory
addresses be properly validated by the SWd code before they are used (either
for reading or writing). SWd code has the potential ability to modify any system
memory (including non-secure) and care must be taken to avoid SWd software being
used to “do the dirty work” of a malicious NWd process.

10Off-chip components are of course more open to invasive hardware attacks such as probing.
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2.4.3 Poor Handling of Firmware or Software Verification

With the possible exception of a small boot ROM, to a first approximation all soft-
ware executing on a contemporary mobile device is first loaded from untrustworthy
locations.11 It is therefore necessary to implement strict integrity checking of all
software that loads before essential configuration of secure peripherals and memory
has been completed.

The security of the SWd software (and NWd software that relies on a particular
SWd companion) depends entirely on the software that creates the execution
environment (i.e. the NS and ASC configurations) and validates the integrity of the
main SWd code (as above). Some known failures include:

• Race condition: checking the validity of one copy of an image but running
another

• Incorrectly giving access to a debug mode (e.g. maintenance bootloader)
• False positive verification of bad signatures

2.4.4 Poorly Designed Application Interfaces

Even when the system design is perfect it is still very possible for application level
errors to compromise security of the finished device. Consider the common example
of a cryptographic token implemented in TrustZone: if the developers of that token
create an API that allows keys to be taken out of the SWd and used in NWd software
(rather than providing proxied use of the key in SWd) then the cryptographic token
would not be providing very much security even when TrustZone is functioning
flawlessly.

2.4.5 Insecure Use of Shared Buffers

A common pattern for message passing in TrustZone is to have a shared memory
region accessible to both SWd and NWd. Even when the memory protections are
properly set up at the low level, higher layers of software can make mistakes. If SWd
code somehow works on this data in-place then its operation can be compromised
by rogue (or even non-rogue) NWd software in all three fundamental ways:

• Confidentiality is lost in the case that SWd produces intermediate values that are
not supposed to be seen by the caller

11This may refer to the obvious popular example of programs downloaded from the Internet but it is
not intended to. At the level of TrustZone it is important to realize that system flash is untrustworthy
since it can be modified by NWd.
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• Integrity is lost in the case that NWd modifies the input data while it is being
worked on (introduces TOCTTOU12 errors)

• Availability is lost in the case that the NWd overwrites or deletes the information
before the SWd has finished with it

2.4.6 Incorrectly Configured Bus Peripherals
and Bad Drivers

Bus masters marked as secure permit their slave devices and thus drivers access to
the SWd. Since driver code often performs powerful actions such as modifying page
table entries13 the potential to introduce errors here is large.

2.5 Standardized Software Environment

Being a designer of processor and fabric IP, but not of SoCs themselves, ARM has
to define features at an architectural level rather than concrete implementations. In
this context the NS bit is an extremely elegant solution but it fails to meet one of the
major goals it set out to achieve: interoperability [3].

From the application writer’s point of view TrustZone does not provide inter-
operability between implementations because it only provides the ability to create
and enter secure state. No higher level functionality or APIs are defined that could
actually satisfy any use case. To address this the SWd needs to have the option of a
standardized software stack that performs known functions in a known way.

2.5.1 TrustZone Software

Around 2004 ARM and Trusted Logic S.A. together produced the first version of
TrustZone Software that provided various low level platform security features such
as device identification, secure storage, data integrity verification and I/O access
control [5]. This provided application developers with a set of common APIs upon
which to base broader secure systems.

This software was developed for a number of years until TrustZone API v3 was
retired in 2011. After this date the chosen standard for interoperable software on

12Time Of Check To Time Of Use – a common security error whereby input data is correctly
validated when presented, but is changed before being operated on. Famously responsible for a
number of security errors in unix file handling.
13Since the architectural concept of a driver depends on the operating stack it is difficult to go into
too many details of the software level problems that might arise. However low-level access to the
memory system is a very portable and relevant concept.
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TrustZone devices became TEE. It is important to stress that device makers are not
required to adopt the standardized TEE today any more than they were required to
run the TrustZone Software before. Custom software in SWd is completely possible
but is clearly not interoperable with other vendors.

2.5.2 TEE

In keeping with the other concepts in this chapter, the Trusted Execution Environ-
ment (TEE) concept grows from the fact that SoCs are, by their nature, extremely
general purpose devices. Defining software interfaces for very specific security use
cases is therefore challenging and unlikely to be useful. Instead, a simple platform
model was imagined which creates a programmable space where any companion
code for any NWd use case can execute, free of threats from bad software in the large
open operating system on the other side. The application author typically designs
their application in two parts (code that manipulates sensitive data to go in the TEE,
and code that does not to go in the open OS) and writes each part separately with a
tightly coupled and consistent design. It is hoped, and often practically required
(although not theoretically necessary) that the secure part of the code be much
smaller than the other part. This has many benefits but the most obvious in security
terms is that it vastly reduces attack surface and opportunities for exploitable bugs.

In its generic form the Trusted Execution Environment is not necessarily only for
TrustZone: any number of physical manifestations make sense for a logically iso-
lated operating environment. However in TrustZone systems the TEE is generically
constructed from three major parts:

• The SWd software stack: simple operating system, secure devices, interrupt
configuration etc.

• An internal API against which application writers write their sensitive code
(enabling portability, simplicity and hiding the details of the underlying OS)

• A client API that enables communication between NWd programs and their SWd
counterparts (hiding the complexities of SMC calls and the like, and usually
taking care of shared buffers)

A leading interoperability standard for TEE, supporting both TrustZone and
non-TrustZone implementations, is defined by the GlobalPlatform standards
organization [4].

2.5.3 Role in Secure Boot

The SWd software stack enjoys a somewhat circular relationship with the system’s
secure boot process. At the most base level TrustZone and the TrustZone aware
components make the SoC boot secure for SWd software by ensuring the device
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resets into secure state and runs SWd before NWd, but of course this alone is not
enough to protect a complex hardware/software system. Given the opportunity to
run first by the hardware, the low-level software of the SWd stack must do its part
to configure the platform properly and safely, particularly in configuring the address
space controller and secure peripherals [1].

Summary
With great power comes great responsibility. If care is not taken in the
SWd software then device security characteristics can be uncertain, but with
the right accompanying software design ARM® TrustZone® is an elegant
and powerful feature of Cortex-A processors that can provide significant
protection of connected devices and applications against software-borne
attacks.
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Chapter 3
Computer Security Anchors in Smart Grids:
The Smart Metering Scenario and Challenges

Alessandro Barenghi, Luca Breveglieri, Mariagrazia Fugini,
and Gerardo Pelosi

Abstract The modern energy distribution grid is increasingly responsible for
extensive self-monitoring and load balancing, together with prompt failure response
and small energy producer integration. In this scenario, where the grid doubles as
a data transmission grid, commonly named smart grid, new information security
challenges arise. In particular, providing confidential data transmission, privacy
preserving metering and authentication for the metering software, emerge as key
issues. In this chapter we will provide an overview of the security challenges of the
smart metering scenario, highlighting both the security services to be guaranteed
and their actors, and the ongoing standardization activities.

3.1 Introduction

In the latest years, social and policy changes have been driving the need for a recon-
figuration of the current power grid, leading towards the integration of information
and communication technologies (ICT) within the traditional energy distribution
systems. The transformation of the power grid from a mostly unidirectional,
centralized and hierarchical organization, to a distributed, networked and automated
energy value chain, in turn spurred the need to integrate its management across
a broad spectrum of heterogeneous business and operation domains, involving
multiple enterprises and customers coming from different industries.

Smart meters, sensors, and analytics tools enable users to manage and control
the energy usage in individual networked appliances as well as to automatically
monitor the health state of the power grid, pinpoint outages as quickly as possible,
and remotely assess the entity of eventual damages to grid assets, thus providing the
grounds to locate and isolate the failure while maintenance teams are dispatched.
Moreover, the integration of ICT enables energy and utility companies to better
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evaluate the entity of power demand, possibly in near real-time, so that the
delivery and independent production integration strategies may yield higher efficien-
cies altogether [12]. Beyond the application of traditional information-technology
(IT) security mechanisms (such as authentication, secure protocols, and intrusion
detection/response systems) together with proper security engineering processes,
cyber-security in the smart-grid also faces novel challenges. In fact, the IT security
approaches have to be reconciled with the traditional plant safety methodologies
found in industrial control systems. This requires guaranteeing the stability of
control systems, which may be disturbed by malicious activities. At the same time,
IT security must take into account the real-time and analog nature of the grid
and adapt the risk management by providing graceful degradation as opposed to
a sudden, disastrous failure when under attack. The interconnection with other
systems such as buildings and home networks also poses significant challenges
in terms of consumer trust and the utilities’ ability to manage encryption keys as
well as the compliance with authorization policies satisfying the requirements of
involved parties.

3.2 The Smart Metering Scenario

Smart meters are among the core components supposed to help transforming the
energy delivery network into a two-way information system. They automatically
measure the electric energy consumption of any end-consumer system (e.g., a single
house, an enterprise, or even a whole urban block), and transmit the collected data
to the utility provider, which in turn will automatically bill the consumer. They also
take care of measuring a few technical parameters for the provider to balance the
load in the power grid, and they disconnect and reconnect the consumer for either
contract-related reasons (i.e., unfulfilled bill payments) or technical safety reasons
(such as large power surges on the grid). Moreover, the same information can be
used to manage emergencies and cope with grid faults, as well as to generate reports
and statistics. Finally, as the main component of a two-way information system, a
smart meter can notify pricing changes to final customers; they in turn will be able
to automate the use of that heavy-load appliances such as cars and dishwashers
work when the energy is cheapest. The automatic management of the utilities can
be extended by means of smart metering and accounting, also to other commodity
goods such as gas and water, through employing intelligent meters provided with a
convenient data line to transmit the collected information.

Among different data connections, the one most suited for smart meters is
performed via power line communications. A power line connection distributes
electric power and data together, using the existing electric power grid to this
purpose. It is characterized by having a reliability higher than that of the recent
wireless communication technologies like the WiMAX [13] and GPRS/UMTS
protocols, as well as by providing capillary access to all the households in a manner
very similar to the common public switched telephone network or the local area
network technologies.
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Typically, a group of power meters, acting as data gateways, are connected to a
concentrator, which can be conveniently placed within a mid to low voltage step-
down substation. A low data rate, and an energy efficient wireless connection, most
likely based on ZigBee [28], can be used to provide connectivity locally among
nearby meters (e.g., those placed in a home or a building), which do not have a
direct power line connection, such as the ones measuring non-electric goods like
gas and water. For all such meters, the electric power meter works as a gateway to
the power line connection.

At an intermediate level, the concentrators are connected to both the power grid
and to an IP-based network (e.g., the global internet) in order to act as a data bridge
to and from power lines. The electric power meter is able to communicate with
the concentrator via the power line connection, and eventually the concentrator
can communicate with the provider via a data network. Groups of distributors and
providers can work in a Virtual Organization mode, e.g., they may share services
and customers.

3.2.1 Architectural Reference: Actors and Services

Smart Metering involves four different actors: provider, distributor, consumer and
meter. The first three roles, shown in Fig. 3.1, are identified through the following
labels [8]: Energy Service Provider (ESP), Distribution Service Operator (DSO),
and Final Customer (FC).

The ESP generates electricity from renewable and non-renewable energy sources
in bulk quantities, and supplies it to the power distribution network. These sources
are usually classified as: renewable, variable sources, such as solar and wind; or
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renewable, non-variable, such as hydroelectric, biomass, geothermal and pump
storage; or non-renewable, non-variable, such as nuclear, coal and gas. The DSO,
which may be the same entity as the ESP, manages (acquires and uses) metering
data from the power grid. Metering data can be of two types: consumption data,
namely the consumption of a resource (e.g., electric power) used for billing, and
technical data, namely technical information used for power grid management, with
the purpose of balancing the energy levels, of avoiding or smoothing load peaks,
and of disconnecting and reconnecting customers and providers. The DSO uses
consumption data for payments/billing, and for formulating custom billing plans
and contracts with the “fidelized” FC (private or enterprise). It monitors and controls
the status of the access points and bridges, or concentrators, through the acquisition
of technical data about the meter statuses (e.g., enabled, disabled or faulty). It also
manages emergencies, generates reports on consumptions based on consumption
data about groups of consumers, and, in general, it performs measurements. It
controls the functionalities of the meters to check if they are operative, and it is also
able to send maintenance commands like “change billing contract”, “connect” and
“disconnect”. Consumption data may also be used to generate reports and statistics,
so generating consumption profiles (e.g., for certain user classes). Since a DSO is a
specialization of an ESP, it can perform also energy-related operations, possibly on
a smaller scale. For example, to satisfy legal constraints on the quotas of distributed
energy that are derived from renewable sources, the DSO can select groups of FCs
to buy renewable-energy credits and manage the “last-mile” infrastructure needed
to collect the electricity into the existing power grid.

The FC is regarded in conjunction with the meter installed at his facility. He
does not directly access any kind of data, as he can subscribe/unsubscribe supply
contracts and require periodic reports about his consumption. Indirectly he sends
measurements through the meters and receives billings. The FC consumption can
also be profiled to offer him the most suitable contract. However, customer profiling
should be done carefully, as it has been proven that profiling the consumptions of
a household with a high time precision allows one to infer whether specific house
appliances were active at a certain time. This information can also be exploited to
infer the habits of the customer, thus representing a possible breach of his privacy.
For these reasons, customer profiling should be limited to a time scale loose enough
to prevent the leakage of private information.

The meter is the smart device used for the measurement of consumptions at local
sites. It periodically sends consumption and technical data to the DSO. Consumption
data are used for billing and technical data are used for load balancing. It can be
connected or disconnected to/from the power line; it signals its operation and its
faults to the DSO. It communicates over a secure channel with the DSO using
symmetric cryptography, time-stamps and signature, in order to authenticate the
DSO, and get authenticated.

A refinement of smart metering is that an FC may act as a local Provider of some
resource type, usually electric power, e.g., through photovoltaic power generation.
In this case he will have some of the provider/distribution services, to an extent
limited by the small scale of his resource generation capability.
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3.3 Security and Privacy Challenges

The design and deployment of smart meters raises several serious security and
privacy issues, with different social and regulation concerns [1, 8].

A particular matter of interest for industry representatives and associations lies
in the identification, assessment, and prioritization of the risks due to the potential
frauds made possible by the deployment of devices with a security vulnerability [3,
17]. Indeed, if meter readings can be manipulated, either by returning false readings
from credit meters or by forging authorization messages to prepayment meters, this
could lead to substantial economic losses [15]. Thus, the minimization, monitoring,
and control of the probability and/or impact of such unfortunate events is of great
interest. In addition, at the level of the energy grid distribution, the presence of a
remote off switch in all electricity meters can lead to a strategic vulnerability with
respect to a capable cyber-adversary [18].

Considering the equipment suppliers, the main observation focuses on the
excessive technical regulation sprung from the smart grid adoption, which threatens
to drive up equipment costs in exchange for a small benefit [20, 23]. On the one
side, the challenge of over-regulation leads to pessimism about the prospect of fixing
security by mandating standards coming from a single authority. Moreover, the lack
of universal standards for communications between meters and appliances might
prevent the benefits of demand reduction being realized, as well as prevent reducing
interoperability and competition [14, 25].

At the jurisdictional and organizational levels, it is possible to spot severe
conflicts of interest. Indeed, the main goal of the governments is to cut energy use,
which they hope to achieve by making energy use more salient to the consumers,
while in most countries the meters will be controlled by energy retailers who want to
maximize sales and who depend on pricing confusion. Meanwhile, the competition
authorities should worry about whether giving energy retailers vast amounts of data
about the customers, will adversely impact competition via increased lock-in [7,16].

Finally, from the point of view of privacy activists, the main concern on the wide
adoption of smart metering technology relates to the amount of sensitive personal
information about the household usage that could be disclosed to principals able to
access fine-grained consumption data [19, 22].

3.3.1 Security Engineering Requirements

From an engineering perspective, the security requirements for smart metering
systems can be defined in terms of the three fundamental properties warranted to the
data by secure systems: confidentiality, integrity and authentication. Confidentiality
implies that a data stream, being sent from an actor to another one, should be
readable only by the actors involved in the communication, and should not be
eavesdropped by anyone else. This property can be warranted by means of tamper
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proof communication endpoints, to avoid the insertion of eavesdropper devices, and
through employing symmetric cryptography to avoid possible eavesdropping on the
communication mean. Integrity concerns the need for the transmitted data to be
delivered to the recipient in whole and unmodified. Integrity may be provided via a
tamper evidence mechanism, such as a message digest, coupled with an on-failure
re-transmission protocol. In order to properly warrant integrity, the message digest
should change radically even when parts as small as a single bit of the transmitted
message are changed, and it should be computationally unfeasible to forge a
message with a valid digest, different from the original one. Authentication concerns
the possibility of identifying either the author of a data block or, analogously, of
finding the identity of the other endpoint of a communication. The most common
means to enforce authenticated communications and to authenticate data is to
employ asymmetric key cryptography coupled with a Public Key Infrastructure
(PKI) able to certify the authenticity of the public key. Through these means it
is possible to provide a secure, mutually authenticated communication between
two entities, or to digitally sign data and applications, so that their authorship is
undeniably traceable.

The aforementioned properties provide guidelines on how the various smart grid
actors securely communicate over a channel, and how they store information in
a database (where it exists – typically at a provider site). Long-term data storage
ought to be restricted to the provider only. The energy provider is considered to be
a trusted authority, able to keep its own perimeter free from attacks. Security issues
may arise when considering inter-provider adversarial relations, where a provider
may cheat spoofing the others’ identity to obtain economic gains. However, since
the providers’ reputation is effectively a company asset, such threats are unlikely
to get transformed into practical attack actions. As the providers should be able
to intercommunicate between themselves, a proper structure must be deployed to
render the asymmetric key infrastructure interoperable among all of them. To this
end, either a common PKI should be established for all of them, or each energy
provider should accept certificates signed by the others. Analogously, the DSO
should be regarded as a trusted entity. Since it is difficult to access the power
distribution structures, the security threats concerning the tampering with their
metering and information concentration infrastructure, receive implicit mitigation
by the safety measures included in the step-down power stations where they are
placed. On the other hand, since the communication with the power meters happens
through the common low-voltage power line, such a connection has to be secured
properly. Basically the threats to a DSO are related to network attacks against
the flow of data from meters and towards upper levels: user impersonation, rogue
server hijacking the traffic, and denials of service caused by artificial message
floods. This threat class is the one commonly associated with the security issues
of communication and application network protocols. Most of the threats are on
the consumer side. The consumer may in fact try to lead an attack against the
meters. Typically such attacks are of the following types: physical tampering, side-
channel analysis, network attacks against the flow of data towards upper levels, user
impersonation, and connection hijacking. Also, eavesdropping attacks may cause
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privacy loss in case a customer is able to gain information regarding the behavior of
others. Authentication must be provided for the meters that have the ability to detach
the consumer from the energy-providing grid, in order to prevent the unauthorized
detachment of a single consumer or even a large scale intentional blackout targeted
to cause massive disruption. Data collected from consumers should be aggregated
for statistical purposes only, with no access to individual records in order to prevent
fine grained privacy leakage from consumer profiling.

The aforementioned threats may be the result of a direct attack on the DSO
infrastructure or, quite more likely, of a manipulation of the metering devices. In
this respect, it is fundamental for the DSO to design and deploy secure meters that
effectively hinder any possible malicious action by either outsiders or regular line
subscribers. This goal can be achieved in two ways: either the DSO considers its
own meter as a closed system where no changes to the running software (other than
maintenance updates) are made, or the DSO employs the meter as an open system,
allowing the customization of particular features by the line subscriber, via ad-hoc
designed applications.

The first model assumes that the meter is realized as a closed embedded system,
and deals with the confidentiality issues relying only on a shared secret with the
DSO, which is embedded at manufacturing time. This in turn implies that the
security margin provided by the infrastructure is based on the use of symmetric
ciphers in order to wholly encrypt all the communications, thus providing complete
confidentiality. The software maintenance updates are sent in encrypted form
employing the same shared secret, without the burden of a complete PKI.

The alternative system implies that the owner of the meters is willing to
run foreign, albeit certified, software on his own devices. In order to avoid the
introduction of ad-hoc malware similar to recent SCADA-oriented viruses aimed at
altering the measurements and/or the billing features, it is thus mandatory to employ
a secure authentication infrastructure for the programs. This fully authenticated
chain of trust must thus start providing authenticity warranties on the software
components from the first phases of the boot, throughout the whole working
cycle of the system. As this infrastructure is designed to foster collaboration and
interoperability among the software produced by different meter manufacturers and
smart grid stakeholders, it would be a welcome development to design common
standards and criteria to provide a common platform on which to develop.

Similar efforts have already been born, and grown to a mature state for
general-purpose computing: a known instance of such a consortium is the Trusted
Computing Group (TCG) [26], which has built common grounds for personal
computing endowed with a secure boot and chain-of-trust, realized through a
specifically designed secure hardware module.

Analogously to the security issues tackled for the software, it is equally important
to address hardware security issues. As a first step, the hardware components
involved in a trusted system should be able to mutually authenticate, in order to
avoid the insertion of rogue chips, or the bypass of critical validation components.
As this is a common practice in unprotected systems, this threat should be properly
addressed, as a hardware security breach results in immediate loss of trust for the
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whole stack of software applications running on it. These concerns can be addressed
via properly designed secure hardware modules, employing cryptographically
strong primitives and tamper resistant enclosures.

In addition to the choice of the primitives and the enclosure design, another
fundamental aspect to be addressed is to design side-channel attack resistant
hardware, since this whole class of attacks is able to breach the security of a device
without the need to interfere with its own tamper proof perimeter.

3.4 System Services

In the following tables, we will list the services provided by the various identified
actors of the power grid. Security-related services are in italics. The “data” label
refers to both Consumption and Technical data, unless differently specified. Services
are reported in verb-noun form.

Table 3.1 reports the services related to the Meter actor, Table 3.2 those of the
FC, Table 3.3 those of the DSO and Table 3.4 those of the ESP.

As reported in Table 3.1, the Basic Meter performs secure actions to manage
data confidentiality during the transmission to the DSO. The complementary part to
providing the required security margin of the meter actor is warranted by the tamper

Table 3.1 Meter actor and related services

Basic meter Advanced meter

Compute and transmit billing data Same services as basic meter and router

Compute and transmit consumption data Programmability (e.g., upload certified
applications)

Profile consumptions Trusted computing base – TCB or Trusted
Execution Environment

Report consumption and billing data to FC
locally or to DSO/ESP remotely

Manage data confidentiality, integrity and
authentication (for data completeness,
correctness and integrity)

Ensure tamper-evidence and tamper
resistance hardware

Initialize crypto keys and/or certificates

Table 3.2 Final customer
services

FC services

Open/close the utility provisioning contract

Configure the home network (add/remove program,
start-up/shut-down appliances)

Request a report to the meter (basic billing or
network status or appliance status and consumption)



3 The Smart Metering Scenario and Challenges 55

Table 3.3 DSO actor and related services

Single consumer or group Group of appliances
(e.g., those living in a city area) (group of appliances of the same type)

Measure Report consumptions by consumer or
typology (e.g., private user, company,
department store, appliance)

Profile load Control appliances (hours, times, tariffs,
etc.) with policy to solve conflicts with FC

Report consumers’ groups Initialize crypto-keys and/or certificates

Aggregate data for profiling

Control meter (e.g., diagnosis)

Ensure tamper-evidence and tamper
resistance hardware

Manage confidentiality, authentication, and
integrity of the data received from and sent
to meters

Manage the privacy of profile (aggregated)
data

Initialize crypto-keys and/or certificates

Table 3.4 ESP actor and related services

Normal operation on the provider side Normal operation on the consumer side

Manage power or resource in the grid As the meter in a basic mode

Bill the FC

Manage or use a PKI

proof encasing, which can be endowed with breach detection sensors. Moreover,
the secret keys employed for the communication should be properly stored in a
volatile memory, which is erased upon intrusion into the meter box. In addition
to the tamper proof casing and secure storage of the keys, the meter should also
be designed in such a way that it is not possible to obtain the secret keys via
measuring environmental parameters and exploiting the measures to conduct side
channel analyses.

The metering device may be conveniently designed with extended functions to
stream different types of multimedia contents inside a building, as well as to run
custom programs provided by third parties [2]. To this end, as shown in Table 3.1,
the resulting Advanced Meter should also include a full-trusted computing base
compliant system [24]. Indeed, the possibility of adding custom programs besides
the ones needed to securely perform the basic metering functions, implies that it
is not possible to perform a building-time certification of the programs run on the
device. Thus, the inclusion of a computing base able to validate the execution of
trusted applications is justified by the offered programmability services.
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The FC is able to access services via the facilities exposed from the smart meter.
In particular, since the smart meter is running trusted software from the DSO and
the ESP, the client can safely update the state of a provisioning contract without the
need for extra paperwork. Moreover, in an advanced smart meter, the FC is also able
to poll the meter in order to understand the distribution per-appliance of the power
consumption of his house. Another service performable, thanks to the ability of the
meter to communicate with other appliances, is to schedule the operation of power
demanding appliances in time zones when the cost of the energy is lower, such as
night-time.

The DSO will provide to the meter, and thus to the FC, the backend for all the
services mentioned before. Consequentially, it should be able to perform periodic
diagnostic operations on the transmission and distribution lines, employing the
technical data collected by the meter in order to diagnose faulty or dissipating lines.
Moreover, it should be able to propagate the consumption messages to the ESP in
charge of billing a specific customer, thus providing data transport support for it.
In addition to this, the DSO should be in charge of initializing all the key pairs
employed to encrypt the technical messages to and from the final customers, the
integrity of which must be warranted, lest they cheat on the payments. The DSO
will also be employing the coalesced consumption data in order to avoid service
interruptions due to peak requests by the FCs.

The ESP, similarly to the FC, may offer its services only through the support
infrastructure provided by the DSOs, since DSOs ultimately act as data collectors
and transporters. Normally, the behavior of the ESP only takes care of the billing and
contract stipulation activities. During these activities, it may be required to set up an
ESP-bound PKI in order to be able to digitally sign invoices for the final customer.

3.5 Standardization Activities and Related works

In this section we will recap the ongoing standardization efforts concerning the
information security in smart grids. The National Institute of Standards and
Technology (NIST) has developed security guidelines and a model of the power
grid infrastructure for the US [25], which defines interfaces and implementation
strategies for the smart power grid.

Analogously, the Zigbee Alliance [28] has now available a full-fledged wireless
network solution, which has been successfully deployed in the US and can be used
for both infra-meter and meter-to-DSO communications. As one of its defining
features, ZigBee provides facilities for carrying out secure communications, pro-
tecting the establishment and the transport of cryptographic keys, and enciphering
communications and controlling devices. It builds on the basic security framework
defined in IEEE 802.15.4. This part of the architecture relies on the correct
management of cryptographic keys and the correct implementation of methods and
security policies.
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The HomePlug Alliance [11], Wi-Fi Alliance [27], HomeGrid Forum [10] and
ZigBee Alliance [28] have agreed to create a Consortium called Smart Energy
Profile version 2.0 (SEP 2) [5] to enhance the interoperability among the standards
and products of many organizations, whose technologies support communications
over IP.

The PoweRline Intelligent Metering Evolution (PRIME) is an initiative driven by
Iberdrola, the spanish DSO, for: “the definition and testing of a new public, open and
non-proprietary communication architecture that supports remote meter processing
functionalities” [21]. Its security proposal addresses security at low level through
providing confidentiality, authentication and data integrity at the Medium Access
Control (MAC) of the communicational architecture. Several security profiles are
provided to deal with the different requirements of several types of networks.
Confidentiality is guaranteed by encryption and from the fact that the encryption
key is kept secret. Authentication is guaranteed by the fact that each node has its
own secret key known only by the node itself. Data integrity is guaranteed by the
fact that the CRC of the data payload of the communication is encrypted.

Individual EU Countries have begun to standardize common guidelines for
tamper proof electronic devices, able to warrant the level of physical security
required by meters. For example, the German authority (Bundesamt fur Sicherheit
in der Informationstechnik – BSI) has released a dedicated guideline document
for tamper proof smart meters [4]. The EU has instituted a task force aimed at
analyzing and building recommendations for the future of the smart grid, and
has released explicit guidelines regarding data protection and security in [8]. The
open challenges related to the issues of privacy management and metering data
aggregation are presented in [9]. In [19] the authors highlight privacy-related threats
of smart metering and propose an infrastructure for secure measurements, which
relies on trusted components outside of the meter. The authors in [22] propose a
protocol that uses commitments and zero-knowledge proofs to privately derive and
prove the correctness of bills, but that does not address aggregation across meters.
Some techniques have been extended to protocols that provide differential privacy
guarantees [6]. The technologies for smart grids, smart metering and more generally
power line/wireless communications, are included in a large number of standards,
each of which has a different scope of intervention and is only marginally related to
security issues [7, 16].

Conclusion
As the need for energy increases constantly, the smart management of power
grids has become a prime topic of interest for researchers and industry alike.
In this chapter we provided an overview on the smart metering scenario and
its novel information security challenges. We delineated the desired security
services and the actors involved in the scenario, and provided a summary of
the ongoing standardization efforts in this area.
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Chapter 4
Authentication and Mutual Authentication

Asad Ali, François Tuot, and Gerald Maunier

Abstract In a sensitive environment, it is common to implement user
authentication, possibly based on several factors, in order to ensure only authorized
users have access to restricted features or information. But today more and more
devices are interacting directly to perform some actions, or deliver a high level
service to their user, like in smart grid and more generally in machine to machine
environments. This raises the need for device authentication and, by extension,
mutual device authentication. Highest confidence level should be achieved by
ensuring both user and devices are allowed to engage in a transaction.

4.1 Basics of Authentication

Authentication is a mechanism of determining if an entity requiring access to a
resource is the same he or it claims to be. This is a basic requirement for any system
that manages access control. There are several methods to verify the authenticity of
an entity involving credentials that can be divided into three broad categories: what-
you-know; what-you-have and what-you-are. Even if some of these authentication
means pertain more to persons (e.g. fingerprint) they all have more of less their
equivalent for machines (e.g. PUFs).
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4.1.1 What-You-Know

This category represents knowledge based authentication and is perhaps the oldest
method of identifying users. Examples of such authentication methods are password
& pass-phrase (entered directly on the keyboard or via various systems like joining
discrete points of an image or encoding PIN), or answer to a security question that is
selected by the user when an account is created, and then echoed back when access
to that account is desired. The PIN for a smart card falls in the same category. The
security of this method relies on the fact that only the owner has knowledge of the
secret. In case this secret is compromised, so is the security of the authentication
system (except for the smart card as the attacker also needs to have access to the
card itself should the PIN be captured). Although this method is considered weak
for transactions of high value it is still widely used by many businesses due to lack
of a low cost alternatives. Authentications based solely on knowledge factor have
some inherent shortcomings. Good passwords, such as long sequences of different
character groups, are difficult to remember, while poor ones such as dictionary
words or personal birthdays are easily compromised using various forms of software
attacks. In addition, phishing and spoofing attacks may trick the user into providing
the password directly to the attacker.

Systems can easily leverage passwords to authenticate to a remote party, but they
of course need to be appropriately protected.

4.1.2 What-You-Have

Unlike the what-you-know methods that rely on a user remembering a secret, the
what-you-have methods base their security on possession of a unique hardware
token such as a smart card, USB token or a mobile device. This device is paired
with the user, and can then perform some cryptographic computation on behalf of
the user to attest his identity.

This kind of authentication method can be applied to machines, for example by
using a TPM.

4.1.2.1 Public Key Cryptography

The public key cryptography is often based on what-you-have principal. In this
asymmetric encryption scheme, a user’s credential consists of two interrelated
keys: a public key that is distributed to others with whom the user or system
communicates, and a private key that is never disclosed to anyone. It is this private
key which represents the what-you-have concept. To protect this private key, it is
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often stored inside a hardware token which the user carries with him. Instead of
distributing the public key directly, it is packaged inside a digital certificate, which is
also called public key certificate. These certificates are issued by trusted third-parties
called certificate authorities (CA) who confirm that a given public key belongs to a
particular user or machine. The entire eco-system around generation, issuance, use,
and revocation of keys is referred to as public key infrastructure (PKI).

The PKI certificate based authentication is one of the strongest authentications
methods, especially when coupled with a secure element and stringent user verifi-
cations are enforced by the certification authority in charge of certificate issuance.
It uses the classical PKI challenge-response handshake to verify a user’s identity
through a signature that is generated by the private key unique to this user. The
strength of the PKI solution depends heavily on the extent to which the user’s private
key can be protected. The use of smart card to store this user key or a TPM to
store a machine key is therefore a natural option and required to implement binding
(or qualified) signature.

Examples of public key cryptography include SSL/TLS protocols that protect
HTTPS web traffic, VPN that allows communication over private networks, and
encryption as well as signature when sending secure eMail.

TPM attestations, as defined by TCG, are also based on PK cryptography to
provide at the same time strong and reliable machine identity and some software
configuration information to assess the system trustworthiness.

4.1.2.2 OTP

As the name suggests, an OTP is a one-time-password that can only be used once.
If it is presented as proof of user’s identity a second time, it is rejected. Generally
OTP is a 6–8 digit number generated by a hardware device. This hardware device
is either a dedicated OTP token the size of a USB mass storage stick, or a credit
card size card. More recently, OTP can also be generated by an application on a
smart phone, thereby eliminating the need to carry a dedicated token. Regardless of
the device used for generating it, the OTP is generally combined with traditional
username/password method to increase the strength of authentication. There are
two broad categories of OTP generation algorithms: time based algorithms such
as the one used with RSA SecureID tokens; and event-based algorithms such as
that proposed by the Open Authentication (OATH) consortium. While the latter
algorithm is an open standard, the former uses a proprietary technology. In both
cases the OTP token is bound to a unique authentication server and have to be
synchronized, so that OTP values generated by the token match what the server
is expecting. This synchronization, or device provisioning as it is sometimes called,
is a critical piece of all OTP based systems.
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4.1.3 What-You-Are

This category places its security on the natural habits or biological characteristics of
the user and even sometimes of the machine. The entity does not have to remember
or store any secret nor carry any dedicated device. Authentication is done using what
the user or system is or does.

4.1.3.1 Biometry

Biometry has a high-profile security image in the public. It is generally associated
with sophisticated technology that uses verification of personal traits to authenticate
a user. Such authentication methods not only increase convenience (compared to
passwords) but also solve some inherent problems with tokens and passwords: they
can be borrowed, lost or forgotten. The personal traits used in biometry range from
fingerprints, face, voice, hand geometry or vein patterns. In some more specific
contexts, secure systems may also use iris or retina scan. However, depending on
cultural factors, such methods may be considered intrusive and therefore rejected by
users. In addition, privacy laws in some jurisdictions may severely restrict or even
forbid creation of central databases to collect such personal biometric attributes.

Biometric authentication, which is also called 1-to-1 matching or identity
verification, consists of three steps:

1. Acquire the raw biometric data from a user. For example, producing an image
from a fingers scan.

2. Extract characteristic points (also called minutiae in a candidate template) from
the raw image.

3. Match these characteristic points with a model associated with user’s identity
(called a reference template).

The acquisition and extraction processes are also used during initial enrollment
to build the reference template and associate it with the user’s profile.

Although it may appear that the most sensitive operation for an authentication
process is the matching phase, since it is responsible for providing a YES/NO
result, in reality other elements in the chain like acquisition and reference template
storage must also be protected. For example, an attacker trying to impersonate a
legitimate user could submit a previously acquired finger image to the system or
replace the reference template with his own template. Security implications greatly
vary depending on the verification environment. While a user interacting with a
system managed by security personnel may have few opportunities to tamper with
the system, an un-manned automated authentication systems hosted locally or on
the network may be subject to additional forms of attacks.
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To better protect user’s reference template the match can also be done on a secure
element such as a smart card owned by the user. This is referred to as match-on-
card (MoC), and since user is in control of his reference template it increases their
confidence in the system. MoC can be used as PIN replacement for convenience or
as another authentication factor in addition to the smart card PIN.

Biometrics also allows for identification of a user by matching an anonymous
candidate template to an entire database of reference templates (1-to-n matching).
This model is longer but useful in criminal investigations where the supposed owner
of the candidate template is not known.

Due to the variations in acquisition environment (such as image angle, pressure
on the sensor, etc.) and changes in the user characteristics (such as hurt or aging skin
etc.), each data acquisition for a single user will be different. As such, biometric
verification is always trying to determine “how closely” a raw image matches a
reference template. Matching performance is a trade-off between two parameters:
FAR (False Acceptance Rate) and FRR (False Rejection Rate). High security
systems will raise the FAR so that it is less likely that an unauthorized user will gain
access the system, while consumer market products like mobile phones or personal
computers sensors will extend the FRR to ensure that legitimate user access will
never be denied.

Since biometrics data is unstable by nature, it cannot be used for direct
cryptographic operations. Cryptography requires stable data. For example a key
“close” to the real key but off by only 1 bit is useless. Authentication systems
therefore rely on biometrics to grant access to a key (bio-PIN). This key is then
used for cryptographic operations.

What you are and what you have methods cannot be more different and are
therefore complementary: whereas a knowledge based authentication such as PIN
relies on a secret easy to personalize, change and delegate to someone, biometric
traits are usually public, cannot be modified or delegated, and require heavy
enrollment workflow. In addition matching algorithm is not obvious and acquisition
may leave some traces (for example, finger image on a sensor).

4.1.3.2 Behavior

Behavior based authentication techniques allow for implicit authentication of users
based on the pattern of their interaction with the device or computer. Examples of
such patterns can be the speed with which a user types on keyboard when entering
their username or password, or the pause between specific characters. For mobile
touch screen devices that ask users to trace their login pattern the application may
consider the stress points during the finger swipe. By their very nature behavior
based techniques are not absolute in their determination of a valid credential. As
such, they are always used in combination with other more discrete forms of
authentication as knowledge or OTP. One advantage of behavior based approach
is that is the least intrusive of all authentication methods. The user does not have
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to remember or carry any dedicated token. He simply interacts with the device and
the authentication system does the rest. Principals of behavior approach can also
be applied to location based authentication, where the user is allowed access if he
is connecting from his usual devices; for example from his office laptop connected
through his office network. This behavior pattern is considered safe, while the same
laptop when connected from a public network may not be safe, and thereby warrant
additional authentication credentials.

4.1.3.3 Physical Unclonable Functions (PUFs)

Biometric and behavior based authentications verify unique characteristics, but this
need not be limited only to humans. Hardware elements, even if produced with the
same process on the same production line, have tiny differences: for example, non
initialized memory state will be unique, as well as performance or glitches generated
when going through gates. Like other biometrics processing, these differences are
difficult to find and analyze as they are not stable over time or under environmental
constraints.

Initially intended to detect counterfeiting of goods, PUFs can also be com-
plemented by smart software algorithms to select stable and differencing bits to
produce a unique – never stored – key from these unique traits. During the device
manufacturing, this key may be extracted from the device itself and provisioned in
an authentication system for subsequent remote device authentication. This key can
then be used in several authentication protocols described in Chap. 6.

4.1.3.4 Device Fingerprinting

Even if not directly linked to user authentication, device fingerprinting is becoming
an important part of the authentication process. Knowing that user credentials are
not only valid but also coming from a previously encountered non-rooted device
brings more confidence in the authentication result.

There is a multitude of device attributes (or device fingerprints) that can
contribute to a device identity. These attributes include unique device identifiers,
MAC addresses, memory size, OS version, the number of applications installed, the
size of the contact list, and even the movements of the device.

4.1.4 Credential Delivery

The authentication credentials can be delivered from the user to the authentication
system in a variety of ways. There are three basis mechanisms for this: local; in-
band; out-of-band.



4 Authentication and Mutual Authentication 67

4.1.4.1 Local

The local credential delivery is used when both the client application accepting the
credentials and the back-end system performing the match are on the same host.
Examples of this approach are when we enter the PIN in a smart card reader, swipe
our finger on mobile, or when logging into a PC.

4.1.4.2 In-Band

The in-band credential delivery is used when the user enters the credential into an
application which will be the primary application for interfacing with the system
after authentication. For example, if a user connects to a web server using a
web browser, and enters the login credential in the same browser window, the
credentials are entered in an in-band manner. Same classification applies to mutually
authenticated TLS session established between a client and a server based on
certificates.

4.1.4.3 Out-of-Band

The out-of-band authentication is done by using a separate communication channel
from the one used for normal delivery of service content. For example, if a
user connects to an Internet portal through a web browser running on a PC,
the out-of-band channel can be through the user’s cell phone. This duality of
communication channels offers by design stronger authentication solution. The
typical authentication flow can be as follows:

1. User enters login credentials (e.g. username and password) in the browser.
2. The login server validates these credentials and takes user to a second login step,

where user is asked to enter a numeric code.
3. The user reads the code from his phone, and enters it in the browser.
4. The server validates this code and authentication completes.

The numeric code entered by the user in step 3 is generally a six to eight digit
number. It is either sent to the mobile device from the authentication server or
generated on the mobile device itself in response to a trigger from the server. In
the latter case, the code generation can be done by a secure element embedded
in the device or by the software running on the device. If code is generated on
the device, there has to be a pre-registration of the device with the authentication
server to synchronize the algorithm. An example of server generated code is the
extended authentication offered by internet service providers like Dropbox, Google
and Facebook. With the widespread use of SMS capable phones, this is becoming
a low cost approach for enhancing security of online authentication. Several online
service providers are offering this option to their users. An OTP application running
on the phone is an example of device generated code.
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An even stronger form of this out-of-band approach is to use the SIM card or
software inside the handset and perform a cryptographic exchange directly with the
authentication server. For example, Valimo offers a PKI based mechanism where
the user’s private key in the SIM signs a challenge from the authentication server,
and thus validates the user without any manual interaction with the primary access
device.

4.1.5 Method Strength

Before we can decide which authentication method to use when, we have to
be aware of the relative strengths of these authentication methods. While there
is no standard benchmark for this, the general consensus in the industry is that
individual authentication methods can be ranked in their level of security through
a combination of the method itself and context in which the credentials are used.
This context is determined by various factors such as location of credential storage
or generation of one-time credentials. For example PKI credentials stored in a
secure element are more secure than the ones stored in software. Furthermore,
secure elements that are tightly embedded to a host device are generally considered
less secure than the secure elements which can be detached. A smart card that is
connected to a PC when required but is otherwise in the physical possession of the
holder offers greater security as well as assurance.

4.2 Mutual Authentication

In most of authentication models, only the client (or user) willing to consume
services from a server (resp. a local machine) has to prove its identity with one
of the techniques presented previously in this chapter to be granted access.

But sometimes security considerations imply both entities want to establish the
trust level of the other peer before exchanging data or providing a service. Typical
examples are an employee using a web client to connect to a corporate web server,
or two devices willing to exchange data.

The latter model was illustrated in eniac funded TOISE project, with a secure
token granting access to user private storage only after proper authentication of the
host machine – which has to be previously registered –, and respectively the host
machine forbidding removable storage devices unless they have been previously
enrolled (Fig. 4.1).

Such mechanism put additional requirements on the authentication methods,
so that the authentication process doesn’t leak any sensitive data. For example,
a fraudulent system interacting with a legitimate entity must not receive any
credentials allowing impersonation of the legitimate entity in an interaction with
the other legitimate party. For example a password transmitted in the clear or a
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Fig. 4.1 USB token is typically provided by the IT department of a company to an employee,
and used for user authentication and access control to various resources of the infrastructure
(application servers, databases, etc.)

Fig. 4.2 After token connection, each party must receive proof that other party is legitimate to
provide nominal service

fingerprint candidate template cannot be used to bootstrap such mechanism. Most
of the time, challenge/response mechanism is the answer to derive key materials
specific for a session and not disclosing any sensitive information. The two-way
TLS and IEEE1667 are examples of specifications allowing mutual authentication
models (Fig. 4.2).



Chapter 5
Low Power Wireless Sensor Networks: Secure
Applications and Remote Distribution of FW
Updates with Key Management on WSN

Juan Rico, Juan Sancho, Álvaro Díaz, Javier González, Pablo Sánchez,
Bibiana Lorente Alvarez, Luis Andres Cardona Cardona,
and Carles Ferrer Ramis

Abstract Nearly 70 % of the average household utility bill could be influenced
by Wireless Sensor Network (WSN) application to temperature and lighting.
Home and building owners can use interactive energy management tools to create
energy management profiles that are triggered by certain established consumption
rates. However, security remains a critical issue. In this chapter, we will present
how the new security features (both on hardware and software level) introduces
improvements in the overall WSN picture, and we will explain with detail the new
OTAP procedure. Furthermore, we will state all the new possibilities opened for
Low Power WSN based on the enhancement of security, being a good candidate for
applications restricted to much more powerful devices.
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5.1 Introduction

Low Power Wireless Sensor Networks (WSNs) consists of spatially distributed
self-powered sensing device to monitor physical or environmental conditions, such
as temperature, pressure, sound, vibration, motion etc. and to cooperatively send
their data using a wireless medium. WSNs have application to a wide range of
areas including military, health care, security and industrial, this project focuses
on environmental and infrastructure monitoring. Commonly, this kind of network
(depicted in Fig. 5.1) consists of a large number of low-cost, low-power, resource-
constrained sensor nodes operating often in an unattended, hostile environment,
with limited computational and sensing capabilities.

These deployments offer different functions and capabilities that must be secured
in order to reduce the vulnerability of the network itself and also the risks at
device level. In order to provide a robustness solution there are several requirements
at different levels that characterize these networks. Traditional security schemes
cannot be applied to these networks due to the particularities of devices participating
in Low Power WSN.

The security features are usually associated to higher power consumption. On the
one hand is directly related to the overhead introduced in data packets and control
mechanisms, on the other hand, this also requires higher computational capabilities.
In this context, node reprogramming is a critical task since the data sent through
the wireless network defines the behavior of devices, thus it is mandatory to protect
information and procedures and provide enough robustness to the system for not
allowing malicious firmware to be installed in the system.

The basis of Over The Air Programming (OTAP) is the distribution of packets
containing parts of the firmware to be installed in certain nodes, then the assembly
them at node level recomposing the whole firmware image, and finally, rebooting
the devices for running the new software version.

Fig. 5.1 Low power WSN architecture
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5.2 Secure OTAP

5.2.1 Introduction

Secure OTAP protocol aims at reducing power consumption and increase security
level in this crucial task for meshed wireless networks. The design of the protocol
has been done considering the benefits of existing solutions such as [19, 21, 22,
34], but focusing also in overcoming the difficulties associated to battery powered
devices. The protocol proposed enables the update of devices in an efficient way
without exposing devices or information to threats and risks.

Figure 5.2 presents the flow in the execution of the protocol. Firstly, it is
necessary to provide a new version of the software, once this is ready, it has to
be uploaded to a server which centralized the distribution to the different networks
where this version has to be installed. At this point, next step is the dissemination of
the new firmware among the different elements that are target and want to install it.
And finally reboot devices running the new version. The following sections describe
the internal mechanisms of each of these phases.

5.2.2 Actors

The protocol identifies three main actors setting the pace in the update procedure.
Each of them is different and represent data source, data destination and communi-
cation link paradigm. The data source is the piece of the architecture where the new

Fig. 5.2 Secure OTAP
phases
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firmware is stored, in this case the OTAP server. This communicates to the network
through OTAP gateways, the bridge information from the servers to end devices.
A deeper explanation of each element follows:

• OTAP server: It is owned by the devices manufacturer or derived to the WSN
operator. This server manages the firmware version that should be running in
each device and the one which is currently running. Since it is the source of
new version is the element in charge of controlling the flow of the whole OTAP
process.

• Gateway: The gateway acts as bridge between the public IP network and the Low
power meshed networks where the devices that are going to be updated operate.
As consequence, it enables the communication between the OTAP server and
end devices. Since gateways are not constrained devices, some of the functions
managed by the server can be delegated to the gateway so as to reduce traffic in
the network and also for simplicity of the processes. By the way, the delegation
of functions into the gateway does not expose the network to higher threats and
vulnerabilities.

• End Device: The final destination of the firmware distribution. Each End Device
decides by a set of dynamic rules if participating in the firmware distribution so
to receive the new program image, installing it and rebooting accordingly. It also
implements a kind of backup program image so to recover itself in case a problem
occurs.

As presented in Fig. 5.3, the three elements cover different part of the OTAP
procedure, thus the requirements and activities performed in each of the elements
are different.

5.2.3 Protocol Messages

Once presented the elements that take part in the remote update process, the next
step is to introduce the elements of the protocol. The OTAP protocol is composed
by two main groups of messages, the ones containing pieces of the new software
version, and a second group of control messages. The first are the software itself, and
the second are the control messages required for introducing security and preventing
attacks.

5.2.3.1 Firmware

The main element in the OTAP procedure is the firmware that should be installed in
the destination End Devices. Due to network constrains, the firmware is divided into
pages each of them univocally identified so as to allow destination to recompose the
original firmware even receiving the chunks in different order.
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Fig. 5.3 OTAP architecture

The split in pages also allows adding advanced cryptography information to some
of them, thus demanding a high knowledge of the network to attackers in order to
get information from sniffing the channel. The key management for encryption and
decryption is out of the scope of the protocol, nevertheless the protocol is designed
so as to allow the inclusion of such advanced techniques.

Figure 5.4 shows the partition of a complete firmware version into pages. The size
of the page is adaptable to a size suitable for the underlying radio technology. These
pages represent the core of the data packets, but it is also mandatory to include some
control information so as to allow the disordered reception of data packets. The final
frame is based on TLV [29] format and it is presented in the following figure.

As depicted in Fig. 5.5 the key of the frame is the Page number and Checksum
fields, the first allows to allocate in the right place in the memory the binary part
received, the latest is used for assuring the validity of data received after decipher
process.
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Fig. 5.4 Firmware split into pages

Fig. 5.5 Data frame format

It is also important to note that ciphering the data introduces a new security level.
The key management scheme is open and complementary to the OTAP protocol. The
restrictions are set by the technology MTU and the computational capacity of the
devices participating in the network. Furthermore, so as to reduce consumption it is
possible to cipher some of the pages.

5.2.3.2 Control Information

The key part is the distribution of the firmware, but in order to make it as efficient
as possible, there are several procedures that are required for defining who are
participating in the update process, and whether they are actuating properly or not.
Some messages enable the flow control of the OTAP, but the key one is the first sent.
This packet contains the so called metadata. Most definitions of the term agree that
it refers to data about data, data about data content and content about content.

Figure 5.6 introduces the necessary information included in the metadata mes-
sage to identify a unique Program Image:

• Firmware ID: the first field of the metadata structure is used to uniquely identify
a Program Image.

• Target ID: the second field points out the group of End Devices which will be
participating in this firmware update. Considering that a network is composed by
heterogeneous devices performing different actions, it is necessary to check the
suitability of the nodes for updating to an specific version.
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Fig. 5.6 Metadata structure

• Page Info Structure: this field collects all relevant info related to page distribution,
mainly page size, number of pages and type of encryption in use. Due to the
adaptability of the protocol this also introduces a limit randomness factor that
can be also exploited for increasing network robustness. This field also enables
the preparation of the memory portion where the new firmware is going to be
stored. The knowledge of page size and number of pages is enough for reserving
the memory that is going to be demanded by the new firmware version.

5.2.4 OTAP Information Dissemination

The key part where most of the energy is consumed in a OTAP/MOTAP is due
to the activity of radio interfaces. Since traditional protocol have not considered
the requirements and limitations imposed by constrained devices, there are several
improvements to be applied at this point of the procedure. This section gives a step
by step insight of the whole protocol, defining the activities carried out by each actor
in each phase and explaining the messages exchanged by them. A quick view of the
protocol phases is shown in Fig. 5.7.

• Phase 1: Defining the list of nodes that will take part in the update process.
• Phase 2: Dissemination of information so as to provide the correct binary file to

the nodes in the process.
• Phase 3: Rebooting devices with the new firmware version running.

5.2.4.1 Serving Firmware Version from OTAP Server to Gateway

The protocol assumes that the OTAP server is offering a secure method for
uploading new version of software. This new version requires several parameters
such as firmwareID and targetID so as to automatically generate the metadata and
reduce this way the operations to be done in the weak part of the whole chain.

The exchanged messages corresponding to this step are shown in Fig. 5.8. It
details the Program Image transfer sequence from the OTAP Server to the Gateway.
The server sends the metadata to the gateway, this check if it has been already
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Fig. 5.7 OTAP protocol phases and flow

Fig. 5.8 Distribution of software from OTAP Server to Gateway
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spread in the network behind it, in that case it does not do anything. In case it is
a new version not already distributed to the network, it requests the firmware so as
to locally store this new software.

Considering the typical case, due to server intelligence prevent non-sense use of
resource, the typical flow for this part is the following. The first message contains
solely the Metadata, already presented in previous section, and it is sent from OTAP
Server to Gateway. Its main purpose is to inform the Gateway about the availability
of a new Program Image ready for dissemination. The Gateway answers back the
OTAP Server with a Request Firmware message, in case it is necessary. Finally,
the OTAP Server starts to send the binary file (the pages). Once done, the Gateway
proceeds to check the integrity of the received information, for instance computing
the CRC or checking file authenticity by deciphering the pages. This step finishes
sending back an ACK Message to the OTAP Server.

5.2.4.2 Disseminating Program Image into WSN

The previous phase is quite simple due to the number of constraints and limits are
really low compared with the dissemination in the Low Power Wireless Sensor
Network. The protocol allows multi-hop distribution so it makes really important
the efficient use of spectrum by sending messages in the most effective way.

Although the information is stored in the gateway the whole process is ruled
by the OTAP Server, none of the activities start without its command. At the end
and forced by these networks particularities, it is extremely important to trigger the
dissemination in a period that does not imply potential problems to the devices.

The dissemination process is started by the OTAP Server sending to the Gateway
an Injection Message indicating that a Metadata Message must be delivered to all
the devices in the whole network. Different works [39] have demonstrated that pure
flooding is the best choice especially in sparse networks, so the Metadata Message
is broadcasted to the whole WSN (Fig. 5.9).

Upon reception of the Metadata Message, a specific task running in the End-
Devices filters out OTAP messages from any other kind of application messages.
The End Devices process the information in the Metadata Message thus being aware
whether the new software is suitable for them or not. More precisely, an End-Device
becomes Candidate verifying that:

• Firmware ID received is newer than running one
• Matching Target ID with End-Device’s internal ID
• The security level of the Metadata Message is compatible with the End Device

If these three rules are positive the End Device sends a Candidate Message to
the Gateway including the corresponding Firmware ID. If any of them is negative,
End-Devices may send a Non-candidate Message in order to inform the Gateway
that despite having received the Metadata Message, they are not involved in the
OTAP update process for this specific version. Making use of the third parameter
(Page Info Structure), Candidates make room in memory for page storage. Note that
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Fig. 5.9 Distribution procedure of software in a multi-hop WSN

the OTAP mechanism offers the ability to configure if Non-candidates shouldn’t
send a Non-candidate Message. This configuration is a must when communication
efficiency is important in large scale WSNs, because it avoids flooding the network
with messages that can be omitted and substituted by a timeout. This configuration
improves network performance by reducing traffic and increase energy efficiency
by avoiding the re-transmission of many packets.

After an application timeout, the Gateway would have compiled a list of
Candidates participating in the OTAP update. Even though there are some end-
devices in the LPWSN that are not taking part of the OTAP update, the Gateway
broadcasts every page. Later, candidates store the received pages while compiling a
list of missing pages. For each page received integrity and authenticity verification
is done (depending of the security level selected by the system administrator). Once
all pages are successfully received an Acknowledgement Message is sent out to the
Gateway. After an application timeout, if candidates didn’t received all the expected
pages they send a Request Pages Message in order to ask for the Gateway to resend
those missing pages. Meanwhile, the Gateway is compiling a list of missing pages
for each Request Pages Message received and after a while it re-sends again all those
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Fig. 5.10 Rebooting command for finishing OTAP

missing pages. Broadcast or Unicast transmission is done depending on the number
of Candidates requesting for the same missing pages. A configurable threshold may
control that.

The Program Image dissemination process iterates until no more requests are
received. To finish this step the Gateway sends an Acknowledgement Message to
the OTAP Server, which includes a report about the status of the operation and the
list of Candidates ready to update their running application.

5.2.4.3 Rebooting with New Firmware Version

The last step in the reprogramming procedure consists in stop the outdated version
and start running the new one. In order to do so, since the binary file is already stored
in device memory, the OTAP Server sends a Reboot message which includes a code
created using the Firmware ID, the Target ID and the list of candidates. This way it is
possible to provide an ID that matches only those candidates ready to proceed with
the update. Additional rebooting codes could be created for special firmware ID’s,
as for example for rebooting the Recovery Image of a set of End-Devices (Fig. 5.10).

Upon reception, the End-Device stops running the original application, it saves
some variables in backup registers if needed and proceeds to execute the Secure
Booting application. This last step of the OTAP mechanism finishes without
acknowledgment messages by default, although is possible to force a message to
be sent from specific key end-devices to the OTAP Server.

5.3 OTAP Partial Firmware Update

5.3.1 Introduction

Wireless communications are exposed to a great variety of threats and attacks. Node
reprogramming is a critical task since the data sent through the wireless network
defines the behavior of the devices, thus it is mandatory to protect this procedure.
The goal is to provide enough robustness to the firmware update to avoid installing
malicious firmware.
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The OTAP is composed of three stages or steps: distribution of the packets
containing parts of the firmware to be installed, the assembly of the packets at
node level recomposing the whole firmware image and, finally, the rebooting of
the devices so the new firmware is executed. The proposal presented in this section
defines a simple but effective methodology to reduce the power consumption of the
firmware over the air update process while maintaining a secure transmission.

It is important to explain that the non-volatile memory available in the node
is usually a FLASH-type memory of small size (around 16 MB). This memory is
divided in blocks or pages and it is necessary to erase each block before writing
for the first time. In addition, it is necessary to erase the complete block before
writing a previously written memory position of the FLASH memory block. This
erase and writing process increases the execution time of the update process, the
power consumption of the node and reduces the life of the memory. Thus, it is very
important to manage it adequately.

There are just a few techniques in the literature related to firmware update
in WSN. These methodologies are categorized into different classes, from full-
image replacement to incremental updates. Related to the full-image replacement
case is possible to find several articles. In [13, 43] and [35], the authors present
different protocols to update the complete firmware image. These methodologies
replace the entire firmware image including applications, operating systems and
drivers. However, they are not efficient because a little change in the firmware
implies the whole firmware replacement, and this requires a high amount of
energy consumption. To solve this problem, some authors proposed in [14] and
[30] to use incremental reprogramming methodologies. These protocols divide the
firmware into blocks. And only the blocks that are modified are transmitted. So,
they reduce the power consumption of the firmware update process comparing whit
the full-image protocols because they do not transmit the complete firmware image.
However, they have a problem that in this document is called “code shifting”. In
the case of just a little change in the firmware (for example, with the inclusion
of a new function or a function size modification), the whole set of functions and
instructions can change their memory position. Therefore, all function addresses
must be replaced to match the new memory location in all of the jump instructions
and function calls. This implies that even a small change in the firmware can cause
a high amount of code modifications.

In [17], the authors try to solve this problem by inserting a “slop space”
between firmware functions. This “slop space” allows the growth of any function
without affecting the position of the functions available after the modified function.
Therefore, it is possible to rewrite the new function in the same memory position.
However, in the case that the new function is bigger than the “slop space”, the
problem still appears.

There are other update techniques such as the use of a virtual machine. In
[3, 7, 18, 20] is proposed to use this virtualization technology. The problems of
these schemes are the complexity of the programs and that the power consumption
during the just-in-time compilation linking or execution process is higher than the
use of a native code. For example, Mate is presented in [20] as a compact virtual
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machine designed specifically for WSNs. It contains support for code updating but
its associated energy overhead is prohibitive. In addition, this tool only supports
applications updates and not other specific parts of the firmware.

Other techniques are based on the use of dynamic linking. According to [12]
is possible to load dynamically individual software modules in the node. This
technique uses position independent code. The software modules communicate with
the kernel via a system jump table.

Other approach was introduced in [25]. In this paper the authors present a
combination of two techniques: the use of indirect functions calls (code independent
of the position) and the use of the differences between the firmware versions to
create an update script. The improvement achieved with this technique is that
the size of the update script is reduced. However, it still has the problem of the
dependency between functions. If a function calls other function that has changed its
position because of the update, that call address is not calculated at execution time.
Thus, it is necessary to modify the call address of all the functions that use the new
function. With this technique it is necessary to erase and rewrite the FLASH memory
every time that there is an update, so the execution time and power consumption
increases. Besides, the life of the FLASH memory decreases each time that the
memory is erased.

Because of the previously commented limitations, in this section an update
scheme that combines an incremental update and a dynamic linking is proposed.
The proposal is similar to [25] but solves some limitations of that technique. The
proposed solution allows a rapid firmware update, a low consumption of energy and
minimizes the number of times that is necessary to erase the FLASH memory. This
strategy will be explained in the next subsections.

5.3.2 Incremental Update Generation Technique
(Transmitter Node)

The difference between the firmware already loaded in the nodes and the new
firmware can be minimal. This is quite common due to most of the updates consist
of bug fixes or parameters changes [23]. In these cases, the old firmware is very
similar to the new firmware. Because of this, it would be important to transmit only
the changes between firmware versions and not the whole new firmware. Thus, the
differences between the two firmwares can be used to generate the update. As it is
shown in Fig. 5.11, the two versions of the firmware are compared and from their
difference the update script is generated. In this update script only appears the code
that has been modified.

This basic scheme also reduces the packets that have to be transmitted through
the network. Unfortunately, although this scheme works very well with minimal
changes, such as parameters changes or bugs fixes, with large changes (new
functions or new application inclusions), it is necessary to reorder the memory or
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Fig. 5.11 Update size
reduction using difference
method

Fig. 5.12 Memory address differences due to a function modification

functions addresses, increasing the time execution and the energy consumption as
it was observed in [25]. To alleviate this problem, a technique that performs an
efficient ordering of the memory in the receiver node is proposed.

5.3.3 Memory Management for Partial Firmware Update
in the Receiver Node

In most of the cases, a small change in the source code results in a very
similar firmware image but with different memory addresses or with shifted code.
Figure 5.12 shows this problem. It can be observed that a group of functions
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(functions 3 and 4) have moved from Address 3 (and so on) to a different address
region because new code is inserted. Thus, each call to function 3 and following
functions must be performed to a new address. This results in a large update script.
In addition, this problem is not limited to functions. There are other objects which
memory position may vary such as constant data located in FLASH and global and
static variables located in RAM.

It is difficult to obtain efficient updates with the typical memory layout shown in
Fig. 5.12. In order to fix this problem, a possible solution is introduced in the next
section.

5.3.3.1 Improved Memory Mapping for Partial Firmware Update

The updated functions have to be stored in a free region of the FLASH memory. The
proposed methodology will store theses updated functions after the old firmware so
the functions that are not updated will maintain their position in the memory. An
example of this technique is shown in Fig. 5.13.

The memory map before the updating can be observed on the left side of
Fig. 5.13. And the memory map after the updating can be observed in the right side.
In this example the updated or modified function is function 1. It is assumed that
this updated version was received via air.

This updated function 1 is copied at the beginning of the free space of the FLASH
(this space can be allocated at the end of the old firmware as it was previously
explained). Because of that none of the non update function addresses are modified.
This can be observed on the right side of Fig. 5.13. But still remains the shift
problem. How to solve this issue is proposed in the next subsections.

Fig. 5.13 Function mapping proposal
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Fig. 5.14 Address table in FLASH

5.3.3.2 The Reference Table Approach

It is possible to avoid the shift problem by using a reference or address table (indirect
addressing). For instance, the function calls to function 1 can be performed without
problems by accessing to the function address through this address table. Thus, it is
possible to point correctly to a function independently of the real position of these
functions in memory and it is not necessary to erase the old functions when inserting
the update functions.

Figure 5.14 shows an example in which the function 1 needs to jump to function 3
using an intermediate address table. This table stores the address or memory position
for each firmware function.

When executing function 1 call, instead of jump to the position of function 3,
the program will read to the table position related to function 1 and it will obtain
the address of function 3 to finally perform the jump to that address. The process is
shown in Fig. 5.13.

In conclusion, it will be not necessary to change the address of the functions that
calls to the update function. It will only be necessary to modify the entry of the
intermediate table to point to the new address.

5.3.3.3 Improving the Reference Table Approach

When a function is updated and (as it was shown in Fig. 5.12) the position in
memory changes, the entry of the intermediate table must be modified with the new
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address. Thus, it is still necessary to rewrite the function address. This implies that
it would be also necessary to erase its associated section of the FLASH memory.
To avoid this, the proposed methodology invalidate the affected table entry and
write a new entry in a similar way than when updating functions (as it was shown in
Fig. 5.13).

In addition, a second table can be used to improve this process. This second table
will be allocated in the RAM memory that has not the FLASH-related problems
(it can be rapidly erased and rewritten without increasing too much the power
consumption).

To accomplish this, the table of Fig. 5.14 will be copied to the RAM when a new
firmware is loaded. The old entries of this table will be eliminated leaving only the
valid ones. Figure 5.15 shows this process.

In this case, the update consists in the introduction of a new function (function 2).
Because of this update, its position in the memory FLASH has changed (from
address 2 to address 4). The old reference is deleted from the address table of the
FLASH memory and a new entry at the end of this table is written with the new
reference. Thus, only a new line of information has to be added to the FLASH and
there is no need to delete the whole block.

Once this is done, the update is complete and the only remaining step is to move
this new table to RAM after eliminating the old entries (function 2 in the example)
and writing only the update address without varying its position in the table. With
this technique the address of each function will be correct even after an update and
its position inside the table will not vary.

Fig. 5.15 Allocating address table in RAM
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5.4 New Security Features in Wireless Sensor Networks

In order to improve protection against attacks in WSN, new security features are
needed. This section presents innovative solutions that improve WSN embedded
software security. It is important to achieve solutions that do not increase the power
consumption. This is a special requirement for these devices that it is necessary to
take into account. The proposed solutions include several features such as secure
booting, secure data memory, a low power partial update and a new metric for
measuring security in virtual platforms oriented to WSN.

5.4.1 Secure Boot

The booting is one of the most vulnerable processes for a wireless device that
operates in a non-controlled environment. There are several aspects that need to be
checked. In one hand, the loaded firmware is not corrupted or intentionally modified.
In the other hand, the loaded firmware is allocated in a secure zone where is not
possible to reach for a possible attacker. This section will focus about the integrity
and authentication check of the firmware to be loaded and how this can be performed
without a significant increase of the power consumption.

One of the first booting-related issues is to choose the memory device where the
firmware will be stored. Sometimes the node stores several firmware versions in
the same location, thus it is possible to load different firmware releases. Sometimes
the storage of a firmware has a memory size that is higher than the internal flash
memory of the device. Taking all this into account, the use of an external FLASH
memory as storage of the node firmware is highly recommended. Figure 5.16 shows
the assumed trusted zone assuming that the target platform is a Silica Xynergy
STM32F2 device [33]. The external FLASH is considered insecure, thus a safe
booting methodology is needed when the external FLASH memory is used for code
storage.

Fig. 5.16 Board trusted and untrusted zone
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Fig. 5.17 Typical WSN
booting

5.4.1.1 Typical Embedded Booting

An example of a generic boot process diagram is showed in Fig. 5.17. This booting
process is responsible for accessing the secure block of memory, where the firmware
is located, and its extraction. Before the extraction, it is necessary to check the
integrity of the firmware. An option to ensure the integrity is to sign the firmware
to be loaded. With this solution, it is possible to ensure that the firmware has not
been modified or corrupted. After this checking, the firmware-loading process can
be executed.

But in this basic booting, confidentiality (that refers to protect the information
from disclosure to unauthorized parties) is not accomplished. This could be achieved
by encrypting the kernel image that has to be downloaded. It is important to remind
that one of the goals when implementing a secure booting in WSN is not to increase
the power consumption significantly, thus a careful study of cryptography methods
for their implementation in WSN is highly recommended.

Some research works have analyzed the impact of cryptography for WSN. For
example, in [47] the theory of trust start-up for an embedded platform is presented.
There is a mention to a cryptographic module and key management but there is no
specific information about the used method. The importance of measuring power
consumption in WSN is pointed in [38] but in this paper the study is only referred
to AES methods. In [31], the authors perform a wide analysis on the cost of using
symmetric and asymmetric cryptographic algorithms and HASH chain functions
but the work is focused on hand-held devices. In [1] there is a comparison between
different symmetric cryptographic algorithms. In [9], a novel key management
scheme is presented. It is oriented to wireless sensor network security and it is based
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on a public key method. This paper focuses on the methodology to create and share
the keys for encryption (as RSA or ECC) but there is a lack of practical results
confirming the proposed scheme. In [28], authors provide results of experiments
with AES and RC4, two symmetric key algorithms that are commonly used in
WLANs. However, nowadays the use of RC4 is not so extended as triple DES thus
the comparison is not complete. In [40], they present a survey of security issues in
WSNs. First, they outline the constraints, security requirements and typical attacks
with their corresponding countermeasures in WSNs. Then, they present a holistic
view of security issues. One of the conclusions from this paper is that symmetric
key cryptography is superior to public key cryptography in terms of speed and
low energy cost. However, the key distribution schemes based on symmetric key
cryptography are not perfect. Efficient and flexible key distribution schemes need to
be designed.

In [24], comprehensive cryptography algorithms suitable for WSN are evaluated.
This survey only includes symmetric algorithms as RC4, AES, in a similar way
to previous papers. They propose to take into account the factors that may affect
algorithm choice, such as clock cycles, code size, SRAM usage, and energy
consumption but results are only focused in a few of them.

Most approaches propose a fixed solution for a secure booting, choosing a
specific encryption or security procedure, while in this chapter a flexible strategy
that allows different level of security/consumption is proposed. This proposal is
validated with experimental results that show the power consumption of different
cryptography solutions integrated with the booting for a Silica Xinergy STM32F2
device. Similar behavior is expected in other target devices.

5.4.1.2 Cryptography Methods for the Booting

Cryptography methods can be classified into symmetric or asymmetric procedures,
depending of the existence of a public key or not. In this chapter, it is proposed
the use of symmetric encryption for the booting process because of three important
reasons:

• They usually consume less power than asymmetric encryption. This aspect was
analyzed in [38, 47].

• Usually the target platform includes specific hardware for symmetric encryption
as AES (Advanced Encryption Standard) and triple DES (Data Encryption
Standard).

• The private key is deployed on the device during the network initialization
phase, simplifying the distribution process and avoiding an increase in the power
consumption.

The use of one or several cryptography methods for booting is highly recom-
mended to assure two important things: authentication and confidentiality. Both
aspects are important for security but their purpose is different and the methods
to accomplish them are also different. There are many different schemes to obtain
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authentication or confidentiality in the literature but, as it will be demonstrated
with measurements, it is highly recommended to use the cryptography methods
directly implemented in hardware since their energy consumption is lower than
cryptographic algorithms that are implemented by software. The typical cryptog-
raphy schemes available in boards are:

• Authentication

– MD5
– SHA-1
– HMAC-MD5
– HMAC-SHA-1

• Confidentiality

– TDES
– AES-128
– AES-192
– AES-256

To authenticate the downloaded embedded program, a HASH algorithm can be
used and a MAC (Message Authentication Code) signature is obtained. Depending
of the desired security level, HASH can be secured by a password (HMAC, HASH-
based message authentication code). This signature is usually amended at the end of
the firmware image. At the receptor side, the HASH is calculated from the image and
it is compared to the HASH included with the firmware. If the matching is correct,
the firmware is authenticated. As it happens with the encryption, the target device
from this work provides specific hardware for HASH calculation. The functionality
of the available HASH hardware include MD5 (Message Digest Algorithm 5) and
SHA-1 (Secure HASH Algorithm 1). MD5 creates a 16 bytes HASH while SHA-1
creates a 20 bytes HASH, thus SHA-1 is expected to require a little more power
consumption than MD5 while providing a little more security.

To provide integrity and confidentiality the firmware has to be encrypted. It
is worth mentioning that AES is a standardized cryptography method that is the
successor of DES. It is a symmetric key cryptographic algorithm that efficiently
computes the cipher text of a plaintext using a provided key. This efficiency is result
of the fact that within the algorithm only bit-operations like XOR or cyclic shifting
are applied. And those can be easily implemented in hardware. The specified block
size for AES is 128 bits. The keys can have length of 128, 192 or 256 bits. Longer
keys provide stronger security guarantees.

5.4.1.3 Consumption Measures of Booting with Security

As it was mentioned, the hardware platform could integrate a cryptography module.
In this chapter, a Silica Xinergy Board has been chosen as the target hardware
platform. It includes a symmetric cryptography library with the schemes shown in
last subsection. If the firmware is encrypted it is necessary to decrypt it during the
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booting process. In addition, if a HASH signature of the firmware is included in the
firmware, the booting procedure has to calculate the HASH of the received firmware
and compare both of them to assure the authentication.

But as it was previously commented it is recommended to know the power
consumption of the cryptography methods. In this chapter, real power consumption
measures are shown for the Silica Xinergy Board. These measures are specific for
this device but similar performance is expected in other embedded devices.

There are some previous works about performance estimation of embedded
cryptography. In [31], the analysis concludes that specific hardware usually has
better ratio for execution/consumption. However, it is still desirable to run some
tests in the device to verify these results for the target platform.

For encryption and decryption tasks, the micro-controller STM32F217 of the
Silica Xinergy Board has specific hardware modules that implements different
cryptographic algorithms as TDES, AES-128, AES-192 and AES-256. The term
AES-“KeySize” is related to the size of the used key. The different algorithms have
been executed in hardware and software to compare the execution time and the
power consumption.

Related to its performance, it was observed in [1] that AES-128 is more secure
than 3DES and, SHA-1 is more resistant to collisions (probability of obtaining the
same HASH for two different images) than MD5. In Fig. 5.18, it is shown a security
comparison (obtained from [8, 9]) of different encryption methods.

The tested encryption algorithms are the AES with different key sizes and triple
DES. Figure 5.19 shows the execution time and power consumption for the different
algorithms in the hardware platform. The testbench consists of the encryption of a
25,600-bytes text with a clock frequency of 120 MHz.

The AES hardware implementation is around 10� faster than the software
implementation, and the power consumption has the same ratio. In the case of Triple
DES, the software implementation is slower and the ratio is bigger. Specifically for
the software case, the consumption of TDES is 7� higher than AES-128 and 5.4�
higher than AES-256. For the hardware case, the consumption of TDES is 3� higher
than AES-128 and 2.2� higher than AES-256. For the decryption algorithm, the
results are very similar.

For authentication, the tested algorithms were the SHA-1, MD5, HMAC SHA-1
and HMAC MD5. Results for these methods are shown in Fig. 5.20. The decrypted
text is the same that the one used to test the encryption algorithms. The ratio between
software and hardware execution time is variable. The MD5 algorithm in software is
only 4� worst than hardware. The consumption of SHA-1 in software is 17� higher
than in hardware. The HMAC versions show different ratios. Whereas the HMAC
MD5 in software has a higher consumption of 3� compared to the hardware case,
the consumption of HMAC SHA-1 in software is 20� worst than in hardware.

It is also observed that although the software implementation of SHA-1 requires
more power than the software implementation of AES but in the hardware case is
AES who requires more power than SHA-1.

According to these results some methods can be discarded and other can be
chosen as optimum for a secure booting. The chosen ones in this proposal are
HMAC-SHA1 (for authentication), AES-128 and AES-256 (for encryption).
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Fig. 5.18 Security for the different methods [8, 9]

Fig. 5.19 Consumption of symmetric encryption algorithms
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Fig. 5.20 Consumption of HASH algorithms

Fig. 5.21 Example of energy measurement

But still is necessary to measure these methods integrated with the designed
booting process. In order to do that, a direct measurement of the board power
consumption was performed. In this case the booting process de-encrypts the
encrypted firmware using an AES-128. The parameter of the x-axis is time in
seconds and the values of the y-axis is voltage. In this snapshot of the power
consumption behavior of the system, different working zones are identified. The
total consumed energy is calculated by multiplying the power by the total time that
the booting is being executed (Fig. 5.21).

Figure 5.22 shows the measures obtained of the cryptography methods integrated
in the booting process. In this figure is shown the energy consumption increase
compared to a booting without security. It is also shown the difference between
using hardware of software methods, thus a more clear vision about the impact of
this choice would have in the booting.

First, it can be observed that software methods extremely increase the energy
consumption. The software implementation of the most secure cryptographic
combination (HMAC-SHA-1 C AES-256) almost increased a 100 % the energy
consumption in the booting compared with the hardware implementation. Thus,
software methods should be discarded to accomplish security in the booting. It
is also observed that the authentication performed with HMAC-SHA-1 consumes
more than AES-128 encryption. This result confirms other results that have been
described in the literature.

5.4.1.4 Flexible Booting Procedure with Different Security Levels

The typical booting process previously described does not include confidentiality.
However, it is possible to add this feature and transform it in a more secure booting.
In this chapter, instead of a fixed secure booting scheme, a flexible procedure is
proposed. The idea is that not for every node it is necessary to perform a secure
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Fig. 5.22 Percentage of increased of power consumption

booting, since it depends of its purpose, deployment zone, etc. So, in order to
alleviate the power consumption, it is possible to choose what level of security
(that has associated a level of power consumption) is desired. So, it will be
possible to choose no security at all, to choose only authentication to be performed,
confidentiality or both.

This methodology will take into account the necessary security to prevent attacks
while maintaining a low consumption. In fact, it can be tuned depending of the
expecting risk and/or purpose of the deployed nodes. The application software has
to decide how much power consumption overhead it can bear to get a higher security.
It is a trade-off decision left open to the application. This method outperforms most
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Fig. 5.23 Power consumption associated for each level

of the proposal in the literature in security, flexibility and power consumption. The
proposed security levels were chose according to the results shown in Fig. 5.22 and
they are:

• Level 0. No encryption nor authentication
• Level 1. Creation of a secure signature with HMAC-SHA-1
• Level 2. Firmware encryption with AES-256
• Level 3. HMAC-SHA-1 + firmware encryption with AES-256

These security levels are ordered from less secure to more secure. Of course,
this increase in security has associated an increase in power consumption. It can
be observed in Fig. 5.23 the power consumption associated for each security levels.
The designer can decide which one is the most appropriate.

It is worth to mention since AES-256 almost consumes the same energy (less that
a 2 % of difference) than AES-128, it was preferable to implement only AES-256
because of its higher security compared to AES-128.

Although, this proposal is focused for the specific device commented in this
chapter, similar results are expected for other devices. In addition, it is possible to
replicate the methodology explained in this section in other boards if the developers
want to assure these results and conclusions.

5.4.2 Secure Virtual Environment

Once the operating system and the main application are loaded in the memory using
a secure boot, it is possible to assure that the loaded firmware is not corrupted and/or
modified. However, it is still necessary to secure the memory where the OS and the
application are stored. Since the OS is one of the most typical “entry points” for
an attack, the modification or update of an OS kernel is critical for the systems
security. Typical limitations of WSN embedded software can simplify attacks in
some aspects, since operating systems for sensors usually do not use memory
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protection and do not distinguish kernel mode or user mode execution though its
attack is challenging because the limited size of a single wireless message imposes
a hard limit into size of malicious code.

There are different ways to corrupt the OS when it is loaded and executed in
the system. One of the most typical attacks is based on the load of a corrupted
application that accesses directly to the OS data or code area. This causes an
important problem because when an application has access to the OS, its alteration
is relatively simple. Even an erroneous application developed by the network owner
may cause a security hole (Fig. 5.24). Because of this, the OS must be loaded in
a secure memory portion (kernel space) where the applications cannot access it
directly. Two approaches to try to solve this problem are explained in this subsection
of the chapter. One focuses in the use of the Hardware Memory Protection Unit that
can be available in some of the devices that compose the WSN nodes. The other
approach relates to an updating philosophy in which the OS or the applications are
updated independently.

Fig. 5.24 Example of a security hole
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5.4.2.1 Use of the Memory Protection Unit

The Hardware Memory Protection Unit (MPU) is integrated in the target device
STM32F2 that is used as example device for a node in this chapter but is available
in most devices available in the market.

This MPU provides support for protecting regions of memory through enforcing
privilege and access rules. It supports up to eight different regions, each of which
can be split into a further eight equal-size sub-regions. These sub-regions are useful
for overlapping memory regions. For example, if you have a large region but would
like different attributes for a small section of it. A sub-region in the larger region
could be disabled and a second MPU region used for that sub-region to provide the
required attributes. The MPU can also protect system peripherals from unintended
modification by tasks. Other applications would require the isolation of un-trusted
code and a guarantee of detecting task stack overflows. The required MPU basic
operation consists of these steps:

1. Protect a section of RAM
2. Access the RAM
3. Run the exception routine if access is denied

In summary, the objective is to create an independent secure kernel space where
applications do not have direct access. This allows storing the kernel in a safe
memory zone, thus preventing attacks that could maliciously modify the OS through
the application. Moreover, the Memory Protection Unit will protect the OS and the
authenticated applications from a number of potential errors as system or hardware
failures. Figure 5.25 shows the proposed memory scheme. It can be appreciated that
there are three main sections in this figure. The first section is the operating system
table. The second one is reserved for the operating system protected by the MPU,
and the third section is used to store the applications.

So, the MPU can be used to protect regions of memory and if there is
any attempted, unauthorized access to certain memory regions, then a memory
protection violation exception will occur and the system will detect the illegal
access.

Fig. 5.25 Memory scheme
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5.5 Implementing Key Management in the FPGA

The security issues for the key storage and key distribution in the wireless sensor
meshed network are described in this subsection. Here the reader can find the
use given to the FPGA of the application, the designed IP cores for the secure
interface between the ARM and the FPGA and the IP designed to perform the key
management inside the FPGA.

5.5.1 Describing the Selected Algorithm AES-256

As it was mentioned before in prior sections, the system will be protected by a
symmetric encryption algorithm that will cipher the data that are going to flow
through the network. (See [4] for a survey on types of encryption.)

The selected encryption algorithm to perform that operation is AES-256 [5, 44],
this encryption algorithm is based on symmetric encryption, its acronym means
Advanced Encryption Standard and is an stronger encryption standard, which uses
the Rijndael algorithm. This algorithm was developed by Joan Daemen and Vincent
Rijmen. AES is the successor of Data Encryption Standard XORed (DESX) and
3DES and has a fixed block size of 128 bits, and a key size of 128, 192, or 256
bits. AES operates on a 4 � 4 column-major order matrix of bytes AES and the key
size used for an AES cipher specifies the number of repetitions of transformation
rounds that convert the input, called the plain-text, into the final output, called the
cipher-text. The number of cycles of repetition are as follows:

• 10 cycles of repetition for 128-bit keys.
• 12 cycles of repetition for 192-bit keys.
• 14 cycles of repetition for 256-bit keys.

According to the analysis presented in Sect. 5.4, the selected key for the crypto-
system is 256-bit key, as the purpose is to maximize the security of the mesh, and it
is applied to encrypt the data and also to reverse the process, to decrypt.

Summarizing as much as possible to simplify the process, the algorithm starts
with a random number as a seed, in which the key and data encrypted with it are
scrambled applying four rounds of mathematical processes. The four rounds are
described next:

1. SubBytes: A look-up table is used to determine what each byte is replaced with.
2. ShiftRows: Has a certain number of rows where each row of the state is shifted

cyclically by a particular offset, while leaving the first row unchanged. Each byte
of the second row is shifted to the left, by an offset of one, each byte in the third
row by an offset of two, and the fourth row by an offset of three. This shifting is
applied to all three key lengths, though there is a variance for the 256-bit block
where the first row is unchanged, the second row offset by one, the third by three,
and the fourth by four.
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3. MixColumns: This step is a mixing operation using an invertible linear transfor-
mation in order to combine the 4 bytes in each column. The 4 bytes are taken as
input and generated as output.

4. AddRoundKey: Derives round keys from Rijndael’s key schedule, and adds the
round key to each byte of the state. Each round key gets added by combining
each byte of the state with the corresponding byte from the round key.

Lastly, these steps are repeated again for a fifth round, but do not include the
MixColumns step.

The FPGA in this application case is essential to implement in a safe manner
the mechanism that can do the tasks that control the key generation [26], key pre-
distribution, key deployment and key storage of AES-256 [6]. That is why the FPGA
in the device (mote or gateway) is going to be employed on that tasks, as it is pure
HW and harder to violate. All that mechanisms have to be prepared to produce and
serve 2 type of keys:

• The external keys: Will be the keys that will secure the data (firmware or
application) and also will be used to protect the new delivered external keys.

• The internal keys: Used inside the device (mote or gateway) and unique in
each device to protect the external keys, Application or OTAP. This key will
be generated with the purpose of encrypting the data that is going to flow in the
FSMC bus. This data will be encrypted with AES-256 algorithm too and it will
be generated stored and renewed if necessary by the FPGA in the GATE or Mote.

Let’s focus a bit on the external keys that must be provided and their uses. As it
has been mentioned, 2 keys are needed to assure the LPWSN. The first one is the
OTAP key, this is the key for the Over-The-Air-Programming protocol implemented.
As it was explained before, the basis for the OTAP is to distribute firmware split in
packets with the purpose of being downloaded in certain nodes of the LPWSN.
Then this pieces will be assembled composing the entire firmware image that will
be installed in the node. After the download and installation, a reboot is necessary
to run the new firmware version. The system will do this taking into account the
devices capabilities, consumption and communication overhead. It consist of three
parts:

1. The OTAP server: There is defined the firmware version to be distributed and
manages the OTAP processes

2. The gateway: Who will be the only element connecting the OTAP server with the
end devices.

3. End Device: Is the final element that will receive the firmware to be installed.

The transmission of packets OTAP server-Gateway (through wireless channel)
and Gateway-End Device (through Wireless too) must be encrypted, this will cipher
the binary code preventing it to be read by attackers [4]. So a key for that will
be needed and the FPGA will be in charge of generating and renewing it with the
mechanisms that will be described further on in this document.

The second key that the system will need is the Application key, this key will
be secured too, as it is transferred from the FPGA to the microprocessor through



5 Low Power Wireless Sensor Networks 101

the FSMC channel and therefore can be susceptible to some attack [4]. This key
will secure the captured data by the sensors in the motes and will be useful for the
application operation.

5.5.1.1 The Secure Communication Channels

The keys (OTAP or Application) have to be communicated outside the FPGA, which
means it has to go out the secure place, and have to travel in the different media
such as the communication channel between the microprocessor and the FPGA or
through the Xbee among the Gateway and the Motes, which are considered unsafe
zones. Although the key will not be transferred on plain text but in ciphered text, to
secure the communication channel a CRC has been implemented.

Cyclic Redundancy Check (CRC)

The Cyclic Redundancy Check is an error-detecting code with an extended usage in
digital networks and storage devices to detect changes made to raw data. The blocks
of data enter to this system and a value is attached to them basing it on the remainder
of a polynomial division of their contents.

The CRCs added is redundant, that means that it expands the message without
adding information, but it allows to be authenticated. CRCs are commonly used
because they are simple to implement, easy to analyze, and good at detecting
common errors caused by noise in transmission channels. Because the check value
has a fixed length, the function that generates it is occasionally used as a hash
function. From its invention in 1961 by W. Wesley Peterson[27], the 32-bit CRC
function of Ethernet and many other standards had been very used [36].

Based on that, at both extremes of communication CRC-32 has been imple-
mented, similar approaches can be seen in [2,46]. The difference in this authentica-
tion with the common implementations in the field is that the CRC is encrypted: The
CRC is added to the data to be transmitted and then encrypted with the encryption
key. In this way, the receiver can only check the CRC if it has the key to decode,
avoiding a possible attack with the purpose of violating the CRC code. In Fig. 5.26
it can be seen the authentication sequence, preparing the message to be delivered
outside the FPGA.

DATA TO BE TRANSMITTED CRC-32+

ENCRYPTED WITH KEY

Fig. 5.26 The CRC addition to the data to be transmitted



102 J. Rico et al.

FSMC bus

MicroprocessorFPGA AES Encrypteddata + CRC-32

Fig. 5.27 Securing and authenticating the communication channel inside the device (FSMC)

Communication Intra-device Through Flexible Static Memory
Controller (FSMC) Bus

As it was mentioned before, there will be two communication channels in which
the data are going to be sent. One of them is the FSMC (see [37] for further details
on the bus controller), that is the parallel bus which is connecting the ARM and
the FPGA. This bus consist of 16 data lines, 26 address lines and 6 control signals.
Through them, there will be sent the data encrypted together with the CRC and in
such a way it allows to assure and authenticate the channel in front of any physical
attack. Through the FSMC bus, the external and internal keys are going to be shared
between ARM and FPGA in all of their possible states: initial, pre-distributed,
distributed or renewed keys, always authenticated via CRC-32 and encrypted. See
Fig. 5.27.

Wireless Communication Inter-device

The other communication channel is the RF signal, Xbee, sent from the Gateway to
the Motes involved in the network. The data that are going to be transmitted here are
of two types: data packets (from firmware or application) and external keys (OTAP
and Application), both will be authenticated with a CRC for a later encryption with
the OTAP current key. See Fig. 5.28 for an schematic approach. In this case, the data
received is decoded by the microprocessor and the CRC it’s checked by it too.

5.5.2 Key Management in the FPGA

As previously mentioned, the FPGA role will be the key management of the
crypto-system. This task is extremely important, because any mistake in the key
management may lead in the discovery of the key by an attacker, making all the
network vulnerable and its generated data too. A similar approach on symmetric
key management with secure storage is described in [15].
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FSMC bus

MicroprocessorFPGA AES Encrypteddata + CRC-32

FSMC bus

MicroprocessorFPGA AES Encrypteddata + CRC-32

AES Encrypteddata + CRC-32

Fig. 5.28 Securing and authenticating the wireless communication channel inter-device

The basic modules developed inside the FPGA as key management functions or
IPs are detailed in the next subsections:

5.5.2.1 Key Generation

Both internal key and external keys must be generated inside the FPGA to assure
its privacy, and for that they are going to be randomly formed. The key generation
process is an IP (Intellectual Property) inside the FPGA that delivers 256 bit key
pseudo-random generated. This pseudo-random generation is based on polynomials
(see Table 5.1 for some examples of polynomials that may conform the Linear
Feedback Shift Registers that operate inside it). From this logic combination two
keys for encryption are going to be delivered. These key will allow to encrypt the
distributed firmware and the data sent. In Fig. 5.29 the insides of the IP for the keys
generation are shown.

5.5.2.2 Pre-distribution

Before the keys’ creation process, both sides of the communication (Microprocessor-
FPGA or MOTE-GATE) must know the initial key with which the system starts
encrypting the data. When requested, a module in the FPGA will be in charge
of making the pre-distribution. The initial key is created for that purpose, so the
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Table 5.1 Some examples on possible polynomials to be used [42]

n XNOR from n XNOR from n XNOR from n XNOR from

3 3,2 45 45,44,42,41 87 87,74 129 129,124

4 4,3 46 46,45,26,25 88 88,87,17,16 130 130,127

5 5,3 47 47,42 89 89,51 131 131,130,84,83

6 6,5 48 48,47,21,20 90 90,89,72,71 132 132,103

7 7,6 49 49,40 91 91,90,8,7 133 133,132,82,81

8 8,6,5,4 50 50,49,24,23 92 92,91,80,79 134 134,77

9 9,5 51 51,50,36,35 93 93,91 135 135,124

10 10,7 52 52,49 94 94,73 136 136,135,11,10

11 11,9 53 53,52,38,37 95 95,84 137 137,116

12 12,6,4,1 54 54,53,18,17 96 96,94,49,47 138 138,137,131,130

13 13,4,3,1 55 55,31 97 97,91 139 139,136,134,131

14 14,5,3,1 56 56,55,35,34 98 98,87 140 140,111

15 15,14 57 57,50 99 99,97,54,52 141 141,140,110,109

16 16,15,13,4 58 58,39 100 100,63 142 142,121

17 17,14 59 59,58,38,37 101 101,100,95,94 143 143,142,123,122

18 18,11 60 60,59 102 102,101,36,35 144 144,143,75,74

19 19,6,2,1 61 61,60,46,45 103 103,94 145 145,93

20 20,17 62 62,61,6,5 104 104,103,94,93 146 146,145,87,86

21 21,19 63 63,62 105 105,89 147 147,146,110,109

22 22,21 64 64,63,61,60 106 106,91 148 148,121

23 23,18 65 65,47 107 107,105,44,42 149 149,148,40,39

24 24,23,22,17 66 66,65,57,56 108 108,77 150 150,97

25 25,22 67 67,66,58,57 109 109,108,103,102 151 151,148

26 26,6,2,1 68 68,59 110 110,109,98,97 152 152,151,87,86

27 27,5,2,1 69 69,67,42,40 111 111,101 153 153,152

28 28,25 70 70,69,55,54 112 112,110,69,67 154 154,152,27,25

29 29,27 71 71,65 113 113,104 155 155,154,124,123

30 30,6,4,1 72 72,66,25,19 114 114,113,33,32 156 156,155,41,40

31 31,28 73 73,48 115 115,114,101,100 157 157,156,131,130

32 32,22,2,1 74 74,73,59,58 116 116,115,46,45 158 158,157,132,131

33 33,20 75 75,74,65,64 117 117,115,99,97 159 159,128

34 34,27,2,1 76 76,75,41,40 118 118,85 160 160,159,142,141

35 35,33 77 77,76,47,46 119 119,111 161 161,143

36 36,25 78 78,77,59,58 120 120,113,9,2 162 162,161,75,74

37 37,5,4,3,2,1 79 79,70 121 121,103 163 163,162,104,103

38 38,6,5,1 80 80,79,43,42 122 122,121,63,62 164 164,163,151,150

39 39,35 81 81,77 123 123,121 165 165,164,135,134

40 40,38,21,19 82 82,79,47,44 124 124,87 166 166,165,128,127

41 41,38 83 83,82,38,37 125 125,124,18,17 167 167,161

42 42,41,20,19 84 84,71 126 126,125,90,89 168 168,166,153,151

43 43,42,38,37 85 85,84,58,57 127 127,126

44 44,43,18,17 86 86,85,74,73 128 128,126,101,99
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Var0 Var1 Var2 Var3 Var15...

256 bits key

16 b            . . .

32b LFSR 32b LFSR. . .

PRNG

32b LFSR

Fig. 5.29 IP internal scheme for keys generation

process of the pre-distribution key is in charge of delivering the initial key to both
sides of the channel. The pre-distribution is done in the booting process of the
system. See [45] for other possible pre-distribution approaches.

5.5.2.3 Deployment

The process of deployment is going to be necessary after the process of pre-
distribution because it assures the anonymity and privacy of the given keys. This
process will use the IP for the key generation inside the FPGA, making this IP to
produce the necessary keys to have the secret keys in the system for the first time
and in further renewals.

In Fig. 5.30 the necessary steps for the pre-distribution key that will assure the
security inside the device are shown. As it can be seen some ACKs messages are
needed in order to confirm the pre-distribution process.

Figure 5.31 shows a similar procedure to deploy the AES-256 key that is going to
rule the network from that moment on. Note that in this case, the new key is going to
be distributed through the wireless and the same communication procedure is going
to be used whenever a renewal of the AES-256 key is needed.

The next subsections work as a whole inside the FPGA because they need each
other, but for a better understanding of the reader are split into two sections:

5.5.2.4 Key Renewal

As the keys can not be always the same keys (because this will make the system
vulnerable to attackers), they must be renewed following certain criteria depending
on the security requirements of the system. They can be renewed by many other
circumstances, but for the use case application discussed in this chapter, three
options have been prioritized:
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ARM FPGA

Send ACK

Check communication
with factory settings

(Key0)

Send Key1
encrypted with

Key0

Check
communication

with Key1

Send ACK,
key changed
succesfully

Generate new
random key

(Key1)

Change Key0
by Key1

wait

Fig. 5.30 Pre-distribution of the internal key between the microprocessor and the FPGA on the
device (Mote/Gateway)

1. By time: Each certain programmed time, the gateway will generate a new key
and deliver it to the rest of the system, making all the system change to the new
encryption key. This time must be short enough to guarantee that any system can
discover the encryption key.

2. By alarm received from the end devices (motes): If the device is being attacked or
manipulated, the accelerometer will detect the manipulation and launch an alarm
signal to the Gateway that will make the system to renew the keys.

3. By request: If a device (mote) requests the renewal of its keys to the Gateway,
the Gateway will deliver the new keys to the system.

5.5.2.5 Key Storage

Linked with the prior module is the key storage module. In order to keep the keys
secret and in a safe place, the FPGA has been used as an internal storage. Moreover,
the key will not be stored in plain text but encrypted with an internal key that will
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MOTE

Connection to the WSN

3 attempts to retry
connection

If <3 attempts reached
Send identifier

GATEWAY

Send KAES i+1
encrypted with KAES i

Verify identifier in
the secure storage

Save the new key in
secure storage

Fig. 5.31 Pre-distribution of the wireless key between the Gateway and the Motes on the LPWSN

protect them. So the renewal module will produce a key each time it is asked to do
so, and will keep the delivered key encrypted inside it. As the system asks for a new
key, the old one is replaced by the encrypted new one.

5.5.3 FPGA Implementation Possibilities

The main advantage of using the FPGA in the design of the system is that it allows
to implement diverse algorithms depending on the level of security required for the
application. It is especially relevant as WSNs are being used in a wide range of
applications with increasing complexity. This diversity demands of the components
of the network the possibility to be updated or adapted to changing conditions that
may not be specified when designing the system.

It could happen that the precise requirements will not be available or could
not be predicted for the complete lifetime of the network at the moment of
designing the nodes. To overcome with these limitations FPGA devices have been
used [41]. Due to the nature of this reconfigurable hardware, it is possible to
change the implemented hardware systems to adapt them to new requirements. This
characteristic allows to modify the part of the node configured in the FPGA, and by
doing this, increasing the flexibility of the WSN.

The initial approach for this use case considered the FPGA as a co-processor
to implement both the cryptographic algorithm and the key management. It was
required as the STM32F217 Micro-controller does not include any module for such
tasks. With the appearing of recent families of this Micro-controller (STM32F417),
a dedicated module is available to perform the cryptographic tasks. Besides,
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the STM32F417 presents better power efficiency compared to the FPGA and for
that, the current application performs the tasks of the AES-256 algorithm using this
Micro-controller [32].
Despite this, the FPGA is also prepared with an AES-256 cryptographic module to
guarantee a strong key management by protecting the FSMC channel with a robust
algorithm. Depending on the specified level of security, the FPGA can implement
diverse actions. From simple and fast operations such as XOR, to symmetric,
asymmetric, hybrid or even custom encryption algorithms, that could be specially
designed for the application field.

Although FPGAs are less efficient in terms of power consumption compared to
Micro-controllers [10], the possibilities these devices offer in terms of flexibility
and performance make them especially suitable for high computing demanding
applications such as video processing, real time remote sensing, streaming, etc.
Moreover, not all the available algorithms used in cryptographic systems can be
performed in the Micro-controller respecting the performance constraints. If a
cryptographic algorithm is not supported by the dedicated module of the Micro-
controller, the execution time of the corresponding implementation in software
could not meet the timing requirements. This, as a result of the increased number
of operations executed that can even rise the power consumption. In these cases
the FPGA can act as the appropriate alternative to satisfy the requirements of the
system.

The hardware acceleration performed by the FPGA can be implemented as
complete algorithms such as a cryptographic standard, or smaller parts such as
multipliers or matrix operations. The design of such accelerators can follow diverse
strategies [11].

One common method is to generate the FPGA configuration file with all the
possible algorithms that the application will require. This approach faces the
limitations of the silicon area available in the device and the power efficiency.
Normally only one algorithm is used at a given time, therefore, the rest of the FPGA
will be using resources and consuming power in an inefficient way.

Another approach is to design every algorithm independently and for each of
them to generate a configuration file to program the FPGA. These configuration
files should be stored in flash memory and the application decides what algorithm to
use and launch the reconfiguration of the FPGA. Compared with the first approach,
this one has the advantage of use more efficiently the area of the chip. By doing
this, smaller devices with the corresponding lower power consumption can be
used. The main disadvantage of this method is that the time required for the full
reconfiguration of the chip can be considerable for the application and the storage
of the configuration files demands a flash memory with enough capacity.

To overcome the last limitations, the recent advances in the field of FPGAs
have brought Dynamic Partial Reconfiguration [16]. By using this, it is possible
to reconfigure certain parts of the device without affecting the remaining part of the
FPGA. This characteristic is specially suitable for WSNs where the power efficiency
of FPGAs can limit its utilization. DPR allows the utilization of smaller devices to
implement the same algorithms that in a static implementation requires larger chips.
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Instead of implementing a complete algorithm, it can be split into diverse tasks.
For each task a partial configuration file is generated and stored in a flash memory.
Depending on the requirements of the application, each task can be dynamically
configured. With this approach the reconfiguration time, the sizes of the files to
reconfigure specific parts of the chip and the power consumption can be reduced.

In conclusion, the FPGA could play an important role in future implementations
of WSNs with heterogeneous components in which diverse devices could interact
among them. As such devices could be able to communicate with different
gateways, nodes, servers, etc. The FPGA could tremendously help in adapting
cryptographic algorithms or protocols. This flexibility will allow a correct and
secure communication. Depending on the constrained-device protocol, the FPGA-
based platform will configure the required security algorithm and protocol to allow
the communication with new devices. Instead of fixed implementations of all
possible security protocols, dynamic partial reconfiguration of the desired protocol
will be better in terms of area utilization and power consumption.
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Chapter 6
Physically Unclonable Function: Principle,
Design and Characterization of the Loop PUF

Zouha Cherif, Jean-Luc Danger, Florent Lozac’h, and Philippe Nguyen

Abstract This chapter presents a novel Physically Unclonable Function PUF called
“Loop PUF” (LPUF) which has been studied specifically to be easy to design,
lightweight and reliable. The LPUF principle is based on a loop of N controllable
delay lines forming a unique ring oscillator. It offers a huge set of challenges as
the identity extraction is performed by N measurements, whereas the extraction
is made differentially for the other delay-based PUF. This property allows the
designer to forge stronger challenge-response protocols or to generate more reliable
internal keys. The LPUF concept has been designed and evaluated in ASIC 65 nm
technology and in FPGA Virtex-5. The evaluation results show good properties of
randomness and uniqueness. As the LPUF output is in integer format and can use
numerous challenges, it provides a good base to enhance the steadiness and build
reliable authentication protocols. This chapter presents an example of authentication
primitive which is very steady in a large range of environmental conditions.

6.1 PUF Background

Physically Unclonable Functions (PUFs) can be defined as a function which returns
a characteristic value, or the fingerprint of an integrated circuit. Challenge-Response
Pair (CRP) protocol for authentication or cryptographic key generation are two main
purposes of PUF. PUF avoids the use of digital memory to store a signature or
a key, hence they are well suited in low-cost devices as the RFIDs or smartcards.
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The silicon PUF outputs a “response” (or ID) that depends on a control word, called
the “challenge”. Due to the dispersion of the manufacturing process, the response
for a given challenge differs from one PUF to another. There are two main classes
of silicon PUFs: the PUFs based on delay comparisons, composed of identical
elements, and the PUFs exploiting the initial state of memory blocks.

The first silicon PUF introduced by Gassend et al. [2] is the arbiter PUF. It
is a delay based PUF where the delays between two identical controlled paths
are compared. From the arbiter PUF derives the XOR PUF, as suggested by Suh
et al. [9], and the lightweight secure PUF, as proposed by Majzoobi et al. [7].
These PUFs would allow to mitigate the problem of the modeling attack [8]. The
ring-oscillator (RO) PUFs proposed by Suh et al. [9] are based on the comparison
between the oscillation frequency of selected pairs of ring-oscillators.

Memory based PUF has been introduced first by Guajardo et al. [3] as SRAM
PUFs. Its response is directly related with the state of the SRAM at power up. The
disadvantage of these SRAM PUFs is that not all FPGAs supports uninitialized
SRAM memory. Therefore, Kumar et al. [6] propose the butterfly PUF that can be
used on all types of FPGAs. It works as the SRAM PUF with a memory point based
on two flip-flops.

The loop PUF (LPUF) introduced by Cherif et al. [5] and presented here in a in a
detailed manner, is a delay based PUF which uses a single ring oscillator to generate
the PUF response. This PUF has been characterized in both FPGA and ASIC 65 nm
technology and compared with classical arbiter PUF into 18 ASICs platforms. To
perform an efficient characterization of PUFs, at least three metrics are necessary:
randomness, uniqueness and steadiness.

• The randomness gives an estimate of the imbalance between the number of IDs
at ‘0’ and the IDs at ‘1’ for all the challenges.

• The uniqueness indicates the entropy between two PUFs, either in the same
device (intra-uniqueness) or between devices(inter-uniqueness).

• The steadiness (or reliability) expresses the level of PUF reliability which is
reduced by the noise coming from the measurement environment.

Another important metric is the security against attacks. The modeling attack [8]
is the most powerful against delay-based PUF. It is a mathematical attack which uses
machine learning algorithms to reconstruct the elementary delays of delay based
PUFs. It is easy to thwart by using lightweight cryptography, as PRESENT, on the
challenges or responses of the PUF.

This chapter does not address the security aspect. It mainly focuses on the
characterization of other metrics and presents a reliable primitive for authentication.

6.2 LPUF Principle

The loop PUF relies on N identical delay chains (N � 2) serially connected,
each delay chain being composed of M controlled delay elements (M � 1). Each
delay element is merely a multiplexer generating a delay specific to the control bit.
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Table 6.1 Number of challenges

M

2 3 4 5 6 7 8 10 12 16

Charbiter 4 8 16 32 64 128 256 1,024 4,096 65,536

ChLPUF N D 2 4 13 40 121 364 1,093 3,280 29,524 �250 K �21 M
N D 3 4 44 360 2,680 19,244 �130 K �1 M �45 M �2 G �5,000 G

The architecture is illustrated in Fig. 6.1. The routing internal to the delay chain can
be random, without routing constraints. This is particularly appreciated in FPGA
where it is hardly possible to constrain the two paths of Look Up Table (LUT)
inputs. The only constraint is to copy/paste the delay chain which is quite easy
in any technology. For instance in FPGA the routing between two Configurable
Logic Blocks (CLB) of Xilinx, or Logic Array Blocks (LAB) of ALTERA can be
similar. When closed by an inverter, this structure forms a single ring oscillator. The
oscillation frequency depends on the “challenge” which is the concatenation of the
N control words C1; : : : ; CN applied to the N delay chains. For a given challenge
chi , the number of oscillations Ti are counted during a fixed measurement window.
As the delay chain are structurally identical, the permutation of theN control words
internal to the challenge should not change the oscillation frequency. The challenges
corresponding to all the permutations are “equivalent challenges” as they should
give the same frequency. By definition the challenges are “equivalent” if they are
elements of a set of M words of N bits (for N lines of M elements), each word
having the same Hamming Weight.

Because of the CMOS variability in physical devices, the measured Ti are
slightly different between the equivalent challenges, thus creating a signature of the
device. The PUF response can be the time difference�T D T1 � T2 measured with
two equivalent challenges ch1 and ch2. It can also be the sorting of measured times
for all the equivalent challenges. It has been shown in [5] that the LPUF allows the
user to generate a huge set of challenges. However a subset corresponding to those
having the biggest Hamming distance should be kept in order to mitigate correlation
effects. Table 6.1 shows the maximum number of possible challenges for N D 2,
N D 3 and for different values of M .
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6.3 Evaluation Metrics

Section 6.1 introduced the three main qualities that a PUF has to satisfy: ran-
domness, uniqueness and reliability. There is no standard to evaluate the PUF
performance, however, a few evaluation methods have been proposed recently.

In 2010, Hori et al. [4] proposed a method to evaluate all kinds of PUFs.
It is based on the statistical processing of the logical IDs. To elaborate an
accurate characterization, exhaustive tests are needed. This method is therefore time
consuming.

Another method presented in 2011 by Cherif et al. [1] is applicable only for delay
PUFs. It gives an estimate of the PUF characteristic with the statistical evaluation
of delay elements. This method is faster because it does not need to run many
challenges and it relies only on delay measurements. It is well suited to PUF designs
in ASIC as the delay extraction can be done after the layout stage, allowing the
designer to evaluate the PUF before fabrication. Hence, it is not adapted to FPGA
design unless their structure is modified to permit the delay measurement. We used
the Hori method since it is applicable for all PUF types. Below, we describe the
three main metrics to evaluate the performance indicators of a PUF as proposed by
Hori et al. [4].

• Randomness metrics
It uses the min-entropyH of a bit sequence of the PUF response when applying
different challenges to evaluate the ability of the PUF to produce as much 0 as 1.
When the PUF response is perfectly balanced, its randomness (maximum min-
entropy) is equal to 100 %.

• Steadiness Metrics
Considering the min-entropy H of a bit sequence obtained when applying the
same control word T times, the steadiness metric is considered as being 1-H .
When a PUF response is stable, the steadiness of the PUF is the highest (closed
to 100 %). We distinguish two types of steadiness evaluation: The steadiness of
a PUF under normal environmental condition and its steadiness when running
under different operating conditions (temperature variation, power supply voltage
variation, etc.).

• Uniqueness metrics
The uniqueness metric is based on the normalized Sum of Hamming Distance
(SHD) of the possible ID-combinations, when applying the same challenge set
to different PUFs (either located in the same device or not). The higher is the
SHD (close to 100 %), the greater is the uniqueness of the PUF.

6.4 Design and Evaluation Platform

The platform is composed of a mixed PUF, i.e. arbiter PUF and Loop PUF, called
PUFmix. This PUFmix block contains the same basic delay elements in order to
guaranty a fair comparison between Arbiter PUF and Loop PUF. It is designed
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on two platforms: FPGA and ASIC in 65 nm technology, each platform having
49 PUFmix structures. The intra-device (using 49 PUFs) and inter-device (using
18 devices) characteristics have been studied for both PUFs. The characteristics
results use the three metrics presented in Sect. 6.3: randomness, uniqueness and
steadiness. Figure 6.2 shows the PUFmix structure designed on both FPGA and
ASIC platforms. Four delay chains are used on the PUFmix design to make three
independent PUFs:

• Arbiter PUF #1 (uses the two upper delay chains).
• Arbiter PUF #2 (uses the two bottom delay chains).
• Loop PUF (uses the four delay chains).

Each delay chain in composed of M=16 basic delay elements. At the end of each
chain, a buffer to equilibrate the end charges of the four chains. A multiplexer is
used before each delay to select the operating mode of the design (arbiter or loop
PUF) depending on the aorl_puf signal. Using four delay chains, the loop PUF
generates 4 delays which can be sorted by an external controller to generate a 4-bit
response. However, each arbiter PUF generates a 1-bit response.

6.4.1 ASIC Platform

The ASIC prototype has been designed in technology STM 65 nm. The layout
with the 49 PUFmix organized in 7 � 7 matrix is shown in Fig. 6.3. The PUFmix
implementation uses 215 standard cells (343 gates). The delay lines have been
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Fig. 6.3 ASIC layout

exactly copied and pasted four times. All output signals are isolated from the
I/O pins using buffer in order to keep equilibrate timing performances for the
arbiter PUF. Hence, each PUFmix occupies 50.8 � 44.28�m = 2,249.424 �m2 in
the ASIC. Identical routed delay chains are designed using an automatic script in
order to ensure identical paths. For the arbiter PUF, a specific place and route has
been done for the RS_latches in order to obtain a balanced structure.

A test board, shown in Fig. 6.4, has been designed with controllable power supply
pins for the ASIC core. This allows the designer to evaluate the impact of voltage
variation on the steadiness characteristic. The communication with the device is
done via an UART module which has its own clock and Power supply.

6.4.2 FPGA

A 168 PUFmix design has been implemented on a Xilinx Virtex-5 vlx50t FPGA
embedded on a Digilent Genesys development board. To obtain such a circuit,
specific methodology has been used to achieve the two main constraints:



6 Loop PUF: Principles, Design and Characterization 121

Fig. 6.4 Test board

• The four delay chains have to be exactly similar in terms of resource placement
and routing.

• The PUFs have to be cloned.

Achieving these constraints is not possible at RTL level only. It is necessary to
apply a methodology with specific Xilinx “hard macro” and constraints:

• Hard Macro: It is a placed and routed design part, which does not contain any
input/output buffers (IOB). A hard macro can be instantiated more than once in a
circuit. Each instance is a clone of the original module reproducing its placement
and routing. Hard macros are stored in NMC files, a Xilinx file format is quite
similar to NCD files, already used to describe classic netlists. Custom scripts have
been developed to automatically generate hard macros.

• Primitive instantiation: We can include some Xilinx specific primitives in
HDL code to infer for example LUTs, and define their truth table and inputs
mapping. Those primitives are described in the Virtex-5 Libraries Guide for HDL
Designs [10].

• Xilinx constraints: Xilinx tools offer the possibility to attach to a particular design
some constraints and attributes which affect the implementation like logical,
physical or mapping constraints. Undesired place or route optimizations can also
be forbidden.

The detailed steps necessary to meet the Place/Route constraints are the
following:

1. Primitive instantiation technique is first used to design a delay element chain
where each element is a LUT which is configured as a MUX21. Elements are
manually placed from left to right, on a same slice row. Manual placement
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is done taking advantage of design constraints that Xilinx provide us, like
“LOC”, “RLOC”. Others constraints to prevent Xilinx design flow tools from
making undesired optimizations are also added, like “SAVE NET FLAG” or
LOCK_PINS”. The two first LUT inputs are logically connected to the previous
element output, while the 3rd input is reserved to be connected to one control
signal (ct r). Virtex-5 slices consist of four LUTs, so one chain of 16 elements
occupies four slices. After chain is designed, our custom scripts are computed,
and a “chain” Hardmacro is created, preserving its placement and routing.

2. Then, chain Hardmacros are instantiated on successive rows. Additional logic
operators used for both arbiter and loop PUF are manually placed. Also, routing
is not constrained, so differences may exist between the two arbiter PUFs. Next,
a PUFmix Hardmacro is created.

3. Finally, all PUFmix Hardmacro instances are manually placed on FPGA matrix.

Every instance occupies 24 slices, which is about 0.4 % of slice resources. Final
Layout is shown in Fig. 6.5. We can notice in Fig. 6.5 that some columns are
not usable for PUFmix as it requires four adjacent columns whose slice type
is M;L;L;L, respectively. As for some columns the sequence is M;L;M;L,

Fig. 6.5 Layout of FPGA
design where 168 PUFmix
Hardmacros are instantiated
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hence the PUFmix cannot be placed here. In order to fairly compare the PUFmix
performance when designed in both platforms, only 49 PUFmix are considered on
the FPGA.

6.5 Experimental Results

6.5.1 Intra-device Evaluation

In this section, we compare the PUFmix intra-device performance when designed
on two different platforms (FPGA and ASIC) using the CMOS 65 nm technology.
We randomly select an ASIC device among the 18. Three performance indicators
are investigated in order to evaluate the PUFmix (2 arbiter PUFs and 1 loop PUF):
randomness, uniqueness and steadiness.

To characterize the randomness of each arbiter and each loop PUF, we compute
the min-entropy of the bit response sequence when applying the same set of different
control words to the 49 PUF instances. Figure 6.6a, b show the average of intra-
device evaluation results of the 49 arbiter PUF #1 and the 49 arbiter PUF #2,
respectively on the two used platforms. On the FPGA, the randomness of the arbiter
PUF #1 is 0 %. This means that, despite checking the routing time at design process,
there is a big bias between the two parallel paths due to imperfect routing. The bit
response of the PUF is stable (always at ‘0’ or ‘1’) even when changing the control
word. The intra-device evaluation of the arbiter PUF #2 shows that the bias on
FPGAs is reduced and the randomness of the arbiter PUF #2 increases to 25 %.
However, on ASIC, the two arbiter PUFs present almost the same performance
results. Then, we can conclude that, due to manual routing, the arbiter PUF design
on ASIC is slightly better in terms of randomness (around 30 %) than on FPGA.

Using the min-entropy of the bit response sequence obtained when introducing
the same set of challenge T D 128 times, we assess the steadiness of the PUF.
Figure 6.6a, b show the average steadiness of the 49 arbiter PUF #1 and the 49
arbiter PUF #2, respectively. Since there is a bias on the design of the arbiter
PUF structures (poor randomness), we cannot judge the steadiness which is around

Fig. 6.6 Intra-device evaluation. (a) Arbiter PUF #1. (b) Arbiter PUF #2. (c) Loop PUF
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100 % on both platforms. Therefore, the steadiness of the arbiter PUFs cannot be
investigated even on the ASIC platform since it is influenced by the low randomness
characteristic (around 30 %). Our results show (Fig. 6.6c) that, on both platforms,
the loop PUF presents a good randomness characteristic (around 100 %), since there
is no need for routing constraints. In this case the steadiness of the PUF can be
investigated. And the average steadiness of the 49 loop PUFs is around 98 % on
ASIC and FPGA platform. This proves that the loop PUF design is very reliable
independently of the used platform.

The intra-device uniqueness of the PUFs response is studied using the SHD
metric. Although both platforms are built with the CMOS 65 nm technology, due to
the noise of designed and unused components on the FPGA, the extraction process
is better on ASIC. This makes the uniqueness of the designed PUFs (arbiter and
loop PUFs) better on ASIC than FPGA.

6.5.2 Deeper Analysis on ASICs

In this section, we start our investigation by the evaluation of the randomness and
the steadiness of the arbiter and the loop PUF structures when varying operating
conditions. Then we study the inter-device characteristics of the PUFs when placed
in the same places in different ASICs.

6.5.2.1 Randomness Analysis

We randomly choose a set of 1,024 challenges for the evaluation of the randomness
of the arbiter and the loop PUF instances under different operating conditions. As
proposed by Hori et al. [4], we compute the min-entropy of the obtained bit sequence
to evaluate the randomness of each PUF when applying the 1,024 fixed challenges.

Figure 6.7 presents the mean value of the randomness percentage obtained for
the 49 PUFs for each structure when performing under different temperatures. The
results show that both arbiter PUFs present poor randomness characteristics. The
highest randomness value for the arbiter PUFs is 34.03 %. It is obtained when
performing under normal operating conditions for the arbiter PUF #2. However,
the best randomness value for the loop PUF is obtained under the nominal operating
conditions (98.92 %).

When varying the supply voltage (˙10 % of the nominal 1.2 V), the evaluation of
the randomness of two arbiter PUFs and the loop PUF shows that the randomness of
both structures is independent from the supply voltage variation (Fig. 6.7). The loop
PUF is far better than the arbiter PUF in terms of randomness even when varying
the supply voltage. The higher randomness value for the arbiter PUFs is 34.73 %,
however, the lower value for the loop PUF is 98.94 %.
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Fig. 6.7 PUFmix randomness evaluation. (a) Temperature impact. (b) Voltage impact

We conclude that there is a big gap of the randomness performance between the
arbiter and the loop PUF structures on the ASIC platform. The loop PUF is better
than the arbiter PUFs when varying the temperature (0, 23 and 60 ıC) and the supply
voltage (˙10 % of the nominal 1.2 V).

As discussed in Sect. 6.5.1, the poor randomness of the arbiter PUFs can be
explained by the imperfect balance between the two paths. The imperfect balance
of paths influence negatively the randomness of the arbiter PUF and positively on
the steadiness of the PUF. Indeed a very poor randomness increases the steadiness
as the PUF output has more probability to be steady if it as often the same value.
Therefore, the evaluation of the steadiness is not appropriate in the case of low
values of the randomness (for arbiter PUFs in our case).

6.5.2.2 Steadiness Analysis

The steadiness, or reliability, is the property that a PUF always generates the same
response even when varying operating conditions, supply voltage and temperature.
By using the Hori [4] metrics, we determine the average steadiness of the response
of the 49 PUFs designed on a randomly selected ASIC when applying a fixed
random challenge. This analysis is done under different ambient temperatures (0, 23
and 60 ıC) and supply voltages (˙10 % of the nominal 1.2 V). As mentioned above,
the reliability of the arbiter PUFs is not very relevant since it is very influenced by
the bias between the paths (low randomness).

When varying the temperature, the loop PUF steadiness remains stable. This
means that loop PUF instances does not depend on the operating temperature. How-
ever, the supply voltage variation influences the loop PUF steadiness performance.
At nominal supply voltage the loop PUF steadiness is the highest (D 98:26%). when
varying the operating voltage (˙10 % of the nominal 1.2 V), the steadiness of the
loop PUF is slightly reduced (around 92.5 %). The results illustrated in Fig. 6.8a, b
show that the loop PUF instances have a good steadiness (higher than 92 %), which
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Fig. 6.8 Loop PUF steadiness evaluation. (a) Temperature impact. (b) Voltage impact

Fig. 6.9 Inter-uniqueness evaluation. (a) Arbiter PUF #1. (b) Arbiter PUF #2. (c) loop PUF

can be handled using a lightweight error correction schemes. We conclude that the
loop PUF are arbiter PUF instances have a good level of steadiness against variation
of temperature and supply voltage, but the arbiter PUF takes advantage of its low
randomness.

6.5.2.3 Inter-uniqueness Evaluation

The inter-uniqueness shows the ability of a PUF to produce different responses when
designed in the same place in identical devices when applying the same challenge
under normal operating condition. We use the Hori method, which is based on the
computation of the SHD of equivalent bit response.

Figure 6.9a–c present a cartography of the inter-uniqueness evaluation over the
18 ASICs of the arbiter PUF #1, the arbiter PUF #2 and the loop PUF, respectively.

Our results show that the loop PUF has the best average inter-uniqueness
characteristics. Almost all the 49 loop PUFs have an inter-uniqueness around 90 %.
However, the variance of the inter-uniqueness of the 49 arbiter PUFs #1 and the
49 arbiter PUFs #2 is very large. The PUF located in cell (1,0) has the least
inter-uniqueness value of 86.08 %. However, both arbiter PUFs present lower inter-
uniqueness characteristics than the loop PUF. The lowest values are 61.83 and
57.90 % for the arbiter PUF #1 (located in cell (6,1)) and the arbiter PUF #2 (located
in cell (4,3)), respectively.
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We conclude that the inter-uniqueness of the loop PUF is better than the inter-
uniqueness of both arbiter PUFs. Regardless of its location on the ASIC, the loop
PUF structure presents similar inter-uniqueness performance.

6.6 Loop PUF for Authentication

Due to the combination of their properties of uniqueness and steadiness, PUFs
are presented as an innovative primitive to derive secret from complex physical
characteristics of ICs. They are proposed to be used for low cost authentication
of ICs and the generation of cryptographic keys. For instance Suh et al. [9]
propose methods based on “Challenge-Response Protocol” (CRP) to use the ring-
oscillator PUFs for low cost authentication and cryptographic key generation. They
challenge-response table is first recorded by the authentication server. Then at each
authentication operation, the trusted server has to select only one recorded and not
previously used challenge. Finally, to check the authenticity of the IC, the response
of the PUFs for the same selected challenge have to meet exactly the response saved
on the recorded table. Using this method, we consider that the PUF response is
perfect and no errors can occur, which is not true since the error probability of the
proposed PUF is not null. The Loop PUF outputs an integer value which represents
the delay or the frequency of the loop during a fixed period. From this output, we
can either generate a binary response (as for the others PUFs on the literature)
or use directly the integer output which is much more precise and significant. In
this chapter, we propose a method that takes advantage from this integer output for
device authentication purpose. It is based on the measurement of physical values of
delay elements. These physical values are used to authenticate devices since they are
much more precise than the binary response of the loop PUF. The proposed method
can be divided into two principle steps:

1. Enrollment step.
2. Authentication step.

6.6.1 Enrollment Step

The main rationale of this step is to generate the reference vectors which are used
as a helper data, at the authentication step, to analyse the IC authenticity. It consists
in measuring the delays of basic loop PUF delay elements. At the end of this stage,
the number of M reference vectors are saved, with M the number of basic delay
elements included on a loop PUF delay chain. Therefore, we propose to:

1. Measure the global delay d0 of the loop PUF when all delay elements are set to
‘0’ (Cj

i D 0 with i 2 Œ1; N � and j 2 Œ1;M �).
2. Measure separately the delay di;j of each delay element j on each delay chain i

when Cj
i D 1.
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3. Construct the measurement vectors Ref j with j 2 Œ1;M � such that:
Refj D Œ.d1;j � d0/I .d2;j � d0/I .d3;j � d0/I .di;j � d0/I � � � I .dN;j � d0/�:

This enrollment procedure is performed only once. The reference vectors which
are generated are further compared to the generated vectors during the authentica-
tion step.

6.6.2 Authentication

It consists in checking if the generated measurement vectors are correlated or not
with the references vectors. To do so, we propose to use the Pearson correlation
coefficient. The proposed method is based on four essential steps. The three first
steps are identical to those performed during the learning stage.

1. Measurement of the global delay d0 of the loop PUF when all delay elements are
set to ‘0’ (Cj

i D 0 with i 2 Œ1; N � and j 2 Œ1;M �).
2. Measurement of the delay di;j of each delay elements j on each delay chain i

when Cj
i D 1.

3. Construction of the vectors Xj with j 2 Œ1;M �. Xj D Œ.d1;j � d0/I .d2;j � d0/I
.d3;j � d0/I .di;j � d0/I � � � I .dN;j � d0/�:

4. Computation of the Pearson correlation coefficient (see Eq. 6.1) between each
normalized pair of reference and measurement vector corrj

.Ref j ;Xj /
with Ref j

the reference vector already recorded.

The Pearson coefficient used as a metric to authenticate a device is given by:

corr.Ref;X/ D 1
M

MX

jD1

corrj
.Ref;X/ D 1

M

MX

jD1

PN
iD1.refji � Orefj/.xj

i � Oxj/

�ref � �x
: (6.1)

Using this metric for device authentication, we take into account both offset
and scaling phenomenon that can affect the PUF response (e.g. by temperature
variations). The correlation coefficient is equal to ‘1’ if one of the variables
is an increasing function of the other variable, to ‘�1’ in when the function
is decreasing. Intermediate values provide information on the degree of linear
dependency between two variables. The correlation between variables is strong
when the correlation coefficient value is closer to the extreme values ‘�1’ and ’1.
A correlation coefficient of 0 means that the variables are not correlated.

6.6.3 Experimental Results

The tests have been carried out on 16 ASICs, each one embedding 49 loop
PUFs. Hereafter we present first the authentication results when identifying a PUF
among others embedded in the same IC (authentication intra-ASICs) either in
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ambient temperature or when varying it. Then we study the performance of the
authentication metrics to identify a PUF among others situated in the same location
in identical ICs (authentication inter-ASICs) at nominal environmental conditions.
The experimental setup is composed of four delay chains (N D 4). Each one
contains 16 delay elements (M D 16). As the routing of the 16 elements is identical,
we can consider a unique delay chain composed of 64 elements (N D 64 and
M D 1). The steps (1)–(3) presented above are performed T D 128 times in
order to assess the reliability of the PUF response. The first test of the measurement
vectors Xj is a reference vector referred to Ref j . And then the mean correlation
coefficient is computed as described on the fourth and last step of our authentication
step.

6.6.3.1 Intra-device Authentication

In order to verify the ability of the loop PUF to be used for authentication purposes
using the proposed method, we study the intra-ASIC correlation on the 16 ASICs.

Figure 6.10 shows the mean value of the correlation coefficients between all
PUFs situated in the same device. We note that when we compare a PUF response
with its responses (different tests), we have a high correlation (closed to 1).
However, when the PUF responses are compared to those of another PUF existing
in the same die, the worst case correlation coefficient does not exceed in its absolute
value the 0.5 which is very low.

Fig. 6.10 Intra-ASIC mean correlation results
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a b

Fig. 6.11 Intra-ASIC mean correlation results at different temperatures. (a) Temperature = 0 ıC.
(b) Temperature = 60 ıC

Even when decreasing the temperature to 0 ıC or increasing it to 60 ıC, using
our method (the Pearson correlation coefficient), the loop PUF presents good per-
formance to be used for device authentication purposes. The correlation coefficient
at different environmental conditions does not exceed in its absolute value the 0.5.
This proves that our metric take into account the scaling phenomenon caused by
the temperature variation. Figure 6.11a, b illustrate the intra-device authentication
results when varying the temperature. We note that the results obtained at 60 ıC
are the best. This can be explained by the fact that the reliability of the loop PUF
increases with the temperature due to the dilation of the delays of delay elements.

6.6.3.2 Inter-device Authentication

To evaluate the ability of the loop PUF to be used for device authentication using
the correlation method. We propose to evaluate the correlation degree between each
PUF (through its reference vector) and its equivalent (PUFs having the same place)
in the other ASICs. Figure 6.12 shows that we are able to distinguish a PUF from
another one even when placed in the same place on different ASICs. In the worst
case, the correlation coefficient does not exceed in its absolute value the 0.5 which
let the error interval very large.

Due to the accuracy of the loop PUF output and the method that we propose, we
are able to distinguish a PUF form other similar PUFs either implemented in the
same ASIC or placed at the same place in different ASICs without post processing
schemes and with a large error margin.

The authentication procedure is not time consuming. The authentication time
is linearly dependent with the number of basic delay element of the loop PUF.
In our case, since the loop PUF is composed of 64 basic delay elements, we need
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Fig. 6.12 Inter-ASICs correlation results

65 measurements to authenticate a PUF. One measurement when all the control
bits are set to ‘0’, and 64 others when activating a single delay element per
measurement. With a clock system frequency of 100 MHz, we are able to perform
all needed measurements within 1.08 ms = 65 � Tpuf which is very low. The metric
computation (the fourth step of our method) needs 0 ms to be done. Then the overall
authentication procedure of the PUF takes about 1.08 ms for a loop PUF of 64 delay
elements.

6.6.3.3 Discussion About the Robustness Against Attacks

In order to secure the transmission of the PUF response (IC identifier) from man
in the middle attacks, replay attacks and modeling attacks, a cryptographic layer
should be added to the PUF system. The traditional solution to thwart these attacks
is to provide a secure challenge-response authentication protocol while exchanging
the IC identifier. However this extra logic should not be too complex to harm the
low-cost interest of the PUF. Figure 6.13a, b show an example of countermeasure
against replay attacks. The cryptographic layer takes advantage of a Hash function
and a cryptographic nonce authentication protocol. This protocol should be both
ways if the server is not trusted.
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Fig. 6.13 Principle of the secured PUF authentication system. (a) PUF authentication system.
(b) Authentication protocol

Conclusions
The Loop PUF has been introduced and characterized. It has been shown
that this structure is easy to design and offers a huge number of challenges
as it is based on sequential comparisons on N delay chains. Consequently
this permits low-cost methods for authentication and key extraction. The
performances have been evaluated and compared with arbiter PUF by means
of FPGA and ASIC platforms in CMOS 65 nm technology. The loop PUF
presents better performance than the two arbiter PUFs even when varying
operating conditions. It has a stable random response, and when placed on
different places of the ASIC, it presents similar uniqueness performance.
Hence, the LPUF also offers a good base for reliable authentication protocols
and key generation. Its output in integer format allows the designer to take
advantage of signal processing operators, as the correlation, to generate a
unique and steady response whatever the conditions.
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Chapter 7
Physically Unclonable Function: Design
of a Silicon Arbiter-PUF on CMOS 65 nm

Guillaume Reymond and Jacques J.A. Fournier

Abstract This chapter addresses some of the practical difficulties when designing
a silicon-PUF based on CMOS technology. When designing such a PUF, and
particularly in the case of an arbiter-PUF, particular care should be taken during the
place and route phase. To ensure the properties of the PUF, full-custom back-end
design may be required. This chapter give details on the design phase considering
the example of an arbiter-PUF made of several switch boxes. Each of them can be
configured by the challenge, and an arbiter (NAND2 – RS-latch) to decide of the
output of the PUF. The technology node targeted for the ASIC implementation is
the CMOS 65 nm.

7.1 Arbiter-PUF Background

The successive chemical and physical operations involved in the manufacturing of
CMOS circuits create slight variations between instances of identical transistors.
This variability allows designing intrinsic silicon PUF. Among the effect of process
dispersion, the arbiter-PUFs exploit the difference between propagation delays
through similar datapaths. Because silicon PUF can be implemented with a standard
manufacturing process, they can be integrated with the CMOS logic.

The first silicon delay PUF was introduced by Gassend et al. [1]. It is based on
an arbiter element which compares the delays between two paths composed of M
controlled delay elements. An arbiter is used to determine which path is the shortest,
by determining on which path the rising edge arrives first. The whole architecture is
illustrated in Fig. 7.1.

From a design point of view, the arbiter-PUF requires a specific attention to
balance the delays between the two paths. Indeed each pair of paths – the two
straight ones and the two crossed ones – needs to be perfectly balanced to prevent
from introducing a permanent bias.
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enable Arbiter output

c[0] c[1] c[M−2] c[M−1]

Fig. 7.1 Arbiter-PUF

7.2 Targeting the CMOS 65 nm Technology

The arbiter PUF is implemented using the CMOS 65 nm technology, as a full-
custom design: every transistor is placed and routed manually to ensure the
symmetry of the block. The PUF is then designed as a standalone IP, and this block
is then integrated into a standard design flow for chip finishing: design of the IO
ring, place and route of the IPs. We choose not to use standard cells for designing
of the following reasons:

• Standard cells paths from inputs to outputs are optimized in terms of perfor-
mances, but the layout is not balanced between two equivalent datapaths. This is
the case for MUX 2-1 and RS-latch. These unbalanced paths may result in a bias
in the final design.

• Routing butted standard cells may also result in asymmetry in metal layers.

To facilitate the final integration step, the cells are designed according to the
framework of the standard cells. Thus several tasks are made easier:

• Addition of filler cells with N-Well and P-Well straps
• Integration of standard cells fillers – for density consideration
• Meshing of GND and VDD

The framework of a standard cells design is shown Fig. 7.2 and has the following
characteristics:

• Total height: 3�m
• GND and VDD rails height: 0.56�m

7.3 Design of a Switch Box

The switch box is the configurable element of the arbiter-PUF. Because of the pro-
cess dispersion, the two configurations result in unpredictable distinct propagation
delays for inputs in1 and in2. The functionality of a switch box may be described
by two multiplexers controlled by the challenge c, as shown Fig. 7.3.
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Fig. 7.2 Standard cell
framework for CMOS 65 nm
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Based on the design of pass gates used in the MUX21 standard cell, the switch
box can be implemented according to the schematic presented Fig. 7.4. Table 7.1
gathered the parameters for the transistors used in the switch box.

The transistors P0 and N0 of the inverter are sized with two fingers for reasons
of symmetry. A particular care is required during the place and route phase, in order
to keep the design symmetrical. In particular, the two paths have to be balanced
regardless of the configuration input c. When c D 0, the input in1 goes through
the pass gate P1 – N1 to exit by out1, whereas in2 goes through the pass gate
P4 – N4 to exit by out2. When c D 1, the paths cross: in1 is send to out2 whereas
in2 is send to out1. Thus the straight paths are balanced together, as well as the
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Fig. 7.4 Schematic view of a
switch box in1
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Table 7.1 Transistors parameters for the switch box

Transistors Width (nm) Length (nm) Number of fingers

P0 560 60 2

N0 400 60 2

P1, P2, P3, P4 280 60 1

N1, N2, N3, N4 200 60 1

crossed paths. The layout view of the switch box is shown Fig. 7.5. All transistors
are placed to obtain a perfect symmetry. The only element of asymmetry is due to
the Metal 2 interconnections. However, the impact of this asymmetry is assessed
negligible considering the dimensions involved.

7.4 Design of an Arbiter

The role of the arbiter is to determine if the rising edge arrives first on the path 1
or on the path 2. Therefore, the arbiter has to be designed in such a way that no
bias is introduced between the two paths. The design must be balanced so that
none of the input has an advantage over the other one. A SR-latch built with two
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Fig. 7.5 Layout view of a switch box

Fig. 7.6 Symbolic view of
an arbiter Q

/Q
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R

coupled NAND2 gates, as shown Fig. 7.6, is the easiest way to design a balanced
arbiter. Initially, both inputs are at logical low level, since no rising edge has been
propagated yet. Both values Q and /Q are then constraint at logical high level.
The SR-latch is in a state which is logically not allowed, since Q and /Q aren’t
complemented. Yet, this state is stable.

• If the rising edge arrives first on input S, the upper NAND gate switches to logical
level ‘0’, since S and /Q are at logical level ‘1’. The output is then set at level ‘0’.

• On the contrary, if the edges arrives first on input R, /Q switches to logical level
‘0’. The output is then set at level ‘1’.

In both cases, the latch is in a stable state, even after the rising edge arrives
eventually at the other input. Resetting the arbiter is done when the enable signal
is set back to ‘0’. Once the falling edge is propagated through the PUF, all nodes are
in their initial state. The schematic view Fig. 7.7 is based on the NAND2 standard
cell. The parameters are set at their default values:

• PMOS transistors: w D 280 nm, l D 60 nm
• NMOS transistors: w D 200 nm, l D 60 nm

The complemented value /Q is shown on the schematic, but is however not
considered as an output of the arbiter. Figure 7.8 shows the layout of the arbiter.
The organization of the transistors allows to keep a symmetrical design between
the two inputs S and R. The only asymmetry in the layout is the position of the
two contacts M1 – Polycrystalline silicon. Given the dimensions, this difference is
considered negligible.
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7.4.1 Design of the Arbiter-PUF

Once the switch box and the arbiter are designed, these cells have to be assembled
into an arbiter-PUF. Considering the design of both elementary cells, we opt for a
column organization: the first switch box being on the top, the arbiter on the bottom.
We choose to design an arbiter-PUF featuring a 16-bits challenge. Sixteen arbiter-
PUFs are assembled into the same block, so the response of this IP is 16 bits.

An input shift register and an output shift register are added so data can be
serialized. Thus, the number of IOs is considerably reduced:

• Inputs: CLK, RN (for registers), input challenge (serialized), enable, register
mode.

• Outputs: PUF response (serialized), output CLK
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Fig. 7.9 Arbiter-PUF layout

The layout of the arbiter-PUF is finished by integrating power and ground rings
which are eventually connected to the VDD and GND pads. The complete layout of
the arbiter-PUF is shown Fig. 7.9.

Conclusions
This chapter provides details of the implementation of an arbiter-PUF. It also
highlights the difficulties that can be encountered during the design, place and
route phases. The particular care that has to be taken to design an arbiter PUF
based on switch boxes makes the design more difficult than expected. First,
due to strong area optimizations in standard cells, propagation delays in those
cells are not balanced. This may introduce a bias in the PUF and it is then
preferable to manually place and route each transistor to obtain symmetric
data paths. When assembling the cells, the metal layers have also to observe
symmetry. Thus, designing an arbiter PUF is not an easy task, and has to
comply with many constraints. The main ones are reminded here:

• Design the cells according to the standard cell framework
• Place transistors/standard cells so that active areas (diffusion, NC, PC,

etc.) form symmetrical patterns for both datapaths
• Route cells in order to keep this symmetry intact

These constraints are not easy to comply with, even if the design is simple.
The sub-micron technologies have strong and numerous design rules, making
also the design not transferable to another technology. As a conclusion,

(continued)
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a reflection is needed regarding the cost – in terms of human and financial
resources – of designing an arbiter-PUF based on switch boxes. Considering
the complexity of the task, other methods may be preferable. Designing PUFs
with less place and route constraints – such as the loop-PUF described in
Chap. 6 – is definitely a valuable approach.
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Chapter 8
Secure Key Generator Using a Loop-PUF

Julien Francq and Geoffrey Parlier

Abstract In this chapter, we describe a secret key generator which uses a Physically
Unclonable Function: the Loop-PUF (LPUF). After a short description of this latter,
we will describe the concept and the architecture of our secure key generator
(PUFKY). We will detail all its components and all the security analysis we made.
We will finally show that the LPUF, if its location is well chosen, has sufficient
properties to be used as a robust and secure key generator. More generally, this
chapter will allow the reader to implement a PUFKY quickly from scratch.

8.1 Introduction

Physical Unclonable Functions (PUFs) [2, 5, 8] are adapted to be used as hardware
key generators because they allow to avoid a system to store sensitive informations
(i.e. cryptographic keys) by regenerating them at each usage. This protects this kind
of key generator against reverse engineering attacks.

Secure boot applications can take advantage of PUF usage. A secure boot allow
to run only authenticated codes (i.e. boot loaders) on a platform. It is thus a protec-
tion against malwares because it prevents from the loading of non-authorised binary
software during the boot of the component. For example, computers including a
secure boot will not operate non-authorized operating systems.

A PUF allows to extract a secret key directly from physical parameters of the
circuit. Thus, if we combine the secure boot approach with a PUF, we can obtain a
high-level security platform offering a protection against counterfeiting and cloning.
However, before generating a key, we must post-process the PUF response to make
it reliable with an efficient Error-Correcting Code (ECC).

This chapter describes all the steps necessary to implement a PUFKY using a
PUF. The PUF used in this work is the Loop-PUF (LPUF) which has shown to have
good security properties. It will appear at the end of our study that the LPUF is
sufficiently secure to be used for a robust and secure key generator.
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After a short description of the LPUF principle, it will be described the concept
and the architecture of our secure key generator (PUFKY). In another section,
we will also detail all the security analysis we made on our architecture, before
summarizing our results and concluding.

More generally, this chapter will allow the reader to implement a PUFKY quickly
from scratch.

8.2 LPUF: Architecture and Properties

LPUF is a PUF from the Delay-Based PUF family. The fundamental principle
of such kind of “delay-based PUFs” is to compare a pair of structurally identi-
cal/symmetric circuit elements and measure any delay mismatch introduced by the
manufacturing process variations. A LPUF is a sort of mix of an arbiter PUF and
ring-oscillator PUF (see Fig. 8.1).

The architecture of this PUF is very simple and easy to implement on a FPGA. It
is made of N controlled delay chains which are serially gathered. All these chains
form a big oscillation loop. Like for Ring Oscillator PUF (ROPUF), this latter
allows to measure the number of oscillations (number of periods) in the loop during
a fixed time window. Moreover, each delay chain is identical and is made of M
delay elements all connected together. Its dimensions depend on the parameters
M and N and its simple design allows a place-and-route of the circuit in FPGAs
without particular constraint. The measurement of the response of this PUF is made
thanks to a system of comparisons between the different frequency measurements
computed for one challenge. The creation of an entity (LPUF IP) on a FPGA is
not complicated because the design is sufficiently scalable and flexible. Using only
one oscillation loop decreases significantly the noise on a PUF response. Finally,
each of these delay elements does not need Switch Blocks. It is not needed to cross
the signals, that eases greatly its implementation on FPGA. The only constraint
concerns the fact that the delay elements must follow themselves physically on the
FPGA (see Fig. 8.2).

LPUF works like the other PUFs: it receives on its inputs one challenge, this
latter is made of N words .C1C2 : : : CN /, each has a size of M bits. Thus each
chain receives a word Ci of M bits. That also means that a challenge is made of
N �M bits. To communicate the bit value coming from the challenge at each delay
element, the LPUF has a controller (the LPUF Controller) which must also send

Fig. 8.1 One element
of a LPUF



8 Secure Key Generator Using a Loop-PUF 145

Fig. 8.2 LPUF architecture

Table 8.1 LPUF vs. Arbiter
PUF – FPGA Cyclone II

Performance metrics Arbiter PUF (%) LPUF (%)

Randomness 0 �100

Uniqueness 97.73 95

Steadiness 99.07 98.7

back the binary response. The LPUF controller allows also to manage the good
distribution of the challenge as well as the recovery of the measured values and the
conversion in binary response, which represents the signature of the PUF defining
the integrated circuit, here the FPGA.

The window time for the measurements serves as a reference to compute the
number of oscillations in the loop of the LPUF. This value is linked to the LPUF
frequency. We remark that, the bigger the time window is, the more reliable is this
measurement, because it increases the measurement time and then the number of
gathered delays.

The LPUF has been already tested on a ALTERA FPGA (Cyclone II). Table 8.1
compares the results obtained with a LPUF and an equivalent Arbiter PUF.

LPUF provides more randomness by far, so that justifies its choice for key
generation.

To modify these results, we can choose different value for M and N which
defines physically this PUF.

In summary, the LPUF, thanks to its design offering a big flexibility with its
parameters and a easy implementation, allows to obtain a low-cost mean in terms
of resources and clock cycles to generate one source of secret random data. Its
performance criteria show that its usage for the key generation is appropriate
compared to other PUFs. This is a basic requirement for a secure boot application.

However, the performance criteria Steadiness indicates that, like for other PUFs,
a challenge-response couple is not directly usable because it is not enough stable
and does not give sufficient information. Some pre-processing steps will be then
necessary (computed by the Challenge Controller and the Lehmer Gray component,
see resp. Sects. 8.4.1.4 and 8.4.1.6). A post-processing step (Error Correcting Code)
will also be needed to decrease the error rate of the response of the LPUF (see
Sect. 8.5.2).
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8.3 Secure Key Generator Based on the Loop-PUF

When a PUF is used to generate a cryptographic key, it has to produce randomly
distributed random data with a high entropy. The PUF must also have a robust
(reliable) behavior when used in this kind of purpose. However, a PUF is not 100 %
reliable by nature, so a post-processing of the PUF responses is needed before using
this kind of random data for generating a cryptographic key. Moreover, this key
generation phase must be as lightweight as possible and resistant to some attacks
like Machine Learning and Side-Channels.

We call a Controlled PUF (CPUF) a system which contains the PUF with the
modules needed to manage it. Our goal is to drive our CPUF with a API (Application
Programming Interface) which allows to limit its access.

A CPUF is made of two elements: a PUF and a control logic block which contains
an error correcting code to correct the responses, followed by a cryptographic
hash function to counteract modelization attacks. With these blocks, the response
of a PUF can be used as a cryptographic key; we call this procedure KEY
EXTRACTOR.

8.3.1 PUFKY: Concept

It is possible to use a CPUF as a PUF-based Key Generator (PUFKY). A PUFKY
is made of a PUF and a KEY EXTRACTOR (or Fuzzy Extractor). The extraction
of a key with a Fuzzy Extractor can be done in two steps. The first step is called
“generation step”. It is done only once in the life cycle of the component. It allows
generating responses from the PUF and extracting a key as well as additional
information called Helper Data. The second step allows to reconstruct at any time
the key obtained in the generation step. To do so, it is needed to implement Error
Correcting Code which needs the Helper Data to reconstruct the key. Then, the
PUFKY concept provides a key without storing it in non-volatile memory. Only the
Helper Data is stored in such memory and the data it contains are not critical if they
are public, or retrieved with invasive means.

The PUFKY must successfully do two important tasks: increase the reliability
of the PUF response (which is noisy by nature), and get a sufficient entropy. This
is why we use a Fuzzy Extractor, based on error correcting code technology. This
PUFKY concept has been first proposed by Leuven University researchers [4, 7].
It is the starting point of our work.

8.3.2 PUFKY: Architecture

The global architecture of a PUFKY is depicted in Fig. 8.3. It implements the LPUF
developed in the ENIAC funded TOISE project.
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Fig. 8.3 PUFKY architecture

To correct the noisy response of the PUFKY, our Fuzzy Extractor uses an error-
correcting code which works in the two steps “Generation” and “Reproduction”.
The Secure Sketch is made of an encoder/decoder block C.n; k/. The best way to
proceed is to use the decoder to generate syndromes and an Error-Correcting Code
(ECC). The final choice of this ECC depends on the quality of the PUF responses.

In Fig. 8.3, the “Helper Data” interface allows to write or read data, depending
if we are in Generation or Reproduction Phase. Moreover, the repetition block
(majority vote) of the ECC allows to increase the reliability of the LPUF response,
but increases the global computation time since we repeat many times the same
measurement. Finally, Helper Data do not have an influence neither on the response
quality, nor on the final entropy. It only allows to store the syndrome used in the
reproduction phase, as it will be explained in the following. We must just ensure
that the public information leaked by helper data is not sufficient to reconstruct the
key (see Sect. 8.3.3.4).

In summary, PUFKY implements these modules:

• The LPUF
• A Fuzzy Extractor comprising:
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– An ECC (Secure Sketch) which uses a correction with syndromes.
– A cryptographic hash function Entropy Accumulator.

• The controller of the PUFKY which is in charge of the key generation.
• A communication interface.

8.3.3 Key Extractor

This kind of information extractor is different that standard ones. It has to collect
information from the PUF which are not uniform, noisy and with a low entropy. This
source of information is called Fuzzy. The extraction method of the Fuzzy Extractor
is specific because of the Secure Sketch procedure.

8.3.3.1 Fuzzy Extractor

Here are described in more details and in Fig. 8.4 the two steps of the Fuzzy
Extractor (Generation and Reproduction):

• Generation step corresponds to the enrollment phase of the PUF. It is done only
once in the life cycle of the component. It is the time where the couple Challenge-
Response (CRP) is generated. This phase comprises also the generation phase of
the Secure Sketch which produces at the same time the original cryptographic
key and the Helper Data.

• Reproduction step is one of the Secure Sketch phase where the PUF response is
generated once again with the same challenge. This step allows to reconstruct at
any time the key obtained in the generation step. However, because the response
has slightly differences with the one generated in generated phase, the use of the

Fig. 8.4 The two steps of the Fuzzy Extractor
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Secure Sketch in reproduction step corrects the PUF response using the created
Helper Data, and sends it in the Entropy Accumulator which reconstructs the key.
The correction is then done with the decoder block of the ECC and the Helper
Data.

8.3.3.2 Secure Sketch

Secure Sketch allows reproducing a signal using a noisy source of data. It transforms
a low entropy source in a reliable information with high entropy. To do so, it
comprises an ECC which computes a syndrome. This latter is an information reused
in reproduction phase for reconstructing the correct value of the data. Our ECC
block, C.n; k/ can be a cyclic/linear one. This kind of ECC uses a matrix H called
Parity-Check matrix and a generation matrix G. These two matrices are defined
using the relation:G �HT D 0. The Secure Sketch is a pair of two procedures, and
in the following our response matrices are denoted y; and y0.

• During the generation step, the Secure Sketch produces .n � k/ bits which are
stored in Helper Data matrix w:

w WD y �HT : (8.1)

• During the reproduction phase, the Secure Sketch computed the syndrome S of
the ECC C.n; k/, such that:

S WD y0 �HT ˚ w � .y ˚ y0/ �HT (8.2)

• Then, the ECC block decodes the information, such that:

S WD e �HT (8.3)

The e vector has a low Hamming Weight (HW) and a low correction rate t ,
such that HW.e/ � t . It allows to reproduce the new corrected PUF output y00,
such that:

y00 WD y0 ˚ e (8.4)

• The validity condition of the corrected response is gauged by the Correctness
criteria. It allows to check if the reproduction of the computed value corresponds
to the scheduled one. This condition can be expressed as follows:

If HW
˚
.yIy0/

� � t; then e WD y ˚ y0; thus y00 � y (8.5)

This procedure explicits that the matrix w which corresponds to the Helper Data
must be stored during all the life cycle of the entity PUFKY since it is the link
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between the generation phase and the reproduction phase. Data of w corresponding
to the parity bits of the syndrome are public. The error correcting rate t of the
Secure Sketch must be determined during the development phase of the PUFKY.
Theoretically, it must be as low as possible but it must also be sufficient for the key
generation. It is then linked to the quality of the source and then to the physical
parameters of the Loop PUF.

8.3.3.3 Entropy Accumulator

The Entropy Accumulator can be a cryptographic hash function. In our work, the
implemented hash function is SHA-3. This latter uses the output of the Secure
Sketch which corresponds to the corrected output of the PUF to process a functional
cryptographic key. A hash function is injective: It takes an input message of arbitrary
length and produces a fixed length digest (for our SHA-3 implementation, it is equal
to 256 bits). We obtain at the output of the hash a character chain, which corresponds
to the digest of the PUF responses. Hash function breaks the link between the
challenge of the LPUF and the produced key, which will avoid all the kind of
Machine Learning attacks.

8.3.3.4 Remarks on the Security of the Generator

If we want a secure key from the PUFKY, the final entropy of the binary chain at the
input of the Entropy Accumulator must be equal or greater than the wanted key size.
That means that the remaining number of independent bits must be equal a minima
to the key size. In our case, we want an entropy equal or greater than 256 bits.

Let L be the size of the PUF response, and N the number of responses coming
from N challenges to generate a key. Let w be the matrix containing the parity bits
of our syndromes coming from the ECC C.n; k/, which has the size:

dim fwg D dim fN � .n � k/g (8.6)

Let � be the entropy rate of the PUF response (� is determined through some tests,
it is a sort of “security coefficient”). Then, the security equation that the LPUF must
obey is:

Œ � � dim fN � Lg � � dim fN � .n � k/g � dim fKEY g (8.7)

This criteria is critical since it guarantees that the public information coming from
the parity bits is not sufficient to reconstruct the key by an attacker, since the final
number of independent bits is greater than the key itself.
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Fig. 8.5 Test-bench

8.4 LPUF: Study

8.4.1 Test-Bench Presentation

As aforementioned, the LPUF IP has been developed during ENIAC funded TOISE
project: VHDL sources and one Hard Macro (HM) have been delivered which
corresponds to the design of one LPUF made of 4 chains, each one made of 16
delay elements.

Our test-bench uses a Xilinx ML507 development board containing a FPGA
Virtex-5 (XC5VFX70TFFG1136) and one Power-PC 440.

This allows to test easily the LPUF thanks to a basic client implemented in
C language which communicates with the board using the serial port. It allows
sending challenges and measuring the responses which are related to the oscillation
frequencies of the LPUF for given challenges.

Figure 8.5 depicts the test-bench.

8.4.1.1 IP PUF Specifications

This IP is made of a PUF module duplicated N times and a controller followed by
an interface for writing and reading in the registers.

In the initial package [1] we have 36 HMs implementing the LPUF.
Each HM is made of two different PUF delay elements. This element contains

two identical buffers and a multiplexer. The use of these buffers is needed to increase
the delay (and then decrease the oscillation frequency to measure it). To select
between these two kinds of PUF, we can use a control signal.

The two kinds of PUF which are present in one HM are (see Fig. 8.6):

• Arbiter PUF,
• LPUF.

In both cases, the same delay chains are used for both PUFs. But for the LPUF
case, these latter are serial. Finally, one inverter is added between the chains to allow
the PUF to oscillate. The output of the loop is called outlpuf : it allows to compute
the oscillation frequency of the LPUF, but this output does not correspond to the
final response of the PUF. A post-processing (encoding) step is needed to use the
frequencies and finally produce this final response (we will implement Lehmer-Gray
encoding, see Sect. 8.4.1.6).
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Fig. 8.6 Arbiter PUF vs. loop PUF

Fig. 8.7 Measurement
window of the LPUF

To push the tests further on the ML507 board, we raised the number of PUF
modules to 132 HMs, respecting place-and-route constraints of our HM which
occupies 24 slices in the FPGA.

The PUF period Tpuf is measured by counting the number of periods O of the
clock clk during an oscillation window D 2t � Tpuf (see Fig. 8.7).
t obeys to the following relation:

t � 16C log2.
Fpuf

Fclk
/ (8.8)

In our measurements, we could see that for Fclk D 25MHz, we obtain thanks to
the O value that Fpuf D 100MHz. We can then conclude that tmax D 18.

The HM of the LPUF (see Fig. 8.8) needs a controller to work.
The HM also has some control signals to define its mode and also 4 16-bit

input signals. These signals are the challenge itself which defines the value of
the multiplexers of the 4 delay element chains. Finally, we got at the output the
oscillation signal of the PUF.

Figure 8.9 depicts the place-and-route of the design on the ML507 board.
We detail hereafter the meaning of the colors:

• Violet: PLL 25 MHz,
• Yellow: Frequency FIFO,
• Green: OSC signals,
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Fig. 8.8 Loop PUF HM

• Orange: LPUF controller,
• Cyan: Interface PUF,
• Red: UART IP.

Figure 8.9 allows to see that the area on the right of the Power PC is made of IPs
which allow to communicate with the LPUFs. We can find there the UART IP, one
FIFO playing the role of frequency adaptation between the IPs and the I/O interface.
There is always activity in this area when a PUF is working. The proximity with
some HMs can perturbate this one (see Sect. 8.4.2.4).

8.4.1.2 Client Specifications

Once the LPUF is implemented, we have decided to study its performance indicators
but for doing this, we got to implement a client which integrates a new chain of
processes such that the total permutation of challenges, read/write data in files, etc.
to realize a post-processing step during the exploitation of the results.
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Fig. 8.9 Place-and-route of
the design on ML507
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Here is a list of functionalities implemented in the client:

• Get a list of challenges from a input file.
• Function which computes the needed 24 permutations of one challenge.
• Function which sends these 24 sub-challenges to a PUF.
• Modify the function which sends a challenge to a PUF and sends back the number

of oscillations.
• Include the management of client parameters and the interface (parameters of

UART, number of PUFs, number of iterations T , number of challenges).
• Management of the folder names, and savings of the data in CSV format.

Once the data saved, they can then be processed with software like Matlab or its
open-source equivalent Octave.

8.4.1.3 Choice of the Identification Method

The identification step is really important because it corresponds to our signature
step of the PUF. As well as the RO-PUFs, oscillation values must be transformed in
a binary chain.

The identification method must guarantee the following points:

• To get a sufficient quantity of random information to generate a key which is at
least 256 bits long,

• Get a uniform random source,
• Get a response with a high entropy,
• Use a light process for the FPGA.

All the properties of our test-bench have been determined thanks to our Hori
method [3] implementation developed on Octave.

8.4.1.4 Challenge Controller

This entity allows to manage the control words which will be sent at the input of
the LPUF. One challenge is in fact 4 16-bit words C1C2C3C4. Each word Ci is sent
to a LPUF control chain. We can create new challenges by permuting the order of
the words. For example, the first permutation can give: C1C2C4C3. Globally, there
exists 24 permutations, this allows to create 24 sub-challenges coming from one
challenge. The architecture of the challenge controller is depicted in Fig. 8.10.

Identification method of the response is then computed with the aim of 24
frequencies written on 16 bits, which offers a big quantity of information.
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Fig. 8.10 Architecture of the Challenge Controller

8.4.1.5 Direct Pair Comparisons

This method consists in studying the sign of the difference between two measured
oscillation frequencies. Only one response bit r is generated depending on the result
of the difference; positive, equal or negative. We obtain the following rule:

8 ˚
F.i/; F.i 0/

� 2 F ŒI� with i ¤ i 0 such that .i; i 0/ 2 Œ0I 23�
If

�
F.i/ � F.i 0/

� � 0 then r D 1; else r D 0 (8.9)

This comparison is not too much costly. Moreover, it offers a big number of
possible combinations (C24

2 D 276). Response length can be thus written on 276 bits
with this method, but results with some challenges show that the binary response
chain possesses a low entropy and that it is noisy after some iterations. Some
frequency values are too close, then it modifies the sign of the comparison at some
moments and so the response. Finally, our test tools show that a majority of the bits
are redundant ones. After a study on 272 concatenated bits of a response, our tool
exhibits an entropy of 4.27 bits for a byte (entropy rate: 54 %). Moreover, we can
remark that the bits repartition in a response is cyclic and deterministic: only the
24 first combinations are really independent because their results give information
on the ranking order of the measured values, and so a probability on the following
ones. It is then possible to determine the rest of the response in a probabilistic way.
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Fig. 8.11 Direct pair comparisons architecture

We can then conclude that for a 276-bit response, only the first 24 ones are really
100 % independent because each bit comes from at least one new measurement on
the 24. For a cryptographic key generator, a noise response of 24 bits is insufficient.
To overcome this problem, it would be needed to use a big number of challenges,
which will imply an increasing measurement time and a more noisy response. Thus,
the pairs’ comparison (depicted in Fig. 8.11) has not been chosen for our secret key
generator.

8.4.1.6 Lehmer-Gray Encoder

Lehmer-Gray Encoder, created by Derrick Lehmer (a twentieth century mathemati-
cian) is a sorting algorithm which allows to calculate a unique numeric vector
featuring a permutation order of n measured frequencies. This vector then allows to
calculate Lehmer coefficients which are the responses of the LPUF. A big advantage
of this method is that it does not need to select a comparison order to calculate the
coefficients. This offers a more effective approach than the pairs’ comparison which
needs to compute all the possible combinations, or select a pre-determined order.
Lehmer code is then more robust to mathematical modelization.
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Lehmer code uses a frequency vector with a dimension equal to 24. We have
then a finite set of n D 24 frequencies, F Œ24� such that f n D .f1; : : : ; fn/. The
Lehmer encoder allows to calculate the vector with the order rn�1 D .r1; : : : ; rn�1/
with ri 2 f0; 1; : : : ; ig. Thus, there’s nŠ possible Lehmer vectors for a given
frequency vector f n. Lehmer vectorial representation is then unique for a set of
24 measurements corresponding to only one challenge of the LPUF. Lehmer vector
corresponds to a LPUF signature, allowing the final computation of the response.

Lehmer coefficients are thus computed with a vector f n such that:

rj D
jX

iD1
gt.fjC1; fi 0/ with gt.x; y/ D 1 if x > y; else 0:

We have chosen to use the function gt.x; y/ as a comparison tool. It is more
reliable than the study of the sign at the subtractor output since the measured LPUF
frequencies are the result of oscillations measurements coming from the delays
accumulated by the LPUF chains. Cherif et al. [1] has shown that the LPUF output
coming from an oscillation is linear with temperature and power supply variations.
We can deduce that the superiority comparison method between two measurements
has more chance to be more stable than with a sign study. Thus, it brings reliability
to the response and allows to minimize noise generated by the PUF itself.

Lehmer code possesses thus interesting properties to reduce LPUF noise: we
can observe that if the result of a comparison between two values changes because
of a perturbation generated by the LPUF, then the Lehmer coefficient will vary of
only ˙1.

Once the 23 Lehmer coefficients are computed, information of this vector must
be transmitted in one binary chain, where each bit must be useful. We must then
compress information. For this, coefficients are encoded under Gray binary format
which makes the response particularly reliable and robust to the noise of the LPUF.

Knowing that the coefficients ri 2 f0; 1; : : : ; ig, they are thus bounded, so the
allocated space in the binary chain varies regarding the coefficient. Coefficients are
then encoded on 2, 3, 4, 5 bits maximum, regarding the number of bits that can take
the maximum value of the coefficient. A LPUF response for a 64-bit challenge is
then 88-bit long, to be a multiple of a byte (see Fig. 8.12).

Applying this method, we obtain a new architecture of the PUF, showed in
Fig. 8.13.

8.4.2 Experimental Results

In the following, we analyze the properties of our developed LPUF IP.
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Fig. 8.12 Lehmer Gray encoder

Fig. 8.13 IP PUF architecture
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Table 8.2 Area occupied on
ML507 board

Module Occupied slices FPGA usage (%)

132 LPUFs 3,168 28

Others 384 3

Total @ 10 MHz 3,552 31

Table 8.3 Parameters Parameter Value

LPUF frequency 10 MHz

Signal t 16

Time window 260�s

N 132 LPUFs

K 20 challenges

T 20 iterations

L 88 bits

Table 8.4 Duration Step Time (h)

132 LPUF measurements 4

Lehmer Gray scripts 1

Hori scripts 9

Total @ t D 16 15

Table 8.5 Experimental results with 132 LPUFs

Criteria Average Standard deviation Interval Confidence: 95 %

Probability p 0.4631 0.0080 [0.4618 0.4645]

Randomness H 0.8975 0.0215 [0.8937 0.9011]

Steadiness S 0.9590 0.0065 [0.9579 0.9601]

Correctness C 0.9530 0.0073 [0.9517 0.9542]

Diffuseness D 0.8905 0.0085 [0.8890 0.8920]

Uniqueness U 0.6472 0.0601 [0.6368 0.6575]

8.4.2.1 Analysis on 132 LPUFs

In this experience, design properties and parameters are as follows (Tables 8.2–8.4):
Table 8.5 summarizes the results obtained with our architecture of the LPUF.
We can notice that the entropy rate is around 90 % in average, data from response

are then usable for key generation. Moreover, each of these results has a low
standard deviation, we get then a response which has a stable behavior as a function
of time, challenges and location in the FPGA. The second important indicator is the
steadiness of the response (	95 %), showing its capacity to resist to environmental
perturbations on the PUF. For 20 iterations, the correctness of the response is in
average equal to 95 %, which means that at each iteration, around only 5 bits of the
LPUF IP response vary in average. Finally, we can see that the diffuseness (number
of different response bits result of two challenges) is equal to 89 %. Moreover,



8 Secure Key Generator Using a Loop-PUF 161

each response, for a given challenge and LPUF, is unique since in average 65 %
of the response bits are different between two LPUFs. The new improved LPUF IP
has then the behavior of a secure Physically Unclonable Function.

We also remark that the context of the experience is important, because the
measurement set is spread on one experience which has a 4 h duration. We can then
deduce that the use of the responses for key generation will not pose problems at one
time. However, despite acceptable results for a usage in a secure boot, these results
comes from 132 LPUFs and 20 one after the other iterations. It is thus interesting
to see how behaves the LPUF spatially in the FPGA (see Sect. 8.4.2.4). Finally, this
characterization result gives indications on the ways to correct the response which
has a 5 bits variation in average. It is very important to choose the most efficient
error correcting code, because it must provide a 100 % correction rate for the key
generation process (see Sect. 8.5.2).

8.4.2.2 Analysis on 1 LPUF

To push the measurements a little bit more further, a second experience testing the
PUF endurance has been set with 200 iterations and 20 challenges. This experience
uses only one LPUF but uses a 25 MHz frequency. The time window chosen for
the experience is the biggest possible regarding the limits of the system (t D 18).
An iteration can be then measured in 10 s in average with 20 challenges. Table 8.6
details the results.

This experience shows that the more we re-use some challenges, the more stable
is the LPUF response. This advantage can be very useful for key generation. This
easy technique (repeating a measurement) is advantageous since it increases the
stability (from 95 to 97 %). Thus, there are 3 bits in average that are different after
200 iterations. Moreover, at 25 MHz, the time for a measurement becomes 600 ms,
which is still acceptable for a secure boot.

8.4.2.3 Inter and Intra Distance Measurements

The first experience (132 LPUFs, 20 iterations, 20 challenges) also allows to trace
intra- and inter-distance curves (see Fig. 8.14). This result allows to check that the
new architecture respects the properties and definitions of a PUF. And it also allows
to compare the LPUF with other PUF types.

Table 8.6 Experimental
results on one LPUF

Criteria Average Standard deviation

Probability p 0.4581 0.49

Randomness H 0.8839 NC

Steadiness S 0.9727 0.1207

Correctness C 0.9685 0.1337

Diffuseness D 0.8938 0.1781
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Fig. 8.14 Inter & intra distance of the LPUF

We can first denote that the inter and intra-distance follows a normal distribution
with an average intra-distance of 3.5 % and inter-distance of 46.5 %. If we compare
with the other PUFs of the literature, we can claim that the LPUF is very
competitive.

A second important point is that there is no false positives or negatives because
there is no intersection between the intra- and inter-distance curves. Thus, LPUF
allows to identify a unique and unclonable response for a given challenge and LPUF.

To better understand and compare the inter- and intra-distance results, a decid-
ability criteria, based on the average of inter- and intra-distance of a LPUF, has been
used. This criteria allows to rank the LPUFs: The bigger it is for a LPUF, the more
it is efficient (low intra-distance and big inter-distance).

dprime D jIntra � Interjq
Var.Intra/CVar .Inter/

2

(8.10)

8.4.2.4 Spatial Analysis of the LPUF on the FPGA

Once the criteria dprime is computed for each LPUF, we can spatially represent the
performances of the 132 LPUFs implemented in the entire FPGA (see Fig. 8.15).
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Fig. 8.15 Locations of the 132 LPUFs in the FPGA

Fig. 8.16 dprime values on ML507

The criteria dprime varies between 6 and 8, but we can remark that the spatial
repartition is not uniform (see Fig. 8.16).

Even if we can not prove that LPUF performances are related to its location in
the FPGA, we can remark that some areas are more favorable for good results. The
upper left part of the FPGA is interesting since it groups a high-performance set of
LPUFs. It is also interesting to denote that the LPUFs placed near to components
dedicated to the UART and the LPUF controller have bad results compared to
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the others. For example, LPUFs 57, 63, 69 and 75 have a dprime value below the
average. We can then make the hypothesis that LPUFs placed-and-routed in high
activity areas can be perturbated and provide lower performances.

We can then conclude that it will be finally better to choose an isolated area to
place and route the LPUF. The extremities of the FPGA seems to be a good choice.

8.5 PUFKY Based on LPUF

The previous sections in this chapter showed that LPUF is suitable to be imple-
mented in a secure key generator. This PUFKY is made of a PUF IP with a Fuzzy
Extractor, which has the role of correcting the noise at the output of the PUF, and
extracting a 256-bit key. To integrate this PUFKY in a functional and autonomous
secure boot, it is needed to implement the PUF IP with the Challenge Controller
and the Lehmer-Gray component. A global finite-state machine controls all the
components.

8.5.1 Experimental Results of the PUF IP

It is first important to check that the PUF has sufficient performances to be
implemented.

The intra-distance graph (see Fig. 8.17) confirms that the measured data follows
a normal distribution, with an average equal to 2.72 %. Because the LPUF is located
far away from the other components, it is not perturbated and has good results.

Hori criterias (see [3] and Table 8.7) confirms that the data coming from the PUF
has a 95 % entropy.

Moreover, the error rate remains stable. We can then deduce that the implemented
error-correcting code must be able to correct 8 bits on 88, with a 100 % success
rate. To summarize, this PUF has sufficient good properties to be used in a PUFKY
component.

8.5.1.1 Remarks on the Challenges Choice

During the measurements of this PUF, we remarked that some challenges allowed
to get more stable responses. Thanks to iterative and repeated tests (which can be
easily automated), we have selected 10 optimal challenges. The reason why the PUF
reacts better with some challenges is that the bit values of a challenge are in fact
control bits. These values modify the oscillation occurring inside the LPUFs. There
are some conditions to respect on the challenge choice to get a low noise response.
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Fig. 8.17 IP PUF (100 challenges, 101 iterations)

Table 8.7 Hori criterias of
the PUF IP

Criteria Average Standard deviation

Probability p 0.4682 0.4834

Randomness H 0.9511 NC

Steadiness S 0.9615 0.1444

Correctness C 0.9558 0.1584

Diffuseness D 0.9188 0.1491

Figures 8.18 and 8.19 show that on 10 challenges, the error rate is equal to 2.41 %
on average for overall the challenges and 0.6 % for 10 selected challenges. These 10
challenges have been integrated in our secure boot.

8.5.2 Fuzzy Extractor Characteristics

8.5.2.1 Secure Sketch

Repetition Code

A PUFKY (and consequently the error correcting code) must be lightweight and
fast. A first idea that seems to be convenient at first sight is to implement a
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Fig. 8.18 Error percentage before challenge selection

repetition code. Thanks to a majority vote, it chooses the majority over 5 responses
coming from the same challenge. With this system, the error rate decreases by half
(before: 0.6 %, after: 0.37 %, see Fig. 8.20).

Hamming Code (11,15)

To correct the remaining erroneous bits, we must use an error-correcting code which
uses .n� k/ parity bits which allows to reconstruct the initial response. We can use
for this a linear correcting code which detects and correct the errors. Since we have a
low error rate after the repetition code, we can use a very simple ECC like Hamming
code.

Hamming codes [6] allows to detect two errors and corrects one every k bits.
To do so, it uses additional information computed and stored in the generation
phase of the PUFKY. These data are re-used during the reproduction phase: it is
the .n� k/ parity bits. Thus, to optimize correction process, we have finally chosen
to implement a Hamming(11,15). This code is able to detect two errors every 11
response bits and correct one thanks to the syndrome computed with the parity bits.

The Hamming ECC generates 8�.15�11/ D 32 parity bits for a 88-bit response.
We obtain a non-noisy response, usable to generate a key. Finally, for a given
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Fig. 8.19 Error percentage after challenge selection

response, there is 88 � 32 D 56 independent bits, which means that a challenge
generates 56 entropy bits. It is thus needed at least 5 challenges to generate 256
entropy bits.

Once the Hamming(11,15) code applied (see Fig. 8.21), we can see that it
remains a very low average error rate (0.01 %).

To correct this last default, two solutions are possible:

• Apply a smaller Hamming code C.4; 7/, but the remaining entropy would be
equal to 22 bits (instead of 56). We would have then to use 12 challenges to
obtain 256 entropy bits. But if the number of challenges increases, the probability
to obtain a noisy response would increase too. The system would then go
in a vicious circle since what advantages a PUFKY part would render more
vulnerable another. Using this ECC would be a drawback for the key generation.

• A second more simple solution would consist to re-iterate a defective challenge
during the generation phase. Hamming code has the possibility to detect two
errors on 11 bits. It could then inform the system that a measured response
during the generation phase is not correct and too noisy to be corrected in a key
reproduction process. The system could then measure once again our challenge
which allows to correct the last errors with a 100 % success rate. That is the
method we finally used in our PUFKY architecture.
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Fig. 8.20 Error percentage with a repetition code using 5 votes

8.5.2.2 The Entropy Accumulator

This part of the Fuzzy Extractor is implemented with a cryptographic hash function
SHA-3. This hash function receives 5 corrected responses, i.e. 5 � 88 D 440 bits
and it produces a 256 bits response which corresponds to the key generated by the
PUFKY.

To guarantee the integrity of the generated key in generation and reproduction
phase, we must check that there is at least 256 entropy bits in the 440 bits generated
by the PUFKY:

Œ 0:95 � dim f5 � 88g � � dim f5 � 8 � .15� 11/g D 258 � 256 D dim fKEY g
(8.11)

8.5.3 Final Architecture of the PUFKY

A PUFKY based on the LPUF guarantees that a 256-bit key is provided to the
secure boot. The developed general architecture of the PUFKY can be depicted in
Fig. 8.22.
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Fig. 8.21 Error percentage with a Hamming(11,15)

8.6 Summary of Our PUFKY Implementation

We have finally implemented our PUFKY IP for a secure boot application in a
Xilinx ML507 board based on Linux (see Fig. 8.23).

This secure boot does not need to store a key because it is generated by the
PUFKY. Moreover, this key is unique and unclonable since it comes from a PUF.
Operating Systems not previously signed by our platform can not run, and no
clone of the System-on-Chip can execute our Linux version previously ciphered
and signed by the board.

Concerning the PUFKY part, we have successfully implemented a 100 %
hardware architecture on FPGA. This PUFKY is lightweight and relatively fast for
our application (it takes only 6 s on the overall boot process).

Finally, it is interesting to compare our results with the PUFKY developed by
Maes et al. [7]. We can summarize this comparison in Table 8.8.

We can then remark that our architecture only uses one PUF compared to Maes
et al. which uses 56 PUFs. This explains our much bigger computation time, but it
is still acceptable for a secure boot application. A possible solution to decrease this
time would consist in implementing many LPUFs in parallel to optimize the key
generation process. Another approach would consist in finding the optimal number
of delay chains, challenges set, FPGA location for the LPUFs, etc.
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Fig. 8.23 View of the secure boot system-on-chip on ML507 board

Table 8.8 PUFKY comparaison

Maes et al. Francq et al.

PUF 53 ROPUFs 1 LPUF

PUF size 952 slices 24 slices

Challenges 1 5

Responses 42 bits 88 bits

PUF source 2,226 bits 440 bits

Entropy 97.95 % 95.11 %

Entropy bits 2,180 bits 418 bits

Repetition code CREP .7; 1; 3/ CVOTE.5/

ECC CBCH .318; 174; 17/ CHamming.11; 15/

Helper data 2,052 bits 160 bits

Remaining entropy 128 bits 258 bits

Key 128 bits 256 bits

Frequency 54 MHz 25 MHz

Computation time 5.62 ms 6 s



172 J. Francq and G. Parlier

Conclusion
In this chapter, we have described how implementing a PUFKY in general,
and using a LPUF in particular. Compared to the seminal work of Maes
et al., LPUF properties allows lightweight correction of responses if the
measurement time can be increased. That is the case of a secure boot
application, where the key generation takes a negligible time compared to
the overall boot procedure. The entropy of the key is sufficient and the size of
helper data is by far smaller, which allows a more lightweight implementation.

We hope that this chapter will help designers to design quickly a PUFKY
with any kind of PUF.
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Chapter 9
Fault Sensitivity Analysis at Design Time

Alessandro Barenghi, Luca Breveglieri, Andrea Palomba,
and Gerardo Pelosi

Abstract Side channel attacks represent a prime threat to the security of modern
digital electronic systems. Among the different attack strategies, exploiting the
information leaked by the resiliency of the device to harsh working conditions has
recently emerged as an exploitable mean to retrieve secret keys held in a secure
device. In this chapter we will provide an introduction to the Fault Sensitivity
Analysis (FSA) attack technique, together with a design time evaluation of it on
two different AES S-Boxes designs. Since a critical point of performing an FSA
based attack is to choose a proper model for the expected failure trend of the device,
we will delineate two different approaches, one based on an a-priori modeling of it,
while the other exploits an a-posteriori strategy.

9.1 Introduction

Modern embedded devices are increasingly employed to perform security critical
tasks, typically involving the computation of cryptographic primitives. To this end,
it is crucial to consider in the threat taxonomy, the attacks which can be lead under
the assumption of having physical access to the computing device. Among those,
Side-Channel Attacks (SCAs) represent a realistic threat to the practical security of
computing systems [13,21]. A side-channel attack exploits the information that can
be retrieved either measuring physical quantity related to the ongoing computation
(e.g., the power consumption of the device) or disturbing its regular functioning and
observing the effects of such a disturbance. The former attack strategy yields the so-
called passive side-channel attacks [1, 2, 8], while the latter one results in the active
side channel attacks [4, 6, 14].

Concerning active side channel attacks, also known as fault attacks, the typical
workflow implies inducing a controlled fault in the computation of a cryptographic
primitive so to disrupt its functioning in a non catastrophic way. Such a disturbance
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will thus affect the computation of a portion of the cipher, thus involving a limited
portion of the secret parameters. Subsequently, the attacker exploits the knowledge
that can be obtained either through comparing correct and faulty results of the
cryptographic primitive (a technique known as Differential Fault Analysis [3,5,7]),
or observing when such faulty results occur (also known as a safe-error attack).

A different exploitation of the functionality degradation of a device as a side
channel is the so-called Fault Sensitivity Analysis [17] (FSA). FSA exploits the
existing dependence between the functionality degradation of a digital device and
the data being computed by it. In this chapter we will provide a description of the
FSA technique, delineating its workflow. Following this, we describe a study on the
feasibility of design-time prediction of the possible FSA vulnerability of a circuit,
employing as a case study two different AES S-Box designs [20]. We provide
insights on an alternate way to predict the functionality degradation of the device,
and an experimental validation performed through post place and route logic level
simulation.

9.2 Fault Sensitivity Analysis

Fault Sensitivity Analysis (FSA) was presented in [17–19] as a novel attack
technique exploiting as information leakage the functionality degradation of an
encrypting device. To this end, FSA employs a tunable fault induction mean, typi-
cally involving a gradual alteration of the working conditions of the digital device.
For the remainder of this chapter we will consider the temporary shortening of a
clock cycle to be the alteration of the working condition (sometimes denominated
clock glitch), noting that it is possible to have gradually harsher environments
through reducing more and more the clock cycle duration. Alternate alterations
suitable to obtain a gradual degradation of the functionality of a digital device
are: the progressive reduction of the power supply voltage level [3, 5], local laser
irradiation of the die with increasing intensity [18, 19], and local EM disturbances
caused through the injection of a current spike in a small coil [11].

Gradually shortening the clock period for a specific clock cycle will increase the
likelihood of a failure caused by a setup-time violation of one or more logic signals,
with the critical path typically failing first. We will assume that the attacker is able
to shorten the clock period for the exact clock cycle when the operation he wants to
gain information on is performed.

We will now detail the workflow to lead an FSA attack against a cryptographic
device. The first step to perform an FSA is to observe the outputs of a device, as
depicted in Fig. 9.1 for a known set of inputs I D fi1; : : : ; ing. The device will
compute a known cipher, employing a secret key k which is securely stored inside
it. The attacker chooses an intermediate instruction involving known values (i.e.,
values which can be derived from the inputs) and a small portion of the secret
key bits, denoted k from now on. From now on, we will denote the computation
performed by the aforementioned instruction as f .ij ; k/.
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Fig. 9.1 Fault Sensitivity as
a side channel: the transition
point from the correct to the
improper working condition
reveals information on the
processed data

Cryptographic
Primitive

Implementation

Secret KeyInput
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Output 
(Ciphertext)
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Correct Working Condition
(clock frequency / power supply)

Cryptographic
Primitive

Implementation

Secret KeyInput
(Plaintexts)

Output
(Ciphertext)
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Improper Working Condition
(overclock / underfeed)

For each one of the inputs ij , the attacker repeatedly decreases the clock period t
during the computation of f .ij ; kj /, until the device is not able to output the correct
result. The attacker stores the pairs .ij ; Qt/, where it Qt is the first failing clock period
for the input ij , in the set of device behavior measurements M .

Following this step, the attacker formulates a prediction P Nk of the device
behaviour for each possible value Nk assumed by the key bits k involved in the
computation of f .ij ; Nk/. The prediction takes the form of a set of pairs .ij ; sj /,
where sj is the predicted sensitivity to faults of the computation of f .ij ; Nk/. To this
end the attacker needs to devise a fault sensitivity model for the operation: such
a model depends strongly on the structure of the computing circuit and should be
chosen with a detailed knowledge of it. A possibility is to use the one employed
in the paper proposing the FSA technique [17], i.e., the Hamming Weight of the
computed value.

Once both the measurement set M is obtained, and all the predictions for the
different values of the key portion P Nk have been computed, the attacker proceeds
to correlate the predictions with the actual measurements through a statistical test
of his choice. A natural choice to perform this is to compute the Pearson correlation
coefficient between the measured sensitivity values and each one of the predictions,
thus finding which one fits best the actual data obtained from the device. The
attacker is thus able to deduce the correct value for k picking the one corresponding
to the best fitting prediction. The whole secret key can be recovered piece-wise
through repeating the analysis on different operations involving the remaining parts
of the secret key k.
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9.2.1 Observations on FSA Feasibility

The first crucial issue to be taken into account concerning the feasibility of an FSA
on a given digital device is to conceive a proper sensitivity model for the underlying
digital logic. The authors of [17] note that the and and or logic gates tend to have
an intrinsically data dependent fault sensitivity. This effect is due to the output signal
of the gates taking a different amount of time to settle to the correct value, depending
on whether one of the inputs is set to the absorbing value of the Boolean operation or
not. By contrast symmetric Boolean gates, such as the xor, do not have an intrinsic
data dependent fault sensitivity, as their settling time is always depending on the
longest settling of their inputs.

In addition to the nature of the logic gates, in [16] the authors report that even
small imbalances in the wires of differential logic (specifically WDDL) result in data
dependencies in the fault sensitivity of the computing circuit. As a consequence,
despite WDDL offers an intrinsic protection from common fault analysis, it is
possible to extract information from a circuit implemented with it exploiting its
sensitivity to faults. It should however be noted that it is not straightforward to infer
which wires in WDDL are more sensitive to faults without being in knowledge of
the post place and route details of the circuit.

In case the attacker is not able to exactly pinpoint the fault sensitive instruction,
while being able to affect the working conditions of the device for a single clock
cycle, it is still possible to perform correctly a FSA. In fact, it is possible for
the attacker to collect fault sensitivity measurements for each clock cycle of the
computation, and repeat the FSA for each set of measurements. Only one of the FSA
will show a strong correlation between the actual measurements and the correct key
hypothesis, while the other ones will not report viable correct candidates, due to the
fault sensitivity model being wrong for any key value.

Finally, we note that the work of [23] has provided positive results on the
feasibility of predicting the fault sensitivity of an hardware AES implementation
at design time. In particular, the authors employed a post place and route simulation
to determine the sensitivity of the implementation to FSA, employing clock period
shortening as the working condition degradation strategy. The same setting was
reproduced successfully on a SASEBO-R side channel evaluation board, showing a
good match between the design-time predicted fault sensitivity and the actual one
measured on the board.

9.3 Design Time FSA Evaluation

In this section we will provide the results of a design time evaluation of the
fault sensitivity of two different AES S-box implementations, together with the
results of applying a FSA to retrieve the key values from an AES implementation
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employing them. To the end of performing the FSA, we will both employ the
Hamming weight model suggested in [17], and devise a more efficient model for
one of the two implementations.

The fault sensitivity data for the remainder of this chapter were obtained through
performing post place and route logic simulation employing the circuit netlist
together with the data resulting from the static timing analysis, following the same
workflow employed in [23].

The first S-Box implementation is a straightforward LookUp Table (LUT)
design, a typical design in high-throughput AES ASIC circuits. The optimization
of the actual circuit implementing the LUT is left to the synthesis tool. The second
S-Box design is based on a composite field representation, and is the one presented
in [22]. The design represents the input value as two elements of Z24 in order to
perform an efficient inversion over a smaller field, thus improving the efficiency
of the implementation. After performing the field inversion, the two elements are
recombined together and the affine transform is applied. The two S-Box designs
have significant structural differences, which point to the possibility of the need of
different fault sensitivity models.

We conducted a FSA against an implementation of the AES cipher, with a 128
bit key, considering the first SUBBYTES as the operation under attack f .i; k/, and
taking into account one byte of the input at once, while building predictions guessing
the corresponding key byte involved in the computation. In order to provide sound
estimates of the correlation coefficient obtained as a result, we employed 2,000
plaintexts to perform the FSA on the targets.

Figure 9.2 reports the results of conducting the FSA on the AES implementation
with a LUT-Based S-box, employing the Hamming weight of the S-Box output
as the prediction of the value sensitivity. As the figure reports, the correct key
hypothesis has the highest correlation coefficient (around 0.15), thus showing that
the fault sensitivity model holds also for this S-Box design, despite it having a
substantially different structure from the one employed by the authors of [17], who
proposed the employed fault sensitivity model.

Figure 9.3 reports the results of leading the same attack against an AES
implementation realized with the composite field S-Box, while still retaining the
Hamming weight of the S-box output value as the prediction for the fault sensitivity
of the device. As it can be seen, no clear correlation emerges from the predictions
based on the Hamming weight model: the correlation for the correct key candidate
(value 65) is close to zero, and the other correlation coefficients are within the range
for statistical artifacts. Consequentially, we can state that the Hamming weight of
the output does not provide a good fault sensitivity model for the composite field
S-Box implementations.

9.3.1 An Alternative Model for S-Box Fault Sensitivity

Willing to provide a working model of the fault sensitivity of the composite field
S-Box, we proceeded to analyze exhaustively its fault sensitivity behavior. To this
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Fig. 9.2 Results of the FSA conducted against the input values of the LUT based AES S-box,
employing a Hamming weight fault sensitivity model. The correct key candidate shows a
significant correlation with the simulation outputs

end we simulated every possible toggling of the inputs of the S-Box circuit, i.e. we
presented the S-Box with an 8-bit value, until it reached a steady state, and then
toggled it to a new one for all the possible pairs of 8-bit values. The inputs and
outputs of the S-Box were wired to two separate set of latches, and the clock period
driving the latches was gradually shortened to measure the fault sensitivity of the
S-Box transitions.

Figure 9.4, reports the results of the fault sensitivity analysis of the composite
field S-Box. The measured fault sensitivities are reported in terms of the shortest
clock period providing a correct output for a given steady state-input pair. The figure
depicts the fault sensitivity for each pair with a marker, highlighting the points where
more than one marker is superimposed. The markers are ordered depending on the
Hamming weight of the input presented after the steady state of the box. The first
noteworthy point of the figure is the fact that there is a significant amount of markers
which point out to steady state-input pairs working at any clock frequency (the ones
lying on the zero pico-seconds clock period line). These pairs are the ones that,
regardless of the Hamming weight of the value, present as input the same value
of the previous steady state. As no practical transition happens in these cases, the
simulation deems them functioning at any clock cycle. The second noteworthy point
is the fact that the transitions of the inputs to a zero value, the only one having
zero Hamming weight, are significantly less sensitive to faults than all the others,
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Fig. 9.3 Results of the FSA conducted against the input values of the composite field based AES
S-box, employing a Hamming weight fault sensitivity model. The correct key candidate sensitivity
prediction is not correlated with the outputs

regardless of the previous steady state. To fit this behavior, it is possible to devise a
simple fault sensitivity prediction function which associates a zero value to the fault
sensitivity when the input to the S-Box is null, and one otherwise. Such a zero-non-
zero function is similar to the power consumption prediction function employed for
composite field S-Box implementations by the authors of [12], which was devised
to fit a similar peculiarity of the behavior of this S-Box design concerning its power
consumption.

Figure 9.5 shows the comparison between the FSA results obtained with the zero-
non-zero fault sensitivity prediction versus the ones of the Hamming weight. As it
can be seen, the zero-non-zero prediction function is able to fit the fault sensitivity
of the composite field S-Box well enough to allow the correct key recovery via FSA.

9.4 Template Based Fault Sensitivity Analysis

Since devising a general fault sensitivity model is challenging, due to its strong
dependence on the hardware structure, we now propose a method to build them
through simulation time profiling of the design behavior. The key idea is to obtain,
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Fig. 9.4 Distribution of sensitivity levels obtained from the simulations of the composite field
S-Box implementation

through profiling the behavior of the implementation, a fault sensitivity model of
it [20]. This method has affinities with the so called templates employed in passive
side channel attacks [10] in case no effective model of the power consumption or
radiated EM emissions is available for the device under analysis.

In order to obtain the fault sensitivity model of the composite field S-Box through
profiling it via simulation, we exploited the data reported in Fig. 9.4 to build the
predictions of the fault sensitivity to a given input. Since such a model needs to
depend only on the input value of the S-Box, it is necessary to choose a strategy
to aggregate the different fault sensitivity values depending only on a change of the
previous steady state of the cipher. To this end, three different models were built: the
first considers the highest sensitivity value among all the ones obtained for a given
input and a steady state, the second the lowest sensitivity, and the third the average
sensitivity.

To validate the effectiveness of these choices, and discern which one is the
most fruitful, we repeated the FSA on the AES circuit based on composite field
S-Boxes. Figure 9.6 reports the results of such a FSA: the correlation coefficients
of the correct key candidate are reported in thick lines in the figure, versus the
number of inputs employed to perform the FSA. The thin lines report, for the
sake of comparison, the highest coefficient among the ones obtained from the
wrong key values. The depicted results show how employing either the average
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Fig. 9.5 Results of the FSA conducted against the input values of the composite field based
AES S-box, comparing the zero-non-zero with the Hamming weight fault sensitivity prediction
functions. The prediction for the correct key value based on the zero-non-zero fault sensitivity
prediction function shows clear correlation with the simulations

or the maximum sensitivity to build the profiled model for the composite field
S-Box, provide a very good match with the actual sensitivity of the whole AES
implementation. In particular, the correlation coefficient for the correct key is
significantly greater than the alternatives for both of them, while no significant
correlation is shown with the wrong key alternatives. By contrast, employing the
minimum among all the fault sensitivities of an input to the S-Box, while changing
the previous steady states, as a model for the sensitivity does, is not a fruitful
choice according to the results. In fact, the minimum sensitivity model shows poor
correlation for the correct key alternative, and very low distinguishability from the
wrong ones.

Finally, Fig. 9.7 reports the results of a direct comparison between the a-priori
Hamming weight model and the one obtained keeping the average profiled fault
sensitivity of the S-Box. As it can be seen, the profiled sensitivity model exceeds
significantly the efficiency of the Hamming weight one in extracting information
via Fault Sensitivity Analysis. In particular, it can be noticed that the correlation
coefficient for the correct key candidate stabilizes around 0.31 employing it, while
the highest coefficient among all the wrong key candidates does not exceed 0.18,
allowing to distinguish it clearly starting from 800 inputs.
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Fig. 9.6 Results of performing a FSA on an implementation of the AES cipher with composite
field S-Boxes. The fault sensitivity model have been derived employing respectively the maximum
(red), average (blue), and minimum (green) fault sensitivity level for an input byte of the S-box
among all the measurements taken with all the possible different steady states. The thick lines
represent the correlation with the correct key guess, the thin ones the best fitting ones among the
wrong ones

Concluding Remarks
In this section we provided an introduction to the Fault Sensitivity Analysis
(FSA) attack technique, together with a design time evaluation of it on two
different AES S-Boxes designs. After ascertaining that the Hamming weight
model for fault sensitivity is not able to provide matching predictions in
the case of a composite field AES S-Box design, we proposed a new fault
model, the zero-non-zero which has shown a significantly better fit to the
design characteristics. Finally, we proposed a method to build a generic
fault sensitivity model for a hardware design through profiling the actual
device and employing the profiled data to predict the fault sensitivity of an
implementation with an unknown key. We deem an interesting direction for
future research to provide validation of the profiled fault sensitivity models
against real hardware, possibly taking into account process variation issues,
which are ever increasing with the current etching technology evolution.
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Fig. 9.7 Comparison between the FSA results obtained with a Hamming weight fault sensitivity
(green) model with respect to the one obtained via profiling (blue). The thick color lines represent
the correlation with the correct key guess, the thin ones the best fitting ones among the wrong ones
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Chapter 10
Information Theoretic Comparison
of Side-Channel Distinguishers: Inter-class
Distance, Confusion, and Success

Annelie Heuser, Olivier Rioul, Sylvain Guilley, and Jean-Luc Danger

Abstract Different side-channel distinguishers have different efficiencies. Their
fair comparison is a difficult task because many factors come into play—in
particular, their intrinsic statistical properties and the quality of their estimation.

In this work, we first evaluate two related information-theoretic distinguishers:
mutual information analysis and inter-class information analysis. The latter requires
the same underlying probability distributions but uses a different comparing strat-
egy. These distinguishers are not only interesting on their own and suitable for
a mathematical study, but they also exhibit an example where the theoretical and
empirical evaluation framework agree. The IIA was found to distinguish better than
MIA in theory as well as in practice.

Moreover, we develop a new metric, called success metric, capturing the relevant
parameters of the success rate, while providing more feedback about the distin-
guishing power. We additionally state closed-form expressions of the theoretical
success metric for additive distinguisher like CPA and DPA and highlight that
these expressions are much more convenient than for the theoretical success rate.
In the case of a low signal-to-noise ratio (realistic practical condition), we derive
the conditions on the cipher’s substitution boxes (sboxes) to minimize the success
metric (hence the success rate). This result supersedes a previous characterization
on sboxes known as transparency order, which is derived from a metric on a
distinguisher, and not from a success metric/rate. Moreover, we are also able to
formulate a closed-form expression for MIA, which has not been shown before.
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10.1 Side-Channel Analysis

Side-channel analysis (SCA) constitutes a serious threat against modern
cryptographic implementations. They exploit unintentionally emitted physical
leakage—such as power consumption or electromagnetic emanation—in order
to reveal secret information. The introduction of differential power analysis by
Kocher et al. [16] gave rise to many developments of new attacks, countermeasures
and models for the evaluation of physical security. In particular, a large variety of
distinguishers have been proposed as statistical tests in order to discriminate the
correct key. To overcome limitations such as the restriction to linear dependency
between the leakage and the assumed leakage model, new types of distinguishers
have been proposed.

First, mutual information analysis (MIA) was proposed by Gierlichs et al. [11].
It uses mutual information (MI) to measure the total dependency between the mea-
surements and the leakage model. Extensive previous work [3,17,21,23,24,38,40]
has shown that this distinguisher is indeed able to cope with non linearities between
the leakage model and the measurements.

Second, to avoid explicit density estimations as required for MIA, the
Kolmogorov-Smirnov (KS) test was proposed by Veyrat-Charvillon and
Standaert [38] and the corresponding Kolmogorov-Smirnov analysis (KSA) was
studied in [40, 42, 44]. Although it has been highlighted in [42] that KSA may have
disadvantages compared to MIA, a recent study [44] has identified variants of KSA
that may perform better than MIA in some circumstances.

In [18], the authors suggested an alternative inter-class Kolmogorov-Smirnov
analysis (IKSA) that compares the conditional distributions between themselves
instead of comparing them with the global distribution of the leakage. This novel
approach is shown to be of a different nature (non equivalent), and can outperform
KSA in terms of success rate.

Similar ideas have also emerged in the literature: The single-bit DPA [16] can
already be seen as a comparison of (means of) different classes without referring to
the marginal distribution. Moreover, in [2] a cluster approach has been introduced
that compares the inter- and intra-class variance of conditional classes. Also, in [39]
a copula-based distinguisher has been introduced that compares each conditional
distribution internally without referring directly to the global leakage distribution.

It is important to note that in general, a distinguisher’s performance also depends
on the choice of the leakage model. As pointed out in [43] a distinguisher would fail
to distinguish if the model consists of a bijective function of the secret and plaintext.
Therefore, in this chapter, we restrict ourselves to leakage models for which the
studied distinguishers are able to distinguish.

Because so many types of side-channel distinguishers have become available,
their fair evaluation and comparison is an important topic. One cannot rely on one
single experiment carried out on raw leakage measurements from one particular
device to draw unequivocal conclusions about the relative efficiency of competing
distinguishers (see e.g., the discussion in [33]). Therefore, we seek to compare
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statistical procedures and methodologies in ideal scenarios with clearly defined and
fixed leakage models, where in particular the signal-to-noise ratio can be varied as
a parameter.

Now, there has been two distinct evaluation frameworks considered in the
literature so far:

1. A theoretical framework proposed by Whitnall and Oswald [40] that uses the
exact values of the distinguishers to evaluate the capability to recover the
correct key hypothesis. One relevant metric is the so-called relative margin, that
computes a normalized distance between the distinguisher’s value for the correct
key guess to that of its nearest rival.

2. An empirical framework proposed by Standaert et al. [34] in which the distin-
guishers are estimated on empirical data. The performance evaluation can be
typically carried out using one of the following two metrics: the success rate,
which estimates the probability of ranking the correct hypothesis first, and the
guessing entropy, which estimates the average ranking of the correct hypothesis.

It should be emphasized that the theoretical framework is based on the exact compu-
tation of the distinguisher to evaluate its intrinsic distinguishing power—as if it was
estimated on a infinite number of samples. In contrast, the empirical framework uses
simulations or measurements to evaluate the ability of a distinguisher to succeed
efficiently: it depends not only on the choice of the theoretical distinguisher, but
also on the efficiency of its estimation. Roughly speaking, it can be said that the
empirical framework encompasses the theoretical one plus the estimation algorithm.
For this reason, it appears to be more practical. On the other hand, the theoretical
framework is more amenable to a mathematical analysis, since it only involves
the distinguisher’s values. So far, no link between the theoretical and empirical
outcomes of a given distinguisher has been shown in the literature.

10.1.1 Our Contributions

10.1.1.1 Interclass Distinguisher

As a first contribution we introduce a new information-theoretic metric, referred to
as inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry
out a detailed mathematical study on the metric itself. In particular, we show that
inter-class information (II) shares similar properties with mutual information (MI).
Interestingly, both can be computed from the same probability density estimates.
But we also prove that the two metrics are not equivalent with a precise definition
of the term.

Next, we extend the inter-class information to the scenario of side-channel
analysis and refer to the corresponding distinguisher as inter-class information
analysis (IIA). We continue our mathematical investigation by proving soundness of
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IIA. Finally, we use the above-mentioned frameworks to investigate the efficiency
of both MIA and IIA. From the theoretical framework we select the relative
distinguishing margin as the relevant metric. From the empiral framework we select
the success rate as the relevant metric. The results from both frameworks agree: IIA
is shown to outperform MIA for the theoretical and empirical metric.

10.1.1.2 Success Metric

Second, we introduce a new metric, called success metric (SM), which evaluates
estimated distinguishers while providing more feedback about the efficiency. There-
fore, the SM is more suitable when comparing and evaluating distinguishers than
the currently state-of-the-art. In fact, SM relies on the estimation parameters of the
distinguisher affecting the theoretical success rate. To be precise, the key features of
the success metric are:

• Monotony with the success rate (theoretically and empirically);
• Quantification of the relationship between the distinguishing value of the correct

key and its nearest rival;
• Consideration of the noise probability distribution function (e.g., its variance),

number of measurements, and estimation method
• Simplicity of the closed-form expressions for additive distinguisher (e.g., DPA,

CPA) compared to the success rate;
• Ability to derive a closed-form expression for MIA when estimated with

histograms, which has not been shown for any other metric before.

Furthermore, we show further benefits of the closed-form expression of SM:
We are able to connect the closed-form of the success metric for DPA/ CPA with
properties of the sbox in case of a practical signal-to-noise ratio. Remarkably,
unlike previous works [12, 22] we first not only derive bounds but achieve direct
links, and second utilize a success rate/metric instead of only using properties of
a distinguisher. However, our new metric, transparency metric, follows the same
intuition as the transparency order introduced in [22], but is more reasonable and
simple. Additionally, we are able to answer the question how the size of the keyspace
is influencing the success metric and therefore the success rate.

10.1.2 Side-Channel Analysis Model

Calligraphic letters (e.g., X ) denote finite sets, capital letters (e.g., X ) denote
random variables taking values in these sets, and the corresponding lowercase letters
(e.g., x) denote their realizations. We write PfX D xg or p.x/ for the probability
that X D x and p.xjy/ D PfX D x

ˇ̌
Y D yg for conditional probabilities.

Let k� denote the secret cryptographic key, k any possible key hypothesis from
the keyspaceK , and let T be the input or cipher text of the cryptographic algorithm.
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The mapping g W .T ;K / ! I maps the input or cipher text and a key hypothesis
k 2 K to an internally processed variable in some space I that is assumed to relate
to the leakage X . Usually, T ;K ;I are taken as Fn2 , where n is the number of bits
(for AES n D 8).

Generally it is assumed that f is known to the attacker. A common consideration
is g.T; k/ D SboxŒT ˚k� where Sbox is a substitution box. The measured leakage
X can then be written as

X D  .g.T; k�//CN; (10.1)

where N denotes an independent additive noise. is a device-specific deterministic
function, which we assume to be known to the attacker in this contribution. For any
key guess k 2 K the attacker computes the sensitive variable

Y.k/ D  .g.T; k//: (10.2)

Without loss of generality we may assume that Y is centered and normalized, i.e.,
EfY g D 0 and VarfY g D 1, and that the values in Y are regularly spaced with step
	y. For ease of notation, we let Y � D Y.k�/ and Y D Y.k/.

10.2 A New Distinguisher Based on Intraclass Information

In this section, we introduce a new information-theoretic metric, referred to as
inter-class information, that compares conditional probability density functions
between themselves. Before applying it to side-channel analysis, we first carry
out a detailed mathematical study on the metric itself. In particular, we show that
inter-class information (II) shares similar properties with mutual information (MI).
Interestingly, both can be computed from the same probability density estimates.
But we also prove that the two metrics are not equivalent with a precise definition
of the term.

Next, we extend the inter-class information to the scenario of side-channel
analysis and refer to the corresponding distinguisher as inter-class information
analysis (IIA). We continue our mathematical investigation by proving soundness of
IIA. Finally, we use the above-mentioned frameworks to investigate the efficiency
of both MIA and IIA.

We review some information-theoretic tools to evaluate the dependence between
two random variables X and Y , and refer to [7] for more details. We focus
in this section on metrics and postpone the application to side-channel analysis
to Sect. 10.4. However, since for this application one random variable (X ) is
continuous and the other (Y ) is discrete, we adopt this convention whenever it is
possible.

Let p.x/ be the probability density function of the continuous random variable
X and p.y/ D PfY D yg be the probability mass function of the discrete random
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variable Y . The corresponding expectations are E.X/ D R 1
�1 x � p.x/ dx and

E.Y / D P
y y � p.y/, respectively. The variance is defined as �2X D Ef.X �

E.X//2g, and similarly for Y . Let p.xjy/ D p.xjY D y/ be the conditional
probability distribution of X knowing that Y D y and p.x; y/ be the joint
probability distribution of X and Y . Notice that the marginal distribution p.x/
becomes the average over Y of the conditional distribution p.xjy/:

p.x/ D
X

y

p.x; y/ D
X

y

p.y/p.xjy/ D E.p.xjY //: (10.3)

10.2.1 Information Divergence

Definition 10.1 (Kullback-Leibler divergence [7]). Let q.x/ be another prob-
ability distribution defined over the same space as p.x/. The Kullback-Leibler
divergence of q with respect to p is defined as

DKLŒp k q� D
Z 1

�1
p.x/ � log

p.x/

q.x/
dx: (10.4)

It is well known thatDKLŒp k q� � 0 and equals zero if and only if p.x/ and q.x/
coincide. The divergence is sometimes termed “distance” in the literature although it
is not a distance in the mathematical sense of the word, because it is not symmetric:
DKLŒp k q� ¤ DKLŒq k p� and the triangle inequality is not satisfied in general. To
achieve symmetry, Kullback and Hajek made the following definition:

Definition 10.2 (Symmetric Kullback-Leibler divergence). The symmetric
divergence between distributions p and q is defined as

ıKL.p k q/ D DKLŒp k q�CDKLŒq k p�
2

(10.5)

D 1

2

Z 1

�1
.p.x/ � q.x// � log

p.x/

q.x/
dx: (10.6)

10.2.2 Conditional-to-Unconditional Metric

To evaluate the dependence between X and Y , one possibility is to compute the
distance between conditional probabilitiesp.xjy/ and the unconditional probability
p.x/ D E.p.xjY // (see Fig. 10.1). Using Kullback-Leibler divergence, we obtain

I.X IY / D E
˚
DKLŒp.xjY / k p.x/�� (10.7)
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Fig. 10.1 Conditional vs
Unconditional. Illustrations to
compare probability
distributions (the “distance”
is depicted with an arrow)

D
X

y

p.y/DKLŒp.xjy/ k p.x/� (10.8)

D
X

y

Z 1

�1
p.x; y/ � log

p.xjy/
p.x/

dx: (10.9)

This is well-known as the mutual information between the two random variables X
and Y . Mutual information can also be written as

I.X IY / D H.X/�H.X jY / (10.10)

where

H.X/ D �
Z 1

�1
p.x/ � logp.x/ dx (10.11)

is the (differential) entropy of X and

H.X jY / D
X

y

p.y/ �H.X jY D y/ (10.12)

D �
X

y

Z 1

�1
p.x; y/ � logp.xjy/ dx (10.13)

is the conditional entropy of X knowing Y . Note that unlike the (discrete)
entropy [7], differential entropy can be negative and hence should not be interpreted
as a measure of uncertainty.1 For more details on the relationship between differen-
tial and discrete entropy and the absolute entropy we refer to [7].

1Another reason is that differential entropy is not “coordinate-free” – it depends on the underlying
coordinate system.
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Fig. 10.2 Conditional vs
Conditional. Illustrations to
compare probability
distributions (the “distance”
is depicted with an arrow)

10.2.3 Conditional-to-Conditional Metric

As suggested in [18], instead of referring to the average distribution p.x/, a more
direct strategy would be to consider all pairwise distances between conditional
probabilities p.xjy/ (see Fig. 10.2). Therefore, we may replace the Kullback-
Leibler divergence of p.xjy/ with respect to the average distribution p.x/ D
E.p.xjY // by all Kullback-Leibler divergences between conditional probabilities
p.X jY D y/ and p.X jY D y0/ for all pairs .y; y0/. This yields to the following
definition.

Definition 10.3 (Inter-class information). The inter-class information between
random variables X and Y is defined as

II.X IY / D 1

2
E

˚
DKLŒp.xjY D y/ k p.xjY D y0/�

�
(10.14)

D 1

2

X

y¤y0

p.y/p.y0/DKLŒp.xjy/ k p.xjy0/� (10.15)

where the summation over y D y0 has disappeared because divergence vanishes for
identical distributions.

Proposition 10.1. The inter-class information can also be written in terms of the
symmetric Kullback-Leibler divergence as

II.X IY / D EfıKL.p.xjY / k p.x//g (10.16)

D 1
2

X

y

Z 1

�1
.p.x; y/ � p.x/p.y// log

p.x; y/

p.x/p.y/
dx: (10.17)

Proof. We show equivalence between Eqs. (10.15) and (10.16).

1

2

X

y¤y0

p.y/p.y0/DKLŒp.xjy/ k p.xjy0/�

D 1

2

X

y;y0

p.y/p.y0/
Z
p.xjy/ log

p.xjy/
p.xjy0/

dx (10.18)
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D 1

2

X

y

Z X

y0

p.y/p.y0/p.xjy/ log
p.xjy/
p.x/

dx

C 1

2

X

y0

Z X

y

p.y0/p.y/p.xjy/ log
p.x/

p.xjy0/
dx (10.19)

D 1

2

X

y

p.y/

Z
p.xjy/ log

p.xjy/
p.x/

dx

C 1

2

X

y0

p.y0/
Z
p.x/ log

p.x/

p.xjy0/
dx (10.20)

D 1

2

�
EfDKLŒp.xjY / k p.x/�g C EfDKLŒp.x/ k p.xjY /�g� (10.21)

D E
˚
ıKL.p.xjY / k p.x//� (10.22)

Equation (10.17) then follows easily from Definition 10.1. ut
Interestingly, Eq. (10.16) is similar to Eq. (10.7) where the divergence (Definition

10.1) is replaced by the symmetric divergence (Definition 10.2). The latter is also
sometimes referred to as inter-class divergence (see e.g., [30]).

Moreover, similarly as for mutual information, it can be expressed in terms of
entropies as shown in the following proposition.

Proposition 10.2. Let

H 0.X j Y / D �
X

y

Z 1

�1
p.x/p.y/ � logp.xjy/ dx; (10.23)

be the conditional cross-entropy of X knowing Y . The inter-class information can
be expressed as

II.X IY / D H 0.X j Y /�H.X jY /
2

: (10.24)

Proof. We show the equivalence between Eqs. (10.17) and (10.24). Since

X

y

p.x; y/ � p.x/p.y/ D 0; (10.25)

we can remove p.x/ inside the logarithm in (10.17). Furthermore, since p.x;y/

p.y/
D

p.xjy/, we can write
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1

2

X

x;y

.p.x; y/ � p.x/p.y// log
p.x; y/

p.x/p.y/

D 1

2

X

x;y

.p.x; y/ � p.x/p.y// logp.xjy/ (10.26)

D H 0.X j Y / �H.X jY /
2

(10.27)

ut
It is important to notice that cross-entropy is, contrary to Eq. (10.13), aver-

aged over the product distribution p.x/p.y/ instead of the joint distribution
p.xjy/p.y/ D p.x; y/.

10.3 Theoretical Analysis

Inter-class information has some important properties that are similar to well-
known properties of mutual information. These are summarized in the following
proposition.

Proposition 10.3. For any two random variables X; Y :

(a) (Symmetry) II.X IY / D II.Y IX/
(b) (Independence) II.X IY / D 0 if and only if X , Y are independent
(c) (Markov Chain Inequality) For any Markov chain X � Y � Z, the following

hold: II.X IY / � II.X IZ/ and II.Y IZ/ � II.X IZ/
(d) (Relation to Mutual Information)

2II.X IY / D EfDKLŒp.xjY / k p.x/�g
C EfDKLŒp.x/ k p.xjY /�g (10.28)

D I.X IY /C EfDKLŒp.x/ k p.xjY /�g (10.29)

It follows in particular that II.X IY / � 1
2
I.X IY /.

Proof. The symmetry is obvious from Eq. (10.17). Independency is an obvious
consequence of the following well-known property of (symmetric) divergence:
DKLŒp k q� � 0 and DKLŒp k q� D 0 if and only if p D q [7]. Markov Chain
Inequality: Recall that X ! Y ! Z forms a Markov chain if p.zjx; y/ D p.zjy/
for all x; in other wordsX andZ are independent given Y [7]. Since X ! Y ! Z

is a Markov chain if and only if Z � Y � X is a Markov chain [7], it is sufficient
to prove the first inequality II.X IY / � II.X IZ/. Furthermore we already have
I.X IY / � I.X IZ/ from the corresponding property for mutual information.



10 Information Theoretic Comparison of Side-Channel Distinguishers 197

Since the latter is equivalent to the inequality H.X jY / � H.X jZ/, thanks to
Proposition 10.2, it is sufficient to prove the inequality H 0.X jY / � H 0.X jZ/ for
cross-entropies.

Now since p.xjy/ D p.xjy; z/ by the Markov chain condition, it is easily
checked that

H 0.X jY / D �
X

y;z

Z
p.x/p.y; z/ logp.xjy; z/ dx D H 0.X jY;Z/ (10.30)

which can be rewritten as

H 0.X jY;Z/ D
X

z

Z
p.x/p.z/

X

y

p.yjz/ log
1

p.xjy; z/ dx: (10.31)

By the strict concavity of the logarithm, we have the following inequality

H 0.X jY;Z/ �
X

z

Z
p.x/p.z/ log

1P
y p.yjz/p.xjy; z/ dx (10.32)

D
X

z

Z
p.x/p.z/ log

1

p.xjz/ dx D H 0.X jZ/ (10.33)

Finally, the relation to mutual information is obvious from the definition. ut

10.3.1 A Normal Example

In order to illustrate the difference between MI and II, we give the exact expression
of I.X IY / and II.X IY / for two jointly normal random variables.2

Proposition 10.4. Let the two random variables X; Y be identically distributed,
zero-mean and jointly normal, with covariance matrix �2

� 1 �
� 1

�
, where j�j � 1 is the

correlation coefficient and �2 is the common variance of X and Y . One finds

I.X IY / D 1

2
log

1

1 � �2 (10.34)

II.X IY / D log e

2

�2

1 � �2
: (10.35)

Proof. Since X follows the normal density N .0; �2/, its differential entropy is
easily computed as [7]

2Note that, unlike in our previous definitions, the random variable Y is also continuous in this
example. Thus sums have to be replaced by integrals.
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H.X/ D �Eflogp.X/g (10.36)

D log
p
2
�2 C .log e/EfX2=2�2g (10.37)

D 1

2
log.2
e�2/: (10.38)

Now for every y, X given Y D y follows the density p.xjy/ D p.x;y/

p.y/
which is

easily seen to be the normal N .�y; �2.1 � �2//. It follows that

H.X jY / D 1

2
log.2
e�2.1� �2//: (10.39)

Subtracting Eq. (10.39) from Eq. (10.38) yields the announced expression for
I.X IY / D H.X/�H.X jY /.

To calculate inter-class information, we use Eq. (10.24). The conditional cross-
entropy can be similarly computed as

H 0.X jY / D �
Z 1

�1
p.y/ � Eflogp.X jy/g dy (10.40)

D 1

2
log.2
�2.1� �2//C .log e/

Z 1

�1
p.y/�E

n .X � �y/2

2�2.1 � �2/

o
dy: (10.41)

Using (10.39) and expandingEf.X��y/2g D E.X2/C�2y2�0 inside the integral,
we obtain

H 0.X jY / D
�
H.X jY /� log e

2

�
C .log e/

�2 C �2EfY 2g
2�2.1 � �2/

(10.42)

D H.X jY /C .log e/
� �2 C �2�2

2�2.1 � �2/
� 1

2

�
(10.43)

D H.X jY /C .log e/
�2

1 � �2
(10.44)

Subtracting H.X jY / and dividing by 2 yields the desired expression for
II.X IY / D 1

2
.H 0.X jY / �H.X jY //. ut

The limit case � D 0 corresponds to independent random variables X , Y in this
example, while � D 1 corresponds to total dependency. From Proposition 10.4,
both mutual and inter-class informations vanish when � D 0 in accordance with
Proposition 10.3 (b). However, when � ! 1�, II.X IY / is increasing to infinity
much faster than I.X IY /. This shows that II.X IY / is more sensitive in the
dependency of the random variables. We found that this behavior is quite general for
many probability distributions including the case of discrete random variables. This
gives a first intuition, confirmed in the next section, why II may be more efficient
than MI as a side-channel distinguisher.
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10.3.2 Non-equivalence of Mutual and Inter-class
Informations

Since I.X IY / and II.X IY / share similar properties (see Proposition 10.3 (a)–(c)),
and since we aim to compare these two informations as side-channel distinguishers
to measure dependency between the measurements and the leakage model, it is
important to assert generally whether I.X IY / and II.X IY / are equivalent or not.
Although this does not reflect the ability to distinguish in the context of side-channel
analysis, it would give a necessary condition whether II.X IY / could be applicable.
For this we need a clear definition of equivalent metrics (see e.g., [29]).

Definition 10.4 (Equivalence). Two distances D.p; q/ and D 0.p; q/ are said to be
equivalent if there exist finite constants ˛ > 0 and ˇ > 0 such that for any p; q,

D.p; q/ � ˛ � D 0.p; q/ and D 0.p; q/ � ˇ � D.p; q/: (10.45)

In particular, whenever one of two distances becomes small, so does the other
and mathematically speaking, both “distances” define the same “topology”.3

Just to illustrate the usefulness of Definition 10.4 we provide the following
example.

Example 10.1. Consider the linear correlation coefficient

�.X; Y / D Cov.X; Y /

�X�Y
(10.46)

versus mutual information I.X IY /. Although correlation implies dependence, it
is possible that X and Y are linearly uncorrelated while still being dependent—
take e.g., Y D X2 where X 
 N .0; 1/. It follows that an inequality of the form
I.X IY / � ˛ � �.X; Y / cannot hold. Therefore, correlation and mutual information
are not equivalent. The same conclusion goes unchanged if linear correlation is
replaced by higher-order or nonlinear correlation—take e.g. X 
 N .0; 1/ and
Y D ˙X where the random sign is uniformly distributed and independent of X .
This explains why correlation power analysis (CPA) and MIA are not equivalent.

Regarding IIA vs. MIA, Proposition 10.3 (d) shows the inequality in one
direction: I.X IY / � 2 � II.X IY /. However, we have the following.

Proposition 10.5. Mutual information I.X IY / and inter-class information
II.X IY / are not equivalent.

3Note that this equivalence of metrics is not the same as the equivalence between distinguishers
stated in [8].
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Proof. It is sufficient to give the following counterexample. Consider X; Y as in
Sect. 10.3.1. Letting � D 1

1��2 we have

2I.X IY / D log� and 2II.X IY / D .� � 1/ log e: (10.47)

Because the fraction ��1
log� is unbounded as � ! 1, letting � ! 1� shows that no

inequality of the form II.X IY / � ˛ � I.X IY / may hold for some finite constant
˛ > 0. ut

The fact that mutual and inter-class informations are not equivalent and at the
same time require the estimations of the same conditional probability distributions
p.xjy/ for their computation motivates for a formal comparison study in the context
of side-channel analysis. This is investigated in the next section.

10.4 Side-Channel Analysis Scenario and Soundness

10.4.1 Side-Channel Scenario

There exists some necessary conditions on Y.k/ for MIA—and hence IIA—to be
able to distinguish. In particular, [23, 43] show that there should be at least one
k 2 K such that Y.k/ is not an injective function of Z. Hence, if for all k, f . � ; k/
is injective the attacker has to choose ' to be non-injective. In the following, we
assume that these necessary conditions are satisfied. As in [23, 24] we deduce the
following scenario for wrong or correct key assumptions.

10.4.1.1 Wrong Key Assumption

The conditional distribution p.xjy/ of the measured leakage X knowing the
predicted leakage Y is given by

p.xjy/ D
X

y�

p.y�jy/ � p.xjy; y�/ (10.48)

D
X

y�

p.y�jy/ � p.x � y�jy/ (10.49)

D
X

y�

p.y�jy/ � pN .x � y�/; (10.50)

where pN denotes the noise pdf and Eq. (10.48) follows from the law of total
probability. The equivalence between Eqs. (10.49) and (10.50) follows from the fact
that N is independent of the leakage predictions Y . Thus, as proved in [24], if the
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key guess is incorrect we have a nontrivial linear mixture of shifted noise densities,
whose coefficients depend on the relationship between Y and Y �.

10.4.1.2 Correct Key Assumption

In contrast, if the key guess is correct, one obtains a Kronecker symbol p.y�jy/ D
ıy;y� so that the density mixture simplifies to

p.xjy/ D pN .x � y�/; (10.51)

which is simply identically distributed as N C y�.

10.4.2 Soundness Proofs

Recall the following definition.

Definition 10.5 (Soundness). A given distinguisher D is said to be sound if the
value of the distinguisher for the correct key k� is strictly greater than for all other
keys k ¤ k�:

D.k�/ > D.k/ .8k ¤ k�/ (10.52)

Under this condition, it is an easy consequence of the law of large numbers that
the corresponding success rate tends to 1 as the number of measurements increases
indefinitely. For mutual information used as a side-channel distinguisher [11]:
D.k/ D I.X IY.k//, the soundness condition is expressed by the strict inequality
I.X IY �/ > I.X IY / for all k ¤ k�.

Proposition 10.6. Mutual information analysis is sound for arbitrary (not neces-
sarily Gaussian) noise.

Proof. Moradi et al. [21] proved that I.X IY �/ � I.X IY / which relies on the fact
that Y ! Y � ! X forms a Markov chain [7, Thm 2.8.1]. Their paper [21] was
written (as the title states) “under a Gaussian [noise] assumption” but the argument
goes unchanged for non-Gaussian noise; in fact, the Markov chain condition
p.xjy; y�/ D p.xjy�/ relies only on the fact that N and Y are independent and
not on the Gaussian nature of the noise.

To prove strict inequality, we use the fact that X given Y D y is a nontrivial
linear mixture of densities pN .x � y�/ of the same entropy as H.N/. Since the
entropy is strictly concave in the probability density function [7, Thm 2.7.3]4 we
have the strict inequality

4A well-known information-theoretic property commonly referred to as “mixing increases
entropy”.
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H.X j Y D y/ >
X

y�

p.y�jy/H.N C y�/ D H.N/ (10.53)

for all y. Taking expectations over Y yields H.X jY / > H.N/ D H.X jY �/, that
is, I.X IY �/ > I.X IY /. ut

For inter-class information used as a side-channel distinguisher: D.k/ D
II.X IY.k//, soundness is similarly expressed by the strict inequality II.X IY �/ >
II.X IY / for all k ¤ k�.

Proposition 10.7. IIA is sound for arbitrary noise.

Proof. Let k ¤ k�. By strict concavity of the logarithm (or by strict convexity of
function x 7! log.1=x/):

H 0.X j Y / D
X

y;y0

p.y/p.y0/
X

y0�

p.y0�jy0/

�
Z
pN .x � y0�/ log

1P
y� p.y�jy/pN .x � y�/

dx (10.54)

<
X

y;y0

p.y/p.y0/
X

y�;y0�

p.y0�jy0/p.y�jy/

�
Z
pN .x � y0�/ log

1

pN .x � y�/
dx (10.55)

D
X

y�;y0�

p.y0�/p.y�/

�
Z
pN .x � y0�/ log

1

pN .x � y�/
dx (10.56)

DH 0.X j Y �/: (10.57)

Now as in the proof of Proposition 10.6, we still have H.X jY / > H.X jY �/.
Combining the two strict inequalities yields

II.X IY / D H 0.X j Y /�H.X jY /
2

(10.58)

<
H 0.X j Y �/ �H.X jY �/

2
D II.X IY �/; (10.59)

which is the required soundness statement for IIA. ut
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10.5 Why Inter-class Information Analysis is more
Discriminating than Mutual Information Analysis

In this section, we theoretically compare MIA and IIA under a Gaussian noise
assumption using the scenario and the hypothesis of Sect. 10.4. We start by a
theoretical investigation of I.X IY �/ and II.X IY �/, which is then extended with
the help of some numerical calculation to I.X IY / and II.X IY /.

10.5.1 Theoretical Comparison of I.X IY �/ and II.X IY �/

A key feature of IIA is that inter-class information is no less than mutual information
for the correct key guess.5

Proposition 10.8. Let X be as in Eq. (10.1) with Gaussian noise N 
 N .0; �2/.
One has

II.X IY �/ D log e

2
� �

2
Y �

�2
(10.60)

and

I.X IY �/ � II.X IY �/ : (10.61)

Proof. To proof Eq. (10.60) we evaluate II.X IY �/ using Eq. (10.24). Conditional
cross-entropy can be written as

H 0.X j Y / D
X

y

p.y/

Z
p.x/ log

1

p.x j y/ dx: (10.62)

Plugging the expressions p.x/ D P
y p.y/p.xjy/ and p.xjy/ D P

y� p.y�jy/
pN .x � y�/ yields

H 0.X j Y / D
X

y;y0

p.y/p.y0/
X

y0�

p.y0�jy0/� (10.63)

Z
pN .x � y0�/ log

1P
y� p.y�jy/pN .x � y�/

dx: (10.64)

5Interestingly, it is not true that II.XIY / � I.XIY / for general random variables X and Y . For
example, we can find a counterexample when X; Y are binary variables with small p.xjy/ for all
x; y ¤ 0.
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For k D k� this boils down to

H 0.X j Y �/ D
X

y� ;y0�

p.y�/p.y0�/
Z

x

pN .x � y0�/ log
1

pN .x � y�/
dx

„ ƒ‚ …
.�/

: (10.65)

Substituting � D x � y0� in .�/ and assuming N 
 N .0; �2/ results in
Z
pN .�/ log

1

pN .� C y0� � y�/
d�

D 1

2
log.2
�2/C log.e/

2�2
E

˚
.N C y� � y0�/2

�
(10.66)

D 1

2
log.2
�2/C log.e/

2�2

�
�2 C .y� � y0�/2

�
(10.67)

D H.N/C log.e/

2�2
.y� � y0�/2: (10.68)

So, by letting Y 0� denote a random variable independent and identically distributed
as Y �,

H 0.X j Y �/ D H.N/C log.e/

2�2

X

y�;y0�

p.y�/p.y0�/.y� � y0�/2 (10.69)

D H.N/C log.e/

2�2
E..Y � � Y 0�/2/ (10.70)

where

E..Y � � Y 0�/2/ D 2E..Y � � E.Y �//2/ (10.71)

D 2�2Y � : (10.72)

Combining using Eq. (10.24) and that fact that H.X jY �/ D H.N/ for k D k�
gives the announced formula:

II.X IY �/ D H 0.X j Y �/�H.N/

2
D log e

2
� �

2
Y �

�2
: (10.73)

To prove Eq. (10.61) we use the fact that the differential entropy is maximum for
normal densities [7]:

H.X/ � 1

2
log.2
e�2X/ (10.74)

Since X given Y � is normal, we obtain

I.X IY �/ D H.X/ �H.X jY �/ (10.75)
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� 1

2
log.2
e�2X/ � 1

2
log.2
e�2X jY �/ (10.76)

D 1

2
log

�2X
�2
X jY �

(10.77)

D 1

2
log

�2
Y � C �2

�2
(10.78)

� log e

2

�2
Y �

�2
D II.X IY �/ (10.79)

where we have used the well-known inequality logx � .log e/.x � 1/. ut

10.5.2 Distinguishability of I.X IY / and II.X IY /

We now investigate the ability to distinguish between the correct key k� and the
incorrect keys k ¤ k� for MIA and for IIA. For this purpose, we use the theoretical
metric given by the relative distinguishing margin introduced in the SCA evaluation
framework in [40] and defined by

RelMarg.D/ D D.k�/� maxk¤k� D.k/
p

Var D.K/
: (10.80)

whereK is the random variable uniformly distributed in the keyspace K .
The theoretical evaluation for both MIA and IIA involves the determination

of the Gaussian density mixture of the leakage X given each possible input Z,
with mean value y� and variance �2. That of the conditional densities of p.xjy/
follow similarly for all possible values of y. Given the expressions for p.x/ and
p.xjy/, we are able to compute the required entropies given in Eqs. (10.11), (10.13)
and (10.23) with the help of numerical integration with arbitrary precision. To
compute Eq. (10.80) we have chosen the following practical side-channel scenario:

Y.k/ D HW.SBox�1
P ŒZ ˚ k��/ (10.81)

X D Y.k�/CN; (10.82)

where SBox�1
P is the inverse substitution box operation in PRESENT (F42 ! F

4
2),

HW is the Hamming weight, and N 
 N .0; �2/.
Figure 10.3 displays the relative distinguishing margin for various signal-to-noise

ratios (SNR), defined as

SNR D Var.Y �/
Var.N /

D 2

�2
: (10.83)



206 A. Heuser et al.

Fig. 10.3 Relative distinguishing margin for MIA (black) and IIA (red) for various SNRs

It is clearly observed that RelMarg(IIA) lies essentially above RelMarg(MIA)
for high SNR while at smaller SNR the two curves tend to the same asymptote.

10.6 Simulation Results

In order to compare the practical and theoretical evaluations, we consider the
same leakage scenario as before (Eqs. (10.81) and (10.82)). Again N 
 N .0; �2/

with � D f1; 4g in our simulations. Although the assumption of additive white
Gaussian noise may not be always realistic, it is common in numerous works in the
community.

The maximum distinguisher’s value gives the key prediction Ok�, viz.,

Ok� D arg max
k
I.X IY / or Ok� D arg max

k
II.X IY /: (10.84)

To compare the performance of MIA and IIA empirically we used the first-order
success rate (SR), which we computed over a set of 230 independent experiments
for � D 1 and 120 experiments for � D 4, where the secret key is chosen randomly
for each experiment. In order to guarantee a fair comparison, we choose the same
data set for both MIA and IIA.
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Fig. 10.4 Success rate for MIA (red) and IIA (black) with error bars using � D 1

We used the kernel density estimation to estimate the required probability
densities. The parameters were chosen as recommended in previous publications
(see e.g., [3,24,38]). To be specific, the bandwidth was chosen according to normal
scale rule [31] and we used the normal kernel.

Moreover as suggested in [18], we highlight the standard deviation of the SR by
computing error bars. More precisely, since SR follows a binomial distribution for

multiple retries R with variance
q

SR.1�SR/
R

, we obtain confidence intervals

"
SR �

r
SR.1� SR/

R
;SR C

r
SR.1 � SR/

R

#

that are drawn as error bars to provide a fair comparison.
Figure 10.4 shows the success rate with error bars for � D 1. One can see that

IIA reaches the threshold of the SR of 0:9 before MIA. The success rate for � D 4

is displayed in Fig. 10.5, which again highlights the same classification for MIA and
IIA. Interestingly, one can see that the difference between MIA and IIA is smaller
for low SNR than for high SNR. Thus, the empirical results confirm our theoretical
results and mathematical study made in the previous sections.



208 A. Heuser et al.

Fig. 10.5 Success rate for MIA (red) and IIA (black) with error bars using � D 4

10.7 Comparing Side-Channel Distinguishers

10.7.1 Existing Evaluation Metrics

10.7.1.1 Comparing Empirical Distinguishers

The success rate (SR) is a classical evaluation metric when comparing empirical
side-channel distinguishers ODm.K/. In most publications, SR is derived empirically
as defined in Definition 10.6 (e.g. in [8, 18, 19]). Moreover, in [34] the authors
tackled the essential question how to compare two implementations? or how to
compare two side-channel adversaries? by presenting an empirical framework
including the empirical success rate.

Definition 10.6 (Empirical success rate). Let Ok D arg max
k

ODm.K/ denote the key

guess maximizing the experimental distinguisher ODm.K/ for one experiment and let
Ok D Œ Ok1; : : : ; Okr � define a vector of key guesses of r independent experiments. Then
the empirical success rate is defined as

cSR. ODm/ D 1

r

rX

iD1
1
k�D Oki : (10.85)
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Even if the empirical success rate directly describes the practical outcome of a
distinguisher, the given feedback is very limited. In particular, it only outputs the
average probability of success without revealing influencing factors or quantifying
how close the outcome of the correct key to its rivals is.

Apart from comparing the empirical SR, contributions tackled the questions on
determining the theoretical success rate of distinguishers:

Definition 10.7 (Theoretical success rate). The theoretical success rate is
defined as

SR. ODm/ D P

� ODm.X IY.k�// > ODm.X IY.k// .8k ¤ k�/
�

(10.86)

D P

� O	m.k
�; k/ > 0 .8k ¤ k�/

�
: (10.87)

In [27] Rivain determined the theoretical6 SR for CPA and Bayesian attacks.
Recently in [9], Fei et al. provided a closed-form expression for the theoretical
success rate of DPA. Interestingly, their approach consists in estimating the
theoretical success rate depending on the relationship between the correct and
incorrect key hypothesis (named as confusion), the number of measurements
and the SNR. Following this approach, Thillard et al. [37] extended the idea of
confusion coefficients to the general case and reformulated the theoretical success
rate of [27]. Thus, it is possible to determine the success rate without the need of
measurements or simulations. Even more, the influencing factors of the success
rate as the number of measurements, SNR and the confusion due to the leakage
model are determinable. Unfortunately, the computation of the closed-form is not
straightforward as mentioned in [27] and it again gives no quantification of the
goodness of the distinguisher. Further, up to now only closed-forms for DPA and
CPA exists.

10.7.1.2 Comparing Theoretical Distinguishers

A different approach to classify the efficiency of side-channel distinguishers has
been presented in [41]. The authors aim at characterizing the behavior of theoretic
distinguishers D.K/ instead of ODm.K/. Thus, the distinguisher is provided with
full information about the leakage distribution without the need of estimation. The
framework overall consists in six metrics, however, the most common metric is the
relative distinguishing margin (RDM) that has been used as a reference in [40,42]7:

6In [27] the term exact instead of theoretical is used.
7Note that, in some publications, the relative distinguishing margin is also called nearest-rival
distinguishing score.
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Definition 10.8 (Relative distinguishing margin [41]). Let D.k�/ be the theoret-
ical distinguishing value of the correct key and D.k/ the theoretical distinguishing
value of any incorrect key hypotheses, then the relative distinguishing margin RDM
is defined as

RDM.D/ D
D.k�/ � max

k¤k�

D.k/
p

Var.D.K//
D min

k¤k�

D.k�/ � D.k/p
Var.D.K//

: (10.88)

The RDM gives a quantified feedback about the margin between the correct
key D.k�/ and its nearest rival, unfortunately, no link between the outcome of an
empirical and a theoretical distinguisher has been shown so far. Apart from this, the
denominator in Eq. (10.88) is highly dependent on the number of key hypothesis
used. For example,

p
Var.D.K// with K D F

8
2 (8-bit key hypothesis) will be

smaller than for K D F
4
2 (4-bit key hypothesis) and so RDM will be smaller for

smaller key spaces than vice versa, which does not seem intuitive and we prove in
Sect. 10.8.2 the contrary. Thus, it is not possible to make reasonable comparisons
between different cryptographic algorithms or implementations.

10.7.2 A Novel Approach to Compare Distinguishers

As pointed out above, both state-of-the art approaches, the SR and the RDM,
have significant drawbacks, which shows the need of a new metric. Our aim is to
develop a novel metric that on the one hand coincides with the empirical outcome of
distinguishers, like the SR, but on the other hand gives more quantified feedback as
the RDM. Our new metric, called success metric, captures the relevant parameters
of the theoretical success rate. We provide all necessary approximations from the
theoretical success rate to the success metric. In particular, we first define the failure
rate as the contrary to the success rate to apply the union bound. Following, we
give two different approximations identifying the same relevant influencing factors
with different convergence rate and, finally, we utilize a first order approximation to
achieve the success metric in Definition 10.11.

10.7.2.1 Theoretical Foundation

Complementary to the theoretical success rate (see Definition 10.86) we define:

Definition 10.9 (Failure rate). The failure rate is defined as

FR. ODm/ D 1 � SR. ODm/ D P
�9k ¤ k� = O	m.k/ � 0

�
: (10.89)
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We first use the union bound (Boole’s inequality) to achieve an upper bound of
the failure rate:

P
�9k ¤ k� = O	m.k/ � 0

� �
X

k¤k�

P
� O	m.k/ � 0

�
: (10.90)

Next, we give two different approximations that both indicate the same properties
but with different convergence rates and pre consumptions.

Definition 10.10. Let X 
 N .0; 1/. The Q-function is defined as

Q.x/ D 1

2


Z 1

x

e�t 2=2 dt (10.91)

D P.X > x/: (10.92)

Under the assumption of O	m.k
�; k/ 
 N .	.k�; k/;EV.k�; k// we use the

Q-function to approximate P
� O	m.k

�; k/ � 0
�

, i.e.,

P
� O	m.k

�; k/ � 0
�

(10.93)

D P
� O	m.k

�; k/� E. O	m.k
�; k//

p
EV.k�; k/

� � .	.k
�; k/C EB.k�; k//
p

EV.k�; k/
�

(10.94)

D Q
�	.k�; k/C EB.k�; k/p

EV.k�; k/
�
; (10.95)

since Q.x/ D 1 � Q.�x/. Accordingly, if EB.k�; k/ is small with respect to
	.k�; k/, we have

P. O	m.k
�; k/ � 0/ �! 0 (10.96)

exponentially as

	.k�; k/C EB.k�; k/p
EV.k�; k/

�! 1 (10.97)

increases for large m. We recall the Chebyshev bound [36]: Let � > 0, then

P.X > E.X/C �/ � P.jX � E.X/j > �/ � Var.X/

�2
: (10.98)
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Accordingly, we achieve

FR D P. O	m.k
�; k/ � 0/ (10.99)

D P
� O	m.k

�; k/ � Ef O	m.k
�; k/g �	.k�; k/� EB.k�; k/„ ƒ‚ …

��

�
(10.100)

� EV.k�; k/
.EB.k�; k/C	.k�; k//2

: (10.101)

As � �! 0 the term EV.k�;k/

.EB.k�;k/C	.k�;k//2
�! 0 exponentially.

Note that, a similar usage of the Chernov bound [6] allows to prove expo-
nentially convergence. Further, since we achieved exponentially convergence of
P. O	m.k

�; k/ � 0/ against 0, we use the following first order approximation

X

k�¤k
P. O	m.k

�; k/ � 0/ 	 max
k¤k�

P. O	m.k
�; k/ � 0/: (10.102)

Concluding, using the relationship between success and failure rate, we define
the success metric as

Definition 10.11 (Success Metric (SM)).

SM.D; ODm/ D min
k¤k�

	.k�; k/C EB.k�; k/p
EV.k�; k/

(10.103)

D min
k¤k�

Ef O	m.k
�; k/gq

Var. O	m.k�; k//
: (10.104)

Interestingly, the success metric includes the minimum distance between the
correct key and its nearest-rival as the RDM, however, it is, of course, based on the
estimated distinguisher and thus includes the variance of the estimated difference
O	m.k

�; k/ in the denominator.

Remark 10.1. From Sect. 10.7.2.1 one can see that SR can be approximated from
SM. More precisely,

SR
:D 1 � exp

	
�1
2

SM2



; (10.105)

so SM is the first order exponent of SR regarding the following definition of
equivalence [7, page 63, Eqn. (3.76)]:
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Definition 10.12. The notation am
:D bm means that

lim
m!1

1

m
log

am

bm
D 0: (10.106)

Thus, am
:D bm implies that am and bm are equal to the first order in the exponent.

As the success rate, the success metric can be derived empirically from simu-
lations/ measurements or theoretically from closed-form expressions. In the next
subsection we develop closed-form expressions for additive distinguisher (e.g.,
DPA, CPA). Even more, in Sect. 10.7.4 we derive a closed-form expression of the
information theoretic distinguisher MIA for the success metric, which has not be
done for any metric so far and cannot be straightforwardly extended to the success
rate.

10.7.3 Closed-Form Expression for Additive Distinguishers

Definition 10.13 (Additive distinguisher). We call an estimated distinguisher
ODm.k/ additive if it is unbiased (i.e., EB.k�; k/ D 0) and takes the form

ODm.k/ D 1

m

mX

iD1
OD.Xi ; Yi .k//; (10.107)

where OD.Xi ; Yi .k// is a deterministic function of the i.i.d. sequence .Xi ; Yi .k//
and, therefore

Ef ODm.k/g D D.k/: (10.108)

Remark 10.2. This definition implicitly assumes that the distribution of Y.k/ is
identical for all k 2 K . In other words, knowing the distribution of Y.k/ does
not give any evidence about the secret (see [14, 25] for similar assumptions). Thus,
VarfY.k/g is constant for all k 2 K . Furthermore, without loss of generality we
assume that the sensitive variable Y is normalized such that EfY.k/g D 0 and
VarfY.k/g D EfY.k/2g D 1.

Proposition 10.9. Considering Remark 10.2 one can simplify both ODmDPA [16] and
ODmCPA [4] to

1

m

mX

iD1
XiYi .k/: (10.109)

Proof. A proof for ODmCPA is given in the following. As formalized in [8] ODmDPA

and ODmCPA can be directly translated into each other. Recall the definition of CPA:
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ODmCPA.k/ D
1
m

Pm
iD1.Xi � X/.Yi.k/ � Y.k//

q
1
m

Pn
iD1.Xi �X/2

q
1
m

Pm
iD1.Yi .k/ � Y.k//2

; (10.110)

where

X D 1

m

mX

iD1
Xi Y.k/ D 1

m

mX

iD1
Yi .k/: (10.111)

Due to Remark 10.2, (for large m) we have Y.k/ D 0 and 1
m

Pm
iD1.Yi .k/ �

Y.k//2 D 1. Straightforward computation yields Proposition 10.9 for ODmCPA.k/. For
more details on CPA (and side-channel distinguisher) we refer to [32, 35]. ut

To formulate a closed-form expression for the success metric for any additive
distinguisher, we extend the idea of confusion similar to [37], which we call general
2-way confusion coefficients.

Definition 10.14 (General 2-way confusion coefficients). For k ¤ k� we define

.k�; k/ D E

( 	
Y.k�/� Y.k/

2


2)
; (10.112)

0.k�; k/ D E

(
Y.k�/2

	
Y.k�/ � Y.k/

2


2
)
: (10.113)

Remark 10.3. The confusion coefficient introduced in [37] is defined as
ı.k�; k/ D EfY.k�/Y.k/g and we obtain the following relationship

ı.k�; k/ D 1 � 2.k�; k/: (10.114)

Note that, our definition is consistent and a natural extension of the work in [9]. We
now precise our side-channel model from Eqs. (10.1) and (10.2) in case of additive
distinguishers. As these distinguishers are most usually used when the leakage X is
linearly depend on Y �, we assume X D ˛Y � CN .8

Proposition 10.10 (SM for CPA). Let " D 2˛. The success metric for any additive
distinguisher takes the closed-form expression

SM.D; ODm/ D min
k¤k�

".k�; k/p
"2.0.k�; k/ � 2.k�; k//C 4�2.k�; k/

p
m: (10.115)

Proof. We first give the following proposition.

8Note that, a similar model was also implicitly used in [9, 37].
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Proposition 10.11. The first two moments of O	m.k
�; k/ are given by

Ef O	m.k
�; k/g D 2˛.k�; k/; (10.116)

Var. O	m.k
�; k// D 4Œ˛2.0.k�; k/ � 2.k�; k//C �2.k�; k/�: (10.117)

Proof. Recall

O	m.k
�; k/ D .˛Y.k�/CN/.Y.k�/� Y.k//:

Since EfY.k�/2g D 1 (see Remark 10.2), we obtain

EfY.k�/.Y.k�/ � Y.k//g D 1 � EfY.k�/Y.k/g (10.118)

D 2Ef�Y.k
�/� Y.k/

2

�g (10.119)

D 2.k�; k/: (10.120)

Because N is independent of Y.k/,

EfN � .Y.k�/� Y.k//g D EfN g � EfY.k�/ � Y.k/g D 0: (10.121)

Therefore we obtain

Ef O	m.k
�; k/g D 2˛.k�; k/: (10.122)

For the variance we obtain

Ef O	m.k
�; k/2g D Ef.XY � �XY /2g (10.123)

D 2EfN2.Y � � Y /2g C ˛2EfY �2.Y �2 � Y /2g (10.124)

D 4�2.k�; k/C ˛240.k�; k/; (10.125)

since all cross terms with N vanish. Hence, we have

Var. O	m.k
�; k// D Ef O	m.k

�; k/2g � Ef O	m.k
�; k/g2 (10.126)

D 4Œ˛2.0.k�; k/ � 2.k�; k//C �2.k�; k/�: (10.127)

ut
Plugging Proposition 10.11 into the success metric given in Eq. (10.103) and

considering the normalizing factor of the variance
p
m (see Eq. (10.107)) directly

derives Proposition 10.10. ut
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For DPA with one-bit variables Y.k/ we can further simplify the success metric
such that it can be expressed directly through the SNR, number of measurements
and 2-way confusion coefficient .k�; k/:

Proposition 10.12 (SM for 1-bit DPA). Let " D 2˛, Y a one-bit variable (e.g.,
Y 2 f˙1g) and ODm.k/ an additive distinguisher, then

SM.D; ODm/ D
p
mr

max
k¤k�

1�.k�;k/

.k�;k/
C 1

.k�;k/SNR

; (10.128)

with SNR D Var.signal/
Var.noise/ D "2

�2
, since " D 2˛ is the difference between X when

Y D 1 and Y D �1.

Proof. When Y.k/ 8k 2 K is a one-bit variable, we achieve the following
simplification:

.k�; k/ D Ef�Y.k
�/ � Y.k/
2

�2g D EfY.k�/2
�Y.k�/� Y.k/

2

�2g D 0.k�; k/:
(10.129)

From this, Proposition 10.12 follows directly. ut
Remark 10.4. Estimating the success rate from confusion coefficients includes a
computation of a multivariate normal cumulative distribution function [26] for
which (contrary as stated in [9]) no closed-form expression exists. Moreover, we
discovered that the calculated covariance matrices9 that directly depend on the
confusion coefficients are not of full rank. This effect was similarly discovered for
CPA by Rivain in [27], where the author propose to use Monte-Carlo simulation to
overcome this problem.

According to Remark 10.4, we stress that the computation of the success
metric as a closed-form expression is more convenient than using the closed-form
expression for the success rate for DPA and CPA, since only 2-way confusion
coefficients (.k�; k/; 0.k�; k/) without multivariate distributions are involved.

Additionally, with the help of .k�; k/ we can give a closed-form expression for
RDM (see Eq. (10.88)) for any additive distinguisher:

Proposition 10.13. For additive distinguisher the RDM.D/ can be simplified as

RDM.D/ D
min
k¤k�

.k�; k/
p

Var..k�; K//
: (10.130)

9Namely Œ.k�; i; j /�.i;j /2K nf0g and Œ.k�; i /� .k�; j /�.i;j /2K nf0g.
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Proof Sketch: As the RDM takes as a input the theoretical value of a distinguisher D,
.k�; k/ directly describes the difference between D.k�/ and D.k/ for any k 2 K .
Thus, Prop. 10.13 directly follows. �

The comparison of the closed-form expressions of RDM in Eq. (10.130) and SM
in Eq. (10.115) again highlights the different aspects of both metrics.

10.7.4 Closed-Form Expression for Mutual
Information Analysis

Definition 10.15. The Mutual Information Analysis distinguisher (MIA) [11]
between a continuous variable X and a discrete variable Y is defined by

I.X IY / D H.X/ �H.X jY /; (10.131)

where H.X/ D � R 1
�1 f .x/ � logf .x/ dx is the (differential) entropy of X and

H.X jY / D P
y p.y/ �H.X jY D y/ D � P

y p.y/
R 1

�1 f .xjy/ � logf .xjy/ dx is
the conditional entropy of X knowing Y .

In practice, I.X IY / has to be estimated, while unlike for CPA or DPA the
estimation of MIA is a nontrivial problem. For a detailed evaluation of estimation
methods of mutual information distinguishers we refer to [38]. In the following,
we consider the estimation with histograms in order to formulate a closed-form
expression. To estimate MIA with histograms (H-MIA), one has to partition the
leakageX into h distinct bins bi of width	x with i D 1; : : : ; h. Note again that, Y
is already discrete.

Definition 10.16. Let Op.x/ D #bi
m

with x falling into bin bi and let Op.xjy/ be the
estimated probability knowing Y D y, then

OIm.X IY / D �
X

x

Op.x/ log Op.x/C
X

y

Op.y/
X

x

Op.xjy/ log Op.xjy/: (10.132)

For simplification, we consider in the following only the negative conditional
entropy � OH.X jY / as a distinguisher, since OH.X/ does not depend on a key
hypothesis. Additionally, we reasonably assume that the distribution of Y is know
to the attacker and thus we use p.y/ instead of Op.y/. So, H-MIA simplifies to

H-MIA.X; Y / D
X

y

p.y/
X

x

Op.xjy/ log Op.xjy/C log	x: (10.133)

Note that, since we estimate the differential entropy the additional term log	x
arises, which is eliminated in Eq. (10.132). For more information on differential
entropy and mutual information we refer to [7].
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First, we develop a closed-form expression for EBf O	m.k
�; k/g: Since Y is

discrete the bias only arise due to the discretization of X and the limited number of
measurements m. Thus, we utilize the approximations given for the bias of OH.X/
in [20] (3.14) to calculate Ef ODm.k/g and Ef O	m.k

�; k/g for H-MIA. To be specific,
let h define the number of bins and	x their width, then

Ef ODm.k/g D �Ef OH.X jY /g D �
X

y

p.y/Ef OH.X jY D y/g; (10.134)

	 �
X

y

p.y/
�
H.X jY D y/C 	x2

24
J.X jY D y/

� � h� 1

2m
;

(10.135)

Ef O	m.k
�; k/g 	

X

y

p.y/
�
H.X jY D y/C 	x2

24
J.X jY D y/

�

�
�X

y�

p.y�/
�
H.X jY � D y�/C 	x2

24
J.X jY � D y�/

��
;

(10.136)

with J.X jY / D P
y p.y/J.X jY D y/ and J.X jY D y/ being the Fisher

information
R 1

�1
Œ d

dx p.xjy/�2
p.xjy/ dx [10].

Next, to calculate Varf ODm.k/g we use the law of total variance [15] (Eq. (10.137)
, Eq. (10.138)) and the approximations for the variance given in [20] (4.9) for
Eq. (10.138) ) Eq. (10.139) and Eq. (10.140) ) Eq. (10.141):

Varf ODm.k/g D Varf OH.X jY /gg D VarfEf OH.X jY D y/gg (10.137)

D Varf OH.X/g � EfVarf OH.X jY D y/gg (10.138)

	 VarfH.X/g � 1

m

X

y

p.y/Varf� logf .xjy/g (10.139)

Varf O	m.k
�; k/g D VarfEf OH.X jY D ygg � VarfEf OH.X jY � D y�gg

(10.140)

� 2Cov.Ef OH.X jY D ygg;Ef OH.X jY � D y�gg/

	 1

m

X

y

p.y/Varf� logf .xjy/g

C 1

m

X

y

p.y�/Varf� logf .xjy�/g (10.141)

� 2Cov.Ef OH.X jY D ygg;Ef OH.X jY � D y�gg/
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� 1

m

�X

y

p.y/Varf� logf .xjy/g

C
X

y

p.y�/Varf� logf .xjy�/g
�

(10.142)

Using the closed-form expressions for EBf O	m.k
�; k/g and EVf O	m.k

�; k/g
we formulate the following proposition.

Proposition 10.14 (SM for H-MIA).

SM.D; ODm/

/ min
k�¤k

�
	.k�; k/C 	x2

24

�
J.X jY / � J.X jY �/

��p
m

qP
y p.y/Varf� logf .xjy/g C P

y� p.y�/Varf� logf .xjy�/g
;

(10.143)

with 	.k�; k/ D H.X jY / � H.X jY �/, J.X jY / D P
y p.y/J.X jY D y/ while

J.X jY D y/ is the Fisher information
R 1

�1
Œ d

dx f .xjy/�2
f .xjy/ dx [10].

Interestingly, the SM of MIA involves the number of traces as the
p
m in the

nominator like DPA and CPA, which seems reasonable.

Remark 10.5. If N is normal distributed with variance �2 we can further simplify
H.X jY � D y�/ D 1

2
log.2
e�2/ since p.xjy�/ D pN .x � y�/. Moreover,

J.X jY � D y/ D 1
�2

and Varf� logf .xjy�/g D 1
2m

.

Remark 10.6. Remarkably, the variance is approximately independent of the size
of 	x. Only in extreme cases like 	x D 1 and 	x ! 1 is affecting the variance.
Also see [20] for more information. Interestingly, all linear terms have disappeared
in the expression of the SM. The Eq. (10.145) is for instance empirically evaluated
in [1].

10.8 Features of SM Expressions

10.8.1 Linking the Success to Properties of the Sbox

All previous studies about the relationship between the sbox properties and side-
channel analysis considered the direct link between a metric on a distinguisher
itself and the sbox. In [12], Guilley et al. use as a metric the maximal value of the
distinguisher divided by its standard deviation (SNR). The authors demonstrate that
for DPA the SNR is lower bounded by quantities that are expected to be large for
sboxes resisting against linear differential cryptanalyses. Prouff introduces in [22],
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an alternative metric for CPA, called the transparency order, that is defined as the
difference between the maximal value of CPA and the average of all rivals. Besides,
the power model is not the Hamming weight, but the Hamming distance; however,
strangely enough, the sensitive variable is not the Hamming distance, but instead the
average of the initial state which is exclusive-ored with all possible final states. This
leakage model is, to our best knowledge, rather unusual in practice. In both previous
works the relationship is only stated as an expected outcome but not proven. The
results have been further investigated by Carlet in [5].

In the following, we not only bound but directly link the success metric and the
sbox in case of low SNR (practical conditions). As DPA is a special case of CPA, we
further concentrate on the closed-form expression of CPA and simplify Eq. (10.115)
when � � ˛. More precisely,

SM.D; ODm/ 	 min
k¤k�

s
4˛22.k�; k/m
�24.k�; k/

(10.144)

D p
SNR

p
m min
k¤k�

p
.k�; k/: (10.145)

From Eq. (10.112), .k�; k�/ D 0 and .k�; k/ � 0, thus the argument of the
square root in Eq. (10.145) is always positive. Besides, by the Cauchy-Schwarz
theorem, we also have that .k�; k/ � 1. Now, the objective to minimizing
mink¤k�

p
.k�; k/ (i.e., making side-channel attacks as hard as possible) is

tantamount to maximizing maxk¤k� E.Y.k�/Y.k//. In the following, we assume
that Y � and Y explicitly depend on an sbox (or inverse sbox) and a Hamming
weight (wH ) leakage model10 as for example wH.SboxŒT ˚ k�/, so Y.k/ D
1p
n

Pn
iD1.�1/Si .T˚k/ D 1p

n
.2wH.S.T ˚ k// � n/ and

EfY.k�/Y.k/g D 1

n

nX

i;jD0

1

2n

X

t2Fn2
.�1/Si .t˚k�/˚Sj .t˚k/: (10.146)

As 8a 2 f0; 1g; .�1/a D 1 � 2a, the goal to make CPA difficult is to minimize the
following quantity, that we call the transparency metric

min
k¤k�

nX

i;jD0

X

t2Fn2
Si .t ˚ k�/˚ Sj .t ˚ k/: (10.147)

Remark 10.7. Note that, for single-bit attacks (n D 1), the criteria of Eq. (10.147)
simplifies to the one-sided criteria discovered in [13].

10One can easily extend the calculation also for the Hamming distance model.
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So, minimizing the objective on the sbox in Eq. (10.147) is equivalent to min-
imizing mink¤k� .k�; k/, which can be understood intuitively on the illustration
of Fig. 10.6. The key corresponding to the nearest rival, i.e., argmink¤k� .k�; k/,
shall have a confusion coefficient as high as possible.

To further illustrate the transparency metric and show the relationship to the
transparency order [22], we use the same three sboxes as in [13]: Let ˚ and ˇ
be respectively the inner addition and multiplication of the Galois field F28 of 256
elements, then the sboxes are given by

1. A “bad” SboxŒ��, termed S1, of equation y 7! a ˇ y ˚ b,
2. An “average” SboxŒ��, termed S101, of equation y 7! aˇ y101 ˚ b,
3. A “good” SboxŒ��, termed S254 and used in AES, of equation y 7! aˇy254 ˚b.

Figure 10.7 displays the confusion coefficient forS1, S101 and S254. One can see, that
the minimal mink¤k� .k�; k/ is achieved by S1, which is the hardest to attack with

...... ... ... 0xff
0xfe
0xfd
0xfc

d k= k∗⊕k

k (k∗,k)
1

1
2

2n
2n−1

1
2

0 0x00
0x01
0x02
0x03

N
earest

rival

Fig. 10.6 Illustration of the confusion coefficients for CPA

Fig. 10.7 Confusion coefficients for S1, S101 and S254 (courtesy of [13])
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Table 10.1 Comparison
of side-channel metrics
for sboxes

Transparency
order [22]

Transparency metric
(Eq. (10.147))

S1 5.84 7,424

S101 7.50 7,936

S254 7.86 8,000

CPA, whereas S254 has the highest mink¤k� .k�; k/ being the most vulnerable.
Table 10.1 displays the transparency metric and order. The transparency metric
is different from the transparency order, nonetheless, it remains consistent with
it, meaning that the order of S1, S101 and S254 is the same for both metrics and
consistent with the rating through .k�; k/.

10.8.2 How Does the Size of the Key Space Influence
the SM/SR?

Hardware devices are known to leak approximately in Hamming distance. This
makes leakage models complicated, because they involve two consecutive states
of the cipher. Let us consider the example of an AES-128 computed one round per
clock period. The plaintext is P , the cipher C , and the first (resp. last) round key
K1 (resp.K11).

On the one hand, the uncentered and non-normalized leakage model at the first
round for the byte at position 0 is:

Y 1.T;K1/ D wH.T0 ˚ 02 � S.T0 ˚K1
0/˚ 01 � S.T5 ˚K1

5/ (10.148)

˚ 01 � S.T10 ˚K1
10/˚ 03 � S.T15 ˚K1

15// ; (10.149)

where 01, 02 and 03 are the MixColumns constants, and S is the SubBytes
operation. Clearly, a guess for this model requires an hypothesis on 4 bytes of the
keyK1.

On the other hand, the uncentered and non-normalized leakage model at the last
round for the byte at position 0 is:

Y 10.C;K10/ D wH
�
C0 ˚ S�1.C0 ˚K10

0 /
�
; (10.150)

where S�1 is the InvSubBytes operation. So, a guess for the model requires
simply one hypothesis on a key byte (namely K10

0 ). This is due to the absence of
MixColumns at the last round.

The transparency order (resp. metric) of InvSubBytes is 7:85 (resp. 7;964),
meaning that it is very close to that of SubBytes. So, the confusion coefficient
associated to Y 1 and to Y 10 have similar distributions, meaning that the data
complexity (the number of traces m) of the attack is similar at either end of the
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AES. Specifically, the minimal nonzero confusion coefficient for Y 1 is 0:468750,
whereas it is 0:404297 for Y 10. The most crucial difference is the computational
complexity, owing to the largest key space to explore at the first round.
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ship in the field of privacy.
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Chapter 11
Wireless Sensor Networks: Routing protocol
for Critical Infrastructure Protection

Apostolos Leventis and Konstantinos Papadopoulos

Abstract In this chapter we present a routing protocol suitable for using Wireless
Sensor Networks in critical infrastructure protection applications (e.g. industrial
facilities, borders, pipelines etc.). Since network nodes may extend in a straight
line for several kilometers, this linear topology of nodes poses special restrictions
to network design. An architecture optimized to support linear Wireless Sensor
Networks is described hereinafter. Simulation results outline the network quality
features offering a dependable solution, while implementation using off-the-shelf
components demonstrates the remarkable characteristics of sensor nodes in terms
of power consumption.

11.1 Introduction

Wireless Sensor Networks (henceforth WSNs) are widely used in monitoring
applications, for handling data produced by a variety of sensor devices. Their
flexibility allows covering a diverse set of applications, such as environmental,
industrial, automotive, civil constructions structural health monitoring etc. Place-
ment of sensor nodes is a critical issue for network operation as it directly
affects network management, operation and lifetime. Therefore, placement has to
be considered for node installation, packet routing and node power consumption
issues respectively. Usually monitoring applications are addressed by utilizing wired
technology, employing copper or fiber-optic cables. However, use of cable use may
not suit all kinds of applications, as cables are not always easy to install or may need
to be hidden, while the weight of cabling itself may be a constraining issue.

Although the usual node placement paradigm assumes that sensor nodes are dis-
tributed over an area (either uniformly or randomly), there is a class of applications
where linear distribution of sensor nodes is required. These applications include
monitoring of border lines, perimeter of industrial facilities, underground mines,
road highways, structural health of pipelines or bridges etc. All these applications
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require nodes to be placed in a line, where sensors monitor signals of interest. This
line can be either open or closed and extend from hundreds of meters up to several
kilometers.

The placement constraint imposed by the topology has direct impact to network
operation. In a linear topology, network nodes need to relay data towards a single
concentration point. Hence failure of one or more intermediate nodes can lead to
formation of isolated parts in the network and in some cases even cause network
collapse. A failure can be due to either physical reasons (e.g. power extinction, node
malfunction) or to an external attack that deactivates some nodes.

Contrary to a meshed topology that would allow alternative routes across the
network to be established, in a linear topology routes are mostly fixed. This can
cause nodes being close to the concentration point get more network load compared
to those farther away, resulting to power consumption imbalances among nodes.
Hence special techniques and routing schemes have to be developed in order to
avoid any power imbalances among nodes and also guarantee the existence of
communication link when an arbitrary number of nodes are lost. This strategy
allows for reliable network setup and operation functions and ensures network
dependability.

Despite their usefulness in a diverse set of applications, research on the area
of linear wireless sensor networks is quite limited. The most significant scientific
research papers attempting a theoretical approach towards the various aspects of
linear WSNs are discussed in the following paragraph.

Some research on the performance of linear WSN performance has been done
in [17] where the relationship between throughput and energy cost is analyzed
for various types of WSNs, including linear ones. An approximate relation for
connectivity probability in single-dimensional ad hoc networks is provided in
[13], while [16] uses a queuing theory approach to study connectivity issues.
A classification and characterization of various types of linear WSNs is provided
in [14], while in [11] an attempt is made to develop a network architecture and
protocol utilizing linear WSN structure. Energy consumption in relation to node
placement is studied in [10], while in [18] a routing scheme having minimal energy
requirements is discussed. In terms of applications utilizing linear WSNs, a possible
use case in underground mines is described in [12], while in [15] security issues are
outlined and a key pre-distribution scheme for linear WSNs is discussed.

The above literature tries to identify problems induced at various aspects of linear
WSNs operation. The use cases analyzed refer to open structures, e.g. a bridge
or a pipeline extending for tenths of kilometers. Till now, the case of a closed
topology described hereinafter, such as a perimeter protection scheme, has not been
investigated.

The specification of a protocol supporting linear wireless sensor network topolo-
gies is presented hereinafter, with the application example of its use in the case
of a critical infrastructure (e.g. an industrial facility) protection system. This has
been simulated using a network simulation tool and implemented using off-the-shelf
components to verify its characteristics in terms of power consumption.
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In the following, the network requirements for WSNs utilized in critical
infrastructure protection applications are described and a brief description of the
routing protocol developed is provided, covering the basic points of network
setup and operation. Then, protocol simulation results are shown, as well as
power consumption measurements for the implementation of a node using COTS
components.

11.2 Requirements for WSNs in Critical Infrastructure
Protection Applications

Critical Infrastructure Protection (CIP) is an area where employment of WSNs can
offer significant advantages. In CIP applications a virtual “fence” is created around
the area to be monitored by suitably placing network nodes equipped with various
sensors devices (e.g. PIR, accelerometers, microphones, geophones etc.). Acquired
data can be processed locally up to some extent and then forwarded to a central
station.

The linear placement of nodes across the area being monitored has direct impact
to network operation. Namely, it poses restrictions in terms of inter-node communi-
cation, sensor data aggregation and exchange of sensed data or control commands
[11]. Therefore the network architecture needs to ensure increased reliability with
minimal end-to-end communications delay. Furthermore, the requirements for
increased network lifetime, QoS and security should also be considered.

Among the inherent characteristics of linear networks the most important ones,
affecting network architecture, are summarized below:

• Long distance of the network, as the monitored area or structure can extend to
several kilometers

• Fixed node position (no mobility)
• Restricted number of neighbors for each node
• Node location awareness, allowing nodes to have known and specific neighbors
• Well known communication pattern, since the direction of data flow is fixed.

The one-dimensional linear sensor network operates under severe resource con-
straints, including restricted energy supply, low bandwidth, scarce computational
power and limited communication capability. To effectively design the appropriate
architecture of the chain-type network, the following issues must be taken into
account:

1. Develop a scalable and energy efficient networking architecture.
2. Develop energy efficient communication protocols.
3. Develop a MAC protocol that matches the unique topology of linear wireless

sensor networks and enables seamless communication among sensor nodes.

The length of a linear WSN prohibits each sensor node from communicating
directly with a central data concentrator. Therefore, to efficiently transport sensor
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data to a central data station, implementation of a relay mechanism is required. As
the directional transmission along the chain of sensor nodes will create significant
latency (especially if the chain is long), to control the overall data latency the number
of hops needs to be limited.

11.3 Routing Protocol Description

To fulfill the application requirements, a three-tier hierarchical architecture was
defined. The lowest level consists of sensing elements, called Sensor Nodes (SNs).
SNs are grouped into clusters, where a special node, Base Station (BS) acts as
the Cluster Head (CH). Base Stations comprise the second level of hierarchy,
forming a backbone that gathers data from all SNs and (after performing any
aggregation functions) forwards them to the Network Control Center where the
Network Coordinator (NC) is located. NC forms the upper level of hierarchy.
Figure 11.1 outlines the architecture concept of the three-level linear wireless sensor
network.

Typically the range of a CH is much larger than that of a SN. This allows the
network to remain functional if one CH is lost due to reasons such as malfunction,
power extinction or external attacks.

11.3.1 Upper Network Layer (Backbone) Formation

The network formation starts with backbone initialization. As soon as network
nodes power up, each CH associates with a neighboring CH, starting from NC and
up to those CHs that are most distant from NC. The purpose of this process is to

Fig. 11.1 Routing protocol architecture concept
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Fig. 11.2 Network
initialization process

establish a route from each CH towards the NC and vice-versa. After all CHs have
associated with another CH (or the NC), formation of local clusters starts in order
to have each SN associate with a CH. This process is depicted in Fig. 11.2.

To compensate the low range of the CHs and provide increased connectivity, the
distance between successive CHs is such that each CH can reach two neighboring
CHs at each direction. Hence, the CH backbone connectivity is lost only if two
consecutive CHs are lost.

A TDMA-based scheme is utilized in order to coordinate message passing among
CHs towards NC and allow it happen during well-defined time slots. Timeslots
are allocated to each CH by NC after the initial association and allow for data
transmission in a timely manner. During their period a CH (or the NC) can request
data from all nodes that it controls.

The beginning of each time slot is marked by a beacon transmitted by the CH (or
the NC). After that, the active period follows, where all communications between
CH and its children (SNs or CHs) take place.

Time slots must be distributed among CHs (including NC) in such a way that the
network is fully covered; and also beacons from different CHs should not collide.
The simplest way to achieve that would be to assign a unique time slot to each CH.
However this would affect network scalability, since expanding the network would
require additional time slots, causing degradation of network’s performance.

By taking advantage of the network topology we can use the same time slot for
CHs that are placed far away from each other, so that there is no interferance among
them. This concept, called time slot reuse, is illustrated in Fig. 11.3. Since CH5,
CH10 and CH15 are far away from each other and can never have common children
CHs, they can share the same time slot without causing any collisions.
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Fig. 11.3 Beacon time slot reuse concept

The arrangement of time slots among CHs can be such that seamless data transfer
from sensors towards the NC is facilitated. By suitably arranging time slots among
successive CHs, data packets can “slide” from the farthest CH to the NC with zero
delay.

11.3.2 Lower Network Layer (Cluster) Formation

After the CH backbone is established and functioning, cluster formation, i.e. associ-
ation of SNs with their nearby CHs can start. Backbone establishment implies that
all CHs:

• Have already associated to each other in chain up to The network controller
node (NC)

• Have received their respective beacon time slots from NC
• Have started transmitting their beacons in a timely manner according to their

time-slot

By that time, all network’s SNs are initialized and listen for beacons that can
be heard at their location. As a result of this listening, every SN has built a list of
nearby CHs and has chosen the CH having the strongest beacon signal as a candidate
parent. Afterwards it wait the candidate parent to issue an association command.
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Cluster formation is affected by sensor network topology and radio coverage
issues. It must be noted that although the radio range of a CH is long enough to
cover all SNs inside a cluster, the radio range of SNs is shorter. Hence, in some
cases the CH can hear only those SNs that are close enough to it, while SNs at
longer distances cannot be heard. On the other hand, all SNs will be able to hear
messages transmitted by the CH. A relay mechanism must be utilized among SNs,
so that SNs being closer to the CH relay messages from those SNs that are farther
away.

11.3.3 Intra-cluster Communications

A network cluster is formed by a CH node and all SNs in its vicinity. SNs belonging
to the same cluster hear the periodic beacons issued by the CH. The purpose of
a beacon is twofold: to mark the beginning of cluster’s active period and also to
allow for clock synchronization of the cluster’s SNs. All communications inside the
cluster are curried out during the active period, as illustrated in Fig. 11.4.

Inside a cluster, the CH fully coordinates communications among nodes in a
master/slave relationship. All communications within a cluster have the form of
requests (or commands) issued by the CH to one or all its SNs and responses sent
in turn from SNs to the CH. CH starts polling all SNs in the cluster for data by
sending a separate message to each of them. Then, it waits their response for a
reasonable time period which can depend on the number of hopes from the particular
SN to the CH. In case of receiving an alarm (or receiving no response at all) the
erroneous event will reported to the NC. In Fig. 11.5 request (DRQ_MSG) and
response (DRSP_MSG) messages are shown for a two-hop data polling scenario.

Immediately after the CH has finished gathering data from its SNs, it places them
into idle state even though the current active period has not ended yet in order to
reduce their energy consumption.

Fig. 11.4 Cluster’s active period
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Fig. 11.5 Messages exchanged for a two-hop SN data polling

11.3.4 CH Backbone Communications

Data that a CH collects from its SNs as well as those originating from other CHs are
transferred to NC.

During its active period, each CH must perform data communications with all the
nodes it controls. For this, the CH initially communicates with all SNs that belong
to its cluster to collect their data and then with its children CHs (if any) to get any
data packets they have generated themselves and/or data packets they have already
received from their own children CHs, if any.

By aggregating the collected data as they transverse the backbone, CHs relay
them to the NC.

11.3.5 Network Recovery

11.3.5.1 Recovery from CH Failure

When a particular CH fails, malfunction is caused on both backbone and local
cluster level. On the backbone level, if the failed CH has one or more children CHs,
the association chain for those CHs and their children will be broken and will not
relay their data towards NC. On the cluster level, all SNs reporting to the failed CH
will become “orphans”. For these reasons a trouble recovery procedure is necessary
that will attempt to fix the problem without restarting the whole network.

Considering backbone, the failure of a CH will be noticed by its parent CH as the
latter will not receive any response to its requests. Moreover, children CHs (if any)
will stop hearing their parent’s beacon.

Recovery from a CH failure depends on the backbone topology that has formed at
a given time. Figure 11.6 illustrates two examples of CH failure in a closed topology
consisting of 24 CHs.
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Fig. 11.6 Examples of CH failure impact

In topology (a), failure of CH7 can be easily overcome by having CH8 associate
to CH6 as child, while the (orphan) children SNs of CH7 are shared between CH6

and CH8. In topology (b) however, CH10 cannot associate to CH9 as child, so loss
of CH8 means that both CH9 and CH10 become orphans. In that case the situation
can be resolved by having CH12 associate to CH13 as child, thus causing CH10-
CH12 to change their relay direction. Such functionality is supported by the protocol
described herein.

11.3.5.2 Recovery from SN Failure

The most probable reasons of SN failure are hardware failure and battery discharge.
Failure of a particular SN will be detected by its parent CH and will be reported
to the NC. The network operator can then initiate procedures for SN repair or
replacement. When the hardware problem is fixed and SN is installed and ready
for normal operation again, it will select a CH and join into the relevant cluster.

11.4 Protocol Simulation

11.4.1 The CNET Network Simulator

The CNET network simulator [9] was used to simulate the functionality and assess
the performance of the linear WSN network architecture described above. CNET
is a network simulation tool developed by the University of Western Australia.
It requires network protocols to be written in the C programming language
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(C99 standard) and supports their execution within a single Unix-type process.
A standard C compiler (e.g. gcc) is used to compile the user-written protocol code
which is then dynamically linked with the CNET simulator at run-time.

The network topology is described via a topology file that defines nodes, links
and attributes of the simulation. Via the topology file, characteristics such as node
location, transmission frequency and power, antenna gain, radio sensitivity, current
consumption etc. are specified. With reference to the ISO/OSI network model,
CNET provides the Application and Physical layers. User-written protocols are
required to “fill-in” any necessary internal layers and, in particular, overcome the
corrupted and lost frames that CNET’s physical layer randomly introduces.

11.4.2 Simulation Scenarios

For examining the protocol behavior, two scenarios were identified and simulated.
The first scenario applies to closed line critical area infrastructure protection
schemes, while the second one is better suited to open-ends applications such as
pipelines, border monitoring etc. The simulation parameters were set according to
the operational characteristics of the XBee radio transceiver [1] utilized in our test
platform.

Scenario A The topology comprises of 24 Base Station nodes, arranged across the
four sides of a square. As illustrated in Fig. 11.7 at the top left side is the Network
Coordinator (NC), while the Sensor Nodes are not visible for illustration purposes
but are uniformly placed between CHs. The distance among nodes is 200 m.

During network setup, the CH nodes identify the nearest neighbors in order to
build the network backbone. Due to topology, two paths are created: one towards
the right of CH1 and the other towards the bottom of CH24, as shown in Fig. 11.8.

After all CH nodes have been associated and received their slot information, the
Sensor Nodes can then be queried for alarm events. This is illustrated in Fig. 11.9.

Figure 11.9 presents the data flow and also demonstrates time slot reuse: at the
moment of the screenshot, three clusters, whose nodes are far away from each
other, perform communication during the same time slot in order to accelerate error
reporting towards the NC.

Scenario B The topology consists of 1 NC, 20 CHs and 8 SNs per CH populated
in a single row. The distance among the CHs is 200 m while the SNs are equispaced
between the CHs. Figure 11.10 shows the network layout, while the SNs are not
visible.

During the network setup procedure the backbone is created, directing from CH20

to NC. After all CH nodes have been associated and received their slot information,
Sensor Nodes can be queried for alarm events, as shown in Fig. 11.11.
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Fig. 11.7 Layout of upper network layer – closed topology

11.4.3 Simulation Results

In the following paragraph the outcome of the simulation results is provided.
Although the two scenarios did not have exactly the same characteristics (such as
number of CHs and SNs per cluster) due to restrictions of the simulator, the results
are still valid and show network behavior.

A first conclusion derived by the simulation results is that the slot mechanism
incorporated, in combination to the Request/Response messaging scheme and the
utilized CSMA/CA protocol, allowed for almost collision-free network operation.
As shown in Table 11.1, the reported collisions are about 1 % in both cases.

The slot mechanism has a direct impact to packet delay too. An efficient time-
slot allocation scheme is vital and allows for quick error reporting to the NC, since
data reports can transverse the CH backbone without additional delay. Table 11.2
summarizes the response time of an error event generated at the furthest end of each
topology examined.

Clearly CH is the most sensitive type of the network nodes: not only does it query
all SNs for data but it also relays other CHs’ data towards the NC. The network
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Fig. 11.8 Network backbone setup – closed topology

dependability is strengthened by utilizing CHs with overlapping range. Therefore,
if one CH is compromised (either by an adversary attack or by a malfunction) the
neighboring CHs will compensate and update their routing table so as to keep the
network functional and will also inform the NC about the issue.

11.5 Hardware Implementation

For the hardware implementation of the linear WSN protocol, the STM32F103
Cortex-M3 microcontroller by STMicroelectronics [7] was utilized. The objec-
tive of hardware implementation was (a) to examine the Lower Network Layer
functionality and (b) verify the power consumption characteristics of Sensor Node
devices. Our study is limited to Sensor Nodes since in a network realization their
population outnumbers Cluster heads’ and consequently they have direct impact
to the total power consumption of the network.Furthermore, since they need to be
autonomously powered, their power-budget greatly affects the design.
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Fig. 11.9 Network operation – closed topology

Fig. 11.10 Network operation – open topology

Fig. 11.11 Layout of upper network layer – open topology
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Table 11.1 Frame transmission statistics

Simulation Transmitted Number Number Reported Reported
time (s) frames of CHs of SNs collisions collision %

Scenario A 1,200 138,398 24 240 260 0.19

Scenario B 2,100 195,710 20 160 2,256 1.15

Table 11.2 Response time of error events

Error event Event reported Event reported Total of
trigger time to CH to NC intermediate CH

Scenario A t0 t0 C 1,001 ms t0 C 4,000 ms 12

Scenario B t0 t0 C 1,021 ms t0 C 4.99 s 19

Fig. 11.12 Current monitoring subsystem

To allow MCU power consumption measurements, the off-the-shelf Olimex
STM32-P103 evaluation board [4] was utilized and current measurement circuitry
was added to its prototyping area as well as an IEEE802.15.4 [3] RF module and a
PIR sensor.

A current measurement circuitry was built around the Texas Instruments INA214
current shunt monitor device [8], as shown in Fig. 11.12. The output voltage of
INA214 is proportional to the current flowing through the resistor shunt (Rs). Two
instances of the above circuit allow measuring separately the MCU and RF module
current consumption.

The modified STM32-P103 board is shown in Fig. 11.13.
Regarding the application executed at the MCU, the ARM Cortex port of

FreeRTOS real time kernel [2] was utilized. The CNET simulation model was then
ported to FreeRTOS. Since CNET is an event-driven simulator utilizing interrupt
handlers, timers and tasks to describe network functionality, porting the network
model (written in C99) to FreeRTOS is quite a straightforward process.
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Fig. 11.13 Modified STM32-P103 board

11.5.1 Measurements

Measurements were made over the active period of the sensor node, during which
the latter is operational and communicates with its Cluster head. Figure 11.14 shows
the current consumption of both the MCU and RF module.

For each node, the maximum allocated timeslot duration is 250 ms but, as
described earlier, the Sensor Node enters low-power state upon CH command, as
soon as the later has successfully received the requested data. With reference to
Fig. 11.14, early entering the low-power state reduces the active state to about 57 ms.

As indicated in Fig. 11.14, node operation can be divided to five distinct
phases:

• MCU power up
• RF module power up
• Communications
• Shutdown
• Standby

These phases (whose duration is outlined in Table 11.3) repeat every 2,000 ms,
which is the time period that the CH issues a new request to each Sensor Node for
reporting any alarm events.

From the measurements is evident that the MCU current consumption is only
a small fraction of the total node current consumption, while RF module is much
more power-hungry.

Since all optimizations performed in the context of network architecture develop-
ment refer to the network protocol being executed by the MCU and are independent
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Fig. 11.14 MCU and RF Module current consumption

Table 11.3 Duration of
MCU operation phases

Phases Duration (ms) Time %

MCU power up 1.81 0.09

RF module power up 9.75 0.49

Communications 42.32 2.12

Shutdown 2.81 0.14

Standby 1,943.31 97.17

Total1 2,000.00 100.00

of the RF module used, only the MCU consumption is considered in our study.
Otherwise the results would be highly affected by the characteristics of the specific
RF module used.

The above results show that the MCU of a SN device operates mostly in Standby
mode. During standby, the current consumption is minimal (about 0.005 mA) as
CPU, registers, memory and almost all peripherals are disabled.

The MCU current consumption during the active phases was measured to
14.02 mA, slightly above the MCU Sleep Mode current (about 9.5 mA according
to the MCU datasheet [5]). Therefore the average current consumption, Iavg, is:

Iavg D Iactive � Tactive C Istandby � Tstandby

Tactive C Tstandby

D 14:02 � 56:69C 0:005 � 1943:31
2;000

mA D 402:26 �A
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11.5.2 Results Analysis

The results provided in Sect. 11.5.1 were achieved by:

• Turning off all unused peripherals
• Utilizing the low power modes of the MCU (sleep mode whenever the O/S enters

the IDLE state and standby mode whenever no communications are necessary)
• Designing the whole communications protocol with low power functionality in

mind

Unfortunately it is not easy to define and/or calculate a strict metric identifying
the reduction in current consumption due to the above optimizations, especially
since some of them cannot be quantified, e.g. the effect of low-power architecture
in the design of the network protocol. However, if we consider the extreme case of
not using any low power mode at all, according to the MCU datasheet the current
consumption would be about 31 mA. Therefore we can estimate the MCU Current
Reduction Ratio, R as:

R D 31mA

402:26 �A
D 77:06

i.e. reduction of about 77 times in our case.
The above comparison is illustrated in Fig. 11.15, where both data values are

referenced to the MCU current consumption during Sleep Mode.

Fig. 11.15 MCU current
consumption



244 A. Leventis and K. Papadopoulos

Based on the above results, powering the MCU for a year would require a battery
having capacity C of:

C D Iavg � 365 � 24 h D 0:39983� 365 � 24mAh

i.e. a 3,500 mAh battery would need to be used.
To provide a realistic view of the battery requirements that an actual sensor node

could have, the RMS value of current consumed by both MCU and the XBee RF
module was calculated. The consumption of these two parts would be dominant in
a sensor node. The add-on current sensor circuitry was utilized to avoid measuring
current consumption of unnecessary parts (such as leds, sensors etc.).

The calculation provided here is just for reference; an efficiently designed low
power sensor node must be built around carefully selected low power hardware,
tailored to the requirements of the specific application.

In Fig. 11.16 the three waveforms of current are shown.
The RMS value of total current during the active period was found to be

59.02 mA. Since the standby current for the MCU is 5�A and the RF module
10�A, the average current ITOT is:

ITOT D Iactive � Tactive C Istandby � Tstandby

Tactive C Tstandby
D

D 59:02 � 56:69C 0:015 � 1;943:31
2;000

mA D 1:687mA

Fig. 11.16 MCU, RF module and total current
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Based on the calculation, the 3,500 mAh battery considered above would last for:

t D 3;500mAh

1:677mA
D 2;074 h

i.e. 2,074 h or about 3 months.
The above results are indicative of the power consumption levels that can be

achieved using the proposed architecture. Still, a power-optimized product can
achieve even better performance by using techniques such as lowering the MCU
clock speed and utilizing optimized low-power devices which, for various reasons,
were not available to use during prototype development. For example, the RF
module used was found to be one of the most power-demanding devices of the
market. Besides, an ultra-low-power MCU can be employed to replace the one of
our prototype and achieve 50 % power reduction for the same clock frequency [6].

Conclusions
An architecture suitable to support linear Wireless Sensor Networks was
described. Simulation results show its ability to offer a dependable solution
for forwarding packets across a line extending up to several kilometers to a
special node that acts as data sink for sensor data. Current measurements were
performed on a prototype built using standard off-the-shelf components and
demonstrate the remarkable power profile of sensor node devices.
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Chapter 12
Wireless Sensor Networks: Virtual Platform
for Performance Analysis and Attack Simulation

Álvaro Díaz, Javier González, and Pablo Sánchez

Abstract This chapter presents a virtual platform that is able to provide
performance estimation of hardware/software systems, including communication
networks (networked embedded systems). The framework is mainly focused on
performance analysis of Wireless Sensor Networks (WSN) before deployment. The
platform can also simulate the most common attacks that a WSN can suffer. This
combination of unique features makes the virtual platform a key tool for simulating
security in low power WSN at the first stages of the design process.

12.1 Introduction

Every WSN has specific nodes that must comply with system, network and sensor
requirements. During last years, a common requirement of WSN specifications is
security assessment. An attacker can have direct access to the network nodes and
there are a huge number of possible ways to attack the node/network.

The required security level may vary depending of the importance of the data
that is being obtained and/or exchanged. For this reason, it is crucial to identify the
security weaknesses of the WSN at the design phase. Furthermore, understanding
the potential effects of the most typical attacks on a node (or the entire network)
helps to prevent problematic vulnerabilities. This is of great value when designing
the node’s embedded software and/or the complete WSN system.

Additionally, energy resources are also limited. Usually, power consumption
is the greatest constraint in WSNs. Sensor nodes are commonly battery-powered
devices, in which their useful-life depends on their battery life. These nodes
are often placed in hostile environments with difficult node access which affects
a possible battery replacement. Moreover, WSN attacks commonly produce an
increase in the power consumption of the attacked nodes, with a reduction of their
useful-life and a loss of communication performance.
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Current WSN simulation tools do not offer the possibility to simulate typical
attacks that these networks can suffer. The paper [7] presents an overview of current
WSN simulation frameworks. NS-2 [10] and OMNET++ [11] are discrete event
network simulators that have been used to model WSNs but without focusing in
the security aspect. Another framework, TOSSIM [6], is a bit-level discrete event
simulator and emulator of TinyOS [16].

As mentioned above, one of the main objectives of the attacks is to increase the
power consumption of the node. To make an accurate estimation of the attack’s
effects, it is important to use a performance analysis framework that provides power
consumption and execution time estimations. Some of the previously commented
simulators can provide WSN simulation, Real-Time Operating System (RTOS)
support and power/execution time estimation but, as far as the authors know, there
is no simulation framework that integrates these features and attack simulation.

A virtual platform that integrates all the main features of WSN simulation
frameworks (functional simulation, RTOS integration and performance analysis)
and attack simulation is shown in this chapter.

12.2 Vulnerabilities in WSN

An attack can be defined as an attempt to gain unauthorized access to a service,
resource or information. It could also be an attempt to compromise integrity,
availability or confidentiality of a system [9].

The possible types of attacks are so high that is difficult to classify them. For
instance, they can be focused in intercepting messages, corrupting and replaying
them into the network or more sophisticated strategies such as in introducing a
malicious node that behave as a fake gateway. Nevertheless, Mohammadi and
Jadidoleslamy [8] classify the attacks into two big categories: passive and active
attacks.

While passive attacks relate to privacy vulnerabilities as eavesdropping, gath-
ering and stealing of the information by intercepting data communications or
monitoring packets exchanged within a WSN, active attacks perform actions such
as injecting faulty data into the WSN, impersonating, modifying resource and data
streams, creating holes in security protocols, destroying sensor nodes, degrading
performance, disrupting functionality and overloading the network. Table 12.1
shows the most important attacks that a WSN can suffer and what their nature is:
passive or active.

Typical WSN attacks can be classified into 20 categories:

Jamming attack: This attack focuses in denying service to authorized users as
legitimate traffic is jammed by the overwhelming amount of illegitimate traffic. It
disrupts network functionality by broadcasting high-energy signals. Figure 12.1
illustrates how the Jamming attack behaves. The attacker or malicious node
either produces large amounts of interference intermittently or persistently. This
interference directly affects at least three network nodes (B, D and F).
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Table 12.1 Active and
passive WSN attacks

Physical layer Jamming Active

Tampering Passive

Link layer Collision Active

Resource exhaustion Active

Energy drain Active

Interrogation Active

Sniffing Passive

Network layer Selective forwarding Active

Back hole Active

Sinkhole Active

Hello flood Active

Misdirestion Active

Sybil Active

Node replication Active

Spoofing Passive

Transport layer Desynchronization Active

Flooding Active

Application layer Homing Active

Path based DOS Active

Application Active

Overwhelm Active

Fig. 12.1 Jamming attack

Tampering attack: Tampering attacks [4] require physical access to the node
to steal its internal data. So, they can obtain sensitive information such as
cryptographic keys.

Collision attack: In a collision attack [15], an attacker node does not follow the
medium access control protocol and produces collisions with the neighboring
node’s transmissions by sending a short noisy packet. Packets collide when
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Fig. 12.2 Energy drain
attack

two nodes attempt to transmit simultaneously on the same frequency, producing
packet corruption. This attack can cause a lot of disruption to the usual network
operation.

Resource exhaustion attack: Repeated collisions and multiple retransmissions
are performed until the node cannot handle all the data or exhausts the battery.
Malicious node continuously requests and/or transmits over the channel.

Energy drain attack: It is known of the difficulty of replacing sensor node
batteries in WSN. So, attackers may use compromised nodes to inject false
reports or to generate large amount of traffic in the network that will waste a
lot of energy. The aim of this attack is to disconnect sensor nodes of the network,
degrade network performance and, ultimately, take control of part of the sensor
network by inserting a new sink node. Figure 12.2 shows how the attacker node
generates false messages continuously. Its immediate neighbor nodes ‘C’ and ‘G’
responds to the attacker until the battery is emptied.

Interrogation attack: This attack exploits the two-way RTS (Request to
Send)/CTS (Clear to Send) handshake that many MAC (Media Access Control)
protocols use to mitigate the hidden-node problem. The attacker repeatedly sends
RTS messages to obtain CTS responses from a targeted neighboring node.

Sniffing attack: Sniffing attacks consist in capturing network packets. Once the
packet is captured using a sniffer, the contents of the packets can be analyzed
and some private information could be stolen.

Black hole attack: The Black Hole attack basically consists in an alteration of the
network routing with the objective of attracting all the packets to the attacked
node destination. Figure 12.3 shows a Black Hole attack, where all the packets
sent by the nodes D, E, G, and I are captured and dropped by the attacker.

Selective forwards attack: Multi-hop networks assume that the nodes will faith-
fully forward and receive messages. However a malicious node may refuse
to forward certain messages and simply drop them, ensuring that they are
not propagated any further. This is what a Selective Forward attack tries to
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Fig. 12.3 Black hole attack

Fig. 12.4 Selective
forward 1

accomplish. The procedure to launch Selective Forward attack is very similar
to the Black Hole. First, a malicious node has to convene the network that it is
the nearest node to base station, attracting network traffic to route data through it.
Then, random packets (Fig. 12.4) or specific packets (Fig. 12.5) can be dropped.

Homing attack: In a Homing attack, the attacker observe the network traffic to
deduce what is the geographic location of the most critical nodes, such neighbors
of the base station. Then, the attacker tries to physically disable these nodes. This
leads to another type of Black Hole attack.

Sing hole attack: When performing a Sink Hole attack, the adversary tries to
attract all the traffic from a particular area through a compromised node. The
compromised node is placed at the center of some area and creates a large “sphere
of influence”, attracting all traffic directed from the sensor nodes to a base station.

Hello flood attack: In a Hello flood attack, the attacker typically attempts to
drain the energy from a node or exhaust its resources. An attacker with a large
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Fig. 12.5 Selective
forward 2

Fig. 12.6 Hello flood attack

transmission power could broadcast “HELLO” packets (used in many protocols
for node discovery) to convince every node in the network that the adversary
is within one-hop radio communication range. This causes a large number of
nodes to waste energy by sending packets to this imaginary neighbor. Figure 12.6
depicts how an adversary node “Attacker” broadcast “hello” packets to convince
nodes in the network that is trying to contact them.

Sybil attack: This attack consists in the modification of the network routing
with the objective of isolating certain nodes. When these nodes can no longer
communicate, the attacker sends fake traffic supplanting them.

Misdirestion attack: In this attack [1], the attacker routes the packet from its
children to other distant nodes, but not necessarily to its legitimate parent. The
main objective of the intruder is to misdirect the incoming messages to increase
the latency, which prevents a few packets from reaching the base station.
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Fig. 12.7 Sybil attack

Fig. 12.8 Node replication
attack

Node replication attack: This is an attack where the attacker tries to mount several
nodes with the same identity at different places of the network. Although Sybil
attack and Node Replication attack could seem similar, in Sybil attack a single
node exists with multiple identities while in node replication attack multiple
nodes are present with the same identity. Therefore, in Sybil attack an adversary
can succeed by attacking only a single node whereas the node replication attack
requires more nodes of the network. Figures 12.7 and 12.8 shows an example of
node replication attack.

Spoofing attack: A spoofing attack is a situation in which the attacker successfully
impersonates another by falsifying data and thereby gaining an illegitimate
advantage. The idea of this attack consists in target routing information while
it is being exchanged.
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Flooding attack: An attacker may repeatedly make new connection requests until
the resources required by each connection are exhausted or the maximum limit
is reached.

DoS attack: In a path-based Denial of Service (DoS) attack, an adversary swamps
sensor nodes at long distance by flooding a multihop end-to-end communication
path with either replicated packets or spurious injected packets.

Application attack: This attack modifies the firmware or software node. The
attacker directly accesses to the node and modifies the software code.

Overwhelm attack: An attacker might attempt to overwhelm sensor nodes with
sensor stimuli, causing the network to forward a large number of packets to a
base station.

In the simulation perform presented in Sect. 12.3, the virtual platform will model
those attacks who performs malicious attempts to disrupt total or partially the
communication flow within network nodes.

12.3 Virtual Platform Simulation Technique

What are the main components of the virtual platform and how to obtain perfor-
mance estimation of a WSN are explained in this section. Next sections will focus
in how the attacks and the cryptography security are modeled and evaluated.

12.3.1 Hardware/Software Co-simulation

Co-simulation is a fundamental part of the verification task in Hardware/Software
(HW/SW) co-design flows. The most popular approach to integrate the embedded
software in system co-simulation is the use of instruction-set processor models (ISS)
to execute the binary code of the SW components. This solution is accurate but also
too slow to be used at the beginning of the design process. Therefore, it is proposed
to use the native simulation methodology which is faster than ISS approaches. With
this technique, software application execution is simulated in a host computer using
abstracts models of the processor, RTOS and hardware platform.

The co-simulation methodology described in this subsection is based on the
native simulation approach [13] depicted in Fig. 12.9. This approach consists in a
combination of the native execution of annotated software code with the use of a
virtual platform model of the hardware architecture. With this simulation technique
it is possible to model hardware platform components in System-C and execute the
code of each node over this platform. Thus, it possible to obtain fast and accurate
estimations of energy and power consumption, execution time, data a/instruction
cache hits and misses, number of bus accesses, network traffic, etc.
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Fig. 12.9 Native co-simulation process in the WSN virtual platform

The framework (Fig. 12.9) also includes RTOS, network and the attacker model.
The co-simulation process includes several steps:

• The embedded source code is parsed and analyzed. The basic blocks are
identified and annotated with several performance-oriented parameters (energy
consumption, execution time, cache and bus access requirements, etc.).

• The instrumented code is natively compiled and linked with several additional
libraries that implement platform components or required models: processors,
network, RTOS, bus, cache, etc. The execution of this code will produce the
performance analysis results.

12.3.2 Wireless Sensor Network Model

Figure 12.10 presents an example of wireless sensor network in which the node
architecture has been detailed. It can be observed that the architecture and applica-
tion of each node could be independent from other nodes (heterogeneous network).

But it is still necessary to model the behavior of the network. In a wireless
system, the physical channel between two nodes is a shared channel, with noise
and interference. Additionally, the transmission range of the nodes is limited.
As a consequence, WSN developers need to determine the node visibility and the
probability of a successful reception of a packet. Thus, it is necessary to define a
matrix with the probability of packet loss for the whole network. This probability
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Fig. 12.10 Representation of the nodes architecture

data may be calculated by electromagnetic-propagation simulation tools such
Cindoor [17]. With this matrix the simulator can estimate the effectiveness of the
links between nodes.

A high level scheme of the network model is presented in Fig. 12.11. As it can be
observed, the hardware network interface is responsible for deciding which packets
should actually be received by the node. In a real wireless network, when a node
sends a packet to another node, this packet is not only received by the receptor node
but also by all the nodes in the transmission range of the sender. In this case, the
hardware network interface is responsible for disposing of the packets that do not
correspond to its node.

A packet-loss probability has to be defined for every pair of nodes. For example,
a 100 % packet-loss probability means that the sending node range is not enough
to directly reach the destination node, thus all the transmitted packets are lost.
Instead, if the developer defines the link as 0 %, all the packets reach its destination.
For example, the link between the node 0 and node 1 is defined as 10 % in the
Fig. 12.12. Thus, it indicates that 90 packets reach its destination for each 100
packets transmitted.

It is important to clarify that the network is responsible for transmitting the
packets to their destination. When a node sends a packet, the network adds the
packet to the transmission queue that is sorted be the time of arrival at the
reception node. When the simulation time matches the time of arrival of the packet,
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Fig. 12.11 Network model

Fig. 12.12 Wireless network
model

the wireless network pops the packet and generates a real random number between 0
and 100. If the probability of success is higher than this random number, the network
transmits the packet to the destination node; otherwise the packet is discarded. The
probability of success, P.success/, is understood as 100 minus the probability of
error, P.error/, that is defined in the packet-loss probability matrix. Figure 12.13
represents a scheme of this wireless network operation.
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Fig. 12.13 Simulation of a wireless network

However, the transmission channel is shared in a real wireless network and a
transmitted package is visible by all the nodes in the range. This is the reason why
in the simulation the packets are transmitted not only to the destination node but to
all the nodes in the range.

12.3.3 Modeling of the Node Hardware Elements

There are two essential components in a wireless sensor node that other systems
do not have. These components are the sensors and the radio-frequency (RF)
transceiver, thus it is necessary to model them adequately in the Virtual Platform.

The sensor is responsible for sampling external information with a certain
frequency or when an event occurs. In the simulation, this component is imple-
mented as an external component with specific power consumption. It is possible to
simulate any type of sensors (temperature, movement, etc.). They only differ in the
information that is sent to the node, its power consumption and operating frequency.

The other important component is the RF transceiver: The behavior of this device
is more complex than the sensor. It is implemented with several configuration
registers to control its operation. These registers can be modified dynamically
in order to configure the transceiver operation. Software applications can access
them through an API (Application Programming Interface) layer that implements
the RF-transceiver AT commands. The current version of the framework models
a commonly used RF transceiver, XBee [26], which includes network protocol
management. In the evaluation scenarios, the XBee default configuration is used.
For simulation, the most interesting transceiver parameters are:
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• Destination Address (High and Low): they define the address of the destination
node for transmission.

• Baud Rate: speed for data transfer between radio transceiver and host.
• MAC Retries: number of retries that can be sent when transmitting.
• Multiple Transmissions: number of additional broadcast retransmissions.
• Power Level: power level at which the RF module transmits.

12.3.4 RTOS Model

It is also important to model other platform elements as the Real-Time Operating
System (RTOS). Most WSN node applications require an embedded RTOS. This
is an operating system that serves real-time application requests. The RTOS can
create and operate a number of concurrent user tasks, scheduling those tasks
within guaranteed time-limits using some priority mechanism. This guarantees that
there is no-interference between these tasks and between the tasks and the kernel,
allowing these tasks to communicate using queues, to synchronize using mutexes
or semaphores and to interact directly with hardware through device drivers, clocks
and interrupt mechanisms.

This RTOS model allows simulating correctly the system functions and achieving
more accurate estimations. Additionally, this allows using of the same RTOS API
that the physical platform uses, thus the same software code can be executed in the
physical node and in the simulator.

The Virtual Platform runs natively POSIX [14]. This interface implements
threads, mutexes, semaphores, queues, timers and other common POSIX services.
These elements are needed for the RTOS model so the new RTOS layer uses these
services provided by the POSIX layer.

One of the most popular RTOS in WSN is FreeRTOS [5]. In order to integrate this
RTOS in the virtual platform, a FreeRTOS layer was created on top of the existing
POSIX API. It is possible to simulate applications developed for this operating
system because of this layer as it can be observed in the Fig. 12.14.

12.4 Attack Modeling Technique

Besides the WSN elements shown in the previous section, the virtual platform also
allows the modeling of attacking nodes. These nodes represent the attackers with
basic simulation models to allow a fast simulation. Three basic types of attacker
nodes are defined: “Link-Noise node”, “Fake Packet Injection node” and “Direct
Attack node”. The idea is that with these three basic types of attackers is possible to
cover all the vulnerabilities defined previously.
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Fig. 12.14 FreeRTOS in the
virtual simulator

12.4.1 Link-Noise Attacker

A Link-Noise node dynamically modifies the packet-loss probability between nodes
(reduction of the communication link quality), thus some packets are incorrectly
discarded. The link-noise attacker enables the definition of several parameters:

• Links: List of communication links or node-pairs that are affected by this
attacking node.

• Power: List of noise power that will be applied to every defined link. This
specifies the percentage of packet-loss probability that will be added to the
original probability.

• NumPackets: Percentage of packets affected by the increased packet-loss prob-
ability.

• Time: It defines the ranges of time in which the attacking is performed. The
attacker can be switched on or off many times during the simulation.

• TypePackets: The attack will only be active for specific packet types, enabling
the simulation of selective attacks.

In order to simulate Link-Noise nodes efficiently, the previously commented
WSN network model has been modified. Basically, this attack modifies the packet-
loss probability for certain packet types during pre-defined periods of time. The
network simulation model includes the new probability as shown in Fig. 12.15.
When a packet has to be transferred to the receiver node, the reception probability
will include the original probability and the additional probability noise caused by
the attack (prob_loss in Fig. 12.15).
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Fig. 12.15 Simulation with link noise attackers

12.4.2 Fake Packet Injection Node

This attacker introduces fake packets into the network with different undesired
consequences. Fake packets are received by the nodes because their structure is
formally correct. The packet payload depends of the attacker parameters that model
the attack mode, injection frequency, fake packet types, etc. These parameters are:

• Frequency: It defines the fake packet rate or number of packets per second that
are injected into the network.

• TypePackets: It defines the type of packets that the attacker injects. As for
example: ACK, RTS and data packets.

• Time: It defines the time interval in which the attack is being executed.
• NodesDestine: It specifies the receiver nodes.
• Broadcast: Each packet will be sent to all nodes.

In order to simulate this attack, the attacker node injects new packets into the
transmission queue of the network model. Once the packet is inserted in this queue,
the network transmits these fake packets as if they were genuine. Figure 12.16 shows
this attack in the network model.

12.4.3 Direct Attack Node

The Direct Attack modifies the embedded software of the node by a introducing a
fake program. Usually, it is performed by downloading the undesired application to
the node. This attack is modeled in the virtual platform by modifying the packet-loss
probabilities of the network.



262 Á. Díaz et al.

Fig. 12.16 Simulation with fake packet injection attackers

Fig. 12.17 Implementation nodes for each attack

12.4.4 WSN Attack Model and Its Relationship
with the Identified Vulnerabilities

The relationship between the described attacks and the attacker model will be
explained in this subsection. Figure 12.17 shows the relationship among the
identified WSN attacks and the proposed attacker models. These models cover all
the identified attacks explained before. For example, the Direct Attack node enables
the modeling of the swamping and application attacks shown in the vulnerabilities
section.

As it can be observed in Fig. 12.17, a Link-Noise node can model different
attacks: Jamming, Collision, Black Hole and Path-based attacks. Different param-
eter values of the attacker node configuration enable modeling of different types
of attacks. For example, jamming and collision attacks can be modeled with the
same attacker node (Link-node) but with different parameters. These parameters are
not only used to define attacks, but also to define attack strategies. For example,
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the Jamming attack can have multiple strategies. If there is a PartialBand Noise
jamming attack [12], the attacker could be modeled as a Link-noise with 50 % of
affected packets.

Another example is the interrogation attack. It is simulated with a Fake-Packet
injection node. In this case, it is necessary to configure the attacker node to
continually send CST and RTS packets.

Sybil attack modeling is a special case because it is necessary to use two attacker
nodes. The Link-Noise node isolates the attacked node and the Fake Packet injector
node inserts the altered packets. The tampering and sniffing attacks are not simulated
because they do not affect the operation of the node. These attacks are focused in
stealing information.

12.5 Evaluation of WSN Attacks

12.5.1 Virtual Simulator Results

In order to use the Virtual Platform to simulate the SW application execution on an
embedded HW some files have to be processed. First, the software applications, that
have to be written in C/C++, have to be compiled with the virtual simulator compiler.
In addition, several library elements that model the virtual platform components are
required to describe the complete HW/SW system for each node. Besides this, the
network definition file with the network packet-loss probabilities is required. Once
all the input files have been processed, the virtual simulator generates an executable
model. This model is used to simulate the complete system. After the execution is
completed, the following performance estimations are provided:

• RTOS related estimations

– Number of created processes
– Number of destroyed processes
– Mean execution time of a process
– Total user time

� Total kernel time

– Number of thread switches per processor
– Number of task switches per processor

• RF-Transceiver and network estimations

– Transceiver energy consumption by transmissions in Joules
– Transceiver power in Watts
– Number of packets send
– Number of packets received
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• Hardware related estimations

– Number of nano-seconds that the every simulated core have been executing
code

– Percentage of core use

� Number of executed instructions
� Number of instructions cache misses
� Number of data cache misses
� Core power and energy, in Watts and Joules respectively
� Instruction cache power and energy, in Watts and Jules respectively
� Data cache power and energy, in Watts and Joules respectively

• Total simulation time in seconds

12.5.2 Evaluation of WSN Attacks

In order to evaluate the proposed attack-modeling methodology, two examples
of attacked WSNs are shown (Figs. 12.18 and 12.19). These networks and their
attackers have been modeled in the virtual platform.

There two different types of node in both networks. The first type of node is
the gateway or central node. It is responsible for communicating with the second
type of node, the sensor node. The sensor node has a sensor to measure the
environmental temperature. When the sensor reads this information, the node sends
this information to the gateway. The gateway waits to receive information from
sensors to generate a message with all the network information. This message

Fig. 12.18 Wireless mesh
sensor network
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Fig. 12.19 Wireless linear sensor network

is sent through a GPRS module to a control center. When the nodes finish their
functionality, they enter in a sleep mode to reduce the consumption and to increase
the life of the node battery.

All the sensor nodes have the same hardware architecture and similar embedded
software. In these scenarios, the platform model of the nodes includes an ARM
926 processor, a memory, a temperature sensor and an 802.15.4 transceiver. All
these components are interconnected by a bus system. The embedded application
software reads the sensor every 30 s and sends the information to a gateway node.
The gateway analyzes the information and report to a GPRS network if detects an
anomalous measurement.

In the first example (Fig. 12.18) the network has a mesh topology. Each node
takes its measurement and sends it to the gateway. The percentages on the red lines
represent the packet-loss probabilities of the wireless channel. If there is no red line
between two nodes, it will be assumed that the packet- loss probability is 100 % (so,
there is no direct connection).

The second network (Fig. 12.19) has a linear topology. Each node reads the
sensor and sends the information to the next node of the network. Thus, the
transmitted packet increases its size since it adds the information of each sensor
while it passes through the whole network. The red lines in the Fig. 12.19 model the
possible wireless communication channels and the packet-loss probability.

In both types of networks, three attacks have been modeled and simulated It is
worth to mention, that the virtual simulator allows the simulation of all the attacks
described in the previous sections.
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Table 12.2 Simulation results

Mesh network Linear network

Gateway
Node
(0–6) Node 7 Total Gateway

Node
(0–6) Node 7 Total

Attack-free (J) 3.62 0.72 0.72 9.32 0.57 1.6 1.6 13.4

Collision attack (%) �28 C193 C193 C109 �9:5 0 C90 C9:4
Interrogation attack (%) 333 0 0 C90 C139 0 0 C65
Sybil attack (%) 0 0 C563 C68 0 0 C314 C21

12.5.3 Simulation Results

In this example, the first simulated attack is an Intelligent Collision attack on the
gateways nodes with an effectiveness of the 60 %. The second attack is a Sybil
attack on node 7 and the last one is an Interrogation attack on the gateway nodes.
The objective of the simulations is to estimate which attacks are more dangerous
(in terms of energy consumption) for each network.

Table 12.2 shows the estimated power consumption of each node in both
networks. The power consumption of attack-free use case is used as reference.
Therefore, the absolute power consumption values are shown for this use case. And
the increase of power consumption is shown for the other cases.

As it can be observed in Table 12.2, the total power consumption of the Linear
Sensor Network is 30 % higher than the Mesh Sensor Network. This is because of
the increased workload of the sensor nodes since they must communicate with their
neighbors. In contrast, the gateway power consumption can be lower (e.g. �9:5%)
because it receives fewer packets.

In the Collision attack case, the gateway reduces the power consumption because
its workload is reduced since the attack decreases the number of packets received.
However, it can be observed that the mesh network is more affected than the linear
network in terms of power consumption when the total power consumption of the
networks is compared. For example, the power consumption of the mesh network
is increased by two while the linear network consumption is slightly affected by the
Collision attack.

In the Sybil-attack case, the linear network also has a lower power consumption
increase. These results do not mean that the linear network is more secure than the
mesh network since the reduced power consumption is a consequence of a higher
packet loss. In the Sybil attack, the mesh network loses 1/8 packets while the linear
one loses all the packet information.

Thus, with these results a WSN designer can observe what topology and
applications network are more vulnerable to some specific attacks. Therefore, it can
design more secure WSN networks in non-secure environments.
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12.5.4 Comparison Between Real Measurements
and Virtual Platform Estimations

There have been real measurements performed in this evaluation. These measures
were performed with the N6705b DC Power Analyzer from Agilent [2]. This device
is a source/measure unit designed specifically for the task of battery drain analysis.

The working frequency of the processor of the sensors node and gateway is
120 Mhz. This is important since the power consumption is strictly related to this
frequency. All the simulations that have been performed in this evaluation were done
at this frequency. The real measurements are compared to the estimations provided
by the virtual platform so the accuracy of the tool can be obtained.

Different scenarios have been simulated with the WSN deployment shown in
Fig. 12.18. The goal is to simulate different features on the same environment and
observe the WSN behaviour. After observing their results it is possible to decide
about the hardware and software that the WSN nodes should include. The different
scenarios are presented in the next paragraphs.

• Scenario 1: This scenario focuses on estimating the power consumption of
the network normal operation mode. Each node performs some readings from
their sensor, processes the sensor data and sends them to the gateway. They
also receive messages from other nodes. This working mode does not encrypt
the transmitted messages. The idea is to obtain an estimation of the power
consumption of this network that can be used to compare against other scenarios.

• Scenario 2: This scenario is similar to the previous one but in this case the
transmitted packets are encrypted by using an AES-256 scheme [18]. This is
performed by all the nodes of the evaluation scenario. To accomplish this, the
nodes use their hardware cryptography modules. Of course, it is also necessary
to decrypt the received packets. There is also other type of packets (not related to
data sensor). These packets are sent periodically and contain new cryptography
keys. This is done to improve the security in the network. This will have also an
impact in the power consumption of the whole network since more packets are
transmitted compared to the scenario 1. The gateway sends new cryptography
keys each 30 min in this simulation.

• Scenario 3: A common attack for wireless devices is simulated in this scenario.
This attack is the Replay Attack and it consists in sending repeatedly packets
to the node destination. These packets were previously captured by the RZUSB-
STICK [3] so they can be identified correctly by the node victim. The idea behind
this attack is to diminish the device battery by forcing the node to process useless
packets.

• Scenario 4: The secure booting is a special feature of WSN nodes thus a special
scenario is designed only for its evaluation. In this case, it is not necessary to
simulate the whole network but only the node that is rebooted. The booting is
composed of several steps that are also executed in the virtual platform. These
steps are:
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Table 12.3 Error of the virtual platform

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Error (%) 11 9 8 10 10 11

– Read from the SD
– Confirming authenticity and/or decrypting
– Translation of the hex file
– Saving the translated firmware to the FLASH
– Application start

• Scenario 5: In the last scenario the whole network is modeled but the results are
focused in one node since it tests a specials application. In this case, a normal
firmware update is performed in one node. Since each packet has a maximum
data size of 76 bytes, the whole firmware requires at least 1,752 packets.

• Scenario 6: This scenario focuses in simulating a partial firmware update. In this
scenario the firmware size is 593 bytes. Same measurements as in the scenario 5
are performed so a comparison between both methods can be obtained.

The error in percentage of the Virtual Platform estimations is shown in
Table 12.3. This error was calculated after comparing the estimations with the real
measurements. In the cases that there were several measures, as in the scenario 4,
the error average is shown.

It can be observed that the worst accuracy was obtained in scenarios 1 and 6 with
an error of 11 %. The total error of the simulation tool varies from 8 to 11 % in the
simulations performed in this evaluation.
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Chapter 13
Heap Management for Trusted
Operating Environments

Iraklis Anagnostopoulos, Ioannis Koutras, Christos Andrikos,
and Dimitrios Soudris

Abstract Dynamic memory managers are responsible for organizing the
dynamically allocated data in memory and also servicing the application’s memory
requests (allocation/deallocation) at run-time. In today’s trusted embedded systems,
dynamic memory management is a mechanism implemented in order to interact
with modern applications. However, the majority of these applications are not
self secured. The combination of scripting languages, fast development and user
centralized environments ends up with applications full of security flaws. In this
chapter, we will present the Dynamic Memory Management (DMM) design space
and all the orthogonal decision trees including heap protection actions. Also, we will
present methods for securing memory allocators for modern embedded systems.

13.1 Introduction

High performance single-chip computing devices evolve from single- to multi- and
even many-core architectures. In these cases, memories are preferably distributed
for medium and large scale system sizes, because centralized approaches have
become the bottleneck in performance, power and cost. Traditional memory opti-
mization uses compile-time information and focuses on static allocation in respect
to available memory hierarchy. For modern applications, where dynamicity is
ascendant, this is no longer possible since there is a lot of memory unpredictability,
which cannot be captured by source code analysis alone. Also, the increased
dynamism in data storage leads to unexpected memory footprint variations unknown
at design time.

Dynamic memory managers are responsible for organizing the dynamically
allocated data in a part of memory called heap and also servicing the application’s
memory requests (allocation/deallocation) at run-time. In case of an allocation
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memory request for a new object, the dynamic memory manager returns to the
application the pointer inside the heap, to the newly allocated object. In C/CCC
programming language dynamic memory allocation is performed through the
malloc/new operators. In the case of a deallocation memory request, the dynamic
memory manager returns to the application either a true or a false value in respect
to success of the process.

Dynamic memory management (DMM) is a critical component in modern
embedded systems since the dynamic memory allocation often forms the main
performance, and scalability bottleneck of modern complex applications. Also, it
greatly affects the energy and memory consumption of the overall system.

Moreover, heap based attacks are an ongoing threat. As with many security
vulnerabilities the exploitable glitch is discovered by the attacker. Also, bad memory
management from the programmer may lead to various errors that could interfere
with other processes and enable heap based attacks. Instead of relying on the
programmers’ memory managing skills, an approach to prevent these heap based
attacks is to make the memory allocator safe. This basically means that the allocator
tries to tolerate the inevitable memory errors and let them not interfere with anything
but the processes that caused them.

13.2 Memory Segmentation

Process memory is divided to five main segments:

1. Text
2. Data
3. bss
4. Stack
5. Heap

Each segment represents a special portion of memory that is set aside for a certain
purpose and has specific read/write permissions.

Text, also know as code segment: This segment contains the assembled machine
language instructions that are to be executed. Due to the variety of the used function
calls the execution of the instructions in this segment is non-linear. Also, read-
only permission is allowed since its goal is to store instructions and not variables.
Consequently, this memory segment has a fixed size. This read-only feature also
allows the multiple execution of a program without problems. Any attempt to write
to this segment of memory will cause the program to alert that something malicious
happened and usually to be terminated.

Data and bss segments store global and static program variables and are placed
consecutively after the text segment. On one hand the data segment is filled with
the initialized global variables, strings and any other constants that are used by the
process. On the other hand the bss stores all the uninitialized ones. Both segments
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are writable as global variables’ values usually alter during the execution. However
because of the fact that the crowd of all global variables, strings and constants
remains unchanged during the execution both segments have fixed size.

The stack segment is the first from the two segments whose size is variable,
meaning it can become larger or shrink smaller depending on the program’s needs.
It is used as a temporary part in order to store context information between function
calls giving the process the ability to remember caller’s context after every internal
context switch. When a process calls a function, that function contains its own set
of variables and as aforementioned the code will be placed at a different memory
location, the text segment, The stack segment is used to remember all the previous
calls and values and the location that the instruction pointer register should return
after the execution of the function. So, a new record has to be generated, containing
the program counter’s current value and the essential context before the switch
ordered by function call mechanism. After its generation, the new stack record is
placed (push) in the stack (in a First In Last Out way) segment whose size increases.
When the called function ends the record is used to return to the hardware the state
of the caller one. At this moment we got the pop functionality, decreasing the size
of the stack.

Last but not least, the heap segment is used for the rest of the program variables,
meaning all the dynamic allocated variables whose sizes are run-time estimated. It
is the second segment type that has not fixed size as the stack segment does. All
of the memory within the heap segment is managed by allocation and deallocation
algorithms – mechanisms. These algorithms are used in order to reserve memory
from the system, so as to serve the requests of the program and also release any
already used memory that it is not needed anymore.

13.3 Heap Attacks

In a heap attack the attacker targets the heap memory of a process. As aforemen-
tioned, the heap contains all the memory the current process has allocated and if the
attack succeeds the attacker could compromise the system, or simply just cause a
crash. There two conditions that are inevitable prior to a heap attack:

• First of all there has to be a memory management error.
• Secondly the memory allocator has to be exploitable.

13.3.1 Memory Management Errors

It is very hard to prove that an application is safe from memory errors. This happens
because memory management errors come from the programmer. It is very common
programmers to use memory in a more care less way creating “holes” that can



274 I. Anagnostopoulos et al.

be used for an attack. Especially, unsafe programming languages (such as C and
CCC) do not provide memory error checking. There are five common memory
management errors:

• Heap overflow and underflow: Overflow happens when the allocated memory is
too small to store the object and the data overexceed. On the opposite, underflow
happens when a read or write performed before the allocated memory. Overflows
happen way more often than underflows.

• Dangling pointers: Dangling pointer is called the pointer that points to an
already freed object. These pointers are also known as use-after-free pointers.

• Double free: If the programmer tries to free the same object twice, double
free memory management error occurs. Freeing the same memory chunk more
than once can corrupt memory manager data structures in a manner that is not
immediately apparent.

• Invalid free: This error happens if the code tries to free an object that no memory
has been allocated beforehand.

• Unitialized reads: In unsafe programming languages (such as C and CCC)
allocating a memory space does not mean that it is also initialized. So, incorrect
usage of unitialized memory leads to memory management error and unexpected
behavior.

13.3.2 Exploitable Allocator

Assuming that an attacker has found out a memory management error and knows
the execution path to the error, the next point of interest is the memory allocator.
Almost all widely used memory managers are predictable, meaning that we can
guess and predict how the allocated memory is organized in the heap. Thus, allocator
exploitation is achieved through driving the allocator to a predictable state. For
example, Sotirov describes a sophisticated technique called Heap Feng Shui that
allows attacks on browsers running JavaScript to ensure predictable heap behavior
[14]. The most common attacks are:

• Heap overflow attacks
• Heap spraying attacks
• Dangling pointer attacks
• Off by one error

An attack mostly aims heap metadata in order to change the allocator’s behavior
through heap’s metadata illegal modification. Attacking the application’s data, offer
the attacker an easily exploitable environment though a special behavior of a running
process that the programmer has not forecasted.
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13.3.2.1 Heap Overflow Attacks

Heap overflow attack is the most common attack. As aforementioned, the heap
implementation divides the heap into manageable chunks and tracks which heaps
are free and in use. Each chunk contains a header structure and free space (the buffer
in which data is placed). The header structure contains information about the size of
the chunk and the size of the preceding chunk (if the preceding chunk is allocated).
The main goal of this specific technique is to overwrite essential heap informations
in the allocated chunks and in that way alert allocator’s functionalities. The most
common scenario is to focus on metadata aiming to pointer overwriting resulting to
forward and backward consolidation attacks.

13.3.2.2 Heap Spraying Attacks

Heap spraying attacks [9] are used to make exploitation of other vulnerabilities
simpler. On many systems, the heap lies within a restricted address space and
during a heap spaying attack, the application code can often be made to read an
address from an arbitrary location in memory. The heap has been “sprayed” with
shellcode and the attacker tries to force the application to read an address from
the sprayed heap. However, to successfully exploit a heap spray, the attacker must
guess the address contained within some (large) set of attacker-allocated objects. In
modern systems, guessing the location of heap-allocated shellcode or the address of
a specific function can be difficult due to ASLR [11].

13.3.2.3 Dangling Pointers

Dangling pointers are pointers to memory locations that are no longer allocated.
In most cases this will lead to a program crash but in some cases it could lead to
a double free vulnerability. Such a double free vulnerability could be used by the
attacker in order to modify or alert the behavior of the allocators resulting in a code
injection attack [7, 18]. However, dangling pointers is prevented in most modern
memory allocators because these allocators check if a chunk is freed twice in a row.

13.3.2.4 Off by One Error

An off by one error is a special case of the buffer overflow. When an off by
one occurs, the adjacent memory location is overwritten by exactly one byte. In
some cases these errors can also be exploitable by an attacker. A more generally
exploitable version of the off by one error for memory allocators is an off by five.
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13.4 Dynamic Memory Management Design Space
for Trusted Operating Environments

In order to design or customize an efficient dynamic memory manager a number
of decisions and strategies have to been explored. Each decision forms a differ-
ent implementation choice. Different combination of decisions delivers different
dynamic memory managers. Thus, the specification of all the possible decisions
and strategies concerning dynamic memory allocation has to be defined in order to
be able to explore various alternatives.

The enumeration of these decisions defines the complete design space of dynamic
memory management. All of them should affect as less as possible the other ones,
i.e. be as orthogonal as possible. Thus, this set of possible decisions must cover
exhaustively any kind of potentially profitable (In the Pareto trade-off sense, where
more than one metric is considered and a solution can be very better in general,
but not for one axis) dynamic memory scheme that exists currently in the literature.
Furthermore, we propose to use taxonomy of decisions based on orthogonal trees at
two different abstraction levels.

Before presenting the design space exploration for Dynamic Memory Manage-
ment there is need to present some of the implemented techniques for securing
heap and the necessity for building secure memory allocators in a modular way.
Authors in [5] propose a non-executable heap. Non-executable pages are supported
in virtual memory hardware and in recent versions of various Operating Systems,
such as Microsoft Windows XP Service Pack2 [1], Linux and Open BSD. However,
some embedded systems may not be able to even host an operating system due to
limited storage but this cannot exclude them from being used in trusted computing
platforms leaving heap management vulnerable to attacks. Authors in [10] present
program shepherding, a technique through which policies regarding control flow
transfer can be specified and enforced. However, both non-executable heap and
program shepherding try to prevent the last stage of an attack. Attacks that do
not rely on control flow modifications cannot be prevented as presented in [4].
PointGuard [6] stores encrypted pointers in the main memory and recently it
has been implemented as a hardware approach for stack protection [16]. The
compiler or binary rewriter is required to identify type information, and apply
encryption/decryption on pointer accesses. However, without sacrificing language
compatibility, accurately identifying pointer accesses is difficult in C programs due
to lack of type information. Transparent Runtime Randomization(TRR) [17] and
Address Space Layout Randomization (ASLR) [15] are software techniques that
randomize the starting address of various segments (heap, stack, BSS, etc.) and
dynamic library codes when a program is loaded [17]. Although TRR and ASLR
increase the difficulty of attacks that involve more than one segment, they cannot
protect against attacks that are solely carried out within the heap segment.

Based on the analysis presented in [2] a taxonomy of the available decisions
through a set of orthogonal decision trees has been presented. According to their tax-
onomy, we extend the DMM design space in order to efficiently model and capture
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Fig. 13.1 DMM design space

trusted computing decisions for securing heap management. The extended design
space remains platform independent and applicable to any MPSoC platform after
a platform dependent refinement. The design space is defined through platform-
independent Decision Trees (DTs) that capture both the inter- and intra- heap level
decisions for composing secure software customized dynamic memory allocators.
An overview of the DMM design space is presented in Fig. 13.1.

13.4.1 Intra-thread Design Space

• Block Structure Decisions which handle the way block data structures, are
created and used by the dynamic memory managers to satisfy the memory
requests inside each heap.

• Pool Organization Decisions which deal with the number of pools present in
each heap and the reasons why they are created.

• Block Allocation Decisions which deal with the actual actions required in intra-
thread level dynamic memory management to satisfy the memory requests and
couple them within a memory block.

• Block Deallocation Decisions that address the need of freeing the memory block
when it is no longer needed (and explicitly freed by the application running).

• Splitting/Coalescing Blocks category that refers to the actions executed by
the dynamic memory managers to ensure a low percentage of memory internal
fragmentation of each heap, namely splitting one larger block into two smaller
ones.

• Heap Protection Decisions refer to the actions required in order to secure
heap against heap attacks. Heap attacks, based on memory management errors,
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can lead to application crashing or even worse to the execution of malicious code.
Some of the most common heap attacks are heap overflows, dangling pointer,
double frees and invalid frees.

13.4.2 Inter-thread Design Space

• Architectural Scheme Decisions which determine the way the dynamic memory
allocator organizes and architects its heaps in order to exploit the available
thread-level parallelism into memory management.

• Data Coherency Decisions which deal with the existence or not and the structure
of the synchronization mechanisms in order to ensure the data coherency in each
heap. The Data Coherency Decisions are modeled through a single orthogonal
tree. Since multiple-threads are running in parallel multiple memory requests can
be rose concurrently from different which may corrupt the data and subsequently
the functionality of the dynamic memory manager and the application, if special
care of the coherency mechanisms is ignored.

• Inter-Thread Allocation Decisions which manage the way in which threads
allocate memory in the inter-thread level. Allocation in this level is strongly
connected with decisions which consider both the thread grouping in order to
share a heap and the thread to heap mapping. Allocation decisions of finer
granularity i.e. fit policies etc. are included into the intra-thread design space.
At the inter-thread level, allocation decisions reduce to the mapping of threads
to heaps. Specifically, this type of decision determines which of the available
heaps in the dynamic memory manager will serve the memory allocation request
according to the thread’s ID.

• Inter-Thread Deallocation Decisions which include trees concerning the own-
ership aware, deallocation of each memory block and placement decisions for
the deallocated blocks.

• Inter-Thread Fragmentation Decisions manages the potential memory blow-
up of the multi-threaded application and considers decisions in order to reduce
or bound the worst memory blow-up.

13.4.3 Interdependences Between Data
Management Techniques

After the definition of the orthogonal trees for dynamic memory management, in
this section we identify their possible interdependencies. Evidently, although the
decision trees are orthogonal, the selection of certain leaves in some trees affects
heavily the coherent decisions of the other ones. Thus, they possess interdependen-
cies to take into account when we analyze a certain dynamic memory manager.

These inter-dependencies can be classified in two main groups. First, the
inter-dependencies caused by certain leaves, trees or categories, which disable
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Fig. 13.2 Interdependences between data management techniques

the use of other trees or categories. We call this type of interdependencies as
excluding interdependencies. They are drawn in Fig. 13.2 as full arrows. Also,
there exist inter dependencies that affect other trees or categories due to their linked
purposes (e.g. coalescing/splitting etc.). These interdependencies are called linked
interdependenciesand they shown in Fig. 13.2 as dashed arrows.

It is important to mention also that, in Fig. 13.2, two different kinds of endings
for the arrows are present. First, the double ending arrows mean mutual influence
that cannot allow identifying clearly an order (which one should be characterized
first) in the overall cost produced by these categories without the addition of more
information to the exploration (e.g. specific function cost based on the number
of accesses, memory size or control flow, definition of the final architecture, etc.)
Second, the single ending arrows indicate that the side without arrow ending affects
the other one and must be selected first.

13.5 Heap Attack Prevention Techniques

As aforementioned, most memory allocators ignore security issues. Instead they
focus on maximizing performance and limiting fragmentation and waste. DieHard
[3] is a bitmap based allocator and was originally designed to be resistant against
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memory errors. This resistance was achieved through randomizing both memory
allocation and the reuse of freed objects. These properties greatly improved
reliability in two different ways. One of them is that randomization minimized
the possibility of two adjusting blocks to be one next to the other and thus
overflow attack is prevented. The second one is that the randomization makes the
allocator unpredictable. DieHard provides greater security guarantees than other
general-purpose allocators. However, DieHard was designed to increase reliability
against memory errors rather than for increased security and so DieHard enables
the program to continue running after experiencing memory errors. There is an
adaptive version of DieHard, called DieHarder [11], that manages memory through
so called miniheaps. Each of these miniheaps holds objects of exactly one size
and each miniheap size is adaptively adjusted according to a predefined ratio
between used and allocated space. Similarly to OpenBSD, DieHarder randomly
allocates individual pages from a large section of address space carving them
up into size-segregated chunks. In [12] authors present a technique that protects
the heap management information and allows for run-time detection of heap-
based overflows. Each chunk is protected by a randomly-seeded checksum over its
metadata fields. So, whenver an action is required for that chunk, the ckecksum is
checked in order to ensure that no over- or underflow has occured. Also, each access
of a list pointer is protected by a check to insure that the integrity of the pointers has
not been violated.

However, all the aforementioned techniques, require dependency on operating
systems and in many times there is big memory overhead, especially in replication
and heap randomization techniques. Heap protection in embedded systems require
faster and less aggressive, in terms of memory, solutions. The presented protec-
tion mechanisms especially designed for trusted embedded systems are canaries,
encrypted pointers and encrypted lists. All the supporting metadata of the metadata
protection mechanisms use a miniheap scheme to be stored to. It is actually
implemented in a mini bibop-based allocator in the original main allocator that
stores all the appropriate information. The specific miniheap is in the same address
space that the concluder one, but the way that it grows and the actual meaning of
its contents are generally encrypted. Miniheap is actual a minimal allocator inside
the application’s allocator itself. Only the running process is able to know the way
to find the contents it needs for running appropriately. Even the main allocator does
not “see” the address of the elements that the miniheap keeps. In the miniheap, we
save the keys for all allocated blocks and whenever there is an action regarding
the blocks, we verify the integrity of this action. For that reason, we have created
two structures for keeping the keys:

• Single Linked Lists (SLL) [13]
• Adelson-Velskii and Landis’ (AVL) tree [8]
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Fig. 13.3 Canaries
mechanism

13.5.1 Canaries

The canary mechanism contains a checksum of the chunk header seeded with a
random value Fig. 13.3.

When a chunk is returned to the heap management through a call to free, the
chunk’s canary is checked against the checksum calculation performed when the
chunk was released to the application. If the stored value does not match the
current calculation, a corruption of the management information is assumed. At this
point, an alert is raised, and the process is aborted. Otherwise, normal processing
continues; the chunk is inserted into a bin and coalesced with bordering free chunks
as necessary. Any free list manipulations which take place during this process are
prefaced with a check of the involved chunks’ canary values. After the deallocated
chunk has been inserted into the free list, its canary is updated with a checksum
covering its memory location, size fields and list pointers. This mechanisms is
effective against heap overflow attacks.

13.5.2 Encrypted Pointers

Concerning security, the dynamic memory manager can encrypt the pointers in
the metadata field so as not to reveal the address of the next block. The allocator
decrypts the pointers only when it is necessary to know the real addresses before
dereferencing Fig. 13.4.

This mechanisms is mostly effective against double free heap attacks and it also
prevents in some cases heap overflow attacks.

13.5.3 Encrypted Lists

Dynamic memory management is based on “chunks”, memory blocks that consist
of application usable regions and additional in-band management information.
A header is attached to each allocated object and contains its size and the size
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Fig. 13.4 Encrypted pointers

Fig. 13.5 Encrypted lists

of its previous object connected them in a linked-list style. The allocator uses a
list structure (single or double linked) for organizing all this kind of information.
In this level of organization we have developed an encryption mechanism in order
to prevent attacks in consecutive nodes of the list. Each node can be considered
as a memory page containing allocated or freed blocks. The list is considered as a
higher-level organization of blocks-pages returned by the system. Encryption in this
level of organization can achieve great protection against heap attacks to allocator’s
metadata and higher structures (Fig. 13.5).
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Fig. 13.6 Comparison of static implementations

Figure 13.6 presents the comparison of the static implementation of canaries,
encrypted pointers and encrypted lists. We can see that in most cases, all implemen-
tations have the same performance in terms of seconds and thus the combination of
them can be an effective way to prevent and defend the heap.
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Chapter 14
IP-XACT Extensions for Cryptographic IP

Emmanuel Vaumorin, Bernard Kasser, Sylvain Duvillard,
and Albert Martinez

Abstract This chapter aims at explaining the implementation of security attributes
in the IP-XACT (IEEE1685) standard. First, the state of the art usage of IP-XACT
in the current design flow of industry will be introduced. In a second part,
considering the stakes of security domain in System-on-Chip, we will demonstrate
how IP-XACT improves the design flow. Finally we will detail the extensions of the
IP-XACT standard that allow the coverage of security aspects in System-on-Chip
design.

14.1 Introduction

Many modern systems employ security and cryptographic IPs in order to offer
secure services and prevent exploitation attacks. These IPs are integrated using the
System-on-Chip technology offering better level of security, performance and cost
reduction.

The cryptographic IP that we will focus in this chapter has been designed by
STMicroelectronics [2] and it is a hardware accelerator that provides cryptographic
services to the system. The system may enable the usage of this IP’s services to
several users. This IP is an intelligent DMA: from an interpreted sequence code, the
bloc sends instructions through crypto channels to crypto IPs. Figure 14.1 shows the
architecture of a system using the cryptographic DMA.

It is possible to dispatch in parallel the instructions on cryptographic channels.
Channels will charge the keys on specified locations. In a debug purpose, the
registers are accessible through a slave interface, but in a delivery manner, this mode
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Fig. 14.1 Architecture of a
system using the
cryptographic DMA

shall not be possible. The IP does not have an action on the channels themselves.
It is possible to multiplex tasks at a coarse grain. Thus, it may be possible to share
a same cryptographic IP through several users but this implies to guaranty tightness
between each context, may they be saved or not.

In respect with security requirements, a driver provided for this IP must be trusted
and thus must be implemented carefully; for instance, the access to registers that are
tagged as “security related” must be restricted; indeed, these registers give access
to cryptographic channels and thus potentially this will let the application layer the
capability to hack the IP and get confidential information. We will see in further
part how they are tagged in an excel sheet and how IP-XACT [1] extensions may
be used to enhance the respect of this security rule. Nevertheless, the cryptographic
channels may be set accessible through the slave interface in the debug mode.

In respect with security requirements, a driver provided for this IP must be trusted
and thus must be implemented carefully; for instance, the access to registers that are
tagged as “security related” must be restricted; indeed, these registers give access
to cryptographic channels and thus potentially this will let the application layer the
capability to hack the IP and get confidential information. We will see in further part
how they are tagged in an excel sheet and how IP-XACT extensions may be used to
enhance the respect of this security rule. Nevertheless, the cryptographic channels
may be set accessible through the slave interface in the debug mode.

Thus we will try to strengthen the level of information that is contained in the IP
package by using extended IP-XACT and reflect this information at the driver level,
even at the application level.
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14.2 Presentation of the Approach

Our goal is to apply a new approach already defined for the co-design of low
level functional sequences: aligning specifications (e.g. excel sheet), hardware
description (better using IP-XACT) and code source (using sequences description
model).

A typical embedded development workflow produces a very large number of
artifacts: specifications, IP descriptions, verification code, driver code, BOM, etc.
Maintaining consistency between two iterations of a platform (or of a single
IP) is time-consuming and sometimes even impossible. Tracing requirements and
evaluating impact of changes on artifacts is a transversal process of its own.

The most current issues are due to evolution of the previous material: bit fields
and registers moved around, deprecated registers and bit fields (worst case being
silent fails), working binaries with no clear specification or code attached, etc.

Partial solution already exist but have limitation: versioning system in word
documents, filename-based versioning of PDF document, SCMs (ClearCase, SVN,
Git) for structured platform descriptions and actual code, XLS/CVS files for keeping
track of everything. But the general shortcomings are the followings: there is
no actual integration between file formats/versions and no effective traceability
between artifacts, no environment for handling efficiently a design flow’s life-cycle
(from specification down to implementation, tracing each requirement down at the
IP and driver code level, handling the impact of modifications made on one element
over the whole set of artifacts).

Figure 14.2 highlights the possible inconsistencies and potential misunder-
standing when SW engineers have to develop an application exploiting hardware
resources: the hardware components are delivered with specifications documents
and technical data-sheets, containing explicit and implicit information on how to
use it, configure it, program it. Our goal is to use a standardized way to format
these documents. The risk with misunderstood specification is to develop a driver
that is not fully compliant with hardware specifications: for instance with the ST
cryptographic IP, if the debug mode is not removed from the functions provided
by the released driver, the security will be impacted, as there will be a way for the
application to access to a forbidden service and get the cryptographic keys. In a
more accurate approach, we will see that some registers of the IP are defined as
“security related” because they are storing ciphering related data; we will see that
these “sensible” registers are not explicitly annotated, but just colored in blue in the
excel sheet; this may be risky if the software engineer don’t take it into account, and
even if we can trust the work of software engineer, it does not dispense to apply a
checking step by using more explicit specification based on a standard in order to
strengthen the heterogeneous value chain of actors.

Figure 14.3 illustrate the several step that we have experimented in order to prove
the feasibility of the deployment of our approach in an industrial context. The left
zone is dedicated to the hardware IP design phase; we will show how it is possible to
ameliorate some packaging steps, relaying on the IP-XACT standard and propose
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Fig. 14.2 Advantages of our approach in the heterogeneous value chain

Fig. 14.3 Experimentations based on an industrial use case
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some extensions. The right zone is dedicated to the software IP development; we
will show how the previous work done at the hardware level will be exploited
in order to automate some design steps and bring some checking capabilities and
reduce probability of security weakness at application level.

We will see in the Sect. 14.3 part how we will apply this approach to the use case:
registers zones will be tagged as “restricted access” using the IP-XACT extended for
security; then the implementation of the driver will be checked in regards with this
specification in order to validate it or report an error.

Another application will be to declare a register zone as a container for
cryptographic key; we will offer the capability to validate the fact that a driver is
well deleting this critical value at the end of specific sequence.

14.3 Experimentations

14.3.1 General Objectives of the Demonstrator

The hardware IP provider knows where is the weakness of its IP and thus must
provide to the system integrator the list of possible attacks (well known or specific)
and corresponding security rules and eventually security artifact that must be
deployed in the system (hardware or software).

The IP documentation is spread among several files and IP-XACT is a mean to
centralize in a standardized way a big amount of information. We want to show
that the IP integration can be ameliorated for security purpose, using structured
information that is available in the implementation flow. This will mainly relay on
IP-XACT files including extensions for security.

14.3.2 IP-XACT Packaging with Extensions

The first step of the demonstrator is to package the cryptographic IP in IP-XACT.

14.3.2.1 Step 1: Import IP Registers Description

An Excel sheet is containing the complete description of the register map as depicted
in Figs. 14.4 and 14.5. In the industrial flow, this Excel sheet is used to generate an
XML file, thanks to a macro; this file is used to generate the data-sheet in frame
maker (using notes) and to generate a verification code in C.

We have configured the importer in order to specify the format of the excel
file used as input and get the IP-XACT equivalent file, containing all the registers
description as depicted in Fig. 14.6.
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Fig. 14.4 Step 1 – IP registers description

Fig. 14.5 Excel sheet containing the registers description of the IP

Registers depicted in blue color and bold police are related to crypto channels
access and shall be considered with a particular attention; these registers may be
made available from a slave interface for debug purpose but must not be accessed in
a production mode, otherwise security is not preserved.

14.3.2.2 Step 2: Extend IP-XACT with Security Information

We have determined three extensions that are needed in IP-XACT to manage secu-
rity information; these extensions are referenced (PSS-1, PSS-2, PSS-3) (Fig. 14.7).
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Fig. 14.6 Importing registers description in IP-XACT

Fig. 14.7 Step 2 – extend IP-XACT for security relative information

We will use a parameter in IP-XACT register description to determine a security
relative information. In the excel sheet which describes the registers of the IP, we
can find information related to security (Figs. 14.8 and 14.9):
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Fig. 14.8 Registers characterized by color

Fig. 14.9 The driver is described in sequences using a link with the IP-XACT register definition

1. Registers depicted in black color are related to the infrastructure of the IP and
are normally used by the register to configure the IP (write access) and get useful
information (read access).

2. Registers depicted in blue color and bold police are related to crypto channels
access and shall be considered with a particular attention; these registers may be
made available from a slave interface for debug purpose but must not be accessed
in a production mode, otherwise security is not preserved.
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Fig. 14.10 Example of a driver sequences description using IP-XACT references

Fig. 14.11 Generated C code

14.3.2.3 Step 3: Help in the Implementation of Software Driver

A tool is used to describe the structure of the IP driver as well identified sequences.
Figure 14.10 presents an example of a structured description of sequences (right
side) using direct references with the register description in IP-XACT (right side).

The tool is able to define a register that contains a state and may be used to define
valid and invalid values in another register in function of this state. The C code is
then generated from the sequence description. Thus, Fig. 14.11 shows a C code that
has been generated for the sequences description.



294 E. Vaumorin et al.

Conclusions
In this chapter we presented that the exchange of information between hard-
ware provider and software developers is crucial, especially when security
is at the heart of the preoccupations. A first answer is to use the standard
IEEE 1685 IP-XACT that offers an accurate way to describe the detailed
hardware architecture that will be accessed by software layers. Nevertheless,
security related specifications must also be taken into account in order to avoid
implicit information, and to do so we have proposed extensions of IP-XACT.
The presented approach allows to understand how a methodology may be
applied at several steps of the flow using specific tools in order to strengthen
the delivered products in regards with potential security hacks.
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